WorldWideScience

Sample records for antifouling coatings

  1. Transport and antifouling properties of papain-based antifouling coatings

    Science.gov (United States)

    Peres, Rafael S.; Armelin, Elaine; Moreno-Martínez, Juan A.; Alemán, Carlos; Ferreira, Carlos A.

    2015-06-01

    The aim of this work is to study the antifouling performance and water uptake behaviour of coatings formulated with papain (an environmentally friendly pigment). Antifouling coatings have been formulated using rosin (natural resin) as matrix and papain adsorbed in activated carbon as pigment. Electrochemical impedance spectroscopy (EIS) measurements were used to evaluate the behaviour of the formulated coatings in the marine environment and to calculate the apparent water coefficient of diffusion (D). FTIR and XPS analyses confirm the presence of papain adsorbed inside the activated carbon pores and the release of papain in water. Immersion tests in the Mediterranean Sea were carried out for 7 months to verify the degree of biofouling of the tested coatings. These field assays clearly indicate the excellent behaviour of papain-based antifouling coatings; the results being similar to those achieved using a commercial coating. Additionally, the EIS technique is shown to be a great tool to predict the coating diffusivity of antifouling coatings before immersion tests. Furthermore, the use of biodegradable papain as a nature-friendly antifouling agent can eliminate the negative environmental impact caused by metals and chemical biocides typically used in current commercial formulations.

  2. Inorganic precursor peroxides for antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, S.M.; Pedersen, L.T.; Hermann, M.H.

    2009-01-01

    Modern antifouling coatings are generally based on cuprous oxide (Cu2O) and organic biocides as active ingredients. Cu2O is prone to bioaccumulation, and should therefore be replaced by more environmentally benign compounds when technically possible. However, cuprous oxide does not only provide...... antifouling properties, it is also a vital ingredient for the antifouling coating to obtain its polishing and leaching mechanism. In this paper, peroxides of strontium, calcium, magnesium, and zinc are tested as pigments in antifouling coatings. The peroxides react with seawater to create hydrogen peroxide...... and highly seawater-soluble ions of the metal. The goals have been to establish the antifouling potency of an antifouling coating that releases hydrogen peroxide as biocide, and to investigate the potential use of peroxides as water-soluble polishing and leaching pigments. The investigations have shown...

  3. Modern approaches to marine antifouling coatings

    OpenAIRE

    Chambers, Lily D.; Stokes, Keith R.; Walsh, Frank C.; Wood, Robert J.K.

    2006-01-01

    Marine structures such as platforms, jetties and ship hulls are subject to diverse and severe biofouling. Methods for inhibiting both organic and inorganic growth on wetted substrates are varied but most antifouling systems take the form of protective coatings. Biofouling can negatively affect the hydrodynamics of a hull by increasing the required propulsive power and the fuel consumption. This paper reviews the development of antifouling coatings for the prevention of marine biological fouli...

  4. Switchable antifouling coatings and uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan

    2017-02-28

    The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.

  5. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...... coating is not yet available commercially. The technology is mainly limited by the instability of substrate supply, whether the substrates are found in the surrounding seawater or in the coating itself. Legislative issues regarding which part(s) of an enzyme system should be regarded as biocidal...

  6. Imidazole and Triazole Coordination Chemistry for Antifouling Coatings

    Directory of Open Access Journals (Sweden)

    Markus Andersson Trojer

    2013-01-01

    Full Text Available Fouling of marine organisms on the hulls of ships is a severe problem for the shipping industry. Many antifouling agents are based on five-membered nitrogen heterocyclic compounds, in particular imidazoles and triazoles. Moreover, imidazole and triazoles are strong ligands for Cu2+ and Cu+, which are both potent antifouling agents. In this review, we summarize a decade of work within our groups concerning imidazole and triazole coordination chemistry for antifouling applications with a particular focus on the very potent antifouling agent medetomidine. The entry starts by providing a detailed theoretical description of the azole-metal coordination chemistry. Some attention will be given to ways to functionalize polymers with azole ligands. Then, the effect of metal coordination in azole-containing polymers with respect to material properties will be discussed. Our work concerning the controlled release of antifouling agents, in particular medetomidine, using azole coordination chemistry will be reviewed. Finally, an outlook will be given describing the potential for tailoring the azole ligand chemistry in polymers with respect to Cu2+ adsorption and Cu2+→Cu+ reduction for antifouling coatings without added biocides.

  7. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: Application to model antifouling coatings

    NARCIS (Netherlands)

    Goodes, L.R.; Dennington, S.P.; Schuppe, H.; Wharton, J.A.; Bakker, M.; Klijnstra, J.W.; Stokes, K.R.

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu 2O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to

  8. A brief review of environmentally benign antifouling and foul-release coatings for marine applications

    NARCIS (Netherlands)

    Buskens, P.J.P.; Wouters, M.E.L.; Rentrop, C.H.A.; Vroon, Z.A.E.P.

    2013-01-01

    Antifouling coatings for ship hulls are a very important topic in coating research. They are essential with respect to fuel consumption of ships: without antifouling coating, biological species start to adhere to the ship's exterior, leading to a gradual increase in fuel consumption. To date, the wo

  9. Formation and antifouling properties of amphiphilic coatings on polypropylene fibers.

    Science.gov (United States)

    Goli, Kiran K; Rojas, Orlando J; Genzer, Jan

    2012-11-12

    We describe the formation of amphiphilic polymeric assemblies via a three-step functionalization process applied to polypropylene (PP) nonwovens and to reference hydrophobic self-assembled n-octadecyltrichlorosilane (ODTS) monolayer surfaces. In the first step, denatured proteins (lysozyme or fibrinogen) are adsorbed onto the hydrophobic PP or the ODTS surfaces, followed by cross-linking with glutaraldehyde in the presence of sodium borohydride (NaBH(4)). The hydroxyl and amine functional groups of the proteins permit the attachment of initiator molecules, from which poly (2-hydroxyethyl methacrylate) (PHEMA) polymer grafts are grown directly through "grafting from" atom transfer radical polymerization. The terminal hydroxyls of HEMA's pendent groups are modified with fluorinating moieties of different chain lengths, resulting in amphiphilic brushes. A palette of analytical tools, including ellipsometry, contact angle goniometry, Fourier transform infrared spectroscopy in the attenuated total reflection mode, and X-ray photoelectron spectroscopy is employed to determine the changes in physicochemical properties of the functionalized surfaces after each modification step. Antifouling properties of the resultant amphiphilic coatings on PP are analyzed by following the adsorption of fluorescein isothiocyanate-labeled bovine serum albumin as a model fouling protein. Our results suggest that amphiphilic coatings suppress significantly adsorption of proteins as compared with PP fibers or PP surfaces coated with PHEMA brushes. The type of fluorinated chain grafted to PHEMA allows modulation of the surface composition of the topmost layer of the amphiphilic coating and its antifouling capability.

  10. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications.

    Science.gov (United States)

    Zhang, Hongbin; Chiao, Mu

    Fouling initiated by nonspecific protein adsorption is a great challenge in biomedical applications, including biosensors, bioanalytical devices, and implants. Poly(dimethylsiloxane) (PDMS), a popular material with many attractive properties for device fabrication in the biomedical field, suffers serious fouling problems from protein adsorption due to its hydrophobic nature, which limits the practical use of PDMS-based devices. Effort has been made to develop biocompatible materials for anti-fouling coatings of PDMS. In this review, typical nonfouling materials for PDMS coatings are introduced and the associated basic anti-fouling mechanisms, including the steric repulsion mechanism and the hydration layer mechanism, are described. Understanding the relationships between the characteristics of coating materials and the accompanying anti-fouling mechanisms is critical for preparing PDMS coatings with desirable anti-fouling properties.

  11. Fluorescence microscopy techniques for quantitative evaluation of organic biocide distribution in antifouling paint coatings: application to model antifouling coatings.

    Science.gov (United States)

    Goodes, L R; Dennington, S P; Schuppe, H; Wharton, J A; Bakker, M; Klijnstra, J W; Stokes, K R

    2012-01-01

    A test matrix of antifouling (AF) coatings including pMMA, an erodible binder and a novel trityl copolymer incorporating Cu₂O and a furan derivative (FD) natural product, were subjected to pontoon immersion and accelerated rotor tests. Fluorescence and optical microscopy techniques were applied to these coatings for quantification of organic biocide and pigment distribution. Total leaching of the biocide from the novel copolymer binder was observed within 6 months of rotor immersion, compared to 35% from the pMMA coating. In pontoon immersions, 61% of the additive was lost from the pMMA coating, and 53% from the erodible binder. Profiles of FD content in the binders revealed an accelerated loss of additive from the surface of the CDP resulting from rosin degradation, compared to even depletion from pMMA. In all samples, release of the biocide was inhibited beyond the Cu₂O front, corresponding to the leached layer in samples where Cu₂O release occurred.

  12. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    Science.gov (United States)

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  13. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2004-01-01

    The imminent ban of environmentally harmful tributyltin (TBT)-based paint products has been the cause of a major change in the antifouling paint industry. In the past decade, several tin-free products have reached the commercial market, and claimed their effectiveness as regards the prevention....... In addition, the most common booster biocides used to replace TBT-containing compounds are listed and described. It must be stressed that there is still a lack of knowledge of their potential environmental side effects. The current interest in providing innovative antifouling technologies based on an improved...

  14. Non-Leaching, Benign Antifouling Multilayer Polymer Coatings for Marine Applications

    Science.gov (United States)

    2010-03-01

    noncatylzed epoxy - anhydride curing mechanism results in covalent attachment of the SEBS to the glass surface. The surfaces were further spin-coated three...the necessary corrosion protection, durability, and modulus for the coating system . The relatively thin SABC layer lends antifouling and/or fouling...release properties to the coating system through control of surface properties. To further our production of the bilayer coating system , a partnership

  15. The use of nanomaterials as an alternative to biocidal antifouling coatings and their environmental impact; Einsatz von Nanomaterialien als Alternative zu biozidhaltigen Antifouling-Anstrichen und deren Umweltauswirkungen

    Energy Technology Data Exchange (ETDEWEB)

    Watermann, B.T.; Daehne, D.; Fuerle, C. [LimnoMar - Labor fuer limnische/marine Forschung und vergleichende Pathologie, Hamburg (Germany)

    2010-07-15

    This study revealed that a variety of nanomaterials are already in use for antifouling paint systems. On the market for leisure boats 22 antifouling products and 3 under water coatings to reduce the friction could be identified (after an update in Mai 2010 only 14 products could be identified). These products are available on the German, the European and the global market. For all antifouling systems and underwater coatings on the market, the specification of the used nanomaterials was not specified e.g. in the Technical Data Sheets or Safety and Health Data Sheets. A clear labelling for the consumer would be helpful and necessary Actually, nanotechnology based antifouling systems on the leisure boat market and on the professional market cannot be regarded as alternatives to antifouling systems which are not using nanotechnology This is partly due to the lacking evidence of efficacy, the fact that some products contain biocides without declaring them, some of them are even not allowed to be used as biocides in antifouling paints (e.g. zinc oxide and silver) and due to the lack of specified nanomaterials which make a risk assessment or ecotoxicological evaluation impossible. It can be expected that the next generation of nanotechnology based antifouling systems will be much more sophisticated and effective, despite of the lack of scientific sound data on their environmental impact. (orig.)

  16. Antifouling effect of two saturated copper coatings applied on carbon steel structures

    Directory of Open Access Journals (Sweden)

    Guiamet, P. S.

    2008-10-01

    Full Text Available Biofouling is the colonization of man-made substrata by sessile organisms. The aim of this paper is to evaluate the performance of two antifouling saturated copper coating. Bioassays were carried out at a harbor in Argentine (38°02’S- 57°32’W. During six months, one series of pipes and panels were removed monthly to estimate the recruitment of macro and microfouling species and immediately replaced by clean ones. Another series was removed from the beginning of exposure to monitor the development of the established community (accumulative pipes and panels along six months. Data obtained from control (without a saturated copper coating and saturated-copper coated pipes and panels were compared in order to estimate performance of the coating. One of two saturated copper coating demonstrated a good effect antifouling.

    El biofouling es la colonización por organismos sésiles en sistemas de sustratos hechos por el hombre. El objetivo fue evaluar el efecto antifouling de dos cubiertas saturadas de cobre. Los estudios se llevaron a cabo en un puerto de la Argentina (38°02’S-57°32’W. Durante seis meses, una serie de caños y paneles fueron removidos mensualmente para estimar el reclutamiento de las especies del macro y microfouling, y fueron sustituidos inmediatamente por caños y paneles limpios. La otra serie de caños y paneles fueron removidas desde el inicio de la exposición en forma acumulativa durante los seis meses, para seguir el desarrollo de la comunidad. Los datos obtenidos de los controles sin cubierta y de los caños y paneles con las cubiertas saturadas de cobre fueron comparados para estimar el comportamiento antifouling de las mismas. Una de las dos cubiertas saturadas de cobre demostró un buen efecto antifouling.

  17. Replacement of traditional seawater-soluble pigments by starch and hydrolytic enzymes in polishing antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, Søren Martin; Pedersen, L. T.; Dam-Johansen, Kim;

    2010-01-01

    The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes the devel......The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes...... the development of a leached (porous) layer in the wetted, outermost part of the coating. Subsequent water-binder interaction at the pore walls gives rise to polishing, in a manner similar to that of conventional antifouling coatings. Different starch types have been evaluated and classified as potential coating...... the starch-enzyme coatings tested; however, polishing is only detected for two out of four binder systems investigated. Suitable polishing rates of 7-10 mu m/month, based on the enzymatic starch-degradation, have been measured. Controls containing only starch (no enzyme) did not polish....

  18. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  19. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings: Exposure testing under equatorial and Mediterranean conditions

    DEFF Research Database (Denmark)

    Olsen, S.M.; Kristensen, J.B.; Laursen, B.S.;

    2010-01-01

    Hydrogen peroxide (H2O2) may be considered an environmentally friendly antifouling alternative to common biocides such as Cu2O and various organic compounds. In this work, the efficiency of antifouling coatings releasing hydrogen peroxide via enzyme-mediated conversion of starch, under...... Mediterranean and equatorial climatic conditions, is investigated. During seawater exposure of the coatings, starch is first converted to glucose by glucoamylase (rate-controlling step) and subsequently glucose is rapidly oxidised by hexose oxidase in a reaction producing hydrogen peroxide. The coatings...... laboratory assays, the transient hydrogen peroxide release rate from the coatings at different temperatures has been measured. The investigations are used to evaluate the ocean performance of the antifouling coatings. Coatings can be formulated with starch/enzyme 'pigments' in considerable amounts and yet...

  20. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xianghong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yuan, Shuaishuai [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Shi, Dean, E-mail: deanshi2012@yahoo.com [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yang, Yingkui; Jiang, Tao [Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062 (China); Yan, Shunjie; Shi, Hengchong [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Luan, Shifang, E-mail: sfluan@ciac.ac.cn [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Yin, Jinghua [State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2016-07-01

    Graphical abstract: - Highlights: • Antifouling and bactericidal capabilities were facilely integrated into a surface via bioinspired coating. • The modification technique was very facile and universal to different types of substrate materials. • The integrated antifouling and bactericidal surfaces have great potential in wound dressing applications. - Abstract: Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  1. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  2. Controlled release of environmentally friendly antifouling agents from marine coatings

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller

    maling, og sjette kapitel omhandler de eksperimenter, der er blevet udført med henblik på at teste forskellige frigivelseshastighed af hydrogenperoxid på biofouling. Uorganiske peroxider er blevet testet som nye antifouling maling ingredienser, og frigivelsen af hydrogenperoxid fra malinger indeholdende...... hydrogenperoxid på biofouling er blevet testet, og hydrogenperoxid frigivet som eneste biocid fra en ikke polerende overflade kræver en frigivelseshastighed på et sted mellem 225 og 2800 μg/(cm2 •dag) for at holde overfladen fri for biofouling, når denne er placeret i Jyllinge havn i Danmark i løbet af ni uger om...

  3. Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio- fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur- face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.

  4. Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder

    Institute of Scientific and Technical Information of China (English)

    CHEN MeiLing; QU YuanYuan; YANG Li; GAO Hong

    2008-01-01

    Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or-ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio-fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur-face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.

  5. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    In this work BET surface area measurements and mercury porosimetry are used to characterize leached layers formed when seawater-soluble pigments (Cu2O and ZnO) dissolve during accelerated leaching of simple antifouling coatings. Measurements on single-pigment coatings show that an increasing...... fraction of Cu2O or ZnO pigment particles becomes unavailable for dissolution when the concentration of the pigment decreases in the coating and the interparticle distance in the binder matrix becomes larger. Experimental data for a coating initially containing a mixture of Cu2O and TiO2 pigments suggest...... that a substantial fraction of the smaller and inert TiO2 particles may be lost from the coating upon dissolution of the larger Cu2O particles. This inert particle translocation effect is important to take into account when interpreting polishing and leaching data and when developing mathematical models...

  6. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    Science.gov (United States)

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  7. 生物降解型防污涂料的制备%Preparation of Biodegradation Antifouling Coatings

    Institute of Scientific and Technical Information of China (English)

    余浩杰; 桂泰江; 肖玲; 王科; 于雪艳; 陈正涛; 张华庆

    2012-01-01

    介绍了生物降解型防污涂料用树脂的合成及生物降解型低铜、无铜防污涂料的制备进展情况,讨论了可降解嵌段共聚物树脂的性能、生物降解型防污涂料防污剂及颜填料、助剂的选择及其性能。经过实海挂板检验,初步验证此生物降解型防污涂料具有一定的防污效果,能抑制海洋污损生物的生长。%This paper introduces the synthesis of biodegradation antifouling coatings resin and the preparation progress of biodegradation low copper and copper-free antifouling coatings; discusses the properties of biodegradable block copolymer resin and the selection and the properties of biodegradation antifouling agents, pigments and additives. After panel immersion test, it is validated preliminarily that the antifouling coatings have certain antifouling effect and can inhibit the growth of marine fouling organisms.

  8. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    OpenAIRE

    Camps, Mercedes; Barani, Aude; Gregori, Gerald; Bouchez, Agnes; Le Berre, Brigitte; Bressy , Christine; Blache, Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copoly...

  9. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings.

    Science.gov (United States)

    Haque, Haroon; Cutright, Teresa J; Newby, Bi-Min Zhang

    2005-01-01

    The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.

  10. Current Situation and Development of New Non-toxic Antifouling Coating%新型无毒防污涂料的发展现状

    Institute of Scientific and Technical Information of China (English)

    王威; 晏欣; 孙卫红

    2011-01-01

    自含锡防污涂料被禁止使用以来,无毒环保型防污涂料有了很大的发展.本文综述了一些无锡自抛光防污涂料以及用有机硅改性的丙烯酸和聚氨酯涂料,并做了展望.%It is a long time to use antifouling coating on the boat, since Tributyltin self-polishing antifouling coating(TBT-SPC)was ban, environment friendly and non-toxic antifouling coating has develop greatly. This text summarizes some kinds of tin-freeself-polishing antifouling coating, acrylic resin coating, and polyurethane coating which were chemically modified by organic si-loxane.

  11. Study on Waterborne Polyurethane Antifouling Coatings%水性聚氨酯防污涂料的研究

    Institute of Scientific and Technical Information of China (English)

    李志生; 于雪艳; 陈正涛; 王科; 李旭朝; 肖玲; 桂泰江

    2015-01-01

    采用丙烯酸/苯乙烯共聚物乳液为基体树脂,通过添加聚氨酯分散体提高了涂膜的耐磨性、柔韧性、抗开裂性,筛选不同防污剂和助剂等,制备了养殖渔网防污损的水性防污涂料,对涂层的防污性、附着力等性能进行了评价,并对涂层进行微观表征和毒性测试,制备的水性防污涂料具有6个月的防污期效,满足水产养殖业对渔网防污涂料的要求,同时由于是水性的,对海洋环境无污染,在生产和使用过程中对大气环境和人员身体无影响,符合环保要求。%The waterborne antifouling coatings was prepared for ifshnet anti-fouling by using acrylic/styrene copolymer emulsion as the basic resin, adding polyurethane dispersions to improve wear resistance, lfexibility and crack resistance of the coatings and selecting different anti-fouling agents and additives. The antifouling property, adhesion and other properties were evaluated for the coating iflms and the micro-characterization and toxicity test were carried out as well. The prepared anti-fouling coatings had the effective anti-fouling period of 6 months, which met the requirements of the cultivating ifshery for ifshnet anti-fouling coatings. Meanwhile, as the coatings were waterborne and had no pollution to marine environment, it had no effect on the air environment and human bodies during the processes of its production and application and met the requirement of environmental protection.

  12. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Indrani; Pangule, Ravindra C.; Kane, Ravi S. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Ricketts Building, Troy, NY 12180 (United States)

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. The Research Progress of Low Toxicity and Nontoxic Antifouling Coatings%低毒和无毒防污涂料的研究进展

    Institute of Scientific and Technical Information of China (English)

    赵金榜

    2012-01-01

    Using antifouling coatings is one of the most economical, convenient and effective means to deal with the adhesion of marine organisms. The traditional antifouling coatings, organic tin self-polishing antifouling coatings were introduced briefly. The research progress of low toxicity and nontoxic antifouling coatings were reviewed.%防止海生物附着的最经济、最方便、最有效的方法之一是采用防污涂料。简介了传统防污涂料、有机锡自抛光防污涂料,综述了低毒和无毒防污涂料的研究进展。

  14. Development of Self -Polishing Antifouling Coating and Evaluation Approaches%自抛光防污涂层及评价技术的发展

    Institute of Scientific and Technical Information of China (English)

    徐经委; 于良民; 李霞; 杨玉臻

    2011-01-01

    介绍了自抛光防污涂料的防污机理和防污特点,概括了有机锡自抛光防污涂料和无锡自抛光涂料的防污机理和发展状况,阐述了几种不同无锡自抛光涂料的防污原理,对自抛光防污涂料通过测定防污涂层的有效成分渗出率间接反映防污性能的评价方法和实海挂板直接评价防污涂层的防污性能的传统评价方法进行了总结.详细介绍了几种自抛光防污涂料室内动态模拟性能评价方法和生物性能评价方法,并对自抛光防污涂料的发展方向进行了展望.%This article has briefly described the antifouling mechanism and characteristics of self - polishing antifouling paints, summarized in detail the antifouling mechanism and development of organic tin - containing and tin - free self - polishing antifouling paints, focused on the principle of several different tin - free self - polishing antifouling paints, and summed up the traditional evaluation methods of self - polishing antifouling paints by measuring the antifouling coatings leakage rate which indirectly reflected the antifouling properties and the real evaluation of antifouling coatings board in seawater which directly linked to the anti -fouling properties. Some of the performance evaluation approches of indoor dynamic simulation methods and biological performance evaluation methods for self - polishing antifouling paints were described in detail, and Prospect of self - polishing antifouling paints was also given.

  15. Anti-fouling poly(2-hydoxyethyl methacrylate) surface coatings with specific bacteria recognition capabilities

    Science.gov (United States)

    Mrabet, Bechir; Nguyen, Minh Ngoc; Majbri, Aymen; Mahouche, Samia; Turmine, Mireille; Bakhrouf, Amina; Chehimi, Mohamed M.

    2009-08-01

    Poly(2-hydroxyethyl methacrylate), PHEMA, brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) on silanized glass slides bearing grafted initiators. High resolution X-ray photoelectron spectroscopy (XPS) highlighted the surface chemical changes of the glass slides upon silanization and surface-confined ATRP of HEMA. Particularly, the initiator sites from the silane were detected by their bromine Br3d core electron peak whilst the O/C atomic ratios and the high resolution C1s region of the glass-PHEMA hybrids are comparable to those of pure PHEMA, thus confirming that the PHEMA chains have indeed attached to the surface. The glass-PHEMA hybrids were found to behave as anti-fouling ultrathin coatings as they resisted non-specific Salmonella typhimurium bacterial adhesion. This behaviour is driven by the hydrophilic properties of the glass-PHEMA hybrids which were assessed by contact angle measurements. In contrast, after activation of PHEMA brushes by S.typhimurium antibodies through the trichlorotriazine coupling procedure, the bacteria specifically and strongly attached to the PHEMA-coated glass slides as judged from optical microscope observation.

  16. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials.

    Science.gov (United States)

    D'Souza, Fraddry; Bruin, Anouk; Biersteker, Rens; Donnelly, Glen; Klijnstra, Job; Rentrop, Corne; Willemsen, Peter

    2010-04-01

    An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and release properties of many surfaces when compared to a reference. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent SYTO 13 stain. A strong linear correlation exists between the fluorescence of the bacterial suspension measured (RFU) using a plate reader and the total bacterial count measured with epifluorescence microscopy. This relationship allows the fluorescent technique to be used for the quantification of bacterial cells attached to surfaces. As the bacteria proliferate on the surface over a period of time, the relative fluorescence unit (RFU) measured using the plate reader also shows an increase with time. This was observed on all three test surfaces (glass, Epikote and Silastic T2) over a period of 4 h of bacterial growth, followed by a release assay, which was carried out by the application of hydrodynamic shear forces using a custom-made rotary device. Different fixed rotor speeds were tested, and based on the release analysis, 12 knots was used to provide standard shear force. The assay developed was then applied for assessing three different antifouling coatings of different surface roughness. The novel assay allows the rapid and sensitive enumeration of attached bacteria directly on the coated surface. This is the first plate reader assay technique that allows estimation of irreversibly attached bacterial cells directly on the coated surface without their removal from the surface or extraction of a stain into solution.

  17. Construction Proposal of Anti-fouling Coatings in Nuclear Power Plants%核电站防海生物涂料施工建议

    Institute of Scientific and Technical Information of China (English)

    陈纪国

    2016-01-01

    Anti-fouling coatings have been widely used in the domestic nuclear power plants. Currently,a wide variety of anti-fouling coatings has been in market, but poor management in the selection and application led to rapid depletion and high cost of anti-fouling coatings. This paper introduces the anti-fouling principle, focuses on self-polishing anti-fouling coatings and low surface energy anti-fouling coatings. In conjunction with the construction quality control, maintenance, etc., this paper presents some suggestions and measures about the construction of anti-fouling coatings in nuclear power plant.%防止海生物附着的防海生物涂料已在国内核电站广泛应用.目前市面上的防海生物涂料种类繁多,但在选型和应用中疏于管理,导致防海生物涂料耗损快、消耗大、成本高等一系列问题.本文首先介绍了防海生物涂料的种类及原理,重点讲述无锡自抛光防海生物涂料和低表面能防海生物涂料的实际应用情况并结合核电站施工质量控制、维修等方面,提出了关于核电站防海生物涂料施工的一些建议及对策.

  18. Development of FDR-AF (Frictional Drag Reduction Anti-Fouling) Marine Coating

    Science.gov (United States)

    Lee, Inwon; Park, Hyun; Chun, Ho Hwan; GCRC-SOP Team

    2013-11-01

    In this study, a novel skin-friction reducing marine paint has been developed by mixing fine powder of PEO(PolyEthyleneOxide) with SPC (Self-Polishing Copolymer) AF (Anti-Fouling) paint. The PEO is well known as one of drag reducing agent to exhibit Toms effect, the attenuation of turbulent flows by long chain polymer molecules in the near wall region. The frictional drag reduction has been implemented by injecting such polymer solutions to liquid flows. However, the injection holes have been a significant obstacle to marine application. The present PEO-containing marine paint is proposed as an alternative to realize Toms effect without any hole on the ship surface. The erosion mechanism of SPC paint resin and the subsequent dissolution of PEO enable the controlled release of PEO solution from the coating. Various tests such as towing tank drag measurement of flat plate and turbulence measurement in circulating water tunnel demonstrated over 10% frictional drag reduction compared with conventional AF paint. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP(No. 2011-0030013).

  19. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  20. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  1. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    Science.gov (United States)

    Liu, Haoran; Raza, Aikifa; Aili, Abulimiti; Lu, Jinyou; Alghaferi, Amal; Zhang, Tiejun

    2016-05-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h‑1 m‑2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life.

  2. Fabrication of FDTS-modified PDMS-ZnO nanocomposite hydrophobic coating with anti-fouling capability for corrosion protection of Q235 steel.

    Science.gov (United States)

    Arukalam, Innocent O; Oguzie, Emeka E; Li, Ying

    2016-12-15

    Perfluorodecyltrichlorosilane-based poly(dimethylsiloxane)-ZnO (FDTS-based PDMS-ZnO) nanocomposite coating with anti-corrosion and anti-fouling capabilities has been prepared using a one-step fabrication technique. XPS analysis and contact angle measurements showed the fluorine content to increase, while the hydrophobicity of the coatings decreased with addition of FDTS. XRD analysis revealed existence of ZnO nanoparticles of dimensions ranging from 11.45 to 93.01nm on the surface of coatings, with the mean particle size decreasing with FDTS addition, and was confirmed by SEM and TEM observations. Interestingly, the anti-corrosion performance and mechanical properties of the coatings increased remarkably on addition of FDTS. Indeed, the observed low adhesion strength, surface energies and the outstanding anti-corrosive properties imply that the obtained coating would be useful in anti-fouling applications.

  3. The Application of Antifouling Coatings Used on Urban Concrete Bridge%抗污涂料在城市混凝土桥梁上的应用

    Institute of Scientific and Technical Information of China (English)

    晏立宇; 王宁

    2012-01-01

    介绍了西安城市混凝土立交桥涂装配套设计方案,对提高混凝土防腐涂层抗污性的措施和防腐抗污涂层的技术要求进行了论述,并对混凝土桥梁涂装的施工工艺进行了介绍。%The coating design scheme of concrete overpass in Xian city were introduced, measurements for improve the concrete anti-corrosion coating anti-fouling properties and the technical requirements of anti-corrosive anti-fouling coating were discussed, and the construction technology of the concrete bridge coating were introduced.

  4. Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings.

    Science.gov (United States)

    Sancet, Maria Pilar Arpa; Hanke, Maximilian; Wang, Zhengbang; Bauer, Stella; Azucena, Carlos; Arslan, Hasan K; Heinle, Marita; Gliemann, Hartmut; Wöll, Christof; Rosenhahn, Axel

    2013-12-01

    Surface-anchored, crystalline and oriented metal organic frameworks (SURMOFs) have huge potential for biological applications due to their well-defined and highly-porous structure. In this work we describe a MOF-based, fully autonomous system, which combines sensing, a specific response, and the release of an antimicrobial agent. The Cu-containing SURMOF, Cu-SURMOF 2, is stable in artificial seawater and shows stimulus-responsive anti-fouling properties against marine bacteria. When Cobetia marina adheres on the SURMOF, the framework's response is lethal to the adhering microorganism. A thorough analysis reveals that this response is induced by agents secreted from the microbes after adhesion to the substrate, and includes a release of Cu ions resulting from a degradation of the SURMOF. The stimulus-responsive antifouling effect of Cu-SURMOF 2 demonstrates the first application of Cu-SURMOF 2 as autonomous system with great potential for further microbiological and cell culture applications.

  5. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    Science.gov (United States)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  6. Comparison between polyethylene glycol and zwitterionic polymers as antifouling coatings on wearable devices for selective antigen capture from biological tissue.

    Science.gov (United States)

    Robinson, Kye J; Coffey, Jacob W; Muller, David A; Young, Paul R; Kendall, Mark A F; Thurecht, Kristofer J; Grøndahl, Lisbeth; Corrie, Simon R

    2015-12-07

    Selective capture of disease-related proteins in complex biological fluids and tissues is an important aim in developing sensitive protein biosensors for in vivo applications. Microprojection arrays are biomedical devices whose mechanical and chemical properties can be tuned to allow efficient penetration of skin, coupled with highly selective biomarker capture from the complex biological environment of skin tissue. Herein, the authors describe an improved surface modification strategy to produce amine-modified polycarbonate arrays, followed by the attachment of an antifouling poly(sulfobetaine-methacrylate) (pSBMA) polymer or a linear polyethylene glycol (PEG) polymer of comparative molecular weight and hydrodynamic radius. Using a "grafting to" approach, pSBMA and linear PEG coatings yielded comparative antifouling behavior in single protein solutions, diluted plasma, or when applied to mouse flank skin penetrating into the vascularized dermal tissue. Interestingly, the density of immobilized immunoglobulin G (IgG) or bovine serum albumin protein on pSBMA surfaces was significantly higher than that on the PEG surfaces, while the nonspecific adsorption was comparable for each protein. When incubated in buffer or plasma solutions containing dengue non-structural protein 1 (NS1), anti-NS1-IgG-coated pSBMA surfaces captured significantly more NS1 in comparison to PEG-coated devices. Similarly, when wearable microprojection arrays were applied to the skin of dengue-infected mice using the same coatings, the pSBMA-coated devices showed significantly higher capture efficiency (>2-fold increase in signal) than the PEG-coated substrates, which showed comparative signal when applied to naïve mice. In conclusion, zwitterionic pSBMA polymers (of equivalent hydrodynamic radii to PEG) allowed detection of dengue NS1 disease biomarker in a preclinical model of dengue infection, showing significantly higher signal-to-noise ratio in comparison to the PEG controls. The results of

  7. Quantification of bacteria on abiotic surfaces by laser scanning cytometry: An automated approach to screen the antifouling properties of new surface coatings

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Poulsen, Morten; Søhoel, Helmer

    2012-01-01

    Bacterial biofilms are a persistent source of contamination, and much effort invested in developing antifouling surfaces or coatings. A bottle-neck in developing such coatings is often the time-consuming task of screening and evaluating a large number of surface materials. An automated high...... counts obtained by fluorescence microscopy. As an example of application, we quantified bacterial adhesion to seven different sol-gel based coatings on stainless steel. The surface structure and hydrophobicity of the coatings was analyzed using atomic force microscopy and water contact angle measurements...

  8. Biomimetic PEG-catecholates for stabile antifouling coatings on metal surfaces: applications on TiO2 and stainless steel.

    Science.gov (United States)

    Khalil, Faiza; Franzmann, Elisa; Ramcke, Julian; Dakischew, Olga; Lips, Katrin S; Reinhardt, Alexander; Heisig, Peter; Maison, Wolfgang

    2014-05-01

    Trimeric catecholates have been designed for the stable immobilization of effector molecules on metal surfaces. The design of these catecholates followed a biomimetic approach and was inspired by natural multivalent metal binders, such as mussel adhesion proteins (MAPs) and siderophores. Three catecholates have been conjugated to central scaffolds based on adamantyl or trisalkylmethyl core structures. The resulting triscatecholates have been immobilized on TiO2 and stainless steel. In a proof of concept study we have demonstrated the high stability of the resulting nanolayers at neutral and slightly acidic pH. Furthermore, polyethylene glycol (PEG) conjugates of our triscatecholates have been synthesized and were immobilized on TiO2 and stainless steel. The PEG coated surfaces showed excellent antifouling properties upon exposure to human blood and bacteria as demonstrated by fluorescence microscopy, ellipsometry and a bacterial assay with Staphylococcus epidermidis. In addition, our PEG-triscatecholates showed no cytotoxicity against bone-marrow stem cells on TiO2.

  9. Research on Electrochemical Behavior of Ti-Ir-Ru Anode Coating in Electrolytic Antifouling of Flowing Brine

    Science.gov (United States)

    Liang, Chenghao; Huang, Naibao

    2009-11-01

    By electrochemical techniques, the electrochemical behavior of Ti-Ir-Ru anode coating was studied in electrolytic antifouling of flowing brine. The effect of the brine’s flow rate and the anode/cathode interval on electrolysis was also considered. The results indicated that the brine’s flow rate had remarkable effect on the characteristic of the Ti-Ir-Ru anode. The electrolytic voltage and the evolved active chlorine concentration of Ti-Ir-Ru anode increased with increasing flow rate. Its energy consumption displayed the same variable rule as the electrolytic voltage. But the current density reduced with increasing flow rate. Increasing flow rate favored attenuation of the thickness of mass-transfer control layer and expediting the oxygen’s mass transfer, which accelerated the cathode polarization and the oxygen absorption reaction. The maximal current efficiency for Ti-Ir-Ru anode was obtained at the anode/cathode interval of 5 cm with the current density of 60 mA/cm2. At this point, Ti-Ir-Ru anode also had relatively low electrolytic voltage. The above operating procedure was ideal for electrolyzing flowing brine using Ti-Ir-Ru anode coating.

  10. Possibilities and impossibilites of alternative antifouling techniques

    NARCIS (Netherlands)

    Willemsen, P.R.; Ferrari, G.M.

    1996-01-01

    The following alternatives to TBT and other toxic paints are discussed in this paper: coatings based on naturally antifouling compounds, non-stick coatings and the periodic removal of fouling (cleaning). Other alternative antifouling techniques have not made significant developments in the last few

  11. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month.

  12. Surface structuring and coating performance: novel biocidefree nanocomposite coatings with anti-fouling and fouling-release properties

    NARCIS (Netherlands)

    Wouters, M.E.L.; Rentrop, C.H.A.; Willemsen, P.R.

    2010-01-01

    State-of-the-art coatings consist of all kinds of ingredients amongst which (inorganic) filler particles are important additives. Knowledge of particle modification and chemistry of the coating formulation allows tailoring the coating properties and thus its performance and applicability. Recently n

  13. Bubbles versus biofilms: a novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream

    Science.gov (United States)

    Salta, M.; Goodes, L. R.; Maas, B. J.; Dennington, S. P.; Secker, T. J.; Leighton, T. G.

    2016-09-01

    The accumulation of marine organisms on a range of manmade surfaces, termed biofouling, has proven to be the Achilles’ heel of the shipping industry. Current antifouling coatings, such as foul release coatings (FRCs), only partially inhibit biofouling, since biofilms remain a major issue. Mechanical ship hull cleaning is commonly employed to remove biofilms, but these methods tend to damage the antifouling coating and often do not result in full removal. Here, we report the effectiveness of biofilm removal from FRCs through a novel cleaning device that uses an ultrasonically activated stream (UAS). In this device, ultrasound enhances the cleaning properties of microbubbles in a freely flowing stream of water. The UAS was applied on two types of commercial FRCs which were covered with biofilm growth following twelve days immersion in the marine environment. Biofilm removal was quantified in terms of reduction in biovolume and surface roughness, both measured using an optical profilometer, which were then compared with similar measurements after cleaning with a non-ultrasonically activated water stream. It was found that the UAS significantly improves the cleaning capabilities of a water flow, up to the point where no detectable biofilm remained on the coating surfaces. Overall biofilm surface coverage was significantly lower on the FRC coatings cleaned with the UAS system when compared to the coatings cleaned with water or not cleaned at all. When biofilm biomass removal was investigated, the UAS system resulted in significantly lower biovolume values even when compared to the water cleaning treatment with biovolume values close to zero. Remarkably, the surface roughness of the coatings after cleaning with the UAS was found to be comparable to that of the blank, non-immersed coatings, illustrating that the UAS did not damage the coatings in the process. The data supporting this study are openly available from the University of Southampton repository at http

  14. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials

    NARCIS (Netherlands)

    D'Souza, F.; Bruin, A.; Biersteker, R.; Donnelly, G.T.; Klijnstra, J.W.; Rentrop, C.H.A.; Willemsen, P.R.

    2010-01-01

    An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and relea

  15. Comparison of anti-fouling surface coatings for applications in bacteremia diagnostics.

    Science.gov (United States)

    Boardman, Anna K; Allison, Sandra; Sharon, Andre; Sauer-Budge, Alexis F

    2013-01-01

    To accurately diagnose microbial infections in blood, it is essential to recover as many microorganisms from a sample as possible. Unfortunately, recovering such microorganisms depends significantly on their adhesion to the surfaces of diagnostic devices. Consequently, we sought to minimize the adhesion of methicillin-sensitive Staphylococcus aureus (MSSA) to the surface of polypropylene- and acrylic-based bacteria concentration devices. These devices were treated with 11 different coatings having various charges and hydrophobicities. Some coatings promoted bacterial adhesion under centrifugation, whereas others were more likely to prevent it. Experiments were run using a simple buffer system and lysed blood, both inoculated with MSSA. Under both conditions, Hydromer's 7-TS-13 and Aqua65JL were most effective at reducing bacterial adhesion.

  16. Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against Listeria monocytogenes.

    Science.gov (United States)

    Huang, Kang; Chen, Juhong; Nugen, Sam R; Goddard, Julie M

    2016-06-29

    Controlling formation, establishment, and proliferation of microbial biofilms on surfaces is critical for ensuring public safety. Herein, we report on the synthesis of antimicrobial nanoparticles and their co-deposition along with fluorinated nanoparticles during electroless nickel plating of stainless steel. Plating bath composition is optimized to ensure sufficiently low surface energy to resist fouling and microbial adhesion as well as to exert significant (>99.99% reduction) antimicrobial activity against Listeria monocytogenes. The resulting coatings present hybrid antifouling and antimicrobial character, can be applied onto stainless steel, and do not rely on leaching or migration of the antimicrobial nanoparticles to be effective. Such coatings can support reducing public health issues related to microbial cross-contamination in areas such as food processing, hospitals, and water purification.

  17. Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications.

    Science.gov (United States)

    Hölken, Iris; Hoppe, Mathias; Mishra, Yogendra K; Gorb, Stanislav N; Adelung, Rainer; Baum, Martina J

    2016-03-14

    Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

  18. Research progress of biocides and resins for novel marine antifouling coatings%新型海洋防污涂料用防污剂及树脂的研究进展

    Institute of Scientific and Technical Information of China (English)

    张新生; 王洁欣; 乐园; 陈建峰

    2011-01-01

    防污剂和树脂是决定海洋防污涂料性能的关键成分,本文综述了近年来用于新型海洋防污涂料的天然产物防污剂和人工合成防污剂的研究进展;进一步从防污机理出发,总结了用于新型海洋防污涂料的基体树脂的种类,介绍了无锡自抛光树脂、生物可降解树脂,含杀菌官能团树脂、低表面能树脂和具有微相分离结构的树脂.此外,还展望了新型海洋防污涂料的未来发展方向,即环境友好的同时注重方式友好.%Biocide and resin are the key components which determine the performance of marine antifouling coating. Research progress of natural product biocides and synthetic bioactive molecules for novel marine antifouling coatings in recent years is reviewed in this paper. In addition, resins for novel marine antifouling coatings are classified according to the antifouling mechanism. Tin-free self-polishing resin, biodegradable resin, resin containing antibacterial functional groups, low surface energy resin and resin with microphase-separated structure are introduced. The future development of novel marine antifouling coatings is also prospected, that is, environment-friendly and method- friendly coatings.

  19. Synthesis of chitosan capped copper oxide nanoleaves using high intensity (30kHz) ultrasound sonication and their application in antifouling coatings.

    Science.gov (United States)

    Abiraman, Tamilselvan; Ramanathan, Ethirajan; Kavitha, Ganapathy; Rengasamy, Ramasamy; Balasubramanian, Sengottuvelan

    2017-01-01

    The synthesis of chitosan capped copper oxide nanoleaves (CCCO NLs) was carried out under three different reaction conditions viz. 1) room temperature, 2) 70°C and 3) high intensity ultrasound (30kHz) sonication method and it has been found that the high intensity ultrasound (30kHz) sonication is the best method when compared to other two methods. The advantages of the present synthetic method are: i) easy one step process, ii) lesser reaction time, iii) good yield, iv) reproducible and v) calcination is not required. The resulting chitosan capped copper oxide nanoleaves were characterized by Diffuse Reflectance UV-Visible Spectroscopy (DRS), Fourier Transform Infra-Red Spectroscopy (FT-IR), X-ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM) and Thermo gravimetric analysis (TGA). The CCCO NLs were blended with commercial paints such as polyurethane clear, polyurethane white and acrylic emulsion and applied on to three different surfaces (wood, mild steel and cement slab panels). The hydrophilicity of CCCONP coated panels was analyzed by water contact angle measurement and their antifouling behavior was investigated against three different green and marine algae viz. Arthrospira, Chlorella and Amphora. The antifouling efficiency of the CCCO NLs against the algae was found to be 78-92%.

  20. Highly effective permeability and antifouling performances of polypropylene non-woven fabric membranes modified with graphene oxide by inkjet printing and immersion coating methods.

    Science.gov (United States)

    Zhao, Chuan-Qi; Xu, Xiao-Chen; Li, Rui-Yun; Chen, Jie; Yang, Feng-Lin

    2013-01-01

    In the current study, graphene oxide (GO)-modified polypropylene non-woven fabric (PP-NWF) membranes were prepared via inkjet printing and immersion coating methods. Scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle measurements, pure water permeation (JPWP) and protein adsorption were tested to evaluate the impact of the GO nanosheet on the characteristics and performance of modified PP-NWF membranes. The results showed that the exfoliated GO nanosheets uniformly deposited on the membrane surface and firmly embedded into the interlaced fibers, resulting in the improvement of membrane hydrophilicity, permeability and antifouling properties comparing with original PP-NWF membranes. The GO-printed and GO-coated membranes had 113 and 188% higher fluxes, and 70.95 and 75.74% lower protein adsorptions than the original PP-NWF membranes, respectively. After cross-linked treatment, ultrasound processing was conducted to evaluate the stability of the modified PP-NWF membranes. The results demonstrated that there was almost no decrease in permeation after ultrasonic treatment indicating that the cross-linking treatment could enhance the immobilization of the GO nanosheets on and into the modified membranes.

  1. Natural product antifoulants

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Mol, V.P.L.

    Natural Product Antifoulants (NPAs) have been proposed as one of the best replacement options for the most successful antifouling agent, tri-n-butyl tin (TBT), which, due to its ecological incompatibility, is currently facing total global ban...

  2. The status and countermeasures for the application and supervision of antifouling coating for fishing vessels in China%我国渔船用防污漆的应用与监管现状及对策建议

    Institute of Scientific and Technical Information of China (English)

    张祝利; 王贤瑞

    2014-01-01

    使用含DDT等防污剂的防污漆,可杀死在渔船船体表面自由活动的附着生物幼体而有效防止海洋生物对渔船船体的附着污损,使涂层表面保持光洁,达到保持船速和节省燃油的目的。然而,这些防污漆在防除污损生物的同时,对有益的微生物、植物和动物也同时具有杀生作用,甚至对人体也有致畸、致癌作用,因而对生态环境具有持久的危害性,国际社会早已禁止使用这类防污漆。但由于DDT和TBT防污漆过去在中国使用比较普遍,要淘汰这类防污漆会受到一些因素的阻碍。本文阐述了添加有机污染物防污漆的危害性、渔船防污漆的应用及监管现状,并提出对策建议,以期为有关部门的进一步有效监管提供借鉴。%The use of antifouling paints containing DDT and other antifoulants could prevent fouling organisms from attaching to the hull of fishing vessels through killing the juvenile attaching organisms , and keep coating surface tends to smooth, which could reach the purpose of saving fuel and keeping speed. However, these anti-fouling paints will kill beneficial microorganisms, plants and animals, and even lead to human teratogenic and carcinogenic, while controlling fouling organisms. Thus these anti-fouling paints will do the lasting clamage to the ecological environment , and the international community has already banned the use of such anti-fouling paints for a long time. This paper deals with the harmfulness of antifoulants is elabrated in this paper and the status and countermeasures for the application and supervision of antifouling paints on fishing vessels are also stated and raised, which are expected to provide for regulatory authorities to further improve the effective supervision.

  3. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings.

