WorldWideScience

Sample records for antifungal compound produced

  1. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014.

    Directory of Open Access Journals (Sweden)

    HaiKuan Wang

    Full Text Available Lactobacillus plantarum IMAU10014 was isolated from koumiss that produces a broad spectrum of antifungal compounds, all of which were active against plant pathogenic fungi in an agar plate assay. Two major antifungal compounds were extracted from the cell-free supernatant broth of L. plantarum IMAU10014. 3-phenyllactic acid and Benzeneacetic acid, 2-propenyl ester were carried out by HPLC, LC-MS, GC-MS, NMR analysis. It is the first report that lactic acid bacteria produce antifungal Benzeneacetic acid, 2-propenyl ester. Of these, the antifungal products also have a broad spectrum of antifungal activity, namely against Botrytis cinerea, Glomerella cingulate, Phytophthora drechsleri Tucker, Penicillium citrinum, Penicillium digitatum and Fusarium oxysporum, which was identified by the overlay and well-diffusion assay. F. oxysporum, P. citrinum and P. drechsleri Tucker were the most sensitive among molds.

  2. Efficacy of Crude Extract of Antifungal Compounds Produced from Bacillus subtilis on Prevention of Anthracnose Disease in Dendrobium Orchid

    OpenAIRE

    Benjaphorn Prapagdee; Lalita Tharasaithong; Ratchaya Nanthaphot; Cholakan Paisitwiroj

    2012-01-01

    The aim of this study was to evaluate the antifungal efficacy of crude extracts of antifungal compounds produced from Bacillus subtilis SSE4 against plant fungal pathogen; Colletotrichum gloeosporioides. Antifungal compounds in culture filtrate were extracted by ethyl acetate, hexane or dichloromethane and assessed for their efficacy to inhibit the growth of C. gloeosporioides on agar plates and for prevention of anthracnose disease in Dendrobium. The results showed that crude extracts of ant...

  3. Antifungal Compounds Produced by Colletotrichum gloeosporioides, an Endophytic Fungus from Michelia champaca

    OpenAIRE

    Vanessa Mara Chapla; Maria Luiza Zeraik; Ioanis Hcristos Leptokarydis; Geraldo Humberto Silva; Vanderlan Silva Bolzani; Maria Claudia M. Young; Ludwig Heinrich Pfenning; Angela Regina Araújo

    2014-01-01

    In this study, eight endophytic fungi were isolated from the leaves, stems and roots of Michelia champaca. The isolates were screened and evaluated for their antifungal, anticancer and acetylcholinesterase (AChE) inhibitory activities. All of the extracts exhibited potent activity against two evaluated phytopathogenic fungi. Chemical investigation of EtOAc extracts of the endophytic fungus Colletotrichum gloeosporioides resulted in the isolation of one new compound, 2-phenylethyl 1H-indol-3-y...

  4. Diversity of Actinomycetes at Several Forest Types in Wanagama I Yogyakarta and Their Potency as a Producer of Antifungal Compound

    OpenAIRE

    Reni Nurjasmi; Jaka Widada; Ngadiman N

    2015-01-01

    Actinomycetes are bacterial groups that produce many secondary metabolites, which different biological activities, such as antifungi, antibacteria, antivirus, antitumor, etc. Actinomycetes are widely distributed in soil and their diversity is influenced by type of forest. The aim of this study is to investigate diversity of actinomycetes in several forest types of Wanagama I forest in Yogyakarta and their potency as a producer of antifungal compound. Soil samples under the forest of Tectona g...

  5. Antibacterial and Antifungal Compounds from Marine Fungi

    OpenAIRE

    Lijian Xu; Wei Meng; Cong Cao; Jian Wang; Wenjun Shan; Qinggui Wang

    2015-01-01

    This paper reviews 116 new compounds with antifungal or antibacterial activities as well as 169 other known antimicrobial compounds, with a specific focus on January 2010 through March 2015. Furthermore, the phylogeny of the fungi producing these antibacterial or antifungal compounds was analyzed. The new methods used to isolate marine fungi that possess antibacterial or antifungal activities as well as the relationship between structure and activity are shown in this review.

  6. Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca.

    Science.gov (United States)

    Chapla, Vanessa Mara; Zeraik, Maria Luiza; Leptokarydis, Ioanis Hcristos; Silva, Geraldo Humberto; Bolzani, Vanderlan Silva; Young, Maria Claudia M; Pfenning, Ludwig Heinrich; Araújo, Angela Regina

    2014-01-01

    In this study, eight endophytic fungi were isolated from the leaves, stems and roots of Michelia champaca. The isolates were screened and evaluated for their antifungal, anticancer and acetylcholinesterase (AChE) inhibitory activities. All of the extracts exhibited potent activity against two evaluated phytopathogenic fungi. Chemical investigation of EtOAc extracts of the endophytic fungus Colletotrichum gloeosporioides resulted in the isolation of one new compound, 2-phenylethyl 1H-indol-3-yl-acetate (1), and seven known compounds: uracil (2), cyclo-(S*-Pro-S*-Tyr) (3), cyclo-(S*-Pro-S*-Val) (4), 2(2-aminophenyl)acetic acid (5), 2(4-hydroxyphenyl)acetic acid (6), 4-hydroxy- benzamide (7) and 2(2-hydroxyphenyl)acetic acid (8). All of the compound structures were elucidated using 1D and 2D NMR and MS analyses. The antifungal and AChE inhibitory activities of compounds 1-8 were evaluated in vitro. Compound 1 exhibited promising activity against Cladosporium cladosporioides and C. sphaerospermum that was comparable to that of the positive control nystatin. PMID:25421415

  7. Diversity of Actinomycetes at Several Forest Types in Wanagama I Yogyakarta and Their Potency as a Producer of Antifungal Compound

    Directory of Open Access Journals (Sweden)

    Reni Nurjasmi

    2015-11-01

    Full Text Available Actinomycetes are bacterial groups that produce many secondary metabolites, which different biological activities, such as antifungi, antibacteria, antivirus, antitumor, etc. Actinomycetes are widely distributed in soil and their diversity is influenced by type of forest. The aim of this study is to investigate diversity of actinomycetes in several forest types of Wanagama I forest in Yogyakarta and their potency as a producer of antifungal compound. Soil samples under the forest of Tectona grandis, Swietenia macrophylla King, Bamboosa vulgaris, Melaleuca leucadendron, and Gliricidia maculata were used as sources of soil bacteria. Bacteria and actinomycetes communities were analyzed through culture-independent approach by RISA and nested-PCR RISA using actinomycetes spesific primer (F243, respectively. Through culture-dependent approach, isolated actinomycetes diversity were analyzed by identification of morphology (colony and cell, genetic (BOX element by rep-PCR, and secondary metabolites (thin layer chromatography. In addition, isolates were assayed for their antifungal activity against Saccharomyces cerevisae, Candida albicans, Fusarium oxysporum and Aspergillus flavus. The presence of Polyketide Synthase-I (PKS-I and NonRibosomal Peptide Synthetase (NRPS genes were amplified by PCR to study their correlation with antifungal activity of the actinomycete isolates. The results showed that types of forest influence diversity of rhizobacteria especially actinomycetes. According to culture-independent approach, relatively, com-

munity of rhizobacteria from the highest were soil under the forest of B. vulgaris, G. maculata, T. grandis, S.macrophylla King, and M. leucadendron, respectively. Meanwhile, community of actinomycetes from the highest were soil under the forest of G. maculata, B. vulgaris, M. leucadendron, S. macrophylla King, and T. grandis, respec- tively. Fourty-three morphologically different isolates were found by using

  • Cyclosporin C is the main antifungal compound produced by Acremonium luzulae.

    OpenAIRE

    Moussaïf, M; Jacques, P.; Schaarwächter, P; Budzikiewicz, H.; Thonart, P.

    1997-01-01

    A strain of Acremonium luzulae (Fuckel) W. Gams was selected in screening new microorganisms for biological control of fruit postharvest diseases, especially gray and blue mold diseases on apples and strawberries. This strain manifests a very strong activity against a large number of phytopathogenic fungi. In this work, the product responsible for this antifungal activity was isolated from modified Sabouraud dextrose broth cultures of A. luzulae. It was purified to homogeneity by reverse-phas...

  • Identification and structure elucidation of a novel antifungal compound produced by Pseudomonas aeruginosa PGPR2 against Macrophomina phaseolina.

    Science.gov (United States)

    Illakkiam, Devaraj; Ponraj, Paramasivan; Shankar, Manoharan; Muthusubramanian, Shanmugam; Rajendhran, Jeyaprakash; Gunasekaran, Paramasamy

    2013-12-01

    Pseudomonas aeruginosa PGPR2 was found to protect mungbean plants from charcoal rot disease caused by Macrophomina phaseolina. Secondary metabolites from the culture supernatant of P. aeruginosa PGPR2 were extracted with ethyl acetate and the antifungal compound was purified by preparative HPLC using reverse phase chromatography. The purified compound showed antifungal activity against M. phaseolina and other phytopathogenic fungi (Fusarium sp., Rhizoctonia sp. Alternaria sp., and Aspergillus sp.). The structure of the purified compound was determined using (1)H, (13)C, 2D NMR spectra and liquid chromatography-mass spectrometry (LC-MS). Spectral data suggest that the antifungal compound is 3,4-dihydroxy-N-methyl-4-(4-oxochroman-2-yl)butanamide, with the chemical formula C14H17NO5 and a molecular mass of 279. Though chemically synthesized chromanone derivatives have been shown to have antifungal activity, we report for the first time, the microbial production of a chromanone derivative with antifungal activity. This ability of P. aeruginosa PGPR2 makes it a suitable strain for biocontrol. PMID:24037513

  • Epicoccum nigrum P16, a sugarcane endophyte, produces antifungal compounds and induces root growth.

    Directory of Open Access Journals (Sweden)

    Léia Cecilia de Lima Fávaro

    Full Text Available BACKGROUND: Sugarcane is one of the most important crops in Brazil, mainly because of its use in biofuel production. Recent studies have sought to determine the role of sugarcane endophytic microbial diversity in microorganism-plant interactions, and their biotechnological potential. Epicoccum nigrum is an important sugarcane endophytic fungus that has been associated with the biological control of phytopathogens, and the production of secondary metabolites. In spite of several studies carried out to define the better conditions to use E. nigrum in different crops, little is known about the establishment of an endophytic interaction, and its potential effects on plant physiology. METHODOLOGY/PRINCIPAL FINDINGS: We report an approach based on inoculation followed by re-isolation, molecular monitoring, microscopic analysis, plant growth responses to fungal colonization, and antimicrobial activity tests to study the basic aspects of the E. nigrum endophytic interaction with sugarcane, and the effects of colonization on plant physiology. The results indicate that E. nigrum was capable of increasing the root system biomass and producing compounds that inhibit the in vitro growth of sugarcane pathogens Fusarium verticillioides, Colletotrichum falcatum, Ceratocystis paradoxa, and Xanthomomas albilineans. In addition, E. nigrum preferentially colonizes the sugarcane surface and, occasionally, the endophytic environment. CONCLUSIONS/SIGNIFICANCE: Our work demonstrates that E. nigrum has great potential for sugarcane crop application because it is capable of increasing the root system biomass and controlling pathogens. The study of the basic aspects of the interaction of E. nigrum with sugarcane demonstrated the facultative endophytism of E. nigrum and its preference for the phylloplane environment, which should be considered in future studies of biocontrol using this species. In addition, this work contributes to the knowledge of the interaction of this

  • Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

    Directory of Open Access Journals (Sweden)

    Carolina Santiago

    2012-01-01

    Full Text Available An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The bioactive extract fraction was purified further and characterized by nuclear magnetic resonance, mass spectral and X-ray crystallography analysis. A polyketide compound, 5-hydroxyramulosin, was identified as the constituent of the bioactive fungal extract fraction. This compound inhibited the fungal pathogen Aspergillus niger (IC50 1.56 μg/mL and was cytotoxic against murine leukemia cells (IC50 2.10 μg/mL. 5-Hydroxyramulosin was the major compound produced by the endophytic fungus. This research suggests that fungal endophytes are a good source of bioactive metabolites which have potential applications in medicine.

  • Synthesis of Novel Antifungal Triazole Compounds

    Institute of Scientific and Technical Information of China (English)

    Yong CHU; Ming Xia XU; Ding LU

    2004-01-01

    Based on our previous studies of 3D-QSAR, 38 novel objective compounds belonging to 4 series were designed and successfully synthesized directed by the idea of reconstructing the structure of non-pharmacophores while reserving essential ones in triazoles. In vitro pilot studies on their antifungal activities showed that most compounds have inhibitory effects on C.albicans and some inhibit S.cerevisiae also. The effects on C.albicans of 5 compounds are more potent than or equal to that of fluconazole or itraconazole.

  • Preformed antifungal compounds in strawberry fruit and flower tissues

    OpenAIRE

    Terry, Leon A.; Joyce, Daryl C.; Adikaram, Nimal K. B.; Khambay, Bhupinder P. S.

    2004-01-01

    Antifungal activity against the pathogen, Botrytis cinerea, and a bioassay organism, Cladosporium cladosporioides, declined with advancing strawberry fruit maturity as shown by thin layer chromatography (TLC) bioassays. Preformed antifungal activity was also present in flower tissue. The fall in fruit antifungal compounds was correlated with a decline in natural disease resistance (NDR) against B. cinerea in-planta. Crude extracts of green stage I fruit (7 days after anthesi...

  • Functionalised isocoumarins as antifungal compounds: Synthesis and biological studies.

    Science.gov (United States)

    Simic, Milena; Paunovic, Nikola; Boric, Ivan; Randjelovic, Jelena; Vojnovic, Sandra; Nikodinovic-Runic, Jasmina; Pekmezovic, Marina; Savic, Vladimir

    2016-01-01

    A series of novel 3-substituted isocoumarins was prepared via Pd-catalysed coupling processes and screened in vitro for antifungal activity against Candida species. The study revealed antifungal potential of isocoumarins possessing the azole substituents, which, in some cases, showed biological properties equal to those of clinically used voriconazole. Selected compounds were also screened against voriconazole resistant Candida krusei 6258 and a clinical isolate Candida parapsilosis CA-27. Although the activity against these targets needs to be improved further, the results emphasise additional potential of this new class of antifungal compounds. PMID:26586600

  • Antifungal Chemical Compounds Identified Using a C. elegans Pathogenicity Assay

    OpenAIRE

    Breger, Julia; Fuchs, Beth Burgwyn; Aperis, George; Moy, Terence I.; Cormack, Brendan P.; Ausubel, Frederick M; Mylonakis, Eleftherios

    2007-01-01

    There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also ...

  • Antifungal chemical compounds identified using a C. elegans pathogenicity assay.

    Directory of Open Access Journals (Sweden)

    Julia Breger

    2007-02-01

    Full Text Available There is an urgent need for the development of new antifungal agents. A facile in vivo model that evaluates libraries of chemical compounds could solve some of the main obstacles in current antifungal discovery. We show that Candida albicans, as well as other Candida species, are ingested by Caenorhabditis elegans and establish a persistent lethal infection in the C. elegans intestinal track. Importantly, key components of Candida pathogenesis in mammals, such as filament formation, are also involved in nematode killing. We devised a Candida-mediated C. elegans assay that allows high-throughput in vivo screening of chemical libraries for antifungal activities, while synchronously screening against toxic compounds. The assay is performed in liquid media using standard 96-well plate technology and allows the study of C. albicans in non-planktonic form. A screen of 1,266 compounds with known pharmaceutical activities identified 15 (approximately 1.2% that prolonged survival of C. albicans-infected nematodes and inhibited in vivo filamentation of C. albicans. Two compounds identified in the screen, caffeic acid phenethyl ester, a major active component of honeybee propolis, and the fluoroquinolone agent enoxacin exhibited antifungal activity in a murine model of candidiasis. The whole-animal C. elegans assay may help to study the molecular basis of C. albicans pathogenesis and identify antifungal compounds that most likely would not be identified by in vitro screens that target fungal growth. Compounds identified in the screen that affect the virulence of Candida in vivo can potentially be used as "probe compounds" and may have antifungal activity against other fungi.

  • Prediction of Antifungal Activity of Gemini Imidazolium Compounds

    Directory of Open Access Journals (Sweden)

    Łukasz Pałkowski

    2015-01-01

    Full Text Available The progress of antimicrobial therapy contributes to the development of strains of fungi resistant to antimicrobial drugs. Since cationic surfactants have been described as good antifungals, we present a SAR study of a novel homologous series of 140 bis-quaternary imidazolium chlorides and analyze them with respect to their biological activity against Candida albicans as one of the major opportunistic pathogens causing a wide spectrum of diseases in human beings. We characterize a set of features of these compounds, concerning their structure, molecular descriptors, and surface active properties. SAR study was conducted with the help of the Dominance-Based Rough Set Approach (DRSA, which involves identification of relevant features and relevant combinations of features being in strong relationship with a high antifungal activity of the compounds. The SAR study shows, moreover, that the antifungal activity is dependent on the type of substituents and their position at the chloride moiety, as well as on the surface active properties of the compounds. We also show that molecular descriptors MlogP, HOMO-LUMO gap, total structure connectivity index, and Wiener index may be useful in prediction of antifungal activity of new chemical compounds.

  • Antifungal Potential of Extracellular Metabolites Produced by Streptomyces hygroscopicus against Phytopathogenic Fungi

    Directory of Open Access Journals (Sweden)

    Benjaphorn Prapagdee, Chutima Kuekulvong, Skorn Mongkolsuk

    2008-01-01

    Full Text Available Indigenous actinomycetes isolated from rhizosphere soils were assessed for in vitro antagonism against Colletotrichum gloeosporioides and Sclerotium rolfsii. A potent antagonist against both plant pathogenic fungi, designated SRA14, was selected and identified as Streptomyces hygroscopicus. The strain SRA14 highly produced extracellular chitinase and β-1,3-glucanase during the exponential and late exponential phases, respectively. Culture filtrates collected from the exponential and stationary phases inhibited the growth of both the fungi tested, indicating that growth suppression was due to extracellular antifungal metabolites present in culture filtrates. The percentage of growth inhibition by the stationary culture filtrate was significantly higher than that of exponential culture filtrate. Morphological changes such as hyphal swelling and abnormal shapes were observed in fungi grown on potato dextrose agar that contained the culture filtrates. However, the antifungal activity of exponential culture filtrates against both the experimental fungi was significantly reduced after boiling or treatment with proteinase K. There was no significant decrease in the percentage of fungal growth inhibition by the stationary culture filtrate that was treated as above. These data indicated that the antifungal potential of the exponential culture filtrate was mainly due to the presence of extracellular chitinase enzyme, whereas the antifungal activity of the stationary culture filtrate involved the action of unknown thermostable antifungal compound(s.

  • Potential of selected lactic acid bacteria to produce food compatible antifungal metabolites.

    Science.gov (United States)

    De Muynck, Cassandra; Leroy, Annelies I J; De Maeseneire, Sofie; Arnaut, Filip; Soetaert, Wim; Vandamme, Erick J

    2004-01-01

    The aim of this study was to assess the potential of lactic acid bacteria to inhibit the outgrowth of some common food-spoiling fungi. Culture supernatants of 17 Lactic acid bacterial strains as well as of three commercial probiotic cultures were evaluated for antifungal activity using an agar-diffusion method. The method parameters were chosen in order to reveal compounds for potential use in food (bio)preservation. Thirteen strains showed antifungal activity of which five strains were very promising: Lactobacillus acidophilus LMG 9433, L. amylovorus DSM 20532, L. brevis LMG 6906, L. coryniformis subsp. coryniformis LMG 9196 and L. plantarum LMG 6907. Four of these five strains were further examined; it was found that the produced antifungal metabolites were pH-dependent. The exact chemical nature of these substances has not been revealed yet. PMID:15646380

  • Antifungal compound produced by the cassava endophyte Bacillus pumilus MAIIIM4a Composto antifúngico produzido pelo endófito de mandioca Bacillus pumilus MAIIIM4a

    Directory of Open Access Journals (Sweden)

    Flávia Mandolesi Pereira de Melo

    2009-10-01

    Full Text Available In the search for new organisms and new secondary metabolites, a study was conducted to evaluate the diversity of endophytic bacteria from ethnovarieties of cassava cultivated by Brazilian Amazon Indian tribes and also to study the secondary metabolites produced by a Bacillus pumilus strain. Sixty seven cassava endophytic bacteria were subjected to 16S rRNA sequencing and FAME analysis. The bacterial profile revealed that 25% of all endophytic isolates belonged to the genus Bacillus. The isolate B. pumilus MAIIIM4a showed a strong inhibitory activity against the fungi Rhizoctonia solani, Pythium aphanidermatum and Sclerotium rolfsii. Secondary metabolites of this strain were extracted using hexane, dichloromethane and ethyl acetate. Extracts were subjected to bioautography and LC/MS analysis, which allowed the identification of pumilacidin, an antifungal compound produced by B. pumilus MAIIIM4a. The bacterial endophytic localization was confirmed by cassava cell tissue examination using scanning electron microscopy.Na busca de novos organismos e novos metabólitos secundários, um estudo foi conduzido visando avaliar a diversidade de bactérias endofíticas de etnovariedades de mandioca cultivadas por tribos indígenas da Amazônia brasileira e também para estudar metabólitos secundários produzidos por Bacillus pumilus. Sessenta e sete bactérias endofíticas de mandioca foram identificadas através do seqüenciamento do gene 16S rRNA e por meio da análise de ácidos graxos (FAME. Essas análises revelaram que 25% de todos os endofíticos pertenciam ao gênero Bacillus. O isolado Bacillus pumilus MAIIIM4a apresentou forte ação inibitória contra os fitopatógenos Rhizoctonia solani, Pythium aphanidermatum e Sclerotium rolfsii. Os metabólitos secundários deste isolado foram extraídos do sobrenadante usando-se hexano, diclorometano e acetato de etila. Esses extratos foram utilizados nas análises de bioautografia e LC-MS, as quais

    1. An endophytic fungus isolated from finger millet (Eleucine coracona produces anti-fungal natural products

      Directory of Open Access Journals (Sweden)

      Walaa Kamel Mousa

      2015-10-01

      Full Text Available Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes that contribute to the antifungal activity. Here we report the first isolation of endophyte(s from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp. was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation.

    2. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products.

      Science.gov (United States)

      Mousa, Walaa K; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

      2015-01-01

      Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomically based on 18S rDNA sequencing. Extracts from three putative endophytes inhibited growth of F. graminearum and three other pathogenic Fusarium species. The most potent anti-Fusarium strain (WF4, predicted to be a Phoma sp.) was confirmed to behave as an endophyte using pathogenicity and confocal microscopy experiments. Bioassay-guided fractionation of the WF4 extract identified four anti-fungal compounds, viridicatol, tenuazonic acid, alternariol, and alternariol monomethyl ether. All the purified compounds caused dramatic breakage of F. graminearum hyphae in vitro. These compounds have not previously been reported to have anti-Fusarium activity. None of the compounds, except for tenuazonic acid, have previously been reported to be produced by Phoma. We conclude that the ancient, disease-tolerant crop, finger millet, is a novel source of endophytic anti-fungal natural products. This paper suggests the value of the crops grown by subsistence farmers as sources of endophytes and their natural products. Application of these natural chemicals to solve real world problems will require further validation. PMID:26539183

    3. Antifungal Hydroxy Fatty Acids Produced during Sourdough Fermentation: Microbial and Enzymatic Pathways, and Antifungal Activity in Bread

      OpenAIRE

      Black, Brenna A.; Zannini, Emanuele; Curtis, Jonathan M.; Gänzle, Michael G.

      2013-01-01

      Lactobacilli convert linoleic acid to hydroxy fatty acids; however, this conversion has not been demonstrated in food fermentations and it remains unknown whether hydroxy fatty acids produced by lactobacilli have antifungal activity. This study aimed to determine whether lactobacilli convert linoleic acid to metabolites with antifungal activity and to assess whether this conversion can be employed to delay fungal growth on bread. Aqueous and organic extracts from seven strains of lactobacilli...

    4. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi

      DEFF Research Database (Denmark)

      Bladt, Tanja Thorskov; Frisvad, Jens Christian; Knudsen, Peter Boldsen;

      2013-01-01

      This review covers important anticancer and antifungal compounds reported from filamentous fungi and in particular from Aspergillus, Penicillium and Talaromyces. The taxonomy of these fungi is not trivial, so a focus of this review has been to report the correct identity of the producing organisms...

    5. Design,synthesis and antifungal activities in vitro of novel tetralin compounds

      Institute of Scientific and Technical Information of China (English)

      Hui Tang; You Jun Zhou; Yao Wu Li; Jia Guo Lv; Can Hui Zheng; Jun Chen; Ju Zhu

      2008-01-01

      Novel chiral tetralin compounds were designed and synthesized, and their antifungal activities in vitro were tested. The results showed that all of target compounds had potent antifungal activities, and were stronger than that of control compounds tetrahydroisoquinolines. The binding model of lead molecules in the active site of CYP51 of Candida albicans showed that lead compound specifically interacted with the amino acids residues in the active site, without binding with the heme of CYP51, which was different from azole antifungal drugs. The present study might afford a novel lead molecule to develop non-azole CYP51 inhibitors of fungi.

    6. Antifungal Attributes of Lactobacillus plantarum MYS6 against Fumonisin Producing Fusarium proliferatum Associated with Poultry Feeds.

      Science.gov (United States)

      Deepthi, B V; Poornachandra Rao, K; Chennapa, G; Naik, M K; Chandrashekara, K T; Sreenivasa, M Y

      2016-01-01

      Fumonisins, being common in occurrence in maize-based feeds, pose a great threat to animal and human health. The present study is aimed at determining the antifungal activity of Lactobacillus plantarum MYS6 against a fumonisin producing fungus, Fusarium proliferatum MYS9. The isolate was subjected to standard tests for determining its probiotic attributes and antifungal properties. L. plantarum MYS6 thrived well at pH 3.0 and 6.0, and exhibited strong resistance up to 3% bile. The isolate showed a high degree of cell surface hydrophobicity corresponding to its strong adhesion to chicken crop epithelial cells. Co-inoculation with the fungus on modified de Man Rogosa Sharpe medium revealed the inhibitory effect of L. plantarum MYS6 on fungal growth and biomass. Observation using scanning electron microscopy showed distortion of hyphal structures, swollen tips and disrupted conidia. Conidia germination inhibition assay restrained germination and showed deformed hyphae. The bioprotective feature of the isolate was evident by the inhibition of fungal development in maize-kernel treated with the cell free supernatant of L. plantarum MYS6. Both the isolate and its extracellular metabolites lowered fumonisin content in feed model up to 0.505 mg/Kg of feed and 0.3125 mg/Kg of feed respectively when compared to the level of 0.870 mg/Kg of feed in control. The major antifungal compounds produced by the isolate were 10-Octadecenoic acid, methyl ester; palmitic acid, methyl ester; heptadecanoic acid, 16-methyl ester; stearic acid and lauric acid. L. plantarum MYS6 reduced 61.7% of fumonisin possibly by a binding mechanism. These findings suggest the application of L. plantarum MYS6 as an efficient probiotic additive and biocontrol agent in feed used in poultry industry. Additionally, the antifungal metabolites pose a conspicuous inhibition of Fusarium growth and fumonisin production. PMID:27285317

    7. Bioguided identification of antifungal and antiproliferative compounds from the Brazilian orchid Miltonia flavescens Lindl.

      Science.gov (United States)

      Porte, Leticia F; Santin, Silvana M O; Chiavelli, Lucas U R; Silva, Cleuza C; Faria, Terezinha J; Faria, Ricardo T; Ruiz, Ana L T G; Carvalho, João E; Pomini, Armando M

      2014-01-01

      The Orchidaceae family is appreciated worldwide for the beauty of its flowers, and hundreds of species of this family occur in Brazil. Yet little is known about the potential of orchids for therapeutic application. We have investigated bioactive compounds produced by the South Brazilian orchid Miltonia flavescens Lindl. Bioguided studies with the fungus Cladosporium herbarum allowed the identification of hydrocinnamic acid as the active antifungal compound. In addition, the chloroform fraction exhibited an interesting activity against human cancer cells, and 5,7-dihydroxy-6,4'-dimethoxyflavone isolated from this fraction was found to be active against seven human cancer cell lines, including NCI/ADR-RES ovary sarcoma, with an IC50 value of 2.6 microg/mL. This is the first report on the cytostatic activity of this flavone against human ovary sarcoma. PMID:24772822

    8. Design, synthesis and molecular docking studies of novel triazole antifungal compounds

      Institute of Scientific and Technical Information of China (English)

      Qiu Qin He; Ke Li; Yong Bing Cao; Huan Wen Dong; Li Hua Zhao; Chao Mei Liu; Chun Quan Sheng

      2007-01-01

      Based on the active site of Candida albicans lanosterol 14α-demethylase (CACYP51), novel triazole compounds structurally different from the current triazole drugs were designed and synthesized.In vitro antifungal activities showed that compounds 10,11,16 and 20 exhibited strong activities.In addition, compounds 10,11 and 16 also displayed certain activities against fluconazole-resistant fungi.

    9. Purification and Identification of Two Antifungal Cyclic Peptides Produced by Bacillus amyloliquefaciens L-H15.

      Science.gov (United States)

      Han, Yuzhu; Zhang, Bao; Shen, Qian; You, Chengzhen; Yu, Yaqiong; Li, Pinglan; Shang, Qingmao

      2015-08-01

      Bacillus amyloliquefaciens L-H15 with broad spectrum antifungal activity was used as a biocontrol agent to suppress Fusarium oxysporum and other soil-borne fungal plant pathogens. Two antifungal fractions were isolated by bioactivity-guided reversed-phase high-performance liquid chromatography. The two compounds were identified by tandem Q-TOF mass spectroscopy as C15 Iturin A (1) and a novel cyclic peptide with a molecular weight of 852.4 Da (2). Both compounds showed good inhibitory activities against three plant fungal pathogens in cylinder-plate diffusion assay. To our best knowledge, this is the first report on a cyclic antifungal peptide with a molecular weight of 852.4 Da. The strong antifungal activity suggests that the B. amyloliquefaciens L-H15 and its bioactive components might provide an alternative resource for the biocontrol of plant diseases and sustainable agriculture. PMID:26123083

    10. Synthesis and Biological Activity of New 1,3-Dioxolanes as Potential Antibacterial and Antifungal Compounds

      Directory of Open Access Journals (Sweden)

      Hatice Başpınar Küçük

      2011-08-01

      Full Text Available A series of new enantiomerically pure and racemic 1,3-dioxolanes 1-8 was synthesized in good yields and short reaction times by the reaction of salicylaldehyde with commercially available diols using a catalytic amount of Mont K10. Elemental analysis and spectroscopic characterization established the structure of all the newly synthesized compounds. These compounds were tested for their possible antibacterial and antifungal activity. Biological screening showed that all the tested compounds, except 1, show excellent antifungal activity against C. albicans, while most of the compounds have also shown significant antibacterial activity against S. aureus, S. epidermidis, E. faecalis and P. aeruginosa.

    11. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize.

      Science.gov (United States)

      Gond, Surendra K; Bergen, Marshall S; Torres, Mónica S; White, James F

      2015-03-01

      Endophytes are mutualistic symbionts within healthy plant tissues. In this study we isolated Bacillus spp. from seeds of several varieties of maize. Bacillus amyloliquifaciens or Bacillus subtilis were found to be present in all maize varieties examined in this study. To determine whether bacteria may produce antifungal compounds, generally lipopeptides in Bacillus spp., bacterial cultures were screened for production of lipopeptides. Lipopeptides were extracted by acid precipitation from liquid cultures of Bacillus spp. Lipopeptide extracts from Bacillus spp. isolated from Indian popcorn and yellow dent corn showed inhibitory activity against Fusarium moniliforme at 500μg per disk. Using MALDI-TOF mass spectrometry we detected the presence of antifungal iturin A, fengycin and bacillomycin in these isolates. PCR amplification also showed the presence of genes for iturin A and fengycin. B. subtilis (SG_JW.03) isolated from Indian popcorn showed strong inhibition of Arabidopsis seed mycoflora and enhanced seedling growth. We tested for the induction of defence gene expression in the host plant after treatment of plants with B. subtilis (SG_JW.03) and its lipopeptide extract using RT-qPCR. Roots of Indian popcorn seedlings treated with a suspension of B. subtilis (SG_JW.03) showed the induction of pathogenesis-related genes, including PR-1 and PR-4, which relate to plant defence against fungal pathogens. The lipopeptide extract alone did not increase the expression of these pathogenesis-related genes. Based on our study of maize endophytes, we hypothesize that, bacterial endophytes that naturally occur in many maize varieties may function to protect hosts by secreting antifungal lipopeptides that inhibit pathogens as well as inducing the up-regulation of pathogenesis-related genes of host plants (systemic acquired resistance). PMID:25497916

    12. In vitro antifungal potentials of bioactive compound oleic acid, 3-(octadecyloxy) propyl ester isolated from Lepidagathis cristata Willd. (Acanthaceae) inflorescence

      Institute of Scientific and Technical Information of China (English)

      Maghdu Nainamohamed Abubacker; Palaniyappan Kamala Devi

      2014-01-01

      Objective: To identify bioactive compound oleic acid, 3-(octadecyloxy) propyl ester from Lepidagathis cristata Willd. (L. cristata) and to assess antifungal potentials of the isolated compound. Methods: Aqueous extracts of L. cristata inflorescence were used for this study. The major bioactive compound isolated was tested for antifungal activities. Results: The major bioactive compound oleic acid, 3-(octadecyloxy) propyl ester was isolated from the inflorescence of L. cristata. The bioactive compound was tested for antifungal potentials and found to be highly effective to plant pathogenic fungi Colletotrichum fulcatum NCBT 146, Fusarium oxysporum NCBT 156 and Rhizoctonia solani NCBT 196 as well as for the human pathogenic fungi Curvularia lunata MTCC 2030 and Microsporum canis MTCC 2820. Conclusions: The results justify the antifungal potentials of both plant and human pathogenic fungi. The plant bioactive compound will be helpful in herbal antifungal formulations.

    13. Antifungal and antioxidant compounds from the root bark of Fagara zanthoxyloides.

      Science.gov (United States)

      Chaaib, Fatima; Queiroz, Emerson F; Ndjoko, Karine; Diallo, Drissa; Hostettmann, Kurt

      2003-04-01

      Phytochemical investigation of the CH 2 Cl 2 extract of Fagara zanthoxyloides Lam. (Rutaceae) led to the isolation of eleven compounds. One phenylethanoid derivative is a new natural product. The isolation of the antifungal and the antioxidant compounds was monitored by direct TLC bioautographic assays. The structures of the isolated compounds were elucidated by classical spectroscopic methods including UV, NMR, MS and HR-MS. PMID:12709897

    14. Antifungal compounds of Xylaria sp., an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae)

      International Nuclear Information System (INIS)

      Five compounds, 2-hexyl-3-methyl-butanodioic acid (1), cytochalasin D (2), 7-dechlorogriseofulvin (3), cytochalasin B (4) and griseofulvin (5), have been isolated from the endophytic fungus Xylaria sp., and their structures were elucidated on the basis of spectroscopic data. In the bioautography assay against Cladosporium cladosporioides and Cladosporium sphaerospermum, compounds 1 and 2 were found to be active while compounds 3, 4 and 5 did not show antifungal activity. (author)

    15. Caerulomycin A- An antifungal compound isolated from marine actinomycetes.

      Digital Repository Service at National Institute of Oceanography (India)

      Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Mahajan, G.B.; Mishra, P.D.; DeSouza, L.; Ranadive, P.

      of the most successful ap- proaches is to screen microbial resources to extract novel antifungal antibiotics. Drug discovery from natural products has been traditionally focused on empirical exploitation of the most prolific microbial groups: actinomycetes... obtained from mass, IR and 1H NMR spectra (Figures 3-5). In 1H NMR spectra, the signals at δ 7.8 and 7.35 were assigned for protons attached at C-3 and C-5 respectively. Proton at unsaturated C-7 appeared at δ 8.13 due to nitrogen and OH group being...

    16. Antifungal activity of extracts from Atacama Desert fungi againstParacoccidioides brasiliensis and identification ofAspergillus felis as a promising source of natural bioactive compounds

      Directory of Open Access Journals (Sweden)

      Graziele Mendes

      2016-03-01

      Full Text Available Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5 of the extracts showed minimum inhibitory concentration (MIC values≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero. This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity.

    17. Antifungal activity of extracts from Atacama Desert fungi against Paracoccidioides brasiliensis and identification of Aspergillus felis as a promising source of natural bioactive compounds.

      Science.gov (United States)

      Mendes, Graziele; Gonçalves, Vívian N; Souza-Fagundes, Elaine M; Kohlhoff, Markus; Rosa, Carlos A; Zani, Carlos L; Cota, Betania B; Rosa, Luiz H; Johann, Susana

      2016-03-01

      Fungi of the genus Paracoccidioides are responsible for paracoccidioidomycosis. The occurrence of drug toxicity and relapse in this disease justify the development of new antifungal agents. Compounds extracted from fungal extract have showing antifungal activity. Extracts of 78 fungi isolated from rocks of the Atacama Desert were tested in a microdilution assay against Paracoccidioides brasiliensis Pb18. Approximately 18% (5) of the extracts showed minimum inhibitory concentration (MIC) values ≤ 125.0 µg/mL. Among these, extract from the fungus UFMGCB 8030 demonstrated the best results, with an MIC of 15.6 µg/mL. This isolate was identified as Aspergillus felis (by macro and micromorphologies, and internal transcribed spacer, β-tubulin, and ribosomal polymerase II gene analyses) and was grown in five different culture media and extracted with various solvents to optimise its antifungal activity. Potato dextrose agar culture and dichloromethane extraction resulted in an MIC of 1.9 µg/mL against P. brasiliensis and did not show cytotoxicity at the concentrations tested in normal mammalian cell (Vero). This extract was subjected to bioassay-guided fractionation using analytical C18RP-high-performance liquid chromatography (HPLC) and an antifungal assay using P. brasiliensis. Analysis of the active fractions by HPLC-high resolution mass spectrometry allowed us to identify the antifungal agents present in the A. felis extracts cytochalasins. These results reveal the potential of A. felis as a producer of bioactive compounds with antifungal activity. PMID:27008375

    18. New anti-HIV-1, antimalarial, and antifungal compounds from Terminalia bellerica

      DEFF Research Database (Denmark)

      Valsaraj, R; Pushpangadan, P; Smitt, U W;

      1997-01-01

      A bioactivity-guided fractionation of an extract of Terminalia bellerica fruit rind led to the isolation of two new lignans named termilignan (1) and thannilignan (2), together with 7-hydroxy-3',4'-(methylenedioxy)flavan (3) and anolignan B (4). All four compounds possessed demonstrable anti-HIV-......, antimalarial, and antifungal activity in vitro....

    19. Synthesis and Antifungal Activity of Novel Triazole Compounds Containing Piperazine Moiety

      Directory of Open Access Journals (Sweden)

      Yanwei Wang

      2014-07-01

      Full Text Available Design and synthesis of triazole library antifungal agents having piperazine side chains, analogues to fluconazole were documented. The synthesis highlighted utilization of the click chemistry on the basis of the active site of the cytochrome P450 14α-demethylase (CYP51. Their structures were characterized by 1H-NMR, 13C-NMR, MS and IR. The influences of piperazine moiety on in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi.

    20. Antifungal activity of natural compounds against Candida species isolated from HIV-positive patients

      Institute of Scientific and Technical Information of China (English)

      Débora; Oro; Andréia; Heissler; Eliandra; Mirlei; Rossi; Diane; Scapin; Patrícia; da; Silva; Malheiros; Everton; Boff

      2015-01-01

      Objective: To evaluate the antifungal effect of Cinnamomum zeylanicum(C. zeylanicum) and Melaleuca alternifolia essential oils and honey against strains of Candida sp. from HIV-positive patients in order to subsidize new therapeutic strategies for candidiasis.Methods: The study evaluated the antifungal effect of natural antimicrobials against 30 strains of Candida sp. isolated from oral cavities in HIV-infected patients. Then, they were compared to the action of fl uconazole and amphotericin B. Antifungal susceptibility was evaluated by the broth macrodilution technique and the minimum inhibitory concentration and the minimum fungicidal concentration were determined.Results: Among all antifungals evaluated in this study, amphotericin B was the one showing the best results; however, all compounds studied here showed inhibitory activities against isolates of Candida sp. Honey(0.031 3 to 64 μg/m L) demonstrated fungistatic activity inhibiting 70% of the isolates. C. zeylanicum essential oil(0.031 3 to 64 μg/m L) inhibited 93.3% of the Candida strains and Melaleuca alternifolia essential oil(0.031 3 to 64 μg/m L) was able to inhibit 73.3% of them.Conclusions: Therefore, all natural compounds evaluated in this study, especially C. zeylanicum essential oil, may become promising agents for oral candidiasis therapy including in HIV-positive patients.

    1. Laccase Catalyzed Synthesis of Iodinated Phenolic Compounds with Antifungal Activity

      OpenAIRE

      Julian Ihssen; Mark Schubert; Linda Thöny-Meyer; Michael Richter

      2014-01-01

      Iodine is a well known antimicrobial compound. Laccase, an oxidoreductase which couples the one electron oxidation of diverse phenolic and non-phenolic substrates to the reduction of oxygen to water, is capable of oxidizing unreactive iodide to reactive iodine. We have shown previously that laccase-iodide treatment of spruce wood results in a wash-out resistant antimicrobial surface. In this study, we investigated whether phenolic compounds such as vanillin, which resembles sub-structures of ...

    2. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens.

      Science.gov (United States)

      Radwan, Mohamed M; Tabanca, Nurhayat; Wedge, David E; Tarawneh, Amer H; Cutler, Stephen J

      2014-12-01

      The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant pathogens Colletotrichum acutatum, Colletotrichum fragariae, and Colletotrichum gloeosporioides. Among the active extracts, turmeric and nutmeg were the most active and were chosen for further investigation. The bioassay-guided fractionation led to the isolation of three compounds from turmeric (1-3) and three compounds from nutmeg (4-6). Their chemical structures were elucidated by spectroscopic analysis including HR-MS, 1D, and 2D NMR as curcumin (1), demethoxycurcumin (2) and bisdemethoxy-curcumin (3), erythro-(7R,8R)-Δ(8')-4,7-dihydroxy-3,3',5'-trimethoxy-8-O-4'-neolignan (4), erythro-(7R,8R)-Δ8'-7-acetoxy-3,4,3',5'-tetra-methoxy-8-O-4'-neolignan (5), and 5-hydroxy-eugenol (6). The isolated compounds were subsequently evaluated using a 96-well microbioassay against plant pathogens. At 30 μM, compounds 2 and 3 possessed the most antifungal activity against Phomopsis obscurans and Phomopsis viticola, respectively. PMID:25173461

    3. Synthesis and preliminary evaluation of N-acylhydrazone compounds as antibacterial and antifungal agents

      International Nuclear Information System (INIS)

      We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC50 values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 μM), C. krusei (34 μM) and C. tropicalis (17 μM). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents. (author)

    4. Antifungal, antioxidant and larvicidal activities of compounds isolated from the heartwood of Mansonia gagei.

      Science.gov (United States)

      Tiew, P; Ioset, J R; Kokpol, U; Chavasiri, W; Hostettmann, K

      2003-02-01

      Eleven compounds isolated from the heartwood of Mansonia gagei were tested for their antifungal activities against Cladosporium cucumerinum and Candida albicans, as well as for their larvicidal activities against Aedes aegypti and radical scavenging properties in a DPPH assay. Mansonone C (4) was found to be the most interesting compound with antifungal activities against Cladosporium cucumerinum and Candida albicans as well as for its larvicidal properties against Aedes aegypti. Mansonone E (5) was active against Cladosporium cucumerinum and Candida albicans. Two coumarin derivatives, mansorin A (1) and mansorin B (2) were also found to be active against Cladosporium cucumerinum, while mansonone N (9) was the only isolated product to show radical scavenging properties. PMID:12601687

    5. Study of the Cytotoxic and Antifungal Activities of Neolignans 8.O.4´ and Structurally Related Compounds

      Directory of Open Access Journals (Sweden)

      P. Matyus

      2000-03-01

      Full Text Available In the present work we report the antifungal and cytotoxic activities of a neolignan 8.O.4´series. The most active antifungal compounds show a significant cytotoxic effect which might be related.

    6. Antifungal Activity of Extractable Conifer Heartwood Compounds Toward Phytophthora ramorum

      Science.gov (United States)

      Individual compounds and ethyl acetate extracts from heartwood of seven conifer species were tested for fungicidal activity against Phytophthora ramorum. Extracts from incense and western redcedar exhibited the strongest activity (EC50 589 and 646 ppm, respectively), yellow-cedar, western juniper, ...

    7. Sesquiterpenes produced by endophytic fungus Phomopsis cassiae with antifungal and acetylcholinesterase inhibition activities

      International Nuclear Information System (INIS)

      Two new diastereoisomeric cadinanes sesquiterpenes 3,9-dihydroxycalamenene (1-2), along with the known 3-hydroxycalamen-8-one (3) and aristelegone-A (4), were isolated from ethyl acetate extract of Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds. Compounds 1-4 displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as inhibition of acetylcholinesterase. (author)

    8. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

      Energy Technology Data Exchange (ETDEWEB)

      Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

      2009-09-15

      Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through Superdex{sup TM} 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD{sub 99} dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 {+-} 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis.

    9. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

      International Nuclear Information System (INIS)

      Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through SuperdexTM 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD99 dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 ± 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis

    10. Studies of the antifungal compounds produced by Erwinia herbicola.

      Science.gov (United States)

      Adetuyi, F C

      1990-01-01

      The organic phase of a wide spectrum, antimycotic and diffusable toxin from Erwinia herbicola showed a highly significant inhibitory activity against Pyricularia oryzae spores in spore well bioassay. Germ tube lengths were inhibited more in wells containing 5 microliters equivalent of bacterial toxin than 1 microliter. No significant difference between the germ tube in an equal mixture of Dimethyl sulphoxide: ethanol and controls. Thin layer chromatography using the chloroform extraction of the organic phase showed a significant antagonism on Cladosporium cucumerinum. The retardation factor values for inhibitory zones in solvent 1 were 0.07 for lower spot and 0.26 for upper spot. PMID:2394476

    11. Rapid identification of antifungal compounds against Exserohilum rostratum using high throughput drug repurposing screens.

      Directory of Open Access Journals (Sweden)

      Wei Sun

      Full Text Available A recent large outbreak of fungal infections by Exserohilum rostratum from contaminated compounding solutions has highlighted the need to rapidly screen available pharmaceuticals that could be useful in therapy. The present study utilized two newly-developed high throughput assays to screen approved drugs and pharmaceutically active compounds for identification of potential antifungal agents. Several known drugs were found that have potent effects against E. rostratum including the triazole antifungal posaconazole. Posaconazole is likely to be effective against infections involving septic joints and may provide an alternative for refractory central nervous system infections. The anti-E. rostratum activities of several other drugs including bithionol (an anti-parasitic drug, tacrolimus (an immunosuppressive agent and floxuridine (an antimetabolite were also identified from the drug repurposing screens. In addition, activities of other potential antifungal agents against E. rostratum were excluded, which may avoid unnecessary therapeutic trials and reveals the limited therapeutic alternatives for this outbreak. In summary, this study has demonstrated that drug repurposing screens can be quickly conducted within a useful time-frame. This would allow clinical implementation of identified alternative therapeutics and should be considered as part of the initial public health response to new outbreaks or rapidly-emerging microbial pathogens.

    12. The Tunisian oasis ecosystem is a source of antagonistic Bacillus spp. producing diverse antifungal lipopeptides.

      Science.gov (United States)

      El Arbi, Amel; Rochex, Alice; Chataigné, Gabrielle; Béchet, Max; Lecouturier, Didier; Arnauld, Ségolène; Gharsallah, Néji; Jacques, Philippe

      2016-01-01

      The use of microbial products has become a promising alternative approach to controlling plant diseases caused by phytopathogenic fungi. Bacteria isolated from the date palm tree rhizosphere of the Tunisian oasis ecosystem could provide new biocontrol microorganisms adapted to extreme conditions, such as drought, salinity and high temperature. The aim of this study was to screen bacteria isolated from the rhizosphere of the date palm tree for their ability to inhibit phytopathogenic fungi, and to identify molecules responsible for their antifungal activity. Screening for antifungal activity was performed on twenty-eight isolates. Five antagonistic isolates were selected and identified as different species of Bacillus using phenotypical methods and a molecular approach. The five antagonistic Bacillus isolated showed tolerance to abiotic stresses (high temperature, salinity, drought). Their ability to produce lipopeptides was investigated using a combination of two techniques: PCR amplification and MALDI-ToF mass spectrometry. Analyses revealed that the antagonistic isolates produced a high diversity of lipopeptides that belonged to surfactin, fengycin, iturin and kurstakin families. Their antagonistic activity, related to their capacity for producing diverse antifungal lipopeptides and their tolerance to abiotic stresses, highlighted Bacillus strains isolated from the rhizosphere of the date palm tree as potential biocontrol agents for combatting plant diseases in extreme environments. PMID:26428248

    13. Antifungal activity of compounds extracted from Cortex Pseudolaricis against Colletotrichum gloeosporioides.

      Science.gov (United States)

      Zhang, Jing; Yan, Li-Ting; Yuan, En-Lin; Ding, Hai-Xin; Ye, Huo-Chun; Zhang, Zheng-Ke; Yan, Chao; Liu, Ying-Qian; Feng, Gang

      2014-05-28

      Cortex Pseudolaricis is the root bark of Pseudolarix amabilis Rehder, found only in China, and has been widely used in folk antifungal remedies in traditional Chinese medicine. In order to find the natural antifungal agents against mango anthracnose, eight compounds, namely pseudolaric acid A (1), ethyl pseudolaric acid B (2), pseudolaric acid B (3), pseudolaric acid B-O-β-d-glucoside (4), piperonylic acid (5), propionic acid (6), 3-hydroxy-4-methoxybenzoic acid (7), and 4-(3-formyl-5-methoxyphenyl) butanoic acid (8) were isolated from the ethanol extracts of Cortex Pseudolaricis by bioassay-guided fractionation and evaluated for in vitro antifungal activity against Colletotrichum gloeosporioides Penz. Results demonstrated that all of the eight compounds inhibited the mycelial growth of C. gloeosporioides at 5 μg/mL. Among them, pseudolaric acid B and pseudolaric acid A showed the strongest inhibition with the EC50 values of 1.07 and 1.62 μg/mL, respectively. Accordingly, both Pseudolaric acid B and Pseudolaric acid A highly inhibited spore germination and germ tube elongation of C. gloeosporioides. Dipping 100 μg/mL pseudolaric acid B treatment exhibited more effective suppression on postharvest anthracnose in mango fruit when compared to the same concentration of carbendazim. Scanning electron microscopy observations revealed that pseudolaric acid B caused alterations in the hyphal morphology of C. gloeosporioides, including distortion, swelling, and collapse. Pseudolaric acid B caused the mycelial apexes to show an abnormal growth in dimensions with multiple ramifications in subapical expanded areas with irregular shape. These findings warrant further investigation into optimization of pseudolaric acid B to explore a potential antifungal agent for crop protection. PMID:24820992

    14. Chlorinated organic compounds produced by Fusarium graminearum.

      Science.gov (United States)

      Ntushelo, Khayalethu

      2016-06-01

      Fusarium graminearum, a pathogen of wheat and maize, not only reduces grain yield and degrades quality but also produces mycotoxins in the infected grain. Focus has been on mycotoxins because of the human and animal health hazards associated with them. In addition to work done on mycotoxins, chemical profiling of F. graminearum to identify other compounds produced by this fungus remains critical. With chemical profiling of F. graminearum the entire chemistry of this fungus can be understood. The focus of this work was to identify chlorinated compounds produced by F. graminearum. Various chlorinated compounds were detected and their role in F. graminearum is yet to be understood. PMID:27165533

    15. EVALUATION OF STRUCTURAL AND BIOCHEMICAL ALTERATIONS IN ASPERGILLUS TERREUS BY THE ACTION OF ANTIFUNGAL ANTIBIOTIC COMPOUND FROM STREPTOMYCES SP. JF714876

      Directory of Open Access Journals (Sweden)

      Babanagare Shankaravva S.

      2011-11-01

      Full Text Available Antifungal compound obtained by Streptomyces sp. JF714876 was examined for its effect on morphological and biochemical alteration in Aspergillus terreus. Microscopic observation revealed swelling of hyphae with deformation and distortion in mycelial structure in presence of moderate concentration of antifungal compound. At high concentration, the compound exhibited fungicidal action. Antifungal treated Aspergillus terreus showed changes in its biochemical content such as, protein, carbohydrates, peroxidase, catalase and amylase as compared to untreated.

    16. Biocontrol of Aspergillus species on peanut kernels by antifungal diketopiperazine producing Bacillus cereus associated with entomopathogenic nematode.

      Directory of Open Access Journals (Sweden)

      Sasidharan Nishanth Kumar

      Full Text Available The rhabditid entomopathogenic nematode associated Bacillus cereus and the antifungal compounds produced by this bacterium were evaluated for their activity in reducing postharvest decay of peanut kernels caused by Aspergillus species in in vitro and in vivo tests. The results showed that B. cereus had a significant effect on biocontrol effectiveness in in vitro and in vivo conditions. The antifungal compounds produced by the B. cereus were purified using silica gel column chromatography and their structure was elucidated using extensive spectral analyses. The compounds were identified as diketopiperazines (DKPs [cyclo-(L-Pro-Gly, cyclo(L-Tyr-L-Tyr, cyclo-(L-Phe-Gly and cyclo(4-hydroxy-L-Pro-L-Trp]. The antifungal activities of diketopiperazines were studied against five Aspergillus species and best MIC of 2 µg/ml was recorded against A. flavus by cyclo(4-hydroxy-L-Pro-L-Trp. To investigate the potential application of cyclo(4-hydroxy-L-Pro-L-Trp to eliminate fungal spoilage in food and feed, peanut kernels was used as a food model system. White mycelia and dark/pale green spores of Aspergillus species were observed in the control peanut kernels after 2 days incubation. However the fungal growth was not observed in peanut kernels treated with cyclo(4-hydroxy-L-Pro-L-Trp. The cyclo(4-hydroxy-L-Pro-L-Trp was nontoxic to two normal cell lines [fore skin (FS normal fibroblast and African green monkey kidney (VERO] up to 200 µg/ml in MTT assay. Thus the cyclo(4-hydroxy-L-Pro-L-Trp identified in this study may be a promising alternative to chemical preservatives as a potential biopreservative agent which prevent fungal growth in food and feed. To the best of our knowledge, this is the first report demonstrating that the entomopathogenic nematode associated B. cereus and cyclo(4-hydroxy-L-Pro-L-Trp could be used as a biocontrol agents against postharvest fungal disease caused by Aspergillus species.

    17. Vitis vinifera canes, a new source of antifungal compounds against Plasmopara viticola, Erysiphe necator, and Botrytis cinerea.

      Science.gov (United States)

      Schnee, Sylvain; Queiroz, Emerson F; Voinesco, Francine; Marcourt, Laurence; Dubuis, Pierre-Henri; Wolfender, Jean-Luc; Gindro, Katia

      2013-06-12

      Methanolic and ethanolic crude extracts of Vitis vinifera canes exhibited significant antifungal activity against the three major fungal pathogens affecting grapevines, Plasmopara viticola, Erysiphe necator and Botrytis cinerea. The active extracts were analyzed by LC-PDA-ESI-MS, and selected compounds were identified. Efficient targeted isolation using medium-pressure liquid chromatography afforded six pure constituents in one step. The structures of the isolated compounds were elucidated by NMR and HRMS. Six identified compounds (ampelopsin A, hopeaphenol, trans-resveratrol, ampelopsin H, ε-viniferin, and E-vitisin B) presented antifungal activities against P. viticola. ε-Viniferin also exhibited a low antifungal activity against B. cinerea. None of the identified compounds inhibited the germination of E. necator. The potential to develop a novel natural fungicide against the three major fungal pathogens affecting V. vinifera from viticulture waste material is discussed. PMID:23730921

    18. Antifungal iridoids, triterpenes and phenol compounds from Alibertia myrciifolia Sprunge Ex. Schum

      Directory of Open Access Journals (Sweden)

      João Henrique S. Luciano

      2010-01-01

      Full Text Available The new iridoid glucoside 10-O-vanilloyl-geniposidic acid has been isolated from the aerial parts of Alibertia myrciifolia along with hydroxyhopanone, 3α,22-dihydroxyhopane, ursolic acid, luteolin-3´,4´-dimethyl ether, caffeic acid and geniposidic acid. The structures of the isolated compounds were determined by means of mass spectrometry and nuclear magnetic resonance spectral analyses. The antifungal activities of the iridoids 10-O-vanilloyl-geniposidic acid and geniposidic acid were evaluated against the phytopathogenic fungi strains Colletotrichum gloeosporioides, Fusarium solani and Aspergillus niger.

    19. Antifungal iridoids, triterpenes and phenol compounds from Alibertia myrciifolia Sprunge Ex. Schum

      International Nuclear Information System (INIS)

      The new iridoid glucoside 10-O-vanilloyl-geniposidic acid has been isolated from the aerial parts of Alibertia myrciifolia along with hydroxyhopanone, 3α,22-dihydroxyhopane, ursolic acid, luteolin-3',4'-dimethyl ether, caffeic acid and geniposidic acid. The structures of the isolated compounds were determined by means of mass spectrometry and nuclear magnetic resonance spectral analyses. The antifungal activities of the iridoids 10-O-vanilloyl-geniposidic acid and geniposidic acid were evaluated against the phytopathogenic fungi strains Colletotrichum gloeosporioides, Fusarium solani and Aspergillus niger. (author)

    20. Antifungal iridoids, triterpenes and phenol compounds from Alibertia myrciifolia Sprunge Ex. Schum

      Energy Technology Data Exchange (ETDEWEB)

      Luciano, Joao Henrique S.; Lima, Mary Anne S.; Silveira, Edilberto Rocha [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Centro de Ciencias. Dept. de Quimica Organica e Inorganica; Vasconcelos, Ilka Maria; Fernandes, Georgia Sampaio [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Dept. de Bioquimica e Biologia Molecular; Souza, Elnatan Bezerra de [Universidade do Vale do Acarau, Sobral, CE (Brazil). Coord. de Biologia

      2010-07-01

      The new iridoid glucoside 10-O-vanilloyl-geniposidic acid has been isolated from the aerial parts of Alibertia myrciifolia along with hydroxyhopanone, 3{alpha},22-dihydroxyhopane, ursolic acid, luteolin-3',4'-dimethyl ether, caffeic acid and geniposidic acid. The structures of the isolated compounds were determined by means of mass spectrometry and nuclear magnetic resonance spectral analyses. The antifungal activities of the iridoids 10-O-vanilloyl-geniposidic acid and geniposidic acid were evaluated against the phytopathogenic fungi strains Colletotrichum gloeosporioides, Fusarium solani and Aspergillus niger. (author)

    1. Antifungal and larvicidal compounds from the root bark of Cordia alliodora.

      Science.gov (United States)

      Ioset, J R; Marston, A; Gupta, M P; Hostettmann, K

      2000-03-01

      Two new natural products, a phenylpropanoid derivative characterized as 1-(3'-methoxypropanoyl)-2,4,5-trimethoxybenzene (1) and a prenylated hydroquinone, 2-(2Z)-(3-hydroxy-3,7-dimethylocta-2, 6-dienyl)-1,4-benzenediol (2), have been isolated from the root bark of Cordia alliodora. Both compounds exhibited antifungal properties against the phytopathogenic mold Cladosporium cucumerinum. The phenylpropanoid derivative (1), whose structure is closely related to beta-asarone, also demonstrated a marked activity against larvae of the yellow-fever-transmitting mosquito Aedes aegypti. PMID:10757739

    2. Antibacterial, Antifungal, and Insecticidal Potentials of Oxalis corniculata and Its Isolated Compounds

      Directory of Open Access Journals (Sweden)

      Azizur Rehman

      2015-01-01

      Full Text Available Oxalis corniculata is a common medicinal plant widely used against numerous infectious diseases. The agrochemical potential of methanolic extract, n-hexane, chloroform, ethyl acetate, and n-butanol fractions were assessed to measure the antibacterial, antifungal, and insecticidal activities of the plant. The crude, chloroform, and n-butanol soluble fractions showed excellent activities against Escherichia coli, Shigella dysenteriae, Salmonella typhi, and Bacillus subtilis but have no activity against Staphylococcus aureus. Similarly the crude, n-hexane, and chloroform fractions were also found to have significant activity against fungal strains including Fusarium solani, Aspergillus flexneri, and Aspergillus flavus and have no activity against Aspergillus niger. Chemical pesticides have shown very good results at the beginning, but with the passage of time the need was realized to use the natural plant sources for the safe control of insects. The current study will provide minor contribution towards it. High mortality rate was recorded for the crude extract and chloroform fraction against Tribolium castaneum. The two isolated compounds 5-hydroxy-6,7,8,4′-tetramethoxyflavone (1 and 5,7,4′-trihydroxy-6,8-dimethoxyflavone (2 were evaluated for antibacterial, antifungal, and insecticidal activities. The results showed that compound 2 was more active than compound 1 against the tested bacterial strains and insects.

    3. Antibacterial, Antifungal, and Insecticidal Potentials of Oxalis corniculata and Its Isolated Compounds.

      Science.gov (United States)

      Rehman, Azizur; Rehman, Ali; Ahmad, Ijaz

      2015-01-01

      Oxalis corniculata is a common medicinal plant widely used against numerous infectious diseases. The agrochemical potential of methanolic extract, n-hexane, chloroform, ethyl acetate, and n-butanol fractions were assessed to measure the antibacterial, antifungal, and insecticidal activities of the plant. The crude, chloroform, and n-butanol soluble fractions showed excellent activities against Escherichia coli, Shigella dysenteriae, Salmonella typhi, and Bacillus subtilis but have no activity against Staphylococcus aureus. Similarly the crude, n-hexane, and chloroform fractions were also found to have significant activity against fungal strains including Fusarium solani, Aspergillus flexneri, and Aspergillus flavus and have no activity against Aspergillus niger. Chemical pesticides have shown very good results at the beginning, but with the passage of time the need was realized to use the natural plant sources for the safe control of insects. The current study will provide minor contribution towards it. High mortality rate was recorded for the crude extract and chloroform fraction against Tribolium castaneum. The two isolated compounds 5-hydroxy-6,7,8,4'-tetramethoxyflavone (1) and 5,7,4'-trihydroxy-6,8-dimethoxyflavone (2) were evaluated for antibacterial, antifungal, and insecticidal activities. The results showed that compound 2 was more active than compound 1 against the tested bacterial strains and insects. PMID:25873973

    4. Antifungal Metabolites Produced by Chaetomium globosum No.04, an Endophytic Fungus Isolated from Ginkgo biloba.

      Science.gov (United States)

      Zhang, Guizhen; Zhang, Yanhua; Qin, Jianchun; Qu, Xiaoyan; Liu, Jinliang; Li, Xiang; Pan, Hongyu

      2013-06-01

      The fungal endophyte Chaetomium globosum No.04 was isolated from the medicinal plant Ginkgo biloba. The crude extract of the fungus fermentation were active in the agar-diffusion tests against the phytopathogenic fungi Rhizopus stolonifer and Coniothyrium diplodiella. Further bioassay-guided chemical investigation led to the isolation and purification of six alkaloids and three non-targeted compounds from 50 L fermentation of this endophytic fungus and their structures were elucidated as chaetoglobosin A, C, D, E, G, R (1-6), ergosterol, allantoin and uracil, by means of spectroscopic analysis. Compounds 1-6 showed significant growth inhibitory activity against R. stolonifer and C. diplodiella at a concentration of 20 μg/disc. We present here, for the first time, the potent antifungal activity of chaetoglobosins from endophytic fungi against two important phytopathogenic fungi R. stolonifer and C. diplodiella. PMID:24426105

    5. 2,3-Dideoxyglucosides of selected terpene phenols and alcohols as potent antifungal compounds.

