WorldWideScience

Sample records for antifouling coatings

  1. Antifouling properties of papain-based antifouling coatings

    OpenAIRE

    Peres, Rafael; Armelín Diggroc, Elaine Aparecida; Moreno Martinez, Juan Antonio; Alemán Llansó, Carlos; Ferreira, Carlos Arthur

    2015-01-01

    The aim of this work is to study the antifouling performance and water uptake behaviour of coatings formulated with papain (an environmentally friendly pigment). Antifouling coatings have been formulated using rosin (natural resin) as matrix and papain adsorbed in activated carbon as pigment. Electrochemical impedance spectroscopy (EIS) measurements were used to evaluate the behaviour of the formulated coatings in the marine environment and to calculate the apparent water coefficient of diffu...

  2. Inorganic precursor peroxides for antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, S.M.; Pedersen, L.T.; Hermann, M.H.;

    2009-01-01

    antifouling properties, it is also a vital ingredient for the antifouling coating to obtain its polishing and leaching mechanism. In this paper, peroxides of strontium, calcium, magnesium, and zinc are tested as pigments in antifouling coatings. The peroxides react with seawater to create hydrogen peroxide...... shown that it is possible to identify particulates that, when applied as pigments in antifouling coatings, will provide polishing and leaching rates comparable to those of Cu2O-based coatings. Furthermore, the combination of polishing and hydrogen peroxide leaching by a coating based on zinc peroxide in...... and highly seawater-soluble ions of the metal. The goals have been to establish the antifouling potency of an antifouling coating that releases hydrogen peroxide as biocide, and to investigate the potential use of peroxides as water-soluble polishing and leaching pigments. The investigations have...

  3. Transport and antifouling properties of papain-based antifouling coatings

    Science.gov (United States)

    Peres, Rafael S.; Armelin, Elaine; Moreno-Martínez, Juan A.; Alemán, Carlos; Ferreira, Carlos A.

    2015-06-01

    The aim of this work is to study the antifouling performance and water uptake behaviour of coatings formulated with papain (an environmentally friendly pigment). Antifouling coatings have been formulated using rosin (natural resin) as matrix and papain adsorbed in activated carbon as pigment. Electrochemical impedance spectroscopy (EIS) measurements were used to evaluate the behaviour of the formulated coatings in the marine environment and to calculate the apparent water coefficient of diffusion (D). FTIR and XPS analyses confirm the presence of papain adsorbed inside the activated carbon pores and the release of papain in water. Immersion tests in the Mediterranean Sea were carried out for 7 months to verify the degree of biofouling of the tested coatings. These field assays clearly indicate the excellent behaviour of papain-based antifouling coatings; the results being similar to those achieved using a commercial coating. Additionally, the EIS technique is shown to be a great tool to predict the coating diffusivity of antifouling coatings before immersion tests. Furthermore, the use of biodegradable papain as a nature-friendly antifouling agent can eliminate the negative environmental impact caused by metals and chemical biocides typically used in current commercial formulations.

  4. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.;

    2007-01-01

    for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...

  5. Modern approaches to marine antifouling coatings

    OpenAIRE

    Chambers, Lily D.; Stokes, Keith R.; Walsh, Frank.C.; Robert J.K. Wood

    2006-01-01

    Marine structures such as platforms, jetties and ship hulls are subject to diverse and severe biofouling. Methods for inhibiting both organic and inorganic growth on wetted substrates are varied but most antifouling systems take the form of protective coatings. Biofouling can negatively affect the hydrodynamics of a hull by increasing the required propulsive power and the fuel consumption. This paper reviews the development of antifouling coatings for the prevention of marine biological fouli...