  4. Development and characterization of silicone/phosphorus modified epoxy materials and their application as anticorrosion and antifouling coatings

    OpenAIRE

    T. Balakrishnan; Alagar, M.; Denchev, Z.; Kumar, S. Ananda

    2006-01-01

    Epoxy resin is chosen for our present study owing to its exceptional combination of properties such as easy processing, high safety, excellent solvent and chemical resistance, toughness, low shrinkage on cure, good electrical, mechanical and corrosion resistance with excellent adhesion to many substrates. This versatility in formulation made epoxy resins widely applied for surface coatings, adhesives, laminates, composites, potting, painting materials, encapsulant for semiconductor and insula...

  5. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  6. 纳米涂层在污水源热泵中的抗垢性研究%Characteristics of a nano-particle containing anti-fouling coating for sewage cooling and heating piping

    Institute of Scientific and Technical Information of China (English)

    吴学慧; 孙德兴; 杨维好

    2011-01-01

    One efficient way to solve fouling in urban sewage cooling and heating systems is the use of a new nano-particle containing paint. On site experiments have determined the anti-fouling properties of coated pipes. The coating used was XK-368 titanium nano-particle polymeric paint for heat exchangers. These experiments are finished in range of engineering application. The stable thermal resistance of the coated pipes was found to be 50% of that seen for normal steel pipe in the same application. The time constant of fouling equation was 2.5 times for the coated pipe. It is demonstrated that the anti-fouling performance of the nano-particle containing coating was very good.%采用新型纳米抗垢涂料是解决城市原生污水冷热源系统污垢的有效措施之一.通过工程现场的实验,对XK-368钛纳米聚合物换热器专用涂料涂层管在污水冷热源系统中抗垢性能进行了测试.结果表明,在工程应用范围内,相同工作条件下,系统污垢达到稳定时纳米涂层管换热热阻约为普通无缝钢管的50%;结垢时间常数约为普通无缝钢管的2.5倍.表现出良好的抗垢性能.

  7. Antifouling Activity of Marine Natural Products

    KAUST Repository

    Qian, Pei-Yuan

    2012-01-01

    With the global ban of application of organotin-based marine coatings by International Maritime Organization in 2008, there is a practical and urgent need of identifying environmentally friendly low-toxic and nontoxic antifouling compounds for marine industries. Marine natural products have been considered as one of the most promising sources of antifouling compounds in recent years. In antifouling compound screening processes, bioassay systems often play most critical/vital roles in screening efforts. To meet various needs, a variety of bioassay systems have been developed and/or adopted in both research and commercial laboratories. In this chapter, we provide a brief outline of common bioassay procedures for both antimicrofouling and antimacrofouling assays, which can serve as a general guideline for setting up bioassay systems in laboratories engaged in antifouling compound screening. Some bioassay procedures currently practiced in various laboratories are not included in this book chapter for various reasons. Individual laboratories should modify bioassay protocols based on their research interests or needs. Nevertheless, we highly recommend the research laboratories to adapt high-throughput assays as much as possible for preliminary screening assays, followed by more complex bioassay processes using multiple target species. We argue strongly for studies in mode-of-action of antifouling compounds against settling propagules, which shall lead to discovery of molecular biomarkers (genes, proteins, receptors, or receptor system) and will allow us to design more targeted bioassay systems.

  8. Nontoxic Marine Anti-fouling Coating Containing Capsaicin%含辣椒素的防污涂料在海洋网箱网衣中的初步研究

    Institute of Scientific and Technical Information of China (English)

    史航; 王鲁民

    2006-01-01

    以辣椒素为海洋附着生物防污剂,开发了一种用于海水养殖的网衣材料中的防污期长、无毒且高效的防污涂料.辣椒素防污涂料以从天然辣椒中提取的生物活性物质为驱避剂,并不破坏海洋生物链.挂海防污实验证明涂有辣椒素防污涂料的网衣材料具有极佳的防污效果.并进一步讨论了防污涂料的防污效果及影响防污效果的诸多因素.%This paper summarizes a nontoxic Anti-fouling coating utilizing capsaicin as an anti-fouling agent. The capsaicin constituent used in the coating has a rating from about 100 000 to about 1 500 000 Scoville Heat Units. The capsaicin is mixed with a silicon dioxide and then solubilized into a free-flowing homogeneous liquid oleoresin composition by adding a solvent to increase solubility and facilitate mixing. The oleoresin capsaicin liquid solution is mixed with a suitable corrosion resistant epoxy resin, which is then mixed with a hardening catalyst and applied to the surface to be treated.

  9. Preparation for Low Surface Energy/Self-Polishing Silicone Marine Antifouling Coating%有机硅低表面能/自抛光海洋防污涂料的制备

    Institute of Scientific and Technical Information of China (English)

    陈美玲; 冯树涛; 张羽生; 杨莉; 高宏

    2013-01-01

    To prepare the title self-polishing antifouling coatings,a graft copolymerization method was proposed.Through the reaction of epoxy and acrylic acid,an acrylic monomer with hydroxyl groups was prepared,which was then,together with two other acrylic monomer and initiator,grafted with silicone at the preseuce of catalyst to form the silicone epoxy acrylate resin.The effects of epoxy dosage on coating performance and the hydrolysis characteristic of the film was discussed.Sample panels were tested in the real marine water.The results showed that 10% of the epoxy gave the best hydrolysis characteristics in laboratory dynamic simulation experiments with water contactangle 133° and adhesion grade 1.In the meantime,the low surface energy and self-polishing silicone antifouling coatings also provided good antifouling performance in static sea water immersion.%采用接枝共聚的方法,即环氧和丙烯酸反应,环氧开环的同时生成带有羟基的丙烯酸单体,加入引发剂结合另外2种丙烯酸单体,在催化剂的作用下接入有机硅,制得有机硅环氧丙烯酸树脂.讨论了环氧树脂的用量对涂膜性能的影响、涂料的水解特性,并进行了实海挂板实验.结果表明:当环氧的用量为10%时,制备的防污涂料与水的接触角达到133°,附着力1级;有机硅/环氧改性丙烯酸树脂制得的防污涂料在海水中能够稳定地水解,兼具低表面能和自抛光的特性,实海挂板实验结果表明,涂料具有良好的防污性能.

  10. Preparation and Performance of Nano Anti-fouling Coatings by Microarc Oxidation%钛合金表面微弧氧化纳米防污涂层及性能研究

    Institute of Scientific and Technical Information of China (English)

    李兆峰; 蒋鹏; 张建欣; 廖志谦; 李士凯

    2012-01-01

    利用微弧氧化技术,在Ti-6Al-3Nb-2Zr合金表面成功制备出纳米防污陶瓷涂层.采用扫描电镜、透射电镜和光学显微镜分析了纳米防污涂层的表面形貌、微观形态和氧化层厚度,采用X射线光电子能谱和X射线能谱仪对防污涂层的元素价态和化学组成进行了分析,采用WS-1型划痕试验机和数字万用表研究了涂层的结合强度和绝缘性,并采用TE66微磨损试验机和进行天然海水挂片试验考察了涂层的摩擦学性能和防污性能.结果表明:防污涂层厚度可达到20 μm以上,涂层有非晶和20-50 nm纳米晶TiO2及Cu2O构成,膜基结合强度达到50 MPa,涂层绝缘性和耐磨性良好,防污性能得到明显改善,挂片6个月后涂层表面仅有少量海生物附着,而裸钛合金样品挂片3个月后则完全被海生物附着.%Nano anti-fouling ceramic coatings were formed at the surface of marine Ti-6Al-3Nb-2Zr alloys by a single-step micro-arc oxidation (MAO). Surface morphology, microstructure, oxide layer thickness, element valence, chemical composition were characterized by means of SEM, TEM, optical microscope, X-ray photoelectron spectroscopy, EDX. Bonding strength, insulating performance, the tribological properties and anti-fouling properties of the coatings were also investigated in this article. Results indicated that the oxide film reaches about 20μm thickness. Transmission electron microscopy (TEM) showed that the films were composed of noncrystal and 20-50nm nanocrystal TiO2 including Cu2O. The bonding strength between the Ti-6Al-3Nb-2Zr substrate and the film was about 50MPa. The ceramic coating exhibited good insulation, abrasion and anti-fouling character. A small amount of marine organisms were clinged on the surface of nano anti-fouling coating after hanging six month in shallow sea-water, but naked titanium alloys were completely attached.

  11. Evaluación de efectos de biocidas contenidos en recubrimientos “antifouling “(AF coatings) en ecosistemas marinos

    OpenAIRE

    Alonso Felipe, Jose Vicente

    2011-01-01

    De entre los diversos grupos de contaminantes que pueden ser dañinos para ecosistemas acuáticos, sobresalen en los últimos años los biocidas utilizados como principio activo en recubrimientos antifouling ó pinturas anti-incrustantes para cascos de barcos y todo tipo de equipamiento sumergido ó en contacto con agua. Estos recubrimientos se aplican como sistema de protección para combatir la formación y asentamiento de comunidades bioincrustantes (fouling) frente a superficies expuestas al agua...

  12. Investigation on the Thermal Conductivity and Anti-fouling Property of Ni-P-PTFE Electroless Composite Coating%Ni-P-PTFE化学复合镀层的导热及阻垢性能研究

    Institute of Scientific and Technical Information of China (English)

    何凯龙; 陈颖; 冯婧; 莫松平

    2013-01-01

    以T2铜片作基体进行Ni-P-PTFE化学复合镀实验,获得了相同镀层厚度的Ni-P-PTFE复合镀层试件,测量试件的导热系数.结果表明:在相同厚度下,Ni-P-PTFE复合镀层试件的整体导热系数主要受镀层中碳(C)、磷(P)和聚四氟乙烯(PTFE)成分含量的影响.试件的整体导热系数相比铜的导热系数有所降低,但不超过4.5%,依然保持高导热性能.由正交试验得到优化工艺,由此工艺获得的Ni-P-PTFE化学复合镀层的表面接触角为123.4°,表面能为9.9 mN/m.阻垢测试结果显示,相比铜表面,沉积在Ni-P-PTFE镀层表面的碳酸钙晶体数量与尺寸均有明显的减小.总的来说,Ni-P-PTFE镀层对材料的导热能力影响较小,却能有效地减缓水垢的沉积与聚集,起到阻垢的作用.%Ni-P-PTFE electroless composite coating which have the same thickness are got by electroles composite plating on T2 copper sheets,and the thermal conductivity is tested. The result shows that, the total thermal conductivity is mainly affected by the C,P and PTFE content of the Ni-P-PTFE electroless composite coating which have the same thickness. Compared with the copper sheets, the thermal conductivity decreased, but not exceeds 4%, which still have a high thermal conduction. Experimental is optimized by orthogonal process, and in this condition ,the contact angel of Ni-P-PTFE electroless composite coating is 123. 4°,mean while the surface free energy is 9. 9 mN/m. The result of anti-fouling tests show that, the number and size of calcum carbonate crystals increased after Ni-P-PTFE electroless plating. In general, the Ni-P-PTFE coatings affect the thermal conductivity of the material slightly, and show an excellent anti-fouling capacity by slow scale deposition and accumulation.

  13. Membranes with Surface-Enhanced Antifouling Properties for Water Purification

    Science.gov (United States)

    Shahkaramipour, Nima; Tran, Thien N.; Ramanan, Sankara; Lin, Haiqing

    2017-01-01

    Membrane technology has emerged as an attractive approach for water purification, while mitigation of fouling is key to lower membrane operating costs. This article reviews various materials with antifouling properties that can be coated or grafted onto the membrane surface to improve the antifouling properties of the membranes and thus, retain high water permeance. These materials can be separated into three categories, hydrophilic materials, such as poly(ethylene glycol), polydopamine and zwitterions, hydrophobic materials, such as fluoropolymers, and amphiphilic materials. The states of water in these materials and the mechanisms for the antifouling properties are discussed. The corresponding approaches to coat or graft these materials on the membrane surface are reviewed, and the materials with promising performance are highlighted. PMID:28273869

  14. Antifouling property of the fruits of Randia brandisii (Rubiaceae) and Sapindus trifoliatus (Sapindaceae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    Methanol extracts of fruits of Randia brandisii (Gamble) and Sapindus trifoliatus (Vah) were assessed for marine antifouling properties. The coatings of these crude extracts on aluminium coupons were found to inhibit settlement of macrofoulers...

  15. Synthesis and Bacteriostatic Activity and Antifouling Capability of Benzamide Derivatives Containing Capsaicin

    Institute of Scientific and Technical Information of China (English)

    CONG Wei-wei; YU Liang-min

    2011-01-01

    Five benzamide deriatives containing capsaicin were synthesized which have similar structures to capsaicin.Their yield was high.The monomers synthesized were characterized by IR,1H NMR and MS spectroscopy.Characterization data are in agreement with the proposed structures of the products.These five compounds exhibit bacterial inhibition and N-[4-hydroxy-2-methyl-5-(methylthio)benzyl]benzamide(HMMBBA),for instance,shows that the minimal inhibitory concentrations(MIC) of HMMBBA are 0.125 and 0.25 mg/mL on Staphyloccocus aureus and Escherichia coli,respectively.A static test site was set up in the eighth harbor to investigate the antifouling effectiveness of the five new antifoulants.Five-month exposure experiments were performed on sets of panels coated with each of antifouling coatings,and the results were compared to that of the test panel without antifouling coating.Test boards with antifouling coating were covered with just a macroscopic fouling organism such as Balanus.The results of the present paper demonstrate that new antifoulants represent an alternative to the biocidal antifouling paint.

  16. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.;

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine...

  17. 基于低表面能树脂的海洋防污涂料的研究进展%Research Progress on the Low Surface Energy Resin for Marine Antifouling Coating

    Institute of Scientific and Technical Information of China (English)

    杨玉臻; 于良民; 李霞; 于晶; 徐经委

    2012-01-01

    从基团转移聚合、阳离子聚合、阴离子聚合、活性官能团之间的反应和自由基聚合5个方面简单综述了低表面能树脂的聚合机理;详细介绍了以有机硅树脂、氟碳树脂、氟硅树脂以及不含氟硅元素树脂为基体的防污涂料;分析讨论了低表面能海洋防污涂料的控制因素;并展望了低表面能防污技术的发展方向.%The polymerization mechanism of low surface energy resin is briefly introduced from group transfer polymerization, cationic polymerization, anionic polymerization, free radical polymerization and reactions between living functional groups. The systematic classification is especially focused on. The controlling factors of low surface energy marine antifouling coatings are summarized. And finally the promising research of the low surface energy technology in the future is presented.

  18. PEG-b-AGE Polymer Coated Magnetic Nanoparticle Probes with Facile Functionalization and Anti-fouling Properties for Reducing Non-specific Uptake and Improving Biomarker Targeting.

    Science.gov (United States)

    Li, Yuancheng; Lin, Run; Wang, Liya; Huang, Jing; Wu, Hui; Cheng, Guojun; Zhou, Zhengyang; MacDonald, Tobey; Yang, Lily; Mao, Hui

    2015-05-07

    Non-specific surface adsorption of bio-macromolecules (e.g. proteins) on nanoparticles, known as biofouling, and the uptake of nanoparticles by the mononuclear phagocyte system (MPS) and reticuloendothelial system (RES) lead to substantial reduction in the efficiency of target-directed imaging and delivery in biomedical applications of engineered nanomaterials in vitro and in vivo. In this work, a novel copolymer consisting of blocks of poly ethylene glycol and allyl glycidyl ether (PEG-b-AGE) was developed for coating magnetic iron oxide nanoparticles (IONPs) to reduce non-specific protein adhesion that leads to formation of "protein corona" and uptake by macrophages. The facile surface functionalization was demonstrated by using targeting ligands of a small peptide of RGD or a whole protein of transferrin (Tf). The PEG-b-AGE coated IONPs exhibited anti-biofouling properties with significantly reduced protein corona formation and non-specific uptake by macrophages before and after the surface functionalization, thus improving targeting of RGD-conjugated PEG-b-AGE coated IONPs to integrins in U87MG glioblastoma and MDA-MB-231 breast cancer cells that overexpress αvβ3 integrins, and Tf-conjugated PEG-b-AGE coated IONPs to transferrin receptor (TfR) in D556 and Daoy medulloblastoma cancer cells with high overexpression of transferrin receptor, compared to respective control cell lines. Magnetic resonance imaging (MRI) of cancer cells treated with targeted IONPs with or without anti-biofouling PEG-b-AGE coating polymers demonstrated the target specific MRI contrast change using anti-biofouling PEG-b-AGE coated IONP with minimal off-targeted background compared to the IONPs without anti-biofouling coating, promising the highly efficient active targeting of nanoparticle imaging probes and drug delivery systems and potential applications of imaging quantification of targeted biomarkers.

  19. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on polystyrene-co

  20. Non-toxic antifouling strategies

    Directory of Open Access Journals (Sweden)

    Chelsea M. Magin

    2010-04-01

    Full Text Available The term fouling generally refers to an undesirable process in which a surface becomes encrusted with material from the surrounding environment. In the case of biofouling, that material consists of organisms and their by-products e.g., extracellular polysaccharides and metabolites. Biofouling limits the performance of devices in numerous applications; however, this review focuses on antifouling biomaterials for marine and biomedical applications. The surface chemistry and physical properties of the substratum are both crucial to preventing the recruitment of biofouling organisms. Natural antifouling surfaces exhibit both chemical and physical attributes. The chemical structure is discussed briefly as it relates to both anti-fouling and fouling-release properties. However, our focus has been to study physical cues as they relate to the initial attachment of fouling organisms.

  1. 基胶与填料对 RTV 硅橡胶防污闪涂层憎水迁移性的影响%Effects of Base Rubber and Fillers on Hydrophobic-migration of RTV Silicone Rubber Anti-fouling Flashover Coatings

    Institute of Scientific and Technical Information of China (English)

    卢明; 胡扬宇; 周德波

    2015-01-01

    Experimental samples were polluted by the circumstance of haze simulation.The effect ofα,ω-dihydroxy polydimethylsiloxane (107 silicone rubber) with different chemical constituents on surface drying time and hydrophobicity transference of RTV anti-fouling flashover silicone coatings was investigated.Results show that the tack-free time of anti-fouling flashover coatings with 107 silicone rubber of high and low molar mass as the base rubber is shorter than those with only one as base rubber.Adjusting the mixing proportion of 107 sili-cone rubber of high and low molar mass in silicone coatings can improve its hydrophobicity transference, better than that with one base rubber.When the mass ratio of the 107 rubber with a molar mass of 50 000 g/mol and 4 000 g/mol is 4:1, the hydrophobicity of the coatings is the best.Alumina will improve the hydrophobicity and hydrophobic migration of the anti-fouling flashover coatings, especially when alumina is 10%.Excessive fumed silica will affect the hydrophobicity and hydrophobic migration of the coatings.When the fumed silica is 5%, the hydrophobicity and hydrophobic migration of the anti-fouling flashover coatings are the best.%采用模拟雾霾环境污染处理实验样品,研究了以α,ω-二羟基聚二甲基硅氧烷(107硅橡胶)为基胶的硅橡胶防污闪涂层的表干时间和憎水迁移性变化规律。研究发现,同时以高、低摩尔质量的107硅橡胶混合物为基胶的防污闪涂层的表干时间比单纯以其中一种107硅橡胶为基胶的防污闪涂层的表干时间短。调整高、低摩尔质量107硅橡胶的混合比例得到的防污闪涂层的憎水迁移性效果较好,相对于单一基胶配制的防污闪涂层更优。当摩尔质量为50000 g/mol及4000 g/mol的107硅橡胶的质量比为4∶1时,防污闪涂层的憎水迁移性最好。添加氧化铝可以增加防污闪涂层的憎水性和憎水迁移性,当氧化铝用量为10%时效果最好

  2. Antifouling coatings%防污涂料

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    0502152 防污涂料组合物:WO2004-81 121[国际专利申请,英]/日本:Mitsubishi Rayon Co.,Ltd.(Sugihara,Mitsunori等);0502153 具有半互穿网络结构的低毒防污涂料:JP2004-263 061[日本专利公开]/日本:Japan Science and Technology Agency等(Furuta,Michiya等);0502154 涂有耐磨损的防污透明涂料的压膜制品:JP2004-250 474[日本专利公开]/日本:Daikin Industries,Ltd.(Kato,Masaki等);0502155 含包覆二氧化硅的铜的防污涂料组合物:US2004-197 564[美国专利申请公开]/美国:(Camp,Douglas R.等);0502156 含金属单体溶解的混合物、含金属树脂和防污涂料组合物:CN1 511 909A[中国发明专利申请公开]/日本:三菱丽阳株式会社(杉原光律等)。

  3. Antifouling coatings%防污涂料

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    辐射固化防污无光涂料组合物及其固化方法:JP2004-238 556[日本专利公开]/日本:Dainippon Ink and Chemicals,Inc.(Toda,Tetsuya等).承受海洋环境的表面防污用的混合防污涂料组合物及其防污方法:WO2004-63 292[国际专利申请,英]/美国:The Research Foundation of State University of New York (Detty,Michael R.等).用于防污涂料的含铜羟基吡啶硫酮细粒子的分散体及其制备:US2004—118 319[美国专利申请公开]/美国:Arch Chemicals,Inc.等(Waldron,Craig等).室外用附着力和耐候性好的含聚二烷基硅氧烷或氟的聚醚型防污涂料组合物:WO2004—67 658[国际专利申请,日]/日本:Daikin Industries,Ltd.(Masutani,Tetsuya等).船舶防腐防污涂料可持续发展方向[刊]/匡晓东//涂料工业.

  4. Naturally occurring antifouling substances. Kaiyo fuchaku seibutsu no kiraina mono

    Energy Technology Data Exchange (ETDEWEB)

    Ina, K. (Shizuoka University, Sizuoka (Japan). Faculty of Agriculture)

    1991-07-20

    Prohibition would be imposed on a method of mixing organic tin or copper suboxide into paints coated on vessel hulls or seawater ducts as a means to prevent deposition of marine contaminant organisms, such as barnacles and Mytilidae, Mytilidae, because the method can cause detrimental contamination. Therefore, this paper describes an attempt to find antifouling substances from plant extracts with Mytilus as the object. The antifouling activity was determined by a uniquely devised test plate method (count and evaluate the positions and number of moving tracks of shells utilizing their nature that shells extend their byssuses rear to their body when they face aversive substances, and the number of byssus reduces when their living energy gets weakened), and the toxicity was determined by the number of dead shells opening their shells after they have been immersed for a predetermined time. Thus, tests were carried out on methanol extracts of about 100 kinds of ground plants and seaweeds, whereas some of them were found having antifouling activity of several times that of copper sulfate, but the plant genera and families were unspecified. 14 refs., 3 figs., 4 tabs.

  5. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qianhui [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Li, Hongqi, E-mail: hongqili@dhu.edu.cn [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Xian, Chunying; Yang, Yihang [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Song, Yanxi [School of Environmental Science and Technology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Cong, Peihong [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2015-07-30

    Graphical abstract: - Highlights: • Copolymers containing catechol and trifluoromethyl groups were prepared. • The copolymers could adhere to surfaces of glass, plastics and metals. • The polymer films showed excellent resistance to water, salt, base and acid. • The polymer films displayed good antifouling property. - Abstract: Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α′-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  6. Testing and Accelerated Aging of Conductive Antifouling Paints for Marine Applications

    OpenAIRE

    Bunn, Malachi; Yokochi, Alex

    2014-01-01

    Marine hydrokinetic (MHK) device survivability is necessary to understand in order to develop the vast renewable wave and tidal energy resource. Antifouling coatings serve to ensure device longevity by preventing degradation associated with mollusk adhesives and general performance degradation due to hydrodynamic surface changes, clogged pinch points, and added drag. Coatings developed to serve the shipping industry are generally insufficient for MHK service due to finite biocide content, sho...

  7. Bienzyme system immobilized in biomimetic silica for application in antifouling coatings☆

    Institute of Scientific and Technical Information of China (English)

    Hongwu Wang; Yanjun Jiang; Liya Zhou; Jing Gao

    2015-01-01

    Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coat-ings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore, enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation ofα-amylase and glucose oxidase, which pro-motes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme (A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BS-containing coating releases H2O2 at rates exceeding a target of 36 nmol·cm−2·d−1 for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  8. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  9. Anti-fouling bioactive surfaces.

    Science.gov (United States)

    Yu, Qian; Zhang, Yanxia; Wang, Hongwei; Brash, John; Chen, Hong

    2011-04-01

    Bioactive surfaces refer to surfaces with immobilized bioactive molecules aimed specifically at promoting or supporting particular interactions. Such surfaces are of great importance for various biomedical and biomaterials applications. In the past few years, considerable effort has been made to create bioactive surfaces by forming specific biomolecule-modified surfaces on a non-biofouling "base" or "background". Hydrophilic and bioinert polymers have been widely used as anti-fouling layers that resist non-specific protein interactions. They can also serve as "spacers" to effectively move the immobilized biomolecule away from the surface, thus enhancing its bioactivity. In this review we summarize several successful approaches for the design and preparation of bioactive surfaces based on different types of anti-fouling/spacer materials. Some perspectives on future research in this area are also presented.

  10. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition.

    Science.gov (United States)

    Liu, Shao Qiong; Yang, Chuan; Huang, Yuan; Ding, Xin; Li, Yan; Fan, Wei Min; Hedrick, James L; Yang, Yi-Yan

    2012-12-18

    A novel class of antimicrobial cationic polycarbonate/PEG hydrogels are designed and synthesized by Michael addition chemistry. These hydrogels demonstrate strong broad-spectrum antimicrobial activities against various clinically isolated multidrug-resistant microbes. Moreover, they exhibit nonfouling properties and prevent the substrate from microbial adhesion. These antimicrobial and antifouling gels are promising materials as catheter coatings and wound dressings to prevent infections.

  11. Fabrication of Copper Nanowire Films and their Incorporation into Polymer Matrices for Antibacterial and Marine Antifouling Applications

    NARCIS (Netherlands)

    Jiang, S.; Sreethawong, T.; Siew Chen Lee, S.; Bee Jin Low, M.; Yin Win, BrzozowskaK.; Brzozowska, A.M.; Lay Ming Teo, S.; Vancso, G.J.; Janczewski, D.; Han, M.Y.

    2015-01-01

    With the ban of tributyltin, copper-based biocides are now widely used in antifouling coatings as the major active ingredients. Given the past experience of heavy-metal accumulation in harbors with limited water exchange, there is a significant interest in developing copper materials that greatly re

  12. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    Science.gov (United States)

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  13. Antifouling Electrospun Nanofiber Mats Functionalized with Polymer Zwitterions.

    Science.gov (United States)

    Kolewe, Kristopher W; Dobosz, Kerianne M; Rieger, Katrina A; Chang, Chia-Chih; Emrick, Todd; Schiffman, Jessica D

    2016-10-06

    In this study, we exploit the excellent fouling resistance of polymer zwitterions and present electrospun nanofiber mats surface functionalized with poly(2-methacryloyloxyethyl phosphorylcholine) (polyMPC). This zwitterionic polymer coating maximizes the accessibility of the zwitterion to effectively limit biofouling on nanofiber membranes. Two facile, scalable methods yielded a coating on cellulose nanofibers: (i) a two-step sequential deposition featuring dopamine polymerization followed by the physioadsorption of polyMPC, and (ii) a one-step codeposition of polydopamine (PDA) with polyMPC. While the sequential and codeposited nanofiber mat assemblies have an equivalent average fiber diameter, hydrophilic contact angle, surface chemistry, and stability, the topography of nanofibers prepared by codeposition were smoother. Protein and microbial antifouling performance of the zwitterion modified nanofiber mats along with two controls, cellulose (unmodified) and PDA coated nanofiber mats were evaluated by dynamic protein fouling and prolonged bacterial exposure. Following 21 days of exposure to bovine serum albumin, the sequential nanofiber mats significantly resisted protein fouling, as indicated by their 95% flux recovery ratio in a water flux experiment, a 300% improvement over the cellulose nanofiber mats. When challenged with two model microbes Escherichia coli and Staphylococcus aureus for 24 h, both zwitterion modifications demonstrated superior fouling resistance by statistically reducing microbial attachment over the two controls. This study demonstrates that, by decorating the surfaces of chemically and mechanically robust cellulose nanofiber mats with polyMPC, we can generate high performance, free-standing nanofiber mats that hold potential in applications where antifouling materials are imperative, such as tissue engineering scaffolds and water purification technologies.

  14. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    Dong Zhongjie; Li Yunlong; Fan Xuezhi; Hong Qingyao

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units wereexplored through study of thecomposition of pyrolysis gasoline, C5 distillate and fouling deposits from the depentanizer while takinginto consideration the processing parameters. A variety of antifouling measures, in particular the injec-tion of a special anti-fouling agent into the Cs gas phase pipeline and the C5 distillate reflux pipelinewere introduced. Commercial evaluation test of a multifunctional anti-fouling agent, the RIPP-1404anti-fouling agent, was also described.

  15. 76 FR 76896 - International Anti-Fouling System Certificate

    Science.gov (United States)

    2011-12-09

    ... SECURITY Coast Guard 46 CFR Part 8 RIN 1625-AB79 International Anti-Fouling System Certificate AGENCY... regulations to add the International Anti-fouling System (IAFS) Certificate to the list of certificates a... Harmful Anti-fouling Systems on Ships, 2001. This final rule will enable recognized...

  16. 76 FR 54419 - International Anti-Fouling System Certificate

    Science.gov (United States)

    2011-09-01

    ... SECURITY Coast Guard 46 CFR Part 8 RIN 1625-AB79 International Anti-Fouling System Certificate AGENCY... vessel inspection regulations to add the International Anti-fouling System (IAFS) Certificate to the list... Convention on the Control of Harmful Anti-fouling Systems on Ships, 2001. This proposed rule would...

  17. Antifouling activity of twelve demosponges from Brazil

    Directory of Open Access Journals (Sweden)

    SM. Ribeiro

    Full Text Available Benthic marine organisms are constantly exposed to fouling, which is harmful to most host species. Thus, the production of secondary metabolites containing antifouling properties is an important ecological advantage for sessile organisms and may also provide leading compounds for the development of antifouling paints. High antifouling potential of sponges has been demonstrated in the Indian and Pacific oceans and in the Caribbean and Mediterranean seas. Brazilian sponges remain understudied concerning antifouling activities. Only two scientific articles reported this activity in sponges of Brazil. The objective of this study was to test crude extracts of twelve species of sponges from Brazil against the attachment of the mussel Perna perna through laboratorial assays, and highlight promising species for future studies. The species Petromica citrina, Amphimedon viridis, Desmapsamma anchorata, Chondrosia sp., Polymastia janeirensis, Tedania ignis, Aplysina fulva, Mycale angulosa, Hymeniacidon heliophila, Dysidea etheria, Tethya rubra, and Tethya maza were frozen and freeze-dried before extraction with acetone or dichloromethane. The crude extract of four species significantly inhibited the attachment of byssus: Tethya rubra (p = 0.0009, Tethya maza (p = 0.0039, Petromica citrina (p = 0.0277, and Hymeniacidon heliophila (p = 0.00003. These species, specially, should be the target of future studies to detail the substances involved in the ability antifouling well as to define its amplitude of action.

  18. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  19. Protein antifouling and fouling-release in perfluoropolyether surfaces

    Science.gov (United States)

    Molena, Elena; Credi, Caterina; De Marco, Carmela; Levi, Marinella; Turri, Stefano; Simeone, Giovanni

    2014-08-01

    Perfluoropolyether polymers have been described as high performance fouling-release materials for marine coatings. Moreover, they have a good potential to be exploited in the biomedical field too. In this article several perfuoropolyether photopolymers were characterized in terms of surface and mechanical properties outlining the relationship between these properties and the polymer molecular structure. In particular the anti-fouling and fouling-release performances, evaluated using Bovine Serum Albumin as testing protein, was correlated to other material properties, like a parameter considering both surface tension components γ and elastic modulus E. A good correlation between the anti-fouling/fouling-release of perfluoropolyethers and (E*γpolar)1/2 can actually be established. Our results show that perfluoropolyether photopolymers are good protein anti-fouling/fouling-release materials.

  20. A new concept for anti-fouling paint for Yachts

    DEFF Research Database (Denmark)

    Wallstroem, Eva; Jespersen, Henrik T.; Schaumburg, Kjeld

    2011-01-01

    -fouling products for yachts. To be able to reduce the amount of biocide, in this case zinc pyrithione, it is necessary to have control over the amount of biocide present in the surface layer. The control is achieved by encapsulating the biocide in a silica gel. The silica gel is dispersed together with pigments...... and fillers in the paint. The gel contributes to the polishing properties, where the gel particles are worn down throughout the polishing process. When a gel particle is opened by wear the biocide will be effective on the coating surface. It is also shown that zinc pyrithione is more efficient when...... it is encapsulated in a gel compared to a situation where it is not. This conclusion is based on the fact that the gel swells when exposed to water, and therefore the leach of zinc pyrithione is initially delayed and the biocide may start to solubilise and degrade. The result is an anti-fouling product...

  1. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes

    KAUST Repository

    Rahaman, Md. Saifur

    2014-01-01

    Thin-film composite (TFC) polyamide reverse osmosis (RO) membranes are prone to biofouling due to their inherent physicochemical surface properties. In order to address the biofouling problem, we have developed novel surface coatings functionalized with biocidal silver nanoparticles (AgNPs) and antifouling polymer brushes via polyelectrolyte layer-by-layer (LBL) self-assembly. The novel surface coating was prepared with polyelectrolyte LBL films containing poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI), with the latter being either pure PEI or silver nanoparticles coated with PEI (Ag-PEI). The coatings were further functionalized by grafting of polymer brushes, using either hydrophilic poly(sulfobetaine) or low surface energy poly(dimethylsiloxane) (PDMS). The presence of both LBL films and sulfobetaine polymer brushes at the interface significantly increased the hydrophilicity of the membrane surface, while PDMS brushes lowered the membrane surface energy. Overall, all surface modifications resulted in significant reduction of irreversible bacterial cell adhesion. In microbial adhesion tests with E. coli bacteria, a normalized cell adhesion in the range of only 4 to 16% on the modified membrane surfaces was observed. Modified surfaces containing silver nanoparticles also exhibited strong antimicrobial activity. Membranes coated with LBL films of PAA/Ag-PEI achieved over 95% inactivation of bacteria attached to the surface within 1 hour of contact time. Both the antifouling and antimicrobial results suggest the potential of using these novel surface coatings in controlling the fouling of RO membranes. © The Royal Society of Chemistry 2014.

  2. ­A practical application of reduced-copper antifouling paint in marine biological research

    Directory of Open Access Journals (Sweden)

    Andrea S. Jerabek

    2016-07-01

    Full Text Available Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing. Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O and one copper-free, Econea™-based paint (labeled “ecofriendly”. Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of “ecofriendly” paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the “ecofriendly” treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments

  3. -A practical application of reduced-copper antifouling paint in marine biological research.

    Science.gov (United States)

    Jerabek, Andrea S; Wall, Kara R; Stallings, Christopher D

    2016-01-01

    Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing). Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O) and one copper-free, Econea (™)-based paint (labeled "ecofriendly"). Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of "ecofriendly" paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations) were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the "ecofriendly" treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments in locations that are

  4. Plasma-enhanced deposition of antifouling layers on silicone rubber surfaces

    Science.gov (United States)

    Jiang, Hongquan

    In food processing and medical environments, biofilms serve as potential sources of contamination, and lead to food spoilage, transmission of diseases or infections. Because of its ubiquitous and recalcitrant nature, Listeria monocytogenes biofilm is especially hard to control. Generating antimicrobial surfaces provide a method to control the bacterial attachment. The difficulty of silver deposition on polymeric surfaces has been overcome by using a unique two-step plasma-mediated method. First silicone rubber surfaces were plasma-functionalized to generate aldehyde groups. Then thin silver layers were deposited onto the functionalized surfaces according to Tollen's reaction. X-ray photoelectron spectroscopy (XPS), atomic force spectroscopy (AFM) and scanning electron microscopy (SEM) showed that silver particles were deposited. By exposing the silver coated surfaces to L. monocytogenes, it was demonstrated that they were bactericidal to L. monocytogenes. No viable bacteria were detected after 12 to 18 h on silver-coated silicone rubber surfaces. Another antifouling approach is to generate polyethylene glycol (PEG) thin layer instead of silver on polymer surfaces. Covalent bond of PEG structures of various molecular weights to cold-plasma-functionalized polymer surfaces, such as silicone rubber, opens up a novel way for the generation of PEG brush-like or PEG branch-like anti-fouling layers. In this study, plasma-generated surface free radicals can react efficiently with dichlorosilane right after plasma treatment. With the generation of halo-silane groups, this enables PEG molecules to be grafted onto the modified surfaces. XPS data clearly demonstrated the presence of PEG molecules on plasma-functionalized silicone rubber surfaces. AFM images showed the changed surface morphologies as a result of covalent attachment to the surface of PEG molecules. Biofilm experiment results suggest that the PEG brush-like films have the potential ability to be the next

  5. Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition

    Science.gov (United States)

    Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi

    2015-09-01

    One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).

  6. Challenges for the Development of New Non-Toxic Antifouling Solutions

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Maréchal

    2009-10-01

    Full Text Available Marine biofouling is of major economic concern to all marine industries. The shipping trade is particularly alert to the development of new antifouling (AF strategies, especially green AF paint as international regulations regarding the environmental impact of the compounds actually incorporated into the formulations are becoming more and more strict. It is also recognised that vessels play an extensive role in invasive species propagation as ballast waters transport potentially threatening larvae. It is then crucial to develop new AF solutions combining advances in marine chemistry and topography, in addition to a knowledge of marine biofoulers, with respect to the marine environment. This review presents the recent research progress made in the field of new non-toxic AF solutions (new microtexturing of surfaces, foul-release coatings, and with a special emphasis on marine natural antifoulants as well as the perspectives for future research directions.

  7. Risks of Using Antifouling Biocides in Aquaculture

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2012-02-01

    Full Text Available Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT. The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®, Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine, zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  8. Risks of using antifouling biocides in aquaculture.

    Science.gov (United States)

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  9. A Method for Evaluating the Efficacy of Antifouling Paints Using Mytilus galloprovincialis in the Laboratory in a Flow-Through System

    Science.gov (United States)

    Satuito, Cyril Glenn Perez; Katsuyama, Ichiro; Ando, Hirotomo; Seki, Yasuyuki; Senda, Tetsuya

    2016-01-01

    A laboratory test with a flow-through system was designed and its applicability for testing antifouling paints of varying efficacies was investigated. Six different formulations of antifouling paints were prepared to have increasing contents (0 to 40 wt.%) of Cu2O, which is the most commonly used antifouling substance, and each formulation of paint was coated on just one surface of every test plate. The test plates were aged for 45 days by rotating them at a speed of 10 knots inside a cylinder drum. A behavioral test was then conducted using five mussels (Mytilus galloprovincialis) that were pasted onto the coated surface of each aged test plate. The number of the byssus threads produced by each mussel generally decreased with increasing Cu2O content of the paint. The newly designed method was considered valid owing to the high consistency of its results with observations from the field experiment. PMID:27959916

  10. Sea-nine antifoulant: an environmentally acceptable alternative to organotin antifoulants.

    Science.gov (United States)

    Jacobson, A H; Willingham, G L

    2000-08-21

    This article reviews previously reported data on the performance, environmental fate, and environmental modeling of Sea-Nine 211 antifoulant (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one). Since organotins are an industry standard, the environmental fate and environmental modeling results of tributyltin (TBT) are compared to those of the Sea-Nine antifoulant for reference. Laboratory and field tests results have shown Sea-Nine antifoulant to be highly effective. Five years of commercial use has confirmed this. Sea-Nine antifoulant and TBT were compared in an environmental risk assessment to predict their effects on the environment. Sea-Nine antifoulant was degraded rapidly in the environment by microorganisms. Its half-life in aerobic and anaerobic microcosm studies was less than 1 h. TBT degraded slowly under aerobic and anaerobic conditions with half-lives ranging from 6 to 9 months. The degradation products of Sea-Nine antifoulant were ring-opened compounds with greatly reduced toxicity. TBT degraded to dibutyltin species, which were still toxic and persistent in the environment. Bioaccumulation studies in fish showed essentially no bioaccumulation of the Sea-Nine biocide. The bioaccumulation of TBT was significant, with bioconcentration factors as high as 10000. The Sea-Nine antifoulant showed no chronic or reproductive toxicity to marine species, while TBT showed a wide range of effects on growth, development, and reproduction at levels as low as 2 parts per trillion (ppt). Computer modeling using the Exposure Analysis Modeling System (EXAMS) predicted maximum concentrations of Sea-Nine biocide of up to 10 ppt, far below the maximum acceptable environmental concentration (MAEC) of 630 ppt. The maximum predicted concentrations of TBT were as high as 345 ppt, far above the UK Environmental Standard in seawater of 2 ppt.

  11. Natural product antifoulants from the octocorals of Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V; LimnaMol, V.P.; Parameswaran, P.S.

    1 Author version: International Biodeterioration & Biodegradation, vol.65(1); 2011; 265-268 Natural Product Antifoulants from the Octocorals of Indian waters T.V. Raveendran * , V.P. Limna Mol, P.S. Parameswaran National Institute... the red alga Delisea pulchra in antifouling assays. Biofouling 8, 259–271. 12. Devi, P., Jayasree, V., Naik, C.G., Parameswaran, P.S., Raveendran, T.V., Kamat, S.Y. 1998. Antifouling activity of Indian marine invertebrates against the green mussel...

  12. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units were explored through study of thecomposition of pyrolysis gasoline, C5 distillate and fouling deposits from the depentanizer while takinginto consideration the processing parameters. A variety of antifouling measures, in particular the injec-tion of a special anti-fouling agent into the Cs gas phase pipeline and the C5 distillate reflux pipelinewere introduced. Commercial evaluation test of a multifunctional anti-fouling agent, the RIPP-1404anti-fouling agent, was also described.

  13. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    DongZhongjie; LiYunlong; 等

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units were explored through study of the composition of pyrolysis gasoline,C5 distillate and fouling deposits from the depentanizer while taking into consideration the processing parameters.A variety of antifouling measures,in particular the injec-tion of a special anti-fouling agent into the C5 gas phase pipeline and the C5 distillate reflux pipeline were introduced.Commercial evaluation test of a multifunctional anti-fouling agent,the RIPP-1404 anti-fouling agent,was also described.

  14. Selection of commercial hydrolytic enzymes with potential antifouling activity in marine environments.

    Science.gov (United States)

    Zanaroli, Giulio; Negroni, Andrea; Calisti, Cecilia; Ruzzi, Maurizio; Fava, Fabio

    2011-12-10

    In this work, the marine antifouling potential of some commercially available hydrolytic enzymes acting on the main constituents of extracellular polymeric substances (EPS) involved in bacterial biofilm formation was determined. The selected protease (i.e., alpha-chymotrypsin from bovine pancreas), carbohydrase (i.e., alpha-amylase from porcine pancreas) and lipase (from porcine pancreas) exhibited remarkable hydrolytic activities towards target macromolecules typically composing EPS under a wide range of pHs (6.5-9.0 for alpha-chymotrysin and alpha-amylase; 7.0-8.5 for the lipase) and temperatures (from 10 °C to 30 °C), as well as relevant half-lives (from about 2 weeks to about 2 months), in a marine synthetic water. The activity displayed by each enzyme was poorly affected by the co-presence of the other enzymes, thus indicating their suitability to be employed in combination. None of the enzymes was able to inhibit the formation of biofilm by an actual site marine microbial community when applied singly. However, a mixture of the same enzymes reduced biofilm formation by about 90% without affecting planktonic growth of the same microbial community. This indicates that multiple hydrolytic activities are required to efficiently prevent biofilm formation by complex microbial communities, and that the mixture of enzymes selected in this study has the potential to be employed as an environmental friendly antifouling agent in marine antifouling coatings.

  15. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    Science.gov (United States)

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm.

  16. A New Hard Coat on Cover Layer for Cartridge-Free Blu-ray Disc

    Science.gov (United States)

    Han, Mi Young; Kang, Tae-Sik; Lee, Seong-Keun; Jang, Sung Hoon; Seo, Hun; Lee, Chang-Ho

    2004-07-01

    A new UV-curable hard coat resin with an excellent antifouling property has been developed. A 3-μm-thick hard coat layer was stacked onto a 97-μm-thick cover layer by spin coating. The characteristics of the hard coat layer, such as pencil hardness, microscratch resistance, adhesion, water contact angle and jitter, have been investigated.

  17. Occupational exposure during application and removal of antifouling paints

    NARCIS (Netherlands)

    Links, I.; Jagt, K.E.V.D.; Christopher, Y.; Lurvink, M.; Schinkel, J.; Tielemans, E.; Hemmen, J.J.V.

    2007-01-01

    Exposure data on biocides are relatively rare in published literature, especially for secondary exposure. This is also the case for antifouling exposure. Therefore, a field study was carried out measuring exposure to antifouling paints. Both primary exposure (rolling and spraying) and secondary expo

  18. Field results of antifouling techniques for optical instruments

    Science.gov (United States)

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  19. New hybrid materials based on poly(ethyleneoxide)-grafted polysilazane by hydrosilylation and their anti-fouling activities.

    Science.gov (United States)

    Nguyen, Thi Dieu Hang; Perrin, François-Xavier; Nguyen, Dinh Lam

    2013-01-01

    The objective of this work was to develop new coating materials based on poly(ethyleneoxide) (PEO), which was grafted onto polysilazane (PSZ) by hydrosilylation. Three types of PEO with different molecular weights (350, 750, 2000 g/mol) were studied. The kinetics and yields of this reaction have been surveyed by (1)H and (13)C NMR spectroscopy. The PEO grafting-density onto PSZ by hydrosilylation increases with a reduction of the S-H/allyl ratio and a decrease of the PEO chain-length. The PEO-graft-PSZ (PSZ-PEO) hybrid coatings, which can be used to prevent the adhesion of marine bacteria on surfaces, were applied by moisture curing at room temperature. The anti-adhesion performance, and thus the anti-fouling activity, of the coatings against three marine bacteria species, Clostridium sp. SR1, Neisseria sp. LC1 and Neisseria sp. SC1, was examined. The anti-fouling activity of the coatings depends on the grafting density and the chain length of PEO. The shortest PEO(350 g/mol)-graft-PSZ with the highest graft density was found to have the best anti-fouling activity. As the density of grafted PEO(750 g/mol) and PEO(2000 g/mol) chains onto the PSZ surface is approximately equal, the relative effectiveness of these two types of PEO is controlled by the length of the PEO chain. The PEO(2000 g/mol)-graft-PSZ coatings are more efficient than the PEO(750 g/mol)-graft-PSZ coatings for the bacterial anti-adhesion.