      Science.gov (United States)

      James Bound, D; Murthy, Pushpa S; Srinivas, P

      2016-11-01

      The antifungal activities of novel 2,3-unsaturated and 2,3-dideoxy 1-O-glucosides of carvacrol, thymol, and perillyl alcohol were tested against Aspergillus flavus, Aspergillus ochraceus, Fusarium oxysporum, Saccharomyces cerevisiae and Candida albicans. In the agar well diffusion tests, zones of inhibition for the derivatives of carvacrol, thymol and perillyl alcohol were higher (15-30mm) in the case of filamentous fungi than those for the parent compounds. Their MIC and MFC values indicated that the 2,3-unsaturated and 2,3-dideoxy 1-O-glucosides of carvacrol and thymol exhibited more fungicidal activity than the other compounds. Further, the 2,3-dideoxyglucosides of carvacrol and thymol, exhibited antitoxigenic effects against A. ochraceus and A. flavus and inhibited the production of ochratoxin and aflatoxin-B2. Propidium iodide influx assay demonstrated the lysis of C. albicans cells by carvacrol and its 2,3-unsaturated 1-O-glucoside and the loss of the membrane integrity. These new 2,3-dideoxyglucosides can be useful as antifungal agents and condiments in foods. PMID:27211660

    6. Motile zoospores of Batrachochytrium dendrobatidis move away from antifungal metabolites produced by amphibian skin bacteria.

      Science.gov (United States)

      Lam, Brianna A; Walton, D Brian; Harris, Reid N

      2011-03-01

      Chytridiomycosis is an amphibian skin disease that threatens amphibian biodiversity worldwide. The fungal agent of chytridiomycosis is Batrachochytrium dendrobatidis. There is considerable variation in disease outcomes such that some individuals and populations co-exist with the fungus and others quickly succumb to disease. Amphibians in populations that co-exist with the B. dendrobatidis have sublethal infections on their skins. Symbiotic skin bacteria have been shown in experiments and surveys to play a role in protecting amphibians from chytridiomycosis. Little is known about the mechanisms that antifungal skin bacteria use to ameliorate the effects of B. dendrobatidis. In this study, we identified that B. dendrobatidis isolate JEL 310 zoospores display chemotaxis, in the presence of two bacterially-produced metabolites (2,4-diacetylphloroglucinol and indole-3-carboxaldehyde). In the presence of either metabolite, B. dendrobatidis zoospores move more frequently away from the metabolite. Using parameters estimated from this study, a simple stochastic model of a random walk on a lattice was evaluated. The model shows that these individual behaviors over short time-scales directly lead to population behaviors over long time-scales, such that most zoospores will escape, or not infect a tryptone substrate containing the bacterially-produced metabolite, whereas many zoospores will infect the tryptone substrate containing no metabolite. These results suggest that amphibians that have skin bacteria produce antifungal metabolites that might be able to keep B. dendrobatidis infections below the lethal threshold and thus are able to co-exist with the fungus. PMID:21769695

    7. Phenolic Compounds and Antifungal Activity of Hedera helix L. (Ivy Flowers and Fruits

      Directory of Open Access Journals (Sweden)

      Marcel PARVU

      2015-04-01

      Full Text Available Identification and quantitative analysis of the phenolic compounds from Hedera helix L. (ivy flower and fruit ethanol extracts by LC/MS, in vitro germination and growth inhibition effects on Aspergillus niger, Botrytis cinerea, Fusarium oxysporum f.sp. tulipae, Penicillium gladioli and Sclerotinia sclerotiorum were performed. In the non-hydrolyzed samples of flower and fruit extracts were determined, in different amounts, five polyphenols (p-coumaric acid, ferulic acid, rutoside, quercetol and kaempferol while quercitrin was identified only in the ivy flower extract. The hydrolyzed samples of the same ivy extracts indicated four phenolic compounds (p-coumaric acid, ferulic acid, quercetol and kaempferol, in different concentrations, whereas sinapic acid was only detected in the ivy fruit extract. The antifungal activity of the fresh flower extract was stronger than that of the fresh fruit extract and was compared to that of an antimycotic drug.

    8. Antifungal activity of low molecular weight chitosan produced from non-traditional marine resources

      Directory of Open Access Journals (Sweden)

      Francisco Pires Avelelas

      2014-06-01

      Full Text Available The four plants pathogens, Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum are responsible for several diseases affecting different plant species in Portugal, such as pines (H. annosum, chestnuts (P. cinnamomi and C. parasitica and eucalyptus (B. cinerea. These pathogens incurs in large economic losses, and ultimately causes the death of these plants. The use of biopolymers as antimicrobial agents, such as chitosan (derived from chitin, is increasing, in order to reduce the negative impact of conventional chemical treatments on the environment, avoiding health risks. Therefore, eco-friendly polymers were produced through (1 N-acetylation with addition of acetic anhydride and (2 hydrogen peroxide of chitosan samples, obtained from two different sources: shrimp (commercial chitosan and swimming crab bycatch specie Polybius henslowii. The chemical structure and molecular weight of the prepared chitosan derivatives, water soluble chitosan (WSC and chitooligosaccharides (COS, was confirmed by Fourier Transform Infrared (FT-IR and Gel Permeation Chromatography (GPC and their antifungal activity evaluated against Botrytis cinerea, Phytophthora cinnamomi, Cryphonectria parasitica and Heterobasidion annosum. The concentration range varied from 0.0125 to 0.1 mg/mL and inhibition percentages were determined by differences in radial growth on the agar plates for all species. Although not all species tested exhibited equal vulnerability towards the concentrations range, antifungal activity of chitosan samples proved to be dependent, increasing the inhibitory capacity with lower concentrations. The results obtained support the use of chitosan fromPolybius henslowii when compared with commercial chitosan with shrimp towards antifungal approaches, suggesting that chitin producers can rely on this crab waste as a raw material for chitin extraction, adding value to this bycatch specie. Financial support was obtained

    9. Antifungal activity of schinol and a new biphenyl compound isolated from Schinus terebinthifolius against the pathogenic fungus Paracoccidioides brasiliensis

      OpenAIRE

      Cota Betania B; Cisalpino Patricia S; Lima Luciana ARS; Sá Nívea P; Johann Susana; Alves Tânia MA; Siqueira Ezequias P; Zani Carlos L

      2010-01-01

      Abstract Background The aim of this study was to isolate and identify the antifungal compounds from the extracts of Schinus terebinthifolius (Anacardiaceae) against clinical isolates of the pathogenic fungus Paracoccidioides brasiliensis. Methods The hexane and dichlomethane fractions from leaves and stems of S. terebinthifolius were fractionated using several chromatography techniques to afford four compounds. Results The compounds isolated from S. terebinthifolius were identified as schinol...

    10. Antifungal activity of oregano extract against A. Versicolor, E. Nidulans and Eurotium spp.: Producers of sterigmatocystin

      Directory of Open Access Journals (Sweden)

      Kocić-Tanackov Sunčica D.

      2011-01-01

      Full Text Available The paper presents the influence of oregano extract (Origanum vulgare L. on growth of Aspergillus versicolor, Emericella nidulans, Eurotium herbariorum, E. amstelodami, E. chevalieri and E. rubrum - producers of sterigmatocystin (STC isolated from salads. Antifungal tests were performed by agar plates method. The composition of the active component of extract was determined by GC-MS method and the major components were: carvacrol (34.20%, triacetin (22.91%, carvone (18.05%, p-cymene (8.05% and thymol (3.74%. The examined extract showed the ability to reduce mold growth at all applied concentrations. Minimum inhibitory concentrations (MIC for E. nidulans, E. chevalieri and E. amstelodami were 2.5% (v/v and over 2.5% (v/v for A. versicolor. At 1.5% (v/v concentration the extract completely inhibited the growth of E. rubrum, whereas higher dose of 2.5% (v/v was fungicidal against E. herbariorum. Besides its sensory role in food products, the examined oregano extract also exhibits antifungal activities against producers of STC.

    11. Identification of a new antifungal oligoacetal derivative produced by Streptomyces toxytricini against Candida albicans.

      Science.gov (United States)

      Abdel Azeiz, Ahmed Z; Hanafi, Donia K; Hasanein, Sameh E

      2016-08-01

      Thirty actinomycete isolates were isolated from soil and tested against Candida albicans in vitro. The active isolate was identified by 16s-rRNA gene sequencing method as Streptomyces toxytricini. The antifungal compound was extracted with ethyl acetate followed by diethyl ether. Both HPLC and GC-MS analysis confirmed presence of one pure compound in the diethyl ether extract. The compound is a yellow liquid has a maximum absorbance at 240 nm in methanol. The chemical structure was elucidated by 1D and 2D-NMR and IR analyses. The elucidated molecular formula was C36H54O14. The compound is a polyacetal tricyclononane derivative, composed of a tricyclononane ring attached from the carbon atom number four with an oligo-acetal chain (six acetal groups in chain) and from the carbon atom number seven with a methoxy carbonyl benzene-1,3-dicarboxylic acid. The purposed name is: 4- {[tricycle(3.2.1.1(1,3))non-8-yl] methoxy carbonyl benzene-1,3-dicarboxylic acid} (2,4,5,6,7,8,9 heptaoxa, 3-ethoxy, 5,6,7,9-tetramethyl unidecane). PMID:26336904

    12. Synthesis and anti-fungal activity of some new 1,2,4-Triazole and Furan containing compounds

      International Nuclear Information System (INIS)

      Several new 1, 2, 4-triazole analogs attached to substituted phenyl pyrrole or furan 5-membered heterocycles were synthesized and screened for their antifungal activity. Compounds 5, 6-dihydro-4-oxo-5-phenyl--4ph-furo[2, 3-c] pyrrole (11) and 3-(1-methyl-2-pyrrole methyl)-4-phenyl-5-(4-chlorophenylcarbamoyl methylthio)-1, 2, 4-triazole(16) showed a prominent activity against C.albicans and S.cerevisiae.The detailed synthesis and the antifungal screening are reported. (author)

    13. Antifungal and Cytotoxic Assessment of Lapachol Derivatives Produced by Fungal Biotransformation.

      Science.gov (United States)

      Silva, Eliane O; Ruano-González, Antonio; dos Santos, Raquel A; Sánchez-Maestre, Rosario; Furtado, Niege A J C; Collado, Isidro G; Aleu, Josefina

      2016-01-01

      In the screening for biological active compounds, the biotransformation processes catalyzed by filamentous fungi are useful because they can provide information about the possible appearance of toxic metabolites after oral administration and also generate new leads. In this paper, biotransformation of lapachol (1) by three fungal strains, Mucor circinelloides NRRL3631, Botrytis cinerea UCA992 and Botrytis cinerea 2100, has been investigated for the first time. Lapachol (1) was biotransformed into avicequinone-A (2) by M circinelloides, 3'-hydroxylapachol (3) by B. cinerea, and into dehydro-α-lapachone (4) by both fungi. All these compounds were evaluated for their cytotoxic activities. The metabolite 2 displayed non-selective cytotoxicity against tumor and normal cell lines, 3 did not show cytotoxicity against the same cells, while 4 showed higher cytotoxicity against cancer cell lines than lapachol (1). The transformation of 1 into harmless and reactive metabolites evidences the importance of the evaluation of drug metabolism in the drug discovery process. Antifungal potential of lapachol (1) and its metabolites 2 and 4 against B. cinerea has also been evaluated. Dehydro-α-lapachone (4) has been shown to be less toxic to fungal growth than lapachol (1), which indicates a detoxification mechanism of the phytopathogen. PMID:26996030

    14. Synthesis of organometallic-based biologically active compounds: In vitro antibacterial, antifungal and cytotoxic properties of some sulfonamide incorporated ferrocences.

      Science.gov (United States)

      Chohan, Zahid H

      2009-02-01

      Sulfonamides incorporated ferrocene (SIF) have been synthesized by the condensation reaction of sulfonamides (sulfanilamide, sulfathiazole or sulfamethaxazole) with 1,1'-diacetylferrocene. The synthesized compounds (SIF(1)-SIF(4)) have been characterized by their physical, spectral and analytical properties and have been screened for their in vitro antibacterial properties against pathogenic bacterial strains e.g., Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis Staphylococcus aureus and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata using Agar-well diffusion method. Most of the compounds showed good antibacterial activity whereas, all the compounds exhibited significant antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:18608785

    15. Bioactive compounds and antifungal activity of three different seaweed species Ulva lactuca, Sargassum tenerrimum and Laurencia obtusa collected from Okha coast, Western India

      OpenAIRE

      Megha Barot; Nirmal Kumar JI; Rita N. Kumar

      2016-01-01

      Objective: To evaluate bioactive compounds responsible for antifungal activity from seaweeds of Okha coast, Western India. Methods: Each species were extracted with different solvents with increasing polarity: hexane, ethyl acetate, chloroform and methanol using Soxhlet apparatus. The antifungal activity was determined by agar diffusion plate method by using fluconazole, ketoconazole and amphotericin B as standards. Gas chromatography-mass spectrometer analysis was done for ...

    16. Antifungal compounds from turmeric and nutmeg with activity against plant pathogens

      Science.gov (United States)

      The antifungal activity of twenty-two common spices was evaluated against plant pathogens using direct-bioautography coupled Colletotrichum bioassays. Turmeric, nutmeg, ginger, clove, oregano, cinnamon, anise, fennel, basil, black cumin, and black pepper showed antifungal activity against the plant ...

    17. Design and synthesis of novel complexes containing N-phenyl-1H-pyrazole moiety: Ni complex as potential antifungal and antiproliferative compound

      Science.gov (United States)

      El-Gamel, Nadia E. A.; Farghaly, Thoraya A.

      2013-11-01

      Cu(II) (1), Ni(II) (2), Cr(III) (3) and Fe(III) (4) complexes with 3-acetyl-4-benzoyl-1-phenyl-1H-pyrazole (L1) were prepared and structurally characterized. Usual coordination of L1 was achieved through nitrogen of pyrazole moiety and carbonyl acetyl group. Electronic spectra of the complexes indicate that the geometry of the metal center was six coordinate octahedral. In vitro antimicrobial activity of the ligand and complex compounds was screened in terms of antibacterial effect on Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative) and antifungal effect on the fungi Aspergillus flavus and candida albicans using the modified Kirby-Bauer disc diffusion and minimum inhibitory concentrations (MIC) methods. Ni(II) complex (2) exhibited remarkable antifungal inhibition against Candida albicans equal to the standard antifungal agent. To continue our study some structural modifications are formed by adding 4-fluoro-benzoyl moiety to L1 in different forms to produce different ligands, 3-acetyl-4-(4-flourobenzoyl)-1-phenyl-1H-pyrazole (L2) and 3-[(3-acetyl-1-phenyl-1H-4-pyrazolyl)carbonyl]-1-phenyl-4-(4-flourobenzoyl)-1H-pyrazole (L3), Ni complexes (5 and 6) are prepared and comparable in vitro antimicrobial study is evaluated. In vitro cytotoxicity of the Ni(II) complex (2) is studied using MTT assay. The analysis of the cell test showed that (2) displayed quite small cytotoxic response at the higher concentration level which indeed would further enable us for more opportunities in therapeutic and biomedical challenges. Both of the capability as a potent in vitro antifungal agent and the cell test analysis show Ni(II) complex (2) as a promising material in the translation of observed in vitro biological phenomenon into clinical therapies settings.

    18. Multidrug-Resistant Transporter Mdr1p-Mediated Uptake of a Novel Antifungal Compound

      OpenAIRE

      Sun, Nuo; Li, Dongmei; Fonzi, William; Xin LI; Zhang, Lixin; Calderone, Richard

      2013-01-01

      The activity of many anti-infectious drugs has been compromised by the evolution of multidrug-resistant (MDR) pathogens. For life-threatening fungal infections, such as those caused by Candida albicans, overexpression of MDR1, which encodes an MDR efflux pump of the major facilitator superfamily (MFS), often confers resistance to chemically unrelated substances, including the most commonly used azole antifungals. As the development of new and efficacious antifungals has lagged far behind the ...

    19. Potent antifouling compounds produced by marine Streptomyces

      KAUST Repository

      Xu, Ying

      2010-02-01

      Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

    20. Antifungal activity of borrelidin produced by a Streptomyces strain isolated from soybean.

      Science.gov (United States)

      Liu, Chong-Xi; Zhang, Ji; Wang, Xiang-Jing; Qian, Ping-Ting; Wang, Ji-Dong; Gao, Ya-Mei; Yan, Yi-Jun; Zhang, Shu-Zhen; Xu, Peng-Fei; Li, Wen-Bin; Xiang, Wen-Sheng

      2012-02-01

      In this study, an endophytic Streptomyces sp. neau-D50 with strong antifungal activity against Phytophthora sojae was isolated from healthy soybean root, using an in vitro screening technique. A bioactivity-guided approach was then employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from strain neau-D50. The structure of the antifungal metabolite was elucidated as borrelidin on the basis of spectral analysis. To our knowledge, this is the first report that borrelidin has strong antifungal activity against dominant race 1 of P. sojae with EC(50) and EC(95) of 0.0056 and 0.026 mg/L, respectively. The values were respectively 62.5- and 262.3-fold lower than those of the commercial fungicide metalaxyl, which has been used to treat soybean seed for the control of P. sojae . The in situ bioassays demonstrated that borrelidin at 10 mg/L reduced P. sojae race 1 lesions on soybean seedlings by 94.72% without affecting root growth. Thus, borrelidin might be a promising candidate for new antifungal agents against P. sojae. PMID:22242825

    1. Lactobacillus plantarum MiLAB 393 Produces the Antifungal Cyclic Dipeptides Cyclo(l-Phe-l-Pro) and Cyclo(l-Phe-trans-4-OH-l-Pro) and 3-Phenyllactic Acid

      OpenAIRE

      Ström, Katrin; Sjögren, Jörgen; Broberg, Anders; Schnürer, Johan

      2002-01-01

      We have isolated a Lactobacillus plantarum strain (MiLAB 393) from grass silage that produces broad-spectrum antifungal compounds, active against food- and feed-borne filamentous fungi and yeasts in a dual-culture agar plate assay. Fusarium sporotrichioides and Aspergillus fumigatus were the most sensitive among the molds, and Kluyveromyces marxianus was the most sensitive yeast species. No inhibitory activity could be detected against the mold Penicillium roqueforti or the yeast Zygosaccharo...

    2. Effectiveness of Natural Antifungal Compounds in Controlling Infection by Grapevine Trunk Disease Pathogens through Pruning Wounds.

      Science.gov (United States)

      Cobos, Rebeca; Mateos, Rosa María; Álvarez-Pérez, José Manuel; Olego, Miguel Angel; Sevillano, Silvia; González-García, Sandra; Garzón-Jimeno, Enrique; Coque, Juan José R

      2015-09-01

      Grapevine trunk fungal pathogens, such as Diplodia seriata and Phaeomoniella chlamydospora, can infect plants through pruning wounds. They cause grapevine trunk diseases and are involved in grapevine decline. Accordingly, the protection of pruning wounds is crucial for the management of grapevine trunk diseases. The efficacy of different natural antifungals in inhibiting the growth of several fungi causing grapevine trunk diseases was evaluated in vitro. The fungi showing greater in vitro efficacy were tested on autoclaved grape wood assays against D. seriata and P. chlamydospora. Based on results from these assays, chitosan oligosaccharide, vanillin, and garlic extract were selected for further evaluation on pruning wounds inoculated with D. seriata and P. chlamydospora in field trials. A significant decrease in plant mortality was observed after 2 years of growth in the plants treated with the different natural antifungals compared to the mortality rate observed in infected plants that were not treated with antifungals. Also, the infection rate for the inoculated pathogens was significantly reduced in plants treated with the selected natural antifungals. Therefore, natural antifungals represent a promising alternative for disease control and could provide significant economic benefits for the grape-growing industry. PMID:26162882

    3. Bioactivity guided isolation of antifungal compounds from the liverwort Bazzania trilobata (L.) S.F. Gray.

      Science.gov (United States)

      Scher, Jochen M; Speakman, John-Bryan; Zapp, Josef; Becker, Hans

      2004-09-01

      A dichloromethane and a methanol extract of the liverwort Bazzania trilobata showed antifungal activity against the phytopathogenic fungi Botrytis cinerea, Cladosporium cucumerinum, Phythophthora infestans, Pyricularia oryzae and Septoria tritici. Bioautography on thin-layer chromatograms was used to isolate six antifungal sesquiterpenes: 5- and 7-hydroxycalamenene, drimenol, drimenal, viridiflorol, gymnomitrol and three bisbibenzyls: 6 ',8'-dichloroisoplagiochin C, isoplagiochin D and 6'-chloroisoplagiochin D. Furthermore we report the isolation of gymnomitr-8(12)-en-4-one and the new coumarin 7,8-dihydroxycoumarin-7-O-beta-D-glucuronide. Their structures have been elucidated based on extensive NMR spectral evidence. PMID:15451321

    4. Synthesis and antifungal activity of trichodermin derivatives

      Institute of Scientific and Technical Information of China (English)

      Jing Li Cheng; Yong Zhou; Jin Hao Zhao; Chu Long Zhang; Fu Cheng Lin

      2010-01-01

      A series of derivatives were synthesized from trichodermin(1)which was an antifungal metabolite produced by Trichoderma taxi sp.nov.Their structures were confirmed by 1H NMR,MS spectrum.Their antifungal activities were evaluated in vitro.The preliminary structure activity relationships(SAR)results indicated that the double bond,epoxide moiety and ester group were main pharmacophore elements,the stereochemistry of C4 position played a key role as well,and the compounds 1e-1g displayed stronger antifungal activity against Magnaporthe grisea than 1.

    5. 2-(Substituted phenyl-3,4-dihydroisoquinolin-2-iums as Novel Antifungal Lead Compounds: Biological Evaluation and Structure-Activity Relationships

      Directory of Open Access Journals (Sweden)

      Xin-Juan Yang

      2013-08-01

      Full Text Available The title compounds are a class of structurally simple analogues of quaternary benzo[c]phenanthridine alkaloids (QBAs. In order to develop novel QBA-like antifungal drugs, in this study, 24 of the title compounds with various substituents on the N-phenyl ring were evaluated for bioactivity against seven phytopathogenic fungi using the mycelial growth rate method and their SAR discussed. Almost all the compounds showed definite activities in vitro against each of the test fungi at 50 μg/mL and a broad antifungal spectrum. In most cases, the mono-halogenated compounds 2–12 exhibited excellent activities superior to the QBAs sanguinarine and chelerythrine. Compound 8 possessed the strongest activities on each of the fungi with EC50 values of 8.88–19.88 µg/mL and a significant concentration-dependent relationship. The SAR is as follows: the N-phenyl group is a high sensitive structural moiety for the activity and the characteristics and position of substituents intensively influence the activity. Generally, electron-withdrawing substituents remarkably enhance the activity while electron-donating substituents cause a decrease of the activity. In most cases, ortha- and para-halogenated isomers were more active than the corresponding m-halogenated isomers. Thus, the title compounds emerged as promising lead compounds for the development of novel biomimetic antifungal agrochemicals. Compounds 8 and 2 should have great potential as new broad spectrum antifungal agents for plant protection.

    6. Methods of producing compounds from plant materials

      Science.gov (United States)

      Werpy, Todd A.; Schmidt, Andrew J.; Frye, Jr., John G.; Zacher, Alan H. , Franz; James A. , Alnajjar; Mikhail S. , Neuenschwander; Gary G. , Alderson; Eric V. , Orth; Rick J. , Abbas; Charles A. , Beery; Kyle E. , Rammelsberg; Anne M. , Kim; Catherine J.

      2010-01-26

      The invention includes methods of processing plant material by adding water to form a mixture, heating the mixture, and separating a liquid component from a solid-comprising component. At least one of the liquid component and the solid-comprising component undergoes additional processing. Processing of the solid-comprising component produces oils, and processing of the liquid component produces one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention includes a process of forming glycerol, ethylene glycol, lactic acid and propylene glycol from plant matter by adding water, heating and filtering the plant matter. The filtrate containing starch, starch fragments, hemicellulose and fragments of hemicellulose is treated to form linear poly-alcohols which are then cleaved to produce one or more of glycerol, ethylene glycol, lactic acid and propylene glycol. The invention also includes a method of producing free and/or complexed sterols and stanols from plant material.

    7. An endophytic fungus isolated from finger millet (Eleusine coracana) produces anti-fungal natural products

      OpenAIRE

      Mousa, Walaa K.; Schwan, Adrian; Davidson, Jeffrey; Strange, Philip; Liu, Huaizhi; Zhou, Ting; Auzanneau, France-Isabelle; Raizada, Manish N

      2015-01-01

      Finger millet is an ancient African cereal crop, domesticated 7000 years ago in Ethiopia, reaching India at 3000 BC. Finger millet is reported to be resistant to various fungal pathogens including Fusarium sp. We hypothesized that finger millet may host beneficial endophytes (plant-colonizing microbes) that contribute to the antifungal activity. Here we report the first isolation of endophyte(s) from finger millet. Five distinct fungal species were isolated from roots and predicted taxonomica...

    8. Early State Research on Antifungal Natural Products

      Directory of Open Access Journals (Sweden)

      Melyssa Negri

      2014-03-01

      Full Text Available Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been conducted to evaluate the characteristics of natural drug products, including their sustainability, affordability, and antimicrobial activity. A considerable number of studies of medicinal plants and alternative compounds, such as secondary metabolites, phenolic compounds, essential oils and extracts, have been performed. Thus, this review discusses the history of the antifungal arsenal, surveys natural products with potential antifungal activity, discusses strategies to develop derivatives of natural products, and presents perspectives on the development of novel antifungal drug candidates.

    9. Bioactive compounds and antifungal activity of three different seaweed species Ulva lactuca, Sargassum tenerrimum and Laurencia obtusa collected from Okha coast, Western India

      Directory of Open Access Journals (Sweden)

      Megha Barot

      2016-04-01

      Full Text Available Objective: To evaluate bioactive compounds responsible for antifungal activity from seaweeds of Okha coast, Western India. Methods: Each species were extracted with different solvents with increasing polarity: hexane, ethyl acetate, chloroform and methanol using Soxhlet apparatus. The antifungal activity was determined by agar diffusion plate method by using fluconazole, ketoconazole and amphotericin B as standards. Gas chromatography-mass spectrometer analysis was done for identification of bioactive compounds present in crude extract. Results: The gas chromatography-mass spectrometer analysis of all the extracts revealed the presence of steroids, fatty acids and esters compounds. Among the three species, the maximum crude extract yield (53.46% and the largest inhibition zone (36 mm were recorded in methanol extract of Ulva lactuca, whereas the minimum crude extract yield and inhibition zone were recorded in chloroform extract of the same species as 0.5% and 10 mm, respectively. Methanol and ethyl acetate extract showed the maximum antifungal activity and the major important compounds like steroids, fatty acids and esters were detected with higher amount in all the extracts. Conclusions: The present study revealed that the different seaweed extracts showed moderate to significant antifungal activity against the strains tested as compared with the standard fungicides, and polar solvents methanol and ethyl acetate were comparatively efficient for extraction of different metabolites that are responsible for antifungal activity.

    10. Method of producing purified carotenoid compounds

      Science.gov (United States)

      Eggink, Laura (Inventor)

      2007-01-01

      A method of producing a carotenoid in solid form includes culturing a strain of Chlorophyta algae cells in a minimal inorganic medium and separating the algae comprising a solid form of carotenoid. In one embodiment f the invention, the strain of Chlorophyta algae cells includes a strain f Chlamydomonas algae cells.

    11. Antibacterial, Antifungal, and Insecticidal Potentials of Oxalis corniculata and Its Isolated Compounds

      OpenAIRE

      Azizur Rehman; Ali Rehman; Ijaz Ahmad

      2015-01-01

      Oxalis corniculata is a common medicinal plant widely used against numerous infectious diseases. The agrochemical potential of methanolic extract, n-hexane, chloroform, ethyl acetate, and n-butanol fractions were assessed to measure the antibacterial, antifungal, and insecticidal activities of the plant. The crude, chloroform, and n-butanol soluble fractions showed excellent activities against Escherichia coli, Shigella dysenteriae, Salmonella typhi, and Bacillus subtilis but have no activity...

    12. Metal-based carboxamide-derived compounds endowed with antibacterial and antifungal activity.

      Science.gov (United States)

      Hanif, Muhammad; Chohan, Zahid H; Winum, Jean-Yves; Akhtar, Javeed

      2014-08-01

      A series of three bioactive thiourea (carboxamide) derivatives, N-(dipropylcarbamothioyl)-thiophene-2-carboxamide (L(1)), N-(dipropylcarbamothioyl)-5-methylthiophene-2-carboxamide (L(2)) and 5-bromo-N-(dipropylcarbamothioyl)furan-2-carboxamide (L(3)) and their cobalt(II), copper(II), nickel(II) and zinc(II) complexes (1)-(12) have been synthesized and characterized by their IR,(1)H-NMR spectroscopy, mass spectrometry and elemental analysis data. The Crystal structure of one of the ligand, N-(dipropylcarbamothioyl)thiophene-2-carboxamide (L(1)) and its nickel(II) and copper(II) complexes were determined from single crystal X-ray diffraction data. All the ligands and metal(II) complexes have been subjected to in vitro antibacterial and antifungal activity against six bacterial species (Escherichia coli. Shigella flexneri. Pseudomonas aeruginosa. Salmonella typhi. Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal strains (Trichophyton longifusus. Candida albicans. Aspergillus flavus. Microsporum canis. Fusarium solani and Candida glabrata). The in vitro antibacterial and antifungal bioactivity data showed the metal(II) complexes to be more potent than the parent ligands against one or more bacterial and fungal strains. PMID:23914928

    13. A biotechnological approach for the development of new antifungal compounds to protect the environment and the human health

      Directory of Open Access Journals (Sweden)

      Claudia Zani

      2015-11-01

      Full Text Available Background. In the Po Valley aflatoxins play a relevant role: the local food economy is heavily based on cereal cultivations for animal feed and human nutrition. Aims of this project are the identification of new compounds that inhibit Aspergillus proliferation, the development of new inhibitors of aflatoxins production, and the set-up a practical screening procedure to identify the most effective and safe compounds. Design and Methods. New compounds will be synthetized with natural origin molecules as ligands and endogenous metal ions to increase their bioavailability for the fungi as metal complexes. A biotechnological high-throughput screening will be set up to identify efficiently the most powerful substances. The newly synthesized compounds with effective antifungal activities, will be evaluated with battery of tests with different end-points to assess the toxic potential risk for environmental and human health. Expected impact of the study for public health. The fundamental step in the project will be the synthesis of new compounds and the study of their capability to inhibit aflatoxin biosynthesis. A new, simple, inexpensive and high-throughput method to screen the anti-fungine and anti-mycotoxin activity of the new synthesised compounds will be applied. The evaluation of possible risks for humans due to toxic and genotoxic activities of the molecules will be made with a new approach using different types of cells (bacteria, plants and human cells.

    14. Antifungal compounds of Xylaria sp., an endophytic fungus isolated from Palicourea marcgravii (Rubiaceae); Substancias antifungicas de Xylaria sp., um fungo endofitico isolado de Palicourea marcgravii (Rubiaceae)

      Energy Technology Data Exchange (ETDEWEB)

      Cafeu, Mariana C.; Silva, Geraldo H.; Teles, Helder L.; Bolzani, Vanderlan da S.; Araujo, Angela R. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: araujoar@iq.unesp.br; Young, Maria Claudia M. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas; Pfenning, Ludwig H. [Universidade Federal de Lavras, MG (Brazil). Dept. de Fitopatologia

      2005-11-15

      Five compounds, 2-hexyl-3-methyl-butanodioic acid (1), cytochalasin D (2), 7-dechlorogriseofulvin (3), cytochalasin B (4) and griseofulvin (5), have been isolated from the endophytic fungus Xylaria sp., and their structures were elucidated on the basis of spectroscopic data. In the bioautography assay against Cladosporium cladosporioides and Cladosporium sphaerospermum, compounds 1 and 2 were found to be active while compounds 3, 4 and 5 did not show antifungal activity. (author)

    15. Isolation, identification and usefulness of antifungal compounds from Zuccagnia punctata for control of toxigenic ear rot pathogens.

      Science.gov (United States)

      Jimenez, Cristina M; Sampietro, Diego A; Sgariglia, Melina A; Soberón, José R; Vattuone, Marta A

      2014-10-01

      Infusion, tincture and decoction of leaves of Zuccagnia punctata Cav. were assayed on growth of Fusarium verticillioides, F. graminearum sensu stricto, F. boothii, F. meridionale, F. subglutinans and F. thapsinum. The tincture showed the lowest IC50 on mycelial growth. A diethyl ether fraction of the tincture showed the highest antifungal activity in microdilution assays on F. verticillioides and F. graminearum. The antifungal constituents were separated by silica gel chromatography and identified as 2',4'-dihydroxychalcone, 2',4'-dihydroxy-3'-methoxychalcone and 7-hydroxy-3',4'-dimethoxyflavone. These chalcones had the lowest MIC and MFC values on F. verticillioides and F. graminearum sensu stricto. 2',4'-Dihydroxychalcone was mildly toxic and the remaining identified compounds were non-toxic in the brine shrimp assay. 2',4'-Dihydroxychalcone in mixtures with commercial food preservatives showed additive effects on F. graminearum sensu stricto and synergistic ones on F. verticillioides. 2',4'-Dihydroxy-3'-methoxychalcone showed synergistic effects in mixtures. Our results suggest that addition of chalcones to food preservatives allows reduction in the doses of the preservatives required for control of Fusarium species. PMID:25522536

    16. Effect of Polymer Micelles on Antifungal Activity of Geranylorcinol Compounds against Botrytis cinerea.

      Science.gov (United States)

      Taborga, Lautaro; Díaz, Katy; Olea, Andrés F; Reyes-Bravo, Paula; Flores, Mario E; Peña-Cortés, Hugo; Espinoza, Luis

      2015-08-12

      Herein, we explore the potential use of two micelle-forming block copolymers, i.e., Pluronic F-127 and poly(ethylene oxide)-b-poly(caprolactone), for application of fungicide agents. The polymer effect on the in vitro fungicide activity of a series of geranyl orcinol derivatives against Botrytis cinerea has been assessed. The results show that, for all test compounds, the incorporation into micelles, formed by Pluronic F-127, produces a great enhancement of the inhibitory effect on the growth of B. cinerea. For some compounds, at the lowest tested concentration (50 ppm), the percentage of inhibition increases significantly (from 0-10 to 80-90%) when the application is made using a polymer solution instead of an ethanol/water mixture. The synthesis and structural determination of a series of eight geranylphenols/diacetates, which were used as fungicide agents, are also discussed. These results suggest that polymer micelles are promising systems for application of crop-protecting agents. PMID:26196664

    17. Comprehensive approach for the detection of antifungal compounds using a susceptible strain of Candida albicans and confirmation of in vivo activity with the Galleria mellonella model.

      Science.gov (United States)

      Favre-Godal, Quentin; Dorsaz, Stéphane; Queiroz, Emerson Ferreira; Conan, Céline; Marcourt, Laurence; Wardojo, Bambang Prajogo Eko; Voinesco, Francine; Buchwalder, Aurélie; Gindro, Katia; Sanglard, Dominique; Wolfender, Jean-Luc

      2014-09-01

      An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae

    18. Searching new antifungals: The use of in vitro and in vivo methods for evaluation of natural compounds.

      Science.gov (United States)

      Scorzoni, Liliana; Sangalli-Leite, Fernanda; de Lacorte Singulani, Junya; de Paula E Silva, Ana Carolina Alves; Costa-Orlandi, Caroline Barcelos; Fusco-Almeida, Ana Marisa; Mendes-Giannini, Maria José Soares

      2016-04-01

      In the last decades, the increased number of immunocompromised patients has led to the emergence of many forms of fungal infections. Furthermore, there are a restricted arsenal of antifungals available and an increase in the development of resistance to antifungal drugs. Because of these disadvantages, the search for new antifungal agents in natural sources has increased. The development of these new antifungal drugs involves various steps and methodologies. The evaluation of the in vitro antifungal activity and cytotoxicity are the first steps in the screening. There is also the possibility of antifungal combinations to improve the therapy and reduce toxicity. Despite that, the application of the new antifungal candidate could be used in association with photodynamic therapy or using nanotechnology as an ally. In vivo tests can be performed to evaluate the efficacy and toxicity using conventional and alternative animal models. In this work, we review the methods available for the evaluation of the antifungal activity and safety of natural products, as well as the recent advances of new technology in the application of natural products for antifungal therapy. PMID:26853122

    19. Synthesis and preliminary evaluation of N-acylhydrazone compounds as antibacterial and antifungal agents; Sintese e avaliacao preliminar da atividade antibacteriana e antifungica de derivados N-acilidrazonicos

      Energy Technology Data Exchange (ETDEWEB)

      Cachiba, Thomas Haruo; Carvalho, Bruno Demartini; Carvalho, Diogo Teixeira [Universidade Federal de Alfenas, MG (Brazil). Fac. de Ciencias Farmaceuticas. Dept. de Alimentos e Medicamentos; Cusinato, Marina; Prado, Clara Gaviao; Dias, Amanda Latercia Tranches, E-mail: diogo.carvalho@unifal-mg.edu.br [Universidade Federal de Alfenas, MG (Brazil). Inst. de Ciencias Biomedicas

      2012-07-01

      We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC{sub 50} values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 {mu}M), C. krusei (34 {mu}M) and C. tropicalis (17 {mu}M). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents. (author)

    20. Antifungal Metabolites Produced by Chaetomium globosum No.04, an Endophytic Fungus Isolated from Ginkgo biloba

      OpenAIRE

      Zhang, Guizhen; Zhang, Yanhua; Qin, Jianchun; Qu, Xiaoyan; Liu, Jinliang; Xiang LI; Pan, Hongyu

      2013-01-01

      The fungal endophyte Chaetomium globosum No.04 was isolated from the medicinal plant Ginkgo biloba. The crude extract of the fungus fermentation were active in the agar-diffusion tests against the phytopathogenic fungi Rhizopus stolonifer and Coniothyrium diplodiella. Further bioassay-guided chemical investigation led to the isolation and purification of six alkaloids and three non-targeted compounds from 50 L fermentation of this endophytic fungus and their structures were elucidated as chae...

    1. Analysis of organosulfur compounds in produced waters using mass spectrometry

      International Nuclear Information System (INIS)

      Produced water is a complex waste effluent generated during offshore oil production. The recent efforts are aimed at providing information that can be used to assess the effects of produced water discharges into the coastal environment near Gaviota, California. Analysis of dichloromethane extracts of produced water samples revealed that a series of polar organosulfur compounds of intermediate polarity are abundant constituents. A suite of mass spectrometric techniques including electron ionization, chemical ionization, high resolution mass spectrometry, and MS/MS are being used for chemical characterization. These chemicals are present in far greater concentrations than petroleum hydrocarbons in the same waste stream, but the environmental importance and the origins of these compounds remain unclear. Studies are underway using model compounds to test the hypothesis that they arise from reactions of abundant sulfides with other organic compounds. Assessment of the distribution of produced water constituents near the discharge outfall is being performed by sampling seawater, mussels, and sediment at two depths at three sites in the vicinity of the outfall. The authors have developed analytical protocols for determination of organosulfur constituents in each of these matrices. Simultaneous analysis of lipid profiles from the mussels can be carried out without modification of the analytical procedures

    2. Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil

      Directory of Open Access Journals (Sweden)

      Viviane eCordovez

      2015-10-01

      Full Text Available In disease-suppressive soils, plants are protected from infections by specific root pathogens due to the antagonistic activities of soil and rhizosphere microorganisms. For most disease-suppressive soils, however, the microorganisms and mechanisms involved in pathogen control are largely unknown. Our recent studies identified Actinobacteria as the most dynamic phylum in a soil suppressive to the fungal root pathogen Rhizoctonia solani. Here we isolated and characterized 300 isolates of rhizospheric Actinobacteria from the Rhizoctonia-suppressive soil. Streptomyces species were the most abundant, representing approximately 70% of the isolates. Streptomyces are renowned for the production of an exceptionally large number of secondary metabolites, including volatile organic compounds (VOCs. VOC profiling of 12 representative Streptomyces isolates by SPME-GC-MS allowed a more refined phylogenetic delineation of the Streptomyces isolates than the sequencing of 16S rRNA and the house-keeping genes atpD and recA only. VOCs of several Streptomyces isolates inhibited hyphal growth of R. solani and significantly enhanced plant shoot and root biomass. Coupling of Streptomyces VOC profiles with their effects on fungal growth, pointed to VOCs potentially involved in antifungal activity. Subsequent assays with five synthetic analogues of the identified VOCs showed that methyl 2-methylpentanoate, 1,3,5-trichloro-2-methoxy benzene and the VOCs mixture have antifungal activity. In conclusion, our results point to a potential role of VOC-producing Streptomyces in disease suppressive soils and show that VOC profiling of rhizospheric Streptomyces can be used as a complementary identification tool to construct strain-specific metabolic signatures.

    3. Antifungal activity of the ethanolic extracts of Punica granatum L. and evaluation of the morphological and structural modifications of its compounds upon the cells of Candida spp.

      OpenAIRE

      Paula Cristina Anibal; Iza Teixeira Alves Peixoto; Mary Ann Foglio; José Francisco Höfling

      2013-01-01

      Ethanolic crude extracts prepared from the arils and seeds, pericarp, peels and from the whole fruit of Punica granatum, known as pomegranate, had their antifungal activity tested against Candida spp. The ethanolic crude extracts were analyzed by Mass Spectrometry and yielded many compounds such as punicalagin and galladydilacton. The extracts from the pericarp and peel showed activity against Candida spp., with MICs of 125 μg/mL. The effect of pericarp and peel extracts upon the morphologica...

    4. Search for antifungal, molluscicidal and larvicidal compounds from African medicinal plants.

      Science.gov (United States)

      Marston, A; Maillard, M; Hostettmann, K

      1993-03-01

      African medicinal plants provide a rich source of biologically-active natural products. By the use of simple bioassays in conjunction with an approach involving bioactivity guided fractionation, it is possible to isolate novel compounds with interesting properties. Several hundred plant extracts have been submitted to different screens, including bioautography on TLC plates with the fungi Cladosporium cucumerinum and Candida albicans. Among the other test systems are a bioassay for molluscicidal activity with the schistosomiasis-transmitting snail Biomphalaria glabrata and a benchtop assay for larvicidal activity with larvae of the mosquito Aedes aegypti, the vector of yellow fever. Using a variety of modern separation techniques, a number of compounds with activity in these bioassays have been isolated. These include prenylated xanthones, tetracyclic phenols and saponins. The role of saponins and saponin-containing plants in the control of schistosomiasis is outlined. PMID:8510471

    5. Insights in the Biosynthesis of Griseofulvin and Echinocandin B, two Antifungal Compounds from Ascomycetes

      OpenAIRE

      Cacho, Ralph Adrian

      2015-01-01

      Natural products, since the discovery of the first antibiotic penicillin in 1928, have been the source of and inspiration for drugs. Due the emergence of drug-resistant pathogens and discovery of drug targets in cancer biology, the need for the discovery of new bioactive natural compounds and synthesis of analogs thereof remains present. Fortuitously, the development of next-generation sequencing and tools for the heterologous expression of the biosynthetic genes for natural products has acce...

    6. Sesquiterpenes produced by endophytic fungus Phomopsis cassiae with antifungal and acetylcholinesterase inhibition activities; Sesquiterpenos produzidos pelo fungo endofitico Phomopsis cassiae com atividade antifungica e inibidora de acetilcolinesterase

      Energy Technology Data Exchange (ETDEWEB)

      Zanardi, Lisineia M.; Bolzani, Vanderlan da S.; Cavalheiro, Alberto J.; Silva, Dulce H. Siqueira; Trevisan, Henrique C.; Araujo, Angela R. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica; Silva, Geraldo H. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil). Centro de Ciencias Exatas e Tecnologia; Teles, Helder L. [Universidade Federal do Mato Grosso (UFMT), Rondonopolis, MT (Brazil). Dept. de Ciencias Biologicas; Young, Maria Claudia M., E-mail: araujoar@iq.unesp.br [Instituto de Botanica, Sao Paulo, SP (Brazil). Seccao de Fisiologia e Bioquimica de Plantas

      2012-07-01

      Two new diastereoisomeric cadinanes sesquiterpenes 3,9-dihydroxycalamenene (1-2), along with the known 3-hydroxycalamen-8-one (3) and aristelegone-A (4), were isolated from ethyl acetate extract of Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures, including relative stereochemistry, were determined on the basis of detailed interpretation of 2D NMR spectra and comparison with related known compounds. Compounds 1-4 displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as inhibition of acetylcholinesterase. (author)

    7. In Vitro evaluation of antifungal activity of Bioactive Compound 2H-FURO [2,3-H]-1-Benzopyran-2-one against seed borne fungi of maize

      Directory of Open Access Journals (Sweden)

      B. Kiran

      2012-03-01

      Full Text Available Antifungal activity of bioactive compound 2HFuro[ 2,3-H]-1-benzopyran-2-one recorded a significant activity at 100-1000 ppm concentration against all the ten Aspergillus species tested. A. flavus recorded complete inhibition at 100 ppm concentration, A. niger at 500 ppm, A. fumigates at 600 ppm, A. flavus oryzae and A. flavus columnaris at 700 ppm respectively. A. ochraceous and A. flavipes recorded complete inhibition at 900 ppm concentration. Compared to synthetic fungicide Captan and Thiram at 2000ppm concentration. Minimum Inhibitory Concentration (MIC of bioactive compound was in the range of 100- 900ppm concentration against all the test fungi.

    8. Isolation and characterisation of antifungal compounds from lactic acid bacteria and their application in wheat and gluten-free bread

      OpenAIRE

      Axel, Claudia

      2015-01-01

      As part of the “free-from” trend, biopreservation for bread products has increasingly become important to prevent spoilage since artificial preservatives are more and more rejected by consumers. A literature review conducted as part of this thesis revealed that the evaluation of more suitable antifungal strains of lactic acid bacteria (LAB) is important. Moreover, increasing the knowledge about the origin of the antifungal effect is fundamental for further enhancement of biopreservation. This...

    9. Hydrothermal Oxidative Degradation of Organic Compounds Derived From Produced Water

      International Nuclear Information System (INIS)

      Produced water contains various hazardous organic compounds such as BTEX (benzene, toluene, ethyl benzene and xylene), phenolics and polycyclic aromatic hydrocarbons (PAHs). These compounds are stable and difficult to degrade by conventional wastewater treatment method. Aqueous based hydrothermal oxidative method is viewed as a promising approach for produced water treatment. The experiment was conducted in a micro-bomb reactor at subcritical water condition (200-300 degree Celsius) and 30 minute reaction time. Hydrogen peroxide was used as an oxidant. The reaction products were analyzed using a Fourier Transform Infra-Red (FTIR) and a Gas Chromatography-Mass Spectroscopy (GC-MS). The hydrothermal treatment in the absence of an oxidant showed minimal degradation of organics for the temperature range investigated. With the presence of an oxidant, the organics degradation increased drastically to near completion within the 30 minute reaction time at 300 degree Celsius. The results indicated that most of the organic compounds found in the produced water were successfully degraded using hydrothermal oxidative method. (author)

    10. Production of biosurfactant and antifungal compound by fermented food isolate Bacillus subtilis 20B.

      Science.gov (United States)

      Joshi, Sanket; Bharucha, Chirag; Desai, Anjana J

      2008-07-01

      A biosurfactant producing strain, Bacillus subtilis 20B, was isolated from fermented food in India. The strain also showed inhibition of various fungi in in-vitro experiments on Potato Dextrose Agar medium. It was capable of growth at temperature 55 degrees C and salts up to 7%. It utilized different sugars, alcohols, hydrocarbons and oil as a carbon source, with preference for sugars. In glucose based minimal medium it produced biosurfactant which reduced surface tension to 29.5 mN/m, interfacial tension to 4.5 mN/m and gave stable emulsion with crude oil and n-hexadecane. The biosurfactant activity was stable at high temperature, a wide range of pH and salt concentrations for five days. Oil displacement experiments using biosurfactant containing broth in sand pack columns with crude oil showed 30.22% recovery. The possible application of organism as biocontrol agent and use of biosurfactant in microbial enhanced oil recovery (MEOR) is discussed. PMID:17855083

    11. Identification and Characterization of an Antifungal Protein, AfAFPR9, Produced by Marine-Derived Aspergillus fumigatus R9.

      Science.gov (United States)

      Rao, Qi; Guo, Wenbin; Chen, Xinhua

      2015-05-01

      A fungal strain, R9, was isolated from the South Atlantic sediment sample and identified as Aspergillus fumigatus. An antifungal protein, AfAFPR9, was purified from the culture supernatant of Aspergillus fumigatus R9. AfAFPR9 was identified to be restrictocin, which is a member of the ribosome-inactivating proteins (RIPs), by MALDI-TOF-TOF-MS. AfAFPR9 displayed antifungal activity against plant pathogenic Fusarium oxysporum, Alternaria longipes, Colletotrichum gloeosporioides, Paecilomyces variotii, and Trichoderma viride at minimum inhibitory concentrations of 0.6, 0.6, 1.2, 1.2, and 2.4 μg/disc, respectively. Moreover, AfAFPR9 exhibited a certain extent of thermostability, and metal ion and denaturant tolerance. The iodoacetamide assay showed that the disulfide bridge in AfAFPR9 was indispensable for its antifungal action. The cDNA encoding for AfAFPR9 was cloned from A. fumigatus R9 by RTPCR and heterologously expressed in E. coli. The recombinant AfAFPR9 protein exhibited obvious antifungal activity against C. gloeosporioides, T. viride, and A. longipes. These results reveal the antifungal properties of a RIP member (AfAFPR9) from marine-derived Aspergillus fumigatus and indicated its potential application in controlling plant pathogenic fungi. PMID:25394604

    12. Antifungal agents.

      Science.gov (United States)

      Ryder, N S

      1999-12-01

      At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

    13. Methods and systems for producing compounded ultrasound images

      OpenAIRE

      Hansen, Jens Munk; Nikolov, Svetoslav; Kortbek, Jacob; Jensen, Jørgen Arendt

      2012-01-01

      Disclosed is a method for producing compounded ultrasound images by beamforming a first and a second low-resolution image using data from a first ultrasound emission, beamforming a third and a fourth low-resolution image using data from a second ultrasound emission, summing said first and said third low-resolution image creating a first high-resolution image and said second and said fourth low-resolution image creating a second high-resolution image, wherein the method further comprises compu...

    14. Quantification of the Triazole Antifungal Compounds Voriconazole and Posaconazole in Human Serum or Plasma Using Liquid Chromatography Electrospray Tandem Mass Spectrometry (HPLC-ESI-MS/MS).

      Science.gov (United States)

      Molinelli, Alejandro R; Rose, Charles H

      2016-01-01

      Voriconazole and posaconazole are triazole antifungal compounds used in the treatment of fungal infections. Therapeutic drug monitoring of both compounds is recommended in order to guide drug dosing to achieve optimal blood concentrations. In this chapter we describe an HPLC-ESI-MS/MS method for the quantification of both compounds in human plasma or serum following a simple specimen preparation procedure. Specimen preparation consists of protein precipitation using methanol and acetonitrile followed by a cleanup step that involves filtration through a cellulose acetate membrane. The specimen is then injected into an HPLC-ESI-MS/MS equipped with a C18 column and separated over an acetonitrile gradient. Quantification of the drugs in the specimen is achieved by comparing the response of the unknown specimen to that of the calibrators in the standard curve using multiple reaction monitoring. PMID:26660172

    15. Alternative method to detect compounds produced by Gambierdiscus spp.

      Directory of Open Access Journals (Sweden)

      Jon Andoni Sánchez

      2014-06-01

      Full Text Available Ciguatoxins (CTXs and CTX precursors are produced by several Gambierdiscus spp. These polyether toxins are associated to ciguatera fish poisoning (CFP. In addition to CTX, maitotoxins (MTX and gambierol are also produced by these dinoflagellates. MTX mechanism of action is strictly Ca2+ dependent, since the toxin induces a massive cytoplasmatic Ca2+ entrance. However, CTX activates the voltage-dependent sodium channels and no relation with calcium fluxes has been showed. The aim of this work was to study the effect of both toxins in the cytoplasmic calcium levels in the SH-SY5Y neuroblastoma cell line by using the fluorescent probe Fura-2 AM. Two completely different calcium profiles were obtained. While, MTX induces a sustained dose-dependent increase in Fura-2 ratio, CTX produces a light increase in dye ratio. From MTX results a calibration curve concentration versus Fura-2 ratio was obtained where the toxin concentration of an unknown sample can be calculated. Then, the effect of four samples from Gambierdiscus cultures was studied and different calcium profiles were obtained. A high increase in Fura-2 ratio was observed in two samples. The calcium profile was similar to MTX and by using the calibration curve the amount of toxin was calculated (4.9 and 1.8 nM of MTX. In the other samples, from the Fura-2 results the presence of CTX like compounds can be established.

    16. Compounds produced by motor burnouts of refrigeration systems

      Energy Technology Data Exchange (ETDEWEB)

      Koester, C.; Hawley-Fedder, R.; Foiles, L.

      1995-05-24

      The phase-out of chlorofluorocarbons has necessitated the introduction of alternate refrigerants. R22 (CF{sub 2}ClH), R134a (CF{sub 3}CH{sub 2}F), and R507 (50/50 CHF{sub 2}CF{sub 3}/CF{sub 3}CH{sub 3}) are newer fluids which are used in cooling systems. Recently, concern over the possible formation of toxic compounds during electrical arcing through these fluids has prompted us to identify their electrical breakdown products by electron ionization GC/MS. For example, it is known that perfluoroisobutylene (PFIB), which have an threshold limit value of 10 ppb (set by the American Conference of Government Industrial Hygienists), is produced from the thermal and electrical breakdown of some refrigerants. We have used specially designed test cells, equipped with electrodes, to simulate the electrical breakdown of R22, R134a, and R507 in refrigeration systems.

    17. Bioactivity of volatile organic compounds produced by Pseudomonas tolaasii

      Directory of Open Access Journals (Sweden)

      Pietro eLo Cantore

      2015-10-01

      Full Text Available Pseudomonas tolaasii is the main bacterial pathogen of several mushroom species. In this paper we report that strains of P. tolaasii produce volatile substances inducing in vitro mycelia growth inhibition of Pleurotus ostreatus and P. eryngii, and Agaricus bisporus and P. ostreatus basidiome tissue blocks brown discoloration. P. tolaasii strains produced the volatile ammonia but not hydrogen cyanide. Among the volatiles detected by GC-MS, methanethiol, dimethyl disulfide, and 1-undecene were identified. The latter, when assayed individually as pure compounds, led to similar effects noticed when P. tolaasii volatiles natural blend was used on mushrooms mycelia and basidiome tissue blocks. Furthermore, the natural volatile mixture, resulted toxic toward lettuce and broccoli seedling growth. In contrast, pure volatiles showed different activity according to their nature and/or doses applied. Indeed, methanethiol resulted toxic at all the doses used, while dimethyl disulfide toxicity was assessed till a quantity of 1.25 µg, below which it caused, together with 1-undecene ( 10 µg, broccoli growth increase.

    18. Synthesis of new 4-methyl-2-(4-pyridyl)-1,2,3,4-tetrahydroquinolines as potent antifungal compounds

      Energy Technology Data Exchange (ETDEWEB)

      Mendez, Leonor Y. Vargas [Universidad Santo Tomas, Bucaramanga (Colombia). Grupo de Investigaciones Ambientales; Zacchino, Susana A. [Universidad Nacional del Rosario, (Argentina). Lab. de Farmacognosia; Kouznetsov, Vladimir V. [Universidad Industrial de Santander, Bucaramanga (Colombia). Lab. de Quimica Organica y Biomolecular

      2010-07-01

      Synthesis, spectral characterization and biological results of new series of 2-(4-pyridyl)- 1,2,3,4-tetrahydroquinolines and their closer precursors, -N-aryl-N-[1-(4-pyridyl)but-3-enyl] amines are reported. It was found that both g-pyridyl substituted precursors and final products, tetrahydroquinolines, showed very good antifungal activities against Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Microsporum gypseun, Trichophyton rubrum and Trichophyton mentagrophytes. (author)

    19. Synthesis of new 4-methyl-2-(4-pyridyl)-1,2,3,4-tetrahydroquinolines as potent antifungal compounds

      International Nuclear Information System (INIS)

      Synthesis, spectral characterization and biological results of new series of 2-(4-pyridyl)- 1,2,3,4-tetrahydroquinolines and their closer precursors, -N-aryl-N-[1-(4-pyridyl)but-3-enyl] amines are reported. It was found that both g-pyridyl substituted precursors and final products, tetrahydroquinolines, showed very good antifungal activities against Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Microsporum gypseun, Trichophyton rubrum and Trichophyton mentagrophytes. (author)

    20. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt

      DEFF Research Database (Denmark)

      Aunsbjerg, Stina Dissing; Honoré, Anders Hans; Marcussen, J.;

      2015-01-01

      to the antifungal activity. The role of volatile compounds in the antifungal activity of Lactobacillus paracasei DGCC 2132 in a chemically defined interaction medium (CDIM) and yogurt was therefore investigated with a sampling technique minimizing volatile loss. Diacetyl was identified as the major volatile...... produced by L. paracasei DGCC 2132 in CDIM. When the strain was added to a yogurt medium diacetyl as well as other volatiles also increased but the metabolome was more complex. Removal of L. paracasei DGCC 2132 cells from CDIM fermentate resulted in loss of both volatiles, including diacetyl......, and the antifungal activity towards two strains of Penicillium spp. When adding diacetyl to CDIM or yogurt without L. paracasei DGCC 2132, marked inhibition was observed. Besides diacetyl, the antifungal properties of acetoin were examined, but no antifungal activity was observed. Overall, the results demonstrate...

    1. Development of Radiolabeled compounds using reactor-produced radionuclides

      Energy Technology Data Exchange (ETDEWEB)

      Choi, Sun Ju; Park, K. B.; Park, S. H.

      2007-06-15

      To establish a robust technology for radiopharmaceutical development, we focused on the configuration of fundamental development of radiolabeled compounds for radioimmunotherapy and drug delivery as well as the development of bifunctional chelating agents and radiolabeling methods for the radiopharmaceuticals with highly specific activity to deliver sufficient number of radionuclides to the target site. In this project, we aim to improve the quality of life and the public welfare by fostering the medical application of radioisotopes for the effective treatment of malignant diseases and by developing efficient radiolabeling methods of specific bio-active materials with radioisotopes and new candidates for radiopharmaceutical application. We have established the procedure for the preparation of radiolabeled antibody and biotin with radioisotopes such as {sup 166}Ho, {sup 131}I, {sup 90}Y and {sup 111}In for tumour targeting. In the future, these technologies will be applicable to development of radioimmunotherapeutic drug. The combination treatment of radioisotope with anti-cancer agents or chemotherapeutic agents may produce a synergistic static effects in the tumour and this synergism would be exerted via gene level through the activation of a cell death pathway. The combination therapy may be very beneficial for cancer treatment and this can overcome not only the hazards of unnecessary exposure to high radiation level during therapy, but also the tendency for drug resistance caused by chemotherapy. To develop new drug delivery system suitable for CT imaging agent, a chitosan derivative and radiolabed Folate-targeted polymer with {sup 131}I were synthesized. We also carried out the development of DTPA derivatives for CT imaging agent, radiolabeled precursor, and established a highly efficient radiolabeling methodology with lanthanide nuclide. In order to develop neuroreceptor targeting compounds, we synthesized WAY-100635 compound and {sup 99m}Tc(CO){sub 3

    2. Development of Radiolabeled compounds using reactor-produced radionuclides

      International Nuclear Information System (INIS)

      To establish a robust technology for radiopharmaceutical development, we focused on the configuration of fundamental development of radiolabeled compounds for radioimmunotherapy and drug delivery as well as the development of bifunctional chelating agents and radiolabeling methods for the radiopharmaceuticals with highly specific activity to deliver sufficient number of radionuclides to the target site. In this project, we aim to improve the quality of life and the public welfare by fostering the medical application of radioisotopes for the effective treatment of malignant diseases and by developing efficient radiolabeling methods of specific bio-active materials with radioisotopes and new candidates for radiopharmaceutical application. We have established the procedure for the preparation of radiolabeled antibody and biotin with radioisotopes such as 166Ho, 131I, 90Y and 111In for tumour targeting. In the future, these technologies will be applicable to development of radioimmunotherapeutic drug. The combination treatment of radioisotope with anti-cancer agents or chemotherapeutic agents may produce a synergistic static effects in the tumour and this synergism would be exerted via gene level through the activation of a cell death pathway. The combination therapy may be very beneficial for cancer treatment and this can overcome not only the hazards of unnecessary exposure to high radiation level during therapy, but also the tendency for drug resistance caused by chemotherapy. To develop new drug delivery system suitable for CT imaging agent, a chitosan derivative and radiolabed Folate-targeted polymer with 131I were synthesized. We also carried out the development of DTPA derivatives for CT imaging agent, radiolabeled precursor, and established a highly efficient radiolabeling methodology with lanthanide nuclide. In order to develop neuroreceptor targeting compounds, we synthesized WAY-100635 compound and 99mTc(CO)3 precursor from Chrysamine G derivatives. The

    3. Naturally Produced Defensive Alkenal Compounds Activate TRPA1.

      Science.gov (United States)

      Blair, Nathaniel T; Philipson, Benjamin I; Richards, Paige M; Doerner, Julia F; Segura, Abraham; Silver, Wayne L; Clapham, David E

      2016-05-01

      (E)-2-alkenals are aldehydes containing an unsaturated bond between the alpha and beta carbons. 2-alkenals are produced by many organisms for defense against predators and secretions containing (E)-2-alkenals cause predators to stop attacking and allow the prey to escape. Chemical ecologists have described many alkenal compounds with 3-20 carbons common, having varied positions of double bonds and substitutions. How do these defensive alkenals act to deter predators? We have tested the effects of (E)-2-alkenals with 6-12 carbons on transient receptor potential channels (TRP) commonly found in sensory neurons. We find that (E)-2-alkenals activate transient receptor potential ankyrin subtype 1 (TRPA1) at low concentrations-EC50s 10-100 µM (in 0 added Ca(2+) external solutions). Other TRP channels were either weakly activated (TRPV1, TRPV3) or insensitive (TRPV2, TRPV4, TRPM8). (E)-2-alkenals may activate TRPA1 by modifying cysteine side chains. However, target cysteines include others beyond the 3 in the amino-terminus implicated in activation, as a channel with cysteines at 621, 641, 665 mutated to serine responded robustly. Related chemicals, including the aldehydes hexanal and decanal, and (E)-2-hexen-1-ol also activated TRPA1, but with weaker potency. Rat trigeminal nerve recordings and behavioral experiments showed (E)-2-hexenal was aversive. Our results suggest that TRPA1 is likely a major target of these commonly used defensive chemicals. PMID:26843529

    4. SINTESIS KOMPONEN BAWANG PUTIH VINIL-DITIIN DAN TURUNANNYA SERTA UJI AKTIVITAS ANTI KAPANGNYA DENGAN METODE BIOAUTOGRAFI SYNTHESIS OF GARLIC COMPOUND VINYL-DITHIIN AND ITS DERIVATIVES, AND THEIR ANTI-FUNGAL DETERMINATION USING BIOAUTOGRAPHY METHODE

      OpenAIRE

      C. Hanny Wijaya1)*

      2000-01-01

      Improvement on stability, physical characteristics and physiological activities of vinyl-dithiin has been attempted through oxidation and methylation. A bioautography method with Cladosporium cucumerinum showed that the presence of sulphoxide compound increased the anti-fungal activity sharply. Best activity was obtained with the compounds with SSO functional group. Activity was slightly decreased by addition of methyl-group. Stereoisomer also influenced the activity of compound, although no...