  6. Patterning and biofunctionalization of antifouling hyperbranched polyglycerol coatings.

    Science.gov (United States)

    Moore, Eli; Delalat, Bahman; Vasani, Roshan; Thissen, Helmut; Voelcker, Nicolas H

    2014-07-14

    We demonstrate the patterned biofunctionalization of antifouling hyperbranched polyglycerol (HPG) coatings on silicon and glass substrates. The ultralow fouling HPG coatings afforded straightforward chemical handles for rapid bioconjugation of amine containing biomolecular species. This was achieved by sodium periodate oxidation of terminal HPG diols to yield reactive aldehyde groups. Patterned microprinting of sodium periodate and cell adhesion mediating cyclic peptides containing the RGD sequence resulted in an array of covalently immobilized bioactive signals. When incubated with mouse fibroblasts, the HPG background resisted cell attachment whereas high density cell attachment was observed on the peptide spots, resulting in high-contrast cell microarrays. We also demonstrated single-step, in situ functionalization of the HPG coatings by printing periodate and peptide concurrently. Our results demonstrate the effectiveness of antifouling and functionalized HPG graft polymer coatings and establish their use in microarray applications for the first time. PMID:24956414

  7. A brief review of environmentally benign antifouling and foul-release coatings for marine applications

    NARCIS (Netherlands)

    Buskens, P.J.P.; Wouters, M.E.L.; Rentrop, C.H.A.; Vroon, Z.A.E.P.

    2013-01-01

    Antifouling coatings for ship hulls are a very important topic in coating research. They are essential with respect to fuel consumption of ships: without antifouling coating, biological species start to adhere to the ship's exterior, leading to a gradual increase in fuel consumption. To date, the wo

  8. Antifouling technology-past, present and future steps towards efficient and environmentally friendly antifouling coatings

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim

    2004-01-01

    of marine biofouling on ships in an environmentally friendly manner. The main objective of this review is to describe these products in as much detail as possible based on the knowledge available in the open literature. This knowledge has been supplemented by means of performance data provided, upon request...... understanding of the biological principles of the biofouling process is also considered in this review. From the analysis of the factors affecting the biofouling process, the interference with the settlement and attachment mechanisms is the most promising environmentally benign option. This can be accomplished...... obstacles that need to be overcome for the success of this research are analysed. The potential development of broad-spectrum efficient coatings based on natural antifoulants is far from commercialisation. However, exploitation of a weakening of biofouling adhesion by means of the non-stick and fouling...

  9. Imidazole and Triazole Coordination Chemistry for Antifouling Coatings

    OpenAIRE

    Markus Andersson Trojer; Alireza Movahedi; Hans Blanck; Magnus Nydén

    2013-01-01

    Fouling of marine organisms on the hulls of ships is a severe problem for the shipping industry. Many antifouling agents are based on five-membered nitrogen heterocyclic compounds, in particular imidazoles and triazoles. Moreover, imidazole and triazoles are strong ligands for Cu2+ and Cu+, which are both potent antifouling agents. In this review, we summarize a decade of work within our groups concerning imidazole and triazole coordination chemistry for antifouling applications with a partic...

  10. Characterization of pigment-leached antifouling coatings using BET surface area measurements and mercury porosimetry

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim

    2007-01-01

    In this work BET surface area measurements and mercury porosimetry are used to characterize leached layers formed when seawater-soluble pigments (Cu2O and ZnO) dissolve during accelerated leaching of simple antifouling coatings. Measurements on single-pigment coatings show that an increasing...... of antifouling coating behaviour because the active binder surface area and porosity of the leached layer are substantially increased. A similar effect was not observed for a coating with a mixture of ZnO and TiO2 pigments. The two experimental methods are expected to be useful for practical analysis of leaching...

  11. Entrapment of subtilisin in ceramic sol-gel coating for antifouling applications.

    Science.gov (United States)

    Regina, Viduthalai Rasheedkhan; Søhoel, Helmer; Lokanathan, Arcot Raghupathi; Bischoff, Claus; Kingshott, Peter; Revsbech, Niels Peter; Meyer, Rikke Louise