  20. New hybrid materials based on poly(ethyleneoxide-grafted polysilazane by hydrosilylation and their anti-fouling activities

    Directory of Open Access Journals (Sweden)

    Thi Dieu Hang Nguyen

    2013-10-01

    Full Text Available The objective of this work was to develop new coating materials based on poly(ethyleneoxide (PEO, which was grafted onto polysilazane (PSZ by hydrosilylation. Three types of PEO with different molecular weights (350, 750, 2000 g/mol were studied. The kinetics and yields of this reaction have been surveyed by 1H and 13C NMR spectroscopy. The PEO grafting-density onto PSZ by hydrosilylation increases with a reduction of the S–H/allyl ratio and a decrease of the PEO chain-length. The PEO-graft-PSZ (PSZ-PEO hybrid coatings, which can be used to prevent the adhesion of marine bacteria on surfaces, were applied by moisture curing at room temperature. The anti-adhesion performance, and thus the anti-fouling activity, of the coatings against three marine bacteria species, Clostridium sp. SR1, Neisseria sp. LC1 and Neisseria sp. SC1, was examined. The anti-fouling activity of the coatings depends on the grafting density and the chain length of PEO. The shortest PEO(350 g/mol-graft-PSZ with the highest graft density was found to have the best anti-fouling activity. As the density of grafted PEO(750 g/mol and PEO(2000 g/mol chains onto the PSZ surface is approximately equal, the relative effectiveness of these two types of PEO is controlled by the length of the PEO chain. The PEO(2000 g/mol-graft-PSZ coatings are more efficient than the PEO(750 g/mol-graft-PSZ coatings for the bacterial anti-adhesion.

  1. Nontoxic piperamides and their synthetic analogues as novel antifouling reagents

    KAUST Repository

    Huang, Xiang-Zhong

    2014-03-25

    Bioassay-guided isolation of an acetone extract from a terrestrial plant Piper betle produced four known piperamides with potent antifouling (AF) activities, as evidenced by inhibition of settlement of barnacle cypris larvae. The AF activities of the four piperamides and 15 synthesized analogues were compared and their structure-activity relationships were probed. Among the compounds, piperoleine B and 1-[1-oxo-7-(3′,4′-methylenedioxyphenyl)-6E-heptenyl]-piperidine (MPHP) showed strong activity against settlement of cyprids of the barnacle Balanus amphitrite, having EC50 values of 1.1 ± 0.3 and 0.5 ± 0.2 μg ml-1, respectively. No toxicity against zebra fish was observed following incubation with these two compounds. Besides being non-toxic, 91% of piperoleine B-treated cyprids and 84% of MPHP-treated cyprids at a concentration of 100 μM completed normal metamorphosis in recovery bioassays, indicating that the anti-settlement effect of these two compounds was reversible. Hydrolysis and photolysis experiments indicated that MPHP could be decomposed in the marine environment. It is concluded that piperamides are promising compounds for use in marine AF coatings. © 2014 © 2014 Taylor & Francis.

  2. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  3. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    Science.gov (United States)

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability.

  4. Searching for "environmentally-benign" antifouling biocides.

    Science.gov (United States)

    Cui, Yan Ting; Teo, Serena L M; Leong, Wai; Chai, Christina L L

    2014-05-26

    As the result of the ecological impacts from the use of tributyltins (TBT) in shipping, environmental legislation for the registration of chemicals for use in the environment has grown to a monumental challenge requiring product dossiers to include information on the environmental fate and behavior of any chemicals. Specifically, persistence, bioaccumulation and toxicity, collectively known as PBT, are properties of concern in the assessment of chemicals. However, existing measurements of PBT properties are a cumbersome and expensive process, and thus not applied in the early stages of the product discovery and development. Inexpensive methods for preliminary PBT screening would minimize risks arising with the subsequent registration of products. In this article, we evaluated the PBT properties of compounds reported to possess anti-fouling properties using QSAR (quantitative structure-activity relationship) prediction programs such as BIOWIN™ (a biodegradation probability program), KOWWIN™ (log octanol-water partition coefficient calculation program) and ECOSAR™ (Ecological Structure Activity Relationship Programme). The analyses identified some small (Mr < 400) synthetic and natural products as potential candidates for environmentally benign biocides. We aim to demonstrate that while these methods of estimation have limitations, when applied with discretion, they are powerful tools useful in the early stages of research for compound selection for further development as anti-foulants.

  5. Bio-Inspired Design and Fabrication of Micro/Nano-Brush Dual Structural Surfaces for Switchable Oil Adhesion and Antifouling.

    Science.gov (United States)

    Du, Tao; Ma, Shuanhong; Pei, Xiaowei; Wang, Shutao; Zhou, Feng

    2017-01-01

    The underwater superoleophobic surfaces play a significant role in anti-oil contamination, marine antifouling, etc. Inspired by the Gecko's feet and its self-cleaning property, a hierarchical structure composed of poly (acrylic acid) gel micro-brushes is designed by the liquid-infused method. This surface exhibits underwater superoleophobicity with very low oil adhesion. It is then modified with stimuli-responsive polymer nano-brushes via surface-initiated atom transfer radical polymerization from the embedded initiator. The micro/nano-brush dual structural surfaces can switch the underwater oil adhesion between low and high while keeping the superoleophobicity. The antifouling properties against algae attachment under different mediums are also investigated to show a strong link between oleophobicity and antibiofouling property. The model surface will be very useful in directing the design of marine self-cleaning coatings to both living and non-living species.

  6. Are metals of antifouling paints transferred to marine biota?

    Directory of Open Access Journals (Sweden)

    Wladimir C. Paradas

    2007-03-01

    Full Text Available Because of its high toxicity, TBT (trybutiltin was banned since 2003, which resulted in a greater re-use of Cu as based-biocide in antifouling paints (AFP. The aim of this work is to determine if metals form of AFP are transferred to benthic organisms from Guanabara Bay (GB (Rio de Janeiro, Brazil. Metal concentrations were measured in two main fouling algae species Ulva flexuosa and U. fasciata and one isopod species, Sphaeroma serratum, in two GB marinas areas from sites with artificial substrate covered by AFP and natural substrate.In addition, control samples were collected in an adjacent open ocean area. Concentrations of Cd, Cr, Cu, Pb and Zn were determined by Atomic Absortion Spectrophotometry. Higher concentrations of Cu, Pb and Zn were detected in both algal species from GB in relation to control areas. Among samples of algae and isopod species from GB, populations collected over artificial surfaces covered by AFP presented significantly higher metal concentration than population of rocky natural substrate. Our data showed that the leaching of metals by antifouling paints present on decks and boats are being taken up by algae and isopods. These results indicate that antifouling coatings are the main source of heavy metal to biota of GB marina area.Devido sua alta toxicidade, o TBT está banido desde 2003, o que resultou na re-utilização de tintas a base de cobre. O objetivo deste trabalho é determinar se os metais provenientes das tintas anti-incrustantes (AFP são transferidos para organismos bentônicos da Baía de Guanabara (BG (Rio de janeiro, Brasil. Concentrações de metais foram analisadas em duas espécies de algas Ulva flexuosa e U. fasciata e no isópoda, Sphaeroma serratum, em duas áreas de marinas em locais de substrato artificial coberto com tintas AFP e em locais de substrato natural. Também foram coletadas amostras em uma área oceânica (controle. Concentrações de Cd, Cr, Cu, Pb e Zn foram determinadas por

  7. Antifouling activities of marine sedentary invertebrates on some macrofoulers

    Digital Repository Service at National Institute of Oceanography (India)

    Wilsanand, V.; Wagh, A.B.; Bapuji, M.

    Antifouling activities of alcohol extracts from four gorgonian species (Melitodes sp., Gorgonella sanguinolenta, Echinogorgia complexa, Acanthogorgia turgida), five soft corals [Dendronephthya sp. 1, Dendronephthya sp. 2, Dendronephthya (Roxasia) sp...

  8. Marine sponges: a potential source of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Wagh, A; Thakur, N; Anil, A; Venkat, K.

    Antifouling protocols rely to a great extent on the application of paints or altering substratum characteristics. It has been evidence that commercial antifouling paints which are currently in use employ toxic biocides. The use of such toxic...

  9. Remarkable Anti-Fouling Performance of TiO2-Modified TFC Membranes with Mussel-Inspired Polydopamine Binding

    Directory of Open Access Journals (Sweden)

    Rui-Xin Zhang

    2017-01-01

    Full Text Available It has been proven that a versatile bio-glue, polydopamine, can firmly bind TiO2 (titanium dioxide nanoparticles on thin film composite (TFC membranes. In this work, the anti-fouling behaviour of this novel polydopamine-TiO2-modified membrane is evaluated, based on the static bovine serum albumin (BSA surface adhesion of the membranes and the relative flux decline. The results show that the anti-fouling performance of this new membrane is significantly improved in dark conditions when compared with the neat TFC membrane and the membranes only modified by polydopamine or TiO2. When filtrating a 0.5 g·L−1 BSA solution in dark conditions, the flux of the polydopamine-TiO2-modified membrane remains constant, at 95% of its pure water flux after 30 min filtration for 8 h of the experiment. This indicates a significant increase in anti-fouling performance when compared to the 25% flux decline observed for the neat TFC membrane, and to the 15% flux decline of those only modified by polydopamine or TiO2. This remarkable anti-fouling behaviour is attributed to an improved and uniform hydrophilicity, due to the presence of TiO2 and to the regular nanosized papillae structure of the polydopamine-TiO2 coating. Furthermore, since dopamine-modified TiO2 has visible light-induced photocatalytic properties, the membrane’s photocatalytic performance was also tested in light conditions. However an increase of flux and decrease of retention were observed after 24 h of continuous illumination, indicating that light may also affect the top layer of the membrane.

  10. 绿色环保近海渔船防污涂料的制备%Preparation of Environment-Friendly Antifouling Paints for Offshore Fishing Boat

    Institute of Scientific and Technical Information of China (English)

    陈绍平; 国耀东; 康思波; 刘希燕; 蒋健明

    2012-01-01

    介绍了绿色环保近海渔船防污涂料的特点.采用自由基聚合制备了丙烯酸锌聚合物,经级差和方差分析后,确定了单体的浓度、反应温度、滴加时间、引发剂用量.经海水溶解性实验、海水干湿交替试验,确定了混合单体比例.制备了两类绿色环保近海渔船防污涂料,对防污涂料的影响因素进行了考察,确定了防污涂料浅海浸泡实验条件.防污涂料浅海浸泡实验结果表明,所制备的绿色环保近海渔船防污涂料34个月防污效果良好.防污涂料涂船试验表明,所制备的防污涂料可满足近海渔船的使用需求.%This article introduced the characteristics of the environment — friendly antifouling paints for offshore fishing boats. The zinc acrylate polymer was prepared by radical polymerization. The concentration of monomer, reaction temperature, the dropping time and the amount of initiator were determined after the a-nalysis of differentials and variance. The proportion of mixed monomers was determined by seawater solubility experiments and the alternative dry and wet test in seawater. Two types of green offshore fishing boat antifouling paints were prepared and the influencing factors were investigated to determine the conditions of antifouling coatings shallow immersion test. Antifouling coating shallow immersion test results indicated that the prepared green offshore fishing antifouling paint showed good antifouling property over 34 months. The test results on boat showed that antifouling paints prepared could meet the demand of offshore fishing boats user.

  11. Nanostructured Block Copolymer Coatings for Biofouling Inhibition

    Science.gov (United States)

    2015-06-30

    biofouling program contractors. 15. SUBJECT TERMS antifouling; coatings; block copolymers; IR nanoscale imaging ; biocides 16. SECURITY CLASSIFICATION OF...diagnostics and drug delivery. In our scanned probe microscopy studies on collaborator coatings and marine organisms, we have provided teamwork . We have...Studies of Organisms on model fouiants: • H. elegans studies 3. Testing of other contractor materials 4. Imaging technology. We applied our organic

  12. Antifouling membranes for sustainable water purification: strategies and mechanisms.

    Science.gov (United States)

    Zhang, Runnan; Liu, Yanan; He, Mingrui; Su, Yanlei; Zhao, Xueting; Elimelech, Menachem; Jiang, Zhongyi

    2016-10-24

    One of the greatest challenges to the sustainability of modern society is an inadequate supply of clean water. Due to its energy-saving and cost-effective features, membrane technology has become an indispensable platform technology for water purification, including seawater and brackish water desalination as well as municipal or industrial wastewater treatment. However, membrane fouling, which arises from the nonspecific interaction between membrane surface and foulants, significantly impedes the efficient application of membrane technology. Preparing antifouling membranes is a fundamental strategy to deal with pervasive fouling problems from a variety of foulants. In recent years, major advancements have been made in membrane preparation techniques and in elucidating the antifouling mechanisms of membrane processes, including ultrafiltration, nanofiltration, reverse osmosis and forward osmosis. This review will first introduce the major foulants and the principal mechanisms of membrane fouling, and then highlight the development, current status and future prospects of antifouling membranes, including antifouling strategies, preparation techniques and practical applications. In particular, the strategies and mechanisms for antifouling membranes, including passive fouling resistance and fouling release, active off-surface and on-surface strategies, will be proposed and discussed extensively.

  13. Role of monomer sequence and backbone structure in polypeptoid and polypeptide polymers for anti-fouling applications

    Science.gov (United States)

    Patterson, Anastasia; Rizis, Georgios; Wenning, Brandon; Finlay, John; Ober, Christopher; Segalman, Rachel

    Polymeric coatings rely on a fine balance of surface properties to achieve biofouling resistance. Bioinsipired polymers and oligomers provide a modular strategy for the inclusion of multiple functionalities with controlled architecture, sequence and surface properties. In this work, polypeptoid and polypeptide functionalized coatings based on PEO and PDMS block copolymers were compared with respect to surface presentation and fouling by Ulva linza. While polypeptoids and polypeptides are simple isomers of each other, the lack of backbone chirality and hydrogen bonding in polypeptoids leads to surprisingly different surface behavior. Specifically, the polypeptoids surface segregate much more strongly than analogous polypeptide functionalized polymers, which in turn affects the performance of the coating. Indeed, polypeptoid functionalized surfaces were significantly better both in terms of anti-fouling and fouling release than the corresponding polypeptide-bearing polymers. The role of specific monomer sequence and backbone chemistry will be further discussed in this poster.

  14. A survey analysis of heavy metals bio-accumulation in internal organs of sea shell animals affected by the sustainable pollution of antifouling paints used for ships anchored at some domestic maritime spaces

    Institute of Scientific and Technical Information of China (English)

    WANG JunLian; WANG FengQi; YU Jie; ZHUANG Yan; ZHOU XiangFeng; ZHANG XiaoBin; PENG BiXian

    2008-01-01

    Some samples of sea shell animals stuck and multiplied on the bottom (beneath the seawater) coated with antifouling paints were collected at some domestic maritime spaces,and the content of heavy metals was detected through Inductively Coupled Plasma-Mass Spectroscopy.Meanwhile,comparison with sea shell animals was made on market for edible use.It shows that the content of heavy metals in internal organs of these marine animals is very high due to the large amount of copper and zinc con-tained in the antifouling paints,and this also does severely harm to sea environment and ecology.To study and develop the novel antifouling paints without copper(I) oxide is an imperative task which brooks no delay.

  15. Long-term stability of PEG-based antifouling surfaces in seawater

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    2016-01-01

    Poly(ethylene glycol) (PEG) is a hydrophilic polymer that has been extensively used in the biomedical and marine environment due to its antifouling properties. In the biomedical field, PEG has been successfully used to functionalize surfaces due to its resistance to cell and nonspecific protein...... adsorption. However, the long-term stability of PEG has limited its use in some areas. In the shipping industry, there is a great need for long-term solutions to keep the hulls of the ships fouling-free. The long-term stability of PEG in polydimethylsiloxane (PDMS) fouling-release coatings is studied here....... The influence of the chemistry of the PEG compounds, the chosen laboratory degrading agents, and the possible degradation pathways and products are discussed....

  16. Antifouling activities of β-cyclodextrin stabilized peg based silver nanocomposites

    Science.gov (United States)

    Punitha, N.; Saravanan, P.; Mohan, R.; Ramesh, P. S.

    2017-01-01

    Self-polishing polymer composites which release metal biocide in a controlled rate have been widely used in the design of antimicrobial agents and antifouling coatings. The present work focuses on the environmental friendly green synthesis of PEG based SNCs and their application to biocidal activity including marine biofouling. Biocompatible polymer β-CD and adhesive resistance polymer PEG were used to functionalize the SNPs and the as synthesized SNCs exhibit excellent micro fouling activities. The structural and optical properties were confirmed by XRD and UV-visible techniques respectively. The particle surface and cross sectional characteristics were examined by SEM-EDS, HR-TEM, AFM and FTIR. The surface potential was evaluated using ZP analysis and assessment of antibiofouling property was investigated using static immersion method.

  17. Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems

    DEFF Research Database (Denmark)

    Meseguer Yebra, Diego; Kiil, Søren; Dam-Johansen, Kim

    2005-01-01

    at product optimisation and innovation (e.g. incorporation of natural active agents). This study seeks to attain scientifically founded knowledge of the reaction mechanisms and the rate of reaction with sea water of a Zn-carboxylate of a synthetic rosin compound. The kinetic expression attained can be used...... have shown that mathematical coating models based on a fundamental knowledge of the underlying mechanisms of A/F paints is a promising tool for accelerated product testing at different operational conditions of a sailing ship or a paint rotor. Such models can also be used for generation of ideas aiming...... rather than pointing at a certain diffusion control in the reaction rate experiments. The reverse reaction is found not to affect the hydrolysis rate within the pores, of antifouling paints significantly. It is concluded, from the reaction mechanism proposed, that the observed partial exchange of Zn2...

  18. Mussel-Inspired Anchoring of Polymer Loops That Provide Superior Surface Lubrication and Antifouling Properties.

    Science.gov (United States)

    Kang, Taegon; Banquy, Xavier; Heo, Jinhwa; Lim, Chanoong; Lynd, Nathaniel A; Lundberg, Pontus; Oh, Dongyeop X; Lee, Han-Koo; Hong, Yong-Ki; Hwang, Dong Soo; Waite, John Herbert; Israelachvili, Jacob N; Hawker, Craig J

    2016-01-26

    We describe robustly anchored triblock copolymers that adopt loop conformations on surfaces and endow them with unprecedented lubricating and antifouling properties. The triblocks have two end blocks with catechol-anchoring groups and a looping poly(ethylene oxide) (PEO) midblock. The loops mediate strong steric repulsion between two mica surfaces. When sheared at constant speeds of ∼2.5 μm/s, the surfaces exhibit an extremely low friction coefficient of ∼0.002-0.004 without any signs of damage up to pressures of ∼2-3 MPa that are close to most biological bearing systems. Moreover, the polymer loops enhance inhibition of cell adhesion and proliferation compared to polymers in the random coil or brush conformations. These results demonstrate that strongly anchored polymer loops are effective for high lubrication and low cell adhesion and represent a promising candidate for the development of specialized high-performance biomedical coatings.

  19. Estimating hull coating thickness distributions using the EM Algorithm

    OpenAIRE

    Corriere, Michael A.

    2000-01-01

    The underwater hull coating system on surface ships is comprised anti-corrosive (AC) and anti-fouling (AF) paint The AF layers are designed to wear away, continuously leaching cuprous oxide to inhibit marine growth. The thickness of the AF paint layers determines the expected service life of a coating system. Thus, it is important to assess the thickness of the AF layers to determine if the current hull coating system is sufficient. The Naval Ship Technical Manual (NSTM) provides specific gui...

  20. 船舶海洋污损生物防治技术及装置研究进展%progress of marine Antifouling Solutions and Devices

    Institute of Scientific and Technical Information of China (English)

    陈永红; 孙团; 孙俊忠; 王辉波; 吴冬华

    2015-01-01

    海洋污损生物增加附着基体的摩擦阻力,甚至对基体的腐蚀产生影响。海洋污损生物的附着过程主要分为三个过程,同时在粘附界面存在多种粘结作用。材料学、防污涂层、电化学、电解技术、超声波和紫外照射等技术是目前海洋污损生物防治的主要方法;在石油平台常用物理除污装置进行防污,而电解防污装置则在船体、管道等的污损生物防治中广泛使用。对海洋环境无污染、防污时间长、防污效果明显、经济是海洋污损生物防治技术的一种趋势,装置设计简单、易于操作、能耗低则是防污装置的发展方向。%The adhesion of marine biofouling can significant increase the frictional drag (FD) of substrate surfaces, and lead to the substrate corrosion. In fouling adhesion, there are three processes and many adhesion attractions in interface. Materials Science, antifouling coating, electrochemistry, electrolysis, ultrasonic and ultraviolet irradiation are the main solution to control the marine biofouling. The physics antifouling devices are used in oil platform, and electrolysis antifouling devices are widely used in ship hull and pipes. Non-toxic, long duration, effective and economical are the target of antifouling solutions reaserach, simply design, handly and low energy are the direction of antifouling development.

  1. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes

    Science.gov (United States)

    Madaeni, S. S.; Ghaemi, N.; Alizadeh, A.; Joshaghani, M.

    2011-05-01

    Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO 2 nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO 2 nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO 2 nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO 2 nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes.

  2. Influence of photo-induced superhydrophilicity of titanium dioxide nanoparticles on the anti-fouling performance of ultrafiltration membranes

    Energy Technology Data Exchange (ETDEWEB)

    Madaeni, S.S., E-mail: smadaeni@yahoo.com [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Ghaemi, N. [Membrane Research Center, Department of Chemical Engineering, Razi University, Tagh Bostan, 67149 Kermanshah (Iran, Islamic Republic of); Department of Chemical Engineering, Kermanshah University of Technology, Kermanshah (Iran, Islamic Republic of); Alizadeh, A. [Nanoscience and Nanotechnology Research Centre (NNRC), Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Joshaghani, M. [Faculty of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of)

    2011-05-01

    Fouling is one of the most present prominent problems in almost all membrane processes. An increase in the membrane hydrophilicity is one of the effective ways to improve the membrane resistance to fouling. In this research, TiO{sub 2} nanoparticles were deposited on the surface of composite ultrafiltration (UF) membrane, and then irradiated by ultraviolet (UV) light. The coating of the membrane surface with TiO{sub 2} nanoparticles and radiation with (UV) light led to the considerable increase of hydrophilicity on the membrane surface. The deposition of TiO{sub 2} nanoparticles was carried out through coordinance bonds with OH functional groups of the polymer on the membrane surface. The flux through a coated and (UV) light radiated membrane was increased to a large extent compared to a virgin membrane. In this research, the effect of different concentrations of TiO{sub 2} nanoparticles in the presence and absence of (UV) irradiation was investigated, and the role of increasing of hydrophilicity on the anti-fouling property of membranes was studied. In order to characterize the membranes FTIR, XRD, SEM, water contact angle and cross-flow filtration were employed. This procedure is a useful technique for improvement of hydrophilicity to decrease (increase) fouling (anti-fouling performance) and enhance the permeation of membranes.

  3. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin

    2013-04-25

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  4. Antiparasitic, Nematicidal and Antifouling Constituents from Juniperus Berries

    Science.gov (United States)

    A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium f...

  5. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control

    Science.gov (United States)

    Das, Sujoy K.; Khan, Md. Motiar R.; Parandhaman, T.; Laffir, Fathima; Guha, Arun K.; Sekaran, G.; Mandal, Asit Baran

    2013-05-01

    A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through

  6. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Science.gov (United States)

    Tebben, Jan; Guest, James R; Sin, Tsai M; Steinberg, Peter D; Harder, Tilmann

    2014-01-01

    The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  7. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  8. Probing nanoscale chemical segregation and surface properties of antifouling hybrid xerogel films.

    Science.gov (United States)

    Destino, Joel F; Gatley, Caitlyn M; Craft, Andrew K; Detty, Michael R; Bright, Frank V

    2015-03-24

    Over the past decade there has been significant development in hybrid polymer coatings exhibiting tunable surface morphology, surface charge, and chemical segregation-all believed to be key properties in antifouling (AF) coating performance. While a large body of research exists on these materials, there have yet to be studies on all the aforementioned properties in a colocalized manner with nanoscale spatial resolution. Here, we report colocalized atomic force microscopy, scanning Kelvin probe microscopy, and confocal Raman microscopy on a model AF xerogel film composed of 1:9:9 (mol:mol:mol) 3-aminopropyltriethoxysilane (APTES), n-octyltriethoxysilane (C8), and tetraethoxysilane (TEOS) formed on Al2O3. This AF film is found to consist of three regions that are chemically and physically unique in 2D and 3D across multiple length scales: (i) a 1.5 μm thick base layer derived from all three precursors; (ii) 2-4 μm diameter mesa-like features that are enriched in free amine (from APTES), depleted in the other species and that extend 150-400 nm above the base layer; and (iii) 1-2 μm diameter subsurface inclusions within the base layer that are enriched in hydrogen-bonded amine (from APTES) and depleted in the other species.

  9. New biocide-free anti-fouling paints are toxic.

    Science.gov (United States)

    Karlsson, Jenny; Eklund, Britta

    2004-09-01

    A number of new anti-fouling paints claimed to be more friendly to the environment, have entered the market since prohibition of biocide containing paints have been enforced in many areas. Leakage waters from five new anti-fouling paints were tested for toxic effects to the macro algae Ceramium tenuicorne and Ceramium strictum and to the crustacean Nitocra spinipes. A banned copper and irgarol 1051 containing anti-fouling paint was used as reference. Five of the six paints tested were toxic to all or some of the organisms after two weeks of leakage with EC50 ranging from 0.08 to around 2% leakage water and LC50 ranging from 1.1% to 88%. The toxicity of leakage water from these paints was still high after 16 weeks. We conclude that these paints contain substances toxic to common organisms in the coastal Baltic ecosystem. A silicone based paint did not exhibit toxic effects to the two organisms. We recommend that biological tests should be used to identify the most harmful products before they are released on the market.

  10. Antifouling potential of Nature-inspired sulfated compounds

    Science.gov (United States)

    Almeida, Joana R.; Correia-da-Silva, Marta; Sousa, Emília; Antunes, Jorge; Pinto, Madalena; Vasconcelos, Vitor; Cunha, Isabel

    2017-02-01

    Natural products with a sulfated scaffold have emerged as antifouling agents with low or nontoxic effects to the environment. In this study 13 sulfated polyphenols were synthesized and tested for antifouling potential using the anti-settlement activity of mussel (Mytilus galloprovincialis) plantigrade post-larvae and bacterial growth inhibition towards four biofilm-forming bacterial strains. Results show that some of these Nature-inspired compounds were bioactive, particularly rutin persulfate (2), 3,6-bis(β-D-glucopyranosyl) xanthone persulfate (6), and gallic acid persulfate (12) against the settlement of plantigrades. The chemical precursors of sulfated compounds 2 and 12 were also tested for anti-settlement activity and it was possible to conclude that bioactivity is associated with sulfation. While compound 12 showed the most promising anti-settlement activity (EC50 = 8.95 μg.mL‑1), compound 2 also caused the higher level of growth inhibition in bacteria Vibrio harveyi (EC20 = 12.5 μg.mL‑1). All the three bioactive compounds 2, 6, and 12 were also found to be nontoxic to the non target species Artemia salina ( 1000 μg.mL‑1). This study put forward the relevance of synthesizing non-natural sulfated small molecules to generate new nontoxic antifouling agents.

  11. Engineered antifouling microtopographies: surface pattern effects on cell distribution.

    Science.gov (United States)

    Decker, Joseph T; Sheats, Julian T; Brennan, Anthony B

    2014-12-23

    Microtopography has been observed to lead to altered attachment behavior for marine fouling organisms; however, quantification of this phenomenon is lacking in the scientific literature. Here, we present quantitative measurement of the disruption of normal attachment behavior of the fouling algae Ulva linza by antifouling microtopographies. The distribution of the diatom Navicula incerta was shown to be unaffected by the presence of topography. The radial distribution function was calculated for both individual zoospores and cells as well as aggregates of zoospores from attachment data for a variety topographic configurations and at a number of different attachment densities. Additionally, the screening distance and maximum values were mapped according to the location of zoospore aggregates within a single unit cell. We found that engineered topographies decreased the distance between spore aggregates compared to that for a smooth control surface; however, the distributions for individual spores were unchanged. We also found that the local attachment site geometry affected the screening distance for aggregates of zoospores, with certain geometries decreasing screening distance and others having no measurable effect. The distribution mapping techniques developed and explored in this article have yielded important insight into the design parameters for antifouling microtopographies that can be implemented in the next generation of antifouling surfaces.

  12. Multiple Approaches for Testing Novel Coatings in the Laboratory and in Pearl Harbor, Hawaii with Emphasis on the Global, Problem-Fouling Invertebrates

    Science.gov (United States)

    2015-09-25

    existing protocols for ASTM-based visual inspections, water jet determinations and force gauge measures. (2) We evaluate coatings for removal of...UNIVERSITY OF WASHINGTON JIANG 30 FOUL/RELEASE ANTIFOULING TEXAS A&M UNIVERSITY WOOLEY 16 FOUL/RELEASE ANTIFOULING ZWITTER TECHNOLOGY, LLC LI 9...membrane (Figs. 1A&B), and cell-free filtrates of C. lytica are devoid of bacterial cells yet still induce metamorphosis of H. elegans. OMVs are

  13. Copper Based Antifouling Paints for Prevention of Marine Growth on ship Hulls

    Directory of Open Access Journals (Sweden)

    Y.P.S. Nirvan

    1982-01-01

    Full Text Available "The mode of action and requirements of ingredients of copper based antifouling paints used in the country for the prevention of fouling, on ship-hulls have been described. The studies on performance of antifouling paints based on cuprous oxide-chlorinated rubber-rosin system have also been reported. Antifouling life improves with increase in concentration of cuprous oxide, 43 per cent by volume being the optimum toxic content. A minimum rosin to resin ratio of 3:1 is required to permit adequate release of copper for prolonged periods. Hydrolysable plasticizer namely tricresyl phosphate has been found to be superior to chlorinated paraffin wax for the design of antifouling compositions. The antifouling paint based on chlorinated rubber resin is expected to give a life of 15-18 months in service."

  14. Antifouling Activity of Simple Synthetic Diterpenoids against Larvae of the Barnacle Balanus albicostatus Pilsbry

    Directory of Open Access Journals (Sweden)

    Dan-Qing Feng

    2010-11-01

    Full Text Available Five new pimarane diterpenoids 1-5 were synthesized using ent-8(14-pimarene-15R,16-diol as starting material. The structures were elucidated by means of extensive NMR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. Compounds 1-3 and 5 showed more potent antifouling activity than capsaicin. Compound 5, which exhibited almost the same antifouling activity as starting material, showed better stability than starting material. These compounds all showed antifouling activity in a non-toxic way against larval settlement of the barnacle B. albicostatus. Analysis of structure-activity relationships (SAR demonstrated that the substituents on the C-15 and C-16 position of pimarane diterpenoid were responsible for the antifouling activity.

  15. Incorporation of Nicotine into Silicone Coatings for Marine Applications

    Science.gov (United States)

    Jaramillo, Sandy Tuyet

    PDMS-based marine coatings presently used are limited by their inability to mitigate microfouling which limits their application to high speed vessels. PDMS coatings are favored when viable, due to their foul release properties of macrofouling organisms. Natural products have been investigated for antifouling properties for potential use in these marine antifouling coatings but few have incorporated natural products into coatings or coating systems. The purpose of the research was to establish the corrosion inhibiting properties of nicotine and to incorporate nicotine, a biodegradable and readily available natural product, into a PDMS coating to demonstrate the use of a natural product in a coating for marine applications. The corrosion inhibiting properties of nicotine was examined using potentiodynamic polarization scans, material characterization techniques such as scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction, quartz crystal microbalance and electrochemical impedance spectroscopy. Nicotine was determined to be an anodic corrosion inhibitor for mild steel immersed in simulated seawater with the ability to precipitate a protective calcium carbonate film. Electrochemical impedance spectroscopy was used to evaluate the performance of the developed nicotine incorporated coatings on mild steel immersed in simulated seawater over 21 days of immersion. The coatings with 2 wt.% of nicotine incorporated in the coating with a ratio of 1:30 of additional platinum catalyst to nicotine exhibited the best performance for intact coatings. This coating had the most favorable balance of the amount of nicotine and platinum catalyst of all the coatings evaluated. Overall, all nicotine incorporated coatings had a performance improvement when compared to the control PDMS coating. Of the nicotine incorporated coatings that were tested with an artificial pin-hole defect, the 2PDMS coating also exhibited the best performance with significant

  16. Antifouling Activity of Synthetic Alkylpyridinium Polymers Using the Barnacle Model

    Directory of Open Access Journals (Sweden)

    Veronica Piazza

    2014-04-01

    Full Text Available Polymeric alkylpyridinium salts (poly-APS isolated from the Mediterranean marine sponge, Haliclona (Rhizoniera sarai, effectively inhibit barnacle larva settlement and natural marine biofilm formation through a non-toxic and reversible mechanism. Potential use of poly-APS-like compounds as antifouling agents led to the chemical synthesis of monomeric and oligomeric 3-alkylpyridinium analogues. However, these are less efficient in settlement assays and have greater toxicity than the natural polymers. Recently, a new chemical synthesis method enabled the production of poly-APS analogues with antibacterial, antifungal and anti-acetylcholinesterase activities. The present study examines the antifouling properties and toxicity of six of these synthetic poly-APS using the barnacle (Amphibalanus amphitrite as a model (cyprids and II stage nauplii larvae in settlement, acute and sub-acute toxicity assays. Two compounds, APS8 and APS12-3, show antifouling effects very similar to natural poly-APS, with an anti-settlement effective concentration that inhibits 50% of the cyprid population settlement (EC50 after 24 h of 0.32 mg/L and 0.89 mg/L, respectively. The toxicity of APS8 is negligible, while APS12-3 is three-fold more toxic (24-h LC50: nauplii, 11.60 mg/L; cyprids, 61.13 mg/L than natural poly-APS. This toxicity of APS12-3 towards nauplii is, however, 60-fold and 1200-fold lower than that of the common co-biocides, Zn- and Cu-pyrithione, respectively. Additionally, exposure to APS12-3 for 24 and 48 h inhibits the naupliar swimming ability with respective IC50 of 4.83 and 1.86 mg/L.

  17. Various mortars for anti-fouling purposes in marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Hideyuki; Masuda, Tomoka [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Miura, Yoko; Kuroda, Daisuke [Department of General Education, The Company, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Hirai, Nobumitsu [Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Yokoyama, Seiji [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580 (Japan)

    2014-02-20

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  18. Various mortars for anti-fouling purposes in marine environments

    Science.gov (United States)

    Kanematsu, Hideyuki; Masuda, Tomoka; Miura, Yoko; Hirai, Nobumitsu; Kuroda, Daisuke; Yokoyama, Seiji

    2014-02-01

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  19. Multifunctional copolymer coating of polyethylene glycol, glycidyl methacrylate, and REDV to enhance the selectivity of endothelial cells.

    Science.gov (United States)

    Wei, Yu; Zhang, Jingxun; Li, Haolie; Zhang, Li; Bi, Hong

    2015-01-01

    Multifunctional polymer coatings have potential applications in biomaterials. These coatings possess reactive functional groups for the immobilization of specific biological factors that can influence cellular behavior. These coatings also display low nonspecific protein adsorption. In this study, we prepared a multifunctional polymer coating through the deposition of random copolymers of poly(ethylene glycol) methacrylate (PEGMA) and glycidyl methacrylate (GMA) to prevent nonspecific attachment and enable the covalence of Arg-Glu-Asp-Val (REDV) peptide with endothelial cells (ECs) selectivity. Coatings were characterized by X-ray photoelectron spectroscopy (XPS). The adhesion and proliferation of ECs and smooth muscle cells (SMCs) onto the REDV-modified surface were investigated to understand the synergistic action of antifouling PEG and EC selective REDV peptide conjugated GMA. The copolymers containing GMA and PEG groups are very useful as a multifunctional coating material with anti-fouling and ECs specific adhesion for implant materials surface modification.

  20. Developing antifouling biointerfaces based on bioinspired zwitterionic dopamine through pH-modulated assembly.

    Science.gov (United States)

    Huang, Chun-Jen; Wang, Lin-Chuan; Shyue, Jing-Jong; Chang, Ying-Chih

    2014-10-28

    The use of synthetic biomaterials as implantable devices typically is accompanied by considerable nonspecific adsorption of proteins, cells, and bacteria. These may eventually induce adverse pathogenic problems in clinical practice, such as thrombosis and biomaterial-associated infection. Thus, an effective surface coating for medical devices has been pursued to repel nonspecific adsorption from surfaces. In this study, we employ an adhesive dopamine molecule conjugated with zwitterionic sulfobetaine moiety (SB-DA), developed based on natural mussels, as a surface ligand for the modification of TiO2. The electrochemical study shows that the SB-DA exhibits fully reversible reduction-oxidation behavior at pH 3, but it is irreversible at pH 8. A contact angle goniometer and X-ray photoelectron spectroscopy were utilized to explore the surface hydration, chemical states, and bonding mechanism of SB-DA. The results indicate that the binding between hydroxyl groups of SB-DA and TiO2 converts from hydrogen bonds to bidentate binding upon the pH transition from pH 3 to 8. In order to examine the antifouling properties of SB-DA thin films, the modified substrates were brought into contact with bovine serum albumin and bacteria solutions. The fouling levels were monitored using a quartz crystal microbalance with dissipation sensor and fluorescence optical microscope. Tests showed that the sample prepared via the pH transition approach provides the best resistance to nonspecific adsorption due to the high coverage and stability of the SB-DA films. These findings support the mechanism of the pH-modulated assembly of SB-DA molecules, and for the first time we demonstrate the antifouling properties of the SB-DA to be comparable with traditional thiol-based zwitterionic self-assemblies. The success of modification with SB-DA opens an avenue for developing a biologically inspired surface chemistry and can have applications over a wide spectrum of bioapplications. The strategy of

  1. Tuning the underwater oleophobicity of graphene oxide coatings via UV irradiation.

    Science.gov (United States)

    Li, Hang; Huang, Yi; Mao, Yating; Xu, Weiwei L; Ploehn, Harry J; Yu, Miao

    2014-09-07

    Ultraviolet (UV) irradiation was utilized to gradually modify the chemistry and structure of graphene oxide (GO) flakes, as confirmed by XPS and AFM. Ultrathin GO coatings/membranes, made of UV-irradiated flakes, showed tunable underwater oleophobicity. UV-treated, superoleophobic GO membranes exhibited excellent antifouling capability for oil/water separation.

  2. Antifouling activity of crude extracts isolated from two Red Sea puffer fishes

    Directory of Open Access Journals (Sweden)

    Yosry A. Soliman

    2014-01-01

    Full Text Available Crude extracts were isolated from the ovary and mucus of the puffer fish Amblyrhynchotes hypselogenion and Lagocephalus sceleratus. The crude toxin extracts (from the ovaries of L. sceleratus puffer fish (4.5, 9.0, and 18.0 g crude extract/100 g paint and only one concentration (3.0 g crude extract/100 g paint from the skin mucus of A. hypselogenion puffer fish were mixed with an inert simple paint formulation (consists of (vinyl chloride–vinyl acetate copolymer using tricresyl phosphate as plasticizer. The viscosity of paints was adjusted using a blend of solvents consisting of methyl isobutyl ketone and toluene applied to poly vinyl chloride (PVC plates and exposed to Suez Gulf water for about 24 weeks. Percentage covers of fouling organisms on plates were estimated for coated panels over six weeks, and the wet weight (gram/plate of fouling organisms on experimental plates was recorded till about 24 weeks. The percentage of plates coated by formulation with (2007 for 24 weeks the crude toxic extracts from the ovaries of L. sceleratus and the mucus of A. hypselogenion ranged from 22% to 24% and 11% to 12%, respectively. The wet weights of the plates covered by formulation with the same crude toxic extracts of the previous two species were 124–147 g and 82–93 g, respectively. Antifouling properties were observed for the extracts of the two species under investigation, however, extracts from A. hypselogenion showed better properties.

  3. Searching for “Environmentally-Benign” Antifouling Biocides

    Science.gov (United States)

    Cui, Yan Ting; Teo, Serena L. M.; Leong, Wai; Chai, Christina L. L.

    2014-01-01

    As the result of the ecological impacts from the use of tributyltins (TBT) in shipping, environmental legislation for the registration of chemicals for use in the environment has grown to a monumental challenge requiring product dossiers to include information on the environmental fate and behavior of any chemicals. Specifically, persistence, bioaccumulation and toxicity, collectively known as PBT, are properties of concern in the assessment of chemicals. However, existing measurements of PBT properties are a cumbersome and expensive process, and thus not applied in the early stages of the product discovery and development. Inexpensive methods for preliminary PBT screening would minimize risks arising with the subsequent registration of products. In this article, we evaluated the PBT properties of compounds reported to possess anti-fouling properties using QSAR (quantitative structure-activity relationship) prediction programs such as BIOWIN™ (a biodegradation probability program), KOWWIN™ (log octanol-water partition coefficient calculation program) and ECOSAR™ (Ecological Structure Activity Relationship Programme). The analyses identified some small (Mr < 400) synthetic and natural products as potential candidates for environmentally benign biocides. We aim to demonstrate that while these methods of estimation have limitations, when applied with discretion, they are powerful tools useful in the early stages of research for compound selection for further development as anti-foulants. PMID:24865489

  4. Searching for “Environmentally-Benign” Antifouling Biocides

    Directory of Open Access Journals (Sweden)

    Yan Ting Cui

    2014-05-01

    Full Text Available As the result of the ecological impacts from the use of tributyltins (TBT in shipping, environmental legislation for the registration of chemicals for use in the environment has grown to a monumental challenge requiring product dossiers to include information on the environmental fate and behavior of any chemicals. Specifically, persistence, bioaccumulation and toxicity, collectively known as PBT, are properties of concern in the assessment of chemicals. However, existing measurements of PBT properties are a cumbersome and expensive process, and thus not applied in the early stages of the product discovery and development. Inexpensive methods for preliminary PBT screening would minimize risks arising with the subsequent registration of products. In this article, we evaluated the PBT properties of compounds reported to possess anti-fouling properties using QSAR (quantitative structure-activity relationship prediction programs such as BIOWIN™ (a biodegradation probability program, KOWWIN™ (log octanol-water partition coefficient calculation program and ECOSAR™ (Ecological Structure Activity Relationship Programme. The analyses identified some small (Mr < 400 synthetic and natural products as potential candidates for environmentally benign biocides. We aim to demonstrate that while these methods of estimation have limitations, when applied with discretion, they are powerful tools useful in the early stages of research for compound selection for further development as anti-foulants.

  5. Anti-fouling properties of microstructured surfaces bio-inspired by rice leaves and butterfly wings.

    Science.gov (United States)

    Bixler, Gregory D; Theiss, Andrew; Bhushan, Bharat; Lee, Stephen C

    2014-04-01

    Material scientists often look to biology for new engineering solutions to materials science problems. For example, unique surface characteristics of rice leaves and butterfly wings combine the shark skin (antifouling) and lotus leaf (self-cleaning) effects, producing the so-called rice and butterfly wing effect. In this paper, we study antifouling properties of four microstructured surfaces inspired by rice leaves and fabricated with photolithography and hot embossing techniques. Anti-biofouling effectiveness is determined with bioassays using Escherichia coli whilst inorganic fouling with simulated dirt particles. Antifouling data are presented to understand the role of surface geometrical features resistance to fouling. Conceptual modeling provides design guidance when developing novel antifouling surfaces for applications in the medical, marine, and industrial fields.

  6. An anti-fouling aptasensor for detection of thrombin by dual polarization interferometry.

    Science.gov (United States)

    Zheng, Yu; Hu, Tao; Chen, Chuanxia; Yang, Fan; Yang, Xiurong

    2015-04-04

    An anti-fouling surface was designed to effectively resist nonspecific protein adsorption using dual polarization interferometry, based on which the aptasensor for detection of thrombin was fabricated according to the specific interaction between thrombin and its 15-mer aptamer.

  7. Recente ontwikkelingen in anti-fouling. Beschrijving van huidige en toekomstige methoden voor bescherming van scheepshuiden

    NARCIS (Netherlands)

    Plesman, Maarten

    1997-01-01

    De toepassing van organische tinverbindingen als aangroeiwerend middel (antifouling) in scheepsverven leidt tot schade aan het aquatisch milieu. Met name de invloed op de voortplanting van zeeslakken door imposex, de geslachtsverandering van vrouwelijke dieren, is ingrijpend en vraagt om alternatiev

  8. Maximum permissible concentrations and negligible concentrations for antifouling substances. Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB

    NARCIS (Netherlands)

    Wezel AP van; Vlaardingen P van; CSR

    2001-01-01

    This report presents maximum permissible concentrations and negligible concentrations that have been derived for various antifouling substances used as substitutes for TBT. Included here are Irgarol 1051, dichlofluanide, ziram, chlorothalonil and TCMTB.

  9. Terrestrial plants: a potent source for isolation of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    by number of workers in the past. However, little attention is paid towards terrestrial plants. In light of this some selected plants have been screened for antifouling activity. These plants are Acacia pennata and Barringtonia acutangula. These plants...

  10. Impact of the antifouling agent Irgarol 1051 on marine phytoplankton species

    NARCIS (Netherlands)

    Buma, Anita G. J.; Sjollema, Sascha B.; van de Poll, Willem H.; Klamer, Hans J. C.; Bakker, Joop F.

    2009-01-01

    In the present study we tested the hypothesis that environmental concentrations of the antifouling agent Irgarol 1051, as measured in coastal Western European waters, affect marine phytoplankton performance. The impact of Irgarol was investigated in the phytoplankton species Thalassiosira weissflogi

  11. Mathematical modelling of a self-polishing antifouling paint exposed to seawater: A parameter study

    DEFF Research Database (Denmark)

    Kiil, Søren; Weinell, Claus Erik; Pedersen, M. S.;

    2002-01-01

    A Fundamental mathematical model for a self-polishing antifouling paint was used to conduct a parameter study. The aims were to show how a mathematical model can reduce the amount of experimental work needed to estimate the behaviour of self-polishing antifouling paints at different conditions......, and to suggest ways of controlling biocide release rates. A case study with an antifouling paint based on the well-known tributyltin self-polishing copolymer system showed that the rate of paint polishing was influenced, to various degrees, by the following parameters: seawater pH and concentration of Na......Cl, pigment particle size. pigment volume concentration of the paint, the rate of pigment dissolution, and the pore size distribution of the leached layer. The modelling approach can be applied to any type of self-polishing antifouling paint provided that kinetic, solubility and diffusivity data are available...

  12. Phylogenetic relationship and antifouling activity of bacterial epiphytes from the marine alga Ulva lactuca.

    Science.gov (United States)

    Egan, S; Thomas, T; Holmström, C; Kjelleberg, S

    2000-06-01

    It is widely accepted that bacterial epiphytes can inhibit the colonization of surfaces by common fouling organisms. However, little information is available regarding the diversity and properties of these antifouling bacteria. This study assessed the antifouling traits of five epiphytes of the common green alga, Ulva lactuca. All isolates were capable of preventing the settlement of invertebrate larvae and germination of algal spores. Three of the isolates also inhibited the growth of a variety of bacteria and fungi. Their phylogenetic positions were determined by 16S ribosomal subunit DNA sequencing. All isolates showed a close affiliation with the genus Pseudoalteromonas and, in particular, with the species P. tunicata. Strains of this bacterial species also display a variety of antifouling activities, suggesting that antifouling ability may be an important trait for members of this genus to be highly successful colonizers of animate surfaces and for such species to protect their host against fouling.