    5. Effects of disrupting the polyketide synthase gene WdPKS1 in Wangiella [Exophiala] dermatitidis on melanin production and resistance to killing by antifungal compounds, enzymatic degradation, and extremes in temperature

      Directory of Open Access Journals (Sweden)

      Mandal Piyali

      2006-06-01

      Full Text Available Abstract Background Wangiella dermatitidis is a human pathogenic fungus that is an etiologic agent of phaeohyphomycosis. W. dermatitidis produces a black pigment that has been identified as a dihydroxynaphthalene melanin and the production of this pigment is associated with its virulence. Cell wall pigmentation in W. dermatitidis depends on the WdPKS1 gene, which encodes a polyketide synthase required for generating the key precursor for dihydroxynaphthalene melanin biosynthesis. Results We analyzed the effects of disrupting WdPKS1 on dihydroxynaphthalene melanin production and resistance to antifungal compounds. Transmission electron microscopy revealed that wdpks1Δ-1 yeast had thinner cell walls that lacked an electron-opaque layer compared to wild-type cells. However, digestion of the wdpks1Δ-1 yeast revealed small black particles that were consistent with a melanin-like compound, because they were acid-resistant, reacted with melanin-binding antibody, and demonstrated a free radical signature by electron spin resonance analysis. Despite lacking the WdPKS1 gene, the mutant yeast were capable of catalyzing the formation of melanin from L-3,4-dihyroxyphenylalanine. The wdpks1Δ-1 cells were significantly more susceptible to killing by voriconazole, amphotericin B, NP-1 [a microbicidal peptide], heat and cold, and lysing enzymes than the heavily melanized parental or complemented strains. Conclusion In summary, W. dermatitidis makes WdPKS-dependent and -independent melanins, and the WdPKS1-dependent deposition of melanin in the cell wall confers protection against antifungal agents and environmental stresses. The biological role of the WdPKS-independent melanin remains unclear.

    6. Biochemical and immunological characterization of a recombinantly-produced antifungal cysteine proteinase inhibitor from green kiwifruit (Actinidia deliciosa).

      Science.gov (United States)

      Popovic, Milica; Andjelkovic, Uros; Burazer, Lidija; Lindner, Buko; Petersen, Arnd; Gavrovic-Jankulovic, Marija

      2013-10-01

      Plant proteinase inhibitors are considered important defense molecules against insect and pathogen attack. The cysteine proteinase inhibitor (CPI) from green kiwifruit (Actinidia deliciosa) belongs to the cystatin family and shows potent antifungal activity (in vitro and in vivo). However, the low abundance of this molecule in fruit (6μg/g of fresh fruit) seems to limit further investigations on the interaction between phytocystatin and photopathogenic fungi. In this paper the cDNA of the kiwi CPI was expressed in Escherichia coli. Fifteen N-terminal amino acids were identified by Edman degradation, and 77% of the rCPI primary structure was confirmed by mass fingerprint. The structural homology of recombinant CPI (rCPI) to its natural counterpart has been clearly demonstrated in immunological assays (immunoblot and ELISA inhibition). Biological activity of rCPI was demonstrated in inhibition assay with cysteine proteinase papain (EC50 2.78nM). In addition, rCPI reveals antifungal properties toward pathogenic fungi (Alternaria radicina and Botrytis cinerea), which designates it as an interesting model protein for the exploration of plant phytocystatins - pathogen interactions. Understanding the molecular mechanisms of natural plant resistance could lead to the development of ecologically safe fungicides for controlling post-harvest diseases and maintaining food quality. PMID:23830694

    7. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves

      International Nuclear Information System (INIS)

      The present study was designed to evaluate the antifungal activity of Azima tetracantha extracts and isolated compound (friedelin) against fungi. Antifungal activity was carried out using broth micro dilution method and fractions were collected using (silica gel) column chromatography. The antifungal activity of Azima tetracantha crude extracts and isolated compound (friedelin) were evaluated using the micro dilution method. Hexane extract showed some antifungal activity. The compound also exhibited antifungal activity against tested fungi. The lowest MIC against Trichophyton rubrum (296) was 62.5 micro g/ml and the MIC for Curvularia lunata was 62.5 micro g/ml. These results suggest that Friedelin is a promising antifungal agent. (authors)

    8. Comparative study of disk diffusion and microdilution methods for evaluation of antifungal activity of natural compounds against medical yeasts Candida spp and Cryptococcus sp

      Directory of Open Access Journals (Sweden)

      L. SCORZONI

      2009-01-01

      Full Text Available

      Antifungal activity of natural products has been tested by adapting methods designed for synthetic drugs. In this study, two methods for the determination of antifungal activity of natural products, agar diffusion and broth microdilution, the CLSI reference methods for synthetic drugs, are compared and discussed. The microdilution method was more sensitive. The minimal inhibitory concentrations (MIC of crude extracts, fractions and pure substances from different species of the plant families Piperaceae, Rubiaceae, Clusiaceae, Fabaceae and Lauraceae, from the Biota project, were determined. Antifungal activities against Candida albicans, C.krusei, C.parapsilosis and Cryptococcus neoformans were produced by several samples. Keywords: natural products; antifungal activity; Candida sp; Cryptococcus sp.

    9. Antifungal activity of triterpenoid isolated from Azima tetracantha leaves.

      OpenAIRE

      Duraipandiyan, V; M Gnanasekar; S Ignacimuthu

      2010-01-01

      The present study was designed to evaluate the antifungal activity of Azima tetracantha extracts and isolated compound (friedelin) against fungi. Antifungal activity was carried out using broth microdilution method and fractions were collected using (silica gel) column chromatography. The antifungal activity of Azima tetracantha crude extracts and isolated compound (friedelin) were evaluated using the micro dilution method. Hexane extract showed some antifungal activity. The compound also exh...

    10. Antifungal Compounds Isolated from Smyrnium olusatrum L. Essential Oil, Growing Wild in Cephalonia, Greece. Chemical Analysis and Structure Elucidation

      Directory of Open Access Journals (Sweden)

      Gerasimia Tsasi

      2015-08-01

      Full Text Available The essential oils (EOs from the leaves and the flowers of Smyrnium olusatrum L. , growing wild in the island of Cephalonia (Greece, were analyzed by GC-FID and GC-MS. Fifty nine constituents, which accounted for 90.3% (fl and 97.1% (lvs of the oils, were identified. Furanodiene, g ermacrone and furanoeremophil-1-one were the major constituents in both essential oils; they were also isolated from the flowers essential oil and identified using spectroscopic methods, ie. 1D and 2D NMR, GC-MS . In addition b -myrcene ( 11.7% and b -phellandrene (5.2% were main constituents in the essential oil of the leaves. The essential oils and the pure isolates were evaluated for antifungal activity against Aspergillus fumigatus , A. versicolor, A. ochraceus, A. niger, Trichoderma viride, Penicillium funiculosum, P. ochrochloron, P. verucosum var. cyclopium by using the microdilution method and proved to possess significant antifungal effect. Among them, (+ furanoeremophil-1-one was particularly active with MIC values in the range of 0.0008-0.125 mg/mL and MFC values of 0.025-0.050 mg/mL and proved more effective than the commercial mycotics ketoconazole and bifonazole used as positive controls.

    11. Activity of Antifungal Organobismuth(III Compounds Derived from Alkyl Aryl Ketones against S. cerevisiae: Comparison with a Heterocyclic Bismuth Scaffold Consisting of a Diphenyl Sulfone

      Directory of Open Access Journals (Sweden)

      Toshihiro Murafuji

      2014-07-01

      Full Text Available A series of hypervalent organobismuth(III compounds derived from alkyl aryl ketones [XBi(5-R'C6H3-2-COR(Ar] was synthesized to investigate the effect of the compounds’ structural features on their antifungal activity against the yeast Saccharomyces cerevisiae. In contrast to bismuth heterocycles [XBi(5-RC6H3-2-SO2C6H4-1'-] derived from diphenyl sulfones, a systematic quantitative structure-activity relationship study was possible. The activity depended on the Ar group and increased for heavier X atoms, whereas lengthening the alkyl chain (R or introducing a substituent (R' reduced the activity. IBi(C6H4-2-COCH3(4-FC6H4 was the most active. Its activity was superior to that of the related acyclic analogues ClBi[C6H4-2-CH2N(CH32](Ar and ClBi(C6H4-2-SO2 tert-Bu(Ar and also comparable to that of heterocyclic ClBi(C6H4-2-SO2C6H4-1'-, which was the most active compound in our previous studies. Density function theory calculations suggested that hypervalent bismuthanes undergo nucleophilic addition with a biomolecule at the bismuth atom to give an intermediate ate complex. For higher antifungal activity, adjusting the lipophilicity-hydrophilicity balance, modeling the three-dimensional molecular structure around the bismuth atom, and stabilizing the ate complex appear to be more important than tuning the Lewis acidity at the bismuth atom.

    12. Biological activity of terpene compounds produced by biotechnological methods.

      Science.gov (United States)

      Paduch, Roman; Trytek, Mariusz; Król, Sylwia K; Kud, Joanna; Frant, Maciej; Kandefer-Szerszeń, Martyna; Fiedurek, Jan

      2016-06-01

      Context Biotransformation systems are profitable tools for structural modification of bioactive natural compounds into valuable biologically active terpenoids. Objective This study determines the biological effect of (R)-(+)-limonene and (-)-α-pinene, and their oxygenated derivatives, (a) perillyl alcohol and (S)-(+)- and (R)-(-)-carvone enantiomers and (b) linalool, trans-verbenol and verbenone, respectively, on human colon tumour cells and normal colonic epithelium. Materials and methods Biotransformation procedures and in vitro cell culture tests were used in this work. Cells were incubated for 24 h with terpenes at concentrations of 5-500 μg/mL for NR, MTT, DPPH, and NO assays. IL-6 was determined by ELISA with/without 2 h pre-activation with 10 μg/mL LPS. Results trans-Verbenol and perillyl alcohol, obtained via biotransformation, produced in vitro effect against tumour cells at lower concentrations (IC50 value = 77.8 and 98.8 μg/mL, respectively) than their monoterpene precursors, (R)-(+)-limonene (IC50 value = 171.4 μg/mL) and (-)-α-pinene (IC50 value = 206.3 μg/mL). They also showed lower cytotoxicity against normal cells (IC50 > 500 and > 200 μg/mL, respectively). (S)-(+)-Carvone was 59.4% and 27.1% more toxic to tumour and normal cells, respectively, than the (R)-(-)-enantiomer. (R)-(+)-limonene derivatives decreased IL-6 production from normal cells in media with or without LPS (30.2% and 13.9%, respectively), while (-)-α-pinene derivatives induced IL-6 (verbenone had the strongest effect, 60.2% and 29.1% above control, respectively). None of the terpenes had antioxidative activity below 500 μg/mL. Discussion and conclusions Bioactivity against tumour cells decreased in the following order: alcohols > ketones > hydrocarbons. (R)-(+)-limonene, (-)-α-pinene, and their derivatives expressed diverse activity towards normal and tumour cells with noticeable enantiomeric differences. PMID:26808720

    13. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates

      Directory of Open Access Journals (Sweden)

      Laura Bedin Denardi

      2015-03-01

      Full Text Available In vitro interaction between tacrolimus (FK506 and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%, followed by that of the combination with ketoconazole (37%, against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata, a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%, itraconazole (73%, voriconazole (63% and fluconazole (60%. The synergisms that we observed in vitro, notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

    14. Disentangling the biosynthesis of termite-produced nitro compounds

      Czech Academy of Sciences Publication Activity Database

      Jirošová, Anna; Svatoš, A.; Jančařík, Andrej; Brabcová, Jana; Vogel, H.; Dolejšová, Klára; Majer, Pavel; Hanus, Robert

      Stockholm : International Society of Chemical Ecology, 2015. s. 285. [ISCE 2015. 29.06.2015-03.07.2015, Stockholm] R&D Projects: GA ČR GP13-25137P Institutional support: RVO:61388963 Keywords : termites * soldiers * Prorhinotermes simplex * nitro compounds * biosynthesis Subject RIV: CC - Organic Chemistry

    15. Varietal flavour compounds of four grape varieties producing Madeira wines

      OpenAIRE

      Câmara, J. S.; Herbert, Paulo; Marques, J C; Alves, M. A.

      2004-01-01

      Boal, Malvasia, Sercial and Verdelho are the main white grape varieties used in Madeira wine production. To estimate the free fraction of varietal aroma compounds of these varieties, 39 samples of musts were analysed to determine their content of monoterpenols and C13 norisoprenoids (terpenoids), using dynamic headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. The r-values for linearity studies of the analytical method used, varied between 0.977 (nerolido...

    16. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

      Directory of Open Access Journals (Sweden)

      Deepa Gupta

      2015-01-01

      Full Text Available Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent.

    17. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity.

      Science.gov (United States)

      Gupta, Deepa; Jain, D K

      2015-01-01

      Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antifungal agents. The derivatives of chalcones were prepared using Claisen-Schmidt condensation scheme with appropriate tetralone and aldehyde derivatives. Ten derivatives were synthesized and were biologically screened for antifungal activity. The newly synthesized derivatives of chalcone showed antifungal activity against fungal species, Microsporum gypseum. The results so obtained were superior or comparable to ketoconazole. It was observed that none of the compounds tested showed positive results for fungi Candida albicans nor against fungi Aspergillus niger. Chalcone derivatives showed inhibitory effect against M. gypseum species of fungus. It was found that among the chalcone derivatives so synthesized, two of them, that is, 4-chloro derivative, and unsubstituted derivative of chalcone showed antifungal activity superior to ketoconazole. Thus, these can be the potential new molecule as antifungal agent. PMID:26317075

    18. Antifungal Volatile Organic Compounds from the Endophyte Nodulisporium sp. Strain GS4d2II1a: a Qualitative Change in the Intraspecific and Interspecific Interactions with Pythium aphanidermatum.

      Science.gov (United States)

      Sánchez-Fernández, Rosa Elvira; Diaz, Daniel; Duarte, Georgina; Lappe-Oliveras, Patricia; Sánchez, Sergio; Macías-Rubalcava, Martha Lydia

      2016-02-01

      This study demonstrates volatile organic compounds (VOCs) production as one of the defense mechanisms of the antagonistic endophyte Nodulisporium sp. GS4d2II1a, and the volatile changes in two times of the fungal growth; and, as result of its intra and interspecific interactions with the plant pathogen Pythium aphanidermatum. The antifungal activity of the volatile and diffusible metabolites was evaluated by means of three types of antagonism bioassays and by organic extract agar dilution. VOCs were obtained by gas chromatography coupled to mass spectrometry from 3- and 5-day Nodulisporium sp. cultures, as well as from its interspecific in vitro antagonistic interaction with the oomycete P. aphanidermatum, and its intraspecific Nodulisporium sp.-Nodulisporium sp. interaction. The GS4d2II1a strain completely inhibited the growth of two fungi and seven oomycetes by replacing their mycelia in simple antagonism bioassays and by producing in vitro volatile and diffusible metabolites that acted synergistically in multiple antagonism bioassays. Additionally, VOCs inhibited the growth of three oomycetes and one fungus in antagonism bioassays using divided plates. A total of 70 VOCs were detected, mainly including mono and sesquiterpenes, especially eucalyptol and limonene. Multiple correspondence analysis revealed four different volatile profiles, showing that volatiles changed with the fungus age and its intra and interspecific interactions. The metabolites produced by Nodulisporium sp. GS4d2II1a could be useful for biological control of fungal and oomycetes plant pathogens of economically important crops. PMID:26408189

    19. Engineered microorganisms capable of producing target compounds under anaerobic conditions

      Science.gov (United States)

      Buelter, Thomas; Meinhold, Peter; Feldman, Reid M. Renny; Hawkins, Andrew C.; Urano, Jun; Bastian, Sabine; Arnold, Frances

      2012-01-17

      The present invention is generally provides recombinant microorganisms comprising engineered metabolic pathways capable of producing C3-C5 alcohols under aerobic and anaerobic conditions. The invention further provides ketol-acid reductoisomerase enzymes which have been mutated or modified to increase their NADH-dependent activity or to switch the cofactor preference from NADPH to NADH and are expressed in the modified microorganisms. In addition, the invention provides isobutyraldehyde dehydrogenase enzymes expressed in modified microorganisms. Also provided are methods of producing beneficial metabolites under aerobic and anaerobic conditions by contacting a suitable substrate with the modified microorganisms of the present invention.

    20. Organic Compounds in Produced Waters From Coalbed Methane Wells in the Powder River Basin, WY

      Science.gov (United States)

      Orem, W.; Lerch, H.; Rice, C.; Tatu, C.

      2003-12-01

      Coalbed methane (CBM) is a significant energy resource, accounting for about 7.5% of natural gas production in the USA. The Powder River Basin (PRB), WY is currently one of the most active CBM drilling sites in the USA. One aspect of concern in the exploitation of CBM resources is the large volumes of water recovered from wells along with the natural gas (so-called produced waters). CBM produced waters may contain coal-derived dissolved substances (inorganic and organic) of environmental concern, and a potential disposal problem for CBM producers. Studies of CBM produced water have mostly focused on inorganics. Dissolved organic compounds in CBM produced water may also present an environmental issue, but little information is available. As part of a larger study of the health and environmental effects of organic compounds derived from coal, we analyzed a number of produced water samples from CBM wells in the PRB, WY for dissolved organic substances. Our goals were results on coal-derived organic compounds in the environment to evaluate potential health and environmental impacts. In 2001, we sampled produced water from 13 CBM wells covering a broad area of the PRB in order to identify and quantify the organic compounds present. In 2002, produced water from 4 of the 2001 CBM wells and 8 new CBM wells were sampled for dissolved organic components. Produced water was collected directly from each well and filtered on site. Organic compounds were isolated from produced water samples by liquid/liquid extraction with methylene chloride and identified and quantified by gas chromatography/mass spectrometry (GC/MS). Organic compounds identified by GC/MS in extracts of the produced water samples, included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons, phthalates, aliphatic hydrocarbons, and fatty acids. However, most compounds had structures unidentified by GC/MS databases. Many of the identified organic compounds

    1. Rare earth intermetallic compounds produced by a reduction-diffusion process

      International Nuclear Information System (INIS)

      A reduction-diffusion process is given for producing novel rare earth intermetallic compounds, such as cobalt--rare earth intermetallic compounds, especially compounds useful in preparing permanent magnets. A particulate mixture of rare earth metal halide, cobalt and calcium hydride is heated to effect reduction of the rare earth metal halide and to diffuse the resulting rare earth metal into the cobalt to form the intermetallic compound

    2. Aspergillus mulundensis sp. nov., a new species for the fungus producing the antifungal echinocandin lipopeptides, mulundocandins

      DEFF Research Database (Denmark)

      Bills, Gerald F.; Yue, Qun; Chen, Li;

      2016-01-01

      The invalidly published name Aspergillus sydowii var. mulundensis was proposed for a strain of Aspergillus that produced new echinocandin metabolites designated as the mulundocadins. Reinvestigation of this strain (Y-30462=DSMZ 5745) using phylogenetic, morphological, and metabolic data indicated...

    3. Comparison of antifungal and antioxidant activities of Acacia mangium and A. auriculiformis heartwood extracts.

      Science.gov (United States)

      Mihara, Rie; Barry, Karen M; Mohammed, Caroline L; Mitsunaga, Tohru

      2005-04-01

      The effect of heartwood extracts from Acacia mangium (heartrot-susceptible) and A. auriculiformis (heartrot-resistant) was examined on the growth of wood rotting fungi with in vitro assays. A. auriculiformis heartwood extracts had higher antifungal activity than A. mangium. The compounds 3,4',7,8-tetrahydroxyflavanone and teracacidin (the most abundant flavonoids in both species) showed antifungal activity. A. auriculiformis contained higher levels of these flavonoids (3.5- and 43-fold higher, respectively) than A. mangium. This suggests that higher levels of these compounds may contribute to heartrot resistance. Furthermore, both flavonoids had strong 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and laccase inhibition. This suggests that the antifungal mechanism of these compounds may involve inhibition of fungal growth by quenching of free radicals produced by the extracellular fungal enzyme laccase. PMID:16124251

    4. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds

      OpenAIRE

      Zahid H. Chohan; Arif, M.; Akhtar, Muhammad A.; Supuran, Claudiu T.

      2006-01-01

      A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1)−(L5) were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azo...

    5. Design,Synthesis and Antifungal Activity of Novel Triazole Derivatives

      Institute of Scientific and Technical Information of China (English)

      Chun Quan SHENG; Wan Nian ZHANG; Hai Tao JI; Yun Long SONG; Min ZHANG; You Jun ZHOU; Jia Guo LU; Jü ZHU

      2004-01-01

      Twenty-one 1-(1H-1,2,4-triazolyl)-2-(2,4-diflurophenyl)-3-(4-substituted-1- piperazinyl)-2-propanol derivatives were designed and synthesized,on the basis of the active site of lanosterol 14(-demethylase.In vitro antifungal activities showed that some of the target compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

    6. Antifungal and antiviral products of marine organisms.

      Science.gov (United States)

      Cheung, Randy Chi Fai; Wong, Jack Ho; Pan, Wen Liang; Chan, Yau Sang; Yin, Cui Ming; Dan, Xiu Li; Wang, He Xiang; Fang, Evandro Fei; Lam, Sze Kwan; Ngai, Patrick Hung Kui; Xia, Li Xin; Liu, Fang; Ye, Xiu Yun; Zhang, Guo Qing; Liu, Qing Hong; Sha, Ou; Lin, Peng; Ki, Chan; Bekhit, Adnan A; Bekhit, Alaa El-Din; Wan, David Chi Cheong; Ye, Xiu Juan; Xia, Jiang; Ng, Tzi Bun

      2014-04-01

      Marine organisms including bacteria, fungi, algae, sponges, echinoderms, mollusks, and cephalochordates produce a variety of products with antifungal activity including bacterial chitinases, lipopeptides, and lactones; fungal (-)-sclerotiorin and peptaibols, purpurides B and C, berkedrimane B and purpuride; algal gambieric acids A and B, phlorotannins; 3,5-dibromo-2-(3,5-dibromo-2-methoxyphenoxy)phenol, spongistatin 1, eurysterols A and B, nortetillapyrone, bromotyrosine alkaloids, bis-indole alkaloid, ageloxime B and (-)-ageloxime D, haliscosamine, hamigeran G, hippolachnin A from sponges; echinoderm triterpene glycosides and alkene sulfates; molluscan kahalalide F and a 1485-Da peptide with a sequence SRSELIVHQR; and cepalochordate chitotriosidase and a 5026.9-Da antifungal peptide. The antiviral compounds from marine organisms include bacterial polysaccharide and furan-2-yl acetate; fungal macrolide, purpurester A, purpurquinone B, isoindolone derivatives, alterporriol Q, tetrahydroaltersolanol C and asperterrestide A, algal diterpenes, xylogalactofucan, alginic acid, glycolipid sulfoquinovosyldiacylglycerol, sulfated polysaccharide p-KG03, meroditerpenoids, methyl ester derivative of vatomaric acid, lectins, polysaccharides, tannins, cnidarian zoanthoxanthin alkaloids, norditerpenoid and capilloquinol; crustacean antilipopolysaccharide factors, molluscan hemocyanin; echinoderm triterpenoid glycosides; tunicate didemnin B, tamandarins A and B and; tilapia hepcidin 1-5 (TH 1-5), seabream SauMx1, SauMx2, and SauMx3, and orange-spotted grouper β-defensin. Although the mechanisms of antifungal and antiviral activities of only some of the aforementioned compounds have been elucidated, the possibility to use those known to have distinctly different mechanisms, good bioavailability, and minimal toxicity in combination therapy remains to be investigated. It is also worthwhile to test the marine antimicrobials for possible synergism with existing drugs. The prospects of

    7. Phenolic Compounds and Antifungal Activity of Hedera helix L. (Ivy) Flowers and Fruits

      OpenAIRE

      Marcel PARVU; Laurian VLASE; Alina E. PARVU; Oana ROSCA-CASIAN; GHELDIU, ANA-MARIA; Ovidiu PARVU

      2015-01-01

      Identification and quantitative analysis of the phenolic compounds from Hedera helix L. (ivy) flower and fruit ethanol extracts by LC/MS, in vitro germination and growth inhibition effects on Aspergillus niger, Botrytis cinerea, Fusarium oxysporum f.sp. tulipae, Penicillium gladioli and Sclerotinia sclerotiorum were performed. In the non-hydrolyzed samples of flower and fruit extracts were determined, in different amounts, five polyphenols (p-coumaric acid, ferulic acid, rutoside, quercetol a...

    8. Food preservation using antifungal lactic acid bacteria

      OpenAIRE

      Crowley, Sarah Catherine Mary

      2013-01-01

      Fungal spoilage of food and feed prevails as a major problem for the food industry. The use antifungal-producing lactic acid bacteria (LAB) may represent a safer, natural alternative to the use of chemical preservatives in foods. A large scale screen was undertaken to identify a variety of LAB with antifungal properties from plant, animal and human sources. A total of 6,720 LAB colonies were isolated and screened for antifungal activity against the indicator Penicillium expansum. 94 broad-spe...

    9. Antifungal Activity of Wickerhamomyces anomalus and Lactobacillus plantarum during Sourdough Fermentation: Identification of Novel Compounds and Long-Term Effect during Storage of Wheat Bread ▿

      OpenAIRE

      Coda, Rossana; Cassone, Angela; Rizzello, Carlo G.; Nionelli, Luana; Cardinali, Gianluigi; Gobbetti, Marco

      2011-01-01

      This study aimed at investigating the antifungal activity of Wickerhamomyces anomalus and sourdough lactic acid bacteria to extend the shelf life of wheat flour bread. The antifungal activity was assayed by agar diffusion, growth rate inhibition, and conidial germination assays, using Penicillium roqueforti DPPMAF1 as the indicator fungus. Sourdough fermented by Lactobacillus plantarum 1A7 (S1A7) and dough fermented by W. anomalus LCF1695 (D1695) were selected and characterized. The water/sal...

    10. Gain and loss of fruit flavour compounds produced by wild and cultivated strawberry species

      NARCIS (Netherlands)

      Aharoni, A.; Giri, A.P.; Verstappen, F.W.A.; Bertea, C.M.; Sevenier, R.E.; Sun, Z.; Jongsma, M.A.; Schwab, W.; Bouwmeester, H.J.

      2004-01-01

      The blends of flavor compounds produced by fruits serve as biological perfumes used to attract living creatures, including humans. They include hundreds of metabolites and vary in their characteristic fruit flavor composition. The molecular mechanisms by which fruit flavor and aroma compounds are ga

    11. Synthesis of Pyridazinonethiadiazoles as Possible Antifungal Agents

      Institute of Scientific and Technical Information of China (English)

      2001-01-01

      Several 5-[1-aryl-1,4-dihydro-6-methylpyridazin-4-one-3-yl]-2-arylamino-1,3,4-thia diazoles were synthesized.The preliminary bio-active test shows that these compounds exhibit high antifungal activity.

    12. Purification and Characterization of a New Antifungal Compound 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic Acid Methyl Ester from Streptomyces hydrogenans Strain DH16.

      Science.gov (United States)

      Kaur, Talwinder; Kaur, Amarjeet; Sharma, Vishal; Manhas, Rajesh K

      2016-01-01

      In agriculture, biocontrol agents have been emerged as safe alternative to chemical pesticides where Streptomyces spp. and their metabolites constitute a great potential for their exploration as potent agents for controlling various fungal phytopathogens. The present study reports an antifungal compound purified from Streptomyces hydrogenans strain DH16, a soil isolate, using silica gel chromatography and semi preparative HPLC. The compound was characterized using various spectroscopic techniques (IR, (1)H and (13)C NMR) and named 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester (SH2). Compound (SH2) showed significant inhibitory activity against fungal phytopathogens and resulted in severe morphological aberrations in their structure. Minimal inhibitory and minimal fungicidal concentrations of the compound ranged from 6.25 to 25 μg/ml and 25 to 50 μg/ml, respectively. In vivo evaluation of the compound showed strong control efficacy against Alternaria brassicicola, a seed borne pathogen, on radish seeds. In comparison to mancozeb and carbendazim, the compound was more effective in controlling damping off disease. Additionally, it promoted plant growth with increased rate of seed germination, and displayed no phytotoxicity. The compound retained its antifungal activity after its exposure to temperature of 100°C and sunlight for 1 h. Furthermore, the compound (SH2) when tested for its biosafety was found to be non-cytotoxic, and non-mutagenic against Salmonella typhimurium TA98 and TA100 strains. This compound from S. hydrogenans strain DH16 has not been reported earlier, so this new compound can be developed as an ideal safe and superior biofungicide for the control of various fungal plant diseases. PMID:27446043

    13. Cytotoxic and Antifungal Activities of 5-Hydroxyramulosin, a Compound Produced by an Endophytic Fungus Isolated from Cinnamomum mollisimum

      OpenAIRE

      Carolina Santiago; Chris Fitchett; Munro, Murray H. G.; Juriyati Jalil; Jacinta Santhanam

      2012-01-01

      An endophytic fungus isolated from the plant Cinnamomum mollissimum was investigated for the bioactivity of its metabolites. The fungus, similar to a Phoma sp., was cultured in potato dextrose broth for two weeks, followed by extraction with ethyl acetate. The crude extract obtained was fractionated by high-performance liquid chromatography. Both crude extract and fractions were assayed for cytotoxicity against P388 murine leukemic cells and inhibition of bacterial and fungal pathogens. The b...

    14. Draft Genome Sequence of Hoeflea sp. Strain BAL378, a Potential Producer of Bioactive Compounds

      DEFF Research Database (Denmark)

      Bentzon-Tilia, Mikkel; Riemann, Lasse; Gram, Lone

      2014-01-01

      Some phytoplankton-associated marine bacteria produce bioactive compounds. Members of the genus Hoeflea may be examples of such bacteria; however, data describing their metabolisms are scarce. Here, we report the draft genome sequence of Hoeflea sp. strain BAL378, a putative producer of bacterioc...... of bacteriocins, polyketides, and auxins, as demonstrated by genome mining....

    15. Antifungal Activity of Essential Oils from Some Medicinal Plants of Iran against Alternaria alternate

      Directory of Open Access Journals (Sweden)

      I. Hadizadeh

      2009-01-01

      Full Text Available Problem statement: Increasing public concern over the level of pesticide residues in food especially fresh produce has built up adequate pressure for scientists to look for less hazardous and environmentally safer compounds for controlling post harvest diseases. Essential oils as registered food grade materials have the potential to be applied as alternative anti-fungal treatments for fresh fruits and vegetables. Approach: We present in this study, the identification of the essential oils with antifungal activity from some medicinal plants of Iran (nettle (Urtica dioica L., thyme (Thymus vulgaris L., eucalyptus (Eucalyptus spp., Rue (Ruta graveolens L. and common yarrow (Achillea millefolium L., and their potential application as "generally regarded as safe" antifungal compounds against Alternaria alternate on tomato as a model pathosystem. Results: Both the nettle and the thyme oils exhibited antifungal activity against A. alternata. The thyme oil exhibited a lower degree of inhibition 68.5 and 74.8% at 1500 and 2000 ppm, respectively. Spore germination and germ tube elongation of the pathogens in potato dextrose broth was strongly reduced in the presence of 1500 ppm of the nettle oil. The same concentration of this oil reduced the percentage of decayed tomatoes. The experiments on reducing the development of natural tomato rot gave similar results. Conclusions: Application of essential oils for postharvest disease control of fresh produce, as a novel emerging alternative to hazardous anti-fungal treatments will allow a safer and environmentally more acceptable management of postharvest diseases.

    16. Antifungal Activity in Ethanolic Extracts of Carica papaya L. cv. Maradol Leaves and Seeds

      OpenAIRE

      Chávez-Quintal, Pedro; González-Flores, Tania; Rodríguez-Buenfil, Ingrid; Gallegos-Tintoré, Santiago

      2011-01-01

      Bioactive compounds from vegetal sources are a potential source of natural antifungic. An ethanol extraction was used to obtain bioactive compounds from Carica papaya L. cv. Maradol leaves and seeds of discarded ripe and unripe fruit. Both, extraction time and the papaya tissue flour:organic solvent ratio significantly affected yield, with the longest time and highest flour:solvent ratio producing the highest yield. The effect of time on extraction efficiency was confirmed by qualitative iden...

    17. Natural and synthetic peptides with antifungal activity.

      Science.gov (United States)

      Ciociola, Tecla; Giovati, Laura; Conti, Stefania; Magliani, Walter; Santinoli, Claudia; Polonelli, Luciano

      2016-08-01

      In recent years, the increase of invasive fungal infections and the emergence of antifungal resistance stressed the need for new antifungal drugs. Peptides have shown to be good candidates for the development of alternative antimicrobial agents through high-throughput screening, and subsequent optimization according to a rational approach. This review presents a brief overview on antifungal natural peptides of different sources (animals, plants, micro-organisms), peptide fragments derived by proteolytic cleavage of precursor physiological proteins (cryptides), synthetic unnatural peptides and peptide derivatives. Antifungal peptides are schematically reported based on their structure, antifungal spectrum and reported effects. Natural or synthetic peptides and their modified derivatives may represent the basis for new compounds active against fungal infections. PMID:27502155

    18. Volatile compounds of Van Herby cheeses produced with raw and pasteurized milks from different species.

      Science.gov (United States)

      Ocak, Elvan; Javidipour, Issa; Tuncturk, Yusuf

      2015-07-01

      Levels of volatile compounds in Van herby cheeses manufactured from raw and pasteurized; 100 % ewes', 50 % ewes'+50 % cows' and mixture of 50 % ewes'+25 % cows'+25 % goats' milks were investigated over 180 days of ripening at 4 °C. The volatile compounds levels of herby cheese samples increased throughout the 180 days storage period. Samples produced from pasteurized milk showed lower volatile contents than their counterparts produced from raw milk. The volatile compounds profile of herby cheese samples detected by headspace solid-phase microextraction (HS-SPME) consisted of 8 esters, 5 ketones, 5 aldehydes, 9 acids, 6 alcohols and 14 hydrocarbons and terpenes. Acetic acid was the most abundant volatile compound in HS-SPME of ripened cheeses, followed by hexanoic, octanoic and butanoic acids. PMID:26139896

    19. Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation

      OpenAIRE

      Dragone, Giuliano; Mussatto, Solange I.; Oliveira, J.M.; Teixeira, J.A.

      2009-01-01

      An alcoholic beverage (35.4% v/v ethanol) was produced by distillation of the fermented broth obtained by continuous whey fermentation with a lactose-fermenting yeast Kluyveromyces marxianus. Forty volatile compounds were identified in this drink by gas chromatography. Higher alcohols were the most abundant group of volatile compounds present, with isoamyl, isobutyl, 1-propanol, and isopentyl alcohols being found in highest quantities (887, 542, 266, and 176 mg/l, respectively). Ethyl acetate...

    20. Iron-Binding Compounds Produced by Wood-Decaying Basidiomycetes †

      OpenAIRE

      Fekete, Frank A.; Chandhoke, Vikas; Jellison, Jody

      1989-01-01

      The chrome azurol-S universal siderophore assay and the rapid paper electrophoresis siderophore assay were used to screen 10 wood-decaying basidiomycete isolates for the formation of iron-chelating compounds. All 10 isolates were positive for chrome azurol-S reactivity on solid plating medium and in liquid cultures, and 9 of the 10 isolates produced fluorescent iron-binding compounds in the paper electrophoresis assay.

    1. Antifungal compounds from Piper species

      Science.gov (United States)

      Piper is a big genus of the plant family Piperaceae, with more than 700 species widely distributed in the tropical and subtropical regions of the world. Some species are used in folk medicine as analgesics, antiseptics, insecticides, and antimicrobials or for the treatment of toothache, haemorrhoid...

    2. Antifungal activities of three different Lactobacillus species and their production of antifungal carboxylic acids in wheat sourdough.

      Science.gov (United States)

      Axel, Claudia; Brosnan, Brid; Zannini, Emanuele; Peyer, Lorenzo C; Furey, Ambrose; Coffey, Aidan; Arendt, Elke K

      2016-02-01

      This study was undertaken to assess the antifungal performance of three different Lactobacillus species.Experiments were conducted in vitro and in situ to extend the shelf life of wheat bread. Standard sourdough analyses were performed characterising acidity and carbohydrate levels. Overall, the strains showed good inhibition in vitro against the indicator mould Fusarium culmorum TMW4.2043. Sourdough bread fermented with Lactobacillus amylovorus DSM19280 performed best in the in situ shelf life experiment. An average shelf life extension of six more mould-free days was reached when compared to the non-acidified control bread. A range of antifungal-active acids like 3-phenyllactic acid, 4-hydroxyphenyllactic acid and 2-hydroxyisocaproic acid in quantities between 0.1 and 360 mg/kg were present in the freeze-dried sourdoughs. Their concentration differed greatly amongst the species.However, a higher concentration of these compounds could not completely justify the growth inhibition of environmental moulds. In particular, although Lb. reuteri R29 produced the highest total concentration of these active compounds in the sourdough, its addition to bread did not result in a longest shelf life. Nevertheless, when the artificial compounds were spiked into a chemically acidified dough, it succeeded in a longer shelf life (+25 %) than achieved only by acidifying the dough. This provides evidence of their contribution to the antifungal activity and their synergy in concentration levels far below their single minimal inhibition concentrations under acidic conditions. PMID:26481620

    3. SINTESIS KOMPONEN BAWANG PUTIH VINIL-DITIIN DAN TURUNANNYA SERTA UJI AKTIVITAS ANTI KAPANGNYA DENGAN METODE BIOAUTOGRAFI SYNTHESIS OF GARLIC COMPOUND VINYL-DITHIIN AND ITS DERIVATIVES, AND THEIR ANTI-FUNGAL DETERMINATION USING BIOAUTOGRAPHY METHODE

      Directory of Open Access Journals (Sweden)

      C. Hanny Wijaya 1

      2000-04-01

      Full Text Available Improvement on stability, physical characteristics and physiological activities of vinyl-dithiin has been attempted through oxidation and methylation. A bioautography method with Cladosporium cucumerinum showed that the presence of sulphoxide compound increased the anti-fungal activity sharply. Best activity was obtained with the compounds with SSO functional group. Activity was slightly decreased by addition of methyl-group. Stereoisomer also influenced the activity of compound, although not to significantly. Isomer of 3,4-dihidro-3-isopropenil-5-metil-4H-1, 2-ditiin-1-oxide has interesting properties such as crystallized easily, posses weak odor and relatively strong in anti fungal activity. A Simple methallylsynthesis procedure for disufide has been developed using metallyl chloride as starting material.

    4. Antimicrobial activity of seven metallic compounds against penicillinase producing and non-penicillinase producing strains of Neisseria gonorrhoeae.

      OpenAIRE

      Peeters, M.; Vanden Berghe, D; Meheus, A.

      1986-01-01

      The in vitro activity of seven metallic compounds was tested against penicillinase (beta lactamase) producing strains of Neisseria gonorrhoeae (PPNG) and non-PPNG strains. On a weight basis, the mercurials showed the greatest in vitro activity. Phenylmercuric borate, thiomersal, and mercuric chloride inhibited 90% of all strains at concentrations of 5 mg/l, 5 mg/l, and 20 mg/l respectively. Silver nitrate inhibited 90% of the strains at 80 mg/l and the MIC90 for mild silver protein was 200 mg...

    5. The rhizobacterium Arthrobacter agilis produces dimethylhexadecylamine, a compound that inhibits growth of phytopathogenic fungi in vitro.

      Science.gov (United States)

      Velázquez-Becerra, Crisanto; Macías-Rodríguez, Lourdes I; López-Bucio, José; Flores-Cortez, Idolina; Santoyo, Gustavo; Hernández-Soberano, Christian; Valencia-Cantero, Eduardo

      2013-12-01

      Plant diseases caused by fungal pathogens such as Botrytis cinerea and the oomycete Phytophthora cinnamomi affect agricultural production worldwide. Control of these pests can be done by the use of fungicides such as captan, which may have deleterious effects on human health. This study demonstrates that the rhizobacterium Arthrobacter agilis UMCV2 produces volatile organic compounds that inhibit the growth of B. cinerea in vitro. A single compound from the volatile blends, namely dimethylhexadecylamine (DMHDA), could inhibit the growth of both B. cinerea and P. cinnamomi when supplied to the growth medium in low concentrations. DMHDA also inhibited the growth of beneficial fungi Trichoderma virens and Trichoderma atroviride but at much higher concentrations. DMHDA-related aminolipids containing 4, 8, 10, 12, and 14 carbons in the alkyl chain were tested for their inhibitory effect on the growth of the pathogens. The results show that the most active compound from those tested was dimethyldodecylamine. This effect correlates with a decrease in the number of membrane lipids present in the mycelium of the pathogen including eicosanoic acid, (Z)-9-hexadecenoic acid, methyl ester, and (Z)-9-octadecenoic acid, methyl ester. Strawberry leaflets treated with DMHDA were not injured by the compound. These data indicate that DMHDA and related compounds, which can be produced by microorganisms may effectively inhibit the proliferation of certain plant pathogens. PMID:23674267

    6. Potent Antifungal Activity of Pure Compounds from Traditional Chinese Medicine Extracts against Six Oral Candida Species and the Synergy with Fluconazole against Azole-Resistant Candida albicans

      Directory of Open Access Journals (Sweden)

      Zhimin Yan

      2012-01-01

      Full Text Available This study was designed to evaluate the in vitro antifungal activities of four traditional Chinese medicine (TCM extracts. The inhibitory effects of pseudolaric acid B, gentiopicrin, rhein, and alion were assessed using standard disk diffusion and broth microdilution assays. They were tested against six oral Candida species, Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, Candida dubliniensis, and Candida guilliermondii, including clinical isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. It was found that pseudolaric acid B had the most potent antifungal effect and showed similar antifungal activity to all six Candida spp, and to isolates from HIV-negative, HIV-positive, and Sjögren's syndrome patients. The MIC values ranged from 16 to 128 μg/mL. More interestingly, a synergistic effect of pseudolaric acid B in combination with fluconazole was observed. We suggest that pseudolaric acid B might be a potential therapeutic fungicidal agent in treating oral candidiasis.

    7. Antifungals of acromyrmex, allomerus, and tetraponera ant- and cultivarassociated bacteria

      OpenAIRE

      Barke, Joerg

      2013-01-01

      The central purpose of this thesis is to test the utility of ant-microbe associations for discovering antifungal compounds with novel molecular (sub-) structures. Novel antifungals displaying reduced adverse side-effects, increased water-solubilities, and/or strong fungicidal properties would be helpful in medical science for responding to the rising prevalence of human mycoses and for solving problems with adverse side-effects in currently used antifungal drugs. Host-symbiont systems m...

    8. Design, synthesis and antifungal activity of novel triazole derivatives

      Institute of Scientific and Technical Information of China (English)

      Qing lie Zhao; Yan Song; Hong Gang Hu; Shi Chong Yu; Qiu Ye Wu

      2007-01-01

      Twenty-three 1 -(1H-1,2,4-triazole-1-yl)-2-(2,4-difluorophenyl)-3-(N-cycloproyl-N-substituted-amino)-2-propanols were designed and synthesized on the basis of the active site of lanosterol 14α-demethylase.In vitro antifungal activities showed that some of the title compounds had higher antifungal activity and broader antifungal spectrum than fluconazole.

    9. Identification and biological activity of antifungal saponins from shallot ( Allium cepa L. Aggregatum group).

      Science.gov (United States)

      Teshima, Yoshiki; Ikeda, Tsuyoshi; Imada, Kiyoshi; Sasaki, Kazunori; El-Sayed, Magdi A; Shigyo, Masayoshi; Tanaka, Shuhei; Ito, Shin-Ichi

      2013-08-01

      The n-butanol extract of shallot basal plates and roots showed antifungal activity against plant pathogenic fungi. The purified compounds from the extract were examined for antifungal activity to determine the predominant antifungal compounds in the extract. Two major antifungal compounds purified were determined to be alliospiroside A (ALA) and alliospiroside B. ALA had prominent antifungal activity against a wide range of fungi. The products of acid hydrolysis of ALA showed a reduced antifungal activity, suggesting that the compound's sugar chain is essential for its antifungal activity. Fungal cells treated with ALA showed rapid production of reactive oxygen species. The fungicidal action of ALA was partially inhibited by a superoxide scavenger, Tiron, suggesting that superoxide anion generation in the fungal cells may be related to the compound's action. Inoculation experiments showed that ALA protected strawberry plants against Colletotrichum gloeosporioides , indicating that ALA has the potential to control anthracnose of the plant. PMID:24138065

    10. Treatment of produced water:targeting dissolved compounds to meet a zero harmful discharge in oil and gas production

      OpenAIRE

      Scurtu, Ciprian Teodor

      2009-01-01

      High amounts of dissolved compounds are discharged into the sea with the producedwater generated from the offshore oil and gas platforms. Some of these compounds are toxic to the environment, having important contributions to the environmental impact factors (EIF) calculated for produced water discharges. No performance standards currently exist for the removal of dissolved compounds from produced water. However, the overall goals for oil, natural components and chemicals in produced water re...

    11. Ability of Thermophilic Lactic Acid Bacteria To Produce Aroma Compounds from Amino Acids

      Science.gov (United States)

      Helinck, Sandra; Le Bars, Dominique; Moreau, Daniel; Yvon, Mireille

      2004-01-01

      Although a large number of key odorants of Swiss-type cheese result from amino acid catabolism, the amino acid catabolic pathways in the bacteria present in these cheeses are not well known. In this study, we compared the in vitro abilities of Lactobacillus delbrueckii subsp. lactis, Lactobacillus helveticus, and Streptococcus thermophilus to produce aroma compounds from three amino acids, leucine, phenylalanine, and methionine, under mid-pH conditions of cheese ripening (pH 5.5), and we investigated the catabolic pathways used by these bacteria. In the three lactic acid bacterial species, amino acid catabolism was initiated by a transamination step, which requires the presence of an α-keto acid such as α-ketoglutarate (α-KG) as the amino group acceptor, and produced α-keto acids. Only S. thermophilus exhibited glutamate dehydrogenase activity, which produces α-KG from glutamate, and consequently only S. thermophilus was capable of catabolizing amino acids in the reaction medium without α-KG addition. In the presence of α-KG, lactobacilli produced much more varied aroma compounds such as acids, aldehydes, and alcohols than S. thermophilus, which mainly produced α-keto acids and a small amount of hydroxy acids and acids. L. helveticus mainly produced acids from phenylalanine and leucine, while L. delbrueckii subsp. lactis produced larger amounts of alcohols and/or aldehydes. Formation of aldehydes, alcohols, and acids from α-keto acids by L. delbrueckii subsp. lactis mainly results from the action of an α-keto acid decarboxylase, which produces aldehydes that are then oxidized or reduced to acids or alcohols. In contrast, the enzyme involved in the α-keto acid conversion to acids in L. helveticus and S. thermophilus is an α-keto acid dehydrogenase that produces acyl coenzymes A. PMID:15240255

    12. Organic compounds in produced waters from coalbed natural gas wells in the Powder River Basin, Wyoming, USA

      Energy Technology Data Exchange (ETDEWEB)

      Orem, W.H.; Tatu, C.A.; Lerch, H.E.; Rice, C.A.; Bartos, T.T.; Bates, A.L.; Tewalt, S.; Corum, M.D. [US Geological Survey, Reston, VA (United States)

      2007-10-15

      The organic composition of produced water samples from coalbed natural gas (CBNG) wells in the Powder River Basin, WY, sampled in 2001 and 2002 are reported as part of a larger study of the potential health and environmental effects of organic compounds derived from coal. The quality of CBNG produced waters is a potential environmental concern and disposal problem for CBNG producers, and no previous studies of organic compounds in CBNG produced water have been published. Organic compounds identified in the produced water samples included: phenols, biphenyls, N-, O-, and S-containing heterocyclic compounds, polycyclic aromatic hydrocarbons (PAHs), aromatic amines, various non-aromatic compounds, and phthalates. Many of the identified organic compounds (phenols, heterocyclic compounds, PAHs) are probably coal-derived. PAHs represented the group of organic compounds most commonly observed. Concentrations of total PAHs ranged up to 23 {mu} g/L. Concentrations of individual compounds ranged from about 18 to {lt}0.01 {mu} g/L. Temporal variability of organic compound concentrations was documented, as two wells with relatively high organic compound contents in produced water in 2001 had much lower concentrations in 2002. In many areas, including the PRB, coal strata provide aquifers for drinking water wells. Organic compounds observed in produced water are also likely present in drinking water supplied from wells in the coal. Some of the organic compounds identified in the produced water samples are potentially toxic, but at the levels measured in these samples are unlikely to have acute health effects. The human health effects of low-level, chronic exposure to coal-derived organic compounds in drinking water are currently unknown. Continuing studies will evaluate possible toxic effects from low level, chronic exposure to coal-derived organic compounds in drinking water supplies.

    13. Potential of volatile compounds produced by fungi to influence sensory quality of coffee beverage

      DEFF Research Database (Denmark)

      Iamanaka, B. T.; Teixeira, A. A.; Teixeira, A. R. R.;

      2014-01-01

      Fungi are known producers of a large number of volatile compounds (VCs). Several VCs such as 2,4,6 trichloroanisole (TCA), geosmin and terpenes have been found in coffee beverages, and these compounds can be responsible for off-flavor development. However, few studies have related the fungal...... contamination of coffee with the sensory characteristics of the beverage. The aim of this research was to investigate the production of VCs by fungi isolated from coffee and their potential as modifiers of the sensory coffee beverage quality. Three species were isolated from coffee from the southwest of São...... Paulo state and selected for the study: Penicillium brevicompactum, Aspergillus luchuensis (belonging to section Nigri) and Penicillium sp. nov. (related to Penicillium crustosum). VCs produced by the fungal inoculated in raw coffee beans were extracted and tentatively identified by SPME...

    14. Mechanisms underlying the toxicity of lactone aroma compounds towards the producing yeast cells

      OpenAIRE

      Aguedo, Mario; Beney, L.; Waché, Y.; Belin, J.-M.

      2003-01-01

      Aims: To study the fundamental mechanisms of toxicity of the fruity aroma compound γ-decalactone, that lead to alterations in cell viability during its biotechnological production by yeast cells; Yarrowia lipolytica that is able to produce high amounts of this metabolite was used here as a model. Methods and Results: Lactone concentrations above 150 mg l-1 inhibited cell growth, depolarized the living cells and increased membrane fluidity. Infrared spectroscopic measurements revealed that the...

    15. A marine sponge associated strain of Bacillus subtilis and other marine bacteria can produce anticholinesterase compounds

      OpenAIRE

      Pandey, Sony; Sree, Ayinampudi; Sethi, Dipti Priya; Kumar, Chityal Ganesh; Kakollu, Sudha; Chowdhury, Lipsa; Dash, Soumya Suchismita

      2014-01-01

      Background Acetylcholinesterase (AChE) inhibitors or anticholinesterases reduce the activity of enzyme acetylcholinesterase that degrades the neurotransmitter acetylcholine in the brain. The inhibitors have a significant pharmacological role in neurodegenerative diseases like Alzheimer’s and Parkinson’s etc. Although plants have been a significant source of these compounds, there are very few sporadic reports of microorganisms producing such inhibitors. Anticholinesterase activity in bacteria...

    16. Antifungal drug discovery: the process and outcomes.

      Science.gov (United States)

      Calderone, Richard; Sun, Nuo; Gay-Andrieu, Francoise; Groutas, William; Weerawarna, Pathum; Prasad, Sridhar; Alex, Deepu; Li, Dongmei

      2014-01-01

      New data suggest that the global incidence of several types of fungal diseases have traditionally been under-documented. Of these, mortality caused by invasive fungal infections remains disturbingly high, equal to or exceeding deaths caused by drug-resistant tuberculosis and malaria. It is clear that basic research on new antifungal drugs, vaccines and diagnostic tools is needed. In this review, we focus upon antifungal drug discovery including in vitro assays, compound libraries and approaches to target identification. Genome mining has made it possible to identify fungal-specific targets; however, new compounds to these targets are apparently not in the antimicrobial pipeline. We suggest that 'repurposing' compounds (off patent) might be a more immediate starting point. Furthermore, we examine the dogma on antifungal discovery and suggest that a major thrust in technologies such as structural biology, homology modeling and virtual imaging is needed to drive discovery. PMID:25046525

    17. Characterisation of the Candida albicans Phosphopantetheinyl Transferase Ppt2 as a Potential Antifungal Drug Target.

      Directory of Open Access Journals (Sweden)

      Katharine S Dobb

      Full Text Available Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.

    18. Discovery of New Imidazole Derivatives Containing the 2,4-Dienone Motif with Broad-Spectrum Antifungal and Antibacterial Activity

      OpenAIRE

      Chunli Liu; Ce Shi; Fei Mao; Yong Xu; Jinyan Liu; Bing Wei; Jin Zhu; Mingjie Xiang; Jian Li

      2014-01-01

      A compound containing an imidazole moiety and a 2,4-dienone motif with significant activity toward several fungi was discovered in a screen for new antifungal compounds. Then, a total of 26 derivatives of this compound were designed, synthesized and evaluated through in vitro and in vivo antifungal activity assays. Several compounds exhibited improved antifungal activities compared to the lead compound. Of the derivatives, compounds 31 and 42 exhibited strong, broad-spectrum inhibitory effect...

    19. 农用抗真菌海洋微生物的筛选及放线菌T19-07活性代谢产物的初步研究%Screening of marine microorganisms with agricultural antifungal activities and preliminary study on the bioactive metabolites produced by strain T19-07

      Institute of Scientific and Technical Information of China (English)

      胡杨; 张道敬; 李元广; 陶黎明; 田黎; 李淑兰

      2011-01-01

      Objective To screen the active strains with agricultural antifungal activity from marine microorganisms as well as the bioactive metabolites produced by marine actinomyces Streptomyces nodosus T19-07. Methods Using phytopathogenic fungi as targets, the active strains were screened out by pairing culture assay. Based on the index of antifungal activity, the characteristics of fermentation of strain T19-07 in 5 L fermentor were studied, and the bioactive substances were extracted by macro-porous resin XAD-16, and TLC bioautography combined with HPLC was used to separate the active compound Results Twelve antagonistic strains against phytopathogenic fungi were screened out from 31 marine microorganisms. The main antifungal substance of strain T19-07 was isolated with relative molecular mass of 214 Da, and its antifungal activity in vitro against Alternaria solani was similar with iprodione registrated as a chemical pesticide, MIC below 12. 5 μg · Ml-1. Conclusion Marine microorganisms are important resources to find agricultural antibiotics. The bioactive substances produced by marine actinomyces S. nodosus T19-07 exhibit potent antifungal activity in vitro, and it has the potential for further study.%通过筛选获得具有拮抗植物病原真菌活性的海洋微生物菌株,并对其中一株海洋生境的结节链霉菌(Streptomyces nodosus)T19-07的活性代谢产物进行初步研究.方法 以植物病原真菌为靶标,采用平板对峙培养法筛选出活性菌株;再以抑菌活性为指标,考察较强活性菌株T19-07在5L发酵罐中的培养过程特征,并通过大孔吸附树脂XAD-16柱层析对活性物质进行分离提取,结合TLC生物自显影和HPLC快速确定代谢产物中的活性组分.结果 从31株海洋微生物中筛选出12株对多种植物病原真菌具有拮抗作用的菌株;确定了菌株T19-07的代谢产物中的主要抑菌活性物质,其相对分子质量为214,并且它对茄交链格孢霉的

    20. Antifungal activity of Piper diospyrifolium Kunth (Piperaceae) essential oil

      OpenAIRE

      Vieira, Silvia Cristina Heredia; de Paulo, Luis Fernando; Svidzinski, Terezinha Inez Estivaleti; Dias Filho, Benedito Prado; Nakamura, Celso Vataru; Souza, Amanda de; Young, Maria Cláudia Marx; Cortez, Diógenes Aparício Garcia

      2011-01-01

      In vitro activity of the essential oil from Piper diospyrifolium leaves was tested using disk diffusion techniques. The antifungal assay showed significant potencial antifungal activity: the oil was effective against several clinical fungal strains. The majority compounds in the essential oil were identified as sesquiterpenoids by GC-MS and GC-FID techniques.

    1. Rapid determination of antifungal activity by flow cytometry.

      OpenAIRE

      Green, L.; Petersen, B.; Steimel, L; Haeber, P; Current, W

      1994-01-01

      We have developed a rapid assay of antifungal activity which utilizes flow cytometry to detect accumulation of a vital dye in drug-damaged fungal cells. Results of these studies suggest that flow cytometry may provide an improved, rapid method for determining and comparing the antifungal activities of compounds with differing modes of action.

    2. The flocculation efficiency of compound bioflocculant by flocculant-producing bacteria

      Institute of Scientific and Technical Information of China (English)

      MA Fang; WANG Qin; MENG Lu; XU Yang; YANG Ji-xian

      2006-01-01

      The flocculation efficiency of compound bioflocculant produced by flocculant-producing bacteria was investigated in this study. Cheap cellulose was selected as the substrate for the production of a lower cost bioflocculant. The end product of cellulose decomposing bacteria was utilized as substrate for flocculant-producing bacteria. The optimum fermentation conditions were determined as follows: the initial fermentation and fermentation time was 5 d and 1 d respectively, the temperature was 30 °C, the rotation speed was 120 r/min, the amount of CaCl2 solution (10%) was 1.5 ml/L. The flocculation test indicated that the bioflocculant had high efficiency in the removal of the turbidity raw water from Songhaa River.

    3. Volatile compounds and sensory characteristics of various instant teas produced from black tea.

      Science.gov (United States)

      Kraujalytė, Vilma; Pelvan, Ebru; Alasalvar, Cesarettin

      2016-03-01

      Various instant teas produced differently from black tea [freeze-dried instant tea (FDIT), spray-dried instant tea (SDIT), and decaffeinated instant tea (DCIT)], were compared for their differences in volatile compounds as well as descriptive sensory analysis (DSA). A total of 63 volatile compounds in all tea samples (eight aldehydes, ten alcohols, nine ketones, five esters, eight acids, ten terpenes/terpenoids, ten furans/furanones, two pyrroles, and one miscellaneous compound) were tentatively identified. Black tea, FDIT, SDIT, and DCIT contained 60, 55, 47, and 40 volatile compounds, respectively. Ten flavour attributes such as after taste, astringency, bitter, caramel-like, floral/sweet, green/grassy, hay-like, malty, roasty, and seaweed were identified. Intensities for a number of flavour attributes (except for caramel-like in SDIT and bitter and after taste in DCIT) were not significantly different (p>0.05) among tea samples. The present study suggests that instant teas can also be used as good alternative to black tea. PMID:26471629

    4. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

      Directory of Open Access Journals (Sweden)

      Nalisha, I.

      2006-01-01

      Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

    5. Identification and Partial Characterization of Antilisterial Compounds Produced by Dairy Yeasts.

      Science.gov (United States)

      Hatoum, Rima; Labrie, Steve; Fliss, Ismail

      2013-03-01

      Food-grade yeasts make significant contributions to flavor development in fermented foods. Some yeast species also inhibit undesirable bacteria, yeasts and molds, apparently by producing antimicrobial compounds called mycocins. The aim of this study was to evaluate the ability of wild yeasts, isolated from raw milk and cheese in the Quebec province area, to produce antilisterial compounds. Based on an agar-membrane screening test, 22 of 95 isolates, namely one Candida catenulata, one Candida parapsilosis, five Candida tropicalis, four Debaryomyces hansenii, one Geotrichum candidum, nine Pichia fermentans and one Pichia anomala, exhibited a significant inhibitory effect against Listeria ivanovii HPB28. Four in particular, namely C. tropicalis LMA-693, D. hansenii LMA-916, P. fermentans LMA-256 and P. anomala LMA-827, produced substances extractable from culture supernatant and capable of decreasing 18-h growth of L. ivanovii by, respectively, 97, 92, 84 and 78 %. Heating the extracted material (100 °C for 10 min) decreased these values to 72, 62, 58 and 31 %, respectively, while treatment with trypsin or pronase E decreased them to as little as 27 %. The extracts reduced the numbers of viable Listeria monocytogenes by as much as four log cycles within an hour. Transmission electron microscopy revealed a high proportion of lysis among the cells, apparently due to pore formation. This study clearly shows the potential of these four yeast isolates for use as bio-preservatives in a variety of dairy products. PMID:26782600

    6. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II, Cu(II, Ni(II, and Zn(II Complexes with Amino Acid-Derived Compounds

      Directory of Open Access Journals (Sweden)

      Zahid H. Chohan

      2006-01-01

      Full Text Available A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II, copper(II, nickel(II, and zinc(II metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L1–(L5 were derived by condensation of β-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II ion and synthesized ligands in molar ratio of M: L (1: 1 resulted in the formation of the metal complexes of type [M(L(H2O4]Cl (where M = Co(II, Cu(II, and Zn(II and of M: L (1: 2 of type [M(L2(H2O2] (where M = Co(II, Cu(II, Ni(II, and Zn(II. The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II complexes agree with their proposed structures. The synthesized ligands, along with their metal(II complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi and two Gram-positive (Bacillus subtilis and Staphylococcus aureus bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3, (7, (10, (11, and (22, displayed potent cytotoxic

    7. Metal-Based Antibacterial and Antifungal Agents: Synthesis, Characterization, and In Vitro Biological Evaluation of Co(II), Cu(II), Ni(II), and Zn(II) Complexes With Amino Acid-Derived Compounds.

      Science.gov (United States)

      Chohan, Zahid H; Arif, M; Akhtar, Muhammad A; Supuran, Claudiu T

      2006-01-01

      A series of antibacterial and antifungal amino acid-derived compounds and their cobalt(II), copper(II), nickel(II), and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments, and IR, and electronic spectral measurements. Ligands (L(1))-(L(5)) were derived by condensation of beta-diketones with glycine, phenylalanine, valine, and histidine and act as bidentate towards metal ions (cobalt, copper, nickel, and zinc) via the azomethine-N and deprotonated-O of the respective amino acid. The stoichiometric reaction between the metal(II) ion and synthesized ligands in molar ratio of M : L (1 : 1) resulted in the formation of the metal complexes of type [M(L)(H(2)O)(4)]Cl (where M = Co(II), Cu(II), and Zn(II)) and of M : L (1 : 2) of type [M(L)(2)(H(2)O)(2)] (where M = Co(II), Cu(II), Ni(II), and Zn(II)). The magnetic moment data suggested for the complexes to have an octahedral geometry around the central metal atom. The electronic spectral data also supported the same octahedral geometry of the complexes. Elemental analyses and NMR spectral data of the ligands and their metal(II) complexes agree with their proposed structures. The synthesized ligands, along with their metal(II) complexes, were screened for their in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexeneri, Pseudomonas aeruginosa, and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and for in vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, and Candida glaberata. The results of these studies show the metal(II) complexes to be more antibacterial/antifungal against one or more species as compared to the uncomplexed ligands. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties. Five compounds, (3), (7), (10), (11), and (22

    8. An overview of antifungal peptides derived from insect.

      Science.gov (United States)

      Faruck, Mohammad Omer; Yusof, Faridah; Chowdhury, Silvia

      2016-06-01

      Fungi are not classified as plants or animals. They resemble plants in many ways but do not produce chlorophyll or make their own food photosynthetically like plants. Fungi are useful for the production of beer, bread, medicine, etc. More complex than viruses or bacteria; fungi can be destructive human pathogens responsible for various diseases in humans. Most people have a strong natural immunity against fungal infection. However, fungi can cause diseases when this immunity breaks down. In the last few years, fungal infection has increased strikingly and has been accompanied by a rise in the number of deaths of cancer patients, transplant recipients, and acquired immunodeficiency syndrome (AIDS) patients owing to fungal infections. The growth rate of fungi is very slow and quite difficult to identify. A series of molecules with antifungal activity against different strains of fungi have been found in insects, which can be of great importance to tackle human diseases. Insects secrete such compounds, which can be peptides, as a part of their immune defense reactions. Active antifungal peptides developed by insects to rapidly eliminate infectious pathogens are considered a component of the defense munitions. This review focuses on naturally occurring antifungal peptides from insects and their challenges to be used as armaments against human diseases. PMID:26093218

    9. In Vitro Antifungal Activity of Burkholderia gladioli pv. agaricicola against Some Phytopathogenic Fungi

      Directory of Open Access Journals (Sweden)

      Hazem S. Elshafie

      2012-12-01

      Full Text Available The trend to search novel microbial natural biocides has recently been increasing in order to avoid the environmental pollution from use of synthetic pesticides. Among these novel natural biocides are the bioactive secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga. The aim of this study is to determine antifungal activity of Bga strains against some phytopathogenic fungi. The fungicidal tests were carried out using cultures and cell-free culture filtrates against Botrytis cinerea, Aspergillus flavus, Aspergillus niger, Penicillium digitatum, Penicillium expansum, Sclerotinia sclerotiorum and Phytophthora cactorum. Results demonstrated that all tested strains exert antifungal activity against all studied fungi by producing diffusible metabolites which are correlated with their ability to produce extracellular hydrolytic enzymes. All strains significantly reduced the growth of studied fungi and the bacterial cells were more bioactive than bacterial filtrates. All tested Bulkholderia strains produced volatile organic compounds (VOCs, which inhibited the fungal growth and reduced the growth rate of Fusarium oxysporum and Rhizoctonia solani. GC/MS analysis of VOCs emitted by strain Bga 11096 indicated the presence of a compound that was identified as 1-methyl-4-(1-methylethenyl-cyclohexene, a liquid hydrocarbon classified as cyclic terpene. This compound could be responsible for the antifungal activity, which is also in agreement with the work of other authors.