    2012-11-01

    Enzymes with antifouling properties are of great interest in developing nontoxic antifouling coatings. A bottleneck in developing enzyme-based antifouling coatings is to immobilize the enzyme in a suitable coating matrix without compromising its activity and stability. Entrapment of enzymes in ceramics using the sol-gel method is known to have several advantages over other immobilization methods. The sol-gel method can be used to make robust coatings, and the aim of this study was to explore if sol-gel technology can be used to develop robust coatings harboring active enzymes for antifouling applications. We successfully entrapped a protease, subtilisin (Savinase, Novozymes), in a ceramic coating using a sol-gel method. The sol-gel formulation, when coated on a stainless steel surface, adhered strongly and cured at room temperature in less than 8 h. The resultant coating was smoother and less hydrophobic than stainless steel. Changes in the coating's surface structure, thickness and chemistry indicate that the coating undergoes gradual erosion in aqueous medium, which results in release of subtilisin. Subtilisin activity in the coating increased initially, and then gradually decreased. After 9 months, 13% of the initial enzyme activity remained. Compared to stainless steel, the sol-gel-coated surfaces with active subtilisin were able to reduce bacterial attachment of both Gram positive and Gram negative bacteria by 2 orders of magnitude. Together, our results demonstrate that the sol-gel method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  12. The use of nanomaterials as an alternative to biocidal antifouling coatings and their environmental impact; Einsatz von Nanomaterialien als Alternative zu biozidhaltigen Antifouling-Anstrichen und deren Umweltauswirkungen

    Energy Technology Data Exchange (ETDEWEB)

    Watermann, B.T.; Daehne, D.; Fuerle, C. [LimnoMar - Labor fuer limnische/marine Forschung und vergleichende Pathologie, Hamburg (Germany)

    2010-07-15

    This study revealed that a variety of nanomaterials are already in use for antifouling paint systems. On the market for leisure boats 22 antifouling products and 3 under water coatings to reduce the friction could be identified (after an update in Mai 2010 only 14 products could be identified). These products are available on the German, the European and the global market. For all antifouling systems and underwater coatings on the market, the specification of the used nanomaterials was not specified e.g. in the Technical Data Sheets or Safety and Health Data Sheets. A clear labelling for the consumer would be helpful and necessary Actually, nanotechnology based antifouling systems on the leisure boat market and on the professional market cannot be regarded as alternatives to antifouling systems which are not using nanotechnology This is partly due to the lacking evidence of efficacy, the fact that some products contain biocides without declaring them, some of them are even not allowed to be used as biocides in antifouling paints (e.g. zinc oxide and silver) and due to the lack of specified nanomaterials which make a risk assessment or ecotoxicological evaluation impossible. It can be expected that the next generation of nanotechnology based antifouling systems will be much more sophisticated and effective, despite of the lack of scientific sound data on their environmental impact. (orig.)

  13. Replacement of traditional seawater-soluble pigments by starch and hydrolytic enzymes in polishing antifouling coatings

    DEFF Research Database (Denmark)

    Olsen, Søren Martin; Pedersen, L. T.; Dam-Johansen, Kim;

    2010-01-01

    The use of starch and hydrolytic enzymes as replacement for traditional polishing pigments (e.g., Cu2O and ZnO) in antifouling coatings has been investigated. The enzymes facilitate a slow conversion of water-insoluble starch into water-soluble glucose, and dissolution of glucose causes...... the starch-enzyme coatings tested; however, polishing is only detected for two out of four binder systems investigated. Suitable polishing rates of 7-10 mu m/month, based on the enzymatic starch-degradation, have been measured. Controls containing only starch (no enzyme) did not polish....... the development of a leached (porous) layer in the wetted, outermost part of the coating. Subsequent water-binder interaction at the pore walls gives rise to polishing, in a manner similar to that of conventional antifouling coatings. Different starch types have been evaluated and classified as potential coating...

  14. Antifouling effect of hydrogen peroxide release from enzymatic marine coatings: Exposure testing under equatorial and Mediterranean conditions

    DEFF Research Database (Denmark)

    Olsen, S.M.; Kristensen, J.B.; Laursen, B.S.;

    2010-01-01

    Hydrogen peroxide (H2O2) may be considered an environmentally friendly antifouling alternative to common biocides such as Cu2O and various organic compounds. In this work, the efficiency of antifouling coatings releasing hydrogen peroxide via enzyme-mediated conversion of starch, under Mediterran......Hydrogen peroxide (H2O2) may be considered an environmentally friendly antifouling alternative to common biocides such as Cu2O and various organic compounds. In this work, the efficiency of antifouling coatings releasing hydrogen peroxide via enzyme-mediated conversion of starch, under...... formulated have been characterised in terms of common coating characteristics and immersed on rafts in seawater outside Singapore and Spain to monitor antifouling efficiency. The results have been compared to results previously reported from temperate waters in the North Sea outside The Netherlands. Using...