  13. Effects of Organoboron Antifoulants on Oyster and Sea Urchin Embryo Development

    Directory of Open Access Journals (Sweden)

    Noritaka Tsunemasa

    2012-12-01

    Full Text Available Prohibition of Ot (organotin compounds was introduced in Japan in 1997 and worldwide from September 2008. This meant that the production of paints containing TBT compounds was stopped and alternatives to the available Ot antifoulants had to be developed. It has been claimed that the degradation by-products of these alternative antifoulants were less toxic than those of Ot compounds. Since the introduction of the alternative antifoulants, the accumulation of these compounds has been reported in many countries. However, the toxicity of these compounds was still largely unreported. In this research, the toxicity of the alternative Ot antifoulants TPBP (triphenylborane pyridine and TPBOA (triphenylborane octadecylamine and their degradation products on Crassostea gigas and Hemicentrotus pulcherrimus were tested. The results showed that toxic effects in Crassostea gigas was higher for each antifouling biocide than that in Hemicentrotus pulcherrimus. Also, while the toxicity of the Organoboron antifoulants and the Ots were the same, the former’s degradation products were much less harmful.

  14. Antifouling Metabolites from the Mangrove Plant Ceriops tagal

    Directory of Open Access Journals (Sweden)

    Yi Ming Lin

    2008-01-01

    Full Text Available The new diterpene methoxy-ent-8(14-pimarenely-15-one (1 and three knownmetabolites: ent-8(14-pimarene-15R,16-diol (2, stigmasterol (3 and β-sitosterol (4, wereisolated from the roots of the mangrove plant Ceriops tagal. Their structures and relativestereochemistry were elucidated by means of extensive NMR, IR and MS analysis.Compounds 1, 2, 3 and 4 exhibited significant antifouling activities against cyprid larvaeof the barnacle Balanus albicostatus Pilsbry, with EC50 values of 0.32 ± 0.01, 0.04 ± 0.00,4.05 ± 0.15 and 18.47 ± 0.40 μg/cm2, respectively, whereas their toxicities towards cypridswere very low, with LC50 values all above 10 μg/cm2.

  15. Environmental management aspects for TBT antifouling wastes from the shipyards.

    Science.gov (United States)

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires

  16. Mussel-inspired modification of dextran for protein-resistant coatings of titanium oxide.

    Science.gov (United States)

    Park, Jae Yoon; Kim, Jee Seon; Nam, Yoon Sung

    2013-09-12

    Surface modification of inorganic materials to prevent non-specific protein adsorption is critically important for developing a biocompatible materials' platform for medical implantation, diagnostics, and therapeutics. Here we report mussel-inspired chemical modification of dextran for anti-fouling coatings of metal oxide. Catechols are conjugated to dextran via a carbamate ester linkage, producing catechol-grafted dextran with a grafting density of 7.3 mol.%. Titanium dioxide (TiO₂) is coated with the catechol-grafted dextran, and the anti-fouling effect of dextran coatings is examined by using the adsorption of human serum albumin. The mussel-inspired dextran coatings show excellent resistance to non-specific protein adsorption: the adsorption equilibrium constant (K) is 0.69 Lg(-1) for dextran-coated TiO₂ while that for pristine TiO₂ surface is 3.53 Lg(-1). This study suggests that catechol-grafted dextran is a promising material for effective anti-fouling coatings of implantable inorganic materials.

  17. POLYSACCHARIDES AND eDNA AID BACTERIAL ATTACHMENT TO POLYMER BRUSH COATINGS (PLL-g-PEG)

    DEFF Research Database (Denmark)

    Zeng, Guanghong; Ogaki, Ryosuke; Regina, Viduthalai R.;

    Polymer brush coatings of poly(ethylene glycol) are considered the gold standard for nonfouling surfaces, but nevertheless, a few bacteria manage to attach and initiate biofilm formation on these coatings. To achieve robust resistance against bacterial adhesion and biofilm formation, grafting...... density plays a critical role and we therefore investigated the antifouling properties of the poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) coating produced by the recently developed temperature-induced polyelectrolyte (TIP) grafting technique. The PLL-g-PEG coatings with higher density resulted...

  18. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    Science.gov (United States)

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications.

  19. INTERGRATED DESIGN AND STUDY OF MARINE ANTIFOULING POLYMER MATERIALS%海洋防污高分子材料的综合设计和研究

    Institute of Scientific and Technical Information of China (English)

    解来勇; 洪飞; 刘剑洪; 张广照; 吴奇

    2012-01-01

    综述了海洋防污高分子材料与技术的发展现状.简介了海洋生物污损的形成过程,概述了杀生防污涂料、污损可脱附性涂层、阻止附着型防污技术以及其它现存的防污方法,并在此基础上提出了一种新的海洋防污高分子材料的综合设计方案,最后展示了有关海洋防污材料研究的最新成果.%To solve biofouling problems, different antifouling paints have been designed, developed andpractically applied. Here we briefly introduce the nature and process of biofouling; review several currentlyused common strategies in the development of different biocidal antifouling coatings; illustrate how we are ableto combine a number of existing approaches into some integrated novel designs; and finally report some of ourrecent R&D progresses in direction.

  20. Coatings against corrosion and microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  2. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    Science.gov (United States)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  3. Characterization of terpenoids from the root of Ceriops tagal with antifouling activity.

    Science.gov (United States)

    Chen, Jun-De; Yi, Rui-Zao; Lin, Yi-Ming; Feng, Dan-Qing; Zhou, Hai-Chao; Wang, Zhan-Chang

    2011-01-01

    One new dimeric diterpenoid, 8(14)-enyl-pimar-2'(3')-en-4'(18')-en-15'(16')-endolabr- 16,15,2',3'-oxoan-16-one (1) and five known terpenoids: Tagalsin C (2), Tagalsin I (3), lup-20(29)-ene-3β,28-diol (4), 3-oxolup-20(29)-en-28-oic acid (5) and 28-hydroxylup- 20(29)-en-3-one (6) were isolated from the roots of the mangrove plant Ceriops tagal. Their structures and relative stereochemistry were elucidated by means of extensive NMR, IR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. All these terpenoids exhibited antifouling activity against cyprid larvae of the barnacle without significant toxicity. The structure-activity relationship results demonstrated that the order of antifouling activity was diterpenoid (Compound 2) > triterpenoid (Compounds 4, 5 and 6) > dimeric diterpenoid (Compounds 1 and 3). The functional groups on the C-28 position of lupane triterpenoid significantly affect the antifouling activity. The diterpenoid dimmer with two identical diterpenoid subunits might display more potent antifouling activity than one with two different diterpenoid subunits. The stability test showed that Compounds 2, 4, 5 and 6 remained stable over 2-month exposure under filtered seawater.

  4. Efficacy and toxicity of self-polishing biocide-free antifouling paints

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Technische Universitaet Berlin, Institut fuer Technischen Umweltschutz, Sekretariat CR1, Strasse des 17. Juni 135, D-10623 Berlin (Germany)]. E-mail: loeschau@ut.tu-berlin.de; Kraetke, Renate [Technische Universitaet Berlin, Institut fuer Technischen Umweltschutz, Sekretariat CR1, Strasse des 17. Juni 135, D-10623 Berlin (Germany)]. E-mail: r.kraetke@bfr.bund.de

    2005-11-15

    The ban on harmful substances in antifouling paints requires the development of new antifouling strategies. Alternatives should be as effective as conventional paints but of lower toxicity. In the present study two commercially available, self-polishing antifouling paints were examined in order to get information on their antifouling properties and toxicological potential. Efficacy was shown in settlement assays with the marine barnacle species Balanus amphitrite, however, efficacy was related to toxic effects observed on target and non-target organisms. Toxicity of the paint extracts was concentration-dependent and differed according to the paint and the species investigated. Toxicity could at least partially be attributed to zinc leached from the paints. Effects of a water-soluble paint were more pronounced in larvae of B. amphitrite, Artemia salina and in the green algae Dunaliella tertiolecta. Embryos of the freshwater species Danio rerio and Vibrio fisheri were more affected by a paint based on organic solvents. - For alternative antifouling paints efficacy as well as adverse effects on non-target organisms and the aquatic environment should be carefully assessed.

  5. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  6. Designing thermo-responsive nanocomposites with anti-fouling properties

    Science.gov (United States)

    Liu, Ya; McFarlin, Gerald; Yong, Xin; Kuksenok, Olga; Balazs, Anna

    2015-03-01

    Inspired by marine organisms that utilize active ``defense'' (such as active cilia) to prevent the biofouling of their surfaces, we use computational modeling to design synthetic gel-based composite films that provide dual ``defense'' for antifouling applications. We design a nanocomposite gel film that can be harnessed to repel a variety of particles via either a temperature change or an imposed shear. Incorporation of stiff hydrophobic posts into a gel composed of cross-linked poly(N-isoproylacrylamide) chains allows us to drastically alter the film's surface properties when gel undergoes temperature-induced volume phase transition. Depending on whether the system's temperature is below or above the lower critical solution temperature (LCST) of the gel, the posts are hidden in the swollen gel or exposed to the external solution. We model our system using dissipative particle dynamics (DPD); we validate our model through comparisons with Flory-Rehner theory. We focus on the influence of shear and temperature on the position of the particle in the system and isolate the conditions under which adsorption of particles of different sizes to the substrate is effectively prevented.

  7. Electromagnetic anti-fouling technology for prevention of scale

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An electromagnetic anti-fouling technology(EAFT) was developed further. The operating principle of the EAFT was presented using fundamental physics laws. To validate the effect of EAFT and identify the mechanism, a circulating flow setup was built. A series of fouling tests were carried out with and without EAFT, measuring fouling thermal resistance as function of time, making scanning electron microscope images and analyzing the particles size distribution in solution by dynamics light scattering technology. The main results were as follows: 1)All the precipitated crystals in solution were calcite and there were little differences between with EAFT and without EAFT in the experimental range. 2) The number of precipitate nucleation in solution was small and the particle growth was slow without EAFT. In opposition to the case untreated, a rapid particle growth was observed and the number of nucleation was expected to be large, due to the fact that the EAFT effectively increases the ions and crystals collision frequency and effectiveness by utilizing the induced electric field. It is indicated that the particle growth is promoted mainly by coagulation process but not nucleation growth. 3) The EAFT could prolong the delay time of fouling greatly, and after the delay time, the thermal resistance quickly increased. Therefore, in order to mitigate scale significantly, the floccules in solution should be deposited beforehand in a low-lying area of the exchangers and let off in time.

  8. Economic and Social Impact Assessment of the Alternatives to DDT Usage for Antifouling Paint Production in China

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Xiao Yali; Lu Yongsen

    2008-01-01

    China is the only nation that uses DDT in antifouling pain at present, approximately 5% of DDT is applied as the additive of the antifouling paint production. Therefore, actions shall be taken urgently for banning the use of DDT and substituting with non-POPs alternatives in antifouling paints. The paper researches the social and economic backgrounds of DDT booster antifouling paint production and usage, analyzes the social and economic impact assessment of the alternatives to DDT usage for antifouiing paint. The implementation of the project of alternatives will completely eliminate the adverse impact of DDT booster antifouling paint on terrestrial, marine ecosystem and human health. The broad use of alkali silicate and pepper alkali as substitutes will be feasible if appropriate measures will be taken to encourage their development, and the social and economic risk will be reduced to accepted levels.

  9. Influence of microstructure and surface condition on antifouling property of 90Cu-10Ni alloy in seawater

    Institute of Scientific and Technical Information of China (English)

    林乐耘; 王晓华; 赵月红

    2001-01-01

    Through the experiment of natural seawater exposure corrosion, the antifouling properties of the plate specimens of 90Cu-10Ni alloy were studied, which were processed by different deformations, annealing treatments and surface treatments. The results indicate that after exposure corrosion for half a year, the antifouling properties of the specimens are quite different. The specimens processed by suitable deformations, annealing treatment at 650℃ and pretreatment of surface film possess both good corrosion resistance and antifouling properties. However, the specimens processed by different deformations and annealing treatment at 450℃ possess lower corrosion resistance, although they are also treated by the pretreatment of surface film; their antifouling properties change with different deformations. The relationships among the corrosion morphology and microstructure with the antifouling property of 90Cu-10Ni alloy are observed under the scanning electron microscopy (SEM).

  10. Les peintures marines antisalissures à base de polymères organostanniques Antifouling Marine Paints Containing Organo-Tin Polymers

    Directory of Open Access Journals (Sweden)

    Dawans F.

    2006-11-01

    Full Text Available Le dépôt des salissures marines sur les ouvrages immergés est influencé par plusieurs facteurs et il entraîne des conséquences néfastes, en particulier pour la maintenance des supports de plates-formes de production du pétrole en mer et pour la consommation d'énergie requise pour la propulsion des navires. Divers moyens de lutte antisalissure ont été envisagés parmi lesquels les peintures marines antisalissures occupent une place de choix. Ces peintures contiennent, en général, un composé métallique toxique envers les organismes marins d'origine animale ou végétale et différents mécanismes d'action ont été proposés. Les dérivés organostanniques sont des agents biocides très efficaces et lorsqu'ils sont liés chimiquement sur un polymère, en particulier sous forme de greffons, on obtient un contrôle amélioré de leur lixiviation dans la phase aqueuse et par conséquent la durée de vie du revêtement antisalissure est prolongée. La synthèse de polymères comportant un cation organostannique toxique peut être effectuée, soit par la polymérisation ou la copolymérisation de monomères insaturés organostanniques, soit par la réaction chimique de composés organostanniques avec un substrat polymère comportant des groupes fonctionnels appropriés. Les avantages et les inconvénients de diverses formulations de peintures à base de dérivés organostanniques sont discutés. Marine fouling deposits on submerged structures are influenced by several factors and bring about harmful consequences, especially with regard to offshore oil-production platform structures and for the energy consumption required for ship propulsion. Various antifouling methods have been considered, including antifouling marine coatings in particular. Such paints generally contain a metallic compound which is toxic with regard to marine organisms of animal or vegetable origin, and various action mechanisms have been proposed. Organo

  11. Study on Marine Corrosion and Antifouling Behavior of Copper Alloys Exposed to Sea Areas in China

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The relationship of corrosion resistance and antifouling behavior of 19 Cu alloys exposed to seawater of Qingdao ,Xiamen,Yulin sea areas in China for 1,2,4,8 year intervals was studied .The experiments were carried on by analyzing the composition of corrosion films formed on the surface of alloy specimens during the immersion time and by using OM,SEM,EDXA and AES experiment methods.The results verify the view point that it is the cuprous oxide film which played an important role in antifouling property of Cu alloys in seawater and throw a light on the view point in details further.The influence of different sea areas on the antifouling property of Cu alloys is also discussed.

  12. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  13. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies...... as regards the biocide leaching and the surface polishing processes. Hence, the modeling framework developed in this work is built so as to describe any generic, chemically-active AF paint through model parameters, the values of which can be obtained or adjusted from relatively fast measurements...

  14. In situ Surface Tailoring with Zwitterionic Carboxybetaine Moieties on Self-Assembled Thin Film for Antifouling Biointerfaces

    Directory of Open Access Journals (Sweden)

    Chun-Jen Huang

    2013-12-01

    Full Text Available A novel biointerface bearing zwitterionic carboxybetaine moieties was developed for effective resistance to nonspecific adsorption of proteins and blood cells. Self-assembled thin films (SAFs of (N,N-dimethylaminopropyl trimethoxysilane were formed as mattress layers by either vapor or solution deposition. Subsequently, the tertiary amine head groups on SAFs were reacted with β-propiolactone to give zwitterionic carboxybetaine moieties via in situ synthesis. The optimal reaction time of 8 h for both preparation methods was verified by static contact angle measurements. According to the X-ray photoelectron spectroscopy, 67.3% of amine groups on SAFs prepared from the vapor deposition was converted to the zwitterionic structures after reaction of β-propiolactone. The antifouling properties of the zwitterionic biointerfaces were quantitatively evaluated in the presence of protein solutions using a quartz crystal microbalance with dissipation, showing a great improvement by factors of 6.5 and 20.2 from tertiary amine SAFs and bare SiO2 surfaces, respectively. More importantly, the zwitterionic SAFs were brought to contact with undiluted human blood in chaotic-mixer microfluidic systems; the results present their capability to effectively repel blood cell adhesion. Accordingly, in this work, development of carboxybetaine SAFs offers a facile yet effective strategy to fabricate biocompatible biointerfaces for a variety of potential applications in surface coatings for medical devices.

  15. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  16. Prediction and assessment of mixture toxicity of compounds in antifouling paints using the sea-urchin embryo-larval bioassay.

    Science.gov (United States)

    Bellas, Juan

    2008-07-30

    The ecotoxicological assessment of alternative "booster" biocides is urgently needed in order to develop environmentally acceptable antifouling paints. However, research has focused mainly on single compounds, and there is still a lack of data on their mixture toxicity. The present study investigated the single and mixture toxicity of three of the most widely used antifouling biocides: zinc pyrithione, chlorothalonil and Sea-Nine, using the sea-urchin (Paracentrotus lividus) embryo-larval bioassay. Also, the predictive ability of the concentration addition (CA) and independent action (IA) concepts for antifouling mixtures was evaluated. Both concepts failed to accurately predict the toxicity of the antifouling mixtures, with the exception of the zinc pyrithione and Sea-Nine mixture, which was accurately predicted by the IA concept, suggesting a dissimilar mode of action of those substances. In general, CA predicted consistently higher toxicity than IA; however, CA overestimated the toxicity of the studied mixtures by a factor of only 1.6, representing a reasonable worst-case approach to be used in the predictive hazard assessment of antifouling mixtures. Finally, the present study demonstrates that the risk of antifouling mixtures for the early developmental stages of sea urchin is higher than the risk of each single substance, and therefore, the inclusion of mixture considerations in the development of water quality criteria for antifouling compounds is strongly recommended.

  17. Anti-fouling Coatings of Poly(dimethylsiloxane) Devices for Biological and Biomedical Applications

    OpenAIRE

    Zhang, Hongbin; Chiao, Mu

    2015-01-01

    Fouling initiated by nonspecific protein adsorption is a great challenge in biomedical applications, including biosensors, bioanalytical devices, and implants. Poly(dimethylsiloxane) (PDMS), a popular material with many attractive properties for device fabrication in the biomedical field, suffers serious fouling problems from protein adsorption due to its hydrophobic nature, which limits the practical use of PDMS-based devices. Effort has been made to develop biocompatible materials for anti-...

  18. Environmental Effects from In-Water Hull Cleaning of Ablative Copper Antifouling Coatings

    Science.gov (United States)

    1994-07-01

    spermatozoa . Biol. Bull., 147, 236. Zeitoun, N.A., E.F. Mandelli, W.1. Mclnhenny, and R.O. Reid. 1969. Disposal of the effluents from desalination plants...S.H. Lieberman, and C. Clavell. 1978. Measurement of Cu and Zn in San Diego Bay by automated anodic stripping voltametry. Environ. Sci. Technol., 12

  19. In Situ Determination of Butyltin Release Rates from Antifouling Coatings on Navy Test Ships

    Science.gov (United States)

    1985-07-01

    PRINT NI "CP-3.57," ". 500 40 IF Y>uI0 THEN PRINT NIP "CP-2.9,-.25;": GUrO 500 ’ 90 IPRIN’f1l1, "!:P- 2.23, -.2 ;" ’.,’Q PRINT NIt "LB’YICHR6(3) 5 FUR .,tI

  20. The double effects of silver nanoparticles on the PVDF membrane: Surface hydrophilicity and antifouling performance

    Science.gov (United States)

    Li, Jian-Hua; Shao, Xi-Sheng; Zhou, Qing; Li, Mi-Zi; Zhang, Qi-Qing

    2013-01-01

    In this study, silver nanoparticles were used to endow poly(vinylidene fluoride) (PVDF) membrane with excellent surface hydrophilicity and outstanding antifouling performance. Silver nanoparticles were successfully immobilized onto PVDF membrane surface under the presence of poly(acrylic acid) (PAA). The double effects of silver nanoparticles on PVDF membrane, i.e., surface hydrophilicity and anti-fouling performance, were systematically investigated. Judging from result of water static contact measurement, silver nanoparticles had provided a significant improvement in PVDF membrane surface hydrophilicity. And the possible explanation on the improvement of PVDF membrane surface hydrophilicity with silver nanoparticles was firstly proposed in this study. Membrane permeation and anti-bacterial tests were carried out to characterize the antifouling performance of PVDF membrane. Flux recovery ratio (FRR) increased about 40% after the presence of silver nanoparticles on the PVDF membrane surface, elucidating the anti-organic fouling performance of PVDF membrane was elevated by silver nanoparticles. Simultaneously, anti-bacterial test confirmed that PVDF membrane showed superior anti-biofouling activity because of silver nanoparticles. The above-mentioned results clarified that silver nanoparticles can endow PVDF membrane with both excellent surface hydrophilicity and outstanding antifouling performance in this study.

  1. Marine Microcosm Experiments on Effects of Copper and Tributylin-Based Antifouling Paint Leachates

    Science.gov (United States)

    1988-06-01

    several years to examine the effects on benthos of common harbor pollutants, such as sewage nutrients, heavy metals, excess heat, fresh water, and...EFFECTS OF ANTIFOULING LEACHATES ON TWO SPECIES OF CORAL INTRODUCTION Many species of inshore stony corals are potentially useful as bioindicators of

  2. Presence and effects of marine microbial biofilms on biocide-based antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    of the dense extracellular polymeric substances (EPS) matrix on the release rate of the compounds involved in antifouling paint performance (i.e. active compounds and controlled-release binder molecules). A deeper understanding of these phenomena is of interest for both environmental legislators and paint...

  3. A practical ranking system to compare toxicity of anti-fouling paints.

    Science.gov (United States)

    Karlsson, Jenny; Breitholtz, Magnus; Eklund, Britta

    2006-12-01

    The toxicity of a number of new anti-fouling paints, claimed to function by physical means and not by leakage of toxic substances, have been tested on two common organisms in the Baltic Sea, i.e., the red macro alga Ceramium tenuicorne and the copepod Nitocra spinipes. In order to compare the toxicity between the paints a ranking system was developed based on the EC(50)- and LC(50)-values. The results showed a wide span in toxicity with the most toxic paints ranked 160 times more toxic than the ones ranked least toxic. Also, TBT, irgarol and diuron, which have been used as active ingredients in traditional anti-fouling paints, were used to evaluate the sensitivity of the two test organisms. The results showed that the test organisms were equally sensitive to the substances as similar organisms in earlier studies. In conclusion, the ranking system presented in this study permits ranking and comparison of total toxicity of complex mixtures.

  4. Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility.

    Science.gov (United States)

    Xie, Yi; Li, Shuang-Si; Jiang, Xin; Xiang, Tao; Wang, Rui; Zhao, Chang-Sheng

    2015-04-01

    In this study, novel zwitterionic glycosyl modified polyethersulfone (PES) ultrafiltration membranes were prepared via in-situ cross-linking polymerization coupled with phase inversion technique, and the following reactions. The membranes were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), (1)HNMR spectrum, and static water contact angles (WCAs) measurements. The modified membranes showed excellent anti-fouling property, and the flux recovery ratio could reach almost 100%. Meanwhile, the blood compatibility of the membranes was measured by protein adsorption, platelet adhesion, activated partial thromboplastin time (APTT), and thrombin time (TT). The results implied that the zwitterionic glycosyl modified PES membranes had good anti-fouling property and blood compatibility.

  5. A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane.

    Science.gov (United States)

    Xie, Yi; Wang, Rui; Li, Shuangsi; Xiang, Tao; Zhao, Chang-Sheng

    2016-10-01

    Functional copolymers were successfully grafted onto polyethersulfone (PES) membrane surfaces by free radical mechanism using ammonium persulfate (APS) as an initiator. The anti-coagulant and anti-fouling properties of the membranes were well controlled by changing the functional copolymer compositions. Attenuated total reflection-Fourier transforminfrared (ATR-FTIR), X-ray photoelectron spectrometer spectrum (XPS), water contact angles (WCAs), and scanning electron microscopy (SEM) images were used to characterize the membranes. The results of protein adsorption, clotting times, platelet adhesion and bacteria attachment indicated that the membranes had good blood-compatibility and/or anti-fouling ability. Meanwhile, the modification didn't cause an adverse effect on the membrane permeability. This new method provides a general, robust and flexible way to adjust membrane surface performance and potentially has wide applications.

  6. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area.

    Science.gov (United States)

    Lee, Mi-Ri-Nae; Kim, Un-Jung; Lee, In-Seok; Choi, Minkyu; Oh, Jeong-Eun

    2015-10-15

    Twelve organotins (methyl-, octyl-, butyl-, and phenyl-tin), and eight tin-free antifouling paints and their degradation products were measured in marine sediments from the Korean coastal area, and Busan and Ulsan bays, the largest harbor area in Korea. The total concentration of tin-free antifouling paints was two- to threefold higher than the total concentration of organotins. Principal component analysis was used to identify sites with relatively high levels of contamination in the inner bay area of Busan and Ulsan bays, which were separated from the coastal area. In Busan and Ulsan bays, chlorothalonil and DMSA were more dominant than in the coastal area. However, Sea-Nine 211 and total diurons, including their degradation products, were generally dominant in the Korean coastal area. The concentrations of tin and tin-free compounds were significantly different between the east and west coasts.

  7. Accumulation of Cu and Zn in discarded antifouling paint particles by the marine gastropod, Littorina littorea

    Science.gov (United States)

    Gammon, Melanie; Turner, Andrew; Brown, Murray T.

    2009-10-01

    The short-term (5 day) accumulation of Cu and Zn in different tissues of the marine gastropod, Littorina littorea, has been studied in the presence of ˜10 mg l -1 of antifouling paint particles and pre- or simultaneously contaminated algal food ( Ulva lactuca). Accumulation of Cu was observed in the head-foot, digestive gland-gonad complex and gills to extents dependent on how and when food was contaminated and administered. However, retention of Zn was only observed in the gills and only when L. littorea and U. lactuca were simultaneously exposed to paint particles. Relative to the alga, faecal material was highly enriched in Zn, suggesting that the animal is able to rapidly eliminate this metal, most likely through the formation and egestion of insoluble phosphate granules. Thus, L. littorea is a useful biomonitor of marine contamination by antifouling applications in respect of Cu but not Zn.

  8. Antifouling briarane type diterpenoids from South China Sea gorgonians Dichotella gemmacea

    KAUST Repository

    Sun, Jian Fan

    2013-01-01

    Our continued investigation on the South China Sea gorgonian Dichotella gemmacea led to the isolation of 16 new briarane-type diterpenoids, dichotellides F-U (1-16), along with 18 known analogues (17-34). Their structures were determined by MS, 1D and 2D NMR spectra analyses and by comparison with those reported in literature. The absolute configuration of 15 was confirmed by single-crystal X-ray diffraction data. The antifouling test showed that compounds 3, 4, 6-11, 16, and 23 had potent antifouling activities at nontoxic concentrations with EC50 values of 4.1, 1.82, 6.3, 7.6, 4.6, 1.2, 5.6, 0.79, 2.0, and 0.2 μg/mL, respectively. © 2012 Elsevier Ltd. All rights reserved.

  9. Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Weinell, Claus Erik;

    2003-01-01

    The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites. In this rev......The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites....... In this review, the usefulness of combining rotary experiments with the development of detailed mathematical models of paint behaviour will be discussed with reference to the relevant literature. Mathematical models can generally be used in the design of suitable release systems for various active components...

  10. Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.

    Science.gov (United States)

    Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M

    2000-01-01

    An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.

  11. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  12. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    Science.gov (United States)

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  13. Construction and screening of 2-aryl benzimidazole library identifies a new antifouling and antifungal agent.

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Tilvi, S.; Mascarenhas, S.; Kumar, Vikash.; Chatterjee, Amrita; Banerjee, Mainak.

    compound with maximum antifouling properties and hence was selected for further studies. The dose response studies were performed on compound 4j against 10 strains of Gram positive and Gram negative fouling bacteria with concentration ranging from 25...-fouling capacity of the compounds: Gram positive bacteria (Planococcus donghaensis) & Gram negative bacteria (Alcanivorax spp, Aeromonas hydrophila subsp hydrophila ATCC 7966, Aeromonas hydrophila subsp. salmonicida A449, Erythrobacter litoralis, Pseudomonas...

  14. Engineering of nanoscale antifouling and hydrophobic surfaces on naval structural steel HY-80 by anodizing

    OpenAIRE

    Samaras, Thomas

    2015-01-01

    Approved for public release; distribution is unlimited The impact that biofouling has on a ship’s performance has long been recognized, since it increases the frictional resistance of the hull and can increase the ship’s fuel consumption. In this study, the spectrum of hydrophobic and antifouling surface patterns that can electrochemically be fabricated on HY-80 steel (alloy that is broadly used in shipbuilding for welded hull plates) is examined. After the fabrication of nanoscaled topogr...

  15. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels.

    Science.gov (United States)

    Zhao, Chao; Li, Xiaosi; Li, Lingyan; Cheng, Gang; Gong, Xiong; Zheng, Jie

    2013-02-01

    The emergence and reemergence of microbial infection demand an urgent response to develop effective biomaterials that prevent biofilm formation and associated bacterial infection. In this work, we have synthesized and characterized hybrid poly(N-hydroxyethylacrylamide) (polyHEAA)/salicylate (SA) hydrogels with integrated antifouling and antimicrobial capacities. The antifouling efficacy of polyHEAA hydrogels was examined via exposure to proteins, cells, and bacteria, while the antimicrobial activity of SA-treated polyHEAA hydrogels was investigated against both gram-negative Escherichia coli RP437 and gram-positive Staphylococcus epidermidis. The results showed that polyHEAA/SA hydrogels exhibited high surface resistance to protein adsorption, cell adhesion, and bacteria attachment. The polyHEAA hydrogels were also characterized by their water content and state of water, revealing a strong ability to contain and retain high nonfreezable water content. This work demonstrates that the hybrid polyHEAA/SA hydrogels can be engineered to possess both antifouling and antimicrobial properties, which can be used for different in vitro and in vivo applications against bacterial infection.

  16. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a \\'layer by layer\\' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance of the membranes. In addition, the incorporation of an LBL film also helped to amplify the number of potential reaction sites on the membrane surfaces for attachment of antifouling polymer brushes, which were then attached to the surface. Attachment of the brushes included two different approaches, grafting to and grafting from. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements showed successful growth of the LBL films and subsequently the polymer brushes. Using this method to modify reverse osmosis membranes, preliminary performance testing showed the antifouling properties of the as-modified membranes were much better than the virgin membrane with no significant loss in water flux and salt rejection. © 2013 The Royal Society of Chemistry.

  17. Inspection method for the identification of TBT-containing antifouling paints.

    Science.gov (United States)

    Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro

    2003-04-01

    In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.

  18. Preparation and antifouling property of polyurethane film modified by chondroitin sulfate

    Science.gov (United States)

    Yuan, Huihui; Xue, Jing; Qian, Bin; Chen, Huaying; Zhu, Yonggang; Lan, Minbo

    2017-02-01

    An antifouling polyurethane film modified by chondroitin sulfate (PU-CS) was prepared by chemical grafting with N-Boc-1,3-propanediamine as a spacer. The different mass fraction of N-Boc-1,3-propanediamine was investigated to obtain PU-CS films with different CS grafting density. The surface properties of PU-CS films were comprehensively characterized. Proteins adsorption and glycosaminoglycans adhesion on films were evaluated. Moreover, inorganic salt deposition on film with highest CS grafting density (3.70 μg/cm2) was briefly investigated. The results showed that the increase of CS grafting density improved not only the hydrophilicity but the antifouling performance of films. The best antifouling film reduced the adsorption of fibrinogen (BFG), human serum albumin (HSA) and lysozyme (LYS) by 81.4%, 95.0% and 76.5%, respectively, and the adhesion of chondroitin (CS), heparin (HP) and hyaluronic acid (HA) by 70.6%, 87.4% and 81.3%, respectively. In addition, the co-adsorption of proteins and glycosaminoglycans reduced up to 86.9% and 75.5%, respectively. Changes in inorganic salt deposition after co-adsorption of proteins and glycosaminoglycans on PU-CS(3) suggested that the proteins promoted the inorganic salt deposition, while glycosaminoglycans inhibited the crystal growth. The negatively charged polysaccharides might promote the generation of smaller crystals which could be conducive to provide theoretical and practical guide to develop novel urinary stents with significant anti-encrustation properties.

  19. A degradable polydopamine coating based on disulfide-exchange reaction

    Science.gov (United States)

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S.

    2015-11-01

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies. Electronic supplementary information (ESI) available: Synthesis, characterization, and other additional details. See DOI: 10

  20. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    OpenAIRE

    Philip S. Brown; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work...

  1. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  2. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    Science.gov (United States)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-03-01

    , the former showed higher antifouling properties generally. Aluminium-zinc alloy spray coated films had higher antifouling property. And the anti-property decreased in this order: Al-Zn alloy spray coating > Zinc spray coating > Aluminium spray coating > Stacked chromium/nickel spray coating. Aluminium and zinc spray coating has been evaluated high conventionally for anti-biofouling in marine environment. However, the Cr/Ni spray coating showed pretty high anti-fouling property.

  3. Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry.

    Science.gov (United States)

    Xiang, Tao; Lu, Ting; Xie, Yi; Zhao, Wei-Feng; Sun, Shu-Dong; Zhao, Chang-Sheng

    2016-08-01

    The chemical compositions are very important for designing blood-contacting membranes with good antifouling property and blood compatibility. In this study, we propose a method combining ATRP and click chemistry to introduce zwitterionic polymer of poly(sulfobetaine methacrylate) (PSBMA), negatively charged polymers of poly(sodium methacrylate) (PNaMAA) and/or poly(sodium p-styrene sulfonate) (PNaSS), to improve the antifouling property and blood compatibility of polysulfone (PSf) membranes. Attenuated total reflectance-Fourier transform infrared spectra, X-ray photoelectron spectroscopy and water contact angle results confirmed the successful grafting of the functional polymers. The antifouling property and blood compatibility of the modified membranes were systematically investigated. The zwitterionic polymer (PSBMA) grafted membranes showed good resistance to protein adsorption and bacterial adhesion; the negatively charged polymer (PNaSS or PNaMAA) grafted membranes showed improved blood compatibility, especially the anticoagulant property. Moreover, the PSBMA/PNaMAA modified membrane showed both antifouling property and anticoagulant property, and exhibited a synergistic effect in inhibiting blood coagulation. The functionalization of membrane surfaces by a combination of ATRP and click chemistry is demonstrated as an effective route to improve the antifouling property and blood compatibility of membranes in blood-contact.

  4. Chemical study and antifouling activity of Caribbean octocoral Eunicea laciniata;Estudio quimico y evaluacion de la actividad antifouling del octocoral caribeno Eunicea laciniata

    Energy Technology Data Exchange (ETDEWEB)

    Cuadrado Silva, Carmen Tatiana; Castellanos Hernandez, Leonardo; Osorno Reyes, Oscar Eduardo; Ramos Rodriguez, Freddy Alejandro; Duque Beltran, Carmenza, E-mail: lcastellanosh@bt.unal.edu.c [Universidad Nacional de Colombia, Bogota (Colombia). Fac. de Ciencias. Dept. de Quimica; Puyana Hegedus, Monica [Universidad Jorge Tadeo Lozano, Bogota (Colombia)

    2010-07-01

    The bioassay guided purification of the octocoral Eunicea laciniata organic extract, collected at Santa Marta bay, Colombia, allowed the isolation of the new compound (-)-3beta-pregna-5,20-dienyl-beta-D-arabinopyranoside (1), along with the known compounds 1(S{sup *}),11(R{sup *})-dolabell-3(E),7(E),12(18)-triene (2), 13-keto-1(S),11(R)-dolabell-3(E),7(E),12(18)-triene (3), cholest- 5,22-dien-3beta-ol (4), cholesterol (5), y brassicasterol (6). The structure and absolute configuration of 1 was determined on based spectroscopic analyses (NMR and CD). The extract showed antifouling activity against five strains of marine bacteria associated to heavy fouled surfaces. Also showed activity against the cypris of the cosmopolitan barnacle Balanus amphitrite, and low toxicity in Artemia salina test. (author)

  5. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906-3920] and the simplified biofilm. growth model of Gujer...... and Warmer [W. Gujer, O. Warmer, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley-Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent...

  6. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    Directory of Open Access Journals (Sweden)

    Anna Miodek

    2015-09-01

    Full Text Available An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT and further passivated with 1-mercapto-6-hexanol (MCH. HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS, the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  7. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors.

    Science.gov (United States)

    Miodek, Anna; Regan, Edward M; Bhalla, Nikhil; Hopkins, Neal A E; Goodchild, Sarah A; Estrela, Pedro

    2015-09-29

    An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT) and further passivated with 1-mercapto-6-hexanol (MCH). HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS), the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct) upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA) solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM) layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  8. Hemocompatible polyethersulfone/polyurethane composite membrane for high-performance antifouling and antithrombotic dialyzer.

    Science.gov (United States)

    Yin, Zehua; Cheng, Chong; Qin, Hui; Nie, Chuanxiong; He, Chao; Zhao, Changsheng

    2015-01-01

    Researches on blood purification membranes are fuelled by diverse clinical needs, such as hemodialysis, hemodiafiltration, hemofiltration, plasmapheresis, and plasma collection. To approach high-performance dialyzer, the integrated antifouling and antithrombotic properties are highly necessary for the design/modification of advanced artificial membranes. In this study, we propose and demonstrate that the physical blend of triblock polyurethane (PU) and polyethersulfone (PES) may advance the performance of hemodialysis membranes with greatly enhanced blood compatibility. It was found that the triblock PU could be blended with PES at high ratio owing to their excellent miscibility. The surfaces of the PES/PU composite membranes were characterized using attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, water contact angle measurement, and surface ζ-potentials. The results indicated that the membrane surfaces were assembled with hydrophilic segregation layer owing to the migration of amphiphilic PU segments during membrane preparation, which might confer the composite membranes with superior hemocompatibility. The cross-section scanning electron microscopy images of the composite membranes exhibited structure transformation from finger-like structure to sponge-like structure, which indicated that the composite membrane had tunable porosity and permeability. The further ultrafiltration experiments indicated that the composite membranes showed increased permeability and excellent antifouling ability. The blood compatibility observation indicated that PES/PU composite membranes owned decreased protein adsorption, suppressed platelet adhesion, and prolonged plasma recalcification time. These results indicated that the PES/PU composite membranes exhibited enhanced antifouling and antithrombotic properties than the pristine PES membrane. The strategy may forward the fabrication of blood compatible composite membranes for

  9. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Science.gov (United States)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-11-01

    In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation

  10. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    Science.gov (United States)

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  11. Toxicity of anti-fouling biocides to Parorchis acanthus (Digenea: Philophthalmidae) cercarial encystment.

    Science.gov (United States)

    Morley, N J; Leung, K M Y; Morritt, D; Crane, M

    2003-03-17

    The toxicity of the anti-fouling biocides tributyltin (TBTO), copper, and Irgarol 1051 (irgarol) at nominal concentrations ranging from 10 to 10,000 microg l(-1) was investigated against the speed of encystment and successful formation of a protective cyst of the cercariae of Parorchis acanthus. For all biocide exposures, cercariae had a much slower rate of encystment and reduced cyst formation than controls. Exposure of the snail host Nucella lapillus for 7 d caused complete cessation of cercarial shedding in irgarol-exposed snails but had no effect on cercarial encystment from TBTO and copper-exposed snails. The mechanisms of toxicity of the biocides are briefly discussed.

  12. Use of thiolated oligonucleotides as anti-fouling diluents in electrochemical peptide-based sensors.

    Science.gov (United States)

    McQuistan, Adam; Zaitouna, Anita J; Echeverria, Elena; Lai, Rebecca Y

    2014-05-11

    We incorporated short thiolated oligonucleotides as passivating diluents in the fabrication of electrochemical peptide-based (E-PB) sensors, with the goal of creating a negatively charged layer capable of resisting non-specific adsorption of matrix contaminants. The E-PB HIV sensors fabricated using these diluents were found to be more specific and selective, while retaining attributes similar to the sensor fabricated without these diluents. Overall, these results highlight the advantages of using oligonucleotides as anti-fouling diluents in self-assembled monolayer-based sensors.

  13. Antifouling activity of seaweed extracts from Guarujá, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Heloisa Elias Medeiros

    2007-12-01

    Full Text Available Marine biofouling historically constitutes one of the major constraints faced by mankind in its oceanic activities. The search for alternatives to TBT-based antifouling paints has led several researchers to focus efforts in the development of environmentally friendly natural compounds. This work has contributed with this search, testing the antifouling potential of crude organic extracts from four seaweed species collected at Praia Branca, Guarujá district, São Paulo, Brazil. Throughout laboratory antifouling assays in which the attachment of a common fouling organism, the brown mussel Perna perna, was employed, antifouling activity (p A incrustação biológica constitui, historicamente, um dos maiores problemas encontrados pelo homem em suas atividades no mar. A busca por alternativas a tintas antiincrustantes contendo tributilestanho (TBT tem levado diversos pesquisadores a concentrar esforços no desenvolvimento de substâncias naturais menos danosas à biota marinha. Este trabalho procurou contribuir com essa busca, testando o potencial antiincrustante de quatro diferentes espécies de macroalgas da Praia Branca, município de Guarujá, SP. Através de testes antiincrustantes em laboratório utilizando a fixação de um organismo incrustante comum, o mexilhão Perna perna, foi constatado que os extratos de Jania rubens (Rhodophyta, Cryptonemiales e Bryothamnion seaforthii (Rhodophyta, Ceramiales, à concentração natural, apresentaram atividade antiincrustante significativa (p < 0,05, enquanto Dictyopteris delicatula (Phaeophyta, Dictyotales e Heterosiphonia gibbesii (Rhodophyta, Ceramiales não demonstraram eficiência na inibição da fixação de bissos do molusco. Das algas que indicaram potencial atividade contra a incrustação, J. rubens apresentou melhor desempenho em relação a B. seaforthii. Futuras investigações em campo serão necessárias para a obtenção de resultados que possam refletir melhor as condições naturais

  14. Terpenoids from a Chinese Gorgonian Anthogorgia sp. and Their Antifouling Activities

    Institute of Scientific and Technical Information of China (English)

    陈达伟; 刘东; 沈施; 程伟; 林文翰

    2012-01-01

    Chemical examination of a Chinese gorgonian Anthogorgia sp. resulted in the isolation of seven terpenoids, including two new compounds, an rearranged serrulatane-type diterpenoid anthogorgiene P (1) and a guaiazuenebased terpenoid anthogorgiene Q (2). Anthogorgiene P (1) contains an unprecedented cubebane nucleus which is rarely found from nature. The structures of new compounds were elucidated on the basis of extensive spectroscopic methods (IR, UV, MS, CD and NMR). Compound 7 showed potent antifouling activity against the larval settlement of Balanus amphitrite, while 1 and 4 possessed moderate inhibition.

  15. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China); Hu, Wenhan; Li, Yi [Suzhou Faith & Hope Membrane Technology Co., Ltd., Suzhou, 215000 (China); Li, Xinsong, E-mail: lixs@seu.edu.cn [School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189 (China)

    2016-11-01

    Highlights: • Amino acids have been successfully grafted onto the surface of PES membranes via amino groups induced epoxy ring opening. • Zwitterionic PES ultrafiltration membranes exhibit excellent antifouling performance and improved permeation properties. • A facile strategy to combat fouling of PES ultrafiltration membranes is developed by grafting natural amino acids. - Abstract: In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption

  16. Fabrication and anti-fouling properties of photochemically and thermally immobilized poly(ethylene oxide) and low molecular weight poly(ethylene glycol) thin films.

    Science.gov (United States)

    Wang, Hui; Ren, Jin; Hlaing, Aye; Yan, Mingdi

    2011-02-01

    Poly(ethylene oxide) (PEO) and low molecular weight poly(ethylene glycol) (PEG) were covalently immobilized on silicon wafers and gold films by way of the CH insertion reaction of perfluorophenyl azides (PFPAs) by either photolysis or thermolysis. The immobilization does not require chemical derivatization of PEO or PEG, and polymers of different molecular weights were successfully attached to the substrate to give uniform films. Microarrays were also generated by printing polymer solutions on PFPA-functionalized wafer or Au slides followed by light activation. For low molecular weight PEG, the immobilization was highly dependent on the quality of the film deposited on the substrate. While the spin-coated and printed PEG showed poor immobilization efficiency, thermal treatment of the PEG melt on PFPA-functionalized surfaces resulted in excellent film quality, giving, for example, a grafting density of 9.2×10(-4)Å(-2) and an average distance between grafted chains of 33Å for PEG 20,000. The anti-fouling property of the films was evaluated by fluorescence microscopy and surface plasmon resonance imaging (SPRi). Low protein adsorption was observed on thermally-immobilized PEG whereas the photoimmobilized PEG showed increased protein adsorption. In addition, protein arrays were created using polystyrene (PS) and PEG based on the differential protein adsorption of the two polymers.

  17. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.

    Science.gov (United States)

    Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian

    2016-10-15

    Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications.

  18. Anti-fouling properties of Fab' fragments immobilized on silane-based adlayers

    Science.gov (United States)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-12-01

    Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab') in biosensors. One Fab' linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab' fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab' fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab'-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection.

  19. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    Science.gov (United States)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  20. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-08-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  1. Dissolution rate measurements of sea water soluble pigments for antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    The dissolution of soluble pigments from both tin-based and tin-free chemically active antifouling (AF) paints is a key process influencing their polishing and biocide leaching rates. In this context, a low time- and resources-consuming method capable of screening the pigment behaviour in the sea......The dissolution of soluble pigments from both tin-based and tin-free chemically active antifouling (AF) paints is a key process influencing their polishing and biocide leaching rates. In this context, a low time- and resources-consuming method capable of screening the pigment behaviour...... in the search for the most promising materials or mixtures is of great interest. A preliminary attempt to develop such a method is presented in this paper based on the widely used ZnO pigments. While highly pure, nano-polished, monocrystalline ZnO substrates yielded very low dissolution rates in the order of 17...... of defects in the lattice structure, are hypothesised to be responsible for the faster sea water attack of the pellets compared to the ZnO crystals. In any case, the ZnO dissolution rates reported in this paper are markedly lower than those associated with the sea water dissolution of cuprous oxide (Cu2O...

  2. Preparation Method of Crack-free PVDF Microfiltration Membrane with Enhanced Antifouling Characteristics.

    Science.gov (United States)

    Woo, Sahng Hyuck; Lee, Ju Sung; Lee, Hyun Ho; Park, Jinwon; Min, Byoung Ryul

    2015-08-05

    This study proposes a method to prepare a crack-free poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane with enhanced antifouling property. In the study, blending 4% poly(vinylidene fluoride)-graft-poly(sulfopropyl methacrylate) (PVDF-g-PSPMA) and 1.5% potassium perchlorate (KClO4) led to crack prevention during membrane preparation via nonsolvent induced phase separation (NIPS) when compared with blending with 4% PVDF-g-PSPMA only (without KClO4). The resulting crack-free membrane (A3) had both smooth surface structure and hydrophilicity in comparison with pristine PVDF membrane (A1). In addition, blending with PVDF-g-PSPMA and KClO4 also allowed the A3 membrane to exhibit uniform pore size distribution (PSD) and smooth surface structure, compared with PVDF membrane commercially available from company "M" in Germany. The aforementioned properties led to antifouling characteristics in the crack-free membrane (A3). According to flux performances, flux recovery and cumulative permeate volume (between 120 and 240 min) of crack-free membrane (A3) were 11.41 and 17.41% superior to those of commercial membrane, respectively.