    10. Antimicrobial compounds produced by Actinomadura sp. AC104 isolated from an Algerian Saharan soil

      OpenAIRE

      Badji, Boubekeur; Zitouni, Abdelghani; Mathieu, Florence; Lebrihi, Ahmed; Sabaou, Nasserdine

      2006-01-01

      During a search for nonpolyenic antifungal antibiotics, an actinomycete designated AC104 was isolated from a Saharan soil sample by a dilution agar plating method using a chitin – vitamins B medium supplemented with rifampicin. Isolate AC104 presented the morphological and the chemical characteristics of the genus Actinomadura. On the basis of 76 physiological tests and 16S rDNA analysis, this isolate was determined to be quite different from the known species of Actinomadura. It is active ag...

    11. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02.

      Science.gov (United States)

      Huh, Chang Ki; Hwang, Tae Yean

      2016-03-01

      This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not H2O2. The molecular weights of the antifungal substances were ≤3,000 Da. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid. PMID:27069906

    12. Synthesis and investigation of novel benzimidazole derivatives as antifungal agents.

      Science.gov (United States)

      Chandrika, Nishad Thamban; Shrestha, Sanjib K; Ngo, Huy X; Garneau-Tsodikova, Sylvie

      2016-08-15

      The rise and emergence of resistance to antifungal drugs by diverse pathogenic fungal strains have resulted in an increase in demand for new antifungal agents. Various heterocyclic scaffolds with different mechanisms of action against fungi have been investigated in the past. Herein, we report the synthesis and antifungal activities of 18 alkylated mono-, bis-, and trisbenzimidazole derivatives, their toxicities against mammalian cells, as well as their ability to induce reactive oxygen species (ROS) in yeast cells. Many of our bisbenzimidazole compounds exhibited moderate to excellent antifungal activities against all tested fungal strains, with MIC values ranging from 15.6 to 0.975μg/mL. The fungal activity profiles of our bisbenzimidazoles were found to be dependent on alkyl chain length. Our most potent compounds were found to display equal or superior antifungal activity when compared to the currently used agents amphotericin B, fluconazole, itraconazole, posaconazole, and voriconazole against many of the strains tested. PMID:27301676

    13. A newly isolated Streptomyces sp. CS392 producing three antimicrobial compounds.

      Science.gov (United States)

      Cho, Seung Sik; Choi, Yun Hee; Simkhada, Jaya Ram; Mander, Poonam; Park, Da Jeong; Yoo, Jin Cheol

      2012-01-01

      With the aim of isolating new microbes capable of producing strong antimicrobial substances, strain CS392 was screened from 700 soil isolates preserved in our laboratory. The strain was related to genus Streptomyces based on various characteristics. Three highly active antimicrobial compounds, C1, C2 and C3, produced by the strain were purified by solvent extraction followed by silica gel column chromatography. These compounds were highly active against various Gram-positive resistant bacteria such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Staphylococcus aureus (VRSA), and vancomycin-resistant Enterococcus (VRE). Among three, C3 was the most active against MRSA and VRSA with minimal inhibitory concentration (MIC) of 2 μg/ml while C2 and C3 had MIC values of 4 μg/ml for the strains. In case of Bacillus subtilis ATCC6633, C1 and C3 were more effective with MIC values of 0.5 μg/ml than C2 with MIC of 2 μg/ml. Those antibiotics were variably active (MIC of 4-32 μg/ml) against Micrococcus luteus ATCC 9341, Enterococcus faecalis ATCC 29212, Mycobacterium smegmatis ATCC 9341 and VRE. PMID:21909674

    14. Effect of diazotrophic bacteria as phosphate solubilizing and indolic compound producers on maize plants

      Directory of Open Access Journals (Sweden)

      Mónica Del Pilar López Ortega

      2013-12-01

      Full Text Available Phosphorus is limiting for growth of maize plants, and because of that use of fertilizers like Rock Phosphate has been proposed. However, direct use of Rock Phosphate is not recommended because of its low availability, so it is necessary to improve it. In this study, a group of diazotrophic bacteria were evaluated as phosphate-solubilizing bacteria, for their production of indolic compounds and for their effects on growth of maize plants. Strains of the genera Azosporillum, Azotobacter, Rhizobium and Klebsiella, were quantitatively evaluated for solubilization of Ca3(PO42 and rock phosphate as a single source of phosphorous in SRS culture media. Additionally, the phosphatase enzyme activity was quantified at pH 5.0, 7.0 and 8.0 using p-nitrophenyl phosphate, and production of indolic compound was determined by colorimetric quantification. The effect of inoculation of bacteria on maize was determined in a completely randomized greenhouse experiment where root and shoot dry weights and phosphorus content were assessed. Results showed that strain C50 produced 107.2 mg .L-1 of available-P after 12 days of fermentation, and AC10 strain had the highest phosphatase activity at pH 8 with 12.7 mg of p-nitrophenol mL .h-1. All strains synthetized indolic compounds, and strain AV5 strain produced the most at 63.03 µg .mL-1. These diazotrophic bacteria increased plant biomass up to 39 % and accumulation of phosphorus by 10%. Hence, use of diazotrphic phosphate-solubilizing bacteria may represent an alternative technology for fertilization systems in maize plants.

    15. From antidiabetic to antifungal: discovery of highly potent triazole-thiazolidinedione hybrids as novel antifungal agents.

      Science.gov (United States)

      Wu, Shanchao; Zhang, Yongqiang; He, Xiaomeng; Che, Xiaoying; Wang, Shengzheng; Liu, Yang; Jiang, Yan; Liu, Na; Dong, Guoqiang; Yao, Jianzhong; Miao, Zhenyuan; Wang, Yan; Zhang, Wannian; Sheng, Chunquan

      2014-12-01

      In an attempt to discover a new generation of triazole antifungal agents, a series of triazole-thiazolidinedione hybrids were designed and synthesized by molecular hybridization of the antifungal agent fluconazole and rosiglitazone (an antidiabetic). Most of the target compounds showed good to excellent inhibitory activity against a variety of clinically important fungal pathogens. In particular, compounds (Z)-5-(2,4-dichlorobenzylidene)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)thiazolidine-2,4-dione) (15 c), (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 j), and (Z)-3-(2-(2,4-difluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl)-5-(furan-3-ylmethylene)thiazolidine-2,4-dione (15 r) were highly active against Candida albicans, with MIC80 values in the range of 0.03-0.15 μM. Moreover, compounds 15 j and 15 r were found to be effective against four fluconazole-resistant clinical isolates; these two compounds are particularly promising antifungal leads for further optimization. Molecular docking studies revealed that the hydrogen bonding interactions between thiazolidinedione and CYP51 from C. albicans are important for antifungal activity. This study also demonstrates the effectiveness of molecular hybridization in antifungal drug discovery. PMID:25196996

    16. Antifungal activity of lactobacilli and its relationship with 3-phenyllactic acid production.

      Science.gov (United States)

      Cortés-Zavaleta, O; López-Malo, A; Hernández-Mendoza, A; García, H S

      2014-03-01

      In this study, 13 lactic acid bacteria (LAB) strains (including 5 Lactobacillus casei, 2 Lactobacillus rhamnosus, 2 Lactobacillus fermentum, 1 Lactobacillus acidophilus, 1 Lactobacillus plantarum, 1 Lactobacillus sakei, and 1 Lactobacillus reuteri species) were assessed for both their antifungal activity against four food spoilage molds (Colletotrichum gloeosporioides, Botrytis cinerea, Penicillium expansum, and Aspergillus flavus) and their capability to produce the novel antimicrobial compound 3-phenyllactic acid (PLA). Results demonstrated that all molds were sensitive to varying degrees to the cell-free supernatants (CFS) from LAB fermentations (pPLA ranging from 0.021 to 0.275 mM. The high minimum inhibitory concentration for commercial PLA (3.01-36.10mM) suggests that it cannot be considered the only compound related with the antifungal potential of studied LAB and that synergistic effects may exist among other metabolism products. PMID:24412414

    17. Antifungal saponins from Swartzia langsdorffii

      International Nuclear Information System (INIS)

      Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-β-D-(6'-methyl)-glucopyranosyl-28-O-β-D-glucopyranosyl-oleanate.Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

    18. Trophic transfer of naturally produced brominated aromatic compounds in a Baltic Sea food chain.

      Science.gov (United States)

      Dahlgren, Elin; Lindqvist, Dennis; Dahlgren, Henrik; Asplund, Lillemor; Lehtilä, Kari

      2016-02-01

      Brominated aromatic compounds (BACs) are widely distributed in the marine environment. Some of these compounds are highly toxic, such as certain hydroxylated polybrominated diphenyl ethers (OH-PBDEs). In addition to anthropogenic emissions through use of BACs as e.g. flame retardants, BACs are natural products formed by marine organisms such as algae, sponges, and cyanobacteria. Little is known of the transfer of BACs from natural producers and further up in the trophic food chain. In this study it was observed that total sum of methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and OH-PBDEs increased in concentration from the filamentous red alga Ceramium tenuicorne, via Gammarus sp. and three-spined stickleback (Gasterosteus aculeatus) to perch (Perca fluviatilis). The MeO-PBDEs, which were expected to bioaccumulate, increased in concentration accordingly up to perch, where the levels suddenly dropped dramatically. The opposite pattern was observed for OH-PBDEs, where the concentration exhibited a general trend of decline up the food web, but increased in perch, indicating metabolic demethylation of MeO-PBDEs. Debromination was also indicated to occur when progressing through the food chain resulting in high levels of tetra-brominated MeO-PBDE and OH-PBDE congeners in fish, while some penta- and hexa-brominated congeners were observed to be the dominant products in the alga. As it has been shown that OH-PBDEs are potent disruptors of oxidative phosphorylation and that mixtures of different congener may act synergistically in terms of this toxic mode of action, the high levels of OH-PBDEs detected in perch in this study warrants further investigation into potential effects of these compounds on Baltic wildlife, and monitoring of their levels. PMID:26517387

    19. Volatile compounds profile and sensory evaluation of Beninese condiments produced by inocula of Bacillus subtilis

      DEFF Research Database (Denmark)

      Azokpota, Paulin; Hounhouigan, Joseph D.; Annan, Nana T.;

      2010-01-01

      condiments produced have been performed using the Likens-Nickerson simultaneous distillation-extraction method and GC-MS analysis, followed by a sensory evaluation in comparison with the spontaneously fermented condiments. RESULTS: A total of 94 volatile compounds have been found including 53 compounds...

    20. Direct observation of defects in A15 compounds produced by fast neutron irradiation

      International Nuclear Information System (INIS)

      The nature of defect or defect complexes produced in superconducting compounds Nb3Sn, Nb3Pt, and V3Si by high energy (E greater than or equal to 1 MeV) neutron irradiation is investigated by transmission electron microscopy. The newly developed technique of superlattice reflection imaging is used whereby the regions of reduced long range order are directly imaged. Unlike metals these regions were found in general not to collapse into dislocation loops. The size and the volume fraction of these disordered regions are obtained for fluences ranging from 1017 neutrons/cm2 to 3 x 1019 neutrons/cm2. The size ranges from 20A to 60A. Typical volume fraction for 1018 neutrons/cm2 is over 1%

    1. Ozonolysis mechanism of lignin model compounds and microbial treatment of organic acids produced.

      Science.gov (United States)

      Nakamura, Y; Daidai, M; Kobayashi, F

      2004-01-01

      Treatment methods comprising ozonolysis and microbial treatment of lignin discharged from the pulp manufacture industries were investigated by using a sulfite pulp wastewater and a lignin model compound, i.e. sodium lignosulfonate. Dynamic behaviors for the formations of intermediate derivatives such as muconic acid, maleic acid, and oxalic acid produced from the ozonolysis of sulfite pulp wastewater were observed from data of UV absorption at 280 nm by a spectrophotometer and at 210 nm by high performance liquid chromatography. The microorganisms that were isolated by the enrichment culture method were used to degrade the organic acids such as oxalic acid and acetic acid. Time courses of biological degradation of these organic acids indicated diauxic growth, which was found in a culture with mixed substrates. In the treatment of sodium lignosulfonate, the ozonolysis and microbial treatment using activated sludge converted sodium lignosulfonate into carbon dioxide and water almost completely. PMID:15461411

    2. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

      OpenAIRE

      Yan-Yang Lu; Yi Lin; Han Zhang; Dongxiao Ding; Xia Sun; Qiansheng Huang; Lifeng Lin; Ya-Jie Chen; Yu-Lang Chi; Sijun Dong

      2016-01-01

      An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, a...

    3. Antimicrobial Action of Compounds from Marine Seaweed

      Directory of Open Access Journals (Sweden)

      María José Pérez

      2016-03-01

      Full Text Available Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications.

    4. Antimicrobial Action of Compounds from Marine Seaweed.

      Science.gov (United States)

      Pérez, María José; Falqué, Elena; Domínguez, Herminia

      2016-03-01

      Seaweed produces metabolites aiding in the protection against different environmental stresses. These compounds show antiviral, antiprotozoal, antifungal, and antibacterial properties. Macroalgae can be cultured in high volumes and would represent an attractive source of potential compounds useful for unconventional drugs able to control new diseases or multiresistant strains of pathogenic microorganisms. The substances isolated from green, brown and red algae showing potent antimicrobial activity belong to polysaccharides, fatty acids, phlorotannins, pigments, lectins, alkaloids, terpenoids and halogenated compounds. This review presents the major compounds found in macroalga showing antimicrobial activities and their most promising applications. PMID:27005637

    5. SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,3,4-OXADIAZOLE DERIVATIVES AS POTENTIAL ANTIBACTERIAL AND ANTIFUNGAL AGENTS

      Directory of Open Access Journals (Sweden)

      Palak K. Parikh

      2011-06-01

      Full Text Available 1,3,4 oxadiazole derivatives are the heterocyclic compounds with very important biological activities such as anti-inflammatory, antimicrobial, antifungal, antiviral, analgesic, antimycobacterial, antidepressant and antiamoebic. 1, 3, 4 oxadiazole was synthesized by condensation reaction between 2- hydroxybenzohydrazine and carbon disulfide. This derivative on treatment with different aromatic halides produced the desired final products. The in-vitro antibacterial activity of synthesized compound was tested against Gram-positive and Gram-negative microorganisms (Staphylococcus aureus ATCC 9144, Bacillus subtilis ATCC 6633, Pseudomonas aeruginosa MTCC No. 1688, Gram negative: Escherichia coli ATCC 25922 by filter paper disc method. The in-vitro antifungal activity was tested against Candida albicans by filter paper disc method. All the compounds showed good activity against all cultures.

    6. Metal based biologically active compounds: design, synthesis, and antibacterial/antifungal/cytotoxic properties of triazole-derived Schiff bases and their oxovanadium(IV) complexes.

      Science.gov (United States)

      Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B

      2010-07-01

      A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:20338672

    7. Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds.

      Science.gov (United States)

      Udomsil, Natteewan; Rodtong, Sureelak; Tanasupawat, Somboon; Yongsawatdigul, Jirawat

      2010-07-15

      Halophilic lactic acid bacteria were isolated from fish sauce mashes fermented at 1 to 12 months. Seven out of sixty-four isolates were selected according to their proteolytic activity and growth at 25% NaCl for characterization and investigation of volatile compound production. All selected isolates were Gram-positive cocci with pairs/tetrads and grew at 0-25% NaCl, pH 4.5-9.0. Results of 16S rRNA gene sequence analysis showed 99% homology to Tetragenococcus halophilus ATCC 33315. The restriction fragment length polymorphism (RFLP) patterns of all isolates were also similar to those of T. halophilus ATCC 33315. These isolates were, thus, identified as T. halophilus. All isolates hydrolyzed fish protein in the medium containing 25% NaCl. Intracellular aminopeptidase of 7 isolates exhibited the highest activity of 2.85-3.67 U/ml toward Ala-p-nitroanilide (Ala-pNA). T.halophilus strains MS33 and M11 showed the highest alanyl aminopeptidase activity (Phalophilus MS33 and MRC5-5-2 were 1-propanol, 2-methylpropanal, and benzaldehyde, corresponding to major volatile compounds in fish sauce. T.halophilus appeared to play an important role in volatile compound formation during fish sauce fermentation. PMID:20541276

    8. Active packaging with antifungal activities.

      Science.gov (United States)

      Nguyen Van Long, N; Joly, Catherine; Dantigny, Philippe

      2016-03-01

      There have been many reviews concerned with antimicrobial food packaging, and with the use of antifungal compounds, but none provided an exhaustive picture of the applications of active packaging to control fungal spoilage. Very recently, many studies have been done in these fields, therefore it is timely to review this topic. This article examines the effects of essential oils, preservatives, natural products, chemical fungicides, nanoparticles coated to different films, and chitosan in vitro on the growth of moulds, but also in vivo on the mould free shelf-life of bread, cheese, and fresh fruits and vegetables. A short section is also dedicated to yeasts. All the applications are described from a microbiological point of view, and these were sorted depending on the name of the species. Methods and results obtained are discussed. Essential oils and preservatives were ranked by increased efficacy on mould growth. For all the tested molecules, Penicillium species were shown more sensitive than Aspergillus species. However, comparison between the results was difficult because it appeared that the efficiency of active packaging depended greatly on the environmental factors of food such as water activity, pH, temperature, NaCl concentration, the nature, the size, and the mode of application of the films, in addition to the fact that the amount of released antifungal compounds was not constant with time. PMID:26803804

    9. Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia

      Institute of Scientific and Technical Information of China (English)

      Zorica; SVIRCEV; Dragana; CETOJEVIC-SIMIN; Jelica; SIMEUNOVIC; Maja; KARAMAN; Dejan; STOJANOVIC

      2008-01-01

      Cyanobacteria are known to be a rich source of biologically active compounds some of which can have pharmaceutical importance. In this work we present the screening results of cyanobacterial strains for their antibacterial, antifungal, and cytotoxic activity. Cyanobacterial strains were isolated from various soil types in province of Vojvodina and Central Serbia, Republic of Serbia. The screening included 9 strains of Anabaena and 9 strains of Nostoc. Both, extracellular products (from the culture liquid) and cellular crude lipophilic extracts were tested against 13 bacterial strains and 8 fungal strains. Cytotoxic activity was tested against three human cell lines. Methanol extracts were prepared according to ?stensvik. Antibacterial and antifungal activities were determined measuring inhibition zone, 48 h after inoculation. The cytotoxic activity was determined by sulforhodamine B (SRB) colorimetric assay. Of all cyanobacterial strains tested, 52% showed some antifungal and 41% antibacterial activity. Two out of six tested strains possessed cytotoxic activity. The cytotoxic activity of Anabaena strain S12 was found both in culture liquid and crude cell extract. It occurred specifically between the 21st and 42nd day of cultivation against HeLa and MCF7 cells, but had no activity against cell line derived from a healthy tissue. A high percentage of the active strains among the tested strains justify the effort of screening cyanobacteria that are isolated from terrestrial environments. The most promising strains for the fur- ther study are Anabaena strain S12 which showed strong cytotoxic and antibacterial activity and Ana- baena strain S20 which produces a potent antifungal compound. The future work, besides further screening and chemical identification of the active compounds, should also include the development of culture techniques that would lead to more efficient production of biologically active compounds.

    10. Antibacterial, antifungal and cytotoxic activity of terrestrial cyanobacterial strains from Serbia

      Institute of Scientific and Technical Information of China (English)

      Zorica SVIRCEV; Dragana CETOJEVIC-SIMIN; Jelica SIMEUNOVIC; Maja KARAMAN; Dejan STOJANOVIC

      2008-01-01

      Cyanobacteria are known to be a rich source of biologically active compounds some of which can have pharmaceutical importance. In this work we present the screening results of cyanobacterial strains for their antibacterial, antifungal, and cytotoxic activity. Cyanobacterial strains were isolated from various soil types in province of Vojvodina and Central Serbia, Republic of Serbia. The screening included 9 strains of Anabaena and 9 strains of Nostoc. Both, extracellular products (from the culture liquid) and cellular crude Iipophilic extracts were tested against 13 bacterial strains and 8 fungal strains. Cytotoxic activity was tested against three human cell lines. Methanol extracts were prepared according to φstensvik. Antibacterial and antifungal activities were determined measuring inhibition zone, 48 h after inoculation. The cytotoxic activity was determined by suIforhodamine B (SRB) colorimetric assay. Of all cyanobacterial strains tested, 52% showed some antifungal and 41% antibacterial activity. Two out of six tested strains possessed cytotoxic activity. The cytotoxic activity of Anabaena strain S12 was found both in culture liquid and crude cell extract. It occurred specifically between the 21st and 42nd day of cultivation against HeLa and MCF7 cells, but had no activity against cell line derived from a healthy tissue. A high percentage of the active strains among the tested strains justify the effort of screening cyanobacteria that are isolated from terrestrial environments. The most promising strains for the fur-ther study are Anabaena strain S12 which showed strong cytotoxic and antibacterial activity and Ana-baena strain S20 which produces a potent antifungal compound. The future work, besides further screening and chemical identification of the active compounds, should also include the development of culture techniques that would lead to more efficient production of biologically active compounds.

    11. A simple, convenient, and one pot synthetic route for the preparation of 1,3,5-thiadiazines-2-thione heterocyclic compounds and their antifungal activity

      Directory of Open Access Journals (Sweden)

      Sohail Saeed

      2015-12-01

      Full Text Available A series of new heterocyclic 1,3,5-thiadiazines-2-thione with aroyl/aryl substituents (3a-c were synthesized by reacting isothiocyanates with N- (propan-2-ylpropan-2- amine in the presence of tetrabutylammonium bromide as phase transfer catalyst. The structures of these novel compounds were characterized by IR, mass spectrometry, and elemental analysis. The crystal structures were determined from single-crystal X-ray diffraction data. The synthesized compounds were tested in vitro against Fusarium solani, A. fumigatus, and Aspergillus flavus using standard drugs.

    12. SYNTHESIS AND BIOLOGICAL EVALUATION OF 1,3,4-OXADIAZOLE DERIVATIVES AS POTENTIAL ANTIBACTERIAL AND ANTIFUNGAL AGENTS

      OpenAIRE

      Palak K. Parikh; Hiren M. Marvaniya; Dhrubo Jyoti Sen

      2011-01-01

      1,3,4 oxadiazole derivatives are the heterocyclic compounds with very important biological activities such as anti-inflammatory, antimicrobial, antifungal, antiviral, analgesic, antimycobacterial, antidepressant and antiamoebic. 1, 3, 4 oxadiazole was synthesized by condensation reaction between 2- hydroxybenzohydrazine and carbon disulfide. This derivative on treatment with different aromatic halides produced the desired final products. The in-vitro antibacterial activity of synthesized comp...

    13. Antifungal isopimaranes from Hypoestes serpens.

      Science.gov (United States)

      Rasoamiaranjanahary, L; Guilet, D; Marston, A; Randimbivololona, F; Hostettmann, K

      2003-09-01

      Five isopimarane diterpenes (7beta-hydroxyisopimara-8,15-dien-14-one, 14alpha-hydroxyisopimara-7,15-dien-1-one, 1beta,14alpha-dihydroxyisopimara-7,15-diene, 7beta-hydroxyisopimara-8(14),15-dien-1-one and 7beta-acetoxyisopimara-8(14),15-dien-1-one) have been isolated from the leaves of Hypoestes serpens (Acanthaceae). All compounds exhibited antifungal activity against both the plant pathogenic fungus Cladosporium cucumerinum and the yeast Candida albicans; two of them also displayed an acetylcholinesterase inhibition. The structures of the compounds were determined by means of spectrometric methods, including 1D and 2D NMR experiments and MS analysis. PMID:12943772

    14. Synthesis of quarternary ammonium salts with dithiocarbamate moiety and their antifungal activities against Helminthosporium oryzae

      Indian Academy of Sciences (India)

      Mandeep Singh; Anita Garg; Anjali Sidhu; Vineet Kumar

      2013-05-01

      Quaternary ammonium salts containing dithiocarbamate moiety were synthesized and evaluated for their antifungal activities against Helminthosporium oryzae. All the synthesized compounds showed moderate to promising fungitoxicity against the test. Some of the synthesized compounds inflicted antifungal activity greater than the standard fungicide.

    15. Diversity of Micromonospora strains from the deep Mediterranean Sea and their potential to produce bioactive compounds

      Directory of Open Access Journals (Sweden)

      Andrea Gärtner

      2016-06-01

      Full Text Available During studies on bacteria from the Eastern Mediterranean deep-sea, incubation under in situ conditions (salinity, temperature and pressure and heat treatment were used to selectively enrich representatives of Micromonospora. From sediments of the Ierapetra Basin (4400 m depth and the Herodotos Plain (2800 m depth, 21 isolates were identified as members of the genus Micromonospora. According to phylogenetic analysis of 16S rRNA gene sequences, the Micromonospora isolates could be assigned to 14 different phylotypes with an exclusion limit of ≥ 99.5% sequence similarity. They formed 7 phylogenetic clusters. Two of these clusters, which contain isolates obtained after enrichment under pressure incubation and phylogenetically are distinct from representative reference organism, could represent bacteria specifically adapted to the conditions in situ and to life in these deep-sea sediments. The majority of the Micromonospora isolates (90% contained at least one gene cluster for biosynthesis of secondary metabolites for non-ribosomal polypeptides and polyketides (polyketide synthases type I and type II. The determination of biological activities of culture extracts revealed that almost half of the strains produced substances inhibitory to the growth of Gram-positive bacteria. Chemical analyses of culture extracts demonstrated the presence of different metabolite profiles also in closely related strains. Therefore, deep-sea Micromonospora isolates are considered to have a large potential for the production of new antibiotic compounds.

    16. Antifungal drug discovery through the study of invertebrate model hosts

      OpenAIRE

      Pukkila-Worley, R.; Holson, E.; Wagner, F.; Mylonakis, E.

      2009-01-01

      There is an urgent need for new antifungal agents that are both effective and non-toxic in the therapy of systemic mycoses. The model nematode Caenorhabditis elegans has been used both to elucidate evolutionarily conserved components of host-pathogen interactions and to screen large chemical libraries for novel antimicrobial compounds. Here we review the use of C. elegans models in drug discovery and discuss caffeic acid phenethyl ester, a novel antifungal agent identified using an in vivo sc...

    17. Characterization of PhlG, a Hydrolase That Specifically Degrades the Antifungal Compound 2,4-Diacetylphloroglucinol in the Biocontrol Agent Pseudomonas fluorescens CHA0

      OpenAIRE

      Bottiglieri, Mélanie; Keel, Christoph

      2006-01-01

      The potent antimicrobial compound 2,4-diacetylphloroglucinol (DAPG) is a major determinant of biocontrol activity of plant-beneficial Pseudomonas fluorescens CHA0 against root diseases caused by fungal pathogens. The DAPG biosynthetic locus harbors the phlG gene, the function of which has not been elucidated thus far. The phlG gene is located upstream of the phlACBD biosynthetic operon, between the phlF and phlH genes which encode pathway-specific regulators. In this study, we assigned a func...

    18. Isolation and Structure Elucidation of Autolytimycin, A New Compound Produced by Streptomyces Autolyticus JX-47

      Institute of Scientific and Technical Information of China (English)

      2001-01-01

      Autolytimycin 1 was isolated from the culture filtrate ofStreptomyces autolyticus JX-47,together with two known compounds, lebstatin 2 and 17-O-demethyl-geldanamycin 3. These compounds showed the activities of anti-HSV-I. The structure of 1 was determined by spectral analysis.

    19. Aroma-Active Compounds in Jinhua Ham Produced With Different Fermentation Periods

      Directory of Open Access Journals (Sweden)

      Xiao-Sheng Liu

      2014-11-01

      Full Text Available The aroma-active compounds in Jinhua ham processed and stored for 9, 12, 15 and 18 months were extracted by dynamic headspace sampling (DHS and solvent-assisted flavor evaporation (SAFE and analyzed by gas chromatography-olfactometry-mass spectrometry (GC-O-MS. In GC-O-MS, volatile compounds were identified based on their mass spectrum, linear retention index (LRI, odor properties, or reference compound comparisons. The results showed that a total number of 81 aroma-active compounds were identified by GC-O-MS. Among them, acids (such as acetic acid, butanoic acid and 3-methylbutanoic acid, saturated aldehydes (such as hexanal, heptanal, octanal and 3-methylbutanal, benzene derivatives (such as benzeneacetic acid, ester and lactone (such as γ-nonalactone and γ-decalactone were identified as critical compounds in Jinhua ham aroma. The results also indicated that the type and content of the odorants increased significantly with the duration of the fermentation period.

    20. Reactions of free radicals produced from organic compounds in aqueous solution by means of radiation

      International Nuclear Information System (INIS)

      The subject is reviewed in chapters, entitled: introduction, hydrocarbons, halides, alcohols, ethers, carbonyl compounds, phosphate esters, carbohydrates, carboxylic acids and esters, amines, pyrrole and derivatives, amides, nitriles, phenol and derivatives, sulfur compounds, pyrimidines, imidazoles, purines, pyridine and derivatives, compounds containing the pyrazine ring, nitro compounds, other nitrogen-containing compounds. The review covers original work published during the period October 1971 to December 1976. Work on macromolecular free radicals has been excluded. Studies of radicals in the frozen state have also been excluded. It is stated that one aim is a reasonably exhaustive compilation of pKsub(a) values, one-electron reduction potentials and reaction rate constants which had been determined using radiation. The introductory chapter describes the chemistry of the production of radicals and the quantitative data that can be obtained from their reactions. (U.K.)

    1. TLR2, TLR4 and Dectin-1 signalling in hematopoietic stem and progenitor cells determines the antifungal phenotype of the macrophages they produce.

      Science.gov (United States)

      Megías, Javier; Martínez, Alba; Yáñez, Alberto; Goodridge, Helen S; Gozalbo, Daniel; Gil, M Luisa

      2016-05-01

      TLRs represent an attractive target for the stimulation of myeloid cell production by HSPCs. We have previously demonstrated that HSPCs use TLR2 to sense Candida albicans in vivo and induce the production of macrophages. In this work, we used an in vitro model of HSPCs differentiation to investigate the functional consequences for macrophages of exposure of HSPCs to various PAMPs and C. albicans cells. Mouse HSPCs (Lin(-) cells) were cultured with M-CSF to induce macrophage differentiation, in the presence or absence of the following PRR agonists: Pam3CSK4 (TLR2 ligand), LPS (TLR4 ligand), depleted zymosan (which only activates Dectin-1), or C. albicans yeasts (which activate several PRRs, but principally TLR2 and Dectin-1). Our data show that these PAMPs differentially impact the anti-microbial function of the macrophages produced by the exposed HSPCs. Pure TLR2 and TLR4 ligands generate macrophages with a diminished ability to produce inflammatory cytokines. In contrast, HSPCs activation in response to C. albicans leads to the generation of macrophages that are better prepared to deal with the infection, as they produce higher amounts of inflammatory cytokines and have higher fungicidal capacity than control macrophages. Therefore, the tailored manipulation of the differentiation process may help to boost the innate immune response to infection. PMID:26828664

    2. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

      OpenAIRE

      Khedr MA

      2015-01-01

      Mohammed A KhedrDepartment of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, EgyptAbstract: Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were sy...

    3. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant

      OpenAIRE

      Yoko Iijima

      2014-01-01

      In many plants, biogenic volatile organic compounds (BVOCs) are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is know...

    4. Producing a compound Nucleus via Inelastic Scattering: The 90Zr(alpha,alpha')90Zr* Case

      Energy Technology Data Exchange (ETDEWEB)

      Escher, J E; Dietrich, F S

      2008-05-23

      In a Surrogate reaction a compound nucleus is produced via a direct reaction (pickup, stripping, or inelastic scattering). For a proper application of the Surrogate approach it is necessary to predict the resulting angular momentum and parity distribution in the compound nucleus. A model for determining these distributions is developed for the case of inelastic alpha scattering off a spherical nucleus. The focus is on obtaining a first, simple description of the direct-reaction process that produces the compound nucleus and on providing the basis for a more complete treatment of the problem. The approximations employed in the present description are discussed and the extensions required for a more rigorous treatment of the problem are outlined. To illustrate the formalism, an application to {sup 90}Zr({alpha},{alpha}{prime}){sup 90}Zr* is presented.

    5. X-ray imaging of laser produced plasmas by a compound 3D x-ray lens

      International Nuclear Information System (INIS)

      Pilot scheme for the study of plasma under extreme condition is implemented using a compound 3D X-ray lens. Hard X-ray image of laser plasma produced by irradiating of copper foil by intense laser pulse was recorded using this lens

    6. Structural Basis of Human CYP51 Inhibition by Antifungal Azoles

      Energy Technology Data Exchange (ETDEWEB)

      Strushkevich, Natallia; Usanov, Sergey A.; Park, Hee-Won (Toronto); (IBC-Belarus)

      2010-09-22

      The obligatory step in sterol biosynthesis in eukaryotes is demethylation of sterol precursors at the C14-position, which is catalyzed by CYP51 (sterol 14-alpha demethylase) in three sequential reactions. In mammals, the final product of the pathway is cholesterol, while important intermediates, meiosis-activating sterols, are produced by CYP51. Three crystal structures of human CYP51, ligand-free and complexed with antifungal drugs ketoconazole and econazole, were determined, allowing analysis of the molecular basis for functional conservation within the CYP51 family. Azole binding occurs mostly through hydrophobic interactions with conservative residues of the active site. The substantial conformational changes in the B{prime} helix and F-G loop regions are induced upon ligand binding, consistent with the membrane nature of the protein and its substrate. The access channel is typical for mammalian sterol-metabolizing P450 enzymes, but is different from that observed in Mycobacterium tuberculosis CYP51. Comparison of the azole-bound structures provides insight into the relative binding affinities of human and bacterial P450 enzymes to ketoconazole and fluconazole, which can be useful for the rational design of antifungal compounds and specific modulators of human CYP51.

    7. Exploring the Molecular Basis of Antifungal Synergies Using Genome-Wide Approaches

      OpenAIRE

      Agarwal, Ameeta K.; Tripathi, Siddharth K.; Xu, Tao; Jacob, Melissa R.; Li, Xing-Cong; Clark, Alice M.

      2012-01-01

      Drug resistance poses a significant challenge in antifungal therapy since resistance has been found for all known classes of antifungal drugs. The discovery of compounds that can act synergistically with antifungal drugs is an important strategy to overcome resistance. For such combination therapies to be effective, it is critical to understand the molecular basis for the synergism by examining the cellular effects exerted by the combined drugs. Genomic profiling technologies developed in the...

    8. Evaluation of antifungal potential of selected medicinal plants against human pathogenic fungi

      OpenAIRE

      Hayat Sakander; Bhat Akhilesh; A Raveesha Koteshwara

      2015-01-01

      Context: Evaluation of medicinal plants used in traditional medicine lead to novel bioactive compounds with antifungal activity that could be exploited as therapeutic agents. Aims: The aim was to screen selected medicinal plants for antifungal activity against three important human pathogenic fungi and to identify the broad group of phytochemicals responsible for the activity. Materials and Methods: A total of 8 medicinal plants were screened for antifungal activity against three human pathog...

    9. Antifungal Effect of (+-Pinoresinol Isolated from Sambucus williamsii

      Directory of Open Access Journals (Sweden)

      Bomi Hwang

      2010-05-01

      Full Text Available In this study, we investigated the antifungal activity and mechanism of action of (+-pinoresinol, a biphenolic compound isolated from the herb Sambucus williamsii,used in traditional medicine. (+-Pinoresinol displays potent antifungal properties without hemolytic effects on human erythrocytes. To understand the antifungal mechanism of (+-pinoresinol, we conducted fluorescence experiments on the human pathogen Candida albicans. Fluorescence analysis using 1,6-diphenyl-1,3,5-hexatriene (DPH indicated that the (+-pinoresinol caused damage to the fungal plasma membrane. This result was confirmed by using rhodamine-labeled giant unilamellar vesicle (GUV experiments. Therefore, the present study indicates that (+-pinoresinol possesses fungicidal activities and therapeutic potential as an antifungal agent for the treatment of fungal infectious diseases in humans.

    10. Volatile Organic Compounds Produced by Bacteria from the Poultry Processing Environment

      Science.gov (United States)

      In recent years the characterization of volatile organic compounds (VOCs) emitted from food-borne bacteria has prompted studies on the development of approaches to utilize the profile of volatiles emitted as a way of detecting contamination. We have examined VOCs from poultry with this in mind. Patt...

    11. Lactobacillus amylovorus DSM 19280 as a novel food-grade antifungal agent for bakery products.

      Science.gov (United States)

      Ryan, Liam A M; Zannini, Emanuele; Dal Bello, Fabio; Pawlowska, Agata; Koehler, Peter; Arendt, Elke K

      2011-04-29

      Mould spoilage is the main cause of substantial economic loss in bakery industry and might also cause public health problems due to the production of mycotoxins. The reduction of mould growth in bakery products is thus of crucial importance and there is great interest to develop safe and efficient strategies for this purpose. In this study Lactobacillus amylovorus DSM19280 has been shown to produce a wide spectrum of antifungal compounds active against common bread spoilage fungi. Among the indicator moulds, Aspergillus fumigatus and Fusarium culmorum were the most sensitive organisms. Several antifungal compounds were found to be present in synthetic medium inoculated with L. amylovorus DSM19280 strain, some of them being reported here for the first time. Wheat doughs fermented with L. amylovorus DSM19280 had good rheological properties and the breads thereof were of high quality as shown by rheofermentometer and texture analyser measurements. The results were compared with those obtained with a control non-antifungal L. amylovorus DSM20531(T) strain, a non-acidified and a chemically acidified dough. The quality of sourdough and bread fermented with L. amylovorus DSM 19280 was comparable to that obtained by using L. amylovorus DSM20531 (T). Additionally, breads were evaluated for the ability to retard the growth of Fusarium culmorum FST 4.05, Aspergillus niger FST4.21, Penicillium expansum FST 4.22, Penicillium roqueforti FST 4.11 and fungal flora from the bakery environment. The biological preservation of bread with L. amylovorus DSM 19280 was also compared to the most commonly used antifungal agent Calcium propionate. Breads containing sourdough fermented with L. amylovorus DSM 19280 were more effective in extending the shelf life of bread than the calcium propionate. PMID:21429613

    12. Inhibition of postharvest penicillium molds of oranges by antifungal hydroxypropyl methylcellulose-lipid edible composite films and coatings

      OpenAIRE

      Silvia A. Valencia-Chamorro; Pérez-Gago, María B.; del Río, Miguel A.; Palou, Lluís

      2010-01-01

      New hydroxypropyl methylcellulose (HPMC)-lipid edible composite films and coatings containing low-toxicity chemicals with antifungal properties were developed. Tested antifungal chemicals were mainly salts of organic acids, salts of parabens, and other compounds, most of them classified as food additives or generally recognized as safe (GRAS) compounds. Stand-alone edible films were used for in vitro evaluation of their antifungal activity against the pathogens Penicillium digitat...

    13. Assessment of the antifungal activity of Spirulina platensis phenolic extract against Aspergillus flavus Avaliação da atividade antifúngica de extrato fenólico de Spirulina platensis contra Aspergillus flavus

      OpenAIRE

      Michele Moraes de Souza; Luciana Prietto; Anelise Christ Ribeiro; Taiana Denardi de Souza; Eliana Badiale-Furlong

      2011-01-01

      The production of safe food has stimulated the search for natural substances that possess antifungal activity. The indirect methods of estimating fungal biomass are based on the measurement of glucosamine, ergosterol and protein - typical compounds produced during the development of biomass. The aim of the study was to assess the effect of the phenolic extract from Spirulina platensis on the production of structural compounds in Aspergillus flavus, in order to identify its action on fungal in...

    14. Influence of Technological Processes on Biologically Active Compounds of Produced Grapes Juices

      Czech Academy of Sciences Publication Activity Database

      Tříska, Jan; Balík, J.; Strohalm, J.; Novotná, P.; Vrchotová, Naděžda; Lefnerová, D.; Landfeld, A.; Híc, P.; Tománková, E.; Veverka, J.; Houška, M.

      2016-01-01

      Roč. 9, č. 3 (2016), s. 421-429. ISSN 1935-5130 R&D Projects: GA MŠk(CZ) LO1415; GA MZe QJ1210258; GA MZe QI91B094 Institutional support: RVO:67179843 Keywords : Grapevine juices * Thermomaceration * Biologically active compounds * Antioxidative capacity * Total polyphenols * Antimutagenic activity Subject RIV: GM - Food Processing Impact factor: 2.691, year: 2014

    15. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor

      Energy Technology Data Exchange (ETDEWEB)

      Nakaya, Hiroyuki, E-mail: nakaya@nucl.kyushu-u.ac.jp [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Matsuura, Hideaki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, 744 Motooka, Fukuoka 8190395 (Japan); Katayama, Kazunari [Department of Advanced Energy Engineering Science, Kyushu University, 6-1 Kasuga-koen, Kasuga 8168580 (Japan); Goto, Minoru; Nakagawa, Shigeaki [Japan Atomic Energy Agency, 4002 Oarai, Ibaraki (Japan)

      2015-10-15

      Highlights: • Tritium production by a high-temperature gas-cooled reactor was studied. • The loading method considering tritium outflow suppression was estimated. • A reactor with 600 MWt produced 400–600 g of tritium for 180 days. • A possibility that tritium outflow can be sufficiently suppressed was shown. - Abstract: Tritium production using high-temperature gas-cooled reactors and its outflow from the region loading Li compound into the helium coolant are estimated when considering the suppression of tritium outflow. A Li rod containing a cylindrical Li compound placed in an Al{sub 2}O{sub 3} cladding tube is assumed as a method for loading Li compound. A gas turbine high-temperature reactor of 300 MW electrical nominal capacity (GTHTR300) with 600 MW thermal output power is considered and modeled using the continuous-energy Monte Carlo transport code MVP-BURN, where burn-up simulations are carried out. Tritium outflow is estimated from equilibrium solution for the tritium diffusion equation in the cladding tube. A GTHTR300 can produce 400–600 g of tritium over a 180-day operation using the chosen method of loading the Li compound while minimizing tritium outflow from the cladding tube. Optimizing tritium production while suppressing tritium outflow is discussed.

    16. Wax ester-like compounds as biosurfactants produced by Dietzia maris from n-alkane as a sole carbon source.

      Science.gov (United States)

      Nakano, Miyo; Kihara, Masaki; Iehata, Shunpei; Tanaka, Reiji; Maeda, Hiroto; Yoshikawa, Takeshi

      2011-10-01

      The hydrocarbon-degrading bacterium Dietzia maris WR-3 was isolated from a consortium comprising ammonia-oxidizing and denitrifying bacteria derived from marine sediments. Here, we examined biosurfactant production by strain WR-3 when cultured using several different carbon (D-glucose, n -decane, n -hexadecane, motor oil, olive oil, and rapeseed oil) and nitrogen (NH(4) )(2) SO(4) , NaNO(3) , yeast extract, and polypeptone) sources as growth substrates. Strain WR-3 was able to grow and reduce the surface tension of culture broth to 31±1.0 mN m(-1) when cultured using n -hexadecane and nitrate ions. The surface-active compounds produced by strain WR-3 were extracted and analyzed by thin layer chromatography. Moreover, the main components in the extract were further purified and subjected to gas chromatography/mass spectrometry (GC/MS). From the analysis, the surface-active compounds were tentatively identified as wax ester-like compounds, which were synthesized from the degradation process of n -alkane. The production of surface-active compounds by strain WR-3 promoted attachment of cells to hydrocarbon droplets via increased cell hydrophobicity, thus allowing enhanced degradation of water immiscible substrates. As Dietzia spp. can grow and produce wax esters from the degradation process of hydrocarbons, these marine bacteria are potentially useful for the bioremediation of hydrocarbon-contaminated environments. PMID:21656811

    17. Study on a method for loading a Li compound to produce tritium using high-temperature gas-cooled reactor

      International Nuclear Information System (INIS)

      Highlights: • Tritium production by a high-temperature gas-cooled reactor was studied. • The loading method considering tritium outflow suppression was estimated. • A reactor with 600 MWt produced 400–600 g of tritium for 180 days. • A possibility that tritium outflow can be sufficiently suppressed was shown. - Abstract: Tritium production using high-temperature gas-cooled reactors and its outflow from the region loading Li compound into the helium coolant are estimated when considering the suppression of tritium outflow. A Li rod containing a cylindrical Li compound placed in an Al2O3 cladding tube is assumed as a method for loading Li compound. A gas turbine high-temperature reactor of 300 MW electrical nominal capacity (GTHTR300) with 600 MW thermal output power is considered and modeled using the continuous-energy Monte Carlo transport code MVP-BURN, where burn-up simulations are carried out. Tritium outflow is estimated from equilibrium solution for the tritium diffusion equation in the cladding tube. A GTHTR300 can produce 400–600 g of tritium over a 180-day operation using the chosen method of loading the Li compound while minimizing tritium outflow from the cladding tube. Optimizing tritium production while suppressing tritium outflow is discussed

    18. A methodological approach to screen diverse cheese-related bacteria for their ability to produce aroma compounds.

      Science.gov (United States)

      Pogačić, Tomislav; Maillard, Marie-Bernadette; Leclerc, Aurélie; Hervé, Christophe; Chuat, Victoria; Yee, Alyson L; Valence, Florence; Thierry, Anne

      2015-04-01

      Microorganisms play an important role in the development of cheese flavor. The aim of this study was to develop an approach to facilitate screening of various cheese-related bacteria for their ability to produce aroma compounds. We combined i) curd-based slurry medium incubated under conditions mimicking cheese manufacturing and ripening, ii) powerful method of extraction of volatiles, headspace trap, coupled to gas chromatography-mass spectrometry (HS-trap-GC-MS), and iii) metabolomics-based method of data processing using the XCMS package of R software and multivariate analysis. This approach was applied to eleven species: five lactic acid bacteria (Leuconostoc lactis, Lactobacillus sakei, Lactobacillus paracasei, Lactobacillus fermentum, and Lactobacillus helveticus), four actinobacteria (Brachybacterium articum, Brachybacterium tyrofermentans, Brevibacterium aurantiacum, and Microbacterium gubbeenense), Propionibacterium freudenreichii, and Hafnia alvei. All the strains grew, with maximal populations ranging from 7.4 to 9.2 log (CFU/mL). In total, 52 volatile aroma compounds were identified, of which 49 varied significantly in abundance between bacteria. Principal component analysis of volatile profiles differentiated species by their ability to produce ethyl esters (associated with Brachybacteria), sulfur compounds and branched-chain alcohols (H. alvei), branched-chain acids (H. alvei, P. freudenreichii and L. paracasei), diacetyl and related carbonyl compounds (M. gubbeenense and L. paracasei), among others. PMID:25475278

    19. Bioactivities of Ketones Terpenes: Antifungal Effect on F. verticillioides and Repellents to Control Insect Fungal Vector, S. zeamais

      Directory of Open Access Journals (Sweden)

      Romina P. Pizzolitto

      2015-11-01

      Full Text Available Maize is one the most important staple foods in the world. However, numerous pests, such as fungal pathogens, e.g., Fusarium verticillioides, and insects, such as Sitophlilus zeamais, attack maize grains during storage. Many F. verticillioides strains produce fumonisins, one of the most important mycotoxin that causes toxic effects on human and animal health. This situation is aggravated by the insect fungal vector, Sitophlilus zeamais, which contributes to the dispersal of fungal spores, and through feeding damage, provide entry points for fungal infections. The aim of this study was to evaluate in vitro bioassays, the antifungal activity on F. verticillioides M3125 and repellent effects against S. zeamais of ketone terpenes. In addition, we performed Quantitative structure–activity relationship (Q-SAR studies between physico-chemical properties of ketone terpenes and the antifungal effect. Thymoquinone was the most active compound against F. verticillioides (Minimum Inhibitory Concentration, MIC: 0.87 affecting the lag phase and the growth rate showing a total inhibition of growth at concentration higher than 2 mM (p < 0.05. The Q-SAR model revealed that the antifungal activity of ketone compounds is related to the electronic descriptor, Pi energy. Thymoquinone showed a strong repellent effect (−77.8 ± 8.5, p < 0.001 against S. zeamais. These findings make an important contribution to the search for new compounds to control two stored pests of maize.

    20. Antifungal activity of Terminalia superba (combretaceae

      Directory of Open Access Journals (Sweden)

      SIAKA Sohro

      2015-04-01

      Full Text Available The aim of the present study was to optimize the anticandidosic activities of Terminalia superba (TEKAM4 and the identification of major compounds present in the most active chromatographic fraction. The hydroethanolic extract TEKAM4-X0 was prepared by homogenization employing a blender. Two derivatives extracts of TEKAM4-X0 (X1-1 and X1-2 were obtained by a liquid/liquid partition of TEKAM4-X0 in a mixture of hexane and water (v/v. Three chromatographic fractions (F1, F2 and F3 from X1-2 were separated by means of Sephadex-LH20 gel filtration chromatography. All the extracts were incorporated to Sabouraud according to the agar slanted double dilution method. Ketoconazole was used as standards for antifungal assay. The entire fractions were tested on the previously prepared medium culture containing 1000 cells of C. albicans. Antifungal activity was determined by evaluating antifungal parameters values (MFC and IC50. Lastly, the structures of 2 isolated compounds were elucidated by combination of Flash chromatography and spectroscopic methods, including MS, and multiple stage RMN experiments.

    1. Antifungal Activity of Flocculosin, a Novel Glycolipid Isolated from Pseudozyma flocculosa

      OpenAIRE

      Mimee, Benjamin; Labbé, Caroline; Pelletier, René; Bélanger, Richard R.

      2005-01-01

      Flocculosin, a glycolipid isolated from the yeast-like fungus Pseudozyma flocculosa, was investigated for in vitro antifungal activity. The compound displayed antifungal properties against several pathogenic yeasts. Synergistic activity was observed between flocculosin and amphotericin B, and no significant cytotoxicity was demonstrated when tested against human cell lines.

    2. Host cells and methods for producing 1-deoxyxylulose 5-phosphate (DXP) and/or a DXP derived compound

      Energy Technology Data Exchange (ETDEWEB)

      Kirby, James; Fortman, Jeffrey L.; Nishimoto, Minobu; Keasling, Jay D.

      2016-07-05

      The present invention provides for a genetically modified host cell capable of producing 1-deoxyxylulose 5-phosphate or 1-deoxy-D-xylulose 5-phosphate (DXP) (12), and optionally one or more DXP derived compounds, comprising: (a) a mutant RibB, or functional variant thereof, capable of catalyzing xylulose 5-phosphate and/or ribulose 5-phosphate to DXP, or (b) a YajO, or functional variant thereof, and a XylB, or functional variant thereof.

    3. Short-term and long-term behavior of PP-polymer nanocomposites produced by injection molding compounding

      Science.gov (United States)

      Battisti, M. G.; Guttmann, P.; Chitu, L.; Friesenbichler, W.

      2015-05-01

      There are only few investigations considering the impact of nanoscale fillers on the mechanical und thermo-mechanical properties of polymers. Particularly there is a lack of results regarding long term creep behavior of Polypropylene-based polymer nanocomposites (PNCs). Therefore, the objective of this study is to determine the influence of nanofiller content on the mechanical and thermo-mechanical behavior of Polypropylene-based PNCs. Processing of the test specimens was carried out using the Polymer NanoComposite Injection Molding Compounder (PNC-IMC). In comparison to the conventional compounding process, in which the compound must be pelletized and fed into the injection molding machine for the second plasticizing process, injection molding compounding combines these two processing steps. Material compounding and subsequent injection molding are done directly with only one plasticizing process, using a heated melt pipe and a melt accumulator for melt transfer from the compounder to the injection molding machine. The PNCs were produced in the 3-in-1 process at the PNC-IMC, where all components (polymer, compatibilizer, nanofiller) were added simultaneously into the compounder. Furthermore, the polymer melt was treated using elongational flow generating devices for better intercalation and exfoliation of the nanofillers. Tensile tests were made to characterize the short-term-mechanical properties. Tensile creep tests show the influence of nanofillers on the long-term-creep-performance and dynamic mechanical tests (DMA) were performed to investigate the thermo-mechanical behavior. Both, the improvements in the mechanical and thermo-mechanical properties in comparison to the pure polypropylene are shown and give an excellent overview of possibilities and limitations of the PNCs. Further research will focus on the detailed understanding of the different mechanisms of property improvement of layered silicates in polymer. By using small angle X-ray scattering

    4. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water.

      Science.gov (United States)

      Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

      2004-04-01

      When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered. PMID:15041429

    5. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

      International Nuclear Information System (INIS)

      When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

    6. Alternative method to detect compounds produced by Gambierdiscus spp.

      OpenAIRE

      Jon Andoni Sánchez

      2014-01-01

      Ciguatoxins (CTXs) and CTX precursors are produced by several Gambierdiscus spp. These polyether toxins are associated to ciguatera fish poisoning (CFP). In addition to CTX, maitotoxins (MTX) and gambierol are also produced by these dinoflagellates. MTX mechanism of action is strictly Ca2+ dependent, since the toxin induces a massive cytoplasmatic Ca2+ entrance. However, CTX activates the voltage-dependent sodium channels and no relation with calcium fluxes has been showed. The aim of this wo...

    7. ANTIFUNGAL ACTIVITIES OF CUNNINGHAMIA LANCEOLATA HEARTWOOD EXTRACTIVES

      Directory of Open Access Journals (Sweden)

      Jing Wang

      2011-02-01

      Full Text Available Three extractives from China-fir were obtained by a sequential extraction processes with hexane, ethyl acetate, and methanol. The components of the three extractives were analyzed: (1 The gas chromatography-mass spectrometry (GC-MS analysis showed that in addition to the presence of cedrol, naphthalenes comprised a relatively large percentage of both the hexane extract (10.39% and the ethyl acetate extract (9.43%. (2 Total phenolic contents analysis showed that phenols took up 6.66 % of the ethyl acetate extract and 22.8% of the methanol extract. All extracts, even with low concentrations, presented fair antifungal activities against two white-rot fungi, Trametes versicolor and Irpex lacteus and two brown-rot fungi, Postia placenta and Gloeophyllum trabeum. Cedrol and naphthalenes were partly responsible for the bioactivities. The synergistic effect of phenols and antifungal compounds also contributed to the wood decay resistance.

    8. Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm.

      Science.gov (United States)

      Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

      2013-12-15

      A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth-aeration and addition of sodium thiosulfate-graduated pH and liquid-liquid extraction-SPE purification-GC-MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml(-1), and its LC50 against Balanus amphitrete larvae was 22.2 μg ml(-1). After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml(-1). The myristic and palmitic acids were found as the main toxicants by GC-MS. PMID:24210009

    9. Aluminium Foam and Magnesium Compound Casting Produced by High-Pressure Die Casting

      Directory of Open Access Journals (Sweden)

      Iban Vicario

      2016-01-01

      Full Text Available Nowadays, fuel consumption and carbon dioxide emissions are two of the main focal points in vehicle design, promoting the reduction in the weight of vehicles by using lighter materials. The aim of the work is to evaluate the influence of different aluminium foams and injection parameters in order to obtain compound castings with a compromise between the obtained properties and weight by high-pressure die cast (HPDC using aluminium foams as cores into a magnesium cast part. To evaluate the influence of the different aluminium foams and injection parameters on the final casting products quality, the type and density of the aluminium foam, metal temperature, plunger speed, and multiplication pressure have been varied within a range of suitable values. The obtained compound HPDC castings have been studied by performing visual and RX inspections, obtaining sound composite castings with aluminium foam cores. The presence of an external continuous layer on the foam surface and the correct placement of the foam to support injection conditions permit obtaining good quality parts. A HPDC processed magnesium-aluminium foam composite has been developed for a bicycle application obtaining a suitable combination of mechanical properties and, especially, a reduced weight in the demonstration part.

    10. Biological activities of ophiobolin K and 6-epi-ophiobolin K produced by the endophytic fungus Aspergillus calidoustus.

      Science.gov (United States)

      de Carvalho, Camila Rodrigues; Vieira, Mariana de Lourdes Almeida; Cantrell, Charles L; Wedge, David E; Alves, Tânia M A; Zani, Carlos Leomar; Pimenta, Raphael Sanzio; Sales Junior, Policarpo A; Murta, Silvane M F; Romanha, Alvaro J; Rosa, Carlos Augusto; Rosa, Luiz H

      2016-01-01

      Endophytic fungi represent ubiquitous microbial organisms able to live in the tissues of different plants around the world and represent a prolific source of bioactive metabolites. In the present study, the endophytic fungus Aspergillus calidoustus was isolated from the medicinal plant Acanthospermum australe (Asteraceae), and identified using molecular, physiological and morphological methods. A methylene chloride crude extract of A. calidoustus has been produced and subjected to antifungal bioassay-directed fractionation which resulted in the isolation of the two bioactive compounds: ophiobolin K and 6-epi-ophiobolin K. These pure compounds displayed antifungal activity against fungal plant pathogens, protozoal activity against Trypanosoma cruzi, and cytotoxic activity against human tumoral cell lines. The results show that A. calidoustus was able to produce the antifungal and cytotoxic metabolites ophiobolin K and 6-epi-ophiobolin K, which may help the fungus to colonise and occupy the substratum as well as survive in natural environments. PMID:25812930

    11. Antibody Peptide Based Antifungal Immunotherapy

      OpenAIRE

      Magliani, Walter; Conti, Stefania; Giovati, Laura; Zanello, Pier Paolo; Sperindè, Martina; Ciociola, Tecla; Polonelli, Luciano

      2012-01-01

      Fungal infections still represent relevant human illnesses worldwide and some are accompanied by unacceptably high mortality rates. The limited current availability of effective and safe antifungal agents makes the development of new drugs and approaches of antifungal vaccination/immunotherapy every day more needed. Among them, small antibody(Ab)-derived peptides are arousing great expectations as new potential antifungal agents. In this topic, the search path from the study of the yeast kill...

    12. Early State Research on Antifungal Natural Products

      OpenAIRE

      Melyssa Negri; Tânia P. Salci; Cristiane S. Shinobu-Mesquita; Isis R. G. Capoci; Terezinha I. E. Svidzinski; Erika Seki Kioshima

      2014-01-01

      Nosocomial infections caused by fungi have increased greatly in recent years, mainly due to the rising number of immunocompromised patients. However, the available antifungal therapeutic arsenal is limited, and the development of new drugs has been slow. Therefore, the search for alternative drugs with low resistance rates and fewer side effects remains a major challenge. Plants produce a variety of medicinal components that can inhibit pathogen growth. Studies of plant species have been cond...

    13. Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae

      Science.gov (United States)

      Wang, Renjun; Wang, You; Tang, Xuexi

      2012-09-01

      The inhibitory effects of methanol extracts from the tissues of three macroalgal species on the growths of three marine red tide microalgae were assessed under laboratory conditions. Extracts of Sargassum thunbergii (Mertens ex Roth) Kuntz tissue had stronger inhibitory effects than those of either Sargassum pallidum (Turner) C. Agardh or Sargassum kjellmanianum Yendo on the growths of Heterosigma akashiwo (Hada) Hada, Skeletonema costatum (Grev.) Grev, and Prorocentrum micans Ehrenberg. Methanol extracts of S. thunbergii were further divided into petroleum ether, ethyl acetate, butanol, and distilled water phases by liquid-liquid fractionation. The petroleum ether and ethyl acetate fractions had strong algicidal effects on the microalgae. Gas chromatography-mass spectrometry analyses of these two phases identified nine fatty acids, most of which were unsaturated fatty acids. In addition, pure compounds of four of the nine unsaturated fatty acids had effective concentrations below 5 mg/L. Therefore, unsaturated fatty acids are a component of the allelochemicals in S. thunbergii tissue.

    14. Broad spectrum anti-microbial compounds producing bacteria from coast of Qingdao bays.

      Science.gov (United States)

      Khan, Muhammad Naseem; Li, Meng; Mirani, Zulfiqar Ali; Wang, Jingxue; Lin, Hong; Buzdar, Muhammad Aslam

      2015-03-01

      Anti-microbial resistance burden and hazard associated with chemical treatment of infections demanded for new anti-microbial natural products. Marine associated microorganisms are the enormous source of bioactive compounds. In this study we have isolated 272 marine bacteria among them 136 (50%) were antagonistic to at least one of the four pathogenic strains Listeria monocytogenes, Vibrio cholerae, E. coli and S. aureus. Only two strains exhibited antibacterial activity against all four test strains, which were identified by 16S rDNA sequencing as Bacillus sp. DK1-SA11 and Vibrio sp. DK6-SH8. Marine isolate DK1-SA11 has potential to resist boiling temperature and pH 2-12. Furthermore cell free extract (CFE) inhibited all test organisms including superbug MRSA and pathogenic yeast Candida albicans. Marine isolate Bacillus sp. DK1-SA11 could be a potential combatant for the battle of drugs and bugs. PMID:25730803

    15. 3-Methoxysampangine, a novel antifungal copyrine alkaloid from Cleistopholis patens.

      Science.gov (United States)

      Liu, S C; Oguntimein, B; Hufford, C D; Clark, A M

      1990-04-01

      Further examination of the active ethanolic extract of the root bark of Cleistopholis patens by using bioassay-directed fractionation resulted in the isolation of a new alkaloid, 3-methoxysampangine (compound I), together with three known alkaloids, eupolauridine (compound II), liriodenine (compound III), and eupolauridine N-oxide (compound IV). The proposed structure of compound I was based on its physicochemical properties and spectral data. 3-Methoxysampangine exhibited significant antifungal activity against Candida albicans, Aspergillus fumigatus, and Cryptococcus neoformans. This is the first report of the isolation of liriodenine (compound III) from the root bark of C. patens. PMID:2188584

    16. POTENTIAL IN VITRO ANTI-HELICOBACTER ACTIVITY OF BACTERIOCIN AND BACTERIOCIN-LIKE COMPOUNDS PRODUCED BY LACTOBACILLI

      Directory of Open Access Journals (Sweden)

      Mohammed A. Ramadan

      2014-10-01

      Full Text Available The study was designed for screening of the potential activity of lactic acid bacteria against Helicobacter pylori and other enteropathogenic organisms. A total of 40 samples including natural cow milk and fresh infant stools were tested for the presence of lactic acid bacteria. Of these samples, 73 lactic acid bacterial isolates were recovered on MRS agar medium using the streak-plate method. Isolates inducing probiotic effect were tested under microaerophilic conditions against standard cultures of H. pylori, Esherichia coli and Salmonella enteritidis. The data obtained showed that five isolates of lactic acid bacteria were able to produce bacteriocin or bacteriocin-like compounds. Sequencing of 16S rRNA gene revealed that five isolates belonged to Lactobacillus rhamnosus and Lactobacillus plantarum in addition to other lactic acid bacteria. The most effective isolate (LAB1 showed a marked large inhibition zone against H. pylori. The bacteriocin or bacteriocin like compound(s produced by lactobacilli were further analyzed and characterized. We can conclude that probiotics might be useful in the prophylaxis or as co-therapy for treatment of H. pylori infections.

    17. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

      Directory of Open Access Journals (Sweden)

      Ayati Adile

      2012-10-01

      Full Text Available Abstract Background The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives. Methods The 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl-2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents. Results The in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 μg/mL. Among the test compounds, 2-methyl-3-imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score. Conclusion The 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4-chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents.