  15. Antifouling effect of two saturated copper coatings applied on carbon steel structures

    Directory of Open Access Journals (Sweden)

    Guiamet, P. S.

    2008-10-01

    Full Text Available Biofouling is the colonization of man-made substrata by sessile organisms. The aim of this paper is to evaluate the performance of two antifouling saturated copper coating. Bioassays were carried out at a harbor in Argentine (38°02’S- 57°32’W. During six months, one series of pipes and panels were removed monthly to estimate the recruitment of macro and microfouling species and immediately replaced by clean ones. Another series was removed from the beginning of exposure to monitor the development of the established community (accumulative pipes and panels along six months. Data obtained from control (without a saturated copper coating and saturated-copper coated pipes and panels were compared in order to estimate performance of the coating. One of two saturated copper coating demonstrated a good effect antifouling.

    El biofouling es la colonización por organismos sésiles en sistemas de sustratos hechos por el hombre. El objetivo fue evaluar el efecto antifouling de dos cubiertas saturadas de cobre. Los estudios se llevaron a cabo en un puerto de la Argentina (38°02’S-57°32’W. Durante seis meses, una serie de caños y paneles fueron removidos mensualmente para estimar el reclutamiento de las especies del macro y microfouling, y fueron sustituidos inmediatamente por caños y paneles limpios. La otra serie de caños y paneles fueron removidas desde el inicio de la exposición en forma acumulativa durante los seis meses, para seguir el desarrollo de la comunidad. Los datos obtenidos de los controles sin cubierta y de los caños y paneles con las cubiertas saturadas de cobre fueron comparados para estimar el comportamiento antifouling de las mismas. Una de las dos cubiertas saturadas de cobre demostró un buen efecto antifouling.

  16. XRF measurements of tin, copper and zinc in antifouling paints coated on leisure boats.

    Science.gov (United States)

    Ytreberg, Erik; Bighiu, Maria Alexandra; Lundgren, Lennart; Eklund, Britta

    2016-06-01

    Tributyltin (TBT) and other organotin compounds have been restricted for use on leisure boats since 1989 in the EU. Nonetheless, release of TBT is observed from leisure boats during hull maintenance work, such as pressure hosing. In this work, we used a handheld X-ray Fluorescence analyser (XRF) calibrated for antifouling paint matrixes to measure tin, copper and zinc in antifouling paints coated on leisure boats in Sweden. Our results show that over 10% of the leisure boats (n = 686) contain >400 μg/cm(2) of tin in their antifouling coatings. For comparison, one layer (40 μm dry film) of a TBT-paint equals ≈ 800 μg Sn/cm(2). To our knowledge, tin has never been used in other forms than organotin (OT) in antifouling paints. Thus, even though the XRF analysis does not provide any information on the speciation of tin, the high concentrations indicate that these leisure boats still have OT coatings present on their hull. On several leisure boats we performed additional XRF measurements by progressively scraping off the top coatings and analysing each underlying layer. The XRF data show that when tin is detected, it is most likely present in coatings close to the hull with several layers of other coatings on top. Thus, leaching of OT compounds from the hull into the water is presumed to be negligible. The risk for environmental impacts arises during maintenance work such as scraping, blasting and high pressure hosing activities. The data also show that many boat owners apply excessive paint layers when following paint manufacturers recommendations. Moreover, high loads of copper were detected even on boats sailing in freshwater, despite the more than 20 year old ban, which poses an environmental risk that has not been addressed until now. PMID:27016611

  17. pH and redox responsive polymer for antifouling surface coating

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Seok [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); In, Insik, E-mail: in1@ut.ac.kr [Department of Polymer Science and Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Park, Sung Young, E-mail: parkchem@ut.ac.kr [Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of); Department of IT Convergence, Korea National University of Transportation, Chungju, 380-702 (Korea, Republic of)