  3. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.

    Science.gov (United States)

    Sharma, Sadhana; Johnson, Robert W; Desai, Tejal A

    2004-09-15

    In the past two decades, the biological and medical fields have seen great advances in the development of biosensors capable of quantifying biomolecules. Many of these biosensors have micro- and nano-scale features, are fabricated using biochip technology, and use silicon as a base material. The creation of antifouling sensor interfaces is critical to avoid serious consequences that arise due to their contact with biological fluids. To this end, we have created thin PEG interfaces of various grafting densities on silicon using a single-step PEG-silane coupling reaction scheme. Initial PEG concentration (5-50 mM) and coupling time (0.5-24 h) were varied to attain different grafting densities, and different PEG interfaces so created were analyzed using XPS and AFM. Furthermore, all the PEG interfaces were evaluated using XPS and AFM for their antifouling abilities using fibrinogen as the model protein. Results indicated that PEG interfaces created in this investigation are appropriate for biosensors with micro- and nano-scale features, and are efficient in controlling protein fouling.

  4. Improved antifouling properties of PVDF membranes modified with oppositely charged copolymer.

    Science.gov (United States)

    Shen, Xiang; Zhao, Yiping; Feng, Xia; Bi, Sixin; Ding, Wenbin; Chen, Li

    2013-01-01

    Biofouling resulting from the attachment of microorganisms communities to the membrane surface is the major obstacle for the widespread application of membrane technology. This work develops a feasible approach to prepare an anti-biofouling poly(vinylidene fluoride) (PVDF) membrane. A copolymer that possessed oppositely charged groups was first synthesized via radical copolymerization with methyl methacrylate, 2-methacryloxy ethyltrimethyl ammonium chloride and 2-acrylamide-2-methyl propane sulphonic acid as monomers. The copolymer was blended with the PVDF powder to prepare the antifouling membrane via the immersed phase inversion method. The antifouling properties of the modified PVDF membrane were studied by X-ray photoelectron spectroscopy, field emission scanning electron microscopy, water contact angle measurement, zeta-potential measurement, protein adsorption, microbial adhesion and filtration experiments. The modified PVDF membrane showed limited adsorption and adhesion of protein bovine serum albumin and microbes (Escherichia coli and Saccharomyces cerevisiae) with increasing copolymer concentration in the casting solution. The modified PVDF membrane exhibited excellent antibiofouling properties.

  5. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO{sub 2}/polyethylene glycol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Wang, Zhiwei, E-mail: zwwang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Xingran [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zheng, Xiang, E-mail: zhengxiang7825@163.com [School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 (China); Wu, Zhichao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Nano-TiO{sub 2}/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO{sub 2}/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO{sub 2} nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO{sub 2} was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  6. The legal design of the international and European Union ban on tributyltin antifouling paint: direct and indirect effects.

    Science.gov (United States)

    Gipperth, Lena

    2009-02-01

    The Convention on the Control of Harmful Anti-fouling Systems on Ships (AFS Convention), which was adopted in 2001 and will come into force in September 2008, bans the use of TBT (tributyltin) antifouling paint on ships. The EU (European Union) effectively implemented the Convention on 1 January 2008 by enforcing a similar ban. Several states have national restrictions and bans in place. The regulation on TBT antifouling paint aims at checking the risk of adverse effects on marine ecosystems. The legal and political situation is, however, characterized by complex relations between different layers of legislation, the use of several different legal techniques, and levels of ambition. The international and EU bans thereby cause some indirect effects, which are only partly included in what is seen as 'the TBT issue' and so only partly assessed in the legal process of the ban. This article discusses the expediency of the existing legislation and legal strategies aimed at reducing the negative environmental effects of TBT-like toxins in marine ecosystems and indirect effects of such actions. It considers the adequacy and limits of current regulatory approaches for handling complex environmental problems, such as TBT in antifouling paint.

  7. Concentration of Antifouling Biocides and Metals in Sediment Core Samples in the Northern Part of Hiroshima Bay

    Directory of Open Access Journals (Sweden)

    Noritaka Tsunemasa

    2014-06-01

    Full Text Available Accumulation of Ot alternative antifoulants in sediment is the focus of this research. Much research had been done on surface sediment, but in this report, the accumulation in the sediment core was studied. The Ot alternative antifoulants, Diuron, Sea-Nine211, and Irgarol 1051, and the latter’s degradation product, M1, were investigated in five samples from the northern part of Hiroshima Bay. Ot compounds (tributyltin (TBT and triphenyltin (TPT were also investigated for comparison. In addition, metal (Pb, Cu, Zn, Fe and Mn levels and chronology were measured to better understand what happens after accumulation on the sea floor. It was discovered that Ot alternative antifoulant accumulation characteristics in sediment were like Ot compounds, with the concentration in the sediment core being much higher than surface sediment. The concentration in sediment seems to have been affected by the regulation of Ot compounds in 1990, due to the concentration of Ot alternative antifoulants and Ot compounds at the survey point in front of the dock, showing an increase from almost the same layer after the regulation.

  8. Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties

    NARCIS (Netherlands)

    Kostina, Nina Yu.; Sharifi, Shahriar; Pereira, Andres de los Santos; Michalek, Jiri; Grijpma, Dirk W.; Rodriguez-Emmenegger, Cesar

    2013-01-01

    Novel antifouling highly wettable hydrogels with superior mechanical and self-healing properties are presented. Hydrogels were prepared by UV-initiated copolymerisation of non-fouling zwitterionic carboxybetaine methacrylamide (CBMAA-3) and 2-hydroxyethyl methacrylate (HEMA) in the presence of unifo

  9. Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (cirripedia, crustacea

    Directory of Open Access Journals (Sweden)

    Viswambaran Ganapiriya

    2012-06-01

    Full Text Available The antifouling activity of bioactive compounds from marine sponge Acanthella elongata (Dendy and five species of bacterial biofilm were studied. Larvae of Balanus amphitrite (Cyprids and nauplii were used to monitor the settlement inhibition and the extent to which inhibition was due to toxicity. The crude extract and partially purified fractions of A.elongata showed significant inhibition over the settlement individually, and with the interaction of bacterial species. No bacterial film stimulated the barnacle settlement. The high but variable levels of antifouling activity in combination with less amount of toxicity showed the potential of these metabolites in environmentally-friendly antifouling preparations.

  10. Multispectral Coatings

    Science.gov (United States)

    2010-01-01

    nanowires. 2.2 Project Objectives  This project used spin coating technology, new and commercial nanoparticle composites, and ODC’s patented...of this project. The spin coating method to deposit polymers has been widely studied and allows for simple, low cost depositions of thin films...Figure 5). Spin coating controls the layer thickness by balancing the centrifugal forces of a developing thin film to the viscous forces that increase

  11. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  12. Static vs dynamic settlement and adhesion of diatoms to ship hull coatings.

    Science.gov (United States)

    Zargiel, Kelli A; Swain, Geoffrey W

    2014-01-01

    Many experiments utilize static immersion tests to evaluate the performance of ship hull coatings. These provide valuable data; however, they do not accurately represent the conditions both the hull and fouling organisms encounter while a ship is underway. This study investigated the effect of static and dynamic immersion on the adhesion and settlement of diatoms to one antifouling coating (BRA 640), four fouling-release coatings (Intersleek(®) 700, Intersleek(®) 900, Hempasil X3, and Dow Corning 3140) and one standard surface (Intergard(®) 240 Epoxy). Differences in community composition were observed between the static and dynamic treatments. Achnanthes longipes was present on all coatings under static immersion, but was not present under dynamic immersion. This was also found for diatoms in the genera Bacillaria and Gyrosigma. Melosira moniformis was the only diatom present under dynamic conditions, but not static conditions. Several common fouling diatom genera were present on panels regardless of treatment: Amphora, Cocconeis, Entomoneis Cylindrotheca, Licmophora, Navicula, Nitzschia, Plagiotropis, and Synedra. Biofilm adhesion, diatom abundance and diatom diversity were found to be significantly different between static and dynamic treatments; however, the difference was dependent on coating and sampling date. Several coatings (Epoxy, DC 3140 and IS 700) had significantly higher biofilm adhesion on dynamically treated panels on at least one of the four sampling dates, while all coatings had significantly higher diatom abundance on at least one sampling date. Diversity was significantly greater on static panels than dynamic panels for Epoxy, IS 700 and HX3 at least once during the sampling period. The results demonstrate how hydrodynamic stress will significantly influence the microfouling community. Dynamic immersion testing is required to fully understand how antifouling surfaces will respond to biofilm formation when subjected to the stresses experienced

  13. Diatom community structure on commercially available ship hull coatings.

    Science.gov (United States)

    Zargiel, Kelli A; Coogan, Jeffrey S; Swain, Geoffrey W

    2011-10-01

    Diatoms are primary colonizers of both antifouling and fouling-release ship hull coatings. There are few published studies which report on diatom community development on modern ship hull coatings. This study reports diatom communities on eight commercial marine ship hull coatings exposed at three static immersion sites along the east coast of Florida, viz. Daytona, Sebastian, and Miami. The coatings tested were three ablative copper systems (Ameron ABC-3, International BRA-640, and Hempel Olympic 76600), two copper-free biocidal systems (E-Paint SN-1, Sherwin Williams HMF), and three fouling-release (FR) systems (International Intersleek 700, International Intersleek 900, and Hempel Hempasil). One hundred and twenty-seven species comprising 44 genera were identified, including some of the more commonly known foulers, viz. Achnanthes, Amphora, Cocconeis, Entomoneis, Licmophora, Melosira, Navicula, Nitzschia, Synedra, and Toxarium. A significant difference was seen among sites, with the more estuarine site, Sebastian, having lower overall diatom abundance and higher diversity than Daytona and Miami. Copper coatings were primarily fouled by Amphora delicatissima and Entomoneis pseudoduplex. Copper-free coatings were fouled by Cyclophora tenuis, A. delicatissima, Achnanthes manifera, and Amphora bigibba. FR surfaces were typified by C. tenuis, and several species of Amphora. The presence of C. tenuis is new to the biofouling literature, but as new coatings are developed, this diatom may be one of many that prove to be problematic for static immersion. Results show coatings can be significantly influenced by geographical area, highlighting the need to test ship hull coatings in locations similar to where they will be utilized.

  14. Research progress on anti-fouling modification methods of UF membrane materials%超滤膜材料抗污染改性方法研究进展

    Institute of Scientific and Technical Information of China (English)

    隋燕; 高从堦

    2011-01-01

    The research progress on the antifouling modification of ultrafiltration membrane materials in recent years is reviewed. Some monomers with hydrophilic/hydrophobic amphipathic groups such as poly (ethylene oxide) or poly(ethylene glycol), zwitterion, poly(2-hydroxyethyl methacrylate) and poly(acryl-amide) are employed to modify and improve the performance and chemical stability of UF membranes . A variety of methods such as free radical initiated polymerization, substitution or esterification reaction, blending, surface coating, plasma surface treatment are used to the modification. Based upon the studies, the antifouling performance of the organic ultrafiltration membranes has greatly enhanced. It also promotes their wider applications.%从改性材料和方法两方面综述近几年抗污染超滤膜材料改性的研究进展情况.亲水/疏水两性基团如含聚氧乙烯或含聚乙二醇单体、双离子两性分子和聚2-甲基丙烯酸羟乙酯及聚丙烯酰胺等是制备高性能、化学稳定超滤膜的主要改性材料.采用自由基引发聚合、取代或酯化反应、共混、表面涂层或等离子体表面处理等作为改性的主要方法.膜材料改性研究的拓展大大提高了有机超滤膜的抗污染性能,使其应用更加稳定,使用范围更加广泛.

  15. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.

    Science.gov (United States)

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David

    2012-01-01

    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  16. Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina

    2014-01-01

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the result......High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case...... was retained for the membrane with a dopamine coating, while the relative activity was less than 40% without the coating. The resistance to high temperature and acidic/alkaline pH was also improved by the dopamine coating for the immobilized laccase. Moreover, this biocatalytic membrane could resist mild...... hydrodynamic cleaning (e.g., back-flushing), but the catalytic ability was reduced by chemical cleaning at extreme pH (e.g., 1.5 and 11.5). Since the immobilized enzyme is not directly facing the bulk of EMRs and the substrate can be specifically selected by the separation skin layer, this biocatalytic...

  17. Compact test apparatus for evaluation of flow erosion of marine coatings

    Science.gov (United States)

    Debowski, M. A.; Quintana, R.; Lee, H. P.

    2015-10-01

    An apparatus designed and manufactured for evaluation of flow erosion of coatings or layers is presented in this paper. The setup was primarily designed for coatings intended to perform in dynamic marine environments but can be also used for evaluation using fresh water. The concept is based on an in-line flow test cell and modular design allowing good flexibility of varying testing parameters. The flow rate that can be achieved depends on the flow cell geometry and can reach 28 km/h (15 kn) with the presented setup. Temperature may be adjusted between 15 and 35 °C. Particle and metal ion filters are parts of this setup. The dimensions of the apparatus including all components do not exceed 2 m × 2 m × 2 m. The use of the apparatus is illustrated with the results of evaluation of self-polishing anti-fouling coatings and model, silicon wafer grafted layers.

  18. Feasibility of bovine submaxillary mucin (BSM) films as biomimetic coating for polymeric biomaterials

    DEFF Research Database (Denmark)

    Lee, Seunghwan; Madsen, Jan Busk; Pakkanen, Kirsi I.

    2013-01-01

    Feasibility of bovine submaxillary mucin (BSM) films generated via spontaneous adsorption from aqueous solutions onto polydimethylsiloxane (PDMS) and polystyrene (PS) surfaces have been investigated as biomimetic coatings for polymeric biomaterials. Two attributes as biomedical coatings, namely......-on-disk tribometry, employing compliant PDMS as tribopairs, has shown that BSM coatings generated on PDMS surface via spontaneous adsorption from aqueous solution has effective lubricating properties, but for very limited duration only....... anti-fouling properties and lubricity, have been focused on in this study. Optical waveguide light-mode spectroscopy (OWLS) and fluorescence microscopy studies have shown that albumin, fibrinogen, immunoglobulin G, and serum rapidly adsorb onto BSM layers formed on PDMS and PS surfaces. Pin...

  19. Antifouling activity in some benthic Antarctic invertebrates by "in situ" experiments at Deception Island, Antarctica.

    Science.gov (United States)

    Angulo-Preckler, Carlos; Cid, Cristina; Oliva, Francesc; Avila, Conxita

    2015-04-01

    Competition for space is a remarkable ecological force, comparable to predation, producing a strong selective pressure on benthic invertebrates. Some invertebrates, thus, possess antimicrobial compounds to reduce surface bacterial growth. Antimicrobial inhibition is the first step in avoiding being overgrown by other organisms, which may have a negative impact in feeding, respiration, reproduction … The in situ inhibition of bacterial biofilm was used here as an indicator of antifouling activity by testing hydrophilic extracts of twelve Antarctic invertebrates. Using two different approaches (genetics and confocal techniques) different levels of activity were found in the tested organisms. In fact, differences within body parts of the studied organisms were determined, in agreement with the Optimal Defense Theory. Eight out of 15 extracts tested had negative effects on fouling after 28 days submerged in Antarctic waters. Thus, although chemical defenses may be quite species-specific in their ecological roles, these results suggest that different chemical strategies exist to deal with space competition.

  20. Ecotoxicity and Preliminary Risk Assessment of Nonivamide as a Promising Marine Antifoulant

    Directory of Open Access Journals (Sweden)

    Sujing Liu

    2016-01-01

    Full Text Available The unclear environmental performance of nonivamide limits its application as a marine antifoulant. In this study, the natural degradation of nonivamide was studied in seawater and tap water. The half-life was 5.8 d, 8.8 d, 12.2 d, and 14.7 d in seawater and tap water in photolysis and biolysis, respectively. Furthermore, the ecotoxicity of nonivamide was assessed using marine microalgae, Chlorella vulgaris and Platymonas sp.; EC50,  6 d values on the growth of Chlorella vulgaris and Platymonas sp. were 16.9 mg L−1 and 19.21 mg L−1, respectively. The toxicity and environmental risk of nonivamide on microalgae were significantly decreased due to the natural degradation in seawater.

  1. Antifouling properties of oligo(lactose)-based self-assembled monolayers.

    Science.gov (United States)

    Nugraha, Roni; Finlay, John A; Hill, Sophie; Fyrner, Timmy; Yandi, Wetra; Callow, Maureen E; Callow, James A; Ederth, Thomas

    2015-01-01

    The antifouling (AF) properties of oligo(lactose)-based self-assembled monolayers (SAMs), using four different proteins, zoospores of the green alga Ulva linza and cells of the diatom Navicula incerta, were investigated. The SAM-forming alkylthiols, which contained 1, 2 or 3 lactose units, showed significant variation in AF properties, with no differences in wettability. Non-specific adsorption of albumin and pepsin was low on all surfaces. Adsorption of lysozyme and fibrinogen decreased with increasing number of lactose units in the SAM, in agreement with the generally observed phenomenon that thicker hydrated layers provide higher barriers to protein adsorption. Settlement of spores of U. linza followed an opposite trend, being greater on the bulkier, more hydrated SAMs. These SAMs are more ordered for the larger saccharide units, and it is therefore hypothesized that the degree of order, and differences in crystallinity or stiffness between the surfaces, is an important parameter regulating spore settlement on these surfaces.

  2. Antifouling steroids from the South China Sea gorgonian coral Subergorgia suberosa.

    Science.gov (United States)

    Zhang, Jun; Liang, Yan; Wang, Kai-Ling; Liao, Xiao-Jian; Deng, Zhou; Xu, Shi-Hai

    2014-01-01

    Two new unusual cholestane derivatives, pentacyclic steroid 16,22-epoxy-20β,23S-dihydroxycholest-1-ene-3-one (1) and 20β,23S-dihydroxycholest-1-ene-3,22-dione (2), along with two new pregnane derivatives, 15β,17α-dihydroxypregna-4,6-diene-3,20-dione (3) and 11α-hydroxypregna-4-ene-3,6,20-trione (4), were isolated from the South China Sea gorgonian coral Subergorgia suberosa. Their structures were established based on the extensive analyses of 2D NMR, IR, and HRMS. Antifouling tests against Balanus amphitrite larvae settlement indicated that 1 and 2 exhibited inhibitory effect with EC50 values of 5.3, and 14.5 μg/mL, respectively.

  3. Are antifouling paint particles a continuous source of toxic chemicals to the marine environment?

    Science.gov (United States)

    Soroldoni, Sanye; Abreu, Fiamma; Castro, Ítalo Braga; Duarte, Fabio Andrei; Pinho, Grasiela Lopes Leães

    2017-02-03

    Antifouling paint particles (APPs) are generated during periodical maintenance of boat hulls. Chemical composition and toxicity (either chronic or acute) of APPs found in the sediment was evaluated using the epibenthic copepod Nitokra sp. The APPs analyzed showed the presence of high levels of metals such as Cu (234,247±268μgg(-1)), Zn (112,404±845μgg(-1)) and the booster biocide DCOIT (0.13μgg(-1)). Even at low concentrations (as from 5mgg(-1) of APPs by mass of sediment) a significantly decrease in the fecundity was observed in laboratory tests. When the sediment was disturbed in elutriate test, a LC50 of 0.14% for APPs was found. This study was the first assessment of toxicity associated with the presence of APPs in sediment to benthic organisms, and it calls attention to the need of improving regulations in boatyards and marina areas.

  4. Synthesis and the Bacteriostasic Activity and Antifouling Capability of 2-t-Butyl-p-Cresol Amide Derivatives%2-叔丁基对甲基酚酰胺衍生物的合成及其抑菌和防污性能的研究

    Institute of Scientific and Technical Information of China (English)

    张智嘉; 于良民; 姜晓辉

    2012-01-01

    Two compounds having the capsaicin derivative structure of acrylamide, TV - ( 3 - tert - butyl - 2 - hydroxy - 5 - methylbenzyl) acrylamide ( MBHBA) and N - ( 3 - tert - butyl - 2 - hydroxy - 5 - meth-ylbenzyl)benzamide ( MBHBB) were synthesized, the structure of which were characterized by FT - IR spectroscopy and 'HNMR. Comparison of the antibacterial and antifouling properties of the MBHBA and MBHBB showed that two compounds were good on suppression of staphyloecocus aureus and escherichia co-lit, and the minimal inhibitory concentration of MBHBA was 0. 125 mg/mL. With MBHBA and MBHBB antifouling agent for preparation of marine antifouling coatings, test panels immersed in seawater for 60 days showed that MBHBB and MBHBA exhibited equally good anti - biofouling performance.%通过Friedel-Crafts反应合成了N-(5-甲基-3-叔丁基-2-羟基苄基)丙烯酰胺(MBHBA)和N-(5-甲基-3-叔丁基-2-羟基苄基)苯甲酰胺(MBHBB),并通过红外光谱(FT-IR)和核磁波谱(1HNMR)对其结构进行了表征.对比了MBHBA和MBHBB的抑菌性能和防污性能,结果显示2种化合物均有良好的抑制金黄色葡萄球菌和大肠杆菌的性能,且MBHBA的最小抑菌浓度可达0.125 mg/mL;以MBHBA和MBHBB为防污剂制备海洋防污涂料,60d的实海挂板仍无明显的污损生物附着.

  5. Highly durable superhydrophobic coatings with gradient density by movable spray method

    Science.gov (United States)

    Tenjimbayashi, Mizuki; Shiratori, Seimei

    2014-09-01

    Superhydrophobic surface is expected to be applied in anti-fouling, anti-icing, and anti-bacterial. However, practical use is interrupted by low mechanical strength, time-consuming process, and limited coating substrate. Here highly durable superhydrophobic coatings were prepared by simple and novel spraying method, which sprays with changing the "spray distance between substrate and spray" (SD), named "movable spray method." We prepared the solution that changes wettability and durability with spraying distance by mixing SiO2 nanoparticles and ethyl alpha cyanoacrylate polymer (EAC). Then, we evaluated the chemical components and surface morphologies of each spraying distance coatings (0 ˜ 50 cm) by XPS, SEM, and laser scanning microscope. It revealed that surface roughness and SiO2/EAC ratio increased as the SD increases. Thus, durable superhydrophobic coatings were designed by spraying with increasing SD gradually. Glow discharge-optical emission spectrometry analysis revealed that designed coatings showed the gradual increase of SiO2/EAC ratio. As a result, coatings prepared on glass, wood, or aluminum substrates maintained their superhydrophobicity up to the abrasion at 40 kPa. This movable spray method is simple coating by the wet process and prepares robust hydrophobic coating on complex shape and large area substrates. The gradient functional surface was found to have mechanical durability and superhydrophobicity, and wide area applications will be expected.

  6. Nanobiotechnology advanced antifouling surfaces for the continuous electrochemical monitoring of glucose in whole blood using a lab-on-a-chip.

    Science.gov (United States)

    Picher, Maria M; Küpcü, Seta; Huang, Chun-Jen; Dostalek, Jakub; Pum, Dietmar; Sleytr, Uwe B; Ertl, Peter

    2013-05-07

    In the current work we have developed a lab-on-a-chip containing embedded amperometric sensors in four microreactors that can be addressed individually and that are coated with crystalline surface protein monolayers to provide a continuous, stable, reliable and accurate detection of blood glucose. It is envisioned that the microfluidic device will be used in a feedback loop mechanism to assess natural variations in blood glucose levels during hemodialysis to allow the individual adjustment of glucose. Reliable and accurate detection of blood glucose is accomplished by simultaneously performing (a) blood glucose measurements, (b) autocalibration routines, (c) mediator-interferences detection, and (d) background subtractions. The electrochemical detection of blood glucose variations in the absence of electrode fouling events is performed by integrating crystalline surface layer proteins (S-layer) that function as an efficient antifouling coating, a highly-oriented immobilization matrix for biomolecules and an effective molecular sieve with pore sizes of 4 to 5 nm. We demonstrate that the S-layer protein SbpA (from Lysinibacillus sphaericus CCM 2177) readily forms monomolecular lattice structures at the various microchip surfaces (e.g. glass, PDMS, platinum and gold) within 60 min, eliminating unspecific adsorption events in the presence of human serum albumin, human plasma and freshly-drawn blood samples. The highly isoporous SbpA-coating allows undisturbed diffusion of the mediator between the electrode surface, thus enabling bioelectrochemical measurements of glucose concentrations between 500 μM to 50 mM (calibration slope δI/δc of 8.7 nA mM(-1)). Final proof-of-concept implementing the four microfluidic microreactor design is demonstrated using freshly drawn blood. Accurate and drift-free assessment of blood glucose concentrations (6. 4 mM) is accomplished over 130 min at 37 °C using immobilized enzyme glucose oxidase by calculating the difference between

  7. Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor.

    Science.gov (United States)

    Wang, Guixiang; Han, Rui; Su, Xiaoli; Li, Yinan; Xu, Guiyun; Luo, Xiliang

    2017-06-15

    Zwitterionic peptides were anchored to a conducting polymer of citrate doped poly(3,4-ethylenedioxythiophene) (PEDOT) via the nickel cation coordination, and the obtained peptide modified PEDOT, with excellent antifouling ability and good conductivity, was further used for the immobilization of a DNA probe to construct an electrochemical biosensor for the breast cancer marker BRCA1. The DNA biosensor was highly sensitive (with detection limit of 0.03fM) and selective, and it was able to detect BRCA1 in 5% (v/v) human plasma with satisfying accuracy and low fouling. The marriage of antifouling and biocompatible peptides with conducting polymers opened a new avenue to construct electrochemical biosensors capable of assaying targets in complex biological media with high sensitivity and without biofouling.

  8. Economic and environmental impacts on ports and harbors from the convention to ban harmful marine anti-fouling systems.

    Science.gov (United States)

    Champ, Michael A

    2003-08-01

    The recent Diplomatic Conference held (1-5 October 2001) by the International Maritime Organization (IMO) in London adopted the Draft Convention prepared by The Marine Environmental Protection Committee (MEPC) of IMO for the "Control of Harmful Anti-fouling Systems for Ships." The convention has been developed to immediately ban the use of Tributyltin (TBT) globally in anti-fouling paints to "protect the marine environment". The ban on TBT has come about because TBT has detrimental effects on non-target marine organisms. In November 1999, IMO agreed that a treaty be developed by the MEPC to ensure a ban on the application of TBT based anti-fouling paints by 1 January 2003, and a ban on the use of TBT by 1 January 2008. At the meeting surious concern was expressed by some experts for the need to identify in the treaty the necessary regulatory language for: (1) the "safe" removal, treatment, and disposal of marine anti-foulants deemed "harmful" by the treaty and (2) who is liable for the future dredging and disposal of TBT-contaminated port and harbor sediments--to also "protect the marine environment". The requirement for "safe" removal and disposal was incorporated at MEPC 46 as Article 5 in the treaty, without it shipyards complying with existing national and local discharge regulations (most have none for discharge of TBT) could inadvertently release more TBT to ports and harbors in the five-year compliance period than has been leached from ships (hulls) in the past 40 years to the same waters. Virginia is the only State in the US that regulates the discharge to below 50 ng/l (50 parts per trillion). However, the liability for the future dredging and disposal costs of TBT-contaminated port and harbor sediments has not been addressed.

  9. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    Directory of Open Access Journals (Sweden)

    Karine Lemarchand

    2009-07-01

    Full Text Available Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan- and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  10. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints.

    Science.gov (United States)

    Pelletier, Emilien; Bonnet, Claudie; Lemarchand, Karine

    2009-07-14

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan-and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  11. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    Science.gov (United States)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-08-01

    Titanium dioxide (TiO2) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  12. Versatile antifouling polyethersulfone filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive.

    Science.gov (United States)

    Zhao, Yi-Fan; Zhang, Pei-Bin; Sun, Jian; Liu, Cui-Jing; Yi, Zhuan; Zhu, Li-Ping; Xu, You-Yi

    2015-06-15

    Here we describe the development of versatile antifouling polyethersulfone (PES) filtration membranes modified via surface grafting of zwitterionic polymers from a reactive amphiphilic copolymer additive. Amphiphilic polyethersulfone-block-poly(2-hydroxyethyl methacrylate) (PES-b-PHEMA) was beforehand designed and used as the blending additive of PES membranes prepared by phase inversion technique. The surface enriched PHEMA blocks on membrane surface acted as an anchor to immobilize the initiating site. Poly(sulfobetaine methacrylate) (PSBMA) were subsequently grafted onto the PES blend membranes by surface-initiated atom transfer radical polymerization (SI-ATRP). The analysis of surface chemistry confirmed the successful grafting of zwitterionic PSBMA brushes on PES membrane surface. The resulted PES-g-PSBMA membranes were capable of separating proteins from protein solution and oil from oil/water emulsion efficiently. Furthermore, the modified membranes showed high hydrophilicity and strongly antifouling properties due to the incorporation of well-defined PSBMA layer. In addition, the PES-g-PSBMA membranes exhibited excellent blood compatibility and durability during the washing process. The developed antifouling PES membranes are versatile and can find their applications in protein filtration, blood purification and oil/water separation, etc.

  13. Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations

    Science.gov (United States)

    Shaikh, Abdul Rajjak; Rajabzadeh, Saeid; Matsuo, Ryuichi; Takaba, Hiromitsu; Matsuyama, Hideto

    2016-04-01

    Polyvinyl chloride (PVC) membranes are widely used in water treatment because of their low cost and chemical stability. However, PVC membranes can become fouled, and this restricts their applications in membrane technology. In order to enhance the antifouling property of PVC membranes, copolymers such as poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) (poly(VC-co-PEGMA)) with different PEGMA segment percentages were synthesized in our previous work. Experimentally, it was observed that the poly(VC-co-PEGMA) copolymer has better antifouling properties than those of PVC membranes. Here, we explore effect of the PEGMA segment percentage on the surface hydration properties of poly(VC-co-PEGMA) copolymers. Density functional theory calculations and molecular dynamics simulations were carried out to understand the interactions between PVC and PEGMA. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. MD studies showed that increasing PEGMA percentage in the copolymer increases the interaction with water molecules, leading to improved resistance to fouling. The antifouling mechanism is also discussed with respect to surface hydration and water dynamicity. This study could form a basis for the systematic studies of polymeric membranes as well as their stability from the extent of solvent-polymer, solvent-solvent, and polymer-polymer interactions.

  14. Cell-repellant dextran coatings of porous titania using mussel adhesion chemistry.

    Science.gov (United States)

    Park, Jae Yoon; Yeom, Jihyeon; Kim, Jee Seon; Lee, Mihyun; Lee, Haeshin; Nam, Yoon Sung

    2013-11-01

    The resistance of bioceramics against non-specific adsorption of serum proteins is critical for a wide range of biomedical applications. Some polysaccharides serve as natural protein-resistant molecules in extracellular matrices; however, the stable adhesion of polysaccharides to ceramic biomaterials in an aqueous solution is very challenging because chemical linkages at organic/inorganic interfaces are susceptible to hydrolytic degradation. Here, a catechol-grafted dextran, which strongly binds to titania (TiO2 ) in an aqueous milieu to effectively suppress cell adhesion through anti-fouling activity against non-specific protein adsorption, is introduced. Catechol is conjugated approximately to 6.7 mol% of glucose units of dextran via a carbamate ester linkage, corresponding to roughly three catechols per dextran chain having an average molecular weight of 6 kDa. Multivalent interactions of catechols with a titanium atom, enabled by the graft-type structure, provide a very stable coating of dextran on this inorganic surface. The adhesion of HeLa cells on the dextran-coated titania surface is reduced by 2.4-fold compared to that on a pristine titania surface. These results suggest that the graft-type incorporation of a small number of catechol moieties along a dextran backbone is an effective means of producing a stable anti-fouling interface on inorganic biomaterials in an aqueous environment.

  15. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  16. Preliminary Study on Biodegradable Copper- Free Antifouling Paint%生物降解型无铜防污涂料研究

    Institute of Scientific and Technical Information of China (English)

    余浩杰; 桂泰江; 肖玲; 王科; 于雪艳; 陈正涛; 张华庆

    2012-01-01

    讨论了目前主流自抛光防污涂料存在的环保性问题,介绍了生物降解型防污涂料最新的研究进展情况.指出生物降解型涂料成为环保型自抛光防污涂料的重要研究方向.报道了生物降解型生态友好防污涂料研究的一些初步进展.介绍了基于聚乳酸的含嵌段结构的生物可降解防污涂料用树脂以及生物降解型无铜防污涂料最新的某些研究进展情况.%This article discussed the environmental pollution problems of current copper based self-polishing antifouling paint and introduced the progress of the latest research on biodegradable antifouling paint, indicating that biodegradable environment - friendly paint is the development trend of self - polishing antifouling paint. It also summerized the recent progress of biodegradable environment - friendly antifouling paint, the advance of polylactic acid - based biodegradable resins with multi - block structure and most updated progress of biodegradable copper - free antifouling paint.

  17. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    Science.gov (United States)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  18. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... that graphene can still be a relevant candidate for thin coatings....

  19. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges.

    Science.gov (United States)

    Hertiani, Triana; Edrada-Ebel, RuAngelie; Ortlepp, Sofia; van Soest, Rob W M; de Voogd, Nicole J; Wray, Victor; Hentschel, Ute; Kozytska, Svetlana; Müller, Werner E G; Proksch, Peter

    2010-02-01

    Chemical investigation of Indonesian marine sponges Agelas linnaei and A. nakamurai afforded 24 alkaloid derivatives representing either bromopyrrole or diterpene alkaloids. A. linnaei yielded 16 bromopyrrole alkaloids including 11 new natural products with the latter exhibiting unusual functionalities. The new compounds include the first iodinated tyramine-unit bearing pyrrole alkaloids, agelanesins A-D. These compounds exhibited cytotoxic activity against L5178Y mouse lymphoma cells with IC(50) values between 9.25 and 16.76 muM. Further new compounds include taurine acid substituted bromopyrrole alkaloids and a new dibromophakellin derivative. A. nakamurai yielded eight alkaloids among them are three new natural products. The latter include the diterpene alkaloids (-)-agelasine D and its oxime derivative and the new bromopyrrole alkaloid longamide C. (-)-Agelasine D and its oxime derivative exhibited cytotoxicity against L5178Y mouse lymphoma cells (IC(50) 4.03 and 12.5 microM, respectively). Furthermore, both agelasine derivatives inhibited settling of larvae of Balanus improvisus in an anti-fouling bioassay and proved to be toxic to the larvae. (-)-Agelasine D inhibited the growth of planktonic forms of biofilm forming bacteria S. epidermidis (MIC<0.0877 microM) but did not inhibit biofilm formation whereas the oxime derivative showed the opposite activity profile and inhibited only biofilm formation but not bacterial growth. The structures of the isolated secondary metabolites were elucidated based on extensive spectroscopic analysis involving one- and two-dimensional NMR as well as mass spectrometry and comparison with literature data.

  20. Anti-fouling chemistry of chiral monolayers: enhancing biofilm resistance on racemic surface.

    Science.gov (United States)

    Bandyopadhyay, Debjyoti; Prashar, Deepali; Luk, Yan-Yeung

    2011-05-17

    This work reports the resistance to protein adsorption and bacterial biofilm formation by chiral monolayers of polyol-terminated alkanethiols surrounding micrometer-sized patterns of methyl-terminated alkanethiols on gold films. We discover that patterned surfaces surrounded by chiral polyol monolayers can distinguish different stages of biofilm formation. After inoculation on the surfaces, bacteria first reversibly attached on the chiral polyol monolayers. Over time, the bacteria detached from the polyol surfaces, and attached on the hydrophobic micropatterns to form biofilms. Interestingly, while both enantiomers of gulitol- and mannonamide-terminated monolayer resisted adsorption of proteins (bovine serum albumin, lysozyme, and fibrinogen) and confined biofilms formed on the micropatterns, the monolayers formed by the racemic mixture of either pair of enantiomers exhibited stronger antifouling chemistry against both protein adsorption and biofilm formation than monolayers formed by one enantiomer alone. These results reveal the different chemistries that separate the different stages of biofilm formation, and the stereochemical influence on resisting biofoulings at a molecular-level.

  1. Assessment of anti-fouling strategies for membrane coupled with upflow anaerobic sludge blanket (MUASB) process.

    Science.gov (United States)

    Tran, Thao Minh; Ye, Yun; Chen, Vicki; Stuetz, Richard; Le-Clech, Pierre

    2013-01-01

    In this novel process, domestic wastewater was filtered by a hollow-fibre membrane coupled with an upflow anaerobic sludge blanket (MUASB) bioreactor. To improve the process sustainability and decrease energy costs, the membranes were operated under low fluxes with little, or no, shear. The efficiency of anti-fouling strategies, including relaxation, backwashing and supply of low aeration and stir rates, was assessed through detailed characterization of the fouling layers. Results indicated that backwashing was more efficient than relaxation, even when the systems were operated under the same flux productivity. In terms of shear supply, stir provided a better fouling limitation strategy compared to aeration, at similar shear stress values. Physical and chemical cleaning methods were applied to recover three fouling fractions (i.e. cake, residual and irreversible) for better characterization of the fouling layers. Under the sustainable operating conditions used in this study, most of the fouling was easily reversible by simple rinsing. In addition, permanent and irreversible fouling, resulting in the need for frequent chemical cleanings and potential membrane degradation, is limited once small shear stresses are applied. These outcomes are expected to form the basis for the future assessment of trade-off between operation, maintenance and replacement costs of membrane filtration processes used in wastewater treatment.

  2. Acute toxicity of the antifouling compound butenolide in non-target organisms.

    Directory of Open Access Journals (Sweden)

    Yi-Fan Zhang

    Full Text Available Butenolide [5-octylfuran-2(5H-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target organisms. According to OECD's guideline, the predicted no effect concentration (PNEC was 0.168 µg l(-1, which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK, Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  3. [Anti-fouling characteristics of the novel precoating reagent in dynamic membrane bioreactor].

    Science.gov (United States)

    Ye, Mao-Sheng; Zhang, Han-Min; Yang, Feng-Lin; Cui, Xia

    2007-11-01

    Further research was made on precoating reagents in dynamic membrane process, in which novel precoating reagent-polyvinyl alcohol microsphere (PVA-MS) was prepared through emulsive polymerization of PVA and glutaraldehyde (GA). Furthermore, polymerization mechanism and anti-fouling characteristics through adsorption of membrane major fouling substances EPS upon PVA-MS were studied. The results showed that hemiacetals reaction played a major role in emulsive polymerization process, as the quantity of hydroxyl on PVA was decreased a little, PVA-MS surface behaved good hydrophilic, and the adsorption of protein and amylose upon PVA microsphere was stable and low, which was 0.543 mg x g(-1) and 0.694 mg x g(-1) respectively. In addition, PVA-MS surface behaved electronic negativity, which acted electrostatic repulsion to active sludge floc. Upon this characteristics and data, it was concluded that membrane fouling was delayed in microscopy structure. Diameter of PVA-MS in precoating liquid was about 1.14 microm, and Zeta-potential of precoating liquid with different precoating reagent concentration was less than - 39 mV, which made PVA microsphere diffused and stable from each other, then sedimentate rapidly on porous support membrane surface and internal wall of hole path. Besides, the morphology of PVA-MS and dynamic membrane formed from PVA-MS on support membrane were observed through SEM.

  4. Trypsin-enabled construction of anti-fouling and self-cleaning polyethersulfone membrane.

    Science.gov (United States)

    Shi, Qing; Su, Yanlei; Ning, Xue; Chen, Wenjuan; Peng, Jinming; Jiang, Zhongyi

    2011-01-01

    Constructing anti-fouling and self-cleaning membrane surfaces based on covalent attachment of trypsin on poly(methacrylic acid)-graft-polyethersulfone (PMAA-g-PES) membrane was reported. The carboxylic acid groups enriched on asymmetric PMAA-g-PES membrane surface were activated with 1-ethyl-(3-3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) and employed as chemical anchors for the conjugation with amino groups of trypsin. Activity assays showed that such chemically immobilized trypsin was much more active and stable than that of the physically adsorbed counterpart. Trypsin covalently attached on membrane surface could substantially resist protein fouling in dynamic flow process. The considerable enhancement of protein solution permeation flux was observed as a consequence of rapid enzymatic degradation of protein deposited onto membrane surface. The permeation flux of the membrane could be recovered upon simple hydraulic flush after protein filtration, suggesting superior self-cleaning property. After multi-cycle BSA filtration over 15-day period, the active self-cleaning membrane maintained more than 95.0% of its initial flux.

  5. Adverse Effect of Antifouling Compounds on the Reproductive Mechanisms of the Ascidian Ciona intestinalis

    Directory of Open Access Journals (Sweden)

    Alessandra Gallo

    2013-09-01

    Full Text Available Fertilization and embryo development that occur in sea water are sensitive to xenobiotics from anthropogenic sources. In this work, we evaluated the influence of two antifouling biocides, tributyltin (TBT and diuron, on the reproductive mechanisms of the marine invertebrate Ciona intestinalis. By using electrophysiological techniques, we examined the impact of these compounds on the electrical properties of the mature oocytes and of events occurring at fertilization. With different toxicity assays, we studied the effect of the two biocides on the gametes by evaluating fertilization rate and embryo development. Results show that sodium (Na+ currents were significantly reduced by either of the two biocides, whereas conductance was significantly increased. The fertilization current frequency and amplitude, fertilization rate and larval development were affected only by TBT. This study suggests that: (i the two biocides affect either the electrical properties of the oocyte plasma membrane and the reproductive success representing a risk factor for the survival of the species exposed to environmental pollution; (ii the ascidian Ciona intestinalis may represent a good model organism to test toxicity of marine pollutants. Possible mechanisms of action of the two biocides are discussed.

  6. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  7. Seasonal variation in the antifouling defence of the temperate brown alga Fucus vesiculosus.

    Science.gov (United States)

    Saha, Mahasweta; Wahl, Martin

    2013-01-01

    The important role of marine epibiotic biofilms in the interactions of the host with its environment has been acknowledged recently. Previous studies with the temperate brown macroalga Fucus vesiculosus have identified polar and non-polar compounds recovered from the algal surface that have the potential to control such biofilms. Furthermore, both the fouling pressure and the composition of the epibiotic bacterial communities on this macroalga varied seasonally. The extent to which this reflects a seasonal fluctuation of the fouling control mechanisms of the host is, however, unexplored in an ecological context. The present study investigated seasonal variation in the anti-settlement activity of surface extracts of F. vesiculosus against eight biofilm-forming bacteria isolated from rockweed-dominated habitats, including replication of two populations from two geographically distant sites. The anti-settlement activity at both sites was found to vary temporally, reaching a peak in summer/autumn. Anti-settlement activity also showed a consistent and strong difference between sites throughout the year. This study is the first to report temporal variation of antifouling defence originating from ecologically relevant surface-associated compounds.

  8. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  9. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    Science.gov (United States)

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-07-24

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species.

  10. Identification of a new degradation product of the antifouling agent Irgarol 1051 in natural samples

    Science.gov (United States)

    Ferrer, I.; Barcelo, D.

    2001-01-01

    A main degradation product of Irgarol [2-(methylthio)-4-(tert-butylamino)-6-(cyclopropylamino)-s-triazine], one of the most widely used compounds in antifouling paints, was detected at trace levels in seawater and sediment samples collected from several marinas on the Mediterranean coast. This degradation product was identified as 2-methylthio-4-tert-butylamino-s-triazine. The unequivocal identification of this compound in seawater samples was carried out by solid-phase extraction (SPE) coupled on-line with liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry (LC-APCI-MS). SPE was carried out by passing 150 ml of seawater sample through a cartridge containing a polymeric phase (PLRP-s), with recoveries ranging from 92 to 108% (n=5). Using LC-MS detection in positive ion mode, useful structural information was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of this compound in natural samples. Method detection limits were in the range of 0.002 to 0.005 ??g/l. Overall, the combination of on-line SPE and LC-APCI-MS represents an important advance in environmental analysis of herbicide degradation products in seawater, since it demonstrates that trace amounts of new polar metabolites may be determined rapidly. This paper reports the LC-MS identification of the main degradation product of Irgarol in seawater and sediment samples. ?? 2001 Elsevier Science B.V. All rights reserved.

  11. Nanostructured antifouling poly(ethylene glycol) films for silicon-based microsystems.

    Science.gov (United States)

    Sharma, Sadhana; Desai, Tejal A

    2005-02-01

    The creation of antifouling surfaces is one of the major prerequisites for silicon-based micro-electrical-mechanical systems for biomedical and analytical applications (known as BioMEMS). Poly(ethylene glycol) (PEG), a water-soluble, nontoxic, and nonimmunogenic polymer has the unique ability to reduce nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. To this end, we have analyzed PEG thin films of various grafting densities (i.e., number of PEG chains per unit area) coupled to silicon using a single-step PEG-silane coupling reaction scheme using variable-angle ellipsometry. Initial PEG concentration and coupling time were varied to attain different grafting densities. These data were theoretically analyzed to understand the phenomenon of PEG film formation. Furthermore, all the PEG films were evaluated for their ability to control biofouling using albumin and fibrinogen as the model proteins. PEG thin films formed by using higher PEG concentrations ( > or = 10 mM PEG) or coupling time ( > or = 1 h) demonstrated enhanced protein fouling resistance behavior. This analysis is expected to be useful to form PEG films of desired grafting density on silicon substrates for appropriate application.

  12. Toxicity of four antifouling biocides and their mixtures on the brine shrimp Artemia salina.

    Science.gov (United States)

    Koutsaftis, A; Aoyama, I

    2007-11-15

    Zinc pyrithione (ZPT), Copper pyrihione (CPT), Chlorothalonil and Diuron are four of the most widely used as alternative to tributlytin (TBT) antifouling biocides in boat paints. As most previous laboratory bioassays for these biocides have been conducted solely based on acute tests with a single compound, information on the possible combined toxicity of these common biocides to marine organisms are limited. In this study, the toxicity of binary (in several proportions), ternary and quaternary mixtures were evaluated using the brine shrimp Artemia salina as test organism. Mixture toxicities were studied using the concentration addition model (isobolograms and toxic unit summation), and the mixture toxicity index (MTI). The ZPT-CPT combination had a strictly synergistic effect which requires attention because the coexistence of ZPT and CPT in the marine environment, due to transchelation of ZPT, may occur. The binary mixtures of Diuron with the metal pyrithiones exhibited various interactive effects (synergistic, antagonistic or additive) depending on concentration ratios, whereas all binary mixtures that contained Chlorothalonil exhibited antagonistic effects. The different types of combined effects subsequent to proportion variation of binary mixtures underline the importance of the combined toxicity characterization for various ratios of concentrations. The four ternary mixtures tested, also exhibited various interactive effects, and the quaternary mixture exhibited synergism. The models applied were in agreement in most cases. The observed synergistic interactions underline the requirement to review water quality guidelines, which are likely underestimating the adverse combined effects of these chemicals.

  13. Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus

    KAUST Repository

    Shao, Chang Lun

    2011-04-25

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl3 slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined. © 2011 The American Chemical Society and American Society of Pharmacognosy.