    18. Synthesis, in vitro antifungal evaluation and in silico study of 3-azolyl-4-chromanone phenylhydrazones

      Directory of Open Access Journals (Sweden)

      Saeed Emami

      2012-10-01

      Full Text Available The currently available antifungal drugs suffer from toxicity, greatest potential drug interactions with other drugs, insufficient pharmacokinetics properties, and development of resistance. Thus, development of new antifungal agents with optimum pharmacokinetics and less toxicity is urgent task. In the search for new azole antifungals, we have been previously described azolylchromanone oxime ethers as rigid analogs of oxiconazole. In continuation of our work, we incorporated phenylhydrazone moiety instead of oxime ether fragment in azolylchromanone derivatives.MethodsThe 3-azolyl-4-chromanone phenylhydrazones were synthesized via ring closure of 2-azolyl- 2'-hydroxyacetophenones and subsequent reaction with phenylhydrazine. The biological activity of title compounds was evaluated against different pathogenic fungi including Candida albicans, Saccharomyces cerevisiae, Aspergillus niger, and Microsporum gypseum. Docking study, in silico toxicity risks and drug-likeness predictions were used to better define of title compounds as antifungal agents.ResultsThe in vitro antifungal activity of compounds based on MIC values revealed that all compounds showed good antifungal activity against C. albicans, S. cerevisiae and M. gypseum at concentrations less than 16 mug/mL. Among the test compounds, 2-methyl-3- imidazolyl derivative 3b showed the highest values of drug-likeness and drug-score.ConclusionThe 3-azolyl-4-chromanone phenylhydrazones considered as analogs of 3-azolyl-4- chromanone oxime ethers basically designed as antifungal agents. The antifungal activity of title compounds was comparable to that of standard drug fluconazole. The drug-likeness data of synthesized compounds make them promising leads for future development of antifungal agents.

    19. ANTIFUNGAL ACTIVITY OF SECONDARY METABOLITES PROUCED BY PSEUDOMONAS FLUORESCENS

      Directory of Open Access Journals (Sweden)

      R. M. GADE

      2013-01-01

      Full Text Available Thirty isolates of Pseudomonas fluorescens obtained from citrus rhizosphere were tested for antifungal activityagainst Phytophthora spp. P. fluorescens isolate Pf20 was found efficient in inhibiting the mycelial growth upto38.88%. The antifungal compounds were extracted with equal volume of ethyl acetate and were tentativelyidentified on thin layer chromatography (TLC at Rf 0.28. The antifungal compounds extracted from P. fluorescensat 5% were found inhibitory to the growth of Rhizoctonia solani (42.79%, Phytophthora parasitica (28.57%,P. palmivora (25.98% and Fusarium solani (20.45%. In case of HPTLC analysis the characteristic colour andfluorescent band after derivatization with anisaldehyde reagent proved the presence of secondary metabolites incrude extract.

    20. The preparation of organic radiopharmaceuticals and labelled compounds using short-lived cyclotron-produced radionuclides

      International Nuclear Information System (INIS)

      Accelerator-produced nuclides and radiopharmaceutical production are discussed with examples of pertinent methods of isotope production, methods of incorporation into organic molecules, and the general problems attandant on the production and use of these materials in this new and interdisciplinary effort. The literature is surveyed with stress being given to the use of 11C, 13N and 15O. 205 references are included. (author)

    1. Two new Penicillium species Penicillium buchwaldii and Penicillium spathulatum, producing the anticancer compound asperphenamate

      DEFF Research Database (Denmark)

      Frisvad, Jens Christian; Houbraken, Jos; Popma, Suuske;

      2013-01-01

      Penicillium buchwaldii sp. nov. (type strain CBS 117181(T) = IBT 6005(T) = IMI 30428(T) ) and Penicillium spathulatum sp. nov. (CBS 117192(T) = IBT 22220(T) ) are described as new species based on a polyphasic taxonomic approach. Isolates of P. buchwaldii typically have terverticillate conidiopho...... were mainly isolated from indoor environments and food and feedstuffs. The fact that asperphenamate has been found in many widely different plants may indicate that endophytic fungi rather than the plants are the actual producers....

    2. Antifungal activity of violacein purified from a novel strain of Chromobacterium sp. NIIST (MTCC 5522).

      Science.gov (United States)

      Sasidharan, Anju; Sasidharan, Nishanth Kumar; Amma, Dileepkumar Bhaskaran Nair Saraswathy; Vasu, Radhakrishnan Kokkuvayil; Nataraja, Anupama Vijaya; Bhaskaran, Krishnakumar

      2015-10-01

      A novel strain of Chromobacterium sp. NIIST (MTCC 5522) producing high level of purple blue bioactive compound violacein was isolated from clay mine acidic sediment. During 24 h aerobic incubation in modified Luria Bertani medium, around 0.6 g crude violacein was produced per gram of dry weight biomass. An inexpensive method for preparing crystalline, pure violacein from crude pigment was developed (12.8 mg violacein/L) and the pure compound was characterized by different spectrometric methods. The violacein prepared was found effective against a number of plant and human pathogenic fungi and yeast species such as Cryptococcus gastricus, Trichophyton rubrum, Fusarium oxysporum, Rhizoctonia solani, Aspergillus flavus, Penicillium expansum, and Candida albicans. The best activity was recorded against Trichophyton rubrum (2 -g/ml), a human pathogen responsible for causing athlete-s foot infection. This is the first report of antifungal activity of purified violacein against pathogenic fungi and yeast. PMID:26428920

    3. Metabolic footprinting for investigation of antifungal properties of Lactobacillus paracasei

      DEFF Research Database (Denmark)

      Honoré, Anders Hans; Aunsbjerg, Stina Dissing; Ebrahimi, Parvaneh;

      2016-01-01

      Lactic acid bacteria with antifungal properties are applied for biopreservation of food. In order to further our understanding of their antifungal mechanism, there is an ongoing search for bioactive molecules. With a focus on the metabolites formed, bioassay-guided fractionation and comprehensive...... screening have identified compounds as antifungal. Although these are active, the compounds have been found in concentrations that are too low to account for the observed antifungal effect. It has been hypothesized that the formation of metabolites and consumption of nutrients during bacterial fermentations...... form the basis for the antifungal effect, i.e., the composition of the exometabolome. To build a more comprehensive view of the chemical changes induced by bacterial fermentation and the effects on mold growth, a strategy for correlating the exometabolomic profiles with mold growth was applied. The...

    4. Cultivation of lipid-producing bacteria with lignocellulosic biomass: effects of inhibitory compounds of lignocellulosic hydrolysates.

      Science.gov (United States)

      Wang, Baixin; Rezenom, Yohannes H; Cho, Kun-Ching; Tran, Janessa L; Lee, Do Gyun; Russell, David H; Gill, Jason J; Young, Ryland; Chu, Kung-Hui

      2014-06-01

      Lignocellulosic biomass has been recognized as a promising feedstock for the fermentative production of biofuel. However, the pretreatment of lignocellulose generates a number of by-products, such as furfural, 5-hydroxylmethyl furfural (5-HMF), vanillin, vanillic acids and trans-p-coumaric acid (TPCA), which are known to inhibit microbial growth. This research explores the ability of Rhodococcus opacus PD630 to use lignocellulosic biomass for production of triacylglycerols (TAGs), a common lipid raw material for biodiesel production. This study reports that R. opacus PD630 can grow well in R2A broth in the presence of these model inhibitory compounds while accumulating TAGs. Furthermore, strain PD630 can use TPCA, vanillic acid, and vanillin as carbon sources, but can only use TPCA and vanillic acid for TAG accumulation. Strain PD630 can also grow rapidly on the hydrolysates of corn stover, sorghum, and grass to accumulate TAGs, suggesting that strain PD630 is well-suited for bacterial lipid production from lignocellulosic biomass. PMID:24698742

    5. Application of glass-nonmetals of waste printed circuit boards to produce phenolic moulding compound

      International Nuclear Information System (INIS)

      The aim of this study was to investigate the feasibility of using glass-nonmetals, a byproduct of recycling waste printed circuit boards (PCBs), to replace wood flour in production of phenolic moulding compound (PMC). Glass-nonmetals were attained by two-step crushing and corona electrostatic separating processes. Glass-nonmetals with particle size shorter than 0.07 mm were in the form of single fibers and resin powder, with the biggest portion (up to 34.6 wt%). Properties of PMC with glass-nonmetals (PMCGN) were compared with reference PMC and the national standard of PMC (PF2C3). When the adding content of glass-nonmetals was 40 wt%, PMCGN exhibited flexural strength of 82 MPa, notched impact strength of 2.4 kJ/m2, heat deflection temperature of 175 deg. C, and dielectric strength of 4.8 MV/m, all of which met the national standard. Scanning electron microscopy (SEM) showed strong interfacial bonding between glass fibers and the phenolic resin. All the results showed that the use of glass-nonmetals as filler in PMC represented a promising method for resolving the environmental pollutions and reducing the cost of PMC, thus attaining both environmental and economic benefits

    6. Identification of the toxic compounds produced by Sargassum thunbergii to red tide microalgae

      Institute of Scientific and Technical Information of China (English)

      WANG Renjun; WANG You; TANG Xuexi

      2012-01-01

      The inhibitory effects of methanol extracts from the tissues of three macroalgal species on the growths of three marine red tide microalgae were assessed under laboratory conditions.Extracts of Sargassum thunbergii(Mertens ex Roth)Kuntz tissue had stronger inhibitory effects than those of either Sargassum pallidum(Turner)C.Agardh or Sargassum kjellmanianum Yendo on the growths of Heterosigrna akashiwo(Hada)Hada,Skeletonema costatum(Grey.)Grey,and Prorocentrum micans Ehrenberg.Methanol extracts of S.thunbergii were further divided into petroleum ether,ethyl acetate,butanol,and distilled water phases by liquid-liquid fractionation.The petroleum ether and ethyl acetate fractions had strong algicidal effects on the microalgae.Gas chromatography-mass spectrometry analyses of these two phases identified nine fatty acids,most of which were unsaturated fatty acids.In addition,pure compounds of four of the nine unsaturated fatty acids had effective concentrations below 5 mg/L.Therefore,unsaturated fatty acids are a component of the allelochemicals in S.thunbergii tissue.

    7. Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC Produced by Plant

      Directory of Open Access Journals (Sweden)

      Yoko Iijima

      2014-08-01

      Full Text Available In many plants, biogenic volatile organic compounds (BVOCs are produced as specialized metabolites that contribute to the characteristics of each plant. The varieties and composition of BVOCs are chemically diverse by plant species and the circumstances in which the plants grow, and also influenced by herbivory damage and pathogen infection. Plant-produced BVOCs are receptive to many organisms, from microorganisms to human, as both airborne attractants and repellants. In addition, it is known that some BVOCs act as signals to prime a plant for the defense response in plant-to-plant communications. The compositional profiles of BVOCs can, thus, have profound influences in the physiological and ecological aspects of living organisms. Apart from that, some of them are commercially valuable as aroma/flavor compounds for human. Metabolomic technologies have recently revealed new insights in biological systems through metabolic dynamics. Here, the recent advances in metabolomics technologies focusing on plant-produced BVOC analyses are overviewed. Their application markedly improves our knowledge of the role of BVOCs in chemosystematics, ecological influences, and aroma research, as well as being useful to prove the biosynthetic mechanisms of BVOCs.

    8. Evaluation of Volatile Organic Compounds and Carbonyl Compounds Present in the Cabins of Newly Produced, Medium- and Large-Size Coaches in China

      Science.gov (United States)

      Lu, Yan-Yang; Lin, Yi; Zhang, Han; Ding, Dongxiao; Sun, Xia; Huang, Qiansheng; Lin, Lifeng; Chen, Ya-Jie; Chi, Yu-Lang; Dong, Sijun

      2016-01-01

      An air-conditioned coach is an important form of transportation in modern motorized society; as a result, there is an increasing concern of in-vehicle air pollution. In this study, we aimed to identify and quantify the levels of volatile organic compounds (VOCs) and carbonyl compounds (CCs) in air samples collected from the cabins of newly produced, medium- and large-size coaches. Among the identified VOCs and CCs, toluene, ethylbenzene, xylene, formaldehyde, acetaldehyde, acrolein/acetone, and isovaleraldehyde were relatively abundant in the cabins. Time was found to affect the emissions of the contaminants in the coaches. Except for benzaldehyde, valeraldehyde and benzene, the highest in-vehicle concentrations of VOCs and CCs were observed on the 15th day after coming off the assembly line, and the concentrations exhibited an approximately inverted U-shaped pattern as a function of time. Interestingly, this study also showed that the interior temperature of the coaches significantly affected the VOCs emissions from the interior materials, whereas the levels of CCs were mainly influenced by the relative humidity within the coaches. In China, guidelines and regulations for the in-vehicle air quality assessment of the coaches have not yet been issued. The results of this study provide further understanding of the in-vehicle air quality of air-conditioned coaches and can be used in the development of both specific and general rules regarding medium- and large-size coaches. PMID:27314375

    9. In Search of the Holy Grail of Antifungal Therapy

      Science.gov (United States)

      Chapman, Stanley W.; Sullivan, Donna C.; Cleary, John D.

      2008-01-01

      The ideal antifungal agent remains an elusive goal for treatment of life-threatening systemic fungal infections. Such an agent would have broad antifungal activity, low rates of resistance, flexible routes of administration, few associated adverse events, and limited drug-drug interactions. Only three of the seven classes of antifungal agents currently available are suitable for treatment of systemic infection: the polyenes, the azoles, and the echinocandins. None match all the characteristics of an ideal agent, the Holy Grail of antifungal therapy. Academia and industry need to collaborate in the search for new lead antifungal compounds using traditional screening methods as well as the new pharmacogenomics methods. Enhancing efficacy and reducing toxicity of the currently available therapeutic agents is also another important avenue of study. As an example, the Mycosis Research Center at the University of Mississippi Medical Center has identified pyogenic polyenes in commercial preparations of amphotericin B deoxycholate which correlate with infusion related toxicities. A highly purified formulation of amphotericin B appears promising, with a better therapeutic index compared to its parent compound as evidenced by results of in vitro and in vivo studies reviewed in this presentation. PMID:18596853

    10. Quartet excited halogen atoms produced in the electron pulse irradiation of rare gases containing halogenated compounds

      Science.gov (United States)

      Kuramasu, T.; Ohyama, H.; Yoshikawa, S.; Terazawa, N.; Ishikawa, Y.; Arai, S.

      1995-07-01

      Quartet excited halogen atoms F*(2p4 3s,4PJ), Cl*(3p4 4s,4PJ), Br*(4p4 5s,4PJ), and I*(5p4 6s,4PJ), where the J's are 5/2, 3/2, and 1/2, were found to be produced in the electron pulse irradiation of Ne or Ar containing one of SF6, CCl4, CClF3, CBrF3, CBr2F2, and CF3I. The population distribution ratios at the stage of production were 1.0(J=5/2):0.41(J=3/2):0.06(J=1/2) for F* in Ne containing SF6, 1.0(J=5/2):0.27(J=3/2):0.14(J=1/2) for Cl* in Ne containing CCl4, 1.0(J=5/2):0.29(J=3/2):0.2-0.3(J=1/2) for Br* in Ne containing CBr2F2, and 1.0(J=5/2):0.13(J=3/2):0.54(J=1/2) for I* in Ar containing CF3I. The observed ratios considerably differ from those calculated from the Boltzmann distribution law. F*(4P5/2), F*(4P3/2), and Cl*(4P5/2) are mainly produced by the reactions of lowest triplet excited diatomic molecules of neon with SF6 and CCl4. Cl*(4P3/2) and Cl*(4P1/2) are produced in a rapid process and deactivated into lower Cl*(4P5/2). Several reaction channels probably contribute to the formation of Br*(4PJ) and I*(4PJ). Rate constants for reactions of triplet excited diatomic molecules of neon or argon with these parent molecules were determined from observed absorption decay curves for Ne2* or Ar2* in the presence of parent molecules.

    11. Convenient Test for Screening Metallo-β-Lactamase-Producing Gram-Negative Bacteria by Using Thiol Compounds

      OpenAIRE

      Arakawa, Yoshichika; Shibata, Naohiro; Shibayama, Keigo; Kurokawa, Hiroshi; Yagi, Tetsuya; Fujiwara, Hiroshi; Goto, Masafumi

      2000-01-01

      A simple disk diffusion test was constructed for detection of IMP-1-type metallo-β-lactamase-producing gram-negative bacteria. Two Kirby-Bauer disks containing ceftazidime (CAZ) and a filter disk containing a metallo-β-lactamase inhibitor were used in this test. Several IMP-1 inhibitors such as thiol compounds including 2-mercaptopropionic acid, heavy metal salts, and EDTA were evaluated for this test. Two CAZ disks were placed on a Mueller-Hinton agar plate on which a bacterial suspension wa...

    12. Study of the Antifungal Ability of Bacillus subtilis Strain PY-1 in Vitro and Identification of its Antifungal Substance (Iturin A)

      Institute of Scientific and Technical Information of China (English)

      Meng GONG; Jiang-Dong WANG; Jing ZHANG; Hao YANG; Xiao-Feng LU; Yan PEI; Jing-Qiu CHENG

      2006-01-01

      A Bacillus strain, denoted as PY- 1, was isolated from the vascular bundle of cotton. Biochemical,physiological and 16S rDNA sequence analysis proved that it should belong to Bacillus subtilis. The PY-1 strain showed strong ability against many common plant fungal pathogens in vitro. The antibiotics produced by this strain were stable in neutral and basic conditions, and not sensitive to high temperature. From the culture broth of PY- 1 strain, five antifungal compounds were isolated by acidic precipitation, methanol extraction, gel filtration and reverse-phase HPLC. Advanced identification was performed by mass spectrometry and nuclear magnetic resonance spectroscopy. These five antifungal compounds were proved to be the isomers of iturin A: A2, A3, A4, A6 and A7. In fast atom bombardment mass spectrometry/mass spectrometry collision-induced dissociation spectra, fragmentation ions from two prior linear acylium ions were observed, and the prior ion, Tyr-Asn-Gln-Pro-Asn-Ser-βAA-Asn-CO+, was first reported.

    13. Purification, Biochemical Characterization and Self-assembled Structure of a Fengycin-like Antifungal Peptide from Bacillus thuringiensis strain SM1

      Directory of Open Access Journals (Sweden)

      SantiM.Mandal

      2013-11-01

      Full Text Available An antifungal lipopeptide fengycin, producing strain SM1 was isolated from farm land soil sample and identified as Bacillus thuringienesis strain SM1 by using 16S rDNA analysis. Fengycin detected in the culture extract was further purified using HPLC and showed a molecular mass of 1492.8 Da by MALDI-TOF-MS analysis. Purified fengycin was allowed to construct their self-assembled structure onto a hydrophobic surface showing a clear improvement of antibacterial activity. In self-assembly, fengycin adapts a spherical micelle core shell like structure. Self-assembled fengycin may be a successful antimicrobial compound modifying its action from confined antifungal function. Besides it can open up a new area of research in supramolecullar lipopeptide based compound making. This can revealed the mode of action of this unique self-assembled structure to fully evaluate its potential for use as an antimicrobial drug to control the emergence of bacterial infection.

    14. Antifungal metabolites from fungal endophytes of Pinus strobus

      DEFF Research Database (Denmark)

      Sumarah, Mark W; Kesting, Julie R; Sørensen, Dan;

      2011-01-01

      The extracts of five foliar fungal endophytes isolated from Pinus strobus (eastern white pine) that showed antifungal activity in disc diffusion assays were selected for further study. From these strains, the aliphatic polyketide compound 1 and three related sesquiterpenes 2-4 were isolated...

    15. Identification of Ebsulfur Analogues with Broad-Spectrum Antifungal Activity.

      Science.gov (United States)

      Ngo, Huy X; Shrestha, Sanjib K; Garneau-Tsodikova, Sylvie

      2016-07-19

      Invasive fungal infections are on the rise due to an increased population of critically ill patients as a result of HIV infections, chemotherapies, and organ transplantations. Current antifungal drugs are helpful, but are insufficient in addressing the problem of drug-resistant fungal infections. Thus, there is a growing need for novel antimycotics that are safe and effective. The ebselen scaffold has been evaluated in clinical trials and has been shown to be safe in humans. This makes ebselen an attractive scaffold for facile translation from bench to bedside. We recently reported a library of ebselen-inspired ebsulfur analogues with antibacterial properties, but their antifungal activity has not been characterized. In this study, we repurposed ebselen, ebsulfur, and 32 additional ebsulfur analogues as antifungal agents by evaluating their antifungal activity against a panel of 13 clinically relevant fungal strains. The effect of induction of reactive oxygen species (ROS) by three of these compounds was evaluated. Their hemolytic and cytotoxicity activities were also determined using mouse erythrocytes and mammalian cells. The MIC values of these compounds were found to be in the range of 0.02-12.5 μg mL(-1) against the fungal strains tested. Notably, yeast cells treated with our compounds showed an accumulation of ROS, which may further contribute to the growth-inhibitory effect against fungi. This study provides new lead compounds for the development of antimycotic agents. PMID:27334363

    16. Antifungal therapy in European hospitals

      DEFF Research Database (Denmark)

      Zarb, P; Amadeo, B; Muller, A;

      2012-01-01

      The study aimed to identify targets for quality improvement in antifungal use in European hospitals and determine the variability of such prescribing. Hospitals that participated in the European Surveillance of Antimicrobial Consumption Point Prevalence Surveys (ESAC-PPS) were included. The WHO...... 40,878 (3.7%) antimicrobials. Antifungals were mainly (54.2%) administered orally. Hospital-acquired infections represented 44.5% of indications for antifungals followed by medical prophylaxis at 31.2%. The site of infection was not defined in 36.0% of cases but the most commonly targeted sites were...... respiratory (19.2%) and gastrointestinal (18.8%). The most used antifungal was fluconazole (60.5%) followed by caspofungin (10.5%). Antifungal-antibacterial combinations were frequently used (77.5%). The predominance of fluconazole use in participating hospitals could result in an increase in prevalence of...

    17. Synthesis, antibacterial and antifungal activity of some derivatives of 2-phenyl-chromen-4-one

      Indian Academy of Sciences (India)

      Sayed Alam

      2004-11-01

      Some derivatives of 2-phenyl-chromen-4-one (flavone ring) have been synthesized and tested for antibacterial and antifungal activities along with their chalcone precursors against four human pathogenic bacteria and five plant mould fungi. The structures of the synthesized compounds were elucidated by UV, IR and 1H NMR spectroscopic techniques, and elemental analysis. The antibacterial and antifungal screens of the synthesized compounds were performed in vitro by the filter paper disc diffusion method and the poisoned food technique.

    18. Marine pharmacology in 2003-4: Marine Compounds with Anthelminthic, Antibacterial, Anticoagulant, Antifungal, Anti-inflammatory, Antimalarial, Antiplatelet, Antiprotozoal, Antituberculosis, and Antiviral Activities; affecting the Cardiovascular, Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action

      OpenAIRE

      Mayer, Alejandro M. S.; Rodriguez, Abimael D.; Berlinck, Roberto G. S.; Hamann, Mark T.

      2007-01-01

      The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelminthic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine com...

    19. Mode of Antifungal Drugs Interaction with Cytochrome P- 450

      Directory of Open Access Journals (Sweden)

      M- Mahmodian

      1991-07-01

      Full Text Available Computer was used to identify the interactions of substrates and antifungal drugs with the enzyme, Cytochrome P-450; and then Molplot.bas computer program was applied to get three dimensional figures of 5-hydroxy camphor.oxidation products of camphor analogues, and antifungal drugs.Cartesian characteristics of atoms building molecules, are taken from Buildz. for program, which can calculate X,Y,Z coordinates of atoms by Zmatrix data. The other program which can calculate X,Y,Z coordinates, using fractional characteristics, is the Coord, for program that, gives our cartesian characteristics of the atoms of molecule, then by using these data, we obtain three dimensional figures and distance between active atoms in compounds under consideration. Results show that distance between two oxygen atoms in 5-exo-hydroxy- camphor and the other compounds obtained from oxidation of camphor analogues, with the distance of two oxygen atoms in antifungal compounds under discussion are equal. Therefore, we can conclude that, the antifungal molecule also interacts with enzyme's active site, by its own sites, in a similar manner to the 5-hydroxy camphor molecule, which is:"n1. Nitrogen atom (N of Imidazole and Triazole ring in antifungal molecule with Iron atom in heam molecule belonging to Cytochrome P-450 enzyme, are coordinated."n2. The other atoms such as : 0,S or N in structure of the antifungal drug are coordinated with hydrogen atom of hydroxyl group belong ing to Tyr-96 in the structure of enzyme, forming hydrogen bonding.

    20. Stepwise design, synthesis, and in vitro antifungal screening of (Z)-substituted-propenoic acid derivatives with potent broad-spectrum antifungal activity

      Science.gov (United States)

      Khedr, Mohammed A

      2015-01-01

      Fungal infections are a main reason for the high mortality rate worldwide. It is a challenge to design selective antifungal agents with broad-spectrum activity. Lanosterol 14α-demethylase is an attractive target in the design of antifungal agents. Seven compounds were selected from a number of designed compounds using a rational docking study. These compounds were synthesized and evaluated for their antifungal activity. In silico study results showed the high binding affinity to lanosterol 14α-demethylase (−24.49 and −25.83 kcal/mol) for compounds V and VII, respectively; these values were greater than those for miconazole (−18.19 kcal/mol) and fluconazole (−16.08 kcal/mol). Compound V emerged as the most potent antifungal agent among all compounds with a half maximal inhibitory concentration of 7.01, 7.59, 7.25, 31.6, and 41.6 µg/mL against Candida albicans, Candida parapsilosis, Aspergillus niger, Trichophyton rubrum, and Trichophyton mentagrophytes, respectively. The antifungal activity for most of the synthesized compounds was more potent than that of miconazole and fluconazole. PMID:26309398

    1. Head Space Solid Phase Micro-Extraction (HS - SPME of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636

      Directory of Open Access Journals (Sweden)

      Eunice Valduga

      2010-12-01

      Full Text Available The aim of the present study was the assessment of volatile organic compounds produced by Sporidiobolus salmonicolor (CBS 2636 using methyl and ethyl ricinoleate, ricinoleic acid and castor oil as precursors. The analysis of the volatile organic compounds was carried out using Head Space Solid Phase Micro-Extraction (HS - SPME. Factorial experimental design was used for investigating extraction conditions, verifying stirring rate (0-400 rpm, temperature (25-60 ºC, extraction time (10-30 minutes, and sample volume (2-3 mL. The identification of volatile organic compounds was carried out by Gas Chromatography with Mass Spectrum Detector (GC/MSD. The conditions that resulted in maximum extraction were: 60 ºC, 10 minutes extraction, no stirring, sample volume of 2.0 mL, and addition of saturated KCl (1:10 v/v. In the bio-production of volatile organic compounds the effect of stirring rate (120-200 rpm, temperature (23-33 ºC, pH (4.0-8.0, precursor concentration (0.02-0.1%, mannitol (0-6%, and asparagine concentration (0-0.2% was investigated. The bio-production at 28 ºC, 160 rpm, pH 6,0 and with the addition of 0.02% ricinoleic acid to the medium yielded the highest production of VOCs, identified as 1,4-butanediol, 1,2,2-trimethylciclopropilamine, beta-ionone; 2,3-butanodione, pentanal, tetradecane, 2-isononenal, 4-octen-3-one, propanoic acid, and octadecane.

    2. Naturally occurring antifungal aromatic esters and amides

      International Nuclear Information System (INIS)

      During the search of antifungal natural products from terrestrial plants, a new long chained aromatic ester named grandiflorate along with spatazoate from Portulaca grandiflora and N-[2-methoxy-2-(4-methoxyphenyl) ethyl]-trans-cinnamide and aegeline from Solanum erianthum of Nigeria were isolated and tested against six fungal species. The known constituents have not been reported so far from mentioned investigated plants. Structures of the isolated compounds were elucidated with the aid of spectroscopic techniques including two dimensional NMR experiments. Among the compounds, the esters found more potent than amides against Candida albicans and Aspergillus flavus. The new compound grandiflorate gave response against all tested fungal species while aegeline was found to give lowest inhibition during this study. (author)

    3. Augmenting the Antifungal Activity of an Oxidizing Agent with Kojic Acid: Control of Penicillium Strains Infecting Crops

      OpenAIRE

      Kim, Jong H.; Chan, Kathleen L.

      2014-01-01

      Oxidative treatment is one of the strategies for preventing Penicillium contamination in crops/foods. The antifungal efficacy of hydrogen peroxide (H2O2; oxidant) was investigated in Penicillium strains by using kojic acid (KA) as a chemosensitizing agent, which can enhance the susceptibility of pathogens to antifungal agents. Co-application of KA with H2O2 (chemosensitization) resulted in the enhancement of antifungal activity of either compound, when compared to the independent application ...

    4. Update on azole antifungals.

      Science.gov (United States)

      Zonios, Dimitrios I; Bennett, John E

      2008-04-01

      This is a comprehensive, clinically oriented review of the four commercially available triazoles: fluconazole, itraconazole, voriconazole, and posaconazole. Emphasis is placed in pharmacology, drug interactions, adverse events, antifungal activity, and the evolving perspective of their clinical use. Key clinical trials are briefly discussed, and specific drug indications summarized. Fluconazole remains a valuable low-cost choice for the treatment of various fungal infections, including candidiasis and cryptococcosis. It has relatively few drug interactions and is safe but lacks activity against filamentous fungi. The use of itraconazole is historically plagued by erratic bioavailability of the oral capsule, improved with the oral solution. Drug interactions are numerous. Itraconazole exhibits significant activity against Aspergillus and the endemic fungi. Voriconazole has revolutionized the treatment of aspergillosis in severely immunocompromised patients, but its use is compromised by complicated pharmacokinetics, notable drug interactions, and relatively significant adverse events. Finally, posaconazole is the last addition to the azole armamentarium with extended antifungal spectrum, significant activity against the zygomycetes, and, apparently, optimal safety profile. Posaconazole has a significant role for the prophylaxis of invasive fungal infections in severely immunocompromised patients. Multiple daily dosing, a need for fatty foods for absorption, and absence of an intravenous formulation restrict its use to selected populations. PMID:18366001

    5. Design, synthesis and antifungal activity of novel furancarboxamide derivatives.

      Science.gov (United States)

      Wen, Fang; Jin, Hong; Tao, Ke; Hou, Taiping

      2016-09-14

      Twenty-seven novel furancarboxamide derivatives with a diphenyl ether moiety were synthesized and evaluated for their antifungal activity against Rhizoctonia solani, Botrytis cirerea, Valsa mali and Sphaceloma ampelimum. Antifungal bioassay results indicated that most compounds had good or excellent fungicidal activities for R. solani and S. ampelimum at 20 mg L(-1). Among synthesized compounds, compound 18e showed a greater inhibitory effect against S. ampelimum, with half maximal effective concentration (EC50) values of 0.020 mg L(-1). This strong activity rivals currently used commercial fungicides, such as Boscalid and Carbendazim, and has great potential as a lead compound for future development of novel fungicides. PMID:27191618

    6. Recent advances in antifungal chemotherapy.

      Science.gov (United States)

      Petrikkos, George; Skiada, Anna

      2007-08-01

      For over 50 years, amphotericin B deoxycholate (AmBD) has been the 'gold standard' in antifungal chemotherapy, despite its frequent toxicities. However, improved treatment options for invasive fungal infections (IFIs) have been developed during the last 15 years. Newer antifungal agents, including less toxic lipid preparations of AmBD, triazoles and the echinocandins, have been added to our armamentarium against IFIs. Some of these newer drugs can now replace AmBD as primary therapy (e.g. caspofungin for candidiasis, voriconazole for aspergillosis), whilst others offer new therapeutic options for difficult-to-treat IFIs (e.g. posaconazole for zygomycosis, fusariosis and chromoblastomycosis). It is interesting that extended use of newer antifungals such as fluconazole, despite decreasing the mortality attributed to candidiasis, resulted in selection of species resistant to several antifungals (Candida krusei, Candida glabrata); whilst several publications suggest that prolonged use of voriconazole may expose severely immunocompromised patients to the risk of zygomycosis (breakthrough). On the other hand, the differences in the mode of action of newer antifungals such as echinocandins raise the question whether combination antifungal therapy is more effective than monotherapy. Finally, the availability of an oral formulation with excellent biosafety of several newer antifungals (e.g. posaconazole) makes them candidates for prophylactic or prolonged maintenance therapy. PMID:17524625

    7. Breeding high yield mutant strains producing antifungal antibiotic CA-SD07%新型抗真菌抗生素CA-SD07高产菌株的诱变育种初探

      Institute of Scientific and Technical Information of China (English)

      金建玲; 郝召; 王伟; 韩文志; 游哲荣; 李成志; 徐佩文

      2011-01-01

      Objective To screen high yield broad-spectrum antifungal antibiotic breeding CA-SD07 producing strain. Methods Two kinds of breeding methods ultraviolet radiation (UV) and high concentration of phosphate screening after ultraviolet radiation (UV+Pi) were conducted. Inhibition zone method, fermentation with flash shaking and with small fermentor were applied in screening high yield strains. Results 25 strains were isolated from UV group, 12 strains were isolated from UV+Pi group, during the first round flash shaking screening. The relative yield of antibiotic CA-SD07 of all these 37 strains increased by 50% or more than that of the original strain SD-07. 6 strains were screened during the second round flash shaking screening from the above 37 strains, their relative yield of antibiotic CA-SD07 increased by 100% or more than that of the original strain SD-07. Finally, 1 mutant strain was isolated by the fermentation characteristics: Its relative yield of antibiotic CA-SD07 stably increased by 100% or more than that of the original strain SD-07, and its fermentation period reduced more than 24 hours. Conclusion UV and UV+Pi got similar breeding results, high concentration phosphate screening did not significantly improve the antibiotic production of the isolated strains, but could improve the ratio of high antibiotic yield isolates to the whole ones. This suggested: In order to improve production of antibiotics, it needed improve the existing methods for high concentration phosphate screening.%目的 拟通过紫外线诱变结合耐高浓度磷酸盐筛选广谱抗真菌抗生素CA-SD07的高产菌株.方法 采用两种育种方式:紫外线诱变(UV),紫外线诱变后进行高浓度磷酸盐抗性筛选(UV+Pi).筛选方法采用抑菌圈法、摇瓶发酵和小型发酵罐发酵.结果 经过摇瓶初筛和复筛,从UV组和UV+Pi组共筛选到6株抗生素相对产量比原始菌株提高100%以上的高产菌.通过发酵罐发酵试验,选出1株抗

    8. Antifungal Activity of Soil Chitinolytic Bacilli

      Directory of Open Access Journals (Sweden)

      Eiri, AJ. (MSc

      2014-06-01

      Full Text Available Background and Objective: Chitin, which is a linear polymer of N-acetyl glucosamine residues, has been the most abundant polymer in nature after cellulose. In recent decades, Chitinases have received increased attention because of their wide range of applications, especially in biological control against fungi. Material and Methods: the isolation of bacilli producing chitinolytic enzymes was performed by collecting 40 soil samples from various regions of Gorgan, northern of Iran. The chitinolytic potential of the isolates was indicated by observation of clear zone in colloidal chitin agar medium. Identification of selected strains was performed by polyphasic taxonomy, and subtler identification and sequensing were carried out by extraction DNA. Antifungal effect was evaluated by well method against Candida albicans (ATCC 10231 Aspergillus niger (ATCC 2029،Aspergillu sflavus (IR6 Fusarium oxyporum (PTCC 5115 and Alternaria alternata (PTCC 5224. Results: Nine colonies of chitinase positive bacillus were isolated on choloidal Chitin Agar (CCA and five of them had antifungal effect. R6 strain had the highest, and R2 and R3 had the lowest effect on fungi. The 16S rRNA sequence of these isolations in comparison with the known bacteria has 95-97% similarity. Conclusion: Some of the soil bacteria can have antagonestic effects on human and phytopathogenic agents existed in soil. Keywords: Bacillus; Chitinase; Soil; Antifungal

    9. Self-assembled cardanol azo derivatives as antifungal agent with chitin-binding ability.

      Science.gov (United States)

      Mahata, Denial; Mandal, Santi M; Bharti, Rashmi; Gupta, Vinay Krishna; Mandal, Mahitosh; Nag, Ahindra; Nando, Golok B

      2014-08-01

      Cardanol is a non-isoprenoic phenolic lipid-mixture of distilled cashew nut shell liquid obtained from Anacardium occidentale. Herein, cardanol is purified from cashew nut shell liquid (CNSL) and synthesized to new compounds with different azo amphiphiles. These synthesized compounds are allowed to self-assembled in hydrophobic environment and checked antifungal activity against Candida albicans. Self-assembled structure of CABA showed higher antifungal activity (16μg/mL) and chitin-binding ability in comparison to CAP and CANB. Furthermore, the self-assembled azo amphiphiles are immobilized with silver ions to prepare hydrogel which showed eight folds enhanced antifungal activity. Toxicity is reduced by several folds of self-assembled or hydrogel structure in comparison to pure compounds. Thus, the self-assembled structure of amphiphiles and their hydrogels have been found to be new macromolecules of interest with potential use as antifungal drugs. PMID:24836571

    10. Novel hybrids of fluconazole and furanones: design, synthesis and antifungal activity.

      Science.gov (United States)

      Borate, Hanumant B; Sawargave, Sangmeshwer P; Chavan, Subhash P; Chandavarkar, Mohan A; Iyer, Ramki; Tawte, Amit; Rao, Deepali; Deore, Jaydeep V; Kudale, Ananada S; Mahajan, Pankaj S; Kangire, Gopinath S

      2011-08-15

      During our efforts to develop new antifungal agents, a number of hybrid molecules containing furanones and fluconazole pharmacophores were designed and synthesized. The new chemical entities thus synthesized were tested for their potential as antifungal agents against various fungal strains and it was observed that the compounds with general structure 7 were potent inhibitors of Candida albicans ATCC 24433, Candida glabrata ATCC 90030, Candida tropicalis ATCC 750 and Candida neoformans ATCC 34664 while the fluconazole analogues 12 exhibited antifungal activity against Candida albicans ATCC 24433 and Candida glabrata ATCC 90030. The structure-activity relationship for these compounds is discussed. The synthetic strategies used in the present work have potential to prepare a large number of compounds for further refinement of structures to obtain molecules suitable for development as antifungal drugs. PMID:21757344

    11. Antifungal Effect of Chitosan as Ca(2+) Channel Blocker.

      Science.gov (United States)

      Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

      2016-06-01

      The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca(2+), whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca(2+) gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

    12. Antifungal Effect of Chitosan as Ca2+ Channel Blocker

      Science.gov (United States)

      Lee, Choon Geun; Koo, Ja Choon; Park, Jae Kweon

      2016-01-01

      The aim of this study was to investigate antifungal activity of a range of different molecular weight (MW) chitosan against Penicillium italicum. Our results demonstrate that the antifungal activity was dependent both the MW and concentration of the chitosan. Among a series of chitosan derived from the hydrolysis of high MW chitosan, the fractions containing various sizes of chitosan ranging from 3 to 15 glucosamine units named as chitooligomers-F2 (CO-F2) was found to show the highest antifungal activity against P. italicum. Furthermore, the effect of CO-F2 toward this fungus was significantly reduced in the presence of Ca2+, whereas its effect was recovered by ethylenediaminetetraacetic acid, suggesting that the CO-F2 acts via disruption of Ca2+ gradient required for survival of the fungus. Our results suggest that CO-F2 may serve as potential compounds to develop alternatives to synthetic fungicides for the control of the postharvest diseases. PMID:27298599

    13. A comparative study on the potential of epiphytic yeasts isolated from tropical fruits to produce flavoring compounds.

      Science.gov (United States)

      Grondin, Eric; Shum Cheong Sing, Alain; Caro, Yanis; Raherimandimby, Marson; Randrianierenana, Ando Lalaniaina; James, Steve; Nueno-Palop, Carmen; François, Jean Marie; Petit, Thomas

      2015-06-16

      In recent years, there has been an increasing interest in identifying and characterizing the yeast flora associated with diverse types of habitat because of the many potential desirable technological properties of these microorganisms, especially in food applications. In this study, a total of 101 yeast strains were isolated from the skins of tropical fruits collected in several locations in the South West Indian Ocean. Sequence analysis of the D1/D2 domains of the large subunit (LSU) ribosomal RNA gene identified 26 different species. Among them, two species isolated from the skins of Cape gooseberry and cocoa beans appeared to represent putative new yeast species, as their LSU D1/D2 sequence was only 97.1% and 97.4% identical to that of the yeasts Rhodotorula mucilaginosa and Candida pararugosa, respectively. A total of 52 Volatile Organic Compounds (VOCs) were detected by Head Space Solid Phase Micro Extraction coupled to Gas Chromatography and Mass Spectroscopy (HS-SPME-GC/MS) from the 26 yeast species cultivated on a glucose rich medium. Among these VOCs, 6 uncommon compounds were identified, namely ethyl but-2-enoate, ethyl 2-methylbut-2-enoate (ethyl tiglate), ethyl 3-methylbut-2-enoate, 2-methylpropyl 2-methylbut-2-enoate, butyl 2-methylbut-2-enoate and 3-methylbutyl 2-methylbut-2-enoate, making them possible yeast species-specific markers. In addition, statistical methods such as Principal Component Analysis allowed to associate each yeast species with a specific flavor profile. Among them, Saprochaete suaveolens (syn: Geotrichum fragrans) turned to be the best producer of flavor compounds, with a total of 32 out of the 52 identified VOCs in its flavor profile. PMID:25802220

    14. Significance of volatile compounds produced by spoilage bacteria in vacuum-packed cold-smoked salmon ( Salmo salar ) analyzed by GC-MS and multivariate regression

      DEFF Research Database (Denmark)

      Jørgensen, Lasse Vigel; Huss, Hans Henrik; Dalgaard, Paw

      2001-01-01

      Changes were studied in the concentration of 38 volatile compounds during chilled storage at 5 degreesC of six lots of commercially produced vacuum-packed cold-smoked salmon and sterile cold-smoked salmon. The majority of volatile compounds produced during spoilage of cold-smoked salmon were......-carboxaldehyde produced by autolytic activity. Only a few of the volatile compounds produced during spoilage of cold-smoked salmon had an aroma value high enough to indicate contribution to the spoilage off- flavor of cold-smoked salmon. These were trimethylamine, 3- methylbutanal, 2-methyl-1-butanol, 3-methyl-1-butanol......, 1- penten-3-ol, and 1-propanol. The potency and importance of these compounds was confirmed by gas chromatography- olfactometry. The present study provides valuable information on the bacterial reactions responsible for spoilage off-flavors of cold-smoked salmon, which can be used to develop...

    15. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

      OpenAIRE

      Deepa Gupta; Jain, D. K.

      2015-01-01

      Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antif...

    16. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

      International Nuclear Information System (INIS)

      The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero

    17. An expert system for process planning of sheet metal parts produced on compound die for use in stamping industries

      Indian Academy of Sciences (India)

      SACHIN SALUNKHE; DEEPAK PANGHAL; SHAILENDRA KUMAR; H M A HUSSEIN

      2016-08-01

      Process planning of sheet metal part is an important activity in the design of compound die. Traditional methods of carrying out this task are manual, tedious, time-consuming, error-prone and experiencebased. This paper describes the research work involved in the development of an expert system for process planning of sheet metal parts produced on compound die. The proposed system is organized in six modules. For development of system modules, domain knowledge acquired from various sources of knowledge acquisition is refined and then framed in form of ‘IF-Then’ variety of production rules. System modules are coded in AutoLISP language and user interface is created using visual basic (VB). The system is capable to automate various activities of process planning including blank modeling, blank nesting, determining punch force required, election of clearance between punch and die, identifying sheet metal operations, and determining proper sequence of operations for manufacturing the part. The proposed system can be implemented on a PC having VB and AutoCAD software, therefore its low cost of implementation makes it affordable even for small scale sheet metal industries.

    18. Compounds used to produce cloned animals are genotoxic and mutagenic in mammalian assays in vitro and in vivo

      Energy Technology Data Exchange (ETDEWEB)

      Oliveira, R.J. [Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, SP (Brazil); Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Pós-Graduação em Saúde em Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina “Dr. Hélio Mandetta”, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Mestrado em Farmácia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Mantovani, M.S.; Silva, A.F. da [Departamento de Biologia Geral, Universidade Estadual de Londrina, Londrina, PR (Brazil); Pesarini, J.R. [Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Pós-Graduação em Saúde em Desenvolvimento na Região Centro-Oeste, Faculdade de Medicina “Dr. Hélio Mandetta”, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Mauro, M.O. [Centro de Estudos em Células Tronco, Terapia Celular e Genética Toxicológica, Núcleo de Hospital Universitário, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Programa de Doutorado em Biotecnologia e Biodiversidade - Rede Pró Centro-Oeste, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS (Brazil); Ribeiro, L.R. [Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista, Rio Claro, SP (Brazil); Programa de Pós-Graduação em Patologia, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista, Botucatu, SP (Brazil)

      2014-03-28

      The compounds 6-dimethylaminopurine and cycloheximide promote the successful production of cloned mammals and have been used in the development of embryos produced by somatic cell nuclear transfer. This study investigated the effects of 6-dimethylaminopurine and cycloheximide in vitro, using the thiazolyl blue tetrazolium bromide colorimetric assay to assess cytotoxicity, the trypan blue exclusion assay to assess cell viability, the comet assay to assess genotoxicity, and the micronucleus test with cytokinesis block to test mutagenicity. In addition, the comet assay and the micronucleus test were also performed on peripheral blood cells of 54 male Swiss mice, 35 g each, to assess the effects of the compounds in vivo. The results indicated that both 6-dimethylaminopurine and cycloheximide, at the concentrations and doses tested, were cytotoxic in vitro and genotoxic and mutagenic in vitro and in vivo, altered the nuclear division index in vitro, but did not diminish cell viability in vitro. Considering that alterations in DNA play important roles in mutagenesis, carcinogenesis, and morphofunctional teratogenesis and reduce embryonic viability, this study indicated that 6-dimethylaminopurine and cycloheximide utilized in the process of mammalian cloning may be responsible for the low embryo viability commonly seen in nuclear transfer after implantation in utero.

    19. Design, synthesis of novel antifungal triazole derivatives with high activities against Aspergillus fumigatus

      Institute of Scientific and Technical Information of China (English)

      Qiu Qin He; Chao Mei Liu; Ke Li; Yong Bing Cao

      2007-01-01

      Based on the active site of Aspergillusfumigatus lanosterol 14α-demethylase (AF-CYP51), novel triazole compounds were designed. Their chemical synthesis and the antifungal activities were reported. The results showed that all the target compounds exhibited excellent activities with broad spectrum; in which compounds 4, 12 and 15 showed comparable activities against A.fumigatus to the control drug itraconazole.

    20. Topical antifungals for seborrhoeic dermatitis

      OpenAIRE

      Okokon, Enembe O; Verbeek, Jos H.; Ruotsalainen, Jani H; Ojo, Olumuyiwa A; Bakhoya, Victor Nyange

      2015-01-01

      Background Seborrhoeic dermatitis is a chronic inflammatory skin condition that is distributed worldwide. It commonly affects the scalp, face and flexures of the body. Treatment options include antifungal drugs, steroids, calcineurin inhibitors, keratolytic agents and phototherapy. Objectives To assess the effects of antifungal agents for seborrhoeic dermatitis of the face and scalp in adolescents and adults. A secondary objective is to assess whether the same interventions are effective in t...

    1. A compound produced by fruigivorous Tephritidae (Diptera) larvae promotes oviposition behavior by the biological control agent Diachasmimorpha longicaudata (Hymenoptera: Braconidae).

      Science.gov (United States)

      Stuhl, Charles; Sivinski, John; Teal, Peter; Paranhos, Beatriz; Aluja, Martin

      2011-06-01

      Tephritid fruit fly parasitoids use fruit-derived chemical cues and the vibrations that result from larval movements to locate hosts sequestered inside fruit. However, compounds produced by the larvae themselves have not been previously described nor their significance to parasitoid foraging determined. We collected the volatiles from four species of tropical and subtropical Tephritidae: Anastrepha suspensa (Loew), Bactrocera dorsalis Hendel, Bactrocera cucurbitae Coquillett, and Ceratitis capitata (Wiedemann), representing two subfamilies (Dacinae and Trypetinae). Para-ethylacetophenone, an analog of a known tephritid parasitoid attractant, was a major constituent of all four, and was not associated with larvae of another acalypterate fly, Drosophila melanogaster Meigen, or with the calypterate Musca domestica L. It also was present in volatiles from whole, A. suspensa infested fruits of Eugenia uniflora (L.). Para-ethylacetophenone was not necessarily produced as a direct consequence of fruit consumption because it also was detected from larvae that developed in two artificial diets and in spent diets subsequent to larval development. Sensillae on both the antennae and ovipositor of the opiine braconid fruit fly parasitoid, Diachasmimorpha longicaudata (Ashmead) responded to the para-ethylacetophenone in larval volatiles and as a synthetic. Although a potential cue to foraging parasitoids, para-ethylacetophenone showed no long range (>1m) attractiveness to the adult female parasitoid, but did stimulate ovipositor-insertion and oviposition into both a natural (fruit) and an artificial (parafilm) substrate. Thus it may prove useful in colonizing and mass-rearing opine fruit fly parasitoids. PMID:22251652

    2. Mass spectrometry identification of antifungal lipopeptides from Bacillus sp. BCLRB2 against Rhizoctonia solani and Sclerotinia sclerotiorum.

      Science.gov (United States)

      Elkahoui, S; Djébali, N; Karkouch, I; Ibrahim, A Hadj; Kalai, L; Bachkovel, S; Tabbene, O; Limam, F

      2014-01-01

      This work aims to characterize the bioactive molecules produced by an antagonistic Bacillus sp. strain BCLRB2 isolated from healthy leaves of olive tree against Rhizoctonia solani and Sclerotinia sclerotiorum. The bacterial strain isolated showed a high and persistent antifungal activity against the two pathogens. The free-cell supernatant showed also a high antifungal activity against R. solani and at a lower extent against S. sclerotiorum. The partial purification of the antifungal substances with methanol gradient applied to C18 column binding the Bacillus BCLRB2 culture supernatant showed that the 20% and 60% methanol fractions had a high and specific activity against S. sclerotiorum and R. solani, respectively. The mass spectrometry identification of the compounds in the fraction specifically active against S. sclerotiorum revealed the presence of bacillomycin D C16 as a major lipopeptide. The fraction specifically active against R. solani contained bacillomycin D C15 and 2 unknown lipopeptides. The 80% methanol fraction had a moderate and a broad spectrum activity against the two pathogens and consisted from two iturin D (C13 and C14) as a major lipopeptides. PMID:25272736

    3. The ultrasound-assisted extraction and identification of antifungal substances from B. amyloliquefaciens strain NJN-6 suppressing Fusarium oxysporum.

      Science.gov (United States)

      Yuan, Jun; Raza, Waseem; Huang, Qiwei; Shen, Qirong

      2012-12-01

      The primary mechanism underlying antagonism among microorganisms is the production of antagonistic substances called antibiotics that inhibit the growth of pathogens. In this study, the antagonistic substances produced by the Bacillus amyloliquefaciens strain NJN-6 that had antifungal activity against Fusarium oxysporum were extracted and identified. The active antifungal substance was extracted from dried leavening with ultrasound-assisted extraction (UAE), using n -butanol as the extractant. HPLC/ESI-MS was performed to investigate the components of the extracts. The results of the study showed that the antimicrobial substances consisted of three homologues of the iturin A family with molecular weights of 1043, 1057 and 1071 Da and of two homologues of the fengycin family with molecular weights of 1477 and 1491 Da. The effects of ultrasonic treatment time, extraction time and extractant volume, three major methodological parameters, were also studied to determine the optimal conditions for extraction. Compared with traditional extraction techniques, UAE is a simple, cheap and environmentally friendly method that represents a new option for the isolation and identification of lipopeptides and other active compounds. These antifungal substances extracted and identified from Bacillus amyloliquefaciens NJN-6 will help us to understand its biocontrol mechanism against Fusarium oxysporum. PMID:22581589

    4. Synthesis and antifungal activity evaluation of new heterocycle containing amide derivatives.

      Science.gov (United States)

      Wang, Xuesong; Gao, Sumei; Yang, Jian; Gao, Yang; Wang, Ling; Tang, Xiaorong

      2016-01-01

      A series of heterocycle containing amide derivatives (1-28) were synthesised by the combination of acyl chlorides (1a, 2a) and heterocyclic/homocyclic ring containing amines, and their in vitro antifungal activity was evaluated against five plant pathogenic fungi, namely Gibberella zeae, Helminthosporium maydis, Rhizoctonia solani, Botrytis cinerea and Sclerotinia sclerotiorum. Results of antifungal activity analysis indicated that some of the products showed good to excellent antifungal activity, as compound 2 showed excellent activity against G. zeae and R. solani and potent activity against H. maydi, B. cinerea and S. sclerotiorum, and compounds 1, 8 and 10 also displayed excellent antifungal potential against H. maydi, B. cinerea and S. sclerotiorum and good activity against R. solani when compared with the standard carbendazim. PMID:26140452

    5. Anthropogenic (PBDE) and naturally-produced (MeO-PBDE) brominated compounds in cetaceans--a review.

      Science.gov (United States)

      Alonso, Mariana B; Azevedo, Alexandre; Torres, João Paulo M; Dorneles, Paulo R; Eljarrat, Ethel; Barceló, Damià; Lailson-Brito, José; Malm, Olaf

      2014-05-15

      This paper reviews the available data on brominated flame retardants, the polybrominated diphenyl ethers (PBDEs), as well as on the naturally-produced methoxylated polybrominated diphenyl ethers (MeO-PBDEs) in cetacean tissues around the world. Levels and possible sources of both compound classes are discussed. Odontocete cetaceans accumulate higher PBDE concentrations than mysticete species. PBDE contamination was higher in cetaceans from the Northern hemisphere, whereas MeO-PBDE levels were higher in animals from the Southern hemisphere. Southern resident killer whales from NE Pacific presented the highest levels reported in biota, followed by bottlenose dolphins from North Atlantic (U.K. and U.S. coast). Many species presented PBDE concentrations above threshold levels for health effects in odontocetes. Time trend studies indicate that PBDE concentrations in odontocetes from Japan, China, U.S. and Canada coastal zones have increased significantly over the past 30 years. Studies from U.K. waters and NE Atlantic showed a decrease and/or stability of PBDE levels in cetacean tissues in recent decades. The highest MeO-PBDE concentrations were found in dolphins from Tanzania (Indian Ocean), bottlenose dolphins from Queensland, Australia (SW Pacific), and odontocetes from coastal and continental shelf waters off southeastern Brazil (SW Atlantic). The upwelling phenomenon and the presence of coral reef complexes in these tropical oceans may explain the large amounts of the naturally-produced organobromines. Considering that these bioaccumulative chemicals have properties that could cause many deleterious effects in those animals, future studies are required to evaluate the potential ecotoxicological risks. PMID:24636867

    6. Radical Scavenging Activity, Total Phenol Content and Antifungal Activity of Cinnamomum Iners Wood

      OpenAIRE

      Zurida Anis; Othman Sulaiman,; Rokiah Hashim; Sayed Hasan Mehdi; Raza Murad Ghalib

      2012-01-01

      The study was done to investigate the antioxidant, total phenol content and antifungal characteristics of phenolics compounds of extracts from Cinnamomum iners (Reinw. ex Blume-Lauraceae) wood. Radical scavenging activity method of DPPH was used to determine antioxidant activity of the extracts. Four fungus, namely white fungi (Pycnoporus sanguineus, Trametes versicolor, Fomitopsis palustris) and brown fungi (Gleophyllum trabeum) were used to determine the antifungal activity of the Cinnamomu...

    7. A simple synthesis of kaurenoic esters and other derivatives and evaluation of their antifungal activity

      International Nuclear Information System (INIS)

      Representative esters derived from kaurenoic acid were prepared in order to evaluate their antifungal properties. Alkyl and substituted benzyl esters were obtained in good yield under mild conditions by esterification of kaurenoic acid with the corresponding alkyl halide in KOH-acetone. All synthesized compounds were tested for antifungal properties against pathogenic yeasts, hialohyphomycetes and dermatophytes. Kaurenoic acid and derivatives containing a free carboxyl group were moderately active against dermatophytes. (author)

    8. Antifungal Activity of Decursinol Angelate Isolated from Angelica gigas Roots Against Puccinia recondita

      OpenAIRE

      Mi-Young Yoon; Kyoung Soo Jang; Gyung Ja Choi; Young Sup Kim; Yong Ho Choi; Jin-Cheol Kim; Byeongjin Cha

      2011-01-01

      Rust causes significant losses in the yield and quality of various crops. The development of new effective and environmentally benign agents against the pathogen is of great interest. In the course of searching a natural antifungal compound from medicinal plants, we found that the methanol extract of Angelica gigas roots had a potent control efficacy against wheat leaf rust (WLR) caused by Puccinia recondita. The antifungal substance was isolated from the methanol extract by silica gel column...

    9. Antifungal chalcones and new caffeic acid esters from Zuccagnia punctata acting against soybean infecting fungi.

      Science.gov (United States)

      Svetaz, Laura; Tapia, Alejandro; López, Silvia N; Furlán, Ricardo L E; Petenatti, Elisa; Pioli, Rosanna; Schmeda-Hirschmann, Guillermo; Zacchino, Susana A

      2004-06-01

      The crude methanolic extract of Zuccagnia punctata was active toward the fungal pathogens of soybean Phomopsis longicolla and Colletotrichum truncatum. Assay guided fractionation led to the isolation of two chalcones, one flavanone and a new caffeoyl ester derivative as the compounds responsible for the antifungal activity. Another new caffeoyl ester derivative was isolated from the antifungal chloroform extract but proved to be inactive against the soybean infecting fungi up to 50 microg/mL PMID:15161186

    10. Formulation and antifungal performance of natamycin-loaded liposomal suspensions: the benefits of sterol-enrichment.

      Science.gov (United States)

      Bouaoud, Clotilde; Lebouille, Jérôme G J L; Mendes, Eduardo; De Braal, Henriette E A; Meesters, Gabriel M H

      2016-06-01

      The aim of this study is to develop and evaluate food-grade liposomal delivery systems for the antifungal compound natamycin. Liposomes made of various soybean lecithins are prepared by solvent injection, leading to small unilamellar vesicles (Fine-tuning of sterol concentration allows preparation of liposomal suspensions presenting modulated in vitro release kinetics rates and enhanced antifungal activity against the model yeast Saccharomyces cerevisiae. PMID:26009272

    11. Microstructure and properties of NiAl intermetallic compound produced by mechanical alloying and consolidated by spark-plasma sintering

      International Nuclear Information System (INIS)

      Bulk specimens of NiAl intermetallic compound were produced by spark plasma sintering of mechanically alloyed powders. The highest densification levels attained in the samples were about 93 %. Microhardness values ranged from 4.41 to 5.97 GPa depending upon the sintering conditions. A bimodal crystallite size distribution was observed in samples sintered at temperatures of 1000 deg C or higher; one component of the distribution had a mean crystallite size between 10 and 30 nm, while the other component was made of grains with sizes between 0.5 and 2 μm. Mechanical testing in compression was done at temperatures from 20 to 500 deg C. No ductility was observed at room temperature, but some ductility was detected in tests performed at and above 300 deg C. The strength of the consolidated materials was remarkably high. The average value of the yield or fracture stress in compression was higher than 1.0 GPa at all testing temperatures. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

    12. Chemistry and antifungal potential of Alantolides from Inula racemosa H

      Indian Academy of Sciences (India)

      Dalvir Kataria; K K Chahal

      2013-01-01

      Alantolactone and isoalantolactone were isolated from powdered roots of Inula racemosa H. using Soxhlet extraction followed by the column chromatography. Pyrazolines of alantolactone and isoalantolactone were synthesized using diazomethane, diazoethane and diazopropane. The structure elucidation of the compounds were carried out using IR and 1H NMR spectroscopic techniques. All the compounds were screened in vitro for their antifungal potential at various concentrations against Alternaria brassicae and Penicillium italicum using spore germination inhibition technique and against Rhizoctonia solani by poisoned food technique. All the compounds exhibited fairly good fungitoxicity against the test fungi with ED50 values of less than 500 g mL-1.

    13. DYSREGULATION OF ION HOMEOSTASIS BY ANTIFUNGAL AGENTS

      Directory of Open Access Journals (Sweden)

      RajiniRao

      2012-04-01

      Full Text Available Ion signaling and transduction networks are central to fungal development and virulence because they regulate gene expression, filamentation, host association and invasion, pathogen stress response and survival. Dysregulation of ion homeostasis rapidly mediates cell death, forming the mechanistic basis by which a growing number of amphipathic but structurally unrelated compounds elicit antifungal activity. Included in this group is carvacrol, a terpenoid phenol that is a prominent component of oregano and other plant essential oils. Carvacrol triggers an early dose dependent Ca2+ burst and long lasting pH changes in the model yeast S. cerevisiae. The distinct phases of ionic transients and a robust transcriptional response that overlaps with Ca2+ stress and nutrient starvation point to specific signaling events elicited by plant terpenoid phenols, rather than a non-specific lesion of the membrane as was previously considered. We discuss the potential use of plant essential oils and other agents that disrupt ion signaling pathways as chemosensitizers to augment conventional antifungal therapy, and to convert fungistatic drugs with strong safety profiles into fungicides.

    14. In vitro and in vivo activity of a novel antifungal small molecule against Candida infections.

      Directory of Open Access Journals (Sweden)

      Sarah Sze Wah Wong

      Full Text Available Candida is the most common fungal pathogen of humans worldwide and has become a major clinical problem because of the growing number of immunocompromised patients, who are susceptible to infection. Moreover, the number of available antifungals is limited, and antifungal-resistant Candida strains are emerging. New and effective antifungals are therefore urgently needed. Here, we discovered a small molecule with activity against Candida spp. both in vitro and in vivo. We screened a library of 50,240 small molecules for inhibitors of yeast-to-hypha transition, a major virulence attribute of Candida albicans. This screening identified 20 active compounds. Further examination of the in vitro antifungal and anti-biofilm properties of these compounds, using a range of Candida spp., led to the discovery of SM21, a highly potent antifungal molecule (minimum inhibitory concentration (MIC 0.2-1.6 µg/ml. In vitro, SM21 was toxic to fungi but not to various human cell lines or bacterial species and was active against Candida isolates that are resistant to existing antifungal agents. Moreover, SM21 was relatively more effective against biofilms of Candida spp. than the current antifungal agents. In vivo, SM21 prevented the death of mice in a systemic candidiasis model and was also more effective than the common antifungal nystatin at reducing the extent of tongue lesions in a mouse model of oral candidiasis. Propidium iodide uptake assay showed that SM21 affected the integrity of the cell membrane. Taken together, our results indicate that SM21 has the potential to be developed as a novel antifungal agent for clinical use.

    15. Antifungal therapy with an emphasis on biofilms

      OpenAIRE

      Pierce, Christopher G.; Srinivasan, Anand; Uppuluri, Priya; Anand K. Ramasubramanian; López-Ribot, José Luis

      2013-01-01

      Fungal infections are on the rise as advances in modern medicine prolong the lives of severely ill patients. Fungi are eukaryotic organisms and there are a limited number of targets for antifungal drug development; as a result the antifungal arsenal is exceedingly limited. Azoles, polyenes and echinocandins, constitute the mainstay of antifungal therapy for patients with life-threatening mycoses. One of the main factors complicating antifungal therapy is the formation of fungal biofilms, micr...

    16. TESTING ANTIFUNGAL ACTIVITY OF SOME ESSENTIAL OILS USING FLOW CYTOMETRY

      Directory of Open Access Journals (Sweden)

      Crina Saviuc

      2012-09-01

      Full Text Available The use of natural antifungal compounds has become a viable alternative for fighting fungal infections since high rates of resistance to synthetic antifungal compounds has emerged. Classical techniques aimed to routinely investigate fungal susceptibility are often limited when using natural essential oils, because of their instability and great volatility that may lead to false results. In this study, we report the results obtained by classical antimicrobial susceptibility testing techniques and flow cytometry regarding the effect of some volatile oils on different Candida clinical isolates. The obtained results revealed that flow cytometry is a very useful and precise technique in investigating the influence of essential oils on the fungal cells, surpassing the disadvantage of their volatility and thus reducing false results often obtained by using the classical methods.