    2014-09-15

    Graphical abstract: Dual responsive surface with highly fouling resistance with the formation of a pH-dependent benzoic imine and redox-sensitive disulfide bond has been developed using a catechol/benzoic acid conjugated polymer and disulfide containing amine end-capped Pluronic. - Highlights: • Stimuli-responsive antifouling surface was prepared by layer-by-layer method. • The surface contact angle showed responsive behavior via pH and redox environments. • Simply coated polymer completely prevented cell adhesion onto surfaces. - Abstract: A dual environmentally responsive polymer with a highly fouling-resistant surface has been developed using poly[(hydroxyethyl methacrylate-g-benzoic acid)-co-(dimethylaminoethyl methacrylate-g-2-chloro-3′, 4′-dihydroxyacetophenone)] [poly[(HEMA-BA)-co-(DMAEMA-CCDP)], P1] as a coating material. The redox-sensitive disulfide containing amine end-capped Pluronic [(Plu-S-S-NH{sub 2}), P2] was then introduced over the P1 surface via the formation of a pH-dependent benzoic imine bond, where the polyethylene glycol (PEG) acts as an antifouling agent. The successful adhesion of P1 and the deposition of P2 onto the P1-coated substrate were ascertained with X-ray photoelectron spectroscopy (XPS). In vitro cell adhesion followed by scanning electron microscopy (SEM) indicated an excellent antifouling nature of the P2 layer. Consequently, the reattachment of Hela cells was strongly observed when P2 layered on P1-coated substrates (P1–P2) was pretreated at lower pH and high redox conditions. The P1–P2 bilayer-coated substrate has exhibited a great advantage in its effective antifouling behaviors with well-tuned cell attachment and detachment.

  18. Bio-inspired self-cleaning PAAS hydrogel released coating for marine antifouling.

    Science.gov (United States)

    Xue, Lili; Lu, Xili; Wei, Huan; Long, Ping; Xu, Jina; Zheng, Yufeng

    2014-05-01

    In this paper, an antifouling hydrogel coating of slippery hydrogel-released hydrous surface (SHRHS) with the self-cleaning ability of oil-resistance and self-regeneration characters was designed. A physical blending method of loading Sodium polyacrylate (PAAS) powder into the organic silicon resin was employed to prepare the SHRHS coating. The oil-resistance of the intact and scratch SHRHS coatings was performed by time-sequence images of washing dyed beef tallow stain away. The results showed that the SHRHS coating has the greater ability of stain removal. The concentration of Na+ ions released from PAAS hydrogel on the surface of the SHRHS coating was investigated by ion chromatograph (IC). The results revealed that the coating had the ability of self-regeneration by PAAS hydrogel continuously peeling. The biomass of two marine microalgae species, Nitzschia closterium f. minutissima and Navicula climacospheniae Booth attached on the SHRHS was investigated using UV-Visible Spectrophotometer (UV) and Scanning electron microscopy (SEM). The results showed that the microalgaes attached a significantly lower numbers on the SHRHS in comparison with the organic silicon coating. In order to confirm the antifouling ability of the SHRHS coating, the field trials were carried out for 12weeks. It showed that the SHRHS may provide an effective attachment resistance to reduce biofouling. PMID:24594048

  19. Controlled release of environmentally friendly antifouling agents from marine coatings

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller

    maling, og sjette kapitel omhandler de eksperimenter, der er blevet udført med henblik på at teste forskellige frigivelseshastighed af hydrogenperoxid på biofouling. Uorganiske peroxider er blevet testet som nye antifouling maling ingredienser, og frigivelsen af hydrogenperoxid fra malinger indeholdende...... hydrogenperoxid på biofouling er blevet testet, og hydrogenperoxid frigivet som eneste biocid fra en ikke polerende overflade kræver en frigivelseshastighed på et sted mellem 225 og 2800 μg/(cm2 •dag) for at holde overfladen fri for biofouling, når denne er placeret i Jyllinge havn i Danmark i løbet af ni uger om...

  20. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  1. Environmentally benign sol-gel antifouling and foul-releasing coatings.