  14. Environmental risk assessment on capsaicin used as active substance for antifouling system on ships.

    Science.gov (United States)

    Wang, Jianbing; Shi, Ting; Yang, Xiaoling; Han, Wenya; Zhou, Yunrui

    2014-06-01

    Biodegradation experiments were carried out with capsaicin to evaluate its degradability. The results show that capsaicin was readily biodegradable under aerobic conditions. The values of Kow and the calculated bioconcentration factor indicate that capsaicin have a low potential for bioconcentration. The fish acute toxicity tests conducted with Brachydanio rerio show LC50 for capsaicin was 5.98 mg L(-1). The tests of alga growth inhibition conducted with Selenastrum capricornutum suggest EC50 for capsaicin was 114 mg L(-1). The calculated PNEC (Predicted No Effect Concentration) was 4.9×10(-4) mg L(-1). The average PEC (Predicted Environmental Concentration) for OECD-EU commercial harbor and marina were 3.99×10(-6) and 2.49×10(-5) mg L(-1), respectively. These indicate that the PEC was much less than the PNEC for capsaicin. The low Kp value of capsaicin suggests the data about the risk of capsaicin to sediment organisms can be waived. According to the results from the analysis of the degradation, bioaccumulation, toxicity and accumulation in sediment, it can be concluded that capsaicin used as active substance for antifouling system on ships poses relatively low risk to marine environment.

  15. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    Directory of Open Access Journals (Sweden)

    Norhan Nady

    2016-04-01

    Full Text Available A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone (PES membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid—is presented.

  16. 农药作为海洋防污剂的应用%Pesticide Application as a Marine Anti-fouling Agent

    Institute of Scientific and Technical Information of China (English)

    顾学斌

    2012-01-01

    Reviewing of the development history of marine antifouling agent, we can find that it has the indissoluble bound with pestcide, that is the development of pestcide promotes the course of marine antifouling. The paper will introduce pestcide varieties one by one which has used or is using or has the possible application for marine antifouling agent.%纵观海洋防污剂发展史,我们可以发现它和农药之间有着不解之缘,也可以说农药的发展推动了防污剂的发展。文章对曾经用过、正在使用、有可能应用为海洋防污剂的农药品种逐一介绍。

  17. The Interpretation of New CCS Accreditation Guidelines for the Marine Coatings%《船舶涂料产品认可指南》(新版)解读

    Institute of Scientific and Technical Information of China (English)

    王泓; 龚晅威; 吴海荣; 郭颖钊; 金晓鸿

    2015-01-01

    The basic contents of new CCS accreditation guidelines for the marine coatings was described. The renewal articles according to IMO regulations of marine coatings issued recently,including marine environmental risk assessment of anti-fouling active substances and anti-fouling coatings,and performance standard of protective coating for the ballast tanks and oil tanks were mainly explained.%介绍了中国船级社即将颁布的《船舶涂料产品认可指南》(新版)的基本内容.重点解读根据近年来IMO(国际海事组织)颁布的船舶涂料新规范而更新的款项,包括船舶防污涂料防污剂的环境风险评估要求,以及船舶压载舱和原油舱保护涂层性能标准等.

  18. Combinatorial approach for fabrication of coatings to control bacterial adhesion.

    Science.gov (United States)

    Pedron, S; Peinado, C; Catalina, F; Bosch, P; Anseth, K S; Abrusci, C

    2012-01-01

    Due to the high importance of bacterial infections in medical devices there is an increasing interest in the design of anti-fouling coatings. The application of substrates with controlled chemical gradients to prevent microbial adhesion is presented. We describe here the co-polymerization of poly(ethylene glycol) dimethacrylate with a hyperbranched multimethacrylate (H30MA) using a chemical gradient generator; and the resulting films were characterized with respect to their ability to serve as coating for biomedical devices. The photo-polymerized materials present special surface properties due to the hyperbranched structure of H30MA and phase separation at specific concentrations in the PEGDM matrix. This approach affords the investigation of cell response to a large range of different chemistries on a single sample. Two bacterial strains commonly associated with surgical site infections, Escherichia coli and Pseudomonas aeruginosa, have been cultured on these substrates to study their attachment behaviour. These gradient-coated samples demonstrate less bacterial adhesion at higher concentrations of H30MA, and the adhesion is substantially affected by the extent of surface phase segregation.

  19. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  20. Biofouling on Coated Carbon Steel in Cooling Water Cycles Using Brackish Seawater

    Directory of Open Access Journals (Sweden)

    Pauliina Rajala

    2016-11-01

    Full Text Available Water cooling utilizing natural waters is typically used for cooling large industrial facilities such as power plants. The cooling water cycles are susceptible to biofouling and scaling, which may reduce heat transfer capacity and enhance corrosion. The performance of two fouling-release coatings combined with hypochlorite treatment were studied in a power plant utilizing brackish sea water from the Baltic Sea for cooling. The effect of hypochlorite as an antifouling biocide on material performance and species composition of microfouling formed on coated surfaces was studied during the summer and autumn. Microfouling on surfaces of the studied fouling-release coatings was intensive in the cooling water cycle during the warm summer months. As in most cases in a natural water environment the fouling consisted of both inorganic fouling and biofouling. Chlorination decreased the bacterial number on the surfaces by 10–1000 fold, but the efficacy depended on the coating. In addition to decreasing the bacterial number, the chlorination also changed the microbial species composition, forming the biofilm on the surfaces of two fouling-release coatings. TeknoTar coating was proven to be more efficient in combination with the hypochlorite treatment against microfouling under these experimental conditions.

  1. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling.

    Science.gov (United States)

    Hibbs, Michael R; Hernandez-Sanchez, Bernadette A; Daniels, Justin; Stafslien, Shane J

    2015-01-01

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm).

  2. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    KAUST Repository

    Shao, Chang Lun

    2015-04-02

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1–3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4–6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound. © 2015 Springer Science+Business Media New York

  3. Self-assembled covalent capillary coating of diazoresin/carboxyl fullerene for analysis of proteins by capillary electrophoresis and a comparison with diazoresin/graphene oxide coating.

    Science.gov (United States)

    Yu, Bing; Shu, Xi; Cong, Hailin; Chen, Xin; Liu, Huwei; Yuan, Hua; Chi, Ming

    2016-03-11

    Self-assembled and covalently linked capillary coatings of carboxyl fullerenes (C60-COOH) were prepared using photosensitive diazoresin (DR) as a coupling agent. Layer by layer (LBL) self-assembled DR/C60-COOH coatings based on ionic bonding was fabricated first on the inner surface of silica capillary, and subsequently converted into covalent bonding after treatment with UV light through a unique photochemistry reaction of DR. The covalently bonded coatings had the ability of suppressing protein adsorption on the inner surface of silica capillary, and thus the baseline separation of lysozyme (Lys), cytochrome c (Cyt-c), bovine serum albumin (BSA) and myoglobin (Mb) was achieved within 13min by using capillary electrophoresis (CE). The covalently linked DR/C60-COOH capillary coatings presented good chemical stability and repeatability. The reproducibility of the separation of proteins was less than 1%, 2.5%, and 3.5%, respectively, for run-to-run, day-to-day, capillary-to-capillary, respectively; and the RSD of migration time for the proteins are all less than 2.5% after a continuous 100 times running in a coating column. Compared with DR/graphene oxide (GO) coatings prepared by the same method, the DR/C60-COOH capillary coatings showed excellent protein separation performance due to a self-lubrication based anti-fouling mechanism. Because of the replacement of highly toxic and moisture sensitive silane coupling agent by DR in the covalent coating preparation, this method may provide an environmentally friendly and simple way to prepare the covalently coated capillaries for CE.

  4. Effect of surface topological structure and chemical modification of flame sprayed aluminum coatings on the colonization of Cylindrotheca closterium on their surfaces

    Science.gov (United States)

    Chen, Xiuyong; He, Xiaoyan; Suo, Xinkun; Huang, Jing; Gong, Yongfeng; Liu, Yi; Li, Hua

    2016-12-01

    Biofouling is one of the major problems for the coatings used for protecting marine infrastructures during their long-term services. Regulation in surface structure and local chemistry is usually the key for adjusting antifouling performances of the coatings. In this study, flame sprayed multi-layered aluminum coatings with micropatterned surfaces were constructed and the effects of their surface structure and chemistry on the settlement of typical marine diatoms were investigated. Micropatterned topographical morphology of the coatings was constructed by employing steel mesh as a shielding plate during the coating deposition. A silicone elastomer layer for sealing and interconnection was further brush-coated on the micropatterned coatings. Additional surface modification was made using zwitterionic molecules via DOPA linkage. The surface-modified coatings resist effectively colonization of Cylindrotheca closterium. This is explained by the quantitative examination of a simplified conditioning layer that deteriorated adsorption of bovine calf serum proteins on the zwitterionic molecule-treated samples is revealed. The colonization behaviors of the marine diatoms are markedly influenced by the micropatterned topographical morphology. Either the surface micropatterning or the surface modification by zwitterionic molecules enhances antimicrobial ability of the coatings. However, the combined micropatterned structure and zwitterionic modification do not show synergistic effect. The results give insight into anti-corrosion/fouling applications of the modified aluminum coatings in the marine environment.

  5. Efficacy and Ecotoxicity of Novel Anti-Fouling Nanomaterials in Target and Non-Target Marine Species.

    Science.gov (United States)

    Avelelas, Francisco; Martins, Roberto; Oliveira, Tânia; Maia, Frederico; Malheiro, Eliana; Soares, Amadeu M V M; Loureiro, Susana; Tedim, João

    2017-03-09

    Biofouling is a global problem that affects virtually all the immersed structures. Currently, several novel environmentally friendly approaches are being tested worldwide to decrease the toxicity of biocides in non-fouling species, such as the encapsulation/immobilization of commercially available biocides, in order to achieve control over the leaching rate. The present study addresses the toxicity of two widely used booster biocides, zinc pyrithione (ZnPT) and copper pyrithione (CuPT), in its free and incorporated forms in order to assess their toxicity and anti-fouling efficacy in target and non-target species. To achieve this goal, the following marine organisms were tested; the green microalgae Tetraselmis chuii (non-target species) and both target species, the diatom Phaeodactylum tricornutum and the mussel Mytilus edulis. Organisms were exposed to both biocides, two unloaded nanostructured materials and nanomaterials loaded with biocides, from 10 μg/L to 100 mg/L total weight, following standard protocols. The most eco-friendly and simultaneously efficient anti-fouling solution against the two photosynthetic species (nanoclays loaded with ZnPT) was then tested on mussels to assess its lethal efficacy (LC50 = 123 μg/L) and compared with free biocide (LC50 = 211 μg/L) and unloaded material (LC50 > 1000 μg/L). A second exposure test with sub-lethal concentrations (lower than 100 μg/L), using mussels, was carried out to assess biochemical changes caused by the tested compounds. Oxidative stress, detoxification and neurotransmission markers were not responsive; however, different antioxidant patterns were found with free ZnPT and loaded nanoclay exposures. Thus, the immobilization of the biocide ZnPT into nanoclays proved to be a promising efficient and eco-friendly anti-fouling strategy.

  6. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  7. An extremely simple method for fabricating 3D protein microarrays with an anti-fouling background and high protein capacity.

    Science.gov (United States)

    Lin, Zhifeng; Ma, Yuhong; Zhao, Changwen; Chen, Ruichao; Zhu, Xing; Zhang, Lihua; Yan, Xu; Yang, Wantai

    2014-07-21

    Protein microarrays have become vital tools for various applications in biomedicine and bio-analysis during the past decade. The intense requirements for a lower detection limit and industrialization in this area have resulted in a persistent pursuit to fabricate protein microarrays with a low background and high signal intensity via simple methods. Here, we report on an extremely simple strategy to create three-dimensional (3D) protein microarrays with an anti-fouling background and a high protein capacity by photo-induced surface sequential controlled/living graft polymerization developed in our lab. According to this strategy, "dormant" groups of isopropyl thioxanthone semipinacol (ITXSP) were first introduced to a polymeric substrate through ultraviolet (UV)-induced surface abstraction of hydrogen, followed by a coupling reaction. Under visible light irradiation, the ITXSP groups were photolyzed to initiate surface living graft polymerization of poly(ethylene glycol) methyl methacrylate (PEGMMA), thus introducing PEG brushes to the substrate to generate a full anti-fouling background. Due to the living nature of this graft polymerization, there were still ITXSP groups on the chain ends of the PEG brushes. Therefore, by in situ secondary living graft cross-linking copolymerization of glycidyl methacrylate (GMA) and polyethylene glycol diacrylate (PEGDA), we could finally plant height-controllable cylinder microarrays of a 3D PEG network containing reactive epoxy groups onto the PEG brushes. Through a commonly used reaction of amine and epoxy groups, the proteins could readily be covalently immobilized onto the microarrays. This delicate design aims to overcome two universal limitations in protein microarrays: a full anti-fouling background can effectively eliminate noise caused by non-specific absorption and a 3D reactive network provides a larger protein-loading capacity to improve signal intensity. The results of non-specific protein absorption tests

  8. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-03-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised.

  9. Mechanically durable, superoleophobic coatings prepared by layer-by-layer technique for anti-smudge and oil-water separation

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Superoleophobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge, low-drag, anti-fog, and oil-water separation applications. Current bioinspired surfaces are of limited use due to a lack of mechanical durability. A so-called layer-by-layer approach, involving charged species with electrostatic interactions between layers, can provide the flexibility needed to improve adhesion to the substrate while providing a low surface tension coating at the air interface. In this work, a polyelectrolyte binder, SiO2 nanoparticles, and a fluorosurfactant are spray deposited separately to create a durable, superoleophobic coating. Polydiallyldimethylammonium chloride (PDDA) polyelectrolyte was complexed with a fluorosurfactant layer (FL), which provides oil repellency while being hydrophilic. This oleophobic/superhydrophilic behavior was enhanced through the use of roughening with SiO2 particles resulting in a superoleophobic coating with hexadecane contact angles exceeding 155° and tilt angles of less than 4°. The coating is also superhydrophilic, which is desirable for oil-water separation applications. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display characteristics of transparency. Fabrication of these coatings via the layer-by-layer technique results in superoleophobic surfaces displaying improved durability compared to existing work where either the durability or the oil-repellency is compromised. PMID:25731716

  10. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-09-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles 160° with tilt angles <2°. One coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised.

  11. Surface property modification of coatings via self-stratification

    Science.gov (United States)

    Pieper, Robert Joseph

    Biological fouling occurs everywhere in the marine environment and is a significant problem for marine vessels. Anti-fouling coatings have been used effectively to prevent fouling; however, these coatings harm non-targeted sea-life. Fouling-release coatings (FRC) appear to be an alternative way to combat fouling. FRC do not necessarily prevent the settlement of marine organisms but rather allow their easy removal with application of shear to the coatings surface. These coatings must be non-toxic, non-leaching, have low surface energy, low modulus, and durability to provide easy removal of marine organisms. Here the goal is to develop FRC based on thermosetting siloxane-polyurethane, amphiphilic polyurethane, and zwitterionic/amphiphilic polyurethane systems. A combinatorial high-throughput approach has been taken in order to explore the variables that may affect the performance of the final coatings. Libraries of acrylic polyols were synthesized using combinatorial high-throughput techniques by either batch or semi-batch processes. The design of the experiments for the batch and semi-batch processes were done combinatorially to explore a range of compositions and various reaction process variables that cannot be accomplished or are not suitable for single reaction experiments. Characterization of Rapid-GPC, high-throughput DSC, and gravimetrically calculated percent solids verified the effects of different reaction conditions on the MW, glass transition temperatures, and percent conversion of the different compositions of acrylic polyols. Coatings were characterized for their surface energy, pseudobarnacle pull-off adhesion, and were subjected to bioassays including marine bacteria, algae, and barnacles. From the performance properties results the acrylic polyol containing 20% hydroxyethyl acrylate and 80% butyl acrylate was selected for further siloxane-polyurethane formulations and were subjected to the same physical, mechanical, and performance testing

  12. Characterization and anti-fouling performance of nano-Al₂O₃/PVDF membrane for Songhua river raw water filtration.

    Science.gov (United States)

    Yu, S L; Shi, W X; Lu, Y; Yang, J X

    2011-01-01

    Polyvinylidene fluoride (PVDF) flat ultrafiltration membranes modified by nano-sized alumina (Al₂O₃) particles were prepared by phase inversion process and their properties and anti-fouling performances were examined. The influence of three types of natural organic matters on the modified membrane fouling was also studied. Raw water was taken from two different locations, i.e., Harbin and Zhaoyuan, of Songhua River. Dissolved organic compounds in the raw water were fractionated using XAD resins into three fractions, i.e., hydrophobic fraction, transphilic fraction, and hydrophilic fraction (HPI). The three adsorbed compounds were further eluted and dissolved into distilled water respectively to prepare the feed for the fouling tests. All solutions were adjusted to a concentration of 10.6 mg C/L, which equals to the total organic carbon (TOC) of the raw water. Results show that the addition of nano-Al₂O₃ particulars did not affect the inherent traits of the PVDF membranes, however, its surface hydrophilic properties were improved significantly with the addition of nanoparticles and anti-fouling performance was enhanced as well. The HPIs in the Songhua River were the main foulant, causing more fouling to membrane than hydrophobic and transphilic matters.

  13. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method

    Institute of Scientific and Technical Information of China (English)

    HUA Helin; LI Na; WU Linlin; ZHONG Hui; WU Guangxia; YUAN Zonghuan; LIN Xiangwei; TANG Lianyi

    2008-01-01

    Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV(Ultraviolet-visible)irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy(ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact allgle on the membrane surface decreases with the increase of methyl acrylate graftdegree. which indicated that the hydrophilicity of graft copolymer membranes Was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copoly mermembranes.

  14. Anti-fouling ultrafiltration membrane prepared from polysulfone-graft-methyl acrylate copolymers by UV-induced grafting method.

    Science.gov (United States)

    Hua, Helin; Li, Na; Wu, Linlin; Zhong, Hui; Wu, Guangxial; Yuan, Zonghuan; Lin, Xiangwei; Tang, Lianyi

    2008-01-01

    Membrane fouling is one of the most important challenges faced in membrane ultrafiltration operations. The copolymers of polysulfone-graft-methyl acrylate were synthesized by homogeneous photo-initiated graft copolymerization. The variables affecting the degree of grafting, such as the time of UV (Ultraviolet-visible) irradiation and the concentrations of the methyl acrylate and photoinitiator, were investigated. The graft copolymer membranes were prepared by the phase inversion method. The chemical and morphological changes were characterized by attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR), scanning electron microscopy, and water contact angles measurements. Results revealed that methyl acrylate groups were present on the membranes and the graft degree of methyl acrylate had remarkable effect on the performance of membranes. Pure water contact angle on the membrane surface decreases with the increase of methyl acrylate graft degree, which indicated that the hydrophilicity of graft copolymer membranes was improved. The permeation fluxes of pure water and bovine serum albumin solution were measured to evaluate the antifouling property of graft copolymer membranes, the results of which have shown an enhancement of antifouling property for graft copolymer membranes.

  15. Marine Antifouling for Underwater Archaeological Sites: TiO2 and Ag-Doped TiO2

    Directory of Open Access Journals (Sweden)

    Silvestro A. Ruffolo

    2013-01-01

    Full Text Available Marine fouling plays a crucial role in the degradation of underwater archaeological sites. Limitation of fouling activity and its damages are one of the most critical issues for archaeologists and conservators. The common cleaning procedure, consisting in the manual removal of fouling, requires a continuous maintenance, while a proper inhibition of biological colonisation would provide a long-time protection against biofouling. On the other hand, the most used antifouling paints, especially for ship hulls, show considerable toxicity level. Since submerged archaeological sites are often included in environmental protected areas, more eco-friendly products must be used. We have explored the possibility to use titanium dioxide and Ag-doped titanium dioxide as antifouling agents. For this purpose, they have been synthetized by sol-gel method, and then XRD, XPS, and reflectance spectroscopy measurements have been carried out to gain structural information. The powders have been dispersed in a polymer and then applied to marble surface to evaluate the chromatic alteration induced by the treatments. By means of biological tests, it was possible to assess their behaviour as biofouling agents. Results show a decreasing of biofouling activity on treated stony surfaces.

  16. Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance

    KAUST Repository

    Dash, Swagatika

    2011-08-01

    A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); two of them showed inhibitory effects on biofilm formation of marine bacteria and larval settlement of macro-foulers but did not produce any adverse effects on the phenotypes of zebra fish embryos at a concentration of 5μgml -1. The effect of culture duration on the production of the poly-ethers and the bioactivity of the relevant extracts was monitored over a period of 12days. The total crude poly-ether production increased from day 2 to day 5 and the highest bioactivity was observed on day 3. The poly-ethers were found to be localized in the cellular fraction of the extracts, implying their natural occurrence. The potent bioactivity of these poly-ethers together with their high natural abundance in bacteria makes them promising candidates as ingredients in antifouling applications. © 2011 Elsevier Ltd.

  17. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability.

    Science.gov (United States)

    Tu, Qin; Tian, Chang; Ma, Tongtong; Pang, Long; Wang, Jinyi

    2016-05-01

    A quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA) was successfully prepared in this study via click chemistry. Alkyne-functionalized graphene oxide (GO-alkyne) was first synthesized through a two-step amidation reaction of GO-COOH. Meanwhile, azide-terminated poly(dimethylaminoethyl methacrylate) (PDMAEMA-N3) was prepared via the atom-transfer radical-polymerization of dimethylaminoethyl methacrylate (DMAEMA). Subsequently, PDMAEMA-N3 was grafted onto the GO-alkyne through click chemistry to obtain PDMAEMA modified graphene oxide (GO-PDMAEMA). Finally, the tertiary amino groups of GO-PDMAEMA were quaternized by ethyl bromide to provide a quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA). Various characterization techniques, including Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectrometry, ζ potential, Raman, contact angle analyses and field emission scanning electron microscope were used to ascertain the successful preparation of the quaternized GO-QPDMAEMA. Furthermore, antibacterial and antifouling activities of GO-QPDMAEMA were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the GO-QPDMAEMA surface exhibited significant antibacterial and antifouling properties, compared with the GO-COOH and GO-PDMAEMA surfaces.

  18. Chlorine dioxide as an alternative antifouling biocide for cooling water systems: Toxicity to larval barnacle Amphibalanus reticulatus (Utinomi).

    Science.gov (United States)

    Venkatnarayanan, Srinivas; Sriyutha Murthy, P; Kirubagaran, Ramalingam; Venugopalan, Vayalam P

    2017-01-19

    Chlorine dioxide (ClO2) is seen as an effective alternative to chlorine, which is widely used as an antifouling biocide. However, data on its efficacy against marine macrofoulants is scanty. In this study, acute toxicity of ClO2 to larval forms of the fouling barnacle Amphibalanus reticulatus was investigated. ClO2 treatment at 0.1mg/L for 20min elicited 45-63% reduction in naupliar metamorphosis, 70% inhibition of cyprid settlement and 80% inhibition of metamorphosis to juveniles. Increase in concentration to 0.2mg/L did not result in any significant difference in the settlement inhibition or metamorphosis. Treatment with 0.2mg/L of ClO2 elicited substantial reduction in the settlement of barnacle larvae compared to control. The study indicates the possibility of using ClO2 as an alternative antifouling biocide in power plant cooling water systems. However, more work needs to be done on the environmental effects of such switchover, which we are currently undertaking.

  19. Triblock Copolymers with Grafted Fluorine-Free Amphiphilic Non-Ionic Side Chains for Antifouling and Fouling-Release Applications

    Energy Technology Data Exchange (ETDEWEB)

    Y Cho; H Sundaram; C Weinman; M Paik; M Dimitriou; J Finlay; M Callow; J Callow; E Kramer; C Ober

    2011-12-31

    Fluorine-free, amphiphilic, nonionic surface active block copolymers (SABCs) were synthesized through chemical modification of a polystyrene-block-poly(ethylene-ran-butylene)-block-polyisoprene triblock copolymer precursor with selected amphiphilic nonionic Brij and other surfactants. Amphiphilicity was imparted by a hydrophobic aliphatic group combined with a hydrophilic poly(ethylene glycol) (PEG) group-containing moiety. The surfaces were characterized by dynamic water contact angle, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and near edge X-ray absorption fine structure (NEXAFS) analysis. In biofouling assays, settlement (attachment) of both spores of the green alga Ulva and cells of the diatom Navicula on SABCs modified with Brij nonionic side chains was significantly reduced relative to a PDMS standard, with a nonionic surfactant combining a PEG group and an aliphatic moiety demonstrating the best performance. Additionally, a fouling-release assay using sporelings (young plants) of Ulva and Navicula suggested that the SABC derived from nonionic Brij side chains also out-performed PDMS as a fouling-release material. Good antifouling and fouling-release properties were not demonstrated for the other two amphiphilic surfaces derived from silicone and aromatic group containing nonionic surfactants included in this study. The results suggest that small differences in chemical surface functionality impart more significant changes with respect to the antifouling settlement and fouling-release performance of materials than overall wettability behavior.

  20. Improvement of the antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and scanning electron microscope (SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.

  1. Mimicking the cell membrane: bio-inspired simultaneous functions with monovalent anion selectivity and antifouling properties of anion exchange membrane

    Science.gov (United States)

    Zhao, Yan; Liu, Huimin; Tang, Kaini; Jin, Yali; Pan, Jiefeng; der Bruggen, Bart Van; Shen, Jiangnan; Gao, Congjie

    2016-11-01

    A new bio-inspired method was applied in this study to simultaneously improve the monovalent anion selectivity and antifouling properties of anion exchange membranes (AEMs). Three-layer architecture was developed by deposition of polydopamine (PDA) and electro-deposition of N-O-sulfonic acid benzyl chitosan (NSBC). The innermost and outermost layers were PDA with different deposition time. The middle layer was prepared by NSBC. Fourier transform infrared spectroscopy and scanning electron microscopy confirmed that PDA and NSBC were successfully modified on the surfaces of AEMs. The contact angle of the membranes indicated an improved hydrophilicity of the modified membranes. A series of electrodialysis experiments in which Cl‑/SO42‑ separation was studied, demonstrating the monovalent anion selectivity of the samples. The Cl‑/SO42‑ permselectivity of the modified membranes can reach up to 2.20, higher than that of the commercial membrane (only 0.78) during 90 minutes in electrodialysis (ED). The increase value of the resistance of the membranes was also measured to evaluate the antifouling properties. Sodium dodecyl benzene sulfonate (SDBS) was used as the fouling material in the ED process and the membrane area resistance of modified membrane increase value of was only 0.08 Ωcm2 30 minutes later.

  2. The toxicity of the three antifouling biocides DCOIT, TPBP and medetomidine to the marine pelagic copepod Acartia tonsa.

    Science.gov (United States)

    Wendt, Ida; Backhaus, Thomas; Blanck, Hans; Arrhenius, Åsa

    2016-07-01

    Copepods, the largest group of pelagic grazers, are at risk from exposure to antifouling biocides. This study investigated the toxicity of the antifouling biocides 4,5-dichloro-2-octyl-1,2-thiazol-3(2H)-one (DCOIT), triphenylborane pyridine (TPBP) and 4-[1-(2,3-dimethylphenyl)ethyl]-1H-imidazole (medetomidine) to the copepod Acartia tonsa, using mortality and egg production as endpoints. The toxicity ranking for mortality was as follows: DCOIT (LC50 57 nmol l(-1)) = TPBP (LC50 56 nmol l(-1)) > medetomidine (LC50 241 nmol l(-1)). Egg production was more sensitive than mortality to TPBP (EC50 3.2 nmol l(-1)), while DCOIT and medetomidine inhibited egg production at roughly the same concentrations (72 and 186 nmol l(-1) respectively). Furthermore, TPBP seems to affect egg hatching directly which was not the case for DCOIT and medetomidine. DCOIT and medetomidine might pose an environmental risk as they have been reported to occur in different exposure scenarios or analytical surveys at concentrations only 2-3 times lower than the respective EC10. Reported environmental concentrations of TPBP are few but clearly lower than the EC10 values reported here, suggesting current risk of TPBP to copepods to be moderate.

  3. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility.

  4. Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers.

    Science.gov (United States)

    Huang, Kang; Goddard, Julie M

    2015-09-01

    Application of nonfouling coatings on thermal processing equipment can improve operational efficiency. However, to enable effective commercial translation, a need exists for more comprehensive studies on the stability of nonfouling coatings after exposure to different sanitizers. In the current study, the influence of different commercial dairy equipment sanitizers on the nonfouling properties of stainless steel modified with electroless Ni-polytetrafluoroethylene (PTFE) coatings was determined. Surface properties, such as dynamic contact angle, surface energy, surface morphology, and elemental composition, were measured before and after the coupons were exposed to the sanitizers for 168 cleaning cycles. The fouling behavior of Ni-PTFE-modified stainless steel coupons after exposure was also evaluated by processing raw milk on a self-fabricated benchtop-scale plate heat exchanger. The results indicated that peroxide sanitizer had only minor effect on the Ni-PTFE-modified stainless steel surface, whereas chlorine- and iodine-based sanitizers influenced the surface properties drastically. The coupons after 168 cycles of exposure to peroxide sanitizer accumulated the least amount of fouling material (4.44±0.24mg/cm(2)) compared with the coupons exposed to the other 3 sanitizers. These observations indicated that the Ni-PTFE nonfouling coating retained antifouling properties after 168 cycles of exposure to peroxide-based sanitizer, supporting their potential application as nonfouling coatings for stainless steel dairy processing equipment.

  5. Dual effective organic/inorganic hybrid star-shaped polymer coatings on ultrafiltration membrane for bio- and oil-fouling resistance.

    Science.gov (United States)

    Kim, Dong-Gyun; Kang, Hyo; Han, Sungsoo; Lee, Jong-Chan

    2012-11-01

    Amphiphilic organic/inorganic hybrid star-shaped polymers (SPP) were prepared by atom transfer radical polymerization (ATRP) using poly(ethylene glycol) methyl ether methacrylate (PEGMA) and 3-(3,5,7,9,11,13,15-heptacyclohexyl-pentacyclo[9.5.1.1³,⁹.1⁵,¹⁵.1⁷,¹³]-octasiloxane-1-yl)propyl methacrylate (MA-POSS) as monomers and octakis(2-bromo-2-methylpropionoxypropyldimethylsiloxy)-octasilsesquioxane (OBPS) as an initiator. Star-shaped polymers (SPM) having PEGMA and methyl methacrylate (MMA) moieties were also prepared for comparative purposes. Polysulfone (PSf) ultrafiltration membranes coated with the SPP showed higher bio- and oil-fouling resistance and flux-recovery ability than the bare PSf membrane. Moreover, the SPP-coated membranes exhibited better antifouling properties than the SPM-coated membrane when they were used for oil/water emulsion filtration. The dual effective antifouling properties of the SPP were ascribed to the simultaneous enrichment of hydrophilic PEG and hydrophobic POSS moieties on the membrane surfaces resulting in the decrease in interactions with proteins and the increase in repellence to oils.

  6. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  7. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  8. Combinatorial materials research applied to the development of new surface coatings XV: an investigation of polysiloxane anti-fouling/fouling-release coatings containing tethered quaternary ammonium salt groups.

    Science.gov (United States)

    Majumdar, Partha; Crowley, Elizabeth; Htet, Maung; Stafslien, Shane J; Daniels, Justin; VanderWal, Lyndsi; Chisholm, Bret J

    2011-05-09

    As part of ongoing efforts aimed at the development of extensive structure−property relationships for moisture-curable polysiloxane coatings containing tethered quaternary ammonium salt (QAS) moieties for potential application as environmental friendly coatings to combat marine biofouling, a combinatorial/high-throughput (C/HT) study was conducted that was focused on four different compositional variables. The coatings that were investigated were derived from solution blends of a silanol-terminated polydimethylsiloxane (HO-PDMS-OH), QAS-functional alkoxysilane, and methyltriacetoxysilane. The compositional variables investigated were alkoxysilane functionality of the QAS-functional silane, chain length of the monovalent alkyl group attached to the QAS nitrogen atom, concentration of the QAS-functional alkoxysilane, and molecular weight of the HO-PDMS-OH. Of these variables, the composition of the alkoxysilane functionality of the QAS-functional silane was a unique variable that had not been previously investigated. The antifouling (AF) and fouling-release (FR) characteristics of the 24 unique coating compositions were characterized using HT assays based on three different marine microorganisms, namely, the two bacteria, Cellulophaga lytica and Halomonas pacifica, and the diatom, Navicula incerta. Coatings surfaces were characterized by surface energy, water contact angle hysteresis, and atomic force microscopy (AFM). A wide variety of responses were obtained over the compositional space investigated. ANOVA analysis showed that the compositional variables and their interactions significantly influenced AF/FR behaviors toward individual marine microorganisms. It was also found that utilization of the ethoxysilane-functional QASs provided enhanced AF character compared to coatings based on methoxysilane-functional analogues. This was attributed to enhanced surface segregation of QAS groups at the coating-air interface and confirmed by phase images using AFM.

  9. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles 160° with tilt angles oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  10. Mechanically durable, superomniphobic coatings prepared by layer-by-layer technique for self-cleaning and anti-smudge.

    Science.gov (United States)

    Brown, Philip S; Bhushan, Bharat

    2015-10-15

    Superomniphobic surfaces are of interest for anti-fouling, self-cleaning, anti-smudge and low-drag applications. Many bioinspired surfaces developed previously are of limited use due to a lack of mechanical durability. From a previously developed technique, an adapted layer-by-layer approach involving charged species with electrostatic interactions between layers is combined with an uncharged fluorosilane layer to result in a durable, superomniphobic coating. This technique can provide the flexibility needed to improve adhesion to the substrate with the addition of a low surface tension coating at the air interface. In this work, polyelectrolyte binder, SiO2 nanoparticles, and fluorosilane layers are deposited, providing the combination of surface roughness and low surface tension to result in a superomniphobic coating with droplets of liquids with surface tensions from 72 to 21 mN m(-1) displaying contact angles exceeding 155° with low tilt angles. The durability of these coatings was examined through the use of micro- and macrowear experiments. These coatings currently display levels of transparency acceptable for automotive applications. Fabrication via this novel combination of techniques results in durable, superomniphobic coatings displaying improved performance compared to existing work where either the durability or the repellency is compromised.

  11. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.

  12. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  13. Toxicity of anti-fouling biocides to encysted metacercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae) and their snail hosts.

    Science.gov (United States)

    Morley, N J; Leung, K M Y; Morritt, D; Crane, M

    2004-07-01

    The toxicity of the anti-fouling biocides tributyltin (TBTO), copper, and Irgarol 1051 (irgarol) at a nominal concentration of 10 microg/l over a 30 day period were investigated against the viability of metacercarial cysts of the digenean parasite Echinoparyphium recurvatum resident within the body of two common freshwater snails, Lymnaea peregra and Physa fontinalis. Reduced parasite viability was found under most exposures in both snail species. However a greater effect of toxicant exposure was found in cysts within P. fontinalis compared to those in L. peregra. This was associated with an increased mortality of the host snail. Among all tested biocides, TBTO exposures induced the highest mortality to both the parasite and their hosts. These results suggest that parasite viability is interlinked with survival of the host snail. The mechanisms of differing toxicity between host species and its relevance to successful parasite transmission to the next host are discussed.

  14. Seawater-Soluble Pigments and Their Potential Use in Self-Polishing Antifouling Paints: Simulation-based Screening Tool

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Weinell, Claus Erik

    2002-01-01

    engineering tool to obtain a quick estimate of the paint behaviour that a given seawater-soluble pigment will provide. In the present context, "pigment" refers to relevant particulate solids of organic-, inorganic-, or biological nature. Simulations performed at 15 and 30degreesC suggest that pigment...... solubility and seawater diffusivity of dissolved pigment species have a significant influence on the polishing and leaching behaviour of a typical self-polishing paint system. The pigment size distribution, on the other hand, only has a minor influence on the paint-seawater interaction. Simulations also...... indicate that only compounds which are effective against biofouling at very low seawater concentrations are useful as active antifouling paint ingredients. The need for model verification and exploration of practical issues, subsequent a given pigment has been found of interest, is discussed. The model...

  15. Coumarins from the Herb Cnidium monnieri and Chemically Modified Derivatives as Antifoulants against Balanus albicostatus and Bugula neritina Larvae

    Directory of Open Access Journals (Sweden)

    Zhan-Chang Wang

    2013-01-01

    Full Text Available In the search for new environmental friendly antifouling (AF agents, four coumarins were isolated from the herbal plant Cnidium monnieri, known as osthole (1, imperatorin (2, isopimpinellin (3 and auraptenol (4. Furthermore, five coumarin derivatives, namely 8-epoxypentylcoumarin (5, meranzin hydrate (6, 2'-deoxymetranzin hydrate (7, 8-methylbutenalcoumarin (8, and micromarin-F (9 were synthesized from osthole. Compounds 1, 2, 4, 7 showed high inhibitory activities against larval settlement of Balanus albicostatus with EC50 values of 4.64, 3.39, 3.38, 4.67 μg mL−1. Compound 8 could significantly inhibit larval settlement of Bugula neritina with an EC50 value of 3.87 μg mL−1. The impact of functional groups on anti-larval settlement activities suggested that the groups on C-5' and C-2'/C-3' of isoamylene chian could affect the AF activities.

  16. ANTIFOULING PROPERTIES OF POLY(VINYL CHLORIDE) MEMBRANES MODIFIED BY AMPHIPHILIC COPOLYMERS P(MMA-b-MAA)

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Liu; Yong-hua Zhang; Li-feng Fang; Bao-ku Zhu; Li-ping Zhu

    2012-01-01

    Three well-defined diblock copolymers ofpoly(methyl methacrylate-b-methaerylic acid) (P(MMA-b-MAA)) were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid) (PMAA) chain lengths.These copolymers were blended with PVC to fabricate porous membranes via phase inversion process.Membrane morphologies were observed by scanning electron microscopy (SEM),and chemical composition changes of the membrane surfaces were measured by X-ray photoelectron spectroscopy (XPS).Static and dynamic protein adsorption experiments were used to evaluate antifouling properties of the blend membranes.It was found that,the blend membranes containing longer PMAA arm length showed lower static protein adsorption,higher water permeation flux and better protein solution flux recovery.

  17. An anti-fouling nanoplasmonic SERS substrate for trapping and releasing a cationic fluorescent tag from human blood solution.

    Science.gov (United States)

    Sivashanmugan, Kundan; Liu, Po-Chun; Tsai, Kai-Wei; Chou, Ying-Nien; Lin, Chen-Hsueh; Chang, Yung; Wen, Ten-Chin

    2017-02-23

    In bioenvironmental detection, surface-enhanced Raman scattering (SERS) signals are greatly affected by anti-specific biomolecule adsorption, which generates strong background noise, reducing detection sensitivity and selectivity. It is thus necessary to modify the SERS substrate surface to make it anti-fouling to maintain excellent SERS signals. Herein, we propose a zwitterionic copolymer, namely poly(glycidyl methacrylate-co-sulfobetaine methacrylate) (poly(GMA-co-SBMA)), for the surface modification of SERS substrates, which were fabricated and characterized spectroscopically. The copolymer was grafted onto Ag nanocubes (NCs) on an Ag surface with massive nanogaps via 1,2-ethanedithiol, which acted as a metal-insulator-metal (MIM) substrate. The high density of poly(GMA-co-SBMA) grafted near NCs favored the formation of connections between adjacent NCs, causing strong surface plasmon resonance at these junctions. With the zwitterionic-copolymer-modified surface, the adhesion of large biomolecules in platelet-rich plasma (PRP) solution can be effectively resisted, as determined from immunoassay and fibrinogen adsorption results. The SERS signals for malachite green (MG) in PRP solution (10(-6) M) were effectively distinguished using the copolymer-grafted MIM substrate. MG was deposited on adjacent copolymer-grafted NCs, which amplified the SERS signals. Moreover, the copolymer connected adjacent NCs, inducing the electromagnetic effect at copolymer-grafted surfaces, which improved the SERS mechanism. The hydration process restructured the MG-trapped copolymer-grafted surface, decreasing the number of MG characteristic peak regions and increasing that of the copolymer regions. These results reveal that grafting a copolymer onto an MIM substrate allows MG to be easily trapped and released in complex biomatrices and increases surface reproducibility due to anti-fouling, leading to high SERS enhancement.

  18. Understanding ship-grounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment.

    Science.gov (United States)

    Negri, Adrew P; Smith, Luke D; Webster, Nicole S; Heyward, Andrew J

    2002-02-01

    The 184 m cargo ship Bunga Teratai Satu collided with Sudbury Reef, part of the Great Barrier Reef and remained grounded for 12 days. The ship was re-floated only 3 days prior to the November 2000 mass coral spawning. No cargo or fuel was lost but the impact resulted in significant contamination of the reef with anti-foulant paint containing tributyltin (TBT), copper (Cu) and zinc (Zn). Larvae of the reef-building scleractinian coral Acropora microphthalma were exposed to various concentrations of sediment collected from the grounding site in replicated laboratory experiments. Two experiments were performed, both of which used varying ratios of contaminated and control site sediment in seawater as treatments. In the first experiment, the influence of contaminated sediment on larval competency was examined using metamorphosis bioassays. In the second, the effect of contaminated sediment upon larval recruitment on pre-conditioned terracotta tiles was assessed. In both experiments, sediment containing 8.0 mg kg(-1) TBT, 72 mg kg(-1) Cu and 92 mg kg(-1) Zn significantly inhibited larval settlement and metamorphosis. At this level of contamination larvae survived but contracted to a spherical shape and swimming and searching behaviour ceased. At higher contamination levels, 100% mortality was recorded. These results indicate that the contamination of sediment by anti-fouling paint at Sudbury Reef has the potential to significantly reduce coral recruitment in the immediate vicinity of the site and that this contamination may threaten the recovery of the resident coral community unless the paint is removed.

  19. Method of bonding functional surface materials to substrates and applications in microtechnology and anti-fouling

    Science.gov (United States)

    Feng, Xiangdong; Liu, Jun; Liang, Liang

    2001-01-01

    A simple and effective method to bond a thin coating of poly(N-isopropylacylamide) (NIPAAm) on a glass surface by UV photopolymerization, and the use of such a coated surface in nano and micro technology applications. A silane coupling agent with a dithiocarbamate group is provided as a photosensitizer preferably, (N,N'-diethylamine) dithiocarbamoylpropyl-(trimethoxy) silane (DATMS). The thiocarbamate group of the sensitizer is then bonded to the glass surface by coupling the silane agent with the hydroxyl groups on the glass surface. The modified surface is then exposed to a solution of NIPAAm and a crosslinking agent which may be any organic molecule having an acrylamide group and at least two double bonds in its structure, such as N, N'-methylenebisacrylamide, and a polar solvent which may be any polar liquid which will dissolve the monomer and the crosslinking agent such as acetone, water, ethanol, or combinations thereof. By exposing the glass surface to a UV light, free radicals are generated in the thiocarbamate group which then bonds to the crosslinking agent and the NIPAAm. Upon bonding, the crosslinking agent and the NIPAAm polymerize to form a thin coating of PNIPAAm bonded to the glass. Depending upon the particular configuration of the glass, the properties of the PNIPAAm allow applications in micro and nano technology.

  20. 不饱和聚酯树脂涂料的研究进展%Progress in Research Unsaturated Polyester Resin Coatings

    Institute of Scientific and Technical Information of China (English)

    姚琪; 李玲

    2011-01-01

    Unsaturated polyester resin ( UPR) coatings is one of early developed coating varieties. The reasons that UPR is used as the film forming resin of coating are not only for its excellent properties of coating film, but also lower cost. Therefore UPR coatings are widely used in coatings industry. This article has reviewed the research progress in existing various unsaturated polyester resin coatings. Unsaturated polyester resin coatings could be divided into various types, such as air - drying, antifouling, flame - retardant, anti -corrosion,electric insulation and low (zero) volatile organic compound(VOC) coatings. The features and latest development of various unsaturated polyester resin coatings were reported respectively. The mechanisms of coatings were briefly described, and the future development trend and research direction of UPR coatings were presented.%不饱和聚酯树脂(UPR)涂料是发展最早的涂料品种之一,将UPR作为涂料的成膜树脂不但涂膜性能优良而且成本低廉,因此UPR涂料在涂料工业中应用广泛.文章就现有各种UPR涂料的研究进展进行回顾.将UPR涂料分为气干性UPR涂料、防污UPR涂料、防火UPR涂料、防腐UPR涂料、绝缘UPR涂料以及低(零)挥发性有机化合物(VOC)排放UPR涂料.分别阐述了各种涂料的特点及其发展现状,简要叙述了涂料的作用机理,并对UPR涂料的未来发展趋势和研究方向作出了展望.

  1. Mixed polyelectrolyte coatings on glassy carbon electrodes: Ion-exchange, permselectivity properties and analytical application of poly-l-lysine-poly(sodium 4-styrenesulfonate)-coated mercury film electrodes for the detection of trace metals.

    Science.gov (United States)

    Monterroso, Sandra C C; Carapuça, Helena M; Duarte, Armando C

    2006-02-28

    The present work describes the preparation, optimization and characterization of mixed polyelectrolyte coatings of poly-l-lysine (PLL) and poly(sodium 4-styrenesulfonate) (PSS) for the modification of thin mercury film electrodes (MFEs). The novel-modified electrodes were applied in the direct analysis of trace metals in estuarine waters by square-wave anodic stripping voltammetry (SWASV). The effects of the coating morphology and thickness and also of the monomeric molar ratio PLL/PSS on the cation-exchange ability of the PLL-PSS polyelectrolyte coatings onto glassy carbon (GC) were evaluated using target cationic species such as dopamine (DA) or lead cation. Further, the semi-permeability of the PLL-PSS-coated electrodes based both on electrostatic interactions and on molecular size leads to an improved anti-fouling ability against several tensioactive species. The analytical usefulness of the PLL-PSS-mixed polyelectrolyte coatings on thin mercury film electrodes is demonstrated via SWASV measurements of trace metals (lead, copper and cadmium at the low nanomolar level; accumulation time of 180s) in estuarine waters containing moderate levels of dissolved organic matter, resulting in a fast and direct methodology requiring no sample pretreatment.

  2. Coating of pumps; coating af pumper

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Hans; Moritzen, J.; Thoegersen, Jeanette

    2005-11-15

    Coating of pumps is a quite new activity. For many years pipes and containers have been coated inside in order to avoid corrosion, but the technology has only been used inside pumps for the last ten years. The technology comes from USA and is originally developed in the space technology industry as an exceptionally durable and corrosion constant coating. The project is a further development of results found in a previous R and D project in which measurements were performed before and after coating two different installations. Both installations showed large efficiency improvements. This project supplements the theory behind losses in pumps with measurements on more pumps. (BA)

  3. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass.

    Science.gov (United States)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-04-21

    Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2˙(-)) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.

  4. 海洋污损生物防除方法概述及发展趋势%Antifouling Method of Marine Fouling Organisms--A Review

    Institute of Scientific and Technical Information of China (English)

    胥震; 欧阳清; 易定和

    2012-01-01

    海洋污损生物对船舶等海洋结构物的污损已经成为人类从事海洋开发活动的一大障碍.本文综述了污损生物附着机理及其危害,介绍了当前工程应用和研究中的主要防污损技术:物理防污法、化学防污法和生物防污法.分析了各类防污方法的防污机理及优缺点,展望了防污技术未来的研究和发展趋势.%The fouling organism accreted to marine installations is a major factor affecting their safety and service life. The tarnish of marine fouling organism to marine structures such as ships has become tremendous impediment to human activity in ocean. This article summarizes the adhesion mechanism and scathes of marine organism. Besides, the main antifouling methods at present, which classified as physical method, chemical method and biological method, are analyzed in term of antifouling mechanism, relative merits and so on. Finally, the future trends of antifouling methods research and development have been suggested.