    17. Antifungal activities of thiosemicarbazones and semicarbazones against mycotoxigenic fungi

      Directory of Open Access Journals (Sweden)

      Rojane de Oliveira Paiva

      2014-12-01

      Full Text Available Mycotoxigenic fungi can compromise the quality of food, exposing human and animal health at risk. The antifungal activity of eight thiosemicarbazones (1-8 and nine semicarbazones (9-17 was evaluated against Aspergillus flavus, A. nomius, A. ochraceus, A. parasiticus and Fusarium verticillioides. Thiosemicarbazones had MIC values of 125-500 µg/ml. The thiosemicarbazones 1 and 2 exerted fungistatic activity against Aspergillus spp., and thiosemicarbazone 2 exerted fungicidal activity against F. verticillioides. Compound 2 showed an iron chelating effect of 63%. The ergosterol content of A. parasiticus had a decrease of 28 and 71% for the 31.2 and 62.5 µg/ml concentrations of thiosemicarbazone 2 compared to the control. The obtained results of antifungal activity revealed that thiosemicarbazone class was more active when compared to semicarbazone class and, the thiosemicarbazone 2 was the most active compound, specially, against Aspergillus spp.

    18. The synthesis and synergistic antifungal effects of chalcones against drug resistant Candida albicans.

      Science.gov (United States)

      Wang, Yuan-Hua; Dong, Huai-Huai; Zhao, Fei; Wang, Jie; Yan, Fang; Jiang, Yuan-Ying; Jin, Yong-Sheng

      2016-07-01

      To identify effective and low toxicity synergistic antifungal compounds, 24 derivatives of chalcone were synthesized to restore the effectiveness of fluconazole against fluconazole-resistant Candida albicans. The minimal inhibitory concentration (MIC80) and the fractional inhibitory concentration index (FICI) of the antifungal synergist fluconazole were measured against fluconazole-resistant Candida albicans. This was done via methods established by the clinical and laboratory standards institute (CLSI). Of the synthesized compounds, 2'-hydroxy-4'-methoxychalcone (8) exhibited the most potent in vitro (FICI=0.007) effects. The structure activity relationship of the compounds are then discussed. PMID:27210436

    19. One-pot synthesis and antifungal activity against plant pathogens of quinazolinone derivatives containing an amide moiety.

      Science.gov (United States)

      Zhang, Jin; Liu, Jia; Ma, Yangmin; Ren, Decheng; Cheng, Pei; Zhao, Jiawen; Zhang, Fan; Yao, Yuan

      2016-05-01

      An efficient one-pot, three-component synthesis of quinazolinone derivatives containing 3-acrylamino motif was carried out using CeO2 nanoparticles as catalyst. Thirty-nine synthesized compounds were obtained with satisfied yield and elucidated by spectroscopic analysis. Four phytopathogenic fungi were chosen to test the antifungal activities by minimum inhibitory concentration (MIC) method. Compounds 4ag, 4bb, 4bc showed broad antifungal activities against at least three fungi, and dramatic effects of substituents on the activities were observed. Docking studies were established to explore the potential antifungal mechanism of quinazolinone derivatives as the chitinase inhibitors, and also verified the importance of the amide moiety. PMID:27040656

    20. Antifungal Indole Alkaloids from Winchia calophylla.

      Science.gov (United States)

      Yang, Mei-Li; Chen, Jia; Sun, Meng; Zhang, Dong-Bo; Gao, Kun

      2016-05-01

      Ten indole alkaloids (1-10) were obtained from an antifungal extract of Winchia calophylla, of which two (2 and 4) were new. N(4)-Methyl-10-hydroxyl-desacetylakuammilin (2) was an akuammiline-type indole alkaloid. N(1)-Methyl-echitaminic acid (4) was an unusual zwitterion with a basic vincorine-type skeleton. This is the first report of 10 in W. calophylla. The structures of all of the compounds were determined based on spectroscopic data, and their bioactivities were assessed. Compound 1 showed potent activity against the plant pathogenic fungi of Penicillium italicum and Fusarium oxysporum f.sp cubens with IC50 s of 10.4 and 11.5 µM, respectively, and 3 inhibited Rhizoctonia solani with an IC50 of 11.7 µM. Compounds 2 and 4 showed weak cytotoxicity against the human leukemic cell line HL-60 in vitro with IC50 s of 51.4 and 75.3 µM, respectively. Compounds 1 and 2 displayed weak activity against acetylcholinesterase with IC50 s around 61.3 and 52.6 µM, respectively. PMID:27002397

    1. Two new flavonoids from Artemisa sacrorum Ledeb and their antifungal activity

      Science.gov (United States)

      Wang, Qing-Hu; Wu, Jie-si; Wu, Rong-jun; Han, Na-ren-chao-ke-tu; Dai, Na-yin-tai

      2015-05-01

      Two new flavonoids, named as sacriflavone A (1) and sacriflavone B (2), were isolated from the CHCl3 extract of Artemisa sacrorum Ledeb (A. sacrorum). The structures of the isolated compounds have been elucidated unambiguously by UV, MS, and a series of 1D and 2D NMR analyses. The isolated compounds exhibited antifungal activity against different Fusarium oxysporum f. sp. dianthi pathotypes.

    2. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

      Directory of Open Access Journals (Sweden)

      Kelen Fátima Dalben Dota

      2011-01-01

      Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

    3. Dual crosslinked iminoboronate-chitosan hydrogels with strong antifungal activity against Candida planktonic yeasts and biofilms.

      Science.gov (United States)

      Ailincai, Daniela; Marin, Luminita; Morariu, Simona; Mares, Mihai; Bostanaru, Andra-Cristina; Pinteala, Mariana; Simionescu, Bogdan C; Barboiu, Mihai

      2016-11-01

      Chitosan based hydrogels are a class of cross-linked materials intensely studied for their biomedical, industrial and environmental application, but their biomedical use is limited because of the toxicity of different organic crosslinkers. To overcome this disadvantage, a new strategy to produce supramolecular chitosan hydrogels using low molecular weight compounds able to form covalent linkages and H-bonds to give a dual crosslinking is proposed. For this purpose we used 2-formylphenylboronic acid, which brings the advantage of imine stabilization via iminoboronate formation and potential antifungal activity due to the presence of boric acid residue. FTIR and NMR spectroscopy indicated that the gelling process took place by chemo-physical crosslinking forming a dual iminoboronate-chitosan network. Further, X-ray diffraction demonstrated a three-dimensional nanostructuring of the iminoboronate network with consequences on the micrometer-scale morphology and on the improvement of mechanical properties, as demonstrated by SEM and rheological investigation. The hydrogels proved strong antifungal activity against Candida planktonic yeasts and biofilms, promising to be a friendly treatment of the recurrent vulvovaginitis infections. PMID:27516277

    4. Antifungal steroid saponins from Dioscorea cayenensis.

      Science.gov (United States)

      Sautour, M; Mitaine-Offer, A-C; Miyamoto, T; Dongmo, A; Lacaille-Dubois, M-A

      2004-01-01

      From the rhizomes of Dioscorea cayenensis Lam.-Holl (Dioscoreaceae), the new 26- O- beta- D-glucopyranosyl-22-methoxy-3 beta,26-dihydroxy-25( R)-furost-5-en-3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 1) was isolated together with the known dioscin ( 2) and diosgenin 3- O- alpha- L-rhamnopyranosyl-(1-->4)- alpha- L-rhamnopyranosyl-(1-->4)-[ alpha- L-rhamnopyranosyl-(1-->2)]- beta- D-glucopyranoside ( 3). Their structures were established on the basis of spectral data. Compound 2 exhibited antifungal activity against the human pathogenic yeasts Candida albicans, C. glabrata and C. tropicalis (MICs of 12.5, 12.5 and 25 micro g/mL, respectively) whereas 3 showed weak activity and 1 was inactive. PMID:14765305

    5. On the Ideal Quality Control Specification of Compound Prescription -- Taking thought for the New Ingredients Produced in the Single Drugs Combining Process in Compound Prescription

      Institute of Scientific and Technical Information of China (English)

      刘建利

      2002-01-01

      @@ Effectiveness, safety and quality controllability are the three basic and most important premises for evaluating the quality of drugs. Having undergone clinical tests and been verified in thousands of years, the effectiveness and safety of compound prescription, the chief form of medication in TCM, have been proved reliable. Sometimes due to the lack of quality controllability, incorrect drug or method of preparing being used, so poor therapeutic effect can be seen, though diagnosis and prescription are correct. Quality uncontrollability is also one of the important reasons that causes difficulty for TCM preparation to enter international market. In order to ensure the effectiveness and safety of TCM compound prescription and the entering of TCM preparation into international market, strict quality control specifications should be defined. Although wide attention has been paid to this task, how to define the specifications is still under discussion.

    6. Use of antifungal drugs in hematology

      Directory of Open Access Journals (Sweden)

      Marcio Nucci

      2012-01-01

      Full Text Available Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the different antifungal agents. In this paper the principal antifungal agents used in hematologic patients will be discussed as will the clinical scenarios where these agents have been used.

    7. Antifungal Activity of Selected Lactic Acid Bacteria and Propionic Acid Bacteria against Dairy-Associated Spoilage Fungi

      DEFF Research Database (Denmark)

      Aunsbjerg, Stina Dissing

      Bacterial cultures of lactic and propionic acid bacteria are widely used in fermented products including dairy products. Spoilage fungi may constitute a quality and safety issue in these products. The antifungal properties of some lactic and propionic acid bacteria make them potential candidates...... metabolites produced. Besides diacetyl and lactic acid, 6 antifungal hydroxy acids were identified. Of these, 3 have previously been reported from antifungal lactic acid bacteria, whereas the other 3 hydroxy acids have not previously been reported produced by antifungal lactic acid bacteria....... for prolonging shelf-life of food without the addition of specific preservatives. Increased interest in the use of these bacteria for biopreservation has led to identification of a range of potent strains, and in addition, isolation and identification of various antifungal metabolites produced by...

    8. Radiation application for upgrading of bioresources - Development of antifungal and/or nitrogen fixative microbes

      Energy Technology Data Exchange (ETDEWEB)

      Lee, Ki Sung; Ko, Dong Kyu; Han, Gab Jin [Paichai University, Taejon (Korea)

      2000-04-01

      (1) In this study, the antifungal bacteria six strains were isolated from various environment located in Chung-cheong area, Korea. These isolates were identified the genera Bacillus sp, Pseudomonas sp. through morphological, physiological and biochemical analysis. Strains KL3362 and KL3397 were identified as Pseudomonas aurantiaca and Alcaligenes faecalis, respectively. Considering antifungal(AF) spectrum, strain KL3303, 3334, and 3341 show the broad range, KL3362 and KL3397 the narrow range of AF activity on a number of pathogenic fungi. Therefore, strains KL3341 and KL3362 were selected as the strong candidate of antifungal bacteria on every purpose and usage related with our research goal. (2) KL3341 producing-antifungal substances were consisted of five different kinds of low molecular weight polypeptides (3) Optimal conditions for the production of antifungal substances were analyzed under various environmental conditions. Growth rates were different according to carbon and nitrogen source, antifungal substance production yields were not different, however. Product of antifungal substances according t phosphate is proportional to the concentration. And productivity of antifungal substances was generally high in the range 30 {approx} 37 deg. C at pH 7. In case of adding vitamin B1 or lysine to medium, the antifungal activity was enhanced. (4) Mutants with enhanced antifungal activities were constructed by radiation of {gamma}-ray. (5) AF strains were screened and selected from this research can be used in the microbial biocides as well as multifunctional bio-controllers in order to remove plant pathogenic fungi and to clarify the polluted environment. Due to their excellent degradation capability for agricultural and/or organic substances, they also can be used to improve soil quality, to ferment compost and to clean up the environment. 35 refs., 17 figs., 15 tabs. (Author)

    9. Synthesis, In Vitro Biological Evaluation, and Molecular Docking of New Triazoles as Potent Antifungal Agents.

      Science.gov (United States)

      Li, Xiang; Liu, Chao; Tang, Sheng; Wu, Qiuye; Hu, Honggang; Zhao, Qingjie; Zou, Yan

      2016-01-01

      Based on the structure of the active site of CYP51 and the structure-activity relationships of azole antifungal compounds that we designed in a previous study, a series of 1-{1-[2-(substitutedbenzyloxy)ethyl]-1H-1,2,3-triazol-4-yl}-2-(2,4-difluorophenyl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ols (6a-n) were designed and synthesized utilizing copper-catalyzed azide-alkyne cycloaddition. Preliminary antifungal tests against eight human pathogenic fungi in vitro showed that all the title compounds exhibited excellent antifungal activities with a broad spectrum in vitro. Molecular docking results indicated that the interaction between the title compounds and CYP51 comprised π-π interactions, hydrophobic interactions, and the narrow hydrophobic cleft. PMID:26641629

    10. Synthesis and antifungal activity of 2-hydroxy-4,5-methylenedioxyaryl ketones as analogues of kakuol.

      Science.gov (United States)

      Musso, Loana; Dallavalle, Sabrina; Merlini, Lucio; Farina, Gandolfina

      2010-04-01

      In a study aiming to determine the structural elements essential to the antifungal activity of kakuol, we synthesized a series of 2-hydroxy-4,5-methylenedioxyaryl ketones, and we assayed their in vitro antifungal activity. The most sensitive target organisms to the action of these class of compounds were Phytophthora infestans, Phytium ultimum, Cercospora beticola, Cladosporium cucumerinum, and Rhizoctonia solani. Most of the analogs showed a remarkable in vitro activity, and some of them appeared significantly more effective than the natural product. The biological activity was mainly affected by introducing structural modification on the carbonyl moiety of the natural-product molecule. In particular, compound 5a, bearing a C=C bond conjugated to the C=O group, was found active with a MIC value of 10 microg ml(-1) against Cladosporium cucumerinum. The results suggest that 2-hydroxy-4,5-methylenedioxyaryl ketones can be considered promising candidates in the development of new antifungal compounds. PMID:20397224

    11. Synthesis and Antifungal Evaluation of 1-Aryl-2-dimethyl-aminomethyl-2-propen-1-one Hydrochlorides

      Directory of Open Access Journals (Sweden)

      Mehmet Emin Topaloglu

      2011-06-01

      Full Text Available The development of resistance to current antifungal therapeutics drives the search for new effective agents. The fact that several acetophenone-derived Mannich bases had shown remarkable antifungal activities in our previous studies led us to design and synthesize some acetophenone-derived Mannich bases, 1-8 and 2-acetylthiophene-derived Mannich base 9, 1-aryl-2-dimethylaminomethyl-2-propen-1-one hydrochloride, to evaluate their antifungal activities. The designed chemical structures have α,β-unsaturated ketone moieties, which are responsible for the bioactivities of the Mannich bases. The aryl part was C6H5 (1; 4-CH3C6H4 (2; 4-CH3OC6H4 (3; 4-ClC6H4 (4; 4-FC6H4 (5; 4-BrC6H4 (6; 4-HOC6H4 (7; 4-NO2C6H4 (8; and C4H3S(2-yl (9. In this study the designed compounds were synthesized by the conventional heating method and also by the microwave irradiation method to compare these methods in terms of reaction times and yields to find an optimum synthetic method, which can be applied for the synthesis of Mannich bases in further studies. Since there are limited number of studies reporting the synthesis of Mannich bases by microwave irradiation, this study may also contribute to the general literature on Mannich bases. Compound 7 was reported for the first time. Antifungal activities of all compounds and synthesis of the compounds by microwave irradiation were also reported for the first time by this study. Fungi (15 species were used for antifungal activity test. Amphotericin B was tested as an antifungal reference compound. In conclusion, compounds 1-6, and 9, which had more potent (2–16 times antifungal activity than the reference compound amphotericin B against some fungi, can be model compounds for further studies to develop new antifungal agents. In addition, microwave irradiation can be considered to reduce reaction period, while the conventional method can still be considered to obtain compounds with higher reaction yields in the synthesis of

    12. Study on Mutagenic Breeding of Bacillus Subtilis and Properties of Its Antifungal Substances

      Science.gov (United States)

      Liu, Jing; Yao, Jianming

      2004-08-01

      Bacillus subtitles JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our studay. After B. subtitles JA was implanted by N+ ions, a strain designated as B. subtitles JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate-enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein.

    13. Study on Mutagenic Breeding of Bacillus Subtilis and Properties of Its Antifungal Substances

      Institute of Scientific and Technical Information of China (English)

      刘静; 姚建铭

      2004-01-01

      Bacillus subtitles JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi,such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our studay. After B. Subtitles JA was implanted by N+ ions,a strain designated as B. Subtitles JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%,the precipitate-enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein.

    14. Study on mutagenic breeding of bacillus subtilis and properties of its antifungal substances

      International Nuclear Information System (INIS)

      Bacillus subtilis JA isolated by our laboratory produced a large amount of antifungal substances, which had strong inhibitory activity against various plant pathogenic fungi, such as Rhizoctonia solani, Fusarium graminearum and so on. Ion beam implantation as a new mutagenic methods was applied in our study. After B. subtilis JA was implanted by N+ ions, a strain designated as B. Subtilis JA-026 was screened and obtained, which had a higher ability to produce those antifungal substances. A series of experiments indicated that the antifungal substances were thermostable and partially sensitive to proteinases K and tryproteinase. When the fermentating broth was fractionated with ammonium sulphate of a final saturation of 70%, the precipitate enhanced inhibitory activity while the supernatant lost this activity. It appeared that the antifungal substances were likely to be protein. (authors)

    15. SYNTHESIS AND ANTIFUNGAL ACTIVITY OF SOME SUBSTITUTED BENZIMIDAZOLE ANALOGUES

      Directory of Open Access Journals (Sweden)

      Mehendale Nitin P

      2012-07-01

      Full Text Available In the present scheme, we have an attempt to synthesize some novel benzimidazole derivatives by substituting triazole moiety at N-1 position of benzimidazole by fusion reaction of benzimidazole-1-acetic acid with thiocarbohydrazide. The substituted triazole was refluxed with different aromatic carboxylic acid in the presence of POCl3 yield different benzimidazole derivatives, respectively. The synthesized compounds were characterized by IR, 1H-NMR and Mass spectroscopy. The compounds were screened for antifungal (Candida albicans and Aspergillus niger activities.

    16. Trichoharzianol, a new antifungal from Trichoderma harzianum F031.

      Science.gov (United States)

      Jeerapong, Chotika; Phupong, Worrapong; Bangrak, Phuwadol; Intana, Warin; Tuchinda, Patoomratana

      2015-04-15

      A new decalin derivative, trichoharzianol (1), together with three known compounds, eujavanicol A (2), 5-hydroxy-3-hydroxymethyl-2-methyl-7-methoxychromone (3), and 4,6-dihydroxy-5-methylphthalide (4), were isolated from Trichoderma harzianum F031. For the first time, compounds 2-4 were reported from the Trichoderma species. Their structures were characterized by spectroscopic methods. Trichoharzianol (1) showed the highest antifungal activity against Colletotrichum gloeosporioides, with a minimum inhibitory concentration (MIC) of 128 μg/mL. PMID:25817439

    17. NATURAL ANTIFUNGAL COMPOUNDS FROM Syzygium aromaticum (L.) MERR.ET PERRY%丁香[Syzygium aromaticum (L.) Merr.et Perry]挥发油中天然抗菌成分研究

      Institute of Scientific and Technical Information of China (English)

      孔秋莲; 宋义忠; 章丽丽; 陈留勇; 李清芳

      2004-01-01

      Essential oil from clove [Syzygium aromaticum (L.) Merr. Et Perry] buds was analyzed by GC-MS, and 20 components were identified. The main one was eugenol, which absolute content was 91.197mg/g. Antifungal activity assays showed that the oil and its derivant both inhibited the growth of Aspergillus niger and Penicillium expansun. The minimum inhibition concentration (MIC) of the oil was 50% for Aspergillus niger and 25% for Penicillium expansun, while that of the derivant was 25% for Aspergillus niger and 20% for Penicillium expansun. Both eugenol and its derivant also inhibited the growth of Aspergillus niger and Penicillium expansun, and the MIC of the eugenol was 1% for Aspergillus niger and 0.5% for Penicillium expansun, while that of the eugenol derivant was 5% for both Aspergillus niger and Penicillium expansun.%研究结果表明,丁香[Syzygium aromaticum (L.) Merr. et Perry]挥发油及其衍生物均可抑制黑曲霉(Aspergillus niger)和扩展青霉(Penicillium expansun)的生长,丁香挥发油对黑曲霉的最小抑菌浓度为50%,对扩展青霉的最小抑菌浓度为25%;丁香挥发油衍生物对黑曲霉的最小抑菌浓度为25%,对扩展青霉的最小抑菌浓度为20%.用GC-MS详细分析了丁香挥发油的化学成分,共鉴定了20个化合物,其中主要成分为丁香酚,含量占挥发油成分总量的68.0278%.

    18. Phenolic compounds, organic acids and antioxidant activity of grape juices produced in industrial scale by different processes of maceration.

      Science.gov (United States)

      Lima, Marcos dos Santos; da Conceição Prudêncio Dutra, Maria; Toaldo, Isabela Maia; Corrêa, Luiz Claudio; Pereira, Giuliano Elias; de Oliveira, Débora; Bordignon-Luiz, Marilde Terezinha; Ninow, Jorge Luiz

      2015-12-01

      The effect of maceration process on the profile of phenolic compounds, organic acids composition and antioxidant activity of grape juices from new varieties of Vitis labrusca L. obtained in industrial scale was investigated. The extraction process presented a high yield without pressing the grapes. The use of a commercial pectinase resulted in an increase on extraction yield and procyanidins B1 and B2 concentrations and a decrease on turbidity and concentration of catechins. The combination of 60 °C and 3.0 mL 100 kg(-1) of enzyme resulted in the highest extraction of phenolic compounds, reducing the content of acetic acid. The juices presented high antioxidant activity, related to the great concentration of malvidin, cyanidin, catechin and caffeic, cinnamic and gallic acids. Among the bioactive compounds, the juices presented high concentration of procyanidin B1, caffeic acid and trans-resveratrol, with higher levels compared to those reported in the literature. PMID:26041208

    19. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana).

      Science.gov (United States)

      Mousa, Walaa Kamel; Schwan, Adrian L; Raizada, Manish N

      2016-01-01

      Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s) of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H)-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone), and harpagoside (an iridoide glycoside). Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum. PMID:27598120

    20. Characterization of Antifungal Natural Products Isolated from Endophytic Fungi of Finger Millet (Eleusine coracana

      Directory of Open Access Journals (Sweden)

      Walaa Kamel Mousa

      2016-09-01

      Full Text Available Finger millet is an ancient African-Indian crop that is resistant to many pathogens including the fungus, Fusarium graminearum. We previously reported the first isolation of putative fungal endophytes from finger millet and showed that the crude extracts of four strains had anti-Fusarium activity. However, active compounds were isolated from only one strain. The objectives of this study were to confirm the endophytic lifestyle of the three remaining anti-Fusarium isolates, to identify the major underlying antifungal compounds, and to initially characterize the mode(s of action of each compound. Results of confocal microscopy and a plant disease assay were consistent with the three fungal strains behaving as endophytes. Using bio-assay guided fractionation and spectroscopic structural elucidation, three anti-Fusarium secondary metabolites were purified and characterized. These molecules were not previously reported to derive from fungi nor have antifungal activity. The purified antifungal compounds were: 5-hydroxy 2(3H-benzofuranone, dehydrocostus lactone (guaianolide sesquiterpene lactone, and harpagoside (an iridoide glycoside. Light microscopy and vitality staining were used to visualize the in vitro interactions between each compound and Fusarium; the results suggested a mixed fungicidal/fungistatic mode of action. We conclude that finger millet possesses fungal endophytes that can synthesize anti-fungal compounds not previously reported as bio-fungicides against F. graminearum.

    1. Evaluation of phenolic compounds content and in vitro antioxidant activity of red wines produced from Vitis labrusca grapes

      Directory of Open Access Journals (Sweden)

      Daniel Braga de Lima

      2011-09-01

      Full Text Available Wine production in the northern Curitiba, Paraná, Brazil, specifically the communes of Colombo and Almirante Tamandaré, is based mainly on the utilization of Vitis labrusca grapes var. Bordô (Ives. Total sugar content, pH, and total acidity were analyzed in red wine samples from 2007 and 2008 vintages following official methods of analysis. Moreover, total phenolic, flavonoid, and tannin contents were analyzed by colorimetric methodologies and the antioxidant activity was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical methodology. Phenolic compounds were identified by high performance liquid chromatography. The total phenolic content of wine samples presented concentrations varying between 1582.35 and 2896.08 mg gallic acid.L-1 since the major part corresponds to flavonoid content. In these compounds' concentration range, a direct relationship between phenolic compounds content and levels of antioxidant activity was not observed. Among the identified phenolic compounds, chlorogenic, caffeic, and syringic acids were found to be the major components. Using three principal components, it was possible to explain 81.36% of total variance of the studied samples. Principal Components Analysis does not differentiate between vintages.

    2. 77 FR 50591 - Animal Drugs, Feeds, and Related Products; Regulation of Carcinogenic Compounds in Food-Producing...

      Science.gov (United States)

      2012-08-22

      ... cancer to the test animals approach (See e.g., 52 FR 49572 at 49575 and 49582). Therefore, FDA has..., 2010, FDA issued a proposed rule (75 FR 79320) to amend its regulations regarding compounds of... Proviso (See 75 FR 79320 at 79321) without requiring the development of a second, alternative, set...

    3. Synthesis and in vitro antibacterial and antifungal activities of benzoxazole derivatives

      International Nuclear Information System (INIS)

      The in vitro antibacterial and antifungal activities of twenty-nine (29) benzoxazole derivatives were tested against fifteen Gram-positive and sixteen Gram-negative strains. Out of the twenty-nine compounds, eighteen compounds 3-5, 7-9, 11-13, 15-25 showed a broad range of activity against tested Gram-positive microorganisms, whereas rest of the compounds 6, 10, 14 and 26-31 were found to be completely inactive against all the tested strains of Gram-positive bacteria. Five compounds 8, 11-13, and 15 showed activities against Gram-negative strains whereas the rest were devoid of any activity. Twenty-one (21) out of twenty-nine (29) compounds possessed antifungal activity. The structures of the synthetic compounds were confirmed by IR, EIMS and /sup 1/H-NMR spectral data. (author)

    4. Ultraviolet and visible complex refractive indices of secondary organic material produced by photooxidation of the aromatic compounds toluene and m-Xylene

      Directory of Open Access Journals (Sweden)

      P. F. Liu

      2014-08-01

      Full Text Available Secondary organic material (SOM produced by the oxidation of anthropogenic volatile organic compounds is light-absorbing (i.e., brown carbon. Spectral data of the optical properties, however, are scarce. The present study obtained the continuous spectra of the real and imaginary refractive indices (m = n − i k in the ultraviolet (UV-visible region using spectroscopic ellipsometry for n and UV-visible spectrometry for k. Several different types of SOM were produced in an oxidation flow reactor by photooxidation of toluene and m-xylene for variable concentrations of nitrogen oxides (NOx. The results show that the k values of the anthropogenically derived material were at least ten times greater than those of biogenically derived material. The presence of NOx produced organonitrogen compounds, such as nitro-aromatics and organonitrates, which enhanced light absorption. Compared with the SOM derived from m-xylene, the toluene-derived SOM had larger k values, as well as greater NOx induced enhancement, suggesting different brown-carbon-forming potentials of different aromatic precursor compounds. The results imply that anthropogenic SOM produced around urban environments can have an important influence in affecting ultraviolet irradiance, which might consequently influence photochemical cycles of urban pollution.

    5. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds.

      Science.gov (United States)

      Indraningrat, Anak Agung Gede; Smidt, Hauke; Sipkema, Detmer

      2016-05-01

      Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1) (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B); influenza A (H1N1) virus (truncateol M); nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin); Escherichia coli (sydonic acid), Chlamydia trachomatis (naphthacene glycoside SF2446A2); Plasmodium spp. (manzamine A and quinolone 1); Leishmania donovani (manzamine A and valinomycin); Trypanosoma brucei (valinomycin and staurosporine); Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204). Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed. PMID:27144573

    6. Bioprospecting Sponge-Associated Microbes for Antimicrobial Compounds

      Directory of Open Access Journals (Sweden)

      Anak Agung Gede Indraningrat

      2016-05-01

      Full Text Available Sponges are the most prolific marine organisms with respect to their arsenal of bioactive compounds including antimicrobials. However, the majority of these substances are probably not produced by the sponge itself, but rather by bacteria or fungi that are associated with their host. This review for the first time provides a comprehensive overview of antimicrobial compounds that are known to be produced by sponge-associated microbes. We discuss the current state-of-the-art by grouping the bioactive compounds produced by sponge-associated microorganisms in four categories: antiviral, antibacterial, antifungal and antiprotozoal compounds. Based on in vitro activity tests, identified targets of potent antimicrobial substances derived from sponge-associated microbes include: human immunodeficiency virus 1 (HIV-1 (2-undecyl-4-quinolone, sorbicillactone A and chartarutine B; influenza A (H1N1 virus (truncateol M; nosocomial Gram positive bacteria (thiopeptide YM-266183, YM-266184, mayamycin and kocurin; Escherichia coli (sydonic acid, Chlamydia trachomatis (naphthacene glycoside SF2446A2; Plasmodium spp. (manzamine A and quinolone 1; Leishmania donovani (manzamine A and valinomycin; Trypanosoma brucei (valinomycin and staurosporine; Candida albicans and dermatophytic fungi (saadamycin, 5,7-dimethoxy-4-p-methoxylphenylcoumarin and YM-202204. Thirty-five bacterial and 12 fungal genera associated with sponges that produce antimicrobials were identified, with Streptomyces, Pseudovibrio, Bacillus, Aspergillus and Penicillium as the prominent producers of antimicrobial compounds. Furthemore culture-independent approaches to more comprehensively exploit the genetic richness of antimicrobial compound-producing pathways from sponge-associated bacteria are addressed.

    7. Advancements in Topical Antifungal Vehicles.

      Science.gov (United States)

      Kircik, Leon H

      2016-02-01

      The primary treatment for superficial fungal infections is antifungal topical formulations, and allylamines and azoles represent the two major classes of topical formulations that are used to treat these infections. The stratum corneum (SC) is composed of keratinocytes that are surrounded by a matrix of lipids. The efficacy of topically applied formulations depends on their ability to penetrate this lipid matrix, and the vehicle plays an integral role in the penetration of active molecule into skin. There are several challenges to formulating topical drugs, which include the biotransformation of the active molecules as they pass through the SC and the physical changes that occur to the vehicle itself when it is applied to the skin. This article will review current and emerging topical antifungal vehicles. PMID:26885798

    8. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

      OpenAIRE

      SAHADEO PATIL; PANKAJ MAKNIKAR; SUSHILKUMAR WANKHADE; CHANDRAKIRAN UKESH; MAHENDRA RA

      2015-01-01

      Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obta...

    9. Defensins: antifungal lessons from eukaryotes

      Directory of Open Access Journals (Sweden)

      Patrícia M. Silva

      2014-03-01

      Full Text Available Over the last years, antimicrobial peptides (AMPs have been the focus of intense research towards the finding of a viable alternative to current antifungal drugs. Defensins are one of the major families of AMPs and the most represented among all eukaryotic groups, providing an important first line of host defense against pathogenic microorganisms. Several of these cysteine-stabilized peptides present a relevant effect against fungi. Defensins are the AMPs with the broader distribution across all eukaryotic kingdoms, namely, Fungi, Plantæ and Animalia, and were recently shown to have an ancestor in a bacterial organism. As a part of the host defense, defensins act as an important vehicle of information between innate and adaptive immune system and have a role in immunomodulation. This multidimensionality represents a powerful host shield, hard for microorganisms to overcome using single approach resistance strategies. Pathogenic fungi resistance to conventional antimycotic drugs is becoming a major problem. Defensins, as other AMPs, have shown to be an effective alternative to the current antimycotic therapies, demonstrating potential as novel therapeutic agents or drug leads. In this review, we summarize the current knowledge on some eukaryotic defensins with antifungal action. An overview of the main targets in the fungal cell and the mechanism of action of these AMPs (namely, the selectivity for some fungal membrane components are presented. Additionally, recent works on antifungal defensins structure, activity and citotoxicity are also reviewed.

    10. Variation in Scent Compounds of Oil-Bearing Rose (Rosa damascena Mill. Produced by Headspace Solid Phase Microextraction, Hydrodistillation and Solvent Extraction

      Directory of Open Access Journals (Sweden)

      Sabri Erbaş

      2016-03-01

      Full Text Available In this research, rose oil and rose water were hydro-distilled from the fresh oil-bearing rose flowers (Rosa damascena Mill. using Clevenger-type apparatus. Rose concretes were extracted from the fresh rose flowers by using non-polar solvents, e.g. diethyl ether, petroleum ether, cyclo-hexane, chloroform and n-hexane, and subsequently by evaporation of the solvents under vacuum. Absolutes were produced from the concretes with ethyl alcohol extraction at -20°C, leaving behind the wax and other paraffinic substances. Scent compounds of all these products detected by gas chromatography (GC-FID/GC-MS were compared with the natural scent compounds of fresh rose flower detected by using headspace solid phase microextraction (HS-SPME with carboxen/polydimethylsiloxane (CAR/PDMS fiber. A total of 46 compounds analysis were identified by HS-SPME-GC-MS in the fresh flower, and a total of 15 compounds were identified by GC-MS in the hydrodistilled rose oil. While main compounds in rose oil were geraniol (35.4%, citronellol (31.6%, and nerol (15.3%, major compound in fresh rose flower, rose water and residue water was phenylethyl alcohol (43.2, 35.6 and 98.2%, respectively. While the highest concrete yield (0.7% was obtained from diethyl ether extraction, the highest absolute yield (70.9% was obtained from the n-hexane concrete. The diethyl ether concrete gave the highest productivity of absolute, as 249.7 kg of fresh rose flowers was needed to produce 1 kg of absolute.

    11. Evaluation of vaginal antifungal formulations in vivo.

      Science.gov (United States)

      McRipley, R. J.; Erhard, P. J.; Schwind, R. A.; Whitney, R. R.

      1979-01-01

      Relatively simple and rapid procedures have been developed for evaluating the local efficacy of vaginal antifungal agents in vivo in a vaginal candidiasis model in ovariectomized rats. The results of this investigation indicate that the model and methods described are quite suitable for screening potential antifungal substances and for assessing the chemotherapeutic effectiveness of new antifungal agents and formulations before carrying out clinical studies. PMID:392480

    12. Antifungal Activity of C-27 Steroidal Saponins

      OpenAIRE

      Yang, Chong-Ren; Zhang, Ying; Jacob, Melissa R.; Khan, Shabana I.; Zhang, Ying-Jun; Li, Xing-Cong

      2006-01-01

      As part of our search for new antifungal agents from natural resources, 22 C-27 steroidal saponins and 6 steroidal sapogenins isolated from several monocotyledonous plants were tested for their antifungal activity against the opportunistic pathogens Candida albicans, Candida glabrata, Candida krusei, Cryptococcus neoformans, and Aspergillus fumigatus. The results showed that the antifungal activity of the steroidal saponins was associated with their aglycone moieties and the number and struct...

    13. Antifungal Activity of Micafungin in Serum ▿

      OpenAIRE

      Ishikawa, Jun; Maeda, Tetsuo; Matsumura, Itaru; Yasumi, Masato; Ujiie, Hidetoshi; Masaie, Hiroaki; Nakazawa, Tsuyoshi; Mochizuki, Nobuo; Kishino, Satoshi; Kanakura, Yuzuru

      2009-01-01

      We have evaluated the antifungal activity of micafungin in serum by using the disk diffusion method with serum-free and serum-added micafungin standard curves. Serum samples from micafungin-treated patients have been shown to exhibit adequate antifungal activity, which was in proportion to both the applied dose and the actual concentration of micafungin measured by high-performance liquid chromatography. The antifungal activity of micafungin in serum was also confirmed with the broth microdil...

    14. Use of antifungal drugs in hematology

      OpenAIRE

      Marcio Nucci

      2012-01-01

      Invasive fungal disease represents a major complication in hematological patients. Antifungal agents are frequently used in hematologic patients for different purposes. In neutropenic patients, antifungal agents may be used as prophylaxis, as empiric or preemptive therapy, or to treat an invasive fungal disease that has been diagnosed. The hematologist must be familiar with the epidemiology, diagnostic tools and strategies of antifungal use, as well as the pharmacologic proprieties of the dif...

    15. Compounds produced by two robust Bacillus amyloliquefaciens biocontrol strains involved in antimicrobial activity and plant-growth promotion

      OpenAIRE

      Magno-Pérez, Maria Concepción; Hierrezuelo, Jesús; de Vicente, Antonio; Pérez-García, Alejandro; Romero, Diego

      2015-01-01

      Several members of the Bacillus genus are potential candidates to be used as biological control agents to combat pests or plant diseases. The bacterial attributes associated to Bacillus behaviour are mainly: the production of antimicrobial compounds, the plant-growth promotion capability and the induction of systemic resistance in plant host. In previous works, we have demonstrated this multifaceted biocontrol activity of B. amyloliquefaciens CECT8237 (UMAF6639) and CECT8238 (UMAF6614) strain...

    16. Determination of some volatile compounds in fruit spirits produced from grapes (Vitis Vinifera L.) and plums (Prunus domestica L.) cultivars

      OpenAIRE

      Kostik, Vesna; Gjorgjeska, Biljana; Angelovska, Bistra; Kovacevska, Ivona

      2014-01-01

      Fruit spirits contain a large array of volatile compounds among which the important role from toxicological aspect besides ethanol has methanol, aliphatic esters and fusel alcohols. This study evaluates the content of ethanol, ethyl acetate, methanol, isopropyl alcohol (2-propanol), n-propyl alcohol (propan-l-ol), isobutyl alcohol (2-methylpropan-1-ol), n-butyl alcohol (1-butanol), isoamyl alcohol (3-methyl-1-butanol) and n-amyl alcohol (pentan-1-ol) in different grapes and plum brandies i...

    17. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles.

      Science.gov (United States)

      Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J; Jara, Paul

      2016-12-01

      Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix). Graphical Abstract Atomic Force Microscopy observation of the disintegration of a cyclodextrin inclusion compound by gold nanoparticles photothermal effect. PMID:27053258

    18. Antifungal activity of Zuccagnia punctata Cav.: evidence for the mechanism of action.

      Science.gov (United States)

      Svetaz, Laura; Agüero, María Belén; Alvarez, Sandra; Luna, Lorena; Feresin, Gabriela; Derita, Marcos; Tapia, Alejandro; Zacchino, Susana

      2007-08-01

      Petroleum ether and dichloromethane extracts of fruits, aerial parts and exudate of Zuccagnia punctata Cav. (Fabaceae) showed moderate antifungal activities against the yeasts C. albicans, S. cerevisiae and C. neoformans (MICs: 62.5 - 250 microg/mL) and very strong antifungal activities against the dermatophytes M. gypseum, T. rubrum and T. mentagrophytes (MICs: 8 - 16 microg/mL) thus supporting the ethnopharmacological use of this plant. Antifungal activity-directed fractionation of active extracts by using bioautography led to the isolation of 2',4'-dihydroxy-3'-methoxychalcone (1) and 2',4'-dihydroxychalcone (2) as the compounds responsible for the antifungal activity. Second-order studies included MIC (80), MIC (50) and MFC of both chalcones in an extended panel of clinical isolates of the most sensitive fungi, and also comprised a series of targeted assays. They showed that the most active chalcone 2 is fungicidal rather than fungistatic, does not disrupt the fungal membranes up to 4 x MFC and does not act by inhibiting the fungal cell wall. So, 2',4'-dihydroxychalcone would act by a different mechanism of action than the antifungal drugs in current clinical use, such as amphotericin B, azoles or echinocandins, and thus appears to be very promising as a novel antifungal agent. PMID:17628836

    19. Chemical characterization and antifungal activity of essential oil of capitula from wild Indian Tagetes patula L.

      Science.gov (United States)

      Romagnoli, C; Bruni, R; Andreotti, E; Rai, M K; Vicentini, C B; Mares, D

      2005-04-01

      The essential oil extracted by steam distillation from the capitula of Indian Tagetes patula, Asteraceae, was evaluated for its antifungal properties and analyzed by gas chromatography and gas chromatography-mass spectrometry. Thirty compounds were identified, representing 89.1% of the total detected. The main components were piperitone (24.74%), piperitenone (22.93%), terpinolene (7.8%), dihydro tagetone (4.91%), cis-tagetone (4.62%), limonene (4.52%), and allo-ocimene (3.66%). The oil exerted a good antifungal activity against two phytopathogenic fungi, Botrytis cinerea and Penicillium digitatum, providing complete growth inhibition at 10 microl/ml and 1.25 microl/ml, respectively. The contribution of the two main compounds, piperitone and piperitenone, to the antifungal efficacy was also evaluated and ultrastructural modifications in mycelia were observed via electron microscopy, evidencing large alterations in hyphal morphology and a multisite mechanism of action. PMID:15868213

    20. Design, synthesis, and antifungal activities of novel triazole derivatives containing the benzyl group

      Directory of Open Access Journals (Sweden)

      Xu K

      2015-03-01

      Full Text Available Kehan Xu,1,* Lei Huang,1,* Zheng Xu,2 Yanwei Wang,1,3 Guojing Bai,1 Qiuye Wu,1 Xiaoyan Wang,1 Shichong Yu,1 Yuanying Jiang1 1School of Pharmacy, Second Military Medical University, Shanghai, 2Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, 3Number 422 Hospital of PLA, Zhanjiang, People’s Republic of China *These authors contributed equally to this work Abstract: In previous studies undertaken by our group, a series of 1-(1H-1,2,4-triazole-1-yl-2-(2,4-difluorophenyl-3-substituted-2-propanols (1a–r, which were analogs of fluconazole, was designed and synthesized by click chemistry. In the study reported here, the in vitro antifungal activities of all the target compounds were evaluated against eight human pathogenic fungi. Compounds 1a, 1q, and 1r showed the more antifungal activity than the others. Keywords: triazole, synthesis, antifungal activity, CYP51

    1. Photoactive extracts from Thevetia peruviana with antifungal properties against Cladosporium cucumerinum.

      Science.gov (United States)

      Gata-Gonçalves, Lígia; Nogueira, J M F; Matos, Olívia; Bruno de Sousa, Raúl

      2003-04-01

      Seeds of Thevetia peruviana were screened for their antifungal photoactivity. Extracts obtained either with n-hexane or dichloromethane were fractionated by column chromatography and further analysed by thin-layer chromatography. All seed extracts and fractions were tested for inhibition of the fungus Cladosporium cucumerinum for the evaluation of photoactive inhibitory effects. Antifungal light-dependent activity was observed for some of the fractions and both crude extracts. The most photoactive fraction was analysed by capillary gas chromatography with mass spectrometry in order to identify its constituents. Two major groups of compounds were identified, terpenes and fatty acids and derivatives. Pulegone, linoleic acid and palmitic acid were the major compounds. Terpenes seem to be the major substances with antifungal photoactivity. PMID:12745247

    2. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

      Directory of Open Access Journals (Sweden)

      Mahoney Noreen

      2011-05-01

      Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

    3. Synthesis, Characterization, Antibacterial and Antifungal Evaluation of Novel Monosaccharide Esters

      Directory of Open Access Journals (Sweden)

      Yong Deng

      2012-07-01

      Full Text Available A novel series of 3-(2-furylacrylate monosaccharide esters Iaf and menthyloxycarbonyl monosaccharide esters IIaf were designed and synthesized. The chemical structures of the target compounds were confirmed by IR, 1H- and 13C-NMR and ESI-MS, and the target compounds were investigated for their in vitro antibacterial and antifungal activities. The antibacterial screening results showed that the 3-(2-furylacrylate monosaccharide ester derivatives Iaf were either inactive or only weakly active against the three Gram-positive bacterial strains tested, whereas the menthyloxycarbonyl monosaccharide ester derivatives IIaf exhibited higher levels of activity, with compound IIe being especially potent. The results of the antifungal screening revealed that compounds Ib, Ie, IIb and IIc displayed potent in vitro activities, whereas If and IIf showed promising activities against all of the microorganisms tested, with If exhibiting levels of activity deserving of further investigation.

    4. Effect of organic compounds on cloud condensation nuclei (CCN) activity of sea spray aerosol produced by bubble bursting

      Science.gov (United States)

      Moore, Meagan J. K.; Furutani, Hiroshi; Roberts, Gregory C.; Moffet, Ryan C.; Gilles, Mary K.; Palenik, Brian; Prather, Kimberly A.

      2011-12-01

      The ocean comprises over 70% of the surface of the earth and thus sea spray aerosols generated by wave processes represent a critical component of our climate system. The manner in which different complex oceanic mixtures of organic species and inorganic salts are distributed between individual particles in sea spray directly determines which particles will effectively form cloud nuclei. Controlled laboratory experiments were undertaken to better understand the full range of particle properties produced by bubbling solutions composed of simplistic model organic species, oleic acid and sodium dodecyl sulfate (SDS), mixed with NaCl to more complex artificial seawater mixed with complex organic mixtures produced by common oceanic microorganisms. Simple mixtures of NaCl and oleic acid or SDS had a significant effect on CCN activity, even in relatively small amounts. However, an artificial seawater (ASW) solution containing microorganisms, the common cyanobacteria ( Synechococcus) and DMS-producing green algae ( Ostreococcus), produced particles containing ˜34 times more carbon than the particles produced from pure ASW, yet no significant change was observed in the overall CCN activity. We hypothesize that these microorganisms produce diverse mixtures of organic species with a wide range of properties that produced offsetting effects, leading to no net change in the overall average measured hygroscopicity of the collection of sea spray particles. Based on these observations, changes in CCN activity due to "bloom" conditions would be predicted to lead to small changes in the average CCN activity, and thus have a negligible impact on cloud formation. However, each sea spray particle will contain a broad spectrum of different species, and thus further studies are needed of the CCN activity of individual sea spray particles and biological processes under a wide range of controllable conditions.

    5. Phenolic extracts of Fragaria vesca L. roots with anti-Candida potential: chemical characterization and in vitro antifungal capacity

      OpenAIRE

      Martins, Natália; Dias, Maria Inês; Barros, Lillian; Silva, Sónia; Henriques, Mariana; Ferreira, Isabel C. F. R.

      2015-01-01

      Candida species, considered a commensal microorganism of the human flora, have caused a profound impact at public health level. Furthermore, there are alarming numbers of microorganisms with acquired drug resistance, contributing to the inefficacy of antifungal agents [1]. Thus, efficient alteratives to the current antifungal agents and without side effects need to be discovered. Plants comprise numerous bioactive compounds responsible for a wide variety of bioactive propert...

    6. Synthesis and Antifungal Activity of Novel Sulfone Derivatives Containing 1,3,4-Oxadiazole Moieties

      Directory of Open Access Journals (Sweden)

      Maoguo Tong

      2011-11-01

      Full Text Available A series of new sulfone compounds containing 1,3,4-oxadiazole moieties were synthesized. The structures of these compounds were confirmed by spectroscopic data (IR, 1H- and 13C-NMR and elemental analyses. Antifungal tests indicated that all the title compounds exhibited good antifungal activities against eight kinds of plant pathogenic fungi, and some showed superiority over the commercial fungicide hymexazol. Among them, compounds 5d, 5e, 5f, and 5i showed prominent activity against B. cinerea, with determined EC50 values of 5.21 μg/mL, 8.25 µg/mL, 8.03 µg/mL, and 21.00 µg/mL, respectively. The present work demonstrates that sulfone derivatives such as 5d containing a 1,3,4-oxadiazole moiety can be used as possible lead compounds for the development of potential agrochemicals.

    7. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles

      Science.gov (United States)

      Silva, Nataly; Muñoz, Camila; Diaz-Marcos, Jordi; Samitier, Josep; Yutronic, Nicolás; Kogan, Marcelo J.; Jara, Paul

      2016-04-01

      Evidence of guest migration in α-cyclodextrin-octylamine (α-CD-OA) inclusion compound (IC) generated via plasmonic heating of gold nanoparticles (AuNPs) has been studied. In this report, we demonstrate local effects generated by laser-mediated irradiation of a sample of AuNPs covered with inclusion compounds on surface-derivatized glass under liquid conditions by atomic force microscopy (AFM). Functionalized AuNPs on the glass and covered by the ICs were monitored by recording images by AFM during 5 h of irradiation, and images showed that after irradiation, a drastic decrease in the height of the AuNPs occurred. The absorption spectrum of the irradiated sample showed a hypsochromic shift from 542 to 536 nm, evidence suggesting that much of the population of nanoparticles lost all of the parts of the overlay of ICs due to the plasmonic heat generated by the irradiation. Mass spectrometry matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF) performed on a sample containing a collection of drops obtained from the surface of the functionalized glass provided evidence that the irradiation lead to disintegration of the ICs and therefore exit of the octylamine molecule (the guest) from the cyclodextrin cavity (the matrix).

    8. Production of sensory compounds by means of the yeast Dekkera bruxellensis in different nitrogen sources with the prospect of producing cachaça.

      Science.gov (United States)

      Castro Parente, Denise; Vidal, Esteban Espinosa; Leite, Fernanda Cristina Bezerra; de Barros Pita, Will; de Morais, Marcos Antonio

      2015-01-01

      The distilled spirit made from sugar cane juice, also known as cachaça, is a traditional Brazilian beverage that in recent years has increased its market share among international distilled beverages. Several volatile compounds produced by yeast cells during the fermentation process are responsible for the unique taste and aroma of this drink. The yeast Dekkera bruxellensis has acquired increasing importance in the fermented beverage production, as the different metabolites produced by this yeast may be either beneficial or harmful to the end-product. Since D. bruxellensis is often found in the fermentation processes carried out in ethanol fuel distillation in Brazil, we employed this yeast to analyse the physiological profile and production of aromatic compounds and to examine whether it is feasible to regard it as a cachaça-producing microorganism. The assays were performed on a small scale and simulated the conditions for the production of handmade cachaça. The results showed that the presence of aromatic and branched-chain amino acids in the medium has a strong influence on the metabolism and production of flavours by D. bruxellensis. The assimilation of these alternative nitrogen sources led to different fermentation yields and the production of flavouring compounds. The influence of the nitrogen source on the metabolism of fusel alcohols and esters in D. bruxellensis highlights the need for further studies of the nitrogen requirements to obtain the desired level of sensory compounds in the fermentation. Our results suggest that D. bruxellensis has the potential to play a role in the production of cachaça. PMID:25345668

    9. In vitro Antifungal Activity of Luliconazole against Trichophyton spp.

      Science.gov (United States)

      Maeda, Jun; Nanjoh, Yasuko; Koga, Hiroyasu; Toga, Tetsuo; Makimura, Koichi; Tsuboi, Ryoji

      2016-01-01

      The minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of luliconazole against Trichophyton rubrum (14 strains) and Trichophyton mentagrophytes (14 strains), which are the most common cause of tinea, were compared with those of 6 topical antifungal drugs of lanoconazole, bifonazole, efinaconazole, liranaftate, naftifine and terbinafine. Luliconazole showed the most potent antifungal activity (MIC90 =0.00098 μg/ml and MFC90 =0.0078 μg/ml) among the compounds tested against the two species. Efinaconazole and bifonazole, the drug of azole-class, showed a large MFC/MIC ratio. On the other hand, these ratios of luliconazole and lanoconazole were as small as those of liranaftate, naftifine and terbinafine which are thought to possess fungicidal mechanism. These results suggest that luliconazole possesses fungicidal activity against both species of Trichophyton. In this study, we found that luliconazole had the most potent antifungal activity among the major topical antimycotics used in Japan and the US. Luliconazole would be the best-in-class drug for dermatophytosis in clinics. PMID:26936346

    10. GREEN SYNTHESIS OF NANOSTRUCTURED MATERIALS FOR ANTIBACTERIAL AND ANTIFUNGAL ACTIVITIES

      Directory of Open Access Journals (Sweden)

      Ayeshamariam A*, Tajun Meera Begam M, Jayachandran M, Praveen Kumar G and M Bououdina

      2013-01-01

      Full Text Available New materials hold the key to fundamental advances in antibacterial and antifungal activities, both of which are vital in order to meet the challenge of global warning of microorganism’s advantages and limitations and the finite nature of medicinal plants. The use of additive to augment the effect of a synthetic or natural drug candidate is well known.  Here we report the use of nanoparticles of tin oxide (SnO2 to enhance the antibacterial and anti fungal potency of Alovera extract when compared to bulk tinoxide (SnO2.  The possible advantage and limitations of this result will be discussed. It is hoped that this study would lead to the establishment of nanomaterial compounds that could be used to formulate new and more potent antimicrobial drugs of natural origin. Antibacterial activity of Alovera extracts was checked against these gram positive isolates of Staphylococcus aureus, Escherichia Coli E, Salmonella Typhi, Streptococcus pyogenes and gram negative isolates of Pseudomonas Aeruginosa. We observed that effective anti-bacterial and anti-fungal activities for SnO2 nanoparticles, particularly for Streptococcus pyogenes microorganisms and antifungal microorganisms of Aspergillus niger, Mucor indicus microorganism than bulk SnO2.

    11. Bioautography-guided isolation of antibacterial compounds of essential oils from Thai spices against histamine-producing bacteria.

      Science.gov (United States)

      Lomarat, Pattamapan; Phanthong, Phanida; Wongsariya, Karn; Chomnawang, Mullika Traidej; Bunyapraphatsara, Nuntavan

      2013-05-01

      The outbreak of histamine fish poisoning has been being an issue in food safety and international trade. The growth of contaminated bacterial species including Morganella morganii which produce histidine decarboxylase causes histamine formation in fish during storage. Histamine, the main toxin, causes mild to severe allergic reaction. At present, there is no well-established solution for histamine fish poisoning. This study was performed to determine the antibacterial activity of essential oils from Thai spices against histamine-producing bacteria. Among the essential oils tested, clove, lemongrass and sweet basil oils were found to possess the antibacterial activity. Clove oil showed the strongest inhibitory activity against Morganella morganii, followed by lemongrass and sweet basil oils. The results indicated that clove, lemongrass and sweet basil oils could be useful for the control of histamine-producing bacteria. The attempt to identify the active components using preparative TLC and GC/MS found eugenol, citral and methyl chavicol as the active components of clove, lemongrass and sweet basil oils, respectively. The information from this study would be useful in the research and development for the control of histamine-producing bacteria in fish or seafood products to reduce the incidence of histamine fish poisoning. PMID:23625419

    12. Endophytic fungi from plums (Prunus domestica) and their antifungal activity against Monilinia fructicola.

      Science.gov (United States)

      Pimenta, Raphael Sanzio; da Silva, Juliana F Moreira; Buyer, Jeffrey S; Janisiewicz, Wojciech J

      2012-10-01

      Enophytic fungi were isolated from plum (Prunus domestica) leaves, identified with ITS1 and ITS4 primers, and their antagonistic activity was tested against Monilinia fructicola, which causes brown rot, blossom blight, and twig blight of stone fruits, and Colletotrichum gloeosporioides, which causes anthracnose on a variety of fruit crops. The production of antifungal compounds was determined in agar-diffusion and volatile inverted-plate tests. A total of 163 fungi were recovered from 30 plum trees, representing 22 cultivars. Twenty-nine morphotypes were detected, but only 14 species were identified genetically. The most frequently isolated species was Phaeosphaeria nodorum, constituting 86.5% of the total isolates. Four isolates produced inhibitory volatiles to M. fructicola; however, no isolate produced volatiles inhibitory to C. gloeosporioides. The volatiles produced by these fungi were identified as ethyl acetate, 3-methyl-1-butanol, acetic acid, 2-propyn-1-ol, and 2-propenenitrile. The fungal volatiles inhibited growth and reduced width of the hyphae, and caused disintegration of the hyphal content. This is the first study describing fungal endophytes in stone fruits. The P. nodorum strains producing inhibitory volatiles could play a significant role in reduction of M. fructicola expansion in plum tissues. Potential of these strains for biological control of this pathogen on stone fruits warrants further investigation. PMID:23043843

    13. Characterisation of a Fricke gel compound adopted to produce dosimetric catheters for in vivo dose measurements in HDR brachytherapy

      International Nuclear Information System (INIS)

      Radiation doses delivered to the patient during high dose rate brachytherapy treatments are susceptible to many inaccuracies and may not accurately match the planned doses. Novel Fricke gel dosimetric catheters (FGDC) were developed in the laboratory to be used for in vivo measurements of high dose rate brachytherapy treatments and represent possible tools to increase treatment accuracy. In this study, the dosimetric compound adopted to achieve FGDC was studied in terms of dose sensitivity and linearity, and some potentialities and limits of its application were investigated. Results show that at doses higher than 400 cGy, the dosimeter response is linear with the delivered dose until a saturation effect is observed at doses higher than 2800 cGy. However, saturation is reached at lower doses as well with dose rates higher than 400 cGy/min.

    14. Characterisation of a Fricke gel compound adopted to produce dosimetric catheters for in vivo dose measurements in HDR brachytherapy

      Energy Technology Data Exchange (ETDEWEB)

      Carrara, M. [Medical Physics Unit, Fondazione IRCCS ' Istituto Nazionale Tumori' , Via Venezian 1, I-20133 Milan (Italy); Gambarini, G., E-mail: grazia.gambarini@mi.infn.it [Physics Department, Universita degli Studi, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy); Borroni, M.; Tomatis, S. [Medical Physics Unit, Fondazione IRCCS ' Istituto Nazionale Tumori' , Via Venezian 1, I-20133 Milan (Italy); Negri, A. [Physics Department, Universita degli Studi, Via Celoria 16, I-20133 Milan (Italy); INFN, Sezione di Milano, Via Celoria 16, I-20133 Milan (Italy); Pirola, L. [Physics Department, Universita degli Studi, Via Celoria 16, I-20133 Milan (Italy); Cerrotta, A.; Fallai, C. [Radiotherapy Unit, Fondazione IRCCS ' Istituto Nazionale Tumori' , Via Venezian 1, I-20133 Milan (Italy); Zonca, G. [Medical Physics Unit, Fondazione IRCCS ' Istituto Nazionale Tumori' , Via Venezian 1, I-20133 Milan (Italy)

      2011-10-01

      Radiation doses delivered to the patient during high dose rate brachytherapy treatments are susceptible to many inaccuracies and may not accurately match the planned doses. Novel Fricke gel dosimetric catheters (FGDC) were developed in the laboratory to be used for in vivo measurements of high dose rate brachytherapy treatments and represent possible tools to increase treatment accuracy. In this study, the dosimetric compound adopted to achieve FGDC was studied in terms of dose sensitivity and linearity, and some potentialities and limits of its application were investigated. Results show that at doses higher than 400 cGy, the dosimeter response is linear with the delivered dose until a saturation effect is observed at doses higher than 2800 cGy. However, saturation is reached at lower doses as well with dose rates higher than 400 cGy/min.

    15. Antifungal activity of ibuprofen against aspergillus species and its interaction with common antifungal drugs

      Institute of Scientific and Technical Information of China (English)

      LI Li-juan; CHEN Wei; XU Hui; WAN Zhe; LI Ruo-yu; LIU Wei

      2010-01-01

      Background The incidence of invasive aspergillosis (IA) has increased in frequency in immunocompromised patients with a variety of diseases. The poor prognosis might be due to limited treatment option. This study aimed to evaluate antifungal activity of ibuprofen against clinical isolates of aspergillus species, as well as its interaction with azoles or with amphotericin B or with micafungin.Methods Antifungal activity of ibuprofen against 10 strains of Aspergillus fumigatus, Aspergillus flavus, and Aspergillus terreus were tested with both disk diffusion assay and standard broth microdilution method. To determine whether ibuprofen combined with itraconazole, voriconazole, amphotericin B, or micafungin had interactive effects on aspergillus spp., we used both disk diffusion assay and Chequerboard method.Results As for disk diffusion method, ibuprofen produced a zone of growth inhibition with diameters of (20.1±3.9) mm at 48 hours of incubation. As for broth microdilution method, the minimal inhibitory concentration (MIC) ranges of ibuprofen against aspergillus spp. were 1000-2000 μg/ml, and the minimal fungicidal concentration (MFC) ranges of that was 2000-8000 μg/ml. For 2 of 5 isolates, when ibuprofen combined with itraconazole or voriconazole, the zones of growth inhibition were larger than those of the individual drug. The results of Chequerboard method showed that fractional inhibitory concentration index (FICI) ranges were 1.125-2.500.Conclusions Ibuprofen is active against aspergillus spp.. And ibuprofen does not affect the in vitro activity of itraconazole, voriconazole, amphotericin B or micafungin against aspergillus spp..

    16. Natural and anthropogenically-produced brominated compounds in endemic dolphins from Western South Atlantic: Another risk to a vulnerable species

      International Nuclear Information System (INIS)

      Liver samples from 53 Franciscana dolphins along the Brazilian coast were analyzed for organobrominated compounds. Target substances included the following anthropogenic pollutants: polybrominated diphenyl ethers (PBDEs), polybrominated biphenyls (PBBs), pentabromoethylbenzene (PBEB), hexabromobenzene (HBB), decabromodiphenylethane (DBDPE), as well as the naturally-generated methoxylated-PBDEs (MeO-PBDEs). PBDE concentrations ranged from 6 to 1797 ng/g lw (mean 166 ± 298 ng/g lw) and were similar to those observed in cetaceans from Northern Hemisphere. PBBs were found in all sampling locations (< LOQ to 57 ng/g lw). DBDPE was detected in 42% of the dolphins from the most industrialized Brazilian state and the concentrations ranging from < LOQ to 352 ng/g lw. Franciscana dolphins from the tropical Brazilian shore presented the highest MeO-PBDE concentrations ever reported for coastal cetaceans (up to 14 μg/g lw). Eight MeO-PBDE congeners were detected and the present investigation constituted the first record of occurrence of six of them in marine mammal livers. - Highlights: ► PBDE, emerging BFR and MeO-PBDE levels in Franciscana dolphin from Brazil were reported. ► Six MeO-PBDEs were detected for the first time in marine mammals. ► PBDE contamination was similar than those from other industrialized areas around the world. ► MeO-PBDEs presented the higher concentrations found in coastal biota worldwide. - Concentrations and accumulation profiles of PBDEs, MeO-PBDEs and emerging brominated compounds in livers of dolphins from South Atlantic.

    17. Endophytic fungi found in association with Bacopa monnieri as potential producers of industrial enzymes and antimicrobial bioactive compounds

      Directory of Open Access Journals (Sweden)

      Meenu Katoch

      2014-10-01

      Full Text Available This study aimed to screen the endophytic fungal species of ethano-medicinal plant Bacopa monnieri (L. Pennell for their ability to produce antimicrobial substances against Bacillus subtilis, Pseudomonas aeroginosa, Salmonella typhimurium, Escherichia coli, Klebsiella pneumonia, Staphylococcus aureus, and Candida albicans. Endophytes were also screened for their ability to produce amylase, cellulase, protease and lipase to evaluate their ecological role within the host plant. Twenty-six endophytes were isolated and seventeen were identified. All the isolated endophytes exhibited amylolytic activity. Lipolytic, cellulolytic, proteolytic activity was shown by 98, 28 and 31% isolates, respectively. Similarly, all the endophytes (100% exhibited significant antimicrobial activity against K. pneumonia, while seventeen endophytes (89.5% were active against S. aureus. Fourteen endophytes (78.9% showed significant antimicrobial activity against B. subtilis and C. albicans. Eleven (57.8%, nine (50%, four (21% endophytes were active against S. typhimurium, E. coli and P. aeruginosa, respectively.

    18. The Petasis Reaction: Microscale Synthesis of a Tertiary Amine Antifungal Analog

      Science.gov (United States)

      Koroluk, Katherine J.; Jackson, Derek A.; Dicks, Andrew P.