    Science.gov (United States)

    Detty, Michael R; Ciriminna, Rosaria; Bright, Frank V; Pagliaro, Mario

    2014-02-18

    Biofouling on ships and boats, characterized by aquatic bacteria and small organisms attaching to the hull, is an important global issue, since over 80000 tons of antifouling paint is used annually. This biofilm, which can form in as little as 48 hours depending on water temperature, increases drag on watercraft, which greatly reduces their fuel efficiency. In addition, biofouling can lead to microbially induced corrosion (MIC) due to H2S formed by the bacteria, especially sulfate-reducing bacteria. When the International Maritime Organization (IMO) international convention banned the use of effective but environmentally damaging coatings containing tributyl tin in 2008, the development of clean and effective antifouling systems became more important than ever. New nonbiocidal coatings are now in high demand. Scientists have developed new polymers, materials, and biocides, including new elastomeric coatings that they have obtained by improving the original silicone (polydimethylsiloxane) formulation patented in 1975. However, the high cost of silicones, especially of fluoropolymer-modified silicones, has generally prevented their large-scale diffusion. In 2009, traditional antifouling coatings using cuprous oxide formulated in copolymer paints still represented 95% of the global market volume of anti-fouling paints. The sol-gel nanochemistry approach to functional materials has emerged as an attractive candidate for creating low fouling surfaces due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular. Sol-gel formulations easily bind to all types of surfaces, such as steel, fiberglass, aluminum, and wood. In addition, they can cure at room temperature and form thin glassy coatings that are markedly different from thick silicone elastomeric foul-releasing coatings. Good to excellent performance against biofouling, low cure temperatures, enhanced and prolonged chemical and physical stability, ease of

  2. Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or- ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio- fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur- face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.

  3. Structures and antifouling properties of low surface energy non-toxic antifouling coatings modified by nano-SiO2 powder

    Institute of Scientific and Technical Information of China (English)

    CHEN MeiLing; QU YuanYuan; YANG Li; GAO Hong

    2008-01-01

    Antifouling coatings are used to improve the speed and energy efficiency of ships by preventing or-ganisms, such as barnacles and weed, building up on the underwater hull and helping the ships movement through the water. Typically, marine coatings are tributyltin self-polishing copolymer paints containing toxic molecules called biocides. They have been the most successful in combating bio-fouling on ships, but their widespread use has caused severe pollution in the marine ecosystem. The low surface energy marine coating is an entirely non-toxic alternative, which reduces the adhesion strength of marine organisms, facilitating their hydrodynamic removal at high speeds. In this paper, the novel low surface energy non-toxic marine antifouling coatings were prepared with modified acrylic resin, nano-SiO2, and other pigments. The effects of nano-SiO2 on the surface structure and elastic modulus of coating films have been studied, and the seawater test has been carried out in the Dalian Bay. The results showed that micro-nano layered structures on the coating films and the lowest surface energy and elastic modulus could be obtained when an appropriate mass ratio of resin, nano-SiO2, and other pigments in coatings approached. The seawater exposure test has shown that the lower the sur-face energy and elastic modulus of coatings are, the less the marine biofouling adheres on the coating films.

  4. Poly(ethylene glycol)-based thiol-ene hydrogel coatings: curing chemistry, aqueous stability, and potential marine antifouling applications

    NARCIS (Netherlands)

    Lundberg, P.; Bruin, A.; Klijnstra, J.W.; Nyström, A.M.; Johansson, M.; Malkoch, M.; Hult, A.

    2010-01-01

    Photocured thiol-ene hydrogel coatings based on poly(ethylene glycol) (PEG) were investigated for marine antifouling purposes. By varying the PEG length, vinylic end-group, and thiol cross-linker, a library of hydrogel coatings with different structural composition was efficiently accomplished, with

  5. Chitosan-based ultrathin films as antifouling, anticoagulant and antibacterial protective coatings.

    Science.gov (United States)

    Bulwan, Maria; Wójcik, Kinga; Zapotoczny, Szczepan; Nowakowska, Maria

    2012-01-01

    Ultrathin antifouling and antibacterial protective nanocoatings were prepared from ionic derivatives of chitosan using layer-by-layer deposition methodology. The surfaces of silicon, and glass protected by these nanocoatings were resistant to non-specific adsorption of proteins disregarding their net charges at physiological conditions (positively charged TGF-β1 growth factor and negatively charged bovine serum albumin) as well as human plasma components. The coatings also preserved surfaces from the formation of bacterial (Staphylococcus aureus) biofilm as shown using microscopic studies (SEM, AFM) and the MTT viability test. Moreover, the chitosan-based films adsorbed onto glass surface demonstrated the anticoagulant activity towards the human blood. The antifouling and antibacterial actions of the coatings were correlated with their physicochemical properties. The studied biologically relevant properties were also found to be dependent on the thickness of those nanocoatings. These materials are promising for biomedical applications, e.g., as protective coatings for medical devices, anticoagulant coatings and protective layers in membranes. PMID:21967904

  6. Multivalent anchored and crosslinked hyperbranched polyglycerol monolayers as antifouling coating for titanium oxide surfaces.