  5. Commercial Fastener Coatings Doerken

    Science.gov (United States)

    2010-06-01

    Phosphating* *partly recommended Dip Spinning Dipping Spraying Spin coating Conveyor oven box oven Inductive drying Pretreatment Coating Preheating...Curing Cooling Application Techniques - Dip Spin Coating Gurtbnd Cross BarTranspo" Band beiCifteiE Vo12one Vent llated Pre .Zone Cros~ Bar T ransrt

  6. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  7. Surfaces, Coatings and Protection

    Science.gov (United States)

    Ferguson, I. F.

    1982-08-01

    Plasma sprayed ceramics, sputter ion plating, and sol-gel ceramic protective coatings for nuclear reactors are discussed. The influence of such coatings on the behavior of reactor fuel elements is noted. The investigation of such coatings by diffraction methods is described. Laser and nuclear microprobes, scanning transmission electron microscopes, neutron scattering, and image analysis are summarized.

  8. Hard and superhard nanocomposite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Musil, J. [Univ. of West Bohemia, Plzen (Czech Republic). Dept. of Phys.

    2000-03-01

    This article reviews the development of hard coatings from a titanium nitride film through superlattice coatings to nanocomposite coatings. Significant attention is devoted to hard and superhard single layer nanocomposite coatings. A strong correlation between the hardness and structure of nanocomposite coatings is discussed in detail. Trends in development of hard nanocomposite coatings are also outlined. (orig.)

  9. Applications of Energy Saving and Environmental Protection Ship Coating%船舶节能环保涂料的应用

    Institute of Scientific and Technical Information of China (English)

    丁霞琴; 孔德陆

    2014-01-01

    对比分析几种防污涂料在实际船舶案例中的应用,结合目前节能型涂料的市场需求及应用前景,说明新型有机硅弹性体低表面能防污漆对船舶运营成本,以及人类环境保护的重大意义。%The characteristic and applications of different energy saving and environmental protection ship coatings were ana -lyzed.According to the market requirement and application prospects , the significance of the new organic-silicon sealion repulse ship anti-fouling coating was explained for ship operating cost and environmental protection .

  10. 基于Copula函数的流域防污标准研究%Research on the Anti-fouling Standards for River Basins Based on Copulas

    Institute of Scientific and Technical Information of China (English)

    吴绍飞; 张翔; 邓志民

    2013-01-01

    流域防污体系由各种水污染防治的工程措施和通过水量的合理调配和水质预测预警等非工程措施共同组成的;流域防污标准用来表征流域防污体系的防污能力,即防止水污染事故发生的能力大小.应用Copula函数,详细的分析了组成淮河防污体系的各方案防污标准问题.结果表明,方案2能在一定程度上降低高锰酸盐指数的超标风险,对流域高锰酸盐指数的防污标准有一定的提高;当流量小于3 000m3/s时,方案3对应的流域防污标准最高,流量大于4 000m3/s以上时,方案6能更好地降低氨氮水质的超标风险,方案3次之,采用方案6能最大限度地提高流域防污体系的防污标准;随着流量继续增大,同一方案对降低流域内水质超标风险的作用越来越有限,需要寻求其他的工程和非工程措施减小流域水污染事故的发生率,共同提高流域防污体系的防污标准.%River basin anti-fouling system refers to those water pollution control engineering measures and non-engineering measures including water quantity operation and water quality prediction and early warnings. River basin anti-fouling standard represents the anti-fouling ability of the above system, that is, how much it costs to prevent the pollution incident. The system anti-fouling standard carried by each of the scheduling schemes is analyzed in detail based on Copulas. Results show that, the 2nd scheme can reduce the concentration of CODmn to a certain extent, that is, it has some on lowering the system anti-fouling standard CODmn;when the flow rate is below 3 000 m3/s, the 3rd scheme is the best one improving the system standard. While the flow rate is above 4 000 m3/ s, the 6th scheme will be best lowering the concentration of NH3-N, and the 3rd one takes the second place, in other words, the system standard of the 6th scheme is the highest What's more, for a certain scheme, as the flow rate increases, the reduction of

  11. Layer-by-layer click deposition of functional polymer coatings for combating marine biofouling.

    Science.gov (United States)

    Yang, Wen Jing; Pranantyo, Dicky; Neoh, Koon-Gee; Kang, En-Tang; Teo, Serena Lay-Ming; Rittschof, Daniel

    2012-09-10

    "Click" chemistry-enabled layer-by-layer (LBL) deposition of multilayer functional polymer coatings provides an alternative approach to combating biofouling. Fouling-resistant azido-functionalized poly(ethylene glycol) methyl ether methacrylate-based polymer chains (azido-poly(PEGMA)) and antimicrobial alkynyl-functionalized 2-(methacryloyloxy)ethyl trimethyl ammonium chloride-based polymer chains (alkynyl-poly(META)) were click-assembled layer-by-layer via alkyne-azide 1,3-dipolar cycloaddition. The polymer multilayer coatings are resistant to bacterial adhesion and are bactericidal to marine Gram-negative Pseudomonas sp. NCIMB 2021 bacteria. Settlement of barnacle ( Amphibalanus (= Balanus ) amphitrite ) cyprids is greatly reduced on the multilayer polymer-functionalized substrates. As the number of the polymer layers increases, efficacy against bacterial fouling and settlement of barnacle cyprids increases. The LBL-functionalized surfaces exhibit low toxicity toward the barnacle cyprids and are stable upon prolonged exposure to seawater. LBL click deposition is thus an effective and potentially environmentally benign way to prepare antifouling coatings.

  12. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  13. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, "protective" refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars......, and petrochemical plants while "marine" refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing the emission...... of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...

  14. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  15. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    Energy Technology Data Exchange (ETDEWEB)

    Rahimpour, Ahmad, E-mail: ahmadrahimpour@yahoo.com [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Madaeni, Sayed Siavash [Membrane Research Center, Department of Chemical Engineering, Razi University, Kermanshah (Iran, Islamic Republic of); Jahanshahi, Mohsen [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of); Mansourpanah, Yaghoub [Department of Chemistry, Faculty of Science, Lorestan University, Khorramabad (Iran, Islamic Republic of); Mortazavian, Narmin [Nanobiotechnology Research Laboratory, Faculty of Chemical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)

    2009-08-30

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  16. Effects of the anti-fouling herbicide Irgarol 1051 on two life stages of the grass shrimp, Palaemonetes pugio.

    Science.gov (United States)

    Key, Peter B; Chung, Katy W; Hoguet, Jennifer; Sapozhnikova, Yelena; Fulton, Michael H

    2008-01-01

    This study investigated lethal and sublethal effects (glutathione, lipid peroxidation, cholesterol, and acetylcholinesterase) of the anti-fouling herbicide Irgarol 1051 on larval and adult grass shrimp (Palaemonetes pugio). The 96-hour LC50 test for larvae resulted in an estimated LC50 of 1.52 mg/L (95% confidence interval [CI] 1.26-1.85 mg/L). The adult 96-h LC50 was 2.46 mg/L (95% CI = 2.07-2.93 mg/L). Glutathione, lipid peroxidation, cholesterol and acetylcholinesterase levels were not significantly affected in adult grass shrimp by exposure of up to 3.00 mg/L irgarol. Lipid peroxidation and acetylcholinesterase levels in the larvae were significantly higher than controls in the highest irgarol exposures of 1.0 and 2.0 mg/L, respectively. Cholesterol levels were significantly reduced in larvae in all four irgarol concentrations tested while glutathione levels were not significantly affected in larvae. Both lethal and sublethal effects associated with irgarol exposure were only observed at concentrations well above those reported in the environment.

  17. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    Science.gov (United States)

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-03-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.

  18. Role and levels of real-time monitoring for successful anti-fouling strategies--an overview.

    Science.gov (United States)

    Flemming, H C

    2003-01-01

    Biofouling is a biofilm problem and any anti-fouling strategy will be greatly improved if the site and extent of biofilm growth can be monitored. A suitable monitoring system will provide early warning capacity and allow for specific optimization of countermeasures. As water samples do not give reliable information about biofilms, surface sampling is mandatory. Conventional biofilm monitoring techniques rely on removal of material from representative sites or on analysis of test surfaces which have been exposed. This procedure is time consuming and, depending on the parameters to be measured, requires skilled laboratory personnel. There is a strong demand for direct, on-line, in situ, continuous, non-destructive real-time information about biofilms in a system. Such demands can only be fulfilled by physical or physico-chemical methods, a number of which have already been successfully applied for biofilm monitoring. It is important, however, to be aware of the actual parameter they refer to in order to interpret the data properly. Three levels of information can be identified: (i) systems which detect increase and decrease of material accumulating on a surface but cannot differentiate between biomass and other components of a deposit, (ii) systems which provide biological information and distinguish between biotic and abiotic material, and (iii) systems which provide detailed chemical information. Examples for all three levels are presented and discussed.

  19. Anti-fouling surfaces by combined molecular self-assembly and surface-initiated ATRP for micropatterning active proteins.

    Science.gov (United States)

    Xiu, K M; Cai, Q; Li, J S; Yang, X P; Yang, W T; Xu, F J

    2012-02-01

    A simple method by combined molecular self assembly and surface-initiated atom transfer radical polymerization (SI-ATRP) was proposed to prepare a biologically inert surface for micropatterning active proteins. The MPEG microdomains having a short terminal poly(ethylene glycol) (PEG) unit were prepared by self assembly of 2-(methyoxy(polyethylenoxy) propyl)trimethoxy silane (MPEG-silane). The remaining local regions or poly(poly(ethylene glycol)methyl ether methacrylate-co-glycidyl methacrylate) (P(PEGMEMA-co-GMA)) microdomains were produced via SI-ATRP of PEGMEMA and GMA comonomers. The epoxy groups of the P(PEGMEMA-co-GMA) microdomains were used directly for covalent coupling of an active protein (human immunoglobulin or IgG) via the ring-opening reaction to produce the IgG-coupled microdomains. The IgG-coupled microdomains interact only and specifically with target anti-IgG, while the other antifouling microregions from self-assembled monolayers with short terminal PEG units effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.

  20. Environmental risks associated with booster biocides leaching from spent anti-fouling paint particles in coastal environments.

    Science.gov (United States)

    Hasan, Chowdhury K; Turner, Andrew; Readman, James; Frickers, Trish

    2014-12-01

    Boat maintenance facilities in coastal areas contribute a significant amount of antifouling paint particles (APP) to coastal environments. Very few studies have concentrated on the leaching of booster biocides embedded in old paint particles. Therefore, this study attempted to assess the leaching of Dichlofluanid and Irgarol 1051 from APP collected from Mayflower Marina in southwest England. They were analyzed by GC-MS. A leaching experiment revealed that a considerable amount of Dichlofluanid (ca. 24 μg/L) leached from 0.4 g/L of APP after the first hour, followed by a marked decline in the amount measured in the water over time, almost degrading after 24 h in seawater, affording less of an environmental threat to non-target organisms. Conversely, Irgarol 1051 appeared to be persistent and continuously leached from the 0.4 g/L of APP even after 10 days, yielding a concentration of 0.61 μg/L in seawater, potentially posing a significant threat to the aquatic environment through leaching from APP.

  1. Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties.

    Science.gov (United States)

    Feng, Yi; Wang, Kun; Davies, Chris H J; Wang, Huanting

    2015-08-20

    Carbon nanotubes (CNTs) were incorporated into alumina/polyethersulfone hollow fibre membranes to enhance the mechanical property and the efficiency of water treatment. Results show that the incorporation of CNTs can greatly limit the formation of large surface pores, decrease the void size in support layers and improve the porosity and pore connectivity of alumina/polyethersulfone membranes. As a result of such morphology change and pore size change, both improved flux and rejection were achieved in such CNTs/alumina/polyethersulfone membranes. Moreover, the CNTs/alumina/PES membranes show higher antifouling ability and the flux recoveries after being fouled by bovine serum albumin (BSA) and humic acid were improved by 84.1% and 53.2% compared to the samples without CNT incorporation. Besides the improvement in water treatment performance, the incorporation of CNTs enhanced the tensile properties of inorganic/polymer membranes. Therefore, such CNTs/alumina/PES hollow fiber membranes are very promising candidates for good filter media in industry, considering their high efficiency and high mechanical properties.

  2. Anti-fouling characteristics of surface-confined oligonucleotide strands bioconjugated on streptavidin platforms in the presence of nanomaterials.

    Science.gov (United States)

    Mir, Mònica; Cameron, Petra J; Zhong, Xinhua; Azzaroni, Omar; Alvarez, Marta; Knoll, Wolfgang

    2009-05-15

    This work describes our studies on the molecular design of interfacial architectures suitable for DNA sensing which could resist non-specific binding of nanomaterials commonly used as labels for amplifying biorecognition events. We observed that the non-specific binding of bio-nanomaterials to surface-confined oligonucleotide strands is highly dependent on the characteristics of the interfacial architecture. Thiolated double stranded oligonucleotide arrays assembled on Au surfaces evidence significant fouling in the presence of nanoparticles (NPs) at the nanomolar level. The non-specific interaction between the oligonucleotide strands and the nanomaterials can be sensitively minimized by introducing streptavidin (SAv) as an underlayer conjugated to the DNA arrays. The role of the SAv layer was attributed to the significant hydrophilic repulsion between the SAv-modified surface and the nanomaterials in close proximity to the interface, thus conferring outstanding anti-fouling characteristics to the interfacial architecture. These results provide a simple and straightforward strategy to overcome the limitations introduced by the non-specific binding of labels to achieve reliable detection of DNA-based biorecognition events.

  3. Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T.

    Science.gov (United States)

    Liu, Jen Tsai; Chen, Ching Jung; Ikoma, Toshiyuki; Yoshioka, Tomohiko; Cross, Jeffrey S; Chang, Shwu-Jen; Tsai, Jang-Zern; Tanaka, Junzo

    2011-10-03

    Designing a surface recognition layer with high anti-fouling ability, high affinity, and high specificity is an important issue to produce high sensitivity biosensing transducers. In this study, a self-assembled monolayer (SAM) consisting of a homogeneous mixture of oligo(ethylene glycol) (OEG)-terminated alkanethiolate and mercaptohexadecanoic acid (MHDA) on Au was employed for immobilizing troponin T antibody and applied in detecting cardiac troponin T by using surface plasmon resonance (SPR). The mixed SAM showed no phase segregation and exhibited human serum albumin resistance, particularly with an antibody-immobilized surface. X-ray photoemission spectra revealed that the chemical composition ratio of OEG to the mixed SAM was 69% and the OEG packing density was 82%. The specific binding of troponin T on the designed surface indicated a good linear correlation (R=0.991, P<0.0009) at concentrations lower than 50 μgmL(-1) with the limit of detection of 100 ngmL(-1) using a SPR measuring instrument. It is concluded that the mixed SAM functions as designed since it has high detection capability, high accuracy and reproducibility, as well as shows strong potential to be applied in rapid clinical diagnosis for label-free detection within 2 min.

  4. Simultaneous determination of a pyridine-triphenylborane anti-fouling agent and its estimated degradation products using capillary zone electrophoresis.

    Science.gov (United States)

    Fukushi, Keiichi; Yakushiji, Yuki; Okamura, Hideo; Hashimoto, Youichi; Saito, Keiitsu

    2010-04-02

    A commercial organoborane compound, pyridine-triphenylborane (PTPB), is often applied to ship hulls as an anti-fouling agent. We developed capillary zone electrophoresis (CZE) with direct UV detection for the simultaneous determination of PTPB and its estimated degradation products: diphenylborinic acid (DPB), phenylboronic acid (MPB), and phenol. The limits of detection (LODs) for PTPB, DPB, MPB, and phenol were, respectively, 25, 30, 50, and 29 microg/l at a signal-to-noise ratio of three. At concentrations of 0.5mg/l, values of the relative standard deviation (RSD, n=6, intra-day) of peak area were obtained, respectively, for PTPB, DPB, MPB, and phenol, as 4.1, 4.1, 4.7, and 3.4% for peak heights 3.6, 3.2, 1.7, and 1.4%, and for migration times 1.1, 1.1, 1.0, and 0.73%. The analytes were detected within 14 min. Simple photodegradation experiments were conducted to verify the usefulness of the proposed method for additional PTPB degradation investigations.

  5. Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties

    Directory of Open Access Journals (Sweden)

    Yi Feng

    2015-08-01

    Full Text Available Carbon nanotubes (CNTs were incorporated into alumina/polyethersulfone hollow fibre membranes to enhance the mechanical property and the efficiency of water treatment. Results show that the incorporation of CNTs can greatly limit the formation of large surface pores, decrease the void size in support layers and improve the porosity and pore connectivity of alumina/polyethersulfone membranes. As a result of such morphology change and pore size change, both improved flux and rejection were achieved in such CNTs/alumina/polyethersulfone membranes. Moreover, the CNTs/alumina/PES membranes show higher antifouling ability and the flux recoveries after being fouled by bovine serum albumin (BSA and humic acid were improved by 84.1% and 53.2% compared to the samples without CNT incorporation. Besides the improvement in water treatment performance, the incorporation of CNTs enhanced the tensile properties of inorganic/polymer membranes. Therefore, such CNTs/alumina/PES hollow fiber membranes are very promising candidates for good filter media in industry, considering their high efficiency and high mechanical properties.

  6. Surface modification of polypropylene microporous membrane to improve its antifouling characteristics in an SMBR: N2 plasma treatment.

    Science.gov (United States)

    Yu, Hai-Yin; He, Xiao-Chun; Liu, Lan-Qin; Gu, Jia-Shan; Wei, Xian-Wen

    2007-12-01

    Fouling is the major obstacle in membrane processes applied in water and wastewater treatment. The polypropylene hollow fiber microporous membranes (PPHFMMs) were surface modified by N(2) low-temperature plasma treatment to improve the antifouling characteristics. Morphological changes on the membrane surface were characterized by field emission scanning electron microscopy (FE-SEM). The change of surface wettability was monitored by contact angle measurements. The static water contact angle of the modified membrane reduced obviously; the relative pure water flux of the modified membranes increased with the increase of plasma treatment time. To assess the relation between plasma treatment and membrane fouling in a submerged membrane bioreactor (SMBR), filtration of activated sludge was carried out by using synthetic wastewater. After continuous operation in the SMBR for about 90 h, flux recoveries for the N(2) plasma-treated PPHFMM for 8 min were 62.9% and 67.8% higher than those of the virgin membrane after water and NaOH cleaning. The irreversible fouling resistance decreased after plasma treatment.

  7. Nucella lapillus L. imposex levels after legislation prohibiting TBT antifoulants: temporal trends from 2003 to 2008 along the Portuguese coast.

    Science.gov (United States)

    Galante-Oliveira, Susana; Oliveira, Isabel; Ferreira, Nelson; Santos, José António; Pacheco, Mário; Barroso, Carlos

    2011-02-01

    Nucella lapillus (dog whelk) imposex levels were assessed along the mainland Portuguese coast in 2006 and 2008 and were compared with available data from 2003 for the same area. Given that specimen size has been described as a factor inducing variation in some of the imposex assessment indices, and thus resulting in less reliable results, new monitoring and data analysis procedures are described and applied to study change of imposex levels from 2003 to 2008. A significant decline in imposex intensity was observed in the study area during the study period, and the Portuguese coast ecological status (under the terms defined by the OSPAR Commission) notably improved after 2003, confirming the effectiveness of the Regulation (EC) No. 782/2003 in reducing TBT pollution. Nevertheless, N. lapillus populations are still extensively affected by imposex, and fresh TBT inputs were detected in seawater throughout the coast in 2006. These recent inputs are attributed to vessels still carrying TBT antifoulants applied before 2003, as their presence in vessels was only forbidden in 2008. Considering that Regulation (EC) No. 782/2003 is an anticipation of the IMO global ban entered into force in September 2008, a worldwide-scale decrease in TBT pollution can be expected in the near future.

  8. A System-Wide Approach to Identify the Mechanisms of Barnacle Attachment: Toward the Discovery of New Antifouling Compounds

    KAUST Repository

    Al-Aqeel, Sarah

    2015-11-01

    Biofouling is a significant economic problem, particularly for marine and offshore oil industries. The acorn barnacle (Amphibalanus (Balanus) amphitrite) is the main biofouling organism in marine environments. Environmental conditions, the physiology of the biofouling organism, the surrounding microbial community, and the properties of the substratum can all influence the attachment of biofouling organisms to substrates. My dissertation investigated the biological processes involved in B. amphitrite development and attachment in the unique environment of the Red Sea, where the average water surface temperature is 34°C and the salinity reaches 41‰. I profiled the transcriptome and proteome of B. amphitrite at different life stages (nauplius II, nauplius VI, and cyprid) and identified 65,784 expressed contigs and 1387 expressed proteins by quantitative proteomics. During the planktonic stage, genes related to osmotic stress, salt stress, the hyperosmotic response, and the Wnt signaling pathway were strongly up-regulated, hereas genes related to the MAPK pathway, lipid metabolism, and cuticle development were down-regulated. In the transition from the nauplius VI to cyprid stages, there was up-regulation of genes involved in blood coagulation, cuticle development, and eggshell formation, and down-regulation of genes in the nitric oxide pathway, which stimulates the swimming and feeding responses of marine invertebrates. This system-wide integrated approach elucidated the development and attachment pathways important in B. amphitrite. Enzymes and metabolites in these pathways are potential molecular targets for the development of new antifouling compounds.

  9. Preparation of graphene oxide modified poly(m-phenylene isophthalamide) nanofiltration membrane with improved water flux and antifouling property

    Science.gov (United States)

    Yang, Mei; Zhao, Changwei; Zhang, Shaofeng; Li, Pei; Hou, Deyin

    2017-02-01

    Poly (m-phenylene isophthalamide)/graphene oxide (PMIA/GO) composite nanofiltartion (NF) membranes were prepared via a facile phase inversion method. Structures, surface properties and hydrophilicities of the membrane were analyzed using FT-IR, XPS, AFM, SEM, water contact angle and Zeta-potential measurements. FTIR spectra indicated the existence of hydrophilic carboxylic acid and hydroxyl groups in the GO molecules. SEM pictures revealed the large and finger-like micro-voids formed in the sublayer of the NF membranes after adding GO. The zeta-potential and water contact angle results proved that PMIA/GO composite membranes had more negatively charged and greater hydrophilic surfaces. The pure water flux of the PMIA/GO (0.3 wt% GO) composite membrane (125.2 (L/m2/h)) was 2.6 times as high as that of the pristine PMIA NF membrane (48.3 (L/m2/h)) at 0.8 MPa with slightly higher rejections to all tested dyes and better fouling resistance to bovine serum albumin (BSA). This study gave an effective method for preparing composite PMIA NF membranes with high water flux and excellent antifouling property, which showed potential application in water treatment.

  10. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes.

  11. Beads-on-String Structured Nanofibers for Smart and Reversible Oil/Water Separation with Outstanding Antifouling Property.

    Science.gov (United States)

    Wang, Yuanfeng; Lai, Chuilin; Wang, Xiaowen; Liu, Yang; Hu, Huawen; Guo, Yujuan; Ma, Kaikai; Fei, Bin; Xin, John H

    2016-09-28

    It is challenging to explore a unified solution for the treatment of oily wastewater from complex sources. Thus, membrane materials with flexible separation schemes are highly desired. Herein, we fabricated a smart membrane by electrospinning TiO2 doped polyvinylidene fluoride (PVDF) nanofibers. The as-formed beads-on-string structure and hierarchical roughness of the nanofibers contribute to its superwetting/resisting property to liquids, which is desirable in oil/water separation. Switched simply by UV (or sunlight) irradiation and heating treatment, the smart membrane can realize reversible separation of oil/water mixtures by selectively allowing water or oil to pass through alone. Most importantly, the as-prepared nanofiber membrane possesses outstanding antifouling and self-cleaning performance resulting from the photocatalytic property of TiO2, which has practical significance in saving solvents and recycling materials. This work provides a route for fabricating cost-effective, easily scaled up, and recyclable membranes for on-demand oil/water separation in versatile situations, which can be of great usage in the new green separation technology.

  12. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  13. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.

    Science.gov (United States)

    Zhang, Hong-Ze; Zhang, Fang-Ting; Zhang, Xiao-Hui; Huang, Dong; Zhou, Ying-Lin; Li, Zhi-Hong; Zhang, Xin-Xiang

    2015-06-16

    Herein, we proposed a portable, easy-to-operate, and antifouling microcapsule array chip for target detection. This prepackaged chip was fabricated by innovative and cost-effective 3D ice printing integrating with photopolymerization sealing which could eliminate complicated preparation of wet chemistry and effectively resist outside contaminants. Only a small volume of sample (2 μL for each microcapsule) was consumed to fulfill the assay. All the reagents required for the analysis were stored in ice form within the microcapsule before use, which guaranteed the long-term stability of microcapsule array chips. Nitrite and glucose were chosen as models for proof of concept to achieve an instant quantitative detection by naked eyes without the need of external sophisticated instruments. The simplicity, low cost, and small sample consumption endowed ice-printing microcapsule array chips with potential commercial value in the fields of on-site environmental monitoring, medical diagnostics, and rapid high-throughput point-of-care quantitative assay.

  14. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide

    KAUST Repository

    Qian, Pei Yuan

    2010-09-08

    Larval attachment and metamorphosis, commonly referred to as larval settlement, of marine sessile invertebrates can be triggered or blocked by chemical cues and affected by changes in overall protein expression pattern and phosphorylation dynamics. This study focuses on the effects of butenolide, an effective larval settlement inhibitor, on larval settlement at the proteome level in the bryozoan Bugula neritina. Liquid-phase IEF sample prefractionation combined with 2-DE and MALDI-TOF MS was used to identify the differentially expressed proteins. Substantial changes occurred both in protein abundance and in phosphorylation status during larval settlement and when settling larvae were challenged with butenolide. The proteins that responded to treatment were identified as structural proteins, molecular chaperones, mitochondrial peptidases and calcium-binding proteins. Compared with our earlier results, both genistein and butenolide inhibited larval settlement of B. neritina primarily by changes in protein abundance and the phosphorylation status of proteins but have different protein targets in the same species. Clearly, to design potent antifouling compounds and to understand the mode of action of compounds, more studies on the effects of different compounds on proteome and phosphoproteome of different larval species are required. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Electrospark deposition coatings

    Science.gov (United States)

    Sheely, W. F.

    1986-11-01

    Hard surfacing for wear resistant and low-friction coatings has been improved by means of advances in the computer controls in electronic circuitry of the electrospark deposition (ESD) process. coatings of nearly any electrically conductive metal alloy or cermet can be deposited on conductive materials. Thickness is usually two mils or less, but can be as high as 10 mils. ESD coatings can quadrupole cutting tool life.

  16. 酶防污涂料的探索及其发展前景%The Exploration and Development Prospects of Enzyme Anti-fouling Coatings

    Institute of Scientific and Technical Information of China (English)

    赵金榜

    2013-01-01

    用酶防污,消除毒素对环境的危害,这是环境友好型防污涂料的重要发展方向之一.阐述了酶防污涂料的发展历程、防污机理以及就“留住”防污涂料中的酶及其发展前景作了粗浅的探索.

  17. Research and Development of Bionical Anti-Fouling Coatings%仿生防污涂层的研究进展

    Institute of Scientific and Technical Information of China (English)

    吴建宇; 方红霞

    2007-01-01

    综述了无毒无污染新型防污涂料--仿生防污涂料的研究和开发现状.介绍了生物防污剂和具有不同表面性质新型高分子防污涂层技术的发展概况,并提出了仿生防污涂料技术的发展趋势.

  18. 无锡自抛光防污涂料的研制%Study on Tin-free Self-polishing Antifouling Coatings

    Institute of Scientific and Technical Information of China (English)

    彭志强; 谢晓君; 张东亚; 谢天禄

    2004-01-01

    介绍了一种无锡自抛光防污涂料的配方设计、性能检测以及实船应用情况.该涂料具有长期防污和降阻效果,能提高船舶航速、节约能源,而且不危害环境,符合环保要求.

  19. 无锡自抛光防污涂料的合成%Synthesis of Tin-free Self-polishing Antifouling Coating

    Institute of Scientific and Technical Information of China (English)

    郭虹; 辛喆; 王丹

    2008-01-01

    探讨环境友好型防污涂料的基料丙烯酸树脂的合成及其在海洋防污涂料中的应用.用丙烯酸预聚物与铜盐反应,合成丙烯酸铜树脂,并通过红外吸收光谱对合成产物进行表征与分析.在复配无毒防污涂料时加入少量的有机硅单体,降低了涂料的表面能.通过对所制备的防污涂料的性能测试以及海上挂板实验,证明所制备的防污涂料具有一定的防污性能.

  20. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhen-Bei, E-mail: 1021453457@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Wu, Jing-Jing, E-mail: 957522275@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Su, Yu, E-mail: 819388710@qq.com [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Zhou, Jin, E-mail: zhoujin_ah@163.com [Department of Materials and Chemical Engineering, Chizhou University, Muzhi Rd. 199, Chizhou, Anhui 247000 (China); Gao, Yong, E-mail: 154682180@qq.com [School of Chemistry and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001 (China); Yu, Hai-Yin, E-mail: yhy456@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China); Gu, Jia-Shan, E-mail: jiashanG@mail.ahnu.edu.cn [The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Key Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, East Beijing Rd. 1, Wuhu, Anhui 241000 (China)

    2015-03-30

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and S{sub N}2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  1. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  2. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  3. Multi-seasonal barnacle (Balanus improvisus) protection achieved by trace amounts of a macrocyclic lactone (ivermectin) included in rosin-based coatings.

    Science.gov (United States)

    Pinori, Emiliano; Berglin, Mattias; Brive, Lena M; Hulander, Mats; Dahlström, Mia; Elwing, Hans

    2011-10-01

    Rosin-based coatings loaded with 0.1% (w/v) ivermectin were found to be effective in preventing colonization by barnacles (Balanus improvisus) both on test panels as well as on yachts for at least two fouling seasons. The leaching rate of ivermectin was determined by mass-spectroscopy (LC/MS-MS) to be 0.7 ng cm(-2) day(-1). This low leaching rate, as deduced from the Higuchi model, is a result of the low loading, low water solubility, high affinity to the matrix and high molar volume of the model biocide. Comparison of ivermectin and control areas of panels immersed in the field showed undisturbed colonisation of barnacles after immersion for 35 days. After 73 days the mean barnacle base plate area on the controls was 13 mm(2), while on the ivermectin coating it was 3 mm(2). After 388 days, no barnacles were observed on the ivermectin coating while the barnacles on the control coating had reached a mean of 60 mm(2). In another series of coated panels, ivermectin was dissolved in a cosolvent mixture of propylene glycol and glycerol formal prior to the addition to the paint base. This method further improved the anti-barnacle performance of the coatings. An increased release rate (3 ng cm(-2) day(-1)) and dispersion of ivermectin, determined by fluorescence microscopy, and decreased hardness of the coatings were the consequences of the cosolvent mixture in the paint. The antifouling mechanism of macrocyclic lactones, such as avermectins, needs to be clarified in further studies. Beside chronic intoxication as ivermectin is slowly released from the paint film even contact intoxication occurring inside the coatings, triggered by penetration of the coating by barnacles, is a possible explanation for the mode of action and this is under investigation.

  4. Comparison of toxicity and release rates of Cu and Zn from anti-fouling paints leached in natural and artificial brackish seawater.

    Science.gov (United States)

    Ytreberg, Erik; Karlsson, Jenny; Eklund, Britta

    2010-05-15

    Biocide-containing anti-fouling paints are regulated and approved according to the added active ingredients, such as Cu. Biocide-free paints are considered to be less environmentally damaging and do not need an approval. Zn, a common ingredient in paints with the potential of causing adverse effects has received only minor attention. Laboratory experiments were conducted in artificial brackish seawater (ASW) and natural brackish seawater (NSW) to quantify release rates of Cu and Zn from biocide-containing and biocide-free labeled eroding anti-fouling paints used on commercial vessels as well as leisure boats. In addition, organisms from three trophic levels, the crustacean Nitocra spinipes, the macroalga Ceramium tenuicorne and the bacteria Vibrio fischeri, were exposed to Cu and Zn to determine the toxicity of these metals. The release rate of Cu in NSW was higher from the paints for professional use (3.2-3.6 microg cm(-)(2)d(-1)) than from the biocide leaching leisure boat paint (1.1 microg cm(-)(2)d(-1)). Biocide-free paints did leach considerably more Zn (4.4-8.2 microg cm(-)(2)d(-1)) than biocide-containing leisure boat paint (3.0 microg cm(-)(2)d(-1)) and ship paints (0.7-2.0 microg cm(-)(2)d(-1)). In ASW the release rates of both metals were notably higher than in NSW for most tested paints. The macroalga was the most sensitive species to both Cu (EC(50)=6.4 microg l(-1)) and Zn (EC(50)=25 microg l(-1)) compared to the crustacean (Cu, LC(50)=2000 microg l(-1) Zn, LC(50)=890 microg l(-1)), and the bacteria (Cu, EC(50)=800 microg l(-1) and Zn, EC(50)=2000 microg l(-1)). The results suggest that the amounts of Zn and Cu leached from anti-fouling paints may attain toxic concentrations in areas with high boat density. To fully account for potential ecological risk associated with anti-fouling paints, Zn as well as active ingredients should be considered in the regulatory process.

  5. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lianguo [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong); Ye, Rui [State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Xu, Ying; Gao, Zhaoming [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong); Au, Doris W.T. [State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Qian, Pei-Yuan, E-mail: boqianpy@ust.hk [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong)

    2014-04-01

    Highlights: • Adverse effects of antifouling compound butenolide were studied using marine medaka. • The active ingredient in SeaNine 211, DCOIT, was employed as positive control. • Butenolide induced transient, reversible biological effects on marine medaka. • Lower toxicity of butenolide on marine biota highlights its promising application. • The increased sensitivity of male medaka addresses the gender difference. - Abstract: This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E{sub 2}) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E{sub 2}/T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be

  6. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  7. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin

    KAUST Repository

    Han, Zhuang

    2013-05-03

    Marine biofouling refers to the unwanted accumulation of fouling organisms, such as barnacles, on artificial surfaces, resulting in severe consequences for marine industries. Meleagrin is a potential nontoxic antifoulant that is isolated from the fungus Penicillium sp.; however, its mechanistic effect mode of action on larval settlement remains unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the effect of meleagrin on the proteomic expression profile of cyprid development and aging in the barnacle Balanus amphitrite. Fifty proteins were differentially expressed in response to treatment with meleagrin, among which 26 proteins were associated with cyprid development/aging and 24 were specifically associated with the meleagrin treatment. The 66 proteins that were associated with aging only remained unaltered during exposure to meleagrin. Using KEGG analysis, those proteins were assigned to several groups, including metabolic pathways, ECM-receptor interactions, and the regulation of the actin cytoskeleton. Among the 24 proteins that were not related to the development/aging process, expression of the cyprid major protein (CMP), a vitellogenin-like protein, increased after the meleagrin treatment, which suggested that meleagrin might affect the endocrine system and prevent the larval molting cycle. With the exception of the chitin binding protein that mediates the molting process and ATPase-mediated energy processes, the majority of proteins with significant effects in previous studies in response to cyprid treatment with butenolide and polyether B remained unchanged in the present study, suggesting that meleagrin may exhibit a different mechanism. © 2013 American Chemical Society.

  8. Coated electroactive materials

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  9. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  10. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  11. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  12. Chinese Decorative Coatings Market

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Growth prospects The Chinese market for decorative coatings, excluding non-architectural products such as industrial varnishes,marine paint and other industrially applied coatings, has been growing byaround 10% annually and was estimated to be worth Eurol.3 billion a year, with an annual per capita consumption of just less than 1 liter ofpaint.

  13. Nanostructured Protective Coatings

    Science.gov (United States)

    2006-01-01

    stresses induce strain fatigue with subsequent formation of cracks. Cracking in coatings leads to materials failure observed physically as spallation or...elevated temperatures. In this test a hole is drilled into the substrate before coating it. This allows a fixed amount of air to be trapped at the

  14. Evidence of a transition temperature for the optimum deposition of grafted monolayer coatings

    Science.gov (United States)

    Brzoska, J. B.; Shahidzadeh, N.; Rondelez, F.

    1992-12-01

    TECHNIQUES for surface modification are of considerable technological interest for the fabrication of water-repellent and anti-fouling coatings. Silanization1 (the chemical grafting of organic molecules onto a substrate via a trichlorosilane group) stands out among these techniques by virtue of its ability to provide highly compact coatings of optical quality, extreme chemical inertness and adjustable wettability2. Although the silanization reaction has been extensively characterized3-8, the properties of the grafted layers are still too variable for most commercial applications; for example, the quality of the grafted layers depends critically on the presence of trace amounts of water, and on the temperature at which the silanization reaction takes place9. Here we provide evidence for the existence of a near-ambient temperature threshold, Tc, which represents an upper bound for obtaining the highest-quality films. This threshold temperature is found to be an intrinsic property of the silane molecules: it depends linearly on their chain length, but is independent of the solvent used for the reaction. We suggest that Tc is analogous to the triple point in the phase diagram of Langmuir monolayers.

  15. Formation, Removal, and Reformation of Surface Coatings on Various Metal Oxide Surfaces Inspired by Mussel Adhesives.

    Science.gov (United States)

    Kang, Taegon; Oh, Dongyeop X; Heo, Jinhwa; Lee, Han-Koo; Choy, Seunghwan; Hawker, Craig J; Hwang, Dong Soo

    2015-11-11

    Mussels survive by strongly attaching to a variety of different surfaces, primarily subsurface rocks composed of metal oxides, through the formation of coordinative interactions driven by protein-based catechol repeating units contained within their adhesive secretions. From a chemistry perspective, catechols are known to form strong and reversible complexes with metal ions or metal oxides, with the binding affinity being dependent on the nature of the metal ion. As a result, catechol binding with metal oxides is reversible and can be broken in the presence of a free metal ion with a higher stability constant. It is proposed to exploit this competitive exchange in the design of a new strategy for the formation, removal, and reformation of surface coatings and self-assembled monolayers (SAM) based on catechols as the adhesive unit. In this study, catechol-functionalized tri(ethylene oxide) (TEO) was synthesized as a removable and recoverable self-assembled monolayer (SAM) for use on oxides surfaces. Attachment and detachment of these catechol derivatives on a variety of surfaces was shown to be reversible and controllable by exploiting the high stability constant of catechol to soluble metal ions, such as Fe(III). This tunable assembly based on catechol binding to metal oxides represents a new concept for reformable coatings with applications in fields ranging from friction/wettability control to biomolecular sensing and antifouling.

  16. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Jenny [Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden); Ytreberg, Erik, E-mail: erik.ytreberg@itm.su.s [Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden); Eklund, Britta [Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-03-15

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per mille artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. - Leachate from a biocide-free anti-fouling paint for leisure boat use was more toxic than leachates from ship paints.

  17. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    Science.gov (United States)

    Zhang, Zhen-Bei; Wu, Jing-Jing; Su, Yu; Zhou, Jin; Gao, Yong; Yu, Hai-Yin; Gu, Jia-Shan

    2015-03-01

    Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface.

  18. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin

    2012-09-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  19. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2.

    Science.gov (United States)

    You, Sheng-Jie; Semblante, Galilee Uy; Lu, Shao-Chung; Damodar, Rahul A; Wei, Ta-Chin

    2012-10-30

    Immobilization of TiO(2) is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60°C for 2h maximized the number of TiO(2) binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO(2), following a direct proportionality to TiO(2) loading. The membrane with 0.5% TiO(2) loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO(2) and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO(2)-modified membranes removed 30-42% of 50mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  20. Phenol-formaldehyde intumescent coating composition and coating prepared therefrom

    Science.gov (United States)

    Salyer, Ival O. (Inventor); Fox, Bernard L. (Inventor)

    1986-01-01

    Intumescent coatings which form a thick, uniform, fine celled, low density foam upon exposure to a high intensity heat flux or flame are disclosed, the invention coatings comprise phenolic resin prepolymer containing a blowing agent and a nucleating agent; in the preferred embodiments the coatings also contains a silicone surfactant, the coatings are useful in thermal and fire protection systems.

  1. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  2. Advanced thermal barrier coating systems

    Science.gov (United States)

    Dorfman, M. R.; Reardon, J. D.

    1985-01-01

    Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer.

  3. COMPOSICIÓN QUIMICA Y ACTIVIDAD ANTIFOULING DE LA FRACCION LIPIDICA DE LA ESPONJA MARINA Cliona tenuis (Clionidae

    Directory of Open Access Journals (Sweden)

    Leonardo Castellanos

    2009-04-01

    Full Text Available Normal 0 21 false false false st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Del extracto orgánico de la esponja marina Cliona tenuis, recolectada en las Islas del Rosario (Colombia, Mar Caribe, fue obtenida la fracción lipídica, la cual presentó propiedades antifouling en pruebas en campo. Esta fracción fue separada por CC sobre gel de sílice hasta obtener fracciones de ésteres metílicos, glicéridos, glicolípidos, fosfolípidos y ácidos grasos libres, las cuales fueron identificadas por CCD y técnicas de dereplicación (RMN 1H y 13C. Posteriormente, las fracciones de glicéridos, glicolípidos y fosfolípidos fueron hidrolizadas y los ácidos obtenidos, junto con los provenientes de la fracción de ácidos grasos libres, fueron transformados en ésteres metílicos y todos se analizaron por CGAR-EM. Para ubicar las insaturaciones y ramificaciones, los ésteres metílicos se transformaron luego en sus correspondientes pirrolididas, las cuales también se analizaron por CGAR-EM. El estudio cromatográfico (valores de ECL y de los espectros de masas de los ésteres metílicos y de sus derivados pirrolididas permitió identificar 81 ácidos grasos diferentes, de los cuales no habían sido previamente reportados: los ácidos 4,8-hexadecadienoico, 11-metil-4,10-octadecadienoico, 6,9,12,14-icosatetraenoico, y 6,9,12,14,17-icosapentanoico.

  4. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  5. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  6. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  7. Nanostructured Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  8. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  9. Coated 4340 Steel

    Science.gov (United States)

    2013-08-26

    alternative coatings qualified to MIL-PRE-23377 Class N and an electroplated zinc - nickel alloy passivated with a trivalent chromium solution which is...effect of a non-chromate primer and zinc - nickel plating with non-chromate passivation as alternatives to the chromate primer and cadmium plating with...NAWCADPAX/TR-2013/252 COATED 4340 STEEL by E. U. Lee C. Lei M. Stanley B. Pregger C. Matzdorf 26 August 2013

  10. Residual stresses within sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; XU Bin-shi; WANG Hai-dou

    2005-01-01

    Some important developments of residual stress researches for coating-based systems were studied. The following topics were included the sources of residual stresses in coatings: error analysis of Stoney's equation in the curvature method used for the measurement of coating residual stress, the modeling of residual stress and some analytical models for predicting the residual stresses in coatings. These topics should provide some important insights for the fail-safe design of the coating-based systems.

  11. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  12. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  13. Controlled Thermal Expansion Coat for Thermal Barrier Coatings

    Science.gov (United States)

    Brindley, William J. (Inventor); Miller, Robert A. (Inventor); Aikin, Beverly J. M. (Inventor)

    1999-01-01

    A improved thermal barrier coating and method for producing and applying such is disclosed herein. The thermal barrier coating includes a high temperature substrate, a first bond coat layer applied to the substrate of MCrAlX, and a second bond coat layer of MCrAlX with particles of a particulate dispersed throughout the MCrAlX and the preferred particulate is Al2O3. The particles of the particulate dispersed throughout the second bond coat layer preferably have a diameter of less then the height of the peaks of the second bond coat layer, or a diameter of less than 5 microns. The method of producing the second bond coat layer may either include the steps of mechanical alloying of particles throughout the second bond coat layer, attrition milling the particles of the particulate throughout the second bond coat layer, or using electrophoresis to disperse the particles throughout the second bond coat layer. In the preferred embodiment of the invention, the first bond coat layer is applied to the substrate, and then the second bond coat layer is thermally sprayed onto the first bond coat layer. Further, in a preferred embodiment of die invention, a ceramic insulating layer covers the second bond coat layer.

  14. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    KAUST Repository

    Chen, Lianguo

    2014-04-01

    This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E2) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E2/T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be gradually recovered during depuration. Moreover, the endocrine disruptive effect induced by butenolide did not affect normal development of offspring. In contrast, DCOIT-exposed fish exhibited a decrease of egg production and impaired reproductive success. Overall, the above findings demonstrated that chronic exposure to butenolide induced transient, reversible biological effect on marine medaka, while DCOIT could impair reproductive success of fish, as

  15. Effect of Coated PHB on Properties of Abradable Seal Coating

    Institute of Scientific and Technical Information of China (English)

    CHENG Xudong; XIANG Hongyu; YE Weiping; MENG Xiaoming; MIN Jie; LIU Minzhi; ZHANG Pu; LU Wei

    2014-01-01

    As pore-forming materials, the coated poly-p-hydroxybenzoate(short for PHB) and h-BN can be applied in the preparation of abradable seal coatings at high temperature. The characteristics of coating such as morphology, thermal stability and composition were studied by SEM, EDS and FTIR. The results show that the modified PHB will change the remained carbon amount, porosity and pore morphology of the coating, which can affect the properties of coatings. If the pore is small enough in uniform distribution, the coating with 5 MPa bond strength, 30-55 HR45Y superficial hardness and certain of carbon can be suitable to well abradability.

  16. Preparation of modified multiwalled carbon nanotubes/chitosan composites and their antifouling properties%改性碳纳米管/壳聚糖复合材料的制备及防污性能

    Institute of Scientific and Technical Information of China (English)

    陈守刚; 刘丹; 王洪芬

    2015-01-01

    By controlling the pH of the solution, single-layer dopamine modified multiwalled carbon nanotubes (micaDA-MWCNTs) were prepared under acid condition. Multiwalled carbon nanotubes/chitosan (CS/micaDA-MWCNTs) composites were prepared by covalent grafting method with glutaraldehyde as a bridge material between chitosan and multi-walled carbon nanotubes (MWCNTs). The structure and nature of CS/micaDA-MWCNTs composites were characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR) and thermal gravimetric analysis (TGA). The results showed that about 6 nm membrane layer of chitosan was well-distributively coated on the surface and the end of MWCNTs. The effective biocompatible strategy of dopamine monolayer film coated carbon nanotubes can not only achieve the purpose of modification with less damage of carbon nanotube structure, but also increase significant amounts of surface active groups of MWCNTs, thereby increasing the content of grafted chitosan. Thermogravimetry analysis (TGA) data showed the chitosan graft was approximately 71.78%. CS/micaDA-MWCNTs had the advantages of both CS and MWCNTs in bacteriostasis, sustained-release effect and diatom growth inhibition. Antifouling experiments indicated that the composites had an efficient broad-spectrum of antibacterial activity againstE.coli, S.aureus,Vibrio anguillarum,Navicula parva andNavicula rows.%通过控制溶液的pH,在酸性条件下制备了单层多巴胺改性的多壁碳纳米管,然后以戊二醛作为反应中间桥梁,共价接枝制备得到碳纳米管/壳聚糖复合材料。通过透射电子显微镜(TEM)、红外光谱(FTIR)和热重分析法(TGA)对复合材料的结构和性能进行表征,结果表明碳纳米管的管壁外面和管端都被均匀包覆起来,包覆层厚度在6 nm左右;采用多巴胺单层膜包覆碳纳米管,达到了减小对碳纳米管结构造成破坏同时增加表面活性基团数量的

  17. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels.