      2012-01-01

      Students prepare a tertiary amine antifungal analog in an upper-level undergraduate organic laboratory. A microscale Petasis reaction is performed to generate a liquid compound readily characterized via IR and proton NMR spectroscopy. The biological relevance of the product is highlighted, with the tertiary amine scaffold being an important…

    19. Antibacterial and antifungal activities of 5-arylidene-n,n-dimethylbarbiturates derivatives

      International Nuclear Information System (INIS)

      A series of N,N-dimethyl-arylidene barbiturates 1-22 has been re-synthesized and evaluated against a number of Gram-positive, Gram-negative bacteria and some fungal strains. Most of the compounds were found to be active against a number of Gram-positive, Gram-negative and also displayed anti-fungal activities. (author)

    20. Characterization of four new antifungal yanuthones from Aspergillus niger

      DEFF Research Database (Denmark)

      Petersen, Lene Maj; Holm, Dorte Koefoed; Knudsen, Peter Boldsen;

      2015-01-01

      identified three class I yanuthones originating from the polyketide 6-methylsalicylic acid (yanuthone K, L and M (1–3)) and a class II yanuthone, which was named yanuthone X2 (4). The four new compounds were tested toward the pathogenic yeast Candida albicans and all displayed antifungal activity. Yanuthone...

    1. Effect of substituents at phenyl group of 7,7'-dioxo-9,9'-epoxylignane on antifungal activity.

      Science.gov (United States)

      Nishiwaki, Hisashi; Ouchi, Maya; Matsugi, Junko; Akiyama, Koichi; Sugahara, Takuya; Kishida, Taro; Yamauchi, Satoshi

      2012-11-01

      Using 21 newly synthesized 7,7'-dioxo-9,9'-epoxylignane derivatives having a modified 7-phenyl group, we examined the relationship between their structure and antifungal activity against plant pathogens such as Bipolaris oryzae to determine the effects of various substituents on the antifungal activity. Compared with the lead compound having a 4-OH-3-CH(3)O-phenyl moiety, several analogs showed higher antifungal activity against B. oryzae, including the compound having an unsubstituted phenyl group and those having either of the following phenyl substituents: 2-OH, 4-CH(3)O, 4-C(2)H(5)O, 4-n-C(3)H(7)O, 4-n-C(4)H(9)O, 4-CF(3)O, 4-C(2)H(5), or 4-Cl. On the other hand, the activity of compounds having a branched substituent, such as 4-i-C(3)H(7)O or 4-i-C(3)H(7), on the 7-phenyl group or a multi-substituted phenyl group was equipotent or inferior to that of the lead compound. These results as well as correlations between the antifungal activity of the test compounds and the physicochemical parameters of the varied substituents suggest that the position of substitution on the 7-phenyl group and the incorporation of substituents with optimal physicochemical properties are important for exerting the antifungal activity. PMID:23017887

    2. Synthesis and evaluation of the antifungal activity of 2-(substituted-amino)-4,5-dialkyl-thiophene-3- carbonitrile derivatives

      OpenAIRE

      Mendonça Jr., Francisco J. B.; Lima, María do Carmo A.; Lima Neto, Reginaldo G.; DE OLIVEIRA, TIAGO B.; Pitta, Iván R.; Galdino, Suely L.; Cruz, Rayssa M.D. da; Rodrigo S. A. de Araújo; Neves, Rejane P.

      2011-01-01

      Fifteen 2-[(substituted-benzylidene)-amino]-5-methyl-thiophene-3-carbonitrile (3a-g) and 2-[(substituted-benzylidene)-amino]-4,5-cycloalkyl-thiophene-3-carbonitrile derivatives (4a-h) were synthesized and screened for their in vitro antifungal activity against 42 clinical isolates of Candida (representing 4 different species) and 2 isolates of Criptococcus. The antifungal activities of these compounds were compared to fluconazole and amphotericin B as standard agents. All compounds presented ...

    3. Application of organic compound produced from uçá crab Ucides cordatus cordatus for the cultivation of caupi beans Vigna unguiculata (L. Walp

      Directory of Open Access Journals (Sweden)

      Francisco das Chagas Neto

      2009-12-01

      Full Text Available The study goal is to propose an alternative to reduce crab’s residues generated by beach tents of the city of Fortaleza, Ceará State, transforming it into an organic compound to apply it in the cultivation of beans caupi. We tried to analyze the waste’s composition produced in those restaurants, as its chemical composition, yield and productivity response to culture. For this research were tested twenty-two treatments with four replications. The percentage of organic matter found in recyclable waste was approximately 87.34%, of which 52% is a waste of crab. The average yield in the production of fertilizer is approximately 24%. The results revealed the great potential of this compound for use in the agriculture. As the parameters of nitrogen, phosphorus, calcium and magnesium it gained prominence because their percentages found in organic products, which ranged from two to four times more compared with a sample of cattle manure..

    4. Antifungal saponins from Swartzia langsdorffii; Saponinas antifungicas de Swartzia langsdorffii

      Energy Technology Data Exchange (ETDEWEB)

      Marqui, Sara Regina de; Lemos, Renata Brionizio; Santos, Luciana Avila; Castro-Gamboa, Ian; Cavalheiro, Alberto Jose; Bolzani, Vanderlan da Silva; Silva, Dulce Helena Siqueira [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: dhsilva@iq.unesp.br; Scorzoni, Liliana; Fusco-Almeida, Ana Maria; Mendes-Giannini, Maria Jose Soares [Universidade Estadual Paulista (UNESP), Araraquara, SP (Brazil). Faculdade de Ciencias Farmaceuticas; Young, Maria Claudia Marx; Torres, Luce Maria Brandao [Inst. de Botanica, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

      2008-07-01

      Chromatographic fractionation of the EtOH extract from the leaves of Swartzia langsdorffii afforded the pentacyclic triterpenes oleanolic acid and lupeol, and two saponins: oleanolic acid 3-sophoroside and the new ester 3-O-{beta}-D-(6'-methyl)-glucopyranosyl-28-O-{beta}-D-glucopyranosyl-oleanate. Their structures were elucidated from spectral data, including 2D NMR and HRESIMS experiments. Antifungal activity of all isolated compounds was evaluated, using phytopathogens Cladosporium cladosporioides and C. sphaerospermum, and human pathogens Candida albicans, C. krusei, C. parapsilosis and Cryptococcus neoformans. (author)

    5. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

      Science.gov (United States)

      Al-Amiery, Ahmed A.; Kadhum, Abdul Amir H.; Mohamad, Abu Bakar

      2012-01-01

      Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms. PMID:22400016

    6. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

      OpenAIRE

      Al-Amiery, Ahmed A.; Abdul Amir H. Kadhum; Abu Bakar Mohamad

      2012-01-01

      Metal complexes of (Z)-2-(pyrrolidin-2-ylidene)hydrazinecarbothioamide (L) with Cu(II), Co(II), and Ni(II) chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using ...

    7. Antifungal and Antioxidant Activities of Pyrrolidone Thiosemicarbazone Complexes

      Directory of Open Access Journals (Sweden)

      Ahmed A. Al-Amiery

      2012-01-01

      Full Text Available Metal complexes of (Z-2-(pyrrolidin-2-ylidenehydrazinecarbothioamide (L with Cu(II, Co(II, and Ni(II chlorides were tested against selected types of fungi and were found to have significant antifungal activities. The free-radical-scavenging ability of the metal complexes was determined by their interaction with the stable free radical 2,2′′-diphenyl-1-picrylhydrazyl, and all the compounds showed encouraging antioxidant activities. DFT calculations of the Cu complex were performed using molecular structures with optimized geometries. Molecular orbital calculations provide a detailed description of the orbitals, including spatial characteristics, nodal patterns, and the contributions of individual atoms.

    8. An antifungal naphthoquinone, xanthones and secoiridoids from Swertia calycina.

      Science.gov (United States)

      Rodriguez, S; Wolfender, J L; Hakizamungu, E; Hostettmann, K

      1995-08-01

      A chemical and biological screening of 25 species of the Gentianaceae family has been undertaken. Both methanolic and dichloromethane extracts of Swertia calycina exhibited a strong antifungal activity against Cladosporium cucumerinum and Candida albicans. The compound responsible for this activity has been isolated and identified as 2-methoxy-1,4-naphthoquinone. It is the first naphthoquinone to be described in Gentianaceae species. LC-UV and LC-TSP-MS analysis of the crude extracts of Swertia calycina also allowed on-line identification of six known xanthones and secoiridoids. PMID:7480185

    9. Real time PCR of Nor~1 (aflD) gene of aflatoxin producing fungi and its correlative quantization to aflatoxin levels in South African compound feeds.

      Science.gov (United States)

      Iheanacho, H E; Dutton, M F; Steenkamp, P A; Steenkamp, L; Makun, H A; Swart, A; Mthombeni, J Q

      2014-02-01

      Aflatoxins (AFs) are naturally occurring secondary metabolites. This toxin is principally produced by Aspergillus flavus and Aspergillus parasiticus in compound feeds worldwide. Compound feeds are feeds blended from various raw materials and additives. Contaminations of these feeds by AFs and its possible transmission into edible materials like milk, egg and organs of the body, are a serious problem. Expression of the Nor~1 (aflD) gene is the main factor responsible for AFs production. For this reason, a study was carried out to establish a correlation between levels of AFs and determinant gene (Nor~1) in South African compound feeds. To achieve this, compound feeds (n=30) were analyzed for Nor~1 gene using real time polymerase chain reaction (RT-PCR), while AFs levels in similar samples were estimated using high-performance liquid chromatography (HPLC) after an immune-affinity clean-up extraction procedure. Results indicated that AFs levels in positive samples ranged from 0.7 to 33.0 ppb. These levels generally did not correlate (R(2)=0.093) with those of Nor~1 gene in similar samples. Consequently, Nor~1 gene levels established via RT-PCR cannot be used as a predicting model for AFs in compound feeds. Only four of the feeds analyzed, specifically poultry feeds, contained levels of AFs above the regulatory limits of 10 ppb established in South Africa (S.A.). This should be considered unsafe when consumed on a continuous basis and may pose some health related problems especially when AFs are found together with other significant mycotoxins such as ochratoxins (OTs) and/or fumonisins (FBs). PMID:24378358

    10. Antifungal and cytotoxic activity of withanolides from Acnistus arborescens.

      Science.gov (United States)

      Roumy, Vincent; Biabiany, Murielle; Hennebelle, Thierry; Aliouat, El Moukhtar; Pottier, Muriel; Joseph, Henry; Joha, Sami; Quesnel, Bruno; Alkhatib, Racha; Sahpaz, Sevser; Bailleul, François

      2010-07-23

      Three compounds were isolated from Acnistus arborescens, a tree commonly used in South and Central America in traditional medicine against several infectious diseases, some of which are caused by fungi. Bioassay-guided fractionation of a MeOH extract of leaves, based on its anti-Pneumocystis carinii activity, led to the isolation of compounds 1-3. Mono- and bidimensional NMR analyses enabled identification of two new withanolides, (20R,22R)-5beta,6beta-epoxy-4beta,12beta,20-trihydroxy-1-oxowith-2-en-24-enolide (1) and (20R,22R)-16beta-acetoxy-3beta,4beta;5beta,6beta-diepoxy-12beta,20-dihydroxy-1-oxowith-24-enolide (2), and withanolide D (3). Antifungal activity on 13 fungi responsible for human infections (five dermatophytes, one nondermatophyte mold, six yeasts, and Pneumocystis carinii) was examined. Cytotoxicity of these compounds was also evaluated in vitro. PMID:20590148

    11. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs

      Directory of Open Access Journals (Sweden)

      SAHADEO PATIL

      2015-05-01

      Full Text Available Abstract. Patil S, Maknikar P, Wankhade S, Ukesh C, Rai M. 2015. Antifungal effect of cumin essential oil alone and in combination with antifungal drugs. Nusantara Bioscience 7: 55-59. We report evaluation of antifungal activity of cumin seed oil and its pharmacological interactions when used in combination with some of the widely used conventional antifungal drugs using CLSI broth microdilution, agar disc diffusion and checkerboard microtitre assay against Candida. The essential oil was obtained from cumin seeds using hydrodistillation technique and was later evaluated for the presence of major chemical constituents present in it using gas chromatography and mass spectrometry (GC-MS assay. The GC-MS assay revealed the abundance of γ-terpinene (35.42% followed by p-cymene (30.72%. The agar disc diffusion assay demonstrated highly potent antifungal effect against Candida species. Moreover, the combination of cumin essential oil (CEO with conventional antifungal drugs was found to reduce the individual MIC of antifungal drug suggesting the occurrence of synergistic interactions. Therefore, the therapy involving combinations of CEO and conventional antifungal drugs can be used for reducing the toxicity induced by antifungal drugs and at the same time enhancing their antifungal efficacy in controlling the infections caused due to Candida species.

    12. Antifungal traits of a 14 kDa maize kernel trypsin inhibitor protein in transgenic cotton

      Science.gov (United States)

      Transgenic cotton plants expressing the maize kernel trypsin inhibitor (TI) protein were produced and evaluated for antifungal traits. This 14 kD trypsin inhibitor protein has been previously associated with resistance to aflatoxin-producing fungus Aspergillus flavus. Successful transformation of ...

    13. 21 CFR 333.250 - Labeling of antifungal drug products.

      Science.gov (United States)

      2010-04-01

      ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Labeling of antifungal drug products. 333.250... Antifungal Drug Products § 333.250 Labeling of antifungal drug products. (a) Statement of identity. The... “antifungal.” (b) Indications. The labeling of the product states, under the heading “Indications,” the...

    14. The influence of extracellular compounds produced by selected Baltic cyanobacteria, diatoms and dinoflagellates on growth of green algae Chlorella vulgaris

      Science.gov (United States)

      Żak, Adam; Kosakowska, Alicja

      2015-12-01

      Secondary metabolites produced by bacteria, fungi, algae and plants could affect the growth and development of biological and agricultural systems. This natural process that occurs worldwide is known as allelopathy. The main goal of this work was to investigate the influence of metabolites obtained from phytoplankton monocultures on the growth of green algae Chlorella vulgaris. We selected 6 species occurring in the Baltic Sea from 3 different taxonomic groups: cyanobacteria (Aphanizomenon flos-aquae; Planktothrix agardhii), diatoms (Thalassiosira pseudonana; Chaetoceros wighamii) and dinoflagellates (Alexandrium ostenfeldii; Prorocentrum minimum). In this study we have demonstrated that some of selected organisms caused allelopathic effects against microalgae. Both the negative and positive effects of collected cell-free filtrates on C. vulgaris growth, chlorophyll a concentration and fluorescence parameters (OJIP, QY, NPQ) have been observed. No evidence has been found for the impact on morphology and viability of C. vulgaris cells.

    15. Synthesis, Structural Studies and Molecular Modelling of a Novel Imidazoline Derivative with Antifungal Activity.

      Science.gov (United States)

      Wróbel, Tomasz M; Kosikowska, Urszula; Kaczor, Agnieszka A; Andrzejczuk, Sylwia; Karczmarzyk, Zbigniew; Wysocki, Waldemar; Urbańczyk-Lipkowska, Zofia; Morawiak, Maja; Matosiuk, Dariusz

      2015-01-01

      Six novel imidazoline derivatives were synthesized and tested in antifungal assays. One of the compounds, N-cyclohexyl-2-imino-3-(4-nitrophenyl)imidazolidine-1-carboxamide showed moderate activity against several clinical strains of Candida albicans. Its structure was solved by X-ray crystallography and its mode of action was deduced using molecular modelling. It was found to be similar to that of fluconazole. The potential for further optimization including SAR of the compound is briefly discussed. PMID:26287137

    16. Synthesis, Structural Studies and Molecular Modelling of a Novel Imidazoline Derivative with Antifungal Activity

      Directory of Open Access Journals (Sweden)

      Tomasz M. Wróbel

      2015-08-01

      Full Text Available Six novel imidazoline derivatives were synthesized and tested in antifungal assays. One of the compounds, N-cyclohexyl-2-imino-3-(4-nitrophenylimidazolidine-1-carboxamide showed moderate activity against several clinical strains of Candida albicans. Its structure was solved by X-ray crystallography and its mode of action was deduced using molecular modelling. It was found to be similar to that of fluconazole. The potential for further optimization including SAR of the compound is briefly discussed.

    17. Patagonicosides B and C, two Antifungal Sulfated Triterpene Glycosides from the Sea Cucumber Psolus patagonicus

      OpenAIRE

      Careaga, Valeria P.; Muniain, Claudia; Maier, Marta S.

      2011-01-01

      Two new triterpene glycosides, patagonicosides B (2) and C (3), together with the known patagonicoside A (1), have been isolated from the ethanolic extract of the sea cucumber Psolus patagonicus. The structures of the new compounds were established on the basis of extensive NMR spectroscopy (1H and13C NMR,1H–1H COSY, HMBC, HSQC, TOCSY, and NOESY), HRESIMS, and chemical transformations. Compounds 1–3 and their desulfated analogs showed antifungal activity against the phytopathogenic fungus Cla...

    18. Chemical Constituents and Antibacterial and Antifungal Activities of Two Aglaia Species

      Institute of Scientific and Technical Information of China (English)

      WANG,Bin-Gui; LI,Xiao-Ming; PROKSCH,Peter

      2004-01-01

      @@ In the course of searching bioactive natural products from the plant genus Aglaia, we selected two species, A. cordata and A. testicularis, for further chemical study. Totally twenty natural compounds were obtained and structurally elucidated with which eleven of them were discovered for the first time. Among these compounds, lignans, rocaglamides,aglains and bisamides were the main constituents of the two plant species. The results from a bioactive screening indicated that some of the lignans possess potent antibacterial and antifungal activity.

    19. Isolation of antifungal and larvicidal constituents of Diplolophium buchanani by centrifugal partition chromatography.

      Science.gov (United States)

      Marston, A; Hostettmann, K; Msonthi, J D

      1995-01-01

      Three phenylpropanoids, myristicin [1], elemicin [2], and trans-isoelemicin [3], together with two furanocoumarins, oxypeucedanin [4] and oxypeucedanin hydrate [5], have been isolated from the leaves of Diplolophium buchanani by a separation strategy involving the almost exclusive use of centrifugal partition chromatography. All five compounds were antifungal in a tlc bioautography test using Cladosporium cucumerinum. Compounds 1-4 exhibited larvicidal activity against Aedes aegypti. PMID:7760070

    20. Method for producing a luminiferous nanocomposite based on coordinative compound of terbium(III) and poly-N-vinylpyrrolidone

      International Nuclear Information System (INIS)

      The invention relates to the technology for producing nanocomposite materials used in the optoelectronic industry, namely for the production of photo- and electroluminescent devices, for recording, transmission and amplification of optical information. The method, according to the invention, includes the separate dissolution in methanol for 6-8 hours of Tb(TTA)2(Ph3PO)2NO3 at the temperature of 60 degrees Celsius and poly-N-vinylpyrrolidone at the temperature of 18-25 degrees Celsius , mixing and homogenization of methanol solutions of Tb(TTA)2(Ph3PO)2NO3 and poly-N-vinylpyrrolidone, in a mass ratio, %: Tb(TTA)2(Ph3PO)2NO3 - 0.2-20.0 and poly-N-vinylpyrrolidone - the rest, at the temperature of 18...25 degrees Celsius for 20-24 hours. Then, the resulting liquid mixture is dried on a substrate at the temperature of 65...70 degrees Celsius for 3-5 hours.

    1. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.

      Science.gov (United States)

      Raza, Waseem; Wang, Jichen; Wu, Yuncheng; Ling, Ning; Wei, Zhong; Huang, Qiwei; Shen, Qirong

      2016-09-01

      The production of volatile organic compounds (VOCs) by microbes is an important characteristic for their selection as biocontrol agents against plant pathogens. In this study, we identified the VOCs produced by the biocontrol strain Bacillus amyloliquefaciens T-5 and evaluated their impact on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. The results showed that the VOCs of strain T-5 significantly inhibited the growth of R. solanacearum in agar medium and in soil. In addition, VOCs significantly inhibited the motility traits, root colonization, biofilm formation, and production of antioxidant enzymes and exopolysaccharides by R. solanacearum. However, no effect of VOCs on the production of hydrolytic enzymes by R. solanacearum was observed. The strain T-5 produced VOCs, including benzenes, ketones, aldehydes, alkanes, acids, and one furan and naphthalene compound; among those, 13 VOCs showed 1-10 % antibacterial activity against R. solanacearum in their produced amounts by T-5; however, the consortium of all VOCs produced on agar medium, in sterilized soil, and in natural soil showed 75, 62, and 85 % growth inhibition of R. solanacearum, respectively. The real-time PCR analysis further confirmed the results when the expression of different virulence- and metabolism-related genes in R. solanacearum cells was decreased after exposure to the VOCs of strain T-5. The results of this study clearly revealed the significance of VOCs in the control of plant pathogens. This information would help to better comprehend the microbial interactions mediated by VOCs in nature and to develop safer strategies to control plant disease. PMID:27183998

    2. Two new cyclopeptides from the co-culture broth of two marine mangrove fungi and their antifungal activity

      Directory of Open Access Journals (Sweden)

      Song Huang

      2014-01-01

      Full Text Available Background: The strategy that co-cultivation two microorganisms in a single confined environment were recently developed to generate new active natural products. In the study, two new cyclic tetrapeptides, cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr (1 and cyclo (Gly-L-Phe-L-Pro-L-Tyr (2 were isolated from the co-culture broth of two mangrove fungi Phomopsis sp. K38 and Alternaria sp. E33. Their antifungal activity against Candida albicans, Gaeumannomyces graminis, Rhzioctonia cerealis, Helminthosporium sativum and Fusarium graminearum was evaluated. Materials and Methods: Different column chromatographic techniques with different solvent systems were used to separate the constituents of the n-butyl alcohol extract of the culture broth. The structures of compounds 1 and 2 were identified by analysis of spectroscopic data (one-dimensional, two-dimensional - nuclear magnetic resonance, mass spectrometry and Marfey′s analytic method. Dilution method was used for the evaluation of antifungal activity. Results: Compounds 1 and 2 were identified as cyclo (D-Pro-L-Tyr-L-Pro-L-Tyr and cyclo (Gly-L-Phe-L-Pro-L-Tyr, respectively. Compounds 1 and 2 showed moderate to high antifungal activities as compared with the positive control. Conclusions: Compounds 1 and 2 are new cyclopeptides with moderate antifungal activity being worthy of consideration for the development and research of antifungal agents.

    3. New constitutive latex osmotin-like proteins lacking antifungal activity.

      Science.gov (United States)

      Freitas, Cleverson D T; Silva, Maria Z R; Bruno-Moreno, Frederico; Monteiro-Moreira, Ana C O; Moreira, Renato A; Ramos, Márcio V

      2015-11-01

      Proteins that share similar primary sequences to the protein originally described in salt-stressed tobacco cells have been named osmotins. So far, only two osmotin-like proteins were purified and characterized of latex fluids. Osmotin from Carica papaya latex is an inducible protein lacking antifungal activity, whereas the Calotropis procera latex osmotin is a constitutive antifungal protein. To get additional insights into this subject, we investigated osmotins in latex fluids of five species. Two potential osmotin-like proteins in Cryptostegia grandiflora and Plumeria rubra latex were detected by immunological cross-reactivity with polyclonal antibodies produced against the C. procera latex osmotin (CpOsm) by ELISA, Dot Blot and Western Blot assays. Osmotin-like proteins were not detected in the latex of Thevetia peruviana, Himatanthus drasticus and healthy Carica papaya fruits. Later, the two new osmotin-like proteins were purified through immunoaffinity chromatography with anti-CpOsm immobilized antibodies. Worth noting the chromatographic efficiency allowed for the purification of the osmotin-like protein belonging to H. drasticus latex, which was not detectable by immunoassays. The identification of the purified proteins was confirmed after MS/MS analyses of their tryptic digests. It is concluded that the constitutive osmotin-like proteins reported here share structural similarities to CpOsm. However, unlike CpOsm, they did not exhibit antifungal activity against Fusarium solani and Colletotrichum gloeosporioides. These results suggest that osmotins of different latex sources may be involved in distinct physiological or defensive events. PMID:26231325

    4. Aaptamine Derivatives with Antifungal and Anti-HIV-1 Activities from the South China Sea Sponge Aaptos aaptos

      Directory of Open Access Journals (Sweden)

      Hao-Bing Yu

      2014-12-01

      Full Text Available Five new alkaloids of aaptamine family, compounds (1–5 and three known derivatives (6–8, have been isolated from the South China Sea sponge Aaptos aaptos. The structures of all compounds were unambiguously elucidated by spectroscopic analyses, as well as by comparison with the literature data. Compounds 1–2 are characterized with triazapyrene lactam skeleton, whereas compounds 4–5 share an imidazole-fused aaptamine moiety. These compounds were evaluated in antifungal and anti-HIV-1 assays. Compounds 3, 7, and 8 showed antifungal activity against six fungi, with MIC values in the range of 4 to 64 μg/mL. Compounds 7–8 exhibited anti-HIV-1 activity, with inhibitory rates of 88.0% and 72.3%, respectively, at a concentration of 10 μM.

    5. Synthesis, Structure Optimization and Antifungal Screening of Novel Tetrazole Ring Bearing Acyl-Hydrazones

      Directory of Open Access Journals (Sweden)

      Manzoor A. Malik

      2012-08-01

      Full Text Available Azoles are generally fungistatic, and resistance to fluconazole is emerging in several fungal pathogens. In an attempt to find novel azole antifungal agents with improved activity, a series of tetrazole ring bearing acylhydrazone derivatives were synthesized and screened for their in vitro antifungal activity. The mechanism of their antifungal activity was assessed by studying their effect on the plasma membrane using flow cytometry and determination of the levels of ergosterol, a fungal-specific sterol. Propidium iodide rapidly penetrated a majority of yeast cells when they were treated with the synthesized compounds at concentrations just above MIC, implying that fungicidal activity resulted from extensive lesions of the plasma membrane. Target compounds also caused a considerable reduction in the amount of ergosterol. The results also showed that the presence and position of different substituents on the phenyl ring of the acylhydrazone pendant seem to play a role on the antifungal activity as well as in deciding the fungistatic and fungicidal nature of the compounds.

    6. Type I methionine aminopeptidase from Saccharomyces cerevisiae is a potential target for antifungal drug screening

      Institute of Scientific and Technical Information of China (English)

      Ling-ling CHEN; Jia LI; Jing-ya LI; Qun-li LUO; Wei-feng MAO; Qiang SHEN; Fa-jun NAN; Qi-zhuang YE

      2004-01-01

      AIM: To screen antifungal drug candidates using in vitro and in vivo assays based on type I methionine aminopeptidase from Saccharomyces cerevisiae (ScMetAP1). METHODS: A colorimetric assay suitable for high throughput screening (HTS) using recombinant ScMetAP1 protein expressed in Escherichia coli was established for antifungal lead discovery. A series of pyridine-2-carboxylic acid derivatives were characterized and a chemical library of 12 800 pure organic compounds was screened with the in vitro ScMetAP1 assay. Active compounds from the in vitro assay were further evaluated by a growth inhibition assay on yeast strain with deletion of ScMetAP1 gene mapl in comparison with the wild-type yeast strain and the yeast strain with deletion of type II enzyme (ScMetAP2)gene map2. RESULTS: Active ScMetAP1 inhibitors were identified from HTS. Some of the pyridine-2-carboxylic acid derivatives (compound 2 and 3) had selective inhibition of the growth of map2 deletion yeast and weak inhibition on wild-type yeast growth, while no inhibition on mapl deletion yeast. CONCLUSION: ScMetAP1 is a novel potential target for developing antifungal drugs. The in vitro and in vivo ScMetAP1 assays can serve as tools in discovering antifungal drug candidates.

    7. In vitro antifungal activities of leaf extracts of Lippia alba (Verbenaceae against clinically important yeast species

      Directory of Open Access Journals (Sweden)

      Graziela Teixeira de Oliveira

      2014-04-01

      Full Text Available Introduction There are few studies reporting the antifungal activities of Lippia alba extracts. Methods A broth microdilution assay was used to evaluate the antifungal effects of Lippia alba extracts against seven yeast species of Candida and Cryptococcus. The butanol fraction was investigated by gas chromatography-mass spectrometry. Results The butanol fraction showed the highest activity against Candida glabrata. The fraction also acted synergistically with itraconazole and fluconazole against C. glabrata. The dominant compounds in the butanol fraction were 2,2,5-trimethyl-3,4-hexanedione, 3,5-dimethyl-4-octanone and hexadecane. Conclusions The butanol fraction may be a good candidate in the search for new drugs from natural products with antifungal activity.

    8. Preliminary phytochemical analysis, antibacterial, antifungal and anticandidal activities of successive extracts of Crossandra infundibuliformis

      Institute of Scientific and Technical Information of China (English)

      MadhumithaG; SaralAM

      2011-01-01

      Objective:To investigate the phytochemical, antibacterial, antifungal and anticandidal activity of successive extracts of Crossandra infundibuliformis (Acanthaceae) leaves. Methods:Preliminary screening on the presence of alkaloids, saponins, phytosterols, phenolic compounds, flavanoids, tannins, carbohydrates, terpenoids, oils and fats were carried out by phytochemical analysis. The antibacterial, antifungal and anticandidal activities were done by agar well diffusion technique. Results:The successive extracts have an array of chemical constituents and the MIC values of antibacterial activity ranges from 0.007 8 to 0.015 0μg/mL. In case of antifungal and anticandidal activities the MIC values were between 0.125 and 0.250μg/mL. Conclusions:These findings demonstrate that the leaf extracts of C. infundibuliformis presents excellent antimicrobial activities and thus have great potential as a source for natural health care products.

    9. A chemometric approach for prediction of antifungal activity of some benzoxazole derivatives against Candida albicans

      Directory of Open Access Journals (Sweden)

      Podunavac-Kuzmanović Sanja O.

      2012-01-01

      Full Text Available The purpose of the article is to promote and facilitate prediction of antifungal activity of the investigated series of benzoxazoles against Candida albicans. The clinical importance of this investigation is to simplify design of new antifungal agents against the fungi which can cause serious illnesses in humans. Quantitative structure activity relationship analysis was applied on nineteen benzoxazole derivatives. A multiple linear regression (MLR procedure was used to model the relationships between the molecular descriptors and the antifungal activity of benzoxazole derivatives. Two mathematical models have been developed as a calibration models for predicting the inhibitory activity of this class of compounds against Candida albicans. The quality of the models was validated by the leave-one-out technique, as well as by the calculation of statistical parameters for the established model. [Projekat Ministarstva nauke Republike Srbije, br. 172012 i br. 172014

    10. An endophyte of Picrorhiza kurroa Royle ex. Benth, producing menthol, phenylethyl alcohol and 3-hydroxypropionic acid, and other volatile organic compounds.

      Science.gov (United States)

      Qadri, Masroor; Deshidi, Ramesh; Shah, Bhawal Ali; Bindu, Kushal; Vishwakarma, Ram A; Riyaz-Ul-Hassan, Syed

      2015-10-01

      An endophytic fungus, PR4 was found in nature associated with the rhizome of Picrorhiza kurroa, a high altitude medicinal plant of Kashmir Himalayas. The fungus was found to inhibit the growth of several phyto-pathogens by virtue of its volatile organic compounds (VOCs). Molecular phylogeny, based on its ITS1-5.8S-ITS2 ribosomal gene sequence, revealed the identity of the fungus as Phomopsis/Diaporthe sp. This endophyte was found to produce a unique array of VOCs, particularly, menthol, phenylethyl alcohol, (+)-isomenthol, β-phellandrene, β-bisabolene, limonene, 3-pentanone and 1-pentanol. The purification of compounds from the culture broth of PR4 led to the isolation of 3-hydroxypropionic acid (3-HPA) as a major metabolite. This is the first report of a fungal culture producing a combination of biologically and industrially important metabolites—menthol, phenylethyl alcohol, and 3-HPA. The investigation into the monoterpene biosynthetic pathway of PR4 led to the partial characterization of isopiperitenone reductase (ipr) gene, which seems to be significantly distinct from the plant homologue. The biosynthesis of plant-like-metabolites, such as menthol, is of significant academic and industrial significance. This study indicates that PR4 is a potential candidate for upscaling of menthol, phenylethyl alcohol, and 3-HPA, as well as for understanding the menthol/monoterpene biosynthetic pathway in fungi. PMID:26220851

    11. Antifungal Activity of Lavandula Angustifolia and Quergues Infectoria Extracts in Comparison with Nystatin on Candida Albicans

      Directory of Open Access Journals (Sweden)

      F. Nouri

      2016-07-01

      Full Text Available Introduction & Objective: Nowadays,herbal extracts are used to treat diseases, especially infec-tious ones. Candida albicans is the most common causes of oral opportunistic infections.In this study, antifungal effects of two herbal extracts were evaluated on an oral pathogen i.e. Candida albicans. Materials & Methods: In this descriptive- analytic study, the Department of Prosthodontics, ,Tehran University of Medical Sciences, school of Dentistry the oral samples of 25 patients with denture stomatitis were collected using sterile swabs. Then the isolated candida albicans and standard candida albicans PTCC 5027 were cultured. The antifungal effect was evaluated with disk plate method. Nystatin and methanol were used as positive and negative control groups, respectively. The power of antifungal activity was evaluated with the inhibition zone diameter of each of the extracts. At the end, the data were analyzed by ANOVA and Fried-man statistical tests. Results: Results showed that extracts of Querques infectoria had great antifungal effects. There was not statistically significant difference between nystatine and Querques infectoria extract (P>0.05 however , Querques infectoria was statistically more effective than lavender extract and nystatin showed the highest antifungal activity (P <0.001. Conclusion: This study showed that plant extracts had positive effects on Candida albicans as compared to nystatin. Thus, we hope to find new herbal medicines and compounds to treat candidiasis in the future. (Sci J Hamadan Univ Med Sci 2016; 23 (2:172-178

    12. USE OF A MICRO TITLE PLATE DILUTION ASSAY TO MEASURE ACTIVITY OF ANTIFUNGAL COMPOUNDS AGAINST Mycosphaerella Fijiensis, MORELET. UTILIZACIÓN DE UN ENSAYO DE DILUCIÓN EN MICROPLATOS PARA MEDIR LA ACTIVIDAD ANTIFÚNGICA DE SUSTANCIAS CONTRA Mycosphaerella fijiensis, MORELET.

      Directory of Open Access Journals (Sweden)

      Jorge Enrique Peláez Montoya

      2006-12-01

      Full Text Available Black Sigatoka, caused by the fungus Mycosphaerella fijiensis is the most important disease in banana plantations. The fungus is controlled mainly by fungicide applications with an annual cost of about 350 million dollars in Latin and Central America. Due to the appearance of resistant strains and to the economical and environmental impact caused by the extensive use of fungicides, accurate methods are necessary for monitoring the fungal sensitivity to these agents. In this paper we describe the standarization of a method based on microplate dilutions that measures IC50 of different antifungal compounds against single ascospore cultures of M. fijiensis. The method was used to measure the sensitivity of 30 strains collected from different regions in Colombia against Propiconazol, Benomyl and Azoxystrobin. Used at a larger scale, this method could be useful to monitor M. fijiensis sensitivity against fungicides and to search for new compounds with activity against the fungus.La Sigatoka negra, causada por el hongo Mycosphaerella fijiensis, es la enfermedad más importante que afecta plantaciones de banano y plátano. El hongo es controlado principalmente mediante fungicidas químicos con un costo anual de cerca de 350 millones de dólares para América latina y 25 millones de dólares para Colombia. Debido al desarrollo de cepas del hongo resistentes a los fungicidas y a las consecuencias que para el medio ambiente tiene su uso intensivo, es importante el desarrollo de métodos que permitan monitorear de una manera precisa la aparición de resistencia. También es de gran utilidad disponer de un método que permita evaluar en forma sencilla la actividad de nuevas sustancias contra el hongo. En este artículo describimos la estandarización de un método basado en diluciones en microplatos que permite determinar la IC50 de diversos compuestos antifungicos contra cultivos monospóricos de M. fijiensis. Para su validación, el método fue utilizado

    13. Antifungal Edible Coatings for Fresh Citrus Fruit: A Review

      Directory of Open Access Journals (Sweden)

      Lluís Palou

      2015-12-01

      Full Text Available According to their origin, major postharvest losses of citrus fruit are caused by weight loss, fungal diseases, physiological disorders, and quarantine pests. Cold storage and postharvest treatments with conventional chemical fungicides, synthetic waxes, or combinations of them are commonly used to minimize postharvest losses. However, the repeated application of these treatments has led to important problems such as health and environmental issues associated with fungicide residues or waxes containing ammoniacal compounds, or the proliferation of resistant pathogenic fungal strains. There is, therefore, an increasing need to find non-polluting alternatives to be used as part of integrated disease management (IDM programs for preservation of fresh citrus fruit. Among them, the development of novel natural edible films and coatings with antimicrobial properties is a technological challenge for the industry and a very active research field worldwide. Chitosan and other edible coatings formulated by adding antifungal agents to composite emulsions based on polysaccharides or proteins and lipids are reviewed in this article. The most important antifungal ingredients are selected for their ability to control major citrus postharvest diseases like green and blue molds, caused by Penicillium digitatum and Penicillium italicum, respectively, and include low-toxicity or natural chemicals such as food additives, generally recognized as safe (GRAS compounds, plant extracts, or essential oils, and biological control agents such as some antagonistic strains of yeasts or bacteria.

    14. 五株土壤细菌所产抑菌挥发性物质的生物活性评估及其应用%Bioactive evaluation and application of antifungal volatiles generated by five soil bacteria

      Institute of Scientific and Technical Information of China (English)

      刘玮玮; 赵丽静; 王超; 慕卫; 刘峰

      2009-01-01

      To study the bioactivity and application potential of antifungal volatile organic compounds (VOCs)from soil bacteria,the volatiles generated by five bacteria were determined by SPME-GC-MS (Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry)and their bioactivity was given further confirmation with commercially available compounds in sealed plates.Further,the application of these volatile-producing bacteria for the biological control of two main diseases on cucumber caused by Sclerotinia sclerrotium and Sphaerotheca fuliginea,respectively treated by soil and direct fumigation,was investigated in greenhouse.In total,21-31 and 12 compounds were detected from bacterial TSB-YE cultures and TSB-YE medium controls,respectively,which covered a wide range of alkyl,aldehyde,alcohol,ketone,fatty acid,amine,oxime,phenol and heterocyclics.Of the 20 candidate compounds assayed for antifungal activity in sealed plates,furfural,benzaldehyde,1-octanol,1-octen-3-ol,3,7-dimethyl-1,6-octadien-3-ol,2-ethyl-1-hexanol exhibited complete inhibition against S.sclerotiorum at a lowest treatment dosage of 0.01 g.Mixing the autoclaved soil with bacteria caused a higher control effect (28.57%-71.43%)on S.sclerrotium than those of bottom layer treatments,and an obvious growth promotion of cucumber seedlings was shown.When applied directly as fumigation,these volatiles could significantly inhibit the disease severity of powdery mildew on the fumigating seedlings.

    15. Microwave-assisted Synthesis and antifungal activity of coumarin[8,7-e][1,3]oxazine derivatives.

      Science.gov (United States)

      Zhang, Ming-Zhi; Zhang, Rong-Rong; Yin, Wen-Zheng; Yu, Xiang; Zhang, Ya-Ling; Liu, Pin; Gu, Yu-Cheng; Zhang, Wei-Hua

      2016-08-01

      The synthesis of novel coumarin[8,7-e][1,3]oxazine derivatives through a microwave-assisted three-component one-pot Mannich reaction is described in this study. All the target compounds were evaluated in vitro for their antifungal activity against Botrytis cinerea, Colletotrichum capsici, Alternaria solani, Gibberella zeae, Rhizoctonia solani, and Alternaria mali. The preliminary bioassays showed that 5e, 5m, and 5s exhibited good antifungal activity and the most active compound was 5m with an [Formula: see text] value as low as 2.1 nM against Botrytis cinerea. PMID:26880591

    16. Antifungal drugs and resistance: Current concepts

      OpenAIRE

      Pramod Kumar Nigam

      2015-01-01

      Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to the...

    17. Antifungal properties of Brazilian cerrado plants

      OpenAIRE

      Souza Lúcia Kioko Hasimoto e; Oliveira Cecília Maria Alves de; Ferri Pedro Henrique; Santos Suzana Costa; Oliveira Júnior Juldásio Galdino de; Miranda André Thiago Borges; Lião Luciano Morais; Silva Maria do Rosário Rodrigues

      2002-01-01

      Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in...

    18. Antifungal properties of Brazilian cerrado plants

      Directory of Open Access Journals (Sweden)

      Souza Lúcia Kioko Hasimoto e

      2002-01-01

      Full Text Available Ethanolic extracts from leaves of Hyptis ovalifolia, H. suaveolens, H. saxatilis, Hyptidendrum canum, Eugenia uniflora, E. dysenterica, Caryocar brasiliensis and Lafoensia pacari were investigated for their antifungal activity against dermatophytes. The most effective plants were H. ovalifolia and E. uniflora, while Trichophyton rubrum was the most sensitive among the four dermatophytes species evaluated. This study has demonstrated antifungal properties of Brazilian Cerrado plant extracts in "in vitro" assays.

    19. Eco-friendly synthesis and potent antifungal activity of 2-substituted coumaran-3-ones

      Directory of Open Access Journals (Sweden)

      PRABHA SOLANKI

      2012-11-01

      Full Text Available Solanki P, Shekhawat P. 2012. Eco-friendly synthesis and potent antifungal activity of 2-substituted coumaran-3-ones. Nusantara Bioscience 4: 101-104. 3-halochromones (IIa-c and IIIa-c have been synthesized by treating 1- (2-hydroxyphenyl-3-methyl-1,3-propanediones (Ia-c with bromine or sulphuryl chloride in dioxane respectively. These chromones were employed in the synthesis of 2-acetyl-coumaran-3-ones (IVa-f. These were subjected to Knoevenagel condensation to give 2-cinnamoyl coumaran-3-ones. In vitro assay and field trials of these compounds against Fusarium oxysporum were carried out to study the antifungal effect of target compounds. Compound Va was the most effective growth inhibitor of the pathogen, whereas Vc showd a little tendency and Vb, Vd, Ve and Vf hardly inhibits the growth

    20. Design, synthesis and antifungal activities of novel strobilurin derivatives containing pyrimidine moieties

      Energy Technology Data Exchange (ETDEWEB)

      Zhang, Xiang; Geo, Yongxin; Liu, Huijun; Guo, Baoyuan; Wang, Huili [Research Center for Eco-Environmental Sciences/Chinese Academy of Sciences, Beijing (China)

      2012-04-15

      Strobilurins are one of the most important classes of agricultural fungicides. To discover new strobilurin derivatives with high activity against resistant pathogens, a series of novel β-methoxy acrylate analogues were designed and synthesized by integrating substituted pyrimidine with a strobilurin pharmacophore. The compounds were confirmed and characterized by infrared, {sup 1}H nuclear magnetic resonance, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds (1a-1h) exhibited potent antifungal activities against Colletotrichum orbicular, Botrytis cinerea Pers and Protoporphyria caps ici Leon ian at the concentration of 50 μg/mL. Exhilaratingly, compound 1d (R=3-trifluoromethylphenyl) showed better antifungal activity against all the tested fungi than the commercial stilbenetriol fungicide azoxystrobin.

    1. Design, synthesis and antifungal activities of novel strobilurin derivatives containing pyrimidine moieties

      International Nuclear Information System (INIS)

      Strobilurins are one of the most important classes of agricultural fungicides. To discover new strobilurin derivatives with high activity against resistant pathogens, a series of novel β-methoxy acrylate analogues were designed and synthesized by integrating substituted pyrimidine with a strobilurin pharmacophore. The compounds were confirmed and characterized by infrared, 1H nuclear magnetic resonance, elemental analysis and mass spectroscopy. The bioassays indicated that most of the compounds (1a-1h) exhibited potent antifungal activities against Colletotrichum orbicular, Botrytis cinerea Pers and Protoporphyria caps ici Leon ian at the concentration of 50 μg/mL. Exhilaratingly, compound 1d (R=3-trifluoromethylphenyl) showed better antifungal activity against all the tested fungi than the commercial stilbenetriol fungicide azoxystrobin

    2. Prenylated flavonoids from the roots of Desmodium caudatum and evaluation of their antifungal activity.

      Science.gov (United States)

      Sasaki, Hisako; Kashiwada, Yoshiki; Shibatav, Hirofumi; Takaishi, Yoshihisa

      2012-11-01

      Two new prenylated flavonoids (1, 4) and two new prenylated C-methyl-flavonoids (6, 7), together with four known flavonoids (2, 3, 5, 8), were isolated from the roots of Desmodium caudatum. The structures of the new compounds were elucidated by extensive spectroscopic analyses including 1D-, 2D-NMR and MS. The antifungal activities of five compounds (1, 2, 4, 6, 8) as well as nine flavonoids (9-17) previously isolated from this plant against Aspergillus niger, Penicillium sp., Rhizopus sp., and Trichophyton sp. were evaluated. Compound 6 showed potent antifungal activity against Trichophyton sp. with a minimum inhibitory concentration (MIC) value of 1.95 µg/mL. PMID:23059627

    3. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9

      Science.gov (United States)

      Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

      2016-01-01

      It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1–11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

    4. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9.

      Science.gov (United States)

      Raza, Waseem; Ling, Ning; Yang, Liudong; Huang, Qiwei; Shen, Qirong

      2016-01-01

      It is important to study the response of plant pathogens to the antibiosis traits of biocontrol microbes to design the efficient biocontrol strategies. In this study, we evaluated the role of volatile organic compounds (VOCs) produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9 on the growth and virulence traits of tomato wilt pathogen Ralstonia solanacearum (RS). The VOCs of SQR-9 significantly inhibited the growth of RS on agar medium and in soil. In addition, the VOCs significantly inhibited the motility traits, production of antioxidant enzymes and exopolysaccharides, biofilm formation and tomato root colonization by RS. The strain SQR-9 produced 22 VOCs, but only nine VOCs showed 1-11% antibacterial activity against RS in their corresponding amounts; however, the consortium of all VOCs showed 70% growth inhibition of RS. The proteomics analysis showed that the VOCs of SQR-9 downregulated RS proteins related to the antioxidant activity, virulence, carbohydrate and amino acid metabolism, protein folding and translation, while the proteins involved in the ABC transporter system, amino acid synthesis, detoxification of aldehydes and ketones, methylation, protein translation and folding, and energy transfer were upregulated. This study describes the significance and effectiveness of VOCs produced by a biocontrol strain against tomato wilt pathogen. PMID:27103342

    5. [Chalcones and their heterocyclic analogs as potential antifungal chemotherapeutic agents].

      Science.gov (United States)

      Opletalová, V; Sedivý, D

      1999-11-01

      Chalcones and their heterocyclic analogues show various biological effects, e.g. anti-inflammatory, antitumour, antibacterial, antituberculous, antiviral, antiprotozoal, gastroprotective, and others. The present review discusses in greater detail the fungistatic and fungicide properties of these compounds and presents also their chemical structures. The mechanism of antifungal effects of chalcones and their analogues has not been investigated in greater detail. Due to the presence of a reactive ketovinyl moiety in the molecule the compounds of this type are able to react with the thiol groups of enzymes. It cannot be excluded that chalcones interfere with the normal function of the membranes of fungi and moulds. Further investigation of chemical, physical, and biological properties of chalcones and their analogues could lead to the elucidation of the mechanism of their action and finding of effective fungicidal and fungistatic agents in this group of organic substances. PMID:10748740

    6. Pavietin, a coumarin from Aesculus pavia with antifungal activity.

      Science.gov (United States)

      Curir, Paolo; Galeotti, Francesco; Dolci, Marcello; Barile, Elisa; Lanzotti, Virginia

      2007-10-01

      A new prenylated coumarin, S-6-[2-(hydroxymethyl)butoxy]-7-hydroxy-4-methyl-2 H-chromen-2-one ( 1), named pavietin, has been isolated from the leaves of an Aesculus pavia genotype along with three known flavonol glycosides, quercetin 3- O-alpha-rhamnoside (quercitrin, 2), quercetin 3- O-alpha-arabinoside ( 3), and isorhamnetin 3- O-alpha-arabinoside (distichin, 4). The chemical structure of compound 1 was determined by chemical and spectroscopic methods, inclusive of UV, MS, and 1D and 2D NMR experiments. It showed appreciable antimicrobial properties against several pathogens, displaying a significant antifungal activity toward one of the main fungal parasites of Aesculus species, Guignardia aesculi. The same biological tests performed with a mixture of flavonoids 2- 4 resulted in weak or no activity. Compound 1 was undetectable in Aesculus hippocastanum, a closely related species lacking resistance to fungal pathogens. The possible role of 1 in plant resistance is discussed. PMID:17914881

    7. Acetoxychavicol Acetate, an Antifungal Component of Alpinia galanga1.

      Science.gov (United States)

      Janssen, A M; Scheffer, J J

      1985-12-01

      The essential oils from fresh and dried rhizomes of ALPINIA GALANGA showed an antimicrobial activity against gram-positive bacteria, a yeast and some dermatophytes, using the agar overlay technique. The main components of the oils were also tested and terpinen-4-ol was found most active. An N-pentane/diethyl ether extract of dried rhizomes was active against TRICHOPHYTON MENTAGROPHYTES. 1'-Acetoxychavicol acetate, 1'-acetoxyeugenol acetate and 1'-hydroxychavicol acetate identified by MS and NMR were found in the antifungally active fractions obtained by LSC. Acetoxychavicol acetate was active against the seven fungi tested and its MIC value for dermatophytes ranged from 50 to 250 microg/ml. Dried sliced rhizomes contained 1.5% of this compound. The compound was not found in rhizomes of ALPINIA OFFICINARUM, ZINGIBER OFFICINALE and KAEMPFERIA GALANGA. PMID:17345272

    8. Antifungal Activity of the Volatiles of High Potency Cannabis sativa L. Against Cryptococcus neoformans

      Directory of Open Access Journals (Sweden)

      Amira S. Wanas

      2015-08-01

      Full Text Available The n-hexane extracted volatile fraction of high potency Cannabis sativa L (Cannabaceae . was assessed in vitro for antifungal, antibacterial and antileishmanial activities. The oil exhibited selective albeit modest, antifungal activity against Cryptococcus neoformans with an IC 50 value of 33.1 µg/mL. Biologically-guided fractionation of the volatile fraction resulted in the isolation of three major compounds (1-3 using various chromatographic techniques. The chemical structures of the isolated compounds were identified as α-humulene (1, b -caryophyllene (2 and caryophyllene oxide (3 using GC/FID, GC/MS, 1D- and 2D-NMR analyses, respectively. Compound 1 showed potent and selective antifungal activity against Cryptococcus neoformans with IC 50 and MIC values of 1.18 m g/mL and 5.0 m g/mL respectively. Whereas compound 2 showed weak activity (IC 50 19.4 µg/mL, while compound 3 was inactive against C. neoformans.

    9. Response Surface Methodology: Optimisation of Antifungal Bioemulsifier from Novel Bacillus thuringiensis

      Directory of Open Access Journals (Sweden)

      Deepak Rajendran

      2014-01-01

      Full Text Available An antifungal bioemulsifier compound was produced from a novel strain of Bacillus thuringiensis pak2310. To accentuate the production and as the first step to improve the yield, a central composite design (CCD was used to study the effect of various factors like minimal salts (1X and 3X, glycerol concentration (2% and 4%, beef extract concentration (1% and 3%, and sunflower oil concentration (2% and 4% on the production of bioemulsifier molecule and to optimize the conditions to increase the production. The E24 emulsification index was used as the response variable as the increase in surfactant production was seen to be proportional to increased emulsification. A quadratic equation was employed to express the response variable in terms of the independent variables. Statistical tools like student’s t-test, F-test, and ANOVA were employed to identify the important factors and to test the adequacy of the model. Under optimum conditions (1X concentration of minimal salts (MS, 2.6% glycerol (v/v, 1% beef extract (w/v, and 2% sunflower oil (v/v a 65% increase in yield was produced.

    10. Response surface methodology: optimisation of antifungal bioemulsifier from novel Bacillus thuringiensis.

      Science.gov (United States)

      Rajendran, Deepak; Venkatachalam, Ponnusami; Ramakrishnan, Jayapradha

      2014-01-01

      An antifungal bioemulsifier compound was produced from a novel strain of Bacillus thuringiensis pak2310. To accentuate the production and as the first step to improve the yield, a central composite design (CCD) was used to study the effect of various factors like minimal salts (1X and 3X), glycerol concentration (2% and 4%), beef extract concentration (1% and 3%), and sunflower oil concentration (2% and 4%) on the production of bioemulsifier molecule and to optimize the conditions to increase the production. The E 24 emulsification index was used as the response variable as the increase in surfactant production was seen to be proportional to increased emulsification. A quadratic equation was employed to express the response variable in terms of the independent variables. Statistical tools like student's t-test, F-test, and ANOVA were employed to identify the important factors and to test the adequacy of the model. Under optimum conditions (1X concentration of minimal salts (MS), 2.6% glycerol (v/v), 1% beef extract (w/v), and 2% sunflower oil (v/v)) a 65% increase in yield was produced. PMID:25379529

    11. Argentinean propolis from Zuccagnia punctata Cav. (Caesalpinieae) exudates: phytochemical characterization and antifungal activity.

      Science.gov (United States)

      Agüero, María Belén; Gonzalez, Mariela; Lima, Beatriz; Svetaz, Laura; Sánchez, Marianela; Zacchino, Susana; Feresin, Gabriela Egly; Schmeda-Hirschmann, Guillermo; Palermo, Jorge; Wunderlin, Daniel; Tapia, Alejandro

      2010-01-13

      This paper reports the in vitro antifungal activity of propolis extracts from the province of Tucuman (Argentina) as well as the identification of their main antifungal compounds and botanical origin. The antifungal activity was determined by the microdilution technique, using reference microorganisms and clinical isolates. All dermatophytes and yeasts tested were strongly inhibited by different propolis extracts (MICs between 16 and 125 microg mL(-1)). The most susceptible species were Microsporum gypseum, Trichophyton mentagrophytes, and Trichophyton rubrum. The main bioactive compounds were 2',4'-dihydroxy-3'-methoxychalcone 2 and 2',4'-dihydroxychalcone 3. Both displayed strong activity against clinical isolates of T. rubrum and T. mentagrophytes (MICs and MFCs between 1.9 and 2.9 microg mL(-1)). Additionally, galangin 5, pinocembrin 6, and 7-hydroxy-8-methoxyflavanone 9 were isolated from propolis samples and Zuccagnia punctata exudates, showing moderate antifungal activity. This is the first study matching the chemical profile of Z. punctata Cav. exudates with their corresponding propolis, giving strong evidence on the botanical origin of the studied propolis. PMID:19916546

    12. Isolation and identification of 5-hydroxyl-5-methyl-2-hexenoic acid from Actinoplanes sp. HBDN08 with antifungal activity.

      Science.gov (United States)

      Zhang, Ji; Wang, Xiang-Jing; Yan, Yi-Jun; Jiang, Ling; Wang, Ji-Dong; Li, Bao-Ju; Xiang, Wen-Sheng

      2010-11-01

      A bioactivity-guided approach was employed to isolate and determine the chemical identity of bioactive constituents with antifungal activity from Actinoplanes sp. HBDN08. The structure of the antifungal metabolite was elucidated as 5-hydroxyl-5-methyl-2-hexenoic acid on the basis of spectral analysis. This compound showed strong in vitro antifungal activity against Botrytis cinerea, Cladosporium cucumerinum and Corynespora cassiicola, with an IC(50) of 32.45, 27.17, and 30.66 mg/L, respectively; however, it only moderately inhibited hyphal growth of Rhizoctonia solani with an IC(50) of 61.64 mg/L. The in vivo antifungal activity under greenhouse conditions demonstrated that 5-hydroxyl-5-methyl-2-hexenoic acid could effectively control the diseases caused by B. cinerea, C. cucumerinum and C. cassiicola with 71.42%, 78.63% and 65.13% control values at 350 mg/L, respectively. This strong antifungal activity suggests that 5-hydroxyl-5-methyl-2-hexenoic acid might be a promising candidate for new antifungal agents. PMID:20584599

    13. Copper(II) complexes with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid: Syntheses, crystal structures and antifungal activities

      International Nuclear Information System (INIS)

      Reaction of Cu(II) with an asymmetric semi-rigid organic ligand 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid (HL), yielded five compounds, [Cu0.5L]n (1), [Cu(HL)2Cl2]n (2), [Cu(HL)2Cl2(H2O)] (3), [Cu(L)2(H2O)]n (4) and [Cu(L)(phen)(HCO2)]n (5), which have been fully characterized by infrared spectroscopy, elemental analysis, and single-crystal X-ray diffraction. As for compounds 1, 2 and 5, Cu(II) is bridged through HL, Cl-, and formic acid, respectively, featuring 1D chain-structure. In compound 3, Cu(II) with hexahedral coordination sphere is assembled through hydrogen-bonding into 3D supramolecular framework. In compound 4, 1D chain units –Cu–O–Cu–O– are ligand-bridged into a 3D network. All compounds were tested on fungi (Fusarium graminearum, Altemaria solani, Macrophoma kawatsukai, Alternaria alternata and Colletotrichum gloeosporioides). Compound 1 exhibits a better antifungal effect compared to other compounds. An effect of structure on the antifungal activity has also been correlated. - Graphical abstract: Copper(II) compounds with 4-(1H-1, 2, 4-trizol-1-ylmethyl) benzoic acid, were prepared, structurally characterized and investigated for antifungal activity. - Highlights: • The title compounds formed by thermodynamics and thermokinetics. • The five compounds show higher inhibition percentage than reactants. • The structure effect on the antifungal activity

    14. Screening of Azotobacter isolates for PGP properties and antifungal activity

      Directory of Open Access Journals (Sweden)

      Bjelić Dragana Đ.

      2015-01-01

      Full Text Available Аmong 50 bacterial isolates obtained from maize rhizospherе, 13 isolates belonged to the genus Azotobacter. Isolates were biochemically characterized and estimated for pH and halo tolerance ability and antibiotic resistance. According to characterization, the six representative isolates were selected and further screened in vitro for plant growth promoting properties: production of indole-3-acetic acid (IAA, siderophores, hydrogen cyanide (HCN, exopolysaccharides, phosphate solubilization and antifungal activity (vs. Helminthosporium sp., Macrophomina sp., Fusarium sp.. Beside HCN production, PGP properties were detected for all isolates except Azt7. All isolates produced IAA in the medium without L-tryptophan and the amount of produced IAA increased with concentration of precursor in medium. The highest amount of IAA was produced by isolates Azt4 (37.69 and 45.86 μg ml-1 and Azt5 (29.44 and 50.38 μg ml-1 in the medium with addition of L-tryptophan (2.5 and 5 mM. The isolates showed the highest antifungal activity against Helminthosporium sp. and the smallest antagonistic effect on Macrophomina sp. Radial Growth Inhibition (RGI obtained by the confrontation of isolates with tested phytopathogenic fungi, ranged from 10 to 48%. [Projekat Ministarstva nauke Republike Srbije, br. TR 31073

    15. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

      Science.gov (United States)

      Komoto, Tatiana Takahasi; Bitencourt, Tamires Aparecida; Silva, Gabriel; Beleboni, Rene Oliveira; Marins, Mozart; Fachin, Ana Lúcia

      2015-01-01

      Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.). Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets. PMID:26257814

    16. Expression in Escherichia coli, purification, refolding and antifungal activity of an osmotin from Solanum nigrum

      Directory of Open Access Journals (Sweden)

      Magalhães Cláudio P

      2008-03-01

      Full Text Available Abstract Background Heterologous protein expression in microorganisms may contribute to identify and demonstrate antifungal activity of novel proteins. The Solanum nigrum osmotin-like protein (SnOLP gene encodes a member of pathogenesis-related (PR proteins, from the PR-5 sub-group, the last comprising several proteins with different functions, including antifungal activity. Based on deduced amino acid sequence of SnOLP, computer modeling produced a tertiary structure which is indicative of antifungal activity. Results To validate the potential antifungal activity of SnOLP, a hexahistidine-tagged mature SnOLP form was overexpressed in Escherichia coli M15 strain carried out by a pQE30 vector construction. The urea solubilized His6-tagged mature SnOLP protein was affinity-purified by immobilized-metal (Ni2+ affinity column chromatography. As SnOLP requires the correct formation of eight disulfide bonds, not correctly formed in bacterial cells, we adapted an in vitro method to refold the E. coli expressed SnOLP by using reduced:oxidized gluthatione redox buffer. This method generated biologically active conformations of the recombinant mature SnOLP, which exerted antifungal action towards plant pathogenic fungi (Fusarium solani f. sp.glycines, Colletotrichum spp., Macrophomina phaseolina and oomycete (Phytophthora nicotiana var. parasitica under in vitro conditions. Conclusion Since SnOLP displays activity against economically important plant pathogenic fungi and oomycete, it represents a novel PR-5 protein with promising utility for biotechnological applications.

    17. Gene Expression Response of Trichophyton rubrum during Coculture on Keratinocytes Exposed to Antifungal Agents

      Directory of Open Access Journals (Sweden)

      Tatiana Takahasi Komoto

      2015-01-01

      Full Text Available Trichophyton rubrum is the most common causative agent of dermatomycoses worldwide, causing infection in the stratum corneum, nails, and hair. Despite the high prevalence of these infections, little is known about the molecular mechanisms involved in the fungal-host interaction, particularly during antifungal treatment. The aim of this work was to evaluate the gene expression of T. rubrum cocultured with keratinocytes and treated with the flavonoid trans-chalcone and the glycoalkaloid α-solanine. Both substances showed a marked antifungal activity against T. rubrum strain CBS (MIC = 1.15 and 17.8 µg/mL, resp.. Cytotoxicity assay against HaCaT cells produced IC50 values of 44.18 to trans-chalcone and 61.60 µM to α-solanine. The interaction of keratinocytes with T. rubrum conidia upregulated the expression of genes involved in the glyoxylate cycle, ergosterol synthesis, and genes encoding proteases but downregulated the ABC transporter TruMDR2 gene. However, both antifungals downregulated the ERG1 and ERG11, metalloprotease 4, serine proteinase, and TruMDR2 genes. Furthermore, the trans-chalcone downregulated the genes involved in the glyoxylate pathway, isocitrate lyase, and citrate synthase. Considering the urgent need for more efficient and safer antifungals, these results contribute to a better understanding of fungal-host interactions and to the discovery of new antifungal targets.

    18. Antifungal drugs and resistance: Current concepts

      Directory of Open Access Journals (Sweden)

      Pramod Kumar Nigam

      2015-04-01

      Full Text Available Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to these drugs. The main biochemical and molecular mechanisms that contribute to antifungal resistance include reduced uptake of the drug, an active transport out of the cell or modified drug metabolic degradation of the cell, changes in the interaction of the drug to the target site or other enzymes involved in the process by point mutations, overexpression of the target molecule, overproduction or mutation of the target enzyme, amplification and gene conversion (recombination, and increased cellular efflux and occurrence of biofilm. Although, there is considerable knowledge concerning the biochemical, genetic and clinical aspects of resistance to antifungal agents, expansion of our understanding of the mechanisms by which antifungal resistance emerges and spreads, quicker methods for the determination of resistance, targetting efflux pumps, especially ATP binding cassette (ABC transporters and heat shock protein 90, new drug delivery systems, optimizing therapy according to pharmacokinetic and pharmacodynamic characteristics, new classes of antifungal drugs that are active against azole-resistant isolates, and use of combinations of antifungal drugs or use of adjunctive immunostimulatory therapy and other modalities of treatment will clearly be important for future treatment strategies and in preventing development of resistance.

    19. Characterization of an antifungal chitinase from Bacillus sp.SL-13

      Institute of Scientific and Technical Information of China (English)

      Chen; Shan

      2014-01-01

      Bacillus sp.SL-13 produced antifungal proteins.The growth of the plant-pathogenic fungi Rhizoctonia solani was considerably inhibited by the presence of the SL-13 culture supernatant.It is very suitable for the use in a relatively unstable environment,exhibiting effective biological control.