    Science.gov (United States)

    Wei, Qiang; Krysiak, Stefanie; Achazi, Katharina; Becherer, Tobias; Noeske, Paul-Ludwig Michael; Paulus, Florian; Liebe, Hendrik; Grunwald, Ingo; Dernedde, Jens; Hartwig, Andreas; Hugel, Thorsten; Haag, Rainer

    2014-10-01

    A set of new catecholic monolayer coatings was developed to improve the antifouling performance of TiO2 surfaces. To solve the problem of the weak charge-transfer interaction between a single catechol anchor and TiO2, multiple catechol groups were combined with hyperbranched polyglycerol (hPG) which is a distinct dendritic scaffold that exposes its multivalent anchor groups on the surface. Thus, multivalent catecholic hPGs can be easily prepared for surface modification. The immobilization of the compounds was monitored by quartz crystal microbalance with dissipation monitoring. Surface properties of the coatings were analyzed by water contact angle, X-ray photoelectron spectroscopy, and atomic force microscopy. The antifouling ability and stability were investigated by protein adsorption and cell adhesion. By increasing the number of catechol groups on the hPG scaffold, the stability and surface coverage could be significantly enhanced. Moreover, the inner-layer crosslinking of the coatings by grafting and initiating vinyl groups clearly improved their long-term stability. As a result, hPG with a catecholic functional degree of 10% (hPG-Cat10) and hPG with both catecholic and vinylic functional degree of 5% (hPG-Cat5-V5) were identified as the best catecholic hPGs to prepare bioinert and stable monolayer coatings on TiO2. PMID:25189471

  7. Hierarchical polymer coating for optimizing the antifouling and bactericidal efficacies.

    Science.gov (United States)

    Yan, Shunjie; Song, Lingjie; Li, Zhihong; Luan, Shifang; Shi, Hengchong; Xin, Zhirong; Li, Shenghai; Yang, Yuming; Yin, Jinghua

    2016-10-01

    The bacteria-repellent and bactericidal functionalities in a single system are generally need to be carefully optimized in order to obtain the highest antibacterial performance. In this study, the controlled SI-PIMP strategy was developed for creating hierarchical polymer brushes possessing the bacteria-repellent and bactericidal functionalities. To obtain a bactericidal surface with minimal interference to its nonfouling property, optimization studies were conducted by facilely tailoring the surface density of the quaternary ammonium compound moieties through control over the monomer concentration. An optimal hierarchical polymer coating showed potent protein and bacteria repellence as well as certain bactericidal property. The longlasting antibacterial performance was also achieved due to the good balance between the dual functionalities. The tenability of the hierarchical polymer coating is applicable to surface chemistries for biosensors, molecular imaging, and biomedical applications. PMID:27363527

  8. Antifouling coatings influence both abundance and community structure of colonizing biofilms: a case study in the Northwestern Mediterranean Sea.

    Science.gov (United States)

    Camps, Mercedes; Barani, Aude; Gregori, Gérald; Bouchez, Agnès; Le Berre, Brigitte; Bressy, Christine; Blache, Yves; Briand, Jean-François

    2014-08-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copolymer coatings [SPC], including four commercial ones) were quantitatively studied, after 1 month of immersion in summer in the Toulon Bay (Northwestern Mediterranean Sea, France), by using flow cytometry (FCM), microscopy, and denaturing gradient gel electrophoresis. FCM was used after a pretreatment to separate cells from the biofilm matrix, in order to determine densities of heterotrophic bacteria, picocyanobacteria, and pico- and nanoeukaryotes on these coatings. Among diatoms, the only microphytobenthic class identified by microscopy, Licmophora, Navicula, and Nitzschia were determined to be the dominant taxa. Overall, biocide-free coatings showed higher densities than all other coatings, except for one biocidal coating, whatever the group of microorganisms. Heterotrophic bacteria always showed the highest densities, and diatoms showed the lowest, but the relative abundances of these groups varied depending on the coating. In particular, the copper-free SPC failed to prevent diatom settlement, whereas the pyrithione-free SPC exhibited high picocyanobacterial density. These results highlight the interest in FCM for antifouling coating assessment as well as specific selection among microbial communities by antifouling coatings. PMID:24907329

  9. Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells.