    Science.gov (United States)

    Karlsson, Jenny; Ytreberg, Erik; Eklund, Britta

    2010-03-01

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per thousand artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests.

  18. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  19. Based Adaptive Nanocomposite Coatings

    Science.gov (United States)

    Ramazani, M.; Ashrafizadeh, F.; Mozaffarinia, R.

    2014-08-01

    A promising Ni(Al)-Cr2O3-Ag-CNT-WS2 self-lubricating wear-resistant coating was deposited via atmospheric plasma spray of Ni(Al), nano Cr2O3, nano silver and nano WS2 powders, and CNTs. Feedstock powders with various compositions prepared by spray drying were plasma sprayed onto carbon steel substrates. The tribological properties of coatings were tested by a high temperature tribometer in a dry environment from room temperature to 400 °C, and in a natural humid environment at room temperature. It was found that all nanocomposite coatings have better frictional behavior compared with pure Ni(Al) and Ni(Al)-Cr2O3 coatings; the specimen containing aproximately 7 vol.% Ag, CNT, and WS2 had the best frictional performance. The average room temperature friction coefficient of this coating was 0.36 in humid atmosphere, 0.32 in dry atmosphere, and about 0.3 at high temperature.

  20. Future warming and acidification effects on anti-fouling and anti-herbivory traits of the brown alga Fucus vesiculosus (Phaeophyceae).

    Science.gov (United States)

    Raddatz, Stefanie; Guy-Haim, Tamar; Rilov, Gil; Wahl, Martin

    2017-02-01

    Human-induced ocean warming and acidification have received increasing attention over the past decade and are considered to have substantial consequences for a broad range of marine species and their interactions. Understanding how these interactions shift in response to climate change is particularly important with regard to foundation species, such as the brown alga Fucus vesiculosus. This macroalga represents the dominant habitat former on coastal rocky substrata of the Baltic Sea, fulfilling functions essential for the entire benthic community. Its ability to withstand extensive fouling and herbivory regulates the associated community and ecosystem dynamics. This study tested the interactive effects of future warming, acidification, and seasonality on the interactions of a marine macroalga with potential foulers and consumers. F. vesiculosus rockweeds were exposed to different combinations of conditions predicted regionally for the year 2100 (+∆5°C, +∆700 μatm CO2 ) using multifactorial long-term experiments in novel outdoor benthic mesocosms ("Benthocosms") over 9-12-week periods in four seasons. Possible shifts in the macroalgal susceptibility to fouling and consumption were tested using consecutive bioassays. Algal susceptibility to fouling and grazing varied substantially among seasons and between treatments. In all seasons, warming predominantly affected anti-fouling and anti-herbivory interactions while acidification had a subtle nonsignificant influence. Interestingly, anti-microfouling activity was highest during winter under warming, while anti-macrofouling and anti-herbivory activities were highest in the summer under warming. These contrasting findings indicate that seasonal changes in anti-fouling and anti-herbivory traits may interact with ocean warming in altering F. vesiculosus community composition in the future.

  1. Tribology and coatings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The future use of fuel-efficient, low-emission, advanced transportation systems (for example, those using low-heat-rejection diesel engines or advanced gas turbines) presents new challenges to tribologists and materials scientists. High service temperatures, corrosive environments, and extreme contact pressures are among the concerns that make necessary new tribological designs, novel materials, and effective lubrication concepts. Argonne is working on methods to reduce friction, wear and corrosion, such as soft metal coatings on ceramics, layered compounds, diamond coatings, and hard surfaces.

  2. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable and long lasting fixation between living bone and the implant surface. In total joint replacements of cementless designs, coatings of calcium phosphates were introduced as a means...... of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...... evaluating bone-implant fixation with HA coatings....

  3. Bioceramics for implant coatings

    Directory of Open Access Journals (Sweden)

    Allison A Campbell

    2003-11-01

    Early research in this field focused on understanding the biomechanical properties of metal implants, but recent work has turned toward improving the biological properties of these devices. This has led to the introduction of calcium phosphate (CaP bioceramics as a bioactive interface between the bulk metal impart and the surrounding tissue. The first CaP coatings were produced via vapor phase processes, but more recently solution-based and biomimetic methods have emerged. While each approach has its own intrinsic materials and biological properties, in general CaP coatings promise to improve implant biocompatibility and ultimately implant longevity.

  4. Advanced Coating Removal Techniques

    Science.gov (United States)

    Seibert, Jon

    2006-01-01

    An important step in the repair and protection against corrosion damage is the safe removal of the oxidation and protective coatings without further damaging the integrity of the substrate. Two such methods that are proving to be safe and effective in this task are liquid nitrogen and laser removal operations. Laser technology used for the removal of protective coatings is currently being researched and implemented in various areas of the aerospace industry. Delivering thousands of focused energy pulses, the laser ablates the coating surface by heating and dissolving the material applied to the substrate. The metal substrate will reflect the laser and redirect the energy to any remaining protective coating, thus preventing any collateral damage the substrate may suffer throughout the process. Liquid nitrogen jets are comparable to blasting with an ultra high-pressure water jet but without the residual liquid that requires collection and removal .As the liquid nitrogen reaches the surface it is transformed into gaseous nitrogen and reenters the atmosphere without any contamination to surrounding hardware. These innovative technologies simplify corrosion repair by eliminating hazardous chemicals and repetitive manual labor from the coating removal process. One very significant advantage is the reduction of particulate contamination exposure to personnel. With the removal of coatings adjacent to sensitive flight hardware, a benefit of each technique for the space program is that no contamination such as beads, water, or sanding residue is left behind when the job is finished. One primary concern is the safe removal of coatings from thin aluminum honeycomb face sheet. NASA recently conducted thermal testing on liquid nitrogen systems and found that no damage occurred on 1/6", aluminum substrates. Wright Patterson Air Force Base in conjunction with Boeing and NASA is currently testing the laser remOval technique for process qualification. Other applications of liquid

  5. Active Packaging Coatings

    Directory of Open Access Journals (Sweden)

    Luis J. Bastarrachea

    2015-11-01

    Full Text Available Active food packaging involves the packaging of foods with materials that provide an enhanced functionality, such as antimicrobial, antioxidant or biocatalytic functions. This can be achieved through the incorporation of active compounds into the matrix of the commonly used packaging materials, or by the application of coatings with the corresponding functionality through surface modification. The latter option offers the advantage of preserving the packaging materials’ bulk properties nearly intact. Herein, different coating technologies like embedding for controlled release, immobilization, layer-by-layer deposition, and photografting are explained and their potential application for active food packaging is explored and discussed.

  6. Preparation of hydrophobic coatings

    Science.gov (United States)

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  7. Methods and means for coating paper by film coating

    NARCIS (Netherlands)

    van der Maarel, Marc; Ter Veer, Arend Berend Cornelis; Vrieling-Smit, Annet; Delnoye, Pierre

    2015-01-01

    This invention relates to the field of paper coating, more in particular to means and methods for providing paper with at least one layer of pigment using film coating to obtain a well printable surface. Provided is a method for preparing coated paper comprising the steps of: a) providing a pigmente

  8. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  9. Coatings and Tints of Spectacle Lenses

    OpenAIRE

    H. Zeki Büyükyıldız

    2012-01-01

    Spectacle lenses are made of mineral or organic (plastic) materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1) Anti-reflection coatings, 2) Hard coatings, 3) Clean coat, 4) Mirror coatings, 5) Color tint coating (one of coloring processes), 6) Photochromic coating (one of photochromic processes), and 7) Anti-fog...

  10. Tribological characterization of selected hard coatings

    OpenAIRE

    Karlsson, Patrik

    2009-01-01

    Hard coatings are often used for protection of tool surfaces due to coating properties like low friction and high wear resistance. Even though many of the hard coatings have been tested for wear, it is important to try new wear test setups to fully understand tribological mechanisms and the potential of hard coatings. Few experiments have been performed with dual-coated systems where the sliding contact surfaces are coated with the same, or different, hard coating. The dual-coated system coul...

  11. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

    Science.gov (United States)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R; Kemperman, Antoine J B; Ederth, Thomas; Nijmeijer, Kitty

    2015-03-15

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.

  12. Chitin-based coatings

    OpenAIRE

    1995-01-01

    A chitosan starting material is combined with a dilute organic acid to produce a chitosonium ion complex. The chitosonium ion complex is then cast, sprayed, extruded, or otherwise processed to produce filaments, coatings, fibers, or the like. Heat is then used to convert the chitosonium ion complex into a N-(C.sub.1-30)acyl glucose amine polymer.

  13. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed in ...

  14. The Solutions for Bubbles during Recoating of Self-polishing Antifouling Paint%自抛光防污漆复涂产生气泡的解决方案

    Institute of Scientific and Technical Information of China (English)

    王洪斌

    2014-01-01

    通过现场施工的实践和观察,阐述了自抛光防污漆的抛光机理、复涂时产生气泡的原因及其解决方案。%Based on the onsite application practice and observation,the polishing mechanism of self-polishing antifouling paint,causes for bubbles during recoating and solutions for the bubbles were expounded.

  15. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity.

    Science.gov (United States)

    Xu, Li-Ping; Peng, Jitao; Liu, Yibiao; Wen, Yongqiang; Zhang, Xueji; Jiang, Lei; Wang, Shutao

    2013-06-25

    Because of the frequent oil spill accidents in marine environment, stable superoleophobic coatings under seawater are highly desired. Current underwater superoleophobic surfaces often suffer from mechanical damages and lose their superoleophobicity gradually. It remains a challenge to fabricate a stable and robust underwater superoleophobic film which can endure harsh conditions in practical application. Nacre is one of most extensively studied rigid biological materials. Inspired by the outstanding mechanical property of seashell nacre and those underwater superoleophobic surfaces from nature, we fabricated a polyelectrolyte/clay hybrid film via typical layer-by-layer (LBL) method based on building blocks with high surface energy. 'Bricks-and-mortar' structure of seashell nacre was conceptually replicated into the prepared film, which endows the obtained film with excellent mechanical property and great abrasion resistance. In addtion, the prepared film also exhibits stable underwater superoleophobicity, low oil adhesion, and outstanding environment durability in artificial seawater. We anticipate that this work will provide a new method to design underwater low-oil-adhesion film with excellent mechanical property and improved stability, which may advance the practical applications in marine antifouling and microfluidic devices.

  16. TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment.

    Science.gov (United States)

    Liu, Lifen; Zhao, Chuanqi; Yang, Fenglin

    2012-04-15

    Prepared by coating TiO(2)/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 μm), a composite membrane (10 μm pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 μm) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO(2)/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO(2) enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane.

  17. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Drews, M. J.; Ellison, M. S.; Gantt, B. W.

    1989-01-01

    A process is being developed which evenly coats individual carbon fibers with thermoplastic polymers. In this novel, continuous coating process, the fiber tow bundle is first spread cover a series of convex rollers and then evenly coated with a fine powder of thermoplastic matrix polymer. Next, the fiber is heated internally by passing direct current through the powder coated fiber. The direct current is controlled to allow the carbon fiber temperature to slightly exceed the flow temperature of the matrix polymer. Analysis of the thermoplastic coated carbon fiber tows produced using this continuous process indicates that 30 to 70 vol pct fiber prepregs can be obtained.

  18. Coatings for improved corrosion resistance

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.

    1992-05-01

    Several coating approaches are being developed to resist attack in coal-fired environments and thereby minimize corrosion of underlying substrate alloys and extend the time for onset of breakaway corrosion. In general, coating systems can be classified as either diffusion or overlay type, which are distinguished principally by the method of deposition and the structure of the resultant coating-substrate bond. The coating techniques examined are pack cementation, electrospark deposition, physical and chemical vapor deposition, plasma spray, and ion implantation. In addition, ceramic coatings are used in some applications.

  19. Infrared optical coatings in SITP

    Institute of Scientific and Technical Information of China (English)

    LIU Ding-quan; ZHANG Feng-shan

    2005-01-01

    Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.

  20. BIODEGRADABLE COATING FROM AGATHIS ALBA

    Directory of Open Access Journals (Sweden)

    NORYAWATI MULYONO

    2012-11-01

    Full Text Available The adhesive property of copal makes it as a potential coating onto aluminum foil to replace polyethylene. This research aimed to develop copal-based coating. The coating was prepared by extracting the copal in ethyl acetate and dipping the aluminium foil in ethyl acetate soluble extract of copal. The characterization of coating included its thickness, weight, thermal and chemical resistance, and biodegradation. The results showed that the coating thickness and weight increased as the copal concentration and dipping frequency increased. Thermal resistance test showed that the coating melted after being heated at 110°C for 30 min. Copal-based coating wasresistant to acidic solution (pH 4.0, water, and coconut oil, but was deteriorated in detergent 1% (w/v and basic solution (pH 10.0. Biodegradability test using Pseudomonas aeruginosa showed weight reduction of 76.82% in 30 days.

  1. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  2. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  3. Photochromic mesoporous hybrid coatings

    Science.gov (United States)

    Raboin, L.; Matheron, M.; Gacoin, T.; Boilot, J.-P.

    2008-09-01

    Spirooxazine (SO) photochromic molecules were trapped in sol-gel matrices. In order to increase the colourability and improve mechanical properties of sol-gel photochromic films, we present an original strategy in which SO photochromic molecules were dispersed in mesoporous organized films using the impregnation technique. Well-ordered organosilicate mesoporous coatings with the 3D-hexagonal symmetry were prepared by the sol-gel technique. These robust mesoporous films, which contain high amounts of hydrophobic methyl groups at the pore surface, offer optimized environments for photochromic dyes dispersed by impregnation technique. After impregnation by a spirooxazine solution, the photochromic response is only slightly slower when compared with mesostructured or soft sol-gel matrices, showing that mesoporous organized hybrid matrix are good host for photochromic dyes. Moreover, the molecular loading in films is easily adjustable in a large range using multi-impregnation procedure and increasing the film thickness leading to coatings for optical switching devices.

  4. Permeability of edible coatings.

    Science.gov (United States)

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  5. Permeability of edible coatings

    OpenAIRE

    B Mishra; Khatkar, B. S.; Garg, M. K.; Wilson, L.A.

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m2.day (6% beeswax) to 758.0 g/m2.day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm3cm cm−2s−1Pa−1, with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrop...

  6. Superelastic Orthopedic Implant Coatings

    Science.gov (United States)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  7. Design of optical coatings

    Science.gov (United States)

    Gunkel, Claus W.

    1990-08-01

    A highly sophisticated antireflection coating and a cut-on-filter - designed by the Leitz program "RDP" - will be pointed out. The program runs on a VAX 8530 and allows to calculate reflectance, transmittance and phase of randomly polarized light which interacts with marginal surfaces. The number of layers is not limited. Some or even all layers are allowed to be anistropic. Up to four layers may be inhomogeneous both in refractive indices and absorption constants. At a time two thicknesses, two refractive indices and absorption constants as well as the angles of incidence may be varied independently in each run. The calculated values will be compared with the results of measurements. The antireflection coating is evaporated in a Balzers high vacuum evaporation plant, controlled by the process unit BPU 420, whereas the cut-on filter is evaporated in a Leybold box coater with Leycom III and two electron-beam guns.

  8. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  9. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  10. Coating and curing apparatus and methods

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze' ev R.

    2016-04-19

    Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.

  11. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  12. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation.

    Science.gov (United States)

    Chen, Si Cong; Amy, Gary L; Chung, Tai-Shung

    2016-01-01

    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m(2) at 20 bar. The average power density increased to 12.6 W/m(2) by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m(2) by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in

  13. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation

    KAUST Repository

    Chen, Si Cong

    2015-10-25

    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m at 20 bar. The average power density increased to 12.6 W/m by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in osmotic power

  14. A New Coating Process for Production of Coated Magnesium Powders

    Science.gov (United States)

    2008-04-16

    TGA data for magnesium hydroxide content. TGA analysis of the as-coated powders is a reproducible and accurate method for the determination of... TGA analysis of the as-coated powder, there is approximately 3wt% magnesium hydroxide present in the material due to the process variation compared...11: Magnesium hydroxide content as measured by TGA analysis for the 1-lb batches of as-coated ground powder Figure 12: Nitrometer analysis of

  15. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  16. Dense protective coatings, methods for their preparation and coated articles

    Energy Technology Data Exchange (ETDEWEB)

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    2015-12-29

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  17. Low Conductivity Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dong-Ming

    2005-01-01

    Thermal barrier coatings will be more aggressively designed to protect gas turbine engine hot-section components in order to meet future engine higher fuel efficiency and lower emission goals. In this presentation, thermal barrier coating development considerations and requirements will be discussed. An experimental approach is established to monitor in real time the thermal conductivity of the coating systems subjected to high-heat-flux, steady-state and cyclic temperature gradients. Advanced low conductivity thermal barrier coatings have also been developed using a multi-component defect clustering approach, and shown to have improved thermal stability. The durability and erosion resistance of low conductivity thermal barrier coatings have been improved utilizing advanced coating architecture design, composition optimization, in conjunction with more sophisticated modeling and design tools.

  18. Pipeline integrity : control by coatings

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, A.S. [Indian Inst. of Technology, Bombay (India)

    2008-07-01

    This presentation provided background information on the history of cross-country pipelines in India. It discussed the major use of gas. The key users were described as being the power and fertilizer industries, followed by vehicles using compressed natural gas to replace liquid fuels and thereby reduce pollution. The presentation also addressed the integrity of pipelines in terms of high production, safety, and monitoring. Integrity issues of pipelines were discussed with reference to basic design, control of corrosion, and periodic health monitoring. Other topics that were outlined included integrity by corrosion control; integrity by health monitoring; coatings requirements; classification of UCC pipeline coatings; and how the pipeline integrity approach can help to achieve coatings which give design life without any failure. Surface cleanliness, coating conditions, and the relationship between temperature of Epoxy coating and the time of adhesive coating were also discussed. Last, the presentation provided the results of an audit of the HBJ pipeline conducted from 1999 to 2000. tabs., figs.

  19. Functional Coatings with Polymer Brushes

    OpenAIRE

    König, Meike

    2013-01-01

    The scope of this work is to fathom different possibilities to create functional coatings with polymer brushes. The immobilization of nanoparticles and enzymes is investigated, as well as the affection of their properties by the stimuli-responsiveness of the brushes. Another aspect is the coating of 3D-nanostructures by polymer brushes and the investigation of the resulting functional properties of the hybrid material. The polymer brush coatings are characterized by a variety of microscopic a...

  20. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  1. Protective coatings on extensible biofibres

    Science.gov (United States)

    Holten-Andersen, Niels; Fantner, Georg E.; Hohlbauch, Sophia; Waite, J. Herbert; Zok, Frank W.

    2007-09-01

    Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges. If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate. High hardness, however, comes at the expense of extensibility. This property trade-off makes the design of coatings for even moderately compliant substrates problematic, because substrate deformation easily exceeds the strain limit of the coating. Although the highest strain capacity of synthetic fibre coatings is less than 10%, deformable coatings are ubiquitous in biological systems. With an eye to heeding the lessons of nature, the cuticular coatings of byssal threads from two species of marine mussels, Mytilus galloprovincialis and Perna canaliculus, have been investigated. Consistent with their function to protect collagenous fibres in the byssal-thread core, these coatings show hardness and stiffness comparable to those of engineering plastics and yet are surprisingly extensible; the tensile failure strain of P. canaliculus cuticle is about 30% and that of M. galloprovincialis is a remarkable 70%. The difference in extensibility is attributable to the presence of deformable microphase-separated granules within the cuticle of M. galloprovincialis. The results have important implications in the design of bio-inspired extensible coatings.

  2. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  3. Coatings Technology Integration Office (CTIO)

    Data.gov (United States)

    Federal Laboratory Consortium — CTIO serves as the Air Force's central resource for aircraft coating systems and their applications. CTIO's primary objectives are pollution prevention and improved...

  4. Electrochemically switchable polypyrrole coated membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, Claudia, E-mail: weidlich@dechema.d [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Mangold, Klaus-Michael [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2011-04-01

    A method for coating membranes with polypyrrole (PPy) has been developed. Different membranes, such as microfiltration as well as ion exchanger membranes have been coated with PPy to yield electrical conductivity of the membranes. The coated membranes have been investigated by cyclic voltammetry and scanning electron microscopy and their permeability and permselectivity have been tested. The results show that PPy can be tailored as cation or anion exchanger and its porosity can be controlled to avoid any impairment of the membrane by the polymer layer. These PPy coated membranes can be applied as electrochemically switchable, functionalised membranes with controllabel and variable separation properties.

  5. Studies on Nanocomposite Conducting Coatings

    Directory of Open Access Journals (Sweden)

    Amitava Bhattacharyya

    2013-01-01

    Full Text Available Nanocomposite conducting coatings can impart stable surface electrical conductivity on the substrate. In this paper, carbon nanofiber (CNF and nanographite (NG are dispersed in thermoplastic polyurethane matrix and coated on the surface of glass and polyethylene terephthalate (PET film. The nanoparticles dispersion was studied under TEM. The coating thicknesses were estimated. Further, their resistance and impedance were measured. It has been observed that the 5 wt% CNF dispersed nanocomposite coatings show good conductivity. The use of NG can bring down the amount of CNF; however, NG alone has failed to show significant improvement in conductivity. The nanocomposite coating on PET film using 2.5 wt% of both CNF and NG gives frequency-independent impedance which indicates conducting network formation by the nanoparticles. The study was carried out at different test distances on nanocomposite coated PET films to observe the linearity and continuity of the conducting network, and the result shows reasonable linearity in impedance over total test length (from 0.5 cm to 4.5 cm. The impedance of nanocomposite coatings on glass is not frequency independent and also not following linear increase path with distance. This indicates that the dispersion uniformity is not maintained in the coating solution when it was coated on glass.

  6. Resistance distribution and anti-fouling characteristics of precoating dynamic membrane in emulsified oily wastewater treatment%预涂动态膜在乳化油废水处理中的阻力分布及其抗污染特性

    Institute of Scientific and Technical Information of China (English)

    杨涛; 杨期勇; 李国朝

    2012-01-01

    In order to discuss the anti-fouling characteristics of the precoating dynamic membrane,the resistance distributions of the ceramic membrane,kaolin precoating dynamic membrane and kaolin/MnO2 composite precoating dynamic membrane were determined in emulsified oily wastewater treatment.The characterizations of the topography of the polluted precoating dynamic membranes were scanned by the SEM.The results showed that the fouling resistances caused by emulsified oil were obviously higher than the support(ceramic membrane) resistance or the resistance caused by coating particles.The membrane flux reduction was mainly due to the fouling effect by emulsified oil.The support fouling resistances of the precoating dynamic membranes were lower than the internal fouling resistance in ceramic membrane.The support fouling resistance in composite precoating dynamic membrane was the lowest.The composite dynamic layer was less polluted than the kaolin dynamic layer.For the precoating dynamic membranes,there presented clear colloidal materials on the surface,and no colloidal materials appeared on the outer wall surface of the supports.The dynamic layer can effectively protect the support in wastewater treatment,which shows very good anti-fouling characteristics.%为讨论预涂动态膜的抗污染特性,测定了陶瓷膜、高岭土预涂动态膜和高岭土/MnO2复合预涂动态膜分别在乳化油废水处理中的阻力分布,并用SEM扫描电镜对污染预涂动态膜形貌进行了表征。结果表明,乳化油污染阻力明显高于基膜(或陶瓷膜)固有阻力及涂膜粒子形成的阻力,乳化油对预涂动态膜或陶瓷膜的污染是导致膜通量衰减的主要原因;高岭土和复合预涂动态膜所用基膜污染阻力低于陶瓷膜的内部污染阻力,其中复合预涂动态膜所用基膜的污染阻力最小;复合动态膜层比高岭土动态膜层的污染程度低;污染预涂动态膜表面呈现明显的凝胶态物质,

  7. 电解防污技术及其实际应用情况探析%Electrolytic Anti-Fouling System and Actual Applying Cases Analysis

    Institute of Scientific and Technical Information of China (English)

    李军威; 田俊杰; 马光皎

    2015-01-01

    Electrolytic anti-fouling system is the main technology against marine growth fouling, that is adopted on marine facility widely. Sometimes this system easily doesn''t work well in the process of actual application, this essay analyse the situations according to actual applying experience in some representative works and introduce comprehensively electrolytic marine growth prevention device in the front part of this essay.%电解防污技术是应对海洋海生物污损的主流技术,在海洋设施中被广泛采用,而在实际应用中,其容易出现防治不利的现象,对此,本文根据实际工作经验,针对有代表性的若干典型实例进行探析.并在文章前半部分对电解防污系统机理做出切实介绍.

  8. Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces.

    Science.gov (United States)

    Xu, F J; Li, H Z; Li, J; Teo, Y H Eric; Zhu, C X; Kang, E T; Neoh, K G

    2008-12-01

    We report a novel method for micropatterning of active proteins on anti-fouling surfaces via spatially well-defined and dense binary poly(ethylene glycol)s (PEGs) brushes with controllable protein-docking sites. Binary brushes of poly(poly(ethylene glycol) methacrylate-co-poly(ethylene glycol)methyl ether methacrylate), or P(PEGMA-co-PEGMEMA), and poly(poly(ethylene glycol)methyl ether methacrylate), or P(PEGMEMA), were prepared via consecutive surface-initiated atom transfer radical polymerizations (SI-ATRPs) from a resist-micropatterned Si(100) wafer surface. The terminal hydroxyl groups on the side chains of PEGMA units in the P(PEGMA-co-PEGMEMA) microdomains were activated directly by 1,1'-carbonyldiimidazole (CDI) for the covalent coupling of human immunoglobulin (IgG) (as a model active protein). The resulting IgG-coupled PEG microdomains interact only and specifically with target anti-IgG, while the other PEG microregions effectively prevent specific and non-specific protein fouling. When extended to other active biomolecules, microarrays for specific and non-specific analyte interactions with a high signal-to-noise ratio could be readily tailored.

  9. Shielding membrane surface carboxyl groups by covalent-binding graphene oxide to improve anti-fouling property and the simultaneous promotion of flux.

    Science.gov (United States)

    Han, Jing-Long; Xia, Xue; Tao, Yu; Yun, Hui; Hou, Ya-Nan; Zhao, Chang-Wei; Luo, Qin; Cheng, Hao-Yi; Wang, Ai-Jie

    2016-10-01

    Graphene oxide (GO) is an excellent material for membrane surface modification. However, little is known about how and to what extent surface functional groups change after GO modification influence membrane anti-fouling properties. Carboxyl is an inherent functional group on polyamide or other similar membranes. Multivalent cations in wastewater secondary effluent can bridge with carboxyls on membrane surfaces and organic foulants, resulting in serious membrane fouling. In this study, carboxyls of a polydopamine (pDA)/1,3,5-benzenetricarbonyl trichloride (TMC) active layer are shielded by covalently-bound GO. The process is mediated by N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC)/N-hydroxysuccinimide (NHS). For GO containing low quantities of carboxyls, X-ray photoelectron spectroscopy (XPS) and zeta potential analyzer test results reveal that the carboxyl density decreased by 52.3% compare to the pDA/TMC membrane after GO modification. Fouling experiments shows that the flux only slightly declines in the GO functionalized membrane (19.0%), compared with the pDA/TMC membrane (36.0%) after fouling. In addition, during GO modification process the pDA/TMC active layer also become harder and thinner with the aid of EDC/NHS. So the pure water permeability increases from 56.3 ± 18.2 to 103.7 ± 12.0 LMH/MPa. Our results provide new insights for membrane modification work in water treatment and other related fields.

  10. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-01-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications. PMID:27381834

  11. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  12. Effect of the Medium Composition on the Zn2+ Lixiviation and the Antifouling Properties of a Glass with a High ZnO Content

    Directory of Open Access Journals (Sweden)

    Leticia Esteban-Tejeda

    2017-02-01

    Full Text Available The dissolution of an antimicrobial ZnO-glass in the form of powder and in the form of sintered pellets were studied in water, artificial seawater, biological complex media such as common bacterial/yeast growth media (Luria Bertani (LB, yeast extract, tryptone, and human serum. It has been established that the media containing amino acids and proteins produce a high lixiviation of Zn2+ from the glass due to the ability of zinc and zinc oxide to react with amino acids and proteins to form complex organic compounds. The process of Zn2+ lixiviation from the glass network has been studied by X-ray photoelectron spectroscopy (XPS. From these results we can state that the process of lixiviation of Zn2+ from the glass network is similar to the one observed in sodalime glasses, where Na+ is lixiviated to the media first and the fraction of Zn that acts as modifiers (~2/3 is lixiviated in second place. After the subsequent collapse of the outer surface glass layer (about 200–300 nm thick layer the dissolution process starts again. Antifouling properties against different bacteria (S. epidermidis, S. aureus, P. aeruginosa, E. coli, and M. lutea have also been established for the glass pellets.

  13. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  14. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  15. Preparation and characterization of pH-sensitive and antifouling poly(vinylidene fluoride) microfiltration membranes blended with poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid).

    Science.gov (United States)

    Ju, Junping; Wang, Chao; Wang, Tingmei; Wang, Qihua

    2014-11-15

    Functional terpolymer of poly(methyl methacrylate-2-hydroxyethyl methacrylate-acrylic acid) (P(MMA-HEMA-AA)) was synthesized via a radical polymerization method. The terpolymer could be directly blended with poly(vinylidene fluoride) (PVDF) to prepare the microfiltration (MF) membranes via phase separate process. The synthesized polymers were characterized by Fourier transform infrared (FTIR), the nuclear magnetic resonance proton spectra ((1)H NMR). The membrane had the typical asymmetric structure and the hydrophilic side chains tended to aggregate on the membrane surface. The surface enrichment of amphiphilic copolymer and morphology of MF membranes were characterized by Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The contact angle (CA) and water uptake were also tested to assess the hydrophilicity and wetting characteristics of the polymer surface. The water filtration properties were measured. It was found the modified membranes showed excellent pH-sensitivity and pH-reversibility behavior. Furthermore, the hydrophilicity of the blended membranes increased, and the membranes showed good protein antifouling property.

  16. Mold and Crucible Coatings

    Science.gov (United States)

    1986-04-28

    34;" -"""-"’" " " ""’’ "" "" ’"" ’ j * AD I. AT)-E 9 7 W CONTRACTOR REPORT ARCCD-CR-86007 MOLD AND CRUCIBLE COATINGS Sylvia J. Canino Arthur L. Geary Nuclear...IFnlRpr April 1984_-_December 198, .. AUTNORfo) S. CONTRACT on CRAM? # "I MWef(e)I Sylvia J. Canino and Arthur L. Geary DAAK1O-84-C-0056 PERFORMING

  17. USAF Inorganic Coating Successes

    Science.gov (United States)

    2012-08-01

    in2 (Marginal Fail) 7 or more pits were seen in a total of 30 in2 (Fail) Aluminum CFCC Screening Test Results Conversion Coating Alloy OC-ALC... 6061 168+ Hours 7075 168+ Hours 2024 48 Hours 5052 48-72 Hours 72-168+ Hours (5 pits on one panel at 48 hours, but then no more ) 6061 72...Dichromate Sealer Test Results Sealer Substrate Quality Thickness Corrosion Primer Dry Tape Adhesion Wet Tape Adhesion Baseline 1 Al 2024-T3 PASS

  18. Thermal Protective Coatings

    Science.gov (United States)

    1976-03-31

    within 2 minutes for the No. 4. Sodiurn silicate was tested with alumnnunm hydroxide, nerlite, vermiculite and borax filler systems. None of the systems...1.27 cm) thick, 3/16 inch (0.48 cm) cell size, 5.5 lbs/ft 3 (88.1 kg/m 3 ) glass/phenolic honey - p comib set into the fire retardant maLerial. The sheets...COATING SPECIMEN PERCENT BY WEIGHT THICKNESS WEIGHT ANO. MATRIX FILLrR 1’fLS (CM) LBS/FT. (kg,’-), 26 50% Shell 828 Epoxy Resin Borax - 54 (.14) .39

  19. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  20. Harvesting of Chlorella sp. KR-1 using a cross-flow membrane filtration system equipped with an anti-fouling membrane.

    Science.gov (United States)

    Hwang, Taewoon; Park, Seong-Jik; Oh, You-Kwan; Rashid, Naim; Han, Jong-In

    2013-07-01

    The purpose of the present study is to reduce fouling formation, a fatal problem of membrane technology by means of surface-coating with a functional coating material, i.e., hydrophilic polyvinyl alcohol (PVA) polymer. The PVA coating caused the membrane surface to become more hydrophilic and it was confirmed by decreased contact angles up to 64% compared to the un-modified membranes. The surface-coated membrane found to exhibit substantially enhanced performance: a maximum flux increase of 36% and almost 100% recovery rate. Maximum concentration factor of 77 also was modeled in the present study. These results show that the membrane performance can be improved simply by applying a surface-active coating, even to the level of economic feasibility.

  1. 磺化聚醚砜/纳米TiO2复合超滤膜制备及其抗污染机理%Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism*

    Institute of Scientific and Technical Information of China (English)

    罗明良; 温庆志; 刘佳林; 刘洪见; 贾自龙

    2011-01-01

    Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltrafion (UF) process. In this study, a sulfonated-polyethersulfone (SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods. The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer. The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface. The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.

  2. Dry coating, a novel coating technology for solid pharmaceutical dosage forms.

    Science.gov (United States)

    Luo, Yanfeng; Zhu, Jesse; Ma, Yingliang; Zhang, Hui

    2008-06-24

    Dry coating is a coating technology for solid pharmaceutical dosage forms derived from powder coating of metals. In this technology, powdered coating materials are directly coated onto solid dosage forms without using any solvent, and then heated and cured to form a coat. As a result, this technology can overcome such disadvantages caused by solvents in conventional liquid coating as serious air pollution, high time- and energy-consumption and expensive operation cost encountered by liquid coating. Several dry coating technologies, including plasticizer-dry-coating, electrostatic-dry-coating, heat-dry-coating and plasticizer-electrostatic-heat-dry-coating have been developed and extensively reported. This mini-review summarized the fundamental principles and coating processes of various dry coating technologies, and thoroughly analyzed their advantages and disadvantages as well as commercialization potentials.

  3. Alternative HTS coated conductors

    Science.gov (United States)

    Blaugher, R. D.; Bhattacharya, R. N.; Chen, J.; Padmanabhan, R.

    2002-10-01

    The availability of Bi-2223 high-temperature-superconductor (HTS) powder-in-tube (PIT) tape, with acceptable performance for long lengths, has provided the ability to construct a wide range of HTS electric power components. As a result, there are major worldwide projects in developing HTS electric power components for demonstration in a utility environment. Utility acceptance for superconducting power equipment will depend on several key factors: improved system performance, lower life-cycle costs, higher efficiency versus conventional technology, reliability and maintenance comparable to conventional power equipment, and a competitive installed cost. The latter is impacted by the current high cost of HTS conductors, which must be lowered to costs comparable to conventional Nb-Ti wire, i.e., $2-5/kAm. The present performance and cost of state-of-the-art Bi-2223 HTS tape, although acceptable for prototype construction, is viewed as a major deterrent that may compromise eventual commercialization for most of these electric power devices. The so-called second-generation coated conductor development, with emphasis on conductors employing HTS YBCO films, is viewed as the solution to this performance and cost issue. The potential for the Tl, Hg, and Bi-oxide superconductors for producing an HTS tape as alternatives to Bi-2223 PIT (and YBCO) will be discussed with some recent results on Bi-2212 “coated conductor” development.

  4. Westinghouse thermal barrier coatings development

    Energy Technology Data Exchange (ETDEWEB)

    Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

    1995-10-01

    Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

  5. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  6. POWDER COATINGS: A TECHNOLOGY REVIEW

    Science.gov (United States)

    In 1995, surface coatings accounted for nearly 2.55 million Mg of volatile organic compound (VOC) emissions nationally, which is more than 12% of VOC emissions from all sources. In recent years, powder coatings have been steadily gaining popularity as an alternative to solvent-bo...

  7. Foundry Coating Technology: A Review

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2011-01-01

    is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach....

  8. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  9. Bright Prospects for Fluorine Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Fluorine coatings are a category of new coatings with fluorine-containing resins as the major film forming substances.They have excellent weather resistance,solvent resistance, acid/alkali resistance, no toxicity and no hazards,and they contribute to film stability.

  10. Intumescent coatings under fast heating

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere

    2012-01-01

    Intumescent coatings are widely used to delay or minimise the destructive effects of fire. They are usually tested under conditions that simulate the relatively slow build-up of heat in a normal fire. Here, the effects of damage during a fire causing sudden heating of the coating were studied....

  11. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating material

  12. Moisture transport in coated wood

    NARCIS (Netherlands)

    Meel, P.A. van; Erich, S.J.F.; Huinink, H.P.; Kopinga, K.; Jong, J. DE; Adan, O.C.G.

    2011-01-01

    Moisture accumulation inside wood causes favorable conditions for decay. Application of a coating alters the moisture sorption of wood and prevents accumulation of moisture. This paper presents the results of a nuclear magnetic resonance (NMR) study on the influence of a coating on the moisture abso

  13. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland;

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...... and still to realize Si-Si bonding. It has been demonstrated that ribbed silicon plates can be produced and assembled into stacks. All previously work has been done using uncoated Si plates. In this paper we describe how to coat the ribbed Si plates with an Ir coating and a top C coating through a mask so...

  14. Dynamic residual stress in thermal sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Yang Yuanyuan

    2005-01-01

    With the modified Almen method, the forming and development process of residual stress in a thermal sprayed coating has been obtained. The test results identify that the residual stress in a coating is depend on coating material properties, technique and coating thickness. The paper pays much attention to the hysteresis between the coating temperature and residual stress in the coating or between the applied stress and the strain of the coating, and confirms that the fact is resulted from the"Gas Fix" character of a thermal sprayed coating.

  15. Proteomic changes in brain tissues of marine medaka (Oryzias melastigma) after chronic exposure to two antifouling compounds: Butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT)

    KAUST Repository

    Chen, Lianguo

    2014-12-01

    SeaNine 211 with active ingredient of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) has been used as a "green" antifouling agent worldwide but has raised serious biosafety concerns in coastal environments. DCOIT has the potential to disrupt the neurotransmission in nervous system, but the underlying mechanism has not been clarified. In the present study, we used TMT six-plex labeling coupled with two-dimensional LC-MS/MS analysis to investigate the protein expression profiles in brain tissues of the marine medaka (Oryzias melastigma) after a 28-day exposure to environmentally-realistic concentration of DCOIT at 2.55. μg/L (0.009. μM) or butenolide, one promising antifouling compound, at 2.31. μg/L (0.012. μM). DCOIT and butenolide induced differential expression of 26 and 18 proteins in male brains and of 27 and 23 proteins in female brains, respectively. Distinct mechanisms of toxicity were initiated by DCOIT and butenolide in males, whereas the protein expression profiles were largely similar in females treated by these two compounds. In males, DCOIT exposure mainly led to disruption of mitogen-activated protein kinase (MAPK) signaling pathway, while butenolide affected proteins related to the cytoskeletal disorganization that is considered as a general response to toxicant stress. Furthermore, a sex-dependent protein expression profile was also noted between male and female fish, as evident by the inverse changes in the expressions of common proteins (5 proteins for butenolide- and 2 proteins for DCOIT-exposed fish). Overall, this study provided insight into the molecular mechanisms underlying the toxicity of DCOIT and butenolide. The extremely low concentrations used in this study highlighted the ecological relevance, arguing for thorough assessments of their ecological risks before the commercialization of any new antifouling compound.

  16. Spectroscopic dimensions of silver nanoparticles and clusters in ZnO matrix and their role in bioinspired antifouling and photocatalysis.

    Science.gov (United States)

    Michael, Robin Jude Vimal; Sambandam, Balaji; Muthukumar, Thangavelu; Umapathy, Manickam J; Manoharan, Periakaruppan T

    2014-05-14

    Silver doped zinc oxide nanoparticles are synthesized by a solution combustion method. The samples characterized by a variety of spectroscopic and other techniques clearly reveal the presence of silver nanoparticles as well as silver clusters. The silver in the two forms was identified by careful deconvolution of X-ray photoelectron spectral results. Their formation was also confirmed by the presence of plasmons, the concentration and energy of which increase on increasing silver input, indicating the presence of perpendicular excitons since aggregates of clusters are known to shift the plasmon resonances depending on their topologies. Further confirmation of clusters came from EPR (electron paramagnetic resonance), HRSEM (high resolution scanning electron microscopy) and HRTEM (high resolution transmission electron microscopy); direct proof for clusters came from matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectral measurements. The antimicrobial activity of the silver doped zinc oxide polymer nanocomposites as biomedical devices are measured by zone of inhibition. Also, samples coated on paper disk with acacia binder are evaluated by a disk diffusion method. While pure zinc oxide does not show any antimicrobial property, the activity of silver-doped zinc oxide is comparable to that of commercial antibiotics and found to be related to nanoparticulate silver. Similarly, the microbial adherence to the surface of polymer nanocomposite which mimics a biomedical device also was influenced by nanoparticles of silver. The photocatalytic water treatment was carried out using silver carrying nanoparticles with Rhodamine-B and 4-chlorophenol as model pollutants. The increased photocatalytic activity of silver containing zinc oxide as compared to pure zinc oxide nanoparticles is attributed to the synergistic display of the properties of silver nanoparticles and clusters in zinc oxide. This activity depends upon the dispersion of silver

  17. 聚四氟乙烯微孔膜亲水性与抗污性的关系研究%Relationship between the Hydrophilicity and Antifouling Performance of Polytetrafluoroethylene(PTFE)Microporous Membrane

    Institute of Scientific and Technical Information of China (English)

    王峰; 朱海霖; 郭玉海

    2012-01-01

    The relationship between the hydrohilicity and antifouling performance of polytetrafluoroethylene (PTFE) microporous membrane in cross-flow filtration is determined. The effects of the sulfonic group ( -SO3H) on the water contact angle, Zeta potential, static absorption of bovine serum albumin (BSA) , and water flux were studied by scanning electron microscopy, Fourier-transform infrared spectros-copy,and surface potential analysis of solid surface after introducing -SO3H onto the surface of a PTFE membrane. The Zeta potential is negative, owing to the absorption of electronegative ion onto the hydro-phobic PTFE membrane. The PTFE membrane shows abundant static absorption of BSA and obviously decreased water flux, which demonstrates a weak antifouling property. However, the PTFE/P(AA-co-NaSS) composite membrane shows excellent antifouling performance because the introduction of -SO3H makes the absorption of electronegative ions and BSA difficult. The electrostatic repulsion between the membrane and BSA is enhanced because the Zeta potential becomes more negative with increased -SO3-from the ionization of-SO3H, which improves the antifouling performance.%探讨错流过滤中聚四氟乙烯微孔膜亲水性与抗污性的关系.在聚四氟乙烯(PTFE)膜表面引入磺酸基(-SO3H),通过扫描电镜(SEM)、傅里叶红外光谱(FTIR)、固体表面电位分析仪(SurPASS)等研究-SO3H含量对膜亲水性、Zeta电位、牛血清蛋白(BSA)静态吸附量及水通量的影响.结果表明:疏水的PTFE膜易吸附负离子,Zeta电位<0,BSA吸附量高,水通量降幅大,抗污性差;经过亲水改性后,由于--SO3H的引入,膜表面不易吸附负离子,Zeta电位升高,BSA吸附量降低,水通量降幅小;随-SO3H含量增加,膜Zeta电位因-SO3H电离而降低,与负电性BSA之间的静电斥力增强,抗污性进一步提高.

  18. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan;

    2011-01-01

    attaching to steel surfaces. P. piscicida killed S91 bacteria in the suspension cultures, whereas P. tunicata and P. ulvae did not; however, they did prevent adhesion by nonbactericidal mechanism(s). Seven Pseudoalteromonas species, including P. piscicida and P. tunicata, reduced the number of settling Ulva...... the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from...

  19. Ageing of plasma-mediated coatings with embedded silver nanoparticles on stainless steel: An XPS and ToF-SIMS investigation

    Science.gov (United States)

    Zanna, S.; Saulou, C.; Mercier-Bonin, M.; Despax, B.; Raynaud, P.; Seyeux, A.; Marcus, P.

    2010-09-01

    Nanocomposite thin films (˜170 nm), composed of silver nanoparticles enclosed in an organosilicon matrix, were deposited onto stainless steel, with the aim of preventing biofilm formation. The film deposition was carried out under cold plasma conditions, combining radiofrequency (RF) glow discharge fed with argon and hexamethyldisiloxane and simultaneous silver sputtering. XPS and ToF-SIMS were used to characterize Ag-organosilicon films in native form and after ageing in saline solution (NaCl 0.15 M), in order to further correlate their lifetime with their anti-fouling properties. Two coatings with significantly different silver contents (7.5% and 20.3%) were tested. Surface analysis confirmed the presence of metallic silver in the pristine coating and revealed significant modifications after immersion in the saline solution. Two different ageing mechanisms were observed, depending on the initial silver concentration in the film. For the sample exhibiting the low silver content (7.5%), the metal amount decreased at the surface in contact with the solution, due to the release of silver from the coating. As a result, after a 2-day exposure, silver nanoparticles located at the extreme surface were entirely released, whereas silver is still present in the inner part of the film. The coating thickness was not modified during ageing. In contrast, for the high silver content film (20.3%), the thickness decreased with immersion time, due to significant silver release and matrix erosion, assigned to a percolation-like effect. However, after 18 days of immersion, the delamination process stopped and a thin strongly bounded layer remained on the stainless steel surface.

  20. Tribological Performance of Coated Surfaces

    Institute of Scientific and Technical Information of China (English)

    Kenneth Holmberg; Anssi Laukkanen

    2004-01-01

    The fundamentals of coating tribology is presented in a generalised holistic approach to friction and wear mechanisms of coated surfaces in dry sliding contacts. It is based on a classification of the tribological contact process into macromechanical, micromechanical, tribochemical contact mechanisms and material transfer. The tribological contact process is dominated by the macromechanical mechanisms, which have been systematically analysed by using four main parameters: the coating-to-substrate hardness relationship, the film thickness, the surface roughness and the debris in the contact. In this paper special attention is given to the microlevel mechanisms, and in particular new techniques for modelling the elastic, plastic and brittle behaviour of the surface by finite element (FEM) computer simulations. The contact condition with a sphere sliding over a plate coated with a very thin hard coating is analysed. A three dimensional FEM model has been developed for calculating the first principal stress distribution in the scratch tester contact of a diamond spherical tip moving with increased load on a 2 μm thick titanium nitride (TiN) coated steel surface. The model is comprehensive in that sense that it considers elastic, plastic and fracture behaviour of the contact surfaces. By identifying from a scratch experiment the location of the first crack and using this as input data can the fracture toughness of the coating be determined.