    20. Alternative testing strategies for predicting developmental toxicity of antifungal compound

      NARCIS (Netherlands)

      Li, H.

      2016-01-01

      Determination of safe human exposure levels of chemicals in toxicological risk assessments largely relies on animal toxicity data. In these toxicity studies, the highest number of animals are used for reproductive and developmental toxicity testing. Because of economic and ethical reasons, there is

    1. Alternative testing strategies for predicting developmental toxicity of antifungal compound

      OpenAIRE

      Li, H.

      2016-01-01

      Determination of safe human exposure levels of chemicals in toxicological risk assessments largely relies on animal toxicity data. In these toxicity studies, the highest number of animals are used for reproductive and developmental toxicity testing. Because of economic and ethical reasons, there is large interest in the development of in vitro and/or in silico test systems as alternatives for the animal studies. The aim of the present thesis was to evaluate the applicability of combined in vi...

    2. Evaluation of antifungal potential of selected medicinal plants against human pathogenic fungi

      Directory of Open Access Journals (Sweden)

      Hayat Sakander

      2015-01-01

      Full Text Available Context: Evaluation of medicinal plants used in traditional medicine lead to novel bioactive compounds with antifungal activity that could be exploited as therapeutic agents. Aims: The aim was to screen selected medicinal plants for antifungal activity against three important human pathogenic fungi and to identify the broad group of phytochemicals responsible for the activity. Materials and Methods: A total of 8 medicinal plants were screened for antifungal activity against three human pathogenic fungi. Aqueous and the solvent extracts of the plant materials were prepared by polarity based solvent extraction. Antifungal activity was tested by well and disc diffusion methods. Minimum inhibitory concentration (MIC of the active extract was determined by micro-broth dilution technique. Phytochemical analysis of the active extract was done. Statistical Analysis Used: The results were statistically analysed by One-Way analysis of variance with Post-hoc Tukey′s B test at P < 0.05 using the  Software SPSS version 20 (IBM Corp. Armonk, NY Released 2011. Results: Significant antifungal activity was observed in the aqueous extracts of the fruits of Terminalia chebula (47.75 mm against Microsporum gypseum and the mesocarp of Persea americana (40.5 mm against Microsporum canis. Candida albicans was inhibited by the ethyl acetate (20 mm and aqueous extracts (16 mm of T. chebula fruits and aqueous extract of the seeds of Syzygium jambos (16 mm. The aqueous extract of mesocarp of P. americana showed lowest MIC value (312.5 μg/ml against M. canis and M. gypseum. Phytochemical analysis of the active extracts revealed the presence of phenols, tannins, alkaloids and flavonoids. Conclusions: The study validates the use of the plants in the treatment of fungal infections and has provided important leads for the discovery of new plant-based antifungal agents.

    3. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae) essential oils against Alternaria solani (Pleosporeaceae) isolates.

      Science.gov (United States)

      Tomazoni, Elisa Z; Pansera, Márcia R; Pauletti, Gabriel F; Moura, Sidnei; Ribeiro, Rute T S; Schwambach, Joséli

      2016-05-31

      Several volatile natural compounds produced by plant secondary metabolism have been proven to present antimicrobial action, enabling their use in phytopathogen control. They also present low environmental impact when compared to conventional pesticides. Essential oils contain these compounds and can be found in several plant species, such as Lippia alba (Mill.) N.E. Brown (Verbenaceae). Essential oils of four chemotypes of L. alba, characterized by their major compounds, namely camphor, citral, linalool and camphor/1,8-cineole, were tested against the phytopathogen Alternaria solani Sorauer (Pleosporaceae), which causes early blight on tomatoes and is responsible for great economic losses regarding production. Essential oils antifungal action was tested in vitro using potato dextrose agar medium with essential oil concentrations at 0.1, 0.5, 1.0, 1.5 and 2.0 µL mL-1. The chemotype that had the best performance was citral, showing significant inhibition compared to the others, starting at the 0.5 µL mL-1 concentration. The essential oil belonging to the linalool chemotype was efficient starting at the 1.5 µL mL-1 concentration. Conversely, the camphor chemotype did not show any action against the phytopathogen. Moreover, the essential oils had no remarkable effect on tomato germination and growth. In conclusion, these essential oils presented fungicidal action against A. solani. PMID:27254445

    4. In vitro antifungal activity of four chemotypes of Lippia alba (Verbenaceae essential oils against Alternaria solani (Pleosporeaceae isolates

      Directory of Open Access Journals (Sweden)

      ELISA Z. TOMAZONI

      2016-06-01

      Full Text Available Several volatile natural compounds produced by plant secondary metabolism have been proven to present antimicrobial action, enabling their use in phytopathogen control. They also present low environmental impact when compared to conventional pesticides. Essential oils contain these compounds and can be found in several plant species, such as Lippia alba (Mill. N.E. Brown (Verbenaceae. Essential oils of four chemotypes of L. alba, characterized by their major compounds, namely camphor, citral, linalool and camphor/1,8-cineole, were tested against the phytopathogen Alternaria solani Sorauer (Pleosporaceae, which causes early blight on tomatoes and is responsible for great economic losses regarding production. Essential oils antifungal action was tested in vitro using potato dextrose agar medium with essential oil concentrations at 0.1, 0.5, 1.0, 1.5 and 2.0 µL mL-1. The chemotype that had the best performance was citral, showing significant inhibition compared to the others, starting at the 0.5 µL mL-1 concentration. The essential oil belonging to the linalool chemotype was efficient starting at the 1.5 µL mL-1 concentration. Conversely, the camphor chemotype did not show any action against the phytopathogen. Moreover, the essential oils had no remarkable effect on tomato germination and growth. In conclusion, these essential oils presented fungicidal action against A. solani.

    5. Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: indolenyl sulfonamide derivatives.

      Science.gov (United States)

      Chohan, Zahid H; Youssoufi, Moulay H; Jarrahpour, Aliasghar; Ben Hadda, Taibi

      2010-03-01

      Synthesis of seven new indolenyl sulfonamides, have been prepared by the condensation reaction of indole-3-carboxaldehyde with different sulfonamides such as, sulphanilamide, sulfaguanidine, sulfathiazole, sulfamethoxazole, sulfisoxazole, sulfadiazine and sulfamethazine. These synthesized compounds have been used as potential ligands for complexation with some selective divalent transition metal ions (cobalt, copper, nickel & zinc). Structure of the synthesized ligands has been deduced from their physical, analytical (elemental analyses) and spectral (IR, (1)H NMR and (13)C NMR & UV-vis) data. All the compounds have also been assayed for their in vitro antibacterial and antifungal activities examining six species of pathogenic bacteria (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and six of fungi (Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium soloni and Candida glabrata). Antibacterial and antifungal results showed that all the compounds showed significant antibacterial activity whereas most of the compounds displayed good antifungal activity. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. PMID:20005022

    6. Synthesis and biological evaluation of new naphthalene substituted thiosemicarbazone derivatives as potent antifungal and anticancer agents.

      Science.gov (United States)

      Altıntop, Mehlika Dilek; Atlı, Özlem; Ilgın, Sinem; Demirel, Rasime; Özdemir, Ahmet; Kaplancıklı, Zafer Asım

      2016-01-27

      New thiosemicarbazone derivatives (1-10) were obtained via the reaction of 4-(naphthalen-1-yl)thiosemicarbazide with fluoro-substituted aromatic aldehydes. The synthesized compounds were evaluated for their in vitro antifungal effects against pathogenic yeasts and molds using broth microdilution assay. Ames and umuC assays were carried out to determine the genotoxicity of the most effective antifungal derivatives. Furthermore, all compounds were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and NIH/3T3 mouse embryonic fibroblast cell lines using XTT test. Among these derivatives, 4-(naphthalen-1-yl)-1-(2,3-difluorobenzylidene)thiosemicarbazide (1) and 4-(naphthalen-1-yl)-1-(2,5-difluorobenzylidene)thiosemicarbazide (3) can be identified as the most promising antifungal derivatives due to their notable inhibitory effects on Candida species and no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cell line. According to Ames and umuC assays, compounds 1 and 3 were classified as non-mutagenic compounds. On the other hand, 4-(naphthalen-1-yl)-1-(2,4-difluorobenzylidene)thiosemicarbazide (2) can be considered as the most promising anticancer agent against A549 cell line owing to its notable inhibitory effect on A549 cells with an IC50 value of 31.25 μg/mL when compared with cisplatin (IC50 = 16.28 μg/mL) and no cytotoxicity against NIH/3T3 cells. PMID:26706351

    7. Watering and mineral supply effects on plant production, on hydrosoluble metabolites content and on the antifungal properties of three aromatic plants used as spices

      OpenAIRE

      Matos, O.; Baptista, S.; Passarinho, J.A.; Delgado, F.M.G.; Ricardo, C.P.; Vilas-Boas, L.

      1998-01-01

      Calamintha bactica, Origonum vulgaris and Cuminum cyminum have been studied for their capacities as a source of antifungal compounds. One set of these plants grown under water stress. The other set of plants was submitted to different mineral nutrition. The plant material obtained after grinding, were extracted with MeOH or EtOAc, fractionated with organic solvents, and tested for their antifungal properties. Cladosporium cucumerinum and several Fusarium strains were used as biological target...

    8. Synthesis and antifungal activity of halogenated aromatic bis-γ-lactones analogous to avenaciolide

      Directory of Open Access Journals (Sweden)

      Pedro A. Castelo-Branco

      2012-01-01

      Full Text Available Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-γ-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis.

    9. Synthesis and antifungal activity of new bis-{gamma}-lactones analogous to avenaciolide

      Energy Technology Data Exchange (ETDEWEB)

      Magaton, Andreia da Silva; Rubinger, Mayura M. M.; Macedo Junior, Fernando C. de [Vicosa Univ., MG (Brazil). Dept. de Quimica]. E-mail: mayura@ufv.br; Zambolim, Laercio [Vicosa Univ., MG (Brazil). Dept. de Fitopatologia

      2007-03-15

      In a study of the antifungal activity of selected compounds as potentials agrochemicals, we have prepared and characterized by elemental analyses, infrared and NMR spectroscopies three new bis-{gamma}-lactones analogous to avenaciolide, where the octyl group of this natural product was replaced by heptyl, hexyl and pentyl groups. The effects on the mycelia development and conidia germination of Colletotrichum gloesporioides of these compounds and their synthetic precursors were evaluated in vitro. The title compounds were active in the tested conditions, while all the synthetic precursors were inactive. The preparation and characterization of 15 new synthetic intermediates are also described. (author)

    10. Synthesis, antimicrobial and antifungal activities of novel 1H-1,4-diazepines containing pyrazolopyrimidinone moiety

      Indian Academy of Sciences (India)

      Rajesh Kumar; Yogesh Chandra Joshi

      2009-07-01

      Acylation of 5-(2-ethoxyphenyl)-1-methyl-3-propyl-1,6-dihydro-7-pyrazolo [4,3-d) pyrimidin-7-one 1 with chloroacetylchloride in the presence of anyhydrous aluminium chloride affords 5-[(5-chloroacetyl-2-ethoxy)phenyl]-1-methyl-3-propyl-1,6-dihydro-7H-pyrazolo [4,3-d] pyrimidin-7-one 2. The compound 2 condensed with various -diketones/-ketoesters compound, to obtain new -diketones/-ketoesters 4a-i treated with ethylenediamine (EDA) gives 1H-1,4-diazepines. The compounds 5a-i has been screened for antimicrobial, antifungal and anthelmintic activities.

    11. Synthesis and antifungal activity of halogenated aromatic bis-γ-lactones analogous to avenaciolide

      International Nuclear Information System (INIS)

      Here we describe the total syntheses and characterization by elemental analyses, infrared and NMR spectroscopy of three new compounds analogous to avenaciolide, a bis-g-lactone isolated from Aspergillus avenaceus that possesses antifungal activity, where the octyl group of the natural product was replaced by aromatic groups containing chlorine and fluorine atoms. The effects of the avenaciolide, the novel compounds and their synthetic precursors on mycelia development and conidia germination of Colletotrichum gloeosporioides and Fusarium solani were evaluated in vitro. The title compounds were almost as active as avenaciolide. The absolute structures of the chlorinated analogs were determined by X-ray diffraction analysis. (author)

    12. Synthesis and antifungal activity of new bis-γ-lactones analogous to avenaciolide

      International Nuclear Information System (INIS)

      In a study of the antifungal activity of selected compounds as potentials agrochemicals, we have prepared and characterized by elemental analyses, infrared and NMR spectroscopies three new bis-γ-lactones analogous to avenaciolide, where the octyl group of this natural product was replaced by heptyl, hexyl and pentyl groups. The effects on the mycelia development and conidia germination of Colletotrichum gloesporioides of these compounds and their synthetic precursors were evaluated in vitro. The title compounds were active in the tested conditions, while all the synthetic precursors were inactive. The preparation and characterization of 15 new synthetic intermediates are also described. (author)

    13. Antifungal Enantiomeric Styrylpyrones from Sanrafaelia ruffonammari and Ophrypetalum odoratum.

      Science.gov (United States)

      Malebo, Hamisi M; Kihampa, Charles; Mgina, Clarence A; Sung'hwa, Fortunatus; Waibel, Reiner; Jonker, Stephan A; Nkunya, Mayunga H H

      2014-04-01

      Phytochemical investigation of Sanrafaelia ruffonammari Verd and Ophrypetalum odoratum Diels that belongs to the rare genera confined to East African coastal forests led to the isolation of enantiomeric styrylpyrone dimer, (±)-5-methoxy-7-phenyl-[4-methoxy-2-pyronyl]-1-(E)-styryl-2-oxabicyclo-[4.2.0]-octa-4-en-3-one (1) alongside (+)-6-styryl-7,8-epoxy-4-methoxypyran-2-one (2) and the enantiomeric (+)- (3) and (-)-6-styryl-7,8-dihydroxy-4-methoxypyran-2-ones (4). Their structures were established by means of spectroscopic methods. In this paper we reveal for the first time the occurrence of styrylpyrones in East African biodiversity. (+)-6-Styryl-7,8-epoxy-4-methoxypyran-2-one (2) and the dihydroxystyrylpyrone enantiomer (3) showed in vitro antifungal activity against Candida albicans at a concentration of 24.4 and 26.2 µM with zones of inhibition of 17 and 9 mm, respectively. Compound 2 exhibited strong activity in the brine shrimp test with LC50 = 1.7 µg/mL. Their high cytotoxic and antifungal activities render them candidates for further scientific attention for drug development programs against cancer and microbial infections. PMID:24859289

    14. Evidence for alteration of fungal endophyte community assembly by host defense compounds.

      Science.gov (United States)

      Saunders, Megan; Kohn, Linda Myra

      2009-01-01

      * Plant defense compounds are common stressors encountered by endophytes. Fungi readily evolve tolerance to these compounds, yet few studies have addressed the influence of intraspecific variation in defense compound production on endophyte colonization. We compared the influence of defense compound production on the composition of fungal endophyte communities in replicated field experiments. * Maize (Zea mays) produces benzoxazinoids (BXs), compounds with antifungal byproducts persistent in the environment. Fungi were isolated from leaf and root tissue of two maize genotypes that produce BXs, and a natural mutant that does not. Isolates representing the species recovered were tested for tolerance to 2-benzoxazolinone (BOA), a toxic BX byproduct. * In seedling roots and mature leaves, the community proportion with low BOA tolerance was significantly greater in BX nonproducers than producers. Mean isolation frequency of Fusarium species was up to 35 times higher in mature leaves of BX producers than nonproducers. * Fungal species with relatively high tolerance to BOA are more abundant in BX producing than BX nonproducing maize. Production of BXs may increase colonization by Fusarium species in maize, including agents of animal toxicosis and yield-reducing disease in maize. Overall, results indicate that production of defense compounds can significantly alter endophyte community assembly. PMID:19170900

    15. Antifungal activity against Candida albicans of starch Pickering emulsion with thymol or amphotericin B in suspension and calcium alginate films.

      Science.gov (United States)

      Cossu, Andrea; Wang, Min S; Chaudhari, Amol; Nitin, Nitin

      2015-09-30

      Conventional antifungal treatments against Candida albicans in the oral cavity often result in increased cytotoxicity. The goal of this study was to determine the potential of starch Pickering emulsion as a delivery vehicle for an antifungal natural phenolic compound such as thymol in simulated saliva fluid (SSF) compared to amphotericin B. An oil-in-water (o/w) emulsion was stabilized using starch particles. Physical stability of the emulsion and disruption induced by α-amylase activity in SSF was evaluated. Encapsulated thymol in o/w emulsion was compared to encapsulated amphotericin B for antifungal activity against C. albicans in suspension using emulsions or zone inhibition assay on agar plates using emulsions dispersed in alginate films. Results showed that the emulsions were stable for at least three weeks. Digestion of the emulsion by α-amylase led to coalescence of emulsion droplets. The antifungal activity of thymol and amphotericin B in emulsion formulation was enhanced upon incubation with α-amylase. Results from the zone inhibition assay demonstrated efficacy of the emulsions dispersed in alginate films. Interestingly, addition of α-amylase to the alginate films resulted in a decreased inhibitory effect. Overall, this study showed that starch Pickering emulsions have a potential to deliver hydrophobic antifungal compounds to treat oral candidiasis. PMID:26231107

    16. Microwave-assisted synthesis and antifungal activity of novel coumarin derivatives: Pyrano[3,2-c]chromene-2,5-diones.

      Science.gov (United States)

      Zhang, Rong-Rong; Liu, Jia; Zhang, Yu; Hou, Meng-Qing; Zhang, Ming-Zhi; Zhou, Fenger; Zhang, Wei-Hua

      2016-06-30

      A series of novel fused coumarin analogues pyrano[3,2-c]chromene-2,5-diones have been synthesized through an optimized microwave-assisted protocol. All target compounds were tested and evaluated for their antifungal activity against Botrytis cinerea, Colletotrichum copsica, Alternaria solani, Gibberella zeae and Rhizoctorzia solani. The bioassay results indicated that some of the compounds exhibited potent antifungal activities at concentration less than 50 ppm. For the compounds 5d, 6c and 7b, EC50 values against B. cinerea were as low as 0.141, 0.082 and 0.091 μM, respectively, which represents better antifungal activity than that of the commonly used fungicide Azoxystrobin. Compounds 5d (57%) and 6c (55%) also exhibited more effective control than Azoxystrobin (44%) against Colletotrichum capsica. PMID:27060759

    17. Antifungal Substances from Streptomyces sp. A3265 Antagonistic to Plant Pathogenic Fungi.

      Science.gov (United States)

      Van Minh, Nguyen; Woo, E-Eum; Kim, Ji-Yul; Kim, Dae-Won; Hwang, Byung Soon; Lee, Yoon-Ju; Lee, In-Kyoung; Yun, Bong-Sik

      2015-09-01

      In a previous study, we identified a Streptomyces sp., A3265, as exhibiting potent antifungal activity against various plant pathogenic fungi, including Botrytis cinerea, Colletotrichum gloeosporioides, and Rhizoctonia solani. This strain also exhibited a biocontrolling effect against ginseng root rot and damping-off disease, common diseases of ginseng and other crops. In this study, we isolated two antifungal substances responsible for this biocontrolling effect via Diaion HP-20 and Sephadex LH-20 column chromatography, medium pressure liquid chromatography, and high-performance liquid chromatography. These compounds were identified as guanidylfungin A and methyl guanidylfungin A by spectroscopic methods. These compounds exhibited potent antimicrobial activity against various plant pathogenic fungi as well as against bacteria. PMID:26539051

    18. A new antifungal phenolic glycoside derivative, iridoids and lignans from Alibertia sessilis (vell.) K. Schum. (Rubiaceae)

      Energy Technology Data Exchange (ETDEWEB)

      Silva, Viviane C. da; Bolzani, Vanderlan da S.; Lopes, Marcia N. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Quimica Organica]. E-mail: mnlopes@iq.unesp.br; Young, Maria C.M. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas

      2007-07-01

      A new antifungal phenolic glycoside, 3,4,5-trimethoxyphenyl-1-O-{beta}-D-(5-O-syringoyl)apiofuranosyl-(1 {yields} 6)-{beta}-D-glucopyranoside (1), together with four known iridoids, geniposidic acid (2), geniposide (3), 6{alpha}-hydroxygeniposide (4) and 6{beta}-hydroxygeniposide (5); two lignans, (+)-lyoniresinol-3{alpha}-O-{beta}-D-glucopyranoside (6), (-)-lyoniresinol-3{alpha}-O-{beta}-D-glucopyranoside (7); and two phenolic acids, chlorogenic (8) and salicylic acids (9) and D-manitol (10), were isolated from the ethanolic extract of the stems of Alibertia sessilis. Structures of 1 and of the known compounds were determined by spectroscopic analysis. All compounds isolated were evaluated for their antifungal activities against two phytopathogenic fungi strains Cladosporium cladosporioides and C. sphaerospermum by direct bioautography. (author)

    19. A new antifungal phenolic glycoside derivative, iridoids and lignans from Alibertia sessilis (vell.) K. Schum. (Rubiaceae)

      International Nuclear Information System (INIS)

      A new antifungal phenolic glycoside, 3,4,5-trimethoxyphenyl-1-O-β-D-(5-O-syringoyl)apiofuranosyl-(1 → 6)-β-D-glucopyranoside (1), together with four known iridoids, geniposidic acid (2), geniposide (3), 6α-hydroxygeniposide (4) and 6β-hydroxygeniposide (5); two lignans, (+)-lyoniresinol-3α-O-β-D-glucopyranoside (6), (-)-lyoniresinol-3α-O-β-D-glucopyranoside (7); and two phenolic acids, chlorogenic (8) and salicylic acids (9) and D-manitol (10), were isolated from the ethanolic extract of the stems of Alibertia sessilis. Structures of 1 and of the known compounds were determined by spectroscopic analysis. All compounds isolated were evaluated for their antifungal activities against two phytopathogenic fungi strains Cladosporium cladosporioides and C. sphaerospermum by direct bioautography. (author)

    20. "Effects of agitation rate on the growth of Mycena SP and production of antifungal agents "

      Directory of Open Access Journals (Sweden)

      Vahidi H

      2002-07-01

      Full Text Available Impeller speed or agitation rate plays a significant role in the growth of microorganism especially basidiomycetes and production of bioactive compounds via transfer of oxygen and mass. In this investigation the efferent impeller speeds on morphology, biomass concentration and production of bioactive compounds with antifungal activity were studied using a 5-liter fermenter. It was found that use of different impeller speeds (300 , 450 and 600 rpm resulted in various growth pattern and productivity. Impeller speed of 600 rpm gave a tow biomass concentration and low production of antifungal agent and the best result was obtained when impeller speed was adjusted to 450 rpm. Biomass concentration and productivity in the case of 300 rpm was less than that of 450 but higher than of 600 rpm.

    1. The SRAP based molecular diversity related to antifungal and antioxidant bioactive constituents for biocontrol potentials of Trichoderma against Sclerotium rolfsii Scc.

      Science.gov (United States)

      Hirpara, Darshna G; Gajera, H P; Bhimani, R D; Golakiya, B A

      2016-08-01

      The study was performed to examine 11 isolates of Trichoderma for their bio-control potentials against Sclerotium rolfsii Sacc. causing stem rot in groundnut. The antagonists Trichoderma were subjected to sequence related amplified polymorphism (SRAP) based molecular diversity analysis and compared with their hardness to S. rolfsii with respect to secretary antifungal and antioxidant profile. T. virens NBAII Tvs 12 evident highest (87.91 %) growth inhibition of test pathogen followed by T. koningii MTCC 796 (67.03 %) at 7 days after inoculation (DAI). Microscopic study confirmed biocontrol mechanism as mycoparasitism for Tvs 12 and antibiosis for MTCC 796. The growth inhibition of test pathogen was significantly negatively correlated with sclerotia formation and lipid peroxidation during antagonism due to release of secretary bioactive antioxidants by antagonists to terminate oxidative burst generated by S. rolfsii and causing inhibition of sclerotium formation. The GC-MS profile identified antifungal and antioxidant constituents hexadecane, 1,2-benzenedicarboxylic acid, mono (2-ethylhexyl) ester, 1-hexadecanesulfonyl chloride, and octadecane in potent antagonists Tvs 12; and nonacosane and octadecane in MTCC 796 along with two novel compounds 1-pentadecene and 1-heneicosyl formate for biocontrol activity. Molecular diversity of Trichoderma isolates associated with antagonistic activity was assessed by SRAP markers. The 115 primer combinations generate total 1328 amplified products of which, 1095 are shared polymorphic and 199 are unique polymorphic. The 15 SRAP combinations produced 18 bands to diagnose best antagonist Tvs 12 and 13 SRAP combinations generated 19 unique bands for identification of MTCC 796. The mycoparasitic antagonist Tvs 12 would be the best antagonist and released unique antifungal and antioxidant constituents to combat pathogen infection. The SRAP based genetic diversity indicates Tvs12 strain clustered with T. viride NBAII Tv23 and shared

    2. Epidemiology and antifungal resistance in invasive candidiasis

      Directory of Open Access Journals (Sweden)

      Rodloff AC

      2011-04-01

      Full Text Available Abstract The epidemiology of Candida infections has changed over the last two decades: The number of patients suffering from such infections has increased dramatically and the Candida species involved have become more numerous as Candida albicans is replaced as an infecting agent by various non-C. albicans species (NAC. At the same time, additional antifungal agents have become available. The different Candida species may vary in their susceptibility for these various antifungals. This draws more attention to in vitro susceptibility testing. Unfortunately, several different test methods exist that may deliver different results. Moreover, clinical breakpoints (CBP that classify test results into susceptible, intermediate and resistant are controver- sial between CLSI and EUCAST. Therefore, clinicians should be aware that interpretations may vary with the test system being followed by the microbiological laboratory. Thus, knowledge of actual MIC values and pharmacokinetic properties of individual antifungal agents is important in delivering appropriate therapy to patients

    3. 21 CFR 333.210 - Antifungal active ingredients.

      Science.gov (United States)

      2010-04-01

      ... 21 Food and Drugs 5 2010-04-01 2010-04-01 false Antifungal active ingredients. 333.210 Section 333.210 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... Antifungal Drug Products § 333.210 Antifungal active ingredients. The active ingredient of the...

    4. LC-MS and 1H NMR as an improved dereplication tool to identify antifungal diterpenoids from Sagittaria latifolia

      Science.gov (United States)

      A dereplication strategy using a combination of liquid chromatography-mass spectrometry (LC-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) to facilitate compound identification towards antifungal natural product discovery is presented. This analytical approach takes advantage of th...

    5. Characteristic spectral studies and in vitro antifungal activity of some Schiff bases and their organotin (Ⅳ) complexes

      Institute of Scientific and Technical Information of China (English)

      Wajid Rehman; Musa Kaleem Baloch; Bakhtiar Muhammad; Amin Badshah; Khalid M. Khan

      2004-01-01

      The synthesis and in vitro antifungal activity of some Schiff bases and their Sn (Ⅳ) complexes has been tested against plant pathogenic fungi and it is found that they possess excellent fungicidal activity. On the basis of 1H-, 13C-, 119Sn NMR-, 119Sn Mossbauer, IR and Elemental analysis the tetrahedral geometry is proposed for the synthesized compounds.

    6. Antifungal activity of gold nanoparticles prepared by solvothermal method

      Energy Technology Data Exchange (ETDEWEB)

      Ahmad, Tokeer, E-mail: tahmad3@jmi.ac.in [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Wani, Irshad A.; Lone, Irfan H.; Ganguly, Aparna [Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025 (India); Manzoor, Nikhat; Ahmad, Aijaz [Department of Biosciences, Jamia Millia Islamia, New Delhi 110025 (India); Ahmed, Jahangeer [Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Al-Shihri, Ayed S. [Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, P.O. Box 9004 (Saudi Arabia)

      2013-01-15

      Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m{sup 2}/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m{sup 2/}g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl{sub 2} and NaBH{sub 4} as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl{sub 2}, however, NaBH{sub 4} produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m{sup 2}/g for 7 nm and 269 m{sup 2}/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H{sup +} efflux of the Candida species than 15 nm sized gold nanoparticles.

    7. Antifungal activity of gold nanoparticles prepared by solvothermal method

      International Nuclear Information System (INIS)

      Graphical abstract: Gold nanoparticles (7 and 15 nm) of very high surface area (329 and 269 m2/g) have been successfully synthesized through solvothermal method by using tin chloride and sodium borohydride as reducing agents. As-prepared gold nanoparticles shows very excellent antifungal activity against Candida isolates and activity increases with decrease in the particle size. Display Omitted Highlights: ► Effect of reducing agents on the morphology of gold nanoparticles. ► Highly uniform and monodisperse gold nanoparticles (7 nm). ► Highest surface area of gold nanoparticles (329 m2/g). ► Excellent antifungal activity of gold nanoparticles against Candida strains. -- Abstract: Gold nanoparticles have been successfully synthesized by solvothermal method using SnCl2 and NaBH4 as reducing agents. X-ray diffraction studies show highly crystalline and monophasic nature of the gold nanoparticles with face centred cubic structure. The transmission electron microscopic studies show the formation of nearly spherical gold nanoparticles of average size of 15 nm using SnCl2, however, NaBH4 produced highly uniform, monodispersed and spherical gold nanoparticles of average grain size of 7 nm. A high surface area of 329 m2/g for 7 nm and 269 m2/g for 15 nm gold nanoparticles was observed. UV–vis studies assert the excitations over the visible region due to transverse and longitudinal surface plasmon modes. The gold nanoparticles exhibit excellent size dependant antifungal activity and greater biocidal action against Candida isolates for 7 nm sized gold nanoparticles restricting the transmembrane H+ efflux of the Candida species than 15 nm sized gold nanoparticles.

    8. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam.

      Science.gov (United States)

      Chuang, Ping-Hsien; Lee, Chi-Wei; Chou, Jia-Ying; Murugan, M; Shieh, Bor-Jinn; Chen, Hueih-Min

      2007-01-01

      Investigations were carried out to evaluate the therapeutic properties of the seeds and leaves of Moringa oleifera Lam as herbal medicines. Ethanol extracts showed anti-fungal activities in vitro against dermatophytes such as Trichophyton rubrum, Trichophyton mentagrophytes, Epidermophyton floccosum, and Microsporum canis. GC-MS analysis of the chemical composition of the essential oil from leaves showed a total of 44 compounds. Isolated extracts could be of use for the future development of anti-skin disease agents. PMID:16406607

    9. New aminoporphyrins bearing urea derivative substituents: synthesis, characterization, antibacterial and antifungal activity

      Directory of Open Access Journals (Sweden)

      Gholamreza Karimipour

      2015-06-01

      Full Text Available This work studied the synthesis of 5,10,15-tris(4-aminophenyl-20-(N,N-dialkyl/diaryl-N-phenylurea porphyrins (P1-P4 with alkyl or aryl groups of Ph, iPr, Et and Me, respectively and also the preparation of their manganese (III and cobalt (II complexes (MnP and CoP. The P1-P4 ligands were characterized by different spectroscopic techniques (1H NMR, FTIR, UV-Vis and elemental analysis, and metalated with Mn and Co acetate salts. The antibacterial and antifungal activities of these compounds in vitro were investigated by agar-disc diffusion method against Escherichia coli (-, Pseudomonas aeruginosa (-, Staphylococcus aureus(+, Bacillus subtilis (+ and Aspergillus oryzae and Candida albicans. Results showed that antibacterial and antifungal activity of the test samples increased with increase of their concentrations and the highest activity was obtained when the concentration of porphyrin compounds was 100 µg/mL. The activity for the porphyrin ligands depended on the nature of the urea derivative substituents and increased in the order P1 > P2 > P3 >P4, which was consistent with the order of their liposolubility. MnP and CoP complexes exhibited much higher antibacterial and antifungal activity than P1-P4ligands. Further, the growth inhibitory effects of these compounds was generally in the order CoP complexes > MnP complexes > P1-P4 ligands. Among these porphyrin compounds, CoP1displayed the highest antibacterial and antifungal activity, especially with a concentration of 100 µg/mL, against all the four tested bacteria and two fungi, and therefore it could be potential to be used as drug.

    10. ANTIFUNGAL ACTIVITY ON BOTRYTIS CINEREA OF FLAVONOIDS AND DITERPENOIDS ISOLATED FROM THE SURFACE OF PSEUDOGNAPHALIUM SPP.

      OpenAIRE

      MILENA COTORAS; CAROLINA GARCÍA; CAROL LAGOS; CAROLINA FOLCH; LEONORA MENDOZA

      2001-01-01

      The activity of the extracts obtained from the resinous exudates of the plants Pseudognaphalium cheiranthifolium, P. heterotrichium, P. robustum and P. vira vira on mycelial growth of the phytopathogenic fungus Botrytis cinerea was analyzed. Ten flavones, two flavanones and three diterpenoids isolated from these extracts were also tested for antifungal activity against B. cinerea. The extracts reduced mycelial growth and the inhibitory activity of the pure compounds was higher. Flavones with ...

    11. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts

      OpenAIRE

      Barros, Lillian; Dueñas, Montserrat; Alves, Carlos Tiago; Silva, Sónia; Henriques, Mariana; Santos-Buelga, Celestino; Ferreira, Isabel C. F. R.

      2013-01-01

      The life-threatening mycoses caused by opportunistic fungal pathogens (mainly species from the genus Candida) associated with nosocomial infections, are one of the major health problems in our days. Therefore, it is crucial to identify new compounds, especially natural ones, that are active against the most broaden spectrum of Candida species. Herein, a screening of the antifungal potential of a phenolic extract of Cistus ladanifer from Northeastern Portugal, against Candida species was perfo...

    12. Antifungal activity and detailed chemical characterization of Cistus ladanifer phenolic extracts

      OpenAIRE

      Barros, Lillian; Alves, Carlos; Duenas, M.; Silva, Sónia Carina; Carvalho, Ana Maria; Henriques, Mariana; Santos-Buelga, Celestino; Ferreira, Isabel C. F. R.

      2013-01-01

      The life-threatening mycoses caused by opportunistic fungal pathogens (mainly species from the genus Candida) associated with nosocomial infections, are one of the major health problems in our days. Therefore, it is crucial to identify new compounds, especially natural ones, that are active against the most broaden spectrum of Candida species. Herein, a screening of the antifungal potential of a phenolicextract of Cistusladanifer from Northeastern Portugal, against Candida species was perform...

    13. In-vitro antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens

      OpenAIRE

      Kadaikunnan, Shine; Rejiniemon, Thankappan Sarasam; Khaled, Jamal M.; Alharbi, Naiyf S; Mothana, Ramzi

      2015-01-01

      Background Food born pathogenic bacteria and filamentous fungi are able to grow on most foods, including natural foods, processed foods, and fermented foods and create considerable economic loss. The aim of this study was to determine the antibacterial, antifungal, antioxidant and functional properties of Bacillus amyloliquefaciens recovered from silage. Methods Minimum Inhibitory Concentration (MIC) of the compounds was assessed by using broth micro dilution method. The 1,1-diphenyl–2-picryl...

    14. Antifungal steroidal glycosides from the patagonian starfish anasteriasminuta: structure-activity correlations.

      Science.gov (United States)

      Chludil, Hugo D; Seldes, Alicia M; Maier, Marta S

      2002-02-01

      Two new sulfated steroidal hexaglycosides, anasterosides A (2) and B (3), along with the known versicoside A (1) have been isolated from the Patagonian starfish Anasterias minuta. Their structures have been elucidated by spectroscopic analysis (NMR and FABMS) and chemical transformations. Compounds 1 and 2 and the synthetic pentaglycoside 1b derived from versicoside A showed antifungal activity against the plant pathogenic fungus Cladosporium cucumerinum. Desulfation of hexaglycoside 1 rendered a totally inactive saponin. PMID:11858747

    15. Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

      OpenAIRE

      Huh, Chang Ki; Hwang, Tae Yean

      2016-01-01

      This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear ...

    16. Screening antifungal activities of selected medicinal plants.

      Science.gov (United States)

      Quiroga, E N; Sampietro, A R; Vattuone, M A

      2001-01-01

      Plants synthesise a vast array of secondary metabolites that are gaining importance for their biotechnological applications. The antifungal activity of the ethanolic extracts of ten Argentinean plants used in native medicine is reported. Antifungal assays included radial growth inhibition, disk and well diffusion assays and growth inhibition by broth dilution tests. The chosen test fungi were yeasts, microfungi and wood-rot causing Basidiomycetes. Extracts of Larrea divaricata, Zuccagnia punctata and Larrea cuneifolia displayed remarkable activity in the assays against the majority of the test fungi. In addition to the former plants, Prosopanche americana also inhibited yeast growth. PMID:11137353

    17. Production of Volatile Compounds in Reconstituted Milk Reduced-Fat Cheese and the Physicochemical Properties as Affected by Exopolysaccharide-Producing Strain

      Directory of Open Access Journals (Sweden)

      Weijun Wang

      2012-12-01

      Full Text Available The application of the exopolysaccharide-producing strains for improving the texture and technical properties of reduced-fat cheese looks very promising. Streptococcus thermophilus TM11 was evaluated for production of reduced-fat cheese using reconstituted milk powder (CRMP. The physicochemical analysis of fresh and stored cheeses showed that this strain slightly increased moisture content resulting in cheese with higher yield and lower protein content compared to the direct acidified cheese. The volatiles of cheese were determined by SPME and GC equipped with a mass spectrometer. The results indicated that the major compounds included aldehydes, ketones and acids, whereas, alcohols and branched-chain aldehydes that contribute to exciting and harsh flavors were not found in CRMP. By the textural profile analysis, we found the cheese made with S. thermophilus TM11 had lower cohesiveness, resilience and higher adhesiveness than the direct acidified cheese, and had similar hardness. Further, S. thermophilus TM11 greatly changed the protein matrix with more opened cavities according to observation by scanning electron microscopy. Consequently, use of S. thermophilus TM11 could endow CRMP with the novel and suitable flavor properties and improved texture quality.

    18. Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity.

      Science.gov (United States)

      Khemili-Talbi, Souad; Kebbouche-Gana, Salima; Akmoussi-Toumi, Siham; Angar, Yassmina; Gana, Mohamed Lamine

      2015-11-01

      Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology. PMID:26334644

    19. Novel pyrazine analogs of chalcones: synthesis and evaluation of their antifungal and antimycobacterial activity.

      Science.gov (United States)

      Kucerova-Chlupacova, Marta; Kunes, Jiri; Buchta, Vladimir; Vejsova, Marcela; Opletalova, Veronika

      2015-01-01

      Infectious diseases, such as tuberculosis and invasive mycoses, represent serious health problems. As a part of our long-term efforts to find new agents for the treatment of these diseases, a new series of pyrazine analogs of chalcones bearing an isopropyl group in position 5 of the pyrazine ring was prepared. The structures of the compounds were corroborated by IR and NMR spectroscopy and their purity confirmed by elemental analysis. The susceptibility of eight fungal strains to the studied compounds was tested. The results have been compared with the activity of some previously reported propyl derivatives. The only strain that was susceptible to the studied compounds was Trichophyton mentagrophytes. It was found that replacing a non-branched propyl with a branched isopropyl did not have a decisive and unequivocal influence on the in vitro antifungal activity against T. mentagrophytes. In vitro activity against Trichophyton mentagrophytes comparable with that of fluconazole was exhibited by nitro-substituted derivatives. Unfortunately, no compound exhibited efficacy comparable with that of terbinafine, which is the most widely used agent for treating mycoses caused by dermatophytes. Some of the prepared compounds were assayed for antimycobacterial activity against M. tuberculosis H37Rv. The highest potency was also displayed by nitro-substituted compounds. The results of the present study are in a good agreement with our previous findings and confirm the positive influence of electron-withdrawing groups on the B-ring of chalcones on the antifungal and antimycobacterial activity of these compounds. PMID:25587786

    20. A non-polyene antifungal antibiotic from Streptomyces albidoflavus PU 23

      Indian Academy of Sciences (India)

      S K Augustine; S P Bhavsar; B P Kapadnis

      2005-03-01

      In all 312 actinomycete strains were isolated from water and soil samples from different regions. All these isolates were purified and screened for their antifungal activity against pathogenic fungi. Out of these, 22% of the isolates exhibited activity against fungi. One promising strain, Streptomyces albidoflavus PU 23 with strong antifungal activity against pathogenic fungi was selected for further studies. Antibiotic was extracted and purified from the isolate. Aspergillus spp. was most sensitive to the antibiotic followed by other molds and yeasts. The antibiotic was stable at different temperatures and pH tested and there was no significant loss of the antifungal activity after treatment with various detergents and enzymes. Synergistic effect was observed when the antibiotic was used in combination with hamycin. The antibiotic was fairly stable for a period of 12 months at 4°C. The mode of action of the antibiotic seems to be by binding to the ergosterol present in the fungal cell membrane resulting in the leakage of intracellular material and eventually death of the cell. The structure of the antibiotic was determined by elemental analysis and by ultraviolet (UV), Fourier transform infrared (FTIR), nuclear magnetic resonance (NMR) and liquid chromatography mass spectra (LCMS). The antibiotic was found to be a straight chain polyhydroxy, polyether, non-proteinic compound with a single double bond, indicating a nonpolyene antifungal antibiotic.

    1. Antibacterial, antifungal and cytotoxic properties of some sulfonamide-derived chromones.

      Science.gov (United States)

      Chohan, Zahid H; Rauf, Abdul; Naseer, Muhammad M; Somra, Muhammad A; Supuran, Claudiu T

      2006-04-01

      A series of antibacterial and antifungal sulfonamide (sulfanilamide, sulfaguanidine, sulfamethaxozole, 4-aminoethylbenzene-sulfonamide and 4-amino-6-trifluoromethyl-benzene-1,3-disulfonamide) derived chromones, previously reported as inhibitors of carbonic anhydrase, have been screened for in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi and Shigella flexener) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains, and for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani, Candida glaberata. All compounds (1)-(5) showed significant antibacterial activity against all four Gram-negative species and both Gram-positive species. However, three of them, (1), (4) and (5), were found to be comparatively much more active compared to (2) and (3). Of these, (5) was found to be the most active one. For antifungal activity, generally compounds (1) and (2) showed significant activity against more than three strains whereas (3)-(5) also showed significant activity against varied fungal strains. In the brine shrimp bioassay for in-vitro cytotoxic properties, only two compounds, (4) and (5) displayed potent cytotoxic activity, LD50 = 2.732 x 10(-4)M) and LD50 = 2.290 x 10(-4)M) respectively, against Artemia salina. PMID:16789431

    2. In-vitro antibacterial, antifungal and cytotoxic properties of metal-based furanyl derived sulfonamides.

      Science.gov (United States)

      Chohan, Zahid H; Shaikh, Ali U; Naseer, Muhammad M; Supuran, Claudiu T

      2006-12-01

      A new series of antibacterial and antifungal furanyl-derived sulfonamides and their cobalt (II), copper (II), nickel (II) and zinc (II) metal complexes have been synthesized, characterized and screened for their in-vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa and Salmonella typhi) and two Gram-positive (Bacillus subtilis and Staphylococcus aureus) bacterial strains and, for in-vitro antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies revealed that all compounds showed significant to moderate antibacterial activity. However, the zinc (II) complexes were found to be comparatively much more active as compared to the others. For antifungal activity generally, compounds (22) and (24) showed significant activity against Escherichia coli (a), (6) against Shigella flexeneri (b), (16) and (22) against Pseudomonas aeruginosa (c), (14) and (16) against Salmonella typhi (d), (9) against Staphylococcus aureus (e) and, (14) and (16) against Bacillus subtilis (f) fungal strains. The brine shrimp (Artemia salina) bioassay was also carried out to study their in-vitro cytotoxic properties. Only three compounds, (6), (10) and (23) displayed potent cytotoxic activity with LD50 = 1.8535 x 10(-4), 1.8173 x 10(-4) and 1.9291 x 10(-4) respectively. PMID:17252952

    3. Antifungal activity of diketopiperazines and stilbenes against plant pathogenic fungi in vitro.

      Science.gov (United States)

      Kumar, S Nishanth; Nambisan, Bala

      2014-01-01

      The present study aimed to investigate antifungal activity of a stilbene and diketopiperazine compounds against plant pathogenic fungi, including Phytophthora capsici, P. colocasiae, Botrytis cinerea and Colletotrichum gloeosporioides. Minimal inhibition concentrations (MIC) and minimal fungicidal concentrations (MFC) of stilbenes and diketopiperazines for each fungus were determined using microplate method. Best activity was recorded by stilbenes against P. capsici and P. colocasiae. All four test compounds were effective in inhibiting different stages of the life cycle of test fungi. Stilbenes were more effective than diketopiperazines in inhibiting mycelial growth and inhibiting different stages of the life cycle of P. capsici and P. colocasiae. Rupture of released zoospores induced by stilbenes was reduced by addition of 100 mM glucose. The effects of stilbenes on mycelial growth and zoospore release, but not zoospore rupture, were reduced largely when pH value was above 7. In addition, stilbenes were investigated for its antifungal stability against Phytophthora sp. The results showed that stilbenes maintained strong fungistatic activity over a wide pH range (pH 4–9) and temperature range (70–120 °C). The compound stilbenes exhibited strong and stable broad-spectrum antifungal activity, and had a significant fungicidal effect on fungal cells. Results from prebiocontrol evaluations performed to date are probably useful in the search for alternative approaches to controlling serious plant pathogens. PMID:24122628

    4. Chemical Composition and in Vitro Antifungal Activity Screening of the Allium ursinum L. (Liliaceae

      Directory of Open Access Journals (Sweden)

      Radu Vasile Bagiu

      2012-01-01

      Full Text Available The objective of the study was to summarize the methods for isolating and identifying natural sulfur compounds from Allium ursinum (ramson and to discuss the active constituents with regard to antifungal action. Using chromatographic techniques, the active constituents were isolated and subsequently identified. Analyses by high-performance liquid chromatography (HPLC suggested that these compounds were sulfur constituents, with a characteristic absorbance at 250 nm. Gas chromatography-mass spectrometry (GC-MS analyses allowed the chemical structures of the isolated constituents to be postulated. We adopted the same methods to identify the health-giving profiling of ramsons and the effects are thought to be primarily derived from the presence and breakdown of the alk(enylcysteine sulphoxide, alliin and its subsequent breakdown to allicin (sulfur-compounds of ramson in connection with antifungal action. The aim of the study was the characterization of the chemical composition of ramsons and the testing of the action of the in vitro extracts, on different strains of Candida albicans. The main goal was to highlight the most efficient extracts of Allium ursinum that can provide long-term antifungal activity without remissions. The extracts from Allium ursinum plants, inhibited growth of Candida spp. cells at concentrations ranging from 0.5 to 4.0 mg/mL, while that of adherent cells at concentrations ranging from 1.0 to > 4.0 mg/mL, depending on the yeast and plant species.

    5. Antifungal Effect of Plant Essential Oils on Controlling Phytophthora Species.

      Science.gov (United States)

      Amini, Jahanshir; Farhang, Vahid; Javadi, Taimoor; Nazemi, Javad

      2016-02-01

      In this study, antifungal activity of essential oils of Cymbopogon citratus and Ocimum basilicum and two fungicides Mancozeb and Metalaxyl-Mancozeb in six different concentrations were investigated for controlling three species of Phytophthora, including P. capsici, P. drechsleri and P. melonis on pepper, cucumber and melon under in vitro and greenhouse conditions, respectively. Under the in vitro condition, the median effective concen- tration (EC50) values (ppm) of plant essential oils and fungicides were measured. In greenhouse, soil infested with Phytophthora species was treated by adding 50 ml of essential oils and fungicides (100 ppm). Disease severity was determined after 28 days. Among two tested plant essential oils, C. citratus had the lowest EC50 values for inhibition of the mycelial growth of P. capsici (31.473), P. melonis (33.097) and P. drechsleri (69.112), respectively. The mean EC50 values for Metalaxyl-Mancozeb on these pathogens were 20.87, 20.06 and 17.70, respectively. Chemical analysis of plant essential oils by GC-MS showed that, among 42 compounds identified from C. citratus, two compounds β-geranial (α-citral) (39.16%) and z-citral (30.95%) were the most abundant. Under the greenhouse condition, Metalaxyl-Mancozeb caused the greatest reduction in disease severity, 84.2%, 86.8% and 92.1% on melon, cucumber, and pepper, respectively. The C. citratus essential oil reduced disease severity from 47.4% to 60.5% compared to the untreated control (p≤0.05). Essential oils of O. basilicum had the lowest effects on the pathogens under in vitro and greenhouse conditions. These results show that essential oils may contribute to the development of new antifungal agents to protect the crops from Phytophthora diseases. PMID:26889111

    6. Synthesis, Characterization and Antifungal Evaluation of 5-Substituted-4-Amino-1,2,4-Triazole-3-Thioesters

      Directory of Open Access Journals (Sweden)

      Aurangzeb Hasan

      2011-01-01

      Full Text Available A series of 5-substituted-4-amino-1,2,4-triazole-3-thioesters was synthesized by converting variously substituted organic acids successively into the corresponding esters, hydrazides, 5-substituted-1,3,4-oxadiazole-2-thiols, 5-substituted-1,2,4-triazole-2-thiols and 5-substituted-1,3,4-oxadiazole-2-thioesters. Finally the target compounds were obtained by refluxing 5-substituted-1,3,4-oxadiazole-2-thioesters in the presence of hydrazine hydrate and absolute alcohol. The structures of the synthesized compounds were established by physicochemical and spectroscopic methods. The synthesized compounds were evaluated for their in vitro antifungal activity. Some of the evaluated compounds possessed significant antifungal activity as compared to a terbinafine standard.

    7. First isolation of a novel thermostable antifungal peptide secreted by Aspergillus clavatus.

      Science.gov (United States)

      Skouri-Gargouri, Houda; Gargouri, Ali

      2008-11-01

      A novel antifungal peptide produced by an indigenous fungal strain (VR) of Aspergillus clavatus was purified. The antifungal peptide was enriched in the supernatant after heat treatment at 70 degrees C. The thermostable character was exploited in the first purification step, as purified peptide was obtained after ultrafiltration and reverse phase-HPLC on C18 column application. The purified peptide named "AcAFP" for A. clavatus antifungal peptide, has molecular mass of 5773Da determined by MALDI-ToF spectrometry. The N-terminal sequence showed a notable identity to the limited family of antifungal peptides produced by ascomycetes fungi. The AcAFP activity remains intact even after heat treatment at 100 degrees C for 1h confirming its thermostability. It exhibits a strong inhibitory activity against mycelial growth of several serious human and plant pathogenic fungi: Fusariuym oxysporum, Fusarium solani, Aspergillus niger, Botrytis cinerea, Alternaria solani, whereas AcAFP did not affect yeast and bacterial growth. PMID:18687373

    8. Synthesis, Antifungal Activities and Qualitative Structure Activity Relationship of Carabrone Hydrazone Derivatives as Potential Antifungal Agents

      OpenAIRE

      Hao Wang; Shuang-Xi Ren; Ze-Yu He; De-Long Wang; Xiao-Nan Yan; Jun-Tao Feng; Xing Zhang

      2014-01-01

      Aimed at developing novel fungicides for relieving the ever-increasing pressure of agricultural production caused by phytopathogenic fungi, 28 new hydrazone derivatives of carabrone, a natural bioactive sesquisterpene, in three types were designed, synthesized and their antifungal activities against Botrytis cinerea and Colletotrichum lagenarium were evaluated. The result revealed that all the derivatives synthesized exhibited considerable antifungal activities in vitro and in vivo, which l...

    9. Impact of New Antifungal Breakpoints on Antifungal Resistance in Candida Species

      OpenAIRE

      Fothergill, Annette W.; Sutton, Deanna A.; McCarthy, Dora I.; Wiederhold, Nathan P.

      2014-01-01

      We reviewed our antifungal susceptibility data for micafungin, anidulafungin, fluconazole, and voriconazole against Candida species and compared resistance rates determined by the previous and recently revised CLSI antifungal breakpoints. With the new breakpoints, resistance was significantly increased for micafungin (from 0.8% to 7.6%), anidulafungin (from 0.9% to 7.3%), and voriconazole (from 6.1% to 18.4%) against Candida glabrata. Resistance was also increased for fluconazole against Cand...

    10. The importance of extremophile cyanobacteria in the production of biologically active compounds

      Directory of Open Access Journals (Sweden)

      Drobac-Čik Aleksandra V.

      2007-01-01

      Full Text Available Due to their ability to endure extreme conditions, terrestrial cyanobacteria belong to a group of organisms known as "extremophiles". Research so far has shown that these organisms posses a great capacity for producing biologically active compounds (BAC. The antibacterial and antifungal activities of methanol extracts of 21 cyanobacterial strains belonging to Anabaena and Nostoc genera, previously isolated from different soil types and water resources in Serbia, were evaluated. In general, larger number of cyanobacterial strains showed antifungal activity. In contrast to Nostoc, Anabaena strains showed greater diversity of antibacterial activity (mean value of percentages of sensitive targeted bacterial strains 3% and 25.9% respectively. Larger number of targeted fungi was sensitive to cultural liquid extract (CL, while crude cell extract (CE affected more bacterial strains. According to this investigation, the higher biological activity of terrestrial strains as representatives of extremophiles may present them as significant BAC producers. This kind of investigation creates very general view of cyanobacterial possibility to produce biologically active compounds but it points out the necessity of exploring terrestrial cyanobacterial extremophiles as potentially excellent sources of these substances and reveals the most prospective strains for further investigations.

    11. Antifungal prophylaxis during neutropenia and immunodeficiency.

      OpenAIRE

      Lortholary, O; Dupont, B

      1997-01-01

      Fungal infections represent a major source of morbidity and mortality in patients with almost all types of immunodeficiencies. These infections may be nosocomial (aspergillosis) or community acquired (cryptococcosis), or both (candidiasis). Endemic mycoses such as histoplasmosis, coccidioidomycosis, and penicilliosis may infect many immunocompromised hosts in some geographic areas and thereby create major public health problems. With the wide availability of oral azoles, antifungal prophylact...

    12. Mystery unraveled about antifungal drug targets

      Institute of Scientific and Technical Information of China (English)

      2007-01-01

      @@ A long-standing mystery about the functional roles of the N-terminal region of protein N-myristoyltransferase, an ideal target for antifungal drugs, was recently decoded, thanks to the threeyear joint efforts of researchers from the CAS Key Laboratory of Molecular Biology and their US colleagues at the DuPont Stine Haskell Research Center.

    13. Studies of antifungal activity of forsskalea tenacissima

      International Nuclear Information System (INIS)

      Antifungal activity of different extracts from Forsskalea tenacissima prepared by solvent-solvent extraction and vacuum liquid chromatography (VLC) was determined. Extracts were found to be active against Candida albicans, Trichophyton mentagrophyte, Allescheria boydii, Microsporum canis, Aspergillus niger, Drechslera rostrata, Nigrospora oryzae, Stachybotrys atra, Curvularia lunata, Trichophyton semii and Trichophyton schoenleinii. (author)

    14. Antifungal activity of ajoene derived from garlic.

      OpenAIRE

      Yoshida, S.(Department of Physics, Chiba University, 263-8522, Chiba, Japan); Kasuga, S; Hayashi, N; Ushiroguchi, T; Matsuura, H.; Nakagawa, S

      1987-01-01

      The antifungal activity of six fractions derived from garlic was investigated in an in vitro system. Ajoene had the strongest activity in these fractions. The growth of both Aspergillus niger and Candida albicans was inhibited by ajoene at less than 20 micrograms/ml.

    15. Bioactive compounds from northern plants.

      Science.gov (United States)

      Hohtola, Anja

      2010-01-01

      Northern conditions are characterised by long days with much light and low temperatures during the growing season. It has been chimed that herbs and berries grown in the north are stronger tasting compared to those of southern origin. The compounds imparting aroma and color to berries and herbs are secondary metabolites which in plants mostly act as chemical means of defense. Recently, the production of secondary metabolites using plant cells has been the subject of expanding research. Light intensity, photoperiod and temperature have been reported to influence the biosynthesis of many secondary metabolites. Native wild aromatic and medicinal plant species of different families are being studied to meet the needs of raw material for the expanding industry of e.g., health-promoting food products known as nutraceutics. There are already a large number of known secondary compounds produced by plants, but the recent advances in modern extraction and analysis should enable many more as yet unknown compounds to be found, characterised and utilised. Rose root (Rhodiola rosea) is a perennial herbaceous plant which inhabits mountain regions throughout Europe, Asia and east coastal regions of North America. The extract made from the rhizomes acts as a stimulant like the Ginseng root. Roseroot has been categorized as an adaptogen and is reported to have many pharmacological properties. The biologically active components of the extract are salitroside tyrosol and cinnamic acid glycosides (rosavin, rosarin, rosin). Round-leaved sundew (Drosera rotundifolia L.) has circumboreal distribution. It inhabits nutrient-poor, moist and sunny areas such as peat bogs and wetlands. Sundew leaves are collected from the wild-type for various medicinal preparations and can be utilized in treating e.g., as an important "cough-medicine" for different respiratory diseases. The antimicrobial activity of extracts of aerial parts against various bacteria has been investigated. Drosera produces

    16. Novel, Synergistic Antifungal Combinations that Target Translation Fidelity.

      Science.gov (United States)

      Moreno-Martinez, Elena; Vallieres, Cindy; Holland, Sara L; Avery, Simon V

      2015-01-01

      There is an unmet need for new antifungal or fungicide treatments, as resistance to existing treatments grows. Combination treatments help to combat resistance. Here we develop a novel, effective target for combination antifungal therapy. Different aminoglycoside antibiotics combined with different sulphate-transport inhibitors produced strong, synergistic growth-inhibition of several fungi. Combinations decreased the respective MICs by ≥8-fold. Synergy was suppressed in yeast mutants resistant to effects of sulphate-mimetics (like chromate or molybdate) on sulphate transport. By different mechanisms, aminoglycosides and inhibition of sulphate transport cause errors in mRNA translation. The mistranslation rate was stimulated up to 10-fold when the agents were used in combination, consistent with this being the mode of synergistic action. A range of undesirable fungi were susceptible to synergistic inhibition by the combinations, including the human pathogens Candida albicans, C. glabrata and Cryptococcus neoformans, the food spoilage organism Zygosaccharomyces bailii and the phytopathogens Rhizoctonia solani and Zymoseptoria tritici. There was some specificity as certain fungi were unaffected. There was no synergy against bacterial or mammalian cells. The results indicate that translation fidelity is a promising new target for combinatorial treatment of undesirable fungi, the combinations requiring substantially decreased doses of active components compared to each agent alone. PMID:26573415

    17. Development of modified medium for the enhancement in antifungal activity of P. steckii (MF1 mangrove fungi against verticillium wilt pathogenic fungi of rose

      Directory of Open Access Journals (Sweden)

      Jyotasanmayee Sabat

      2009-08-01

      Full Text Available The antifungal activity of Penicillium steckii (MF1 against pathogenic fungi of rose causing verticillium wilt was evaluated under differential nutrient condition. A suitable and modified medium was obtained in which test fungus exhibited enhanced antifungal activity and produced larger inhibition zone against the verticillium fungus. The study carried out to modify the medium components at level of nitrogen, carbon source and their concentration on agar plates. Addition of amino acids, metals and plant growth hormones did not show positive effect but glycerol enhanced the antifungal activity very much.

    18. Synthetic arylquinuclidine derivatives exhibit antifungal activity against Candida albicans, Candida tropicalis and Candida parapsilopsis

      Directory of Open Access Journals (Sweden)

      Gilbert Ian

      2011-01-01

      Full Text Available Abstract Background Sterol biosynthesis is an essential pathway for fungal survival, and is the biochemical target of many antifungal agents. The antifungal drugs most widely used to treated fungal infections are compounds that inhibit cytochrome P450-dependent C14α-demethylase (CYP51, but other enzymes of this pathway, such as squalene synthase (SQS which catalyses the first committed step in sterol biosynthesis, could be viable targets. The aim of this study was to evaluate the antifungal activity of SQS inhibitors on Candida albicans, Candida tropicalis and Candida parapsilopsis strains. Methods Ten arylquinuclidines that act as SQS inhibitors were tested as antiproliferative agents against three ATCC strains and 54 clinical isolates of Candida albicans, Candida tropicalis and Candida parapsilopsis. Also, the morphological alterations induced in the yeasts by the experimental compounds were evaluated by fluorescence and transmission electron microscopy. Results The most potent arylquinuclidine derivative (3-[1'-{4'-(benzyloxy-phenyl}]-quinuclidine-2-ene (WSP1267 had a MIC50 of 2 μg/ml for all species tested and MIC90 varying from 4 μg/ml to 8 μg/ml. Ultrathin sections of C. albicans treated with 1 μg/ml of WSP1267 showed several ultrastructural alterations, including (a loss of cell wall integrity, (b detachment of the plasma membrane from the fungal cell wall, (c accumulation of small vesicles in the periplasmic region, (d presence of large electron-dense vacuoles and (e significantly increased cell size and cell wall thickness. In addition, fluorescence microscopy of cells labelled with Nile Red showed an accumulation of lipid droplets in the cytoplasm of treated yeasts. Nuclear staining with DAPI revealed the appearance of uncommon yeast buds without a nucleus or with two nuclei. Conclusion Taken together, our data demonstrate that arylquinuclidine derivatives could be useful as lead compounds for the rational synthesis of new

    19. NATURAL POLYACETYLENE COMPOUNDS

      Directory of Open Access Journals (Sweden)

      D. A. Konovalov

      2014-01-01

      Full Text Available Polyacetylenes (polyynes are compounds which contain two or more triple bonds in its structure. About 2 000 different polyacetylenes and biogenetically related substances were identified in 24 families of higher plants. However, most of these compounds were found in seven families of flowering plants: Apiaceae (Umbelliferae, Araliaceae, Asteraceae (Compositae, Campanulaceae, Olacaceae, Pittosporaceae and Santalaceae. Polyacetylenes are relatively unstable, chemically and biologically active compounds, and present in fungi, microorganisms, marine invertebrates and other organisms except for plants. Acetylenes form distinct specialized group of chemically active natural compounds, which are biosynthesized in plants of unsaturated fatty acids. In addition to widespread aliphatic polyacetylenes thiophenes dithiacyclohexadienes (thiarubrines, thioethers, sulphoxides, sulphones, alkamides, chlorohydrins, lactones, spiroacetal enol ethers, furans, pyrans, tetrahydropyrans, isocoumarins, aromatic acetylenes were also found in plant species. Polyacetylenes are localized in different plant organs, and can be found both individually and as a compound with carbohydrates, terpene, phenolic and other compounds. Many polyacetylenes are found in the composition of the essential oils of plants and it confirms their strongly marked ecological functions. From biological point of view these compounds are often synthesized by plants as toxic or bitter antifeedants, allelopathic compounds, phytoalexins or broadly antibiotic components. Polyynes are strong photosensitizers. They exhibit anti-inflammatory, anti-coagulant, anti-bacterial, antituberculosis, anti-fungal, anti-viral, neuroprotective and neurotoxic activity. Immunostimulatory influence associated with certain allergenicity of some of these substances was established. Therefore, without a doubt polyacetylenes are of interest for the modern pharmacy and medicine.

    20. Antitumor and antifungal activities of organic extracts of seacucumber Holothuria atra from the southeast coast of India

      Science.gov (United States)

      Dhinakaran, Devaraj Isaac; Lipton, Aaron Premnath

      2015-02-01

      In phylum Echinodermata, the family Holothuridae is distinguished by its capacity of bioactive compounds. Sea cucumber Holothuria atra is commonly known as the lollyfish. The antifungal activity was detected using agar well diffusion method against the various fungal strains such as Trichoderma viride, Aspergillus niger, Aspergillus flavis, Candida albicans and Penicillium chrysogenum. Relatively high antifungal activity was seen against Candida albicans at 100 μL-1 concentration of extracts. Zone of inhibition was measured at 18 mm of diameter. The anti-tumor activities were detected against the Vero and Hep2 cell lines using MTT assay. The cells were treated with H. atra extract at concentrations 0.078-10mg mL-1. The extract showed high proliferative activity against the Hep2 cells. The body wall extracts of sea cucumber ( H. atra) showed effective antifungal and antitumor activities. All these findings suggest that the extracts could be used for the development of drugs.