    Science.gov (United States)

    Tu, Chang-Ching; Chen, Kuang-Po; Yang, Tsu-An; Chou, Min-Yuan; Lin, Lih Y; Li, Yaw-Kuen

    2016-06-01

    Fluorescent silicon quantum dots (SiQDs) have shown a great potential as antiphotobleaching, nontoxic and biodegradable labels for various in vitro and in vivo applications. However, fabricating SiQDs with high water-solubility and high photoluminescence quantum yield (PLQY) remains a challenge. Furthermore, for targeted imaging, their surface chemistry has to be capable of conjugating to antibodies, as well as sufficiently antifouling. Herein, antibody-conjugated SiQD nanoparticles (SiQD-NPs) with antifouling coatings composed of bovine serum albumin (BSA) and polyethylene glycol (PEG) are demonstrated for immunostaining on live cancer cells. The monodisperse SiQD-NPs of diameter about 130 nm are synthesized by a novel top-down method, including electrochemical etching, photochemical hydrosilylation, high energy ball milling, and "selective-etching" in HNO3 and HF. Subsequently, the BSA and PEG are covalently grafted on to the SiQD-NP surface through presynthesized chemical linkers, resulting in a stable, hydrophilic, and antifouling organic capping layer with isothiocyanates as the terminal functional groups for facile conjugation to the antibodies. The in vitro cell viability assay reveals that the BSA-coated SiQD-NPs had exceptional biocompatibility, with minimal cytotoxicity at concentration up to 1600 μg mL(-1). Under 365 nm excitation, the SiQD-NP colloid emits bright reddish photoluminescence with PLQY = 45-55% in organic solvent and 5-10% in aqueous buffer. Finally, through confocal fluorescent imaging and flow cytometry analysis, the anti-HER2 conjugated SiQD-NPs show obvious specific binding to the HER2-overexpressing SKOV3 cells and negligible nonspecific binding to the HER2-nonexpressing CHO cells. Under similar experimental conditions, the immunofluorescence results obtained with the SiQD-NPs are comparable to those using conventional fluorescein isothiocyanate (FITC). PMID:27198164

  10. Antifouling Coatings Influence both Abundance and Community Structure of Colonizing Biofilms: a Case Study in the Northwestern Mediterranean Sea

    OpenAIRE

    Camps, Mercedes; Barani, Aude; Gregori, Gerald; Bouchez, Agnes; Le Berre, Brigitte; Bressy, Christine; Blache , Yves

    2014-01-01

    When immersed in seawater, substrates are rapidly colonized by both micro- and macroorganisms. This process is responsible for important economic and ecological prejudices, particularly when related to ship hulls or aquaculture nets. Commercial antifouling coatings are supposed to reduce biofouling, i.e., micro- and macrofoulers. In this study, biofilms that primarily settled on seven different coatings (polyvinyl chloride [PVC], a fouling release coating [FRC], and five self-polishing copoly...

  11. Effectiveness of sodium benzoate as a freshwater low toxicity antifoulant when dispersed in solution and entrapped in silicone coatings.

    Science.gov (United States)

    Haque, Haroon; Cutright, Teresa J; Newby, Bi-Min Zhang

    2005-01-01

    The traditional solution for preventing organisms from attaching to submerged surfaces is to apply antifouling coatings or biocides. Based on the varied defence mechanisms exhibited by biofilms, the antifoulant needs to prevent bacterial attachment during the early stages of biofilm formation. The potential of benzoic acid and sodium benzoate (NaB) as antifoulants for deterring freshwater bacterial attachment was evaluated with the antifoulants dispersed in solution or entrapped in silicone coatings. Effectiveness was based on the decrease in microbial attachment, limited toxicity, and minimum alteration of the properties of the coatings. The optimal NaB concentration when dispersed in solution, 700 mg l-1, resulted in a biofilm surface coverage of only 3.34% after four weeks. The model silicone, Sylgard 184, demonstrated a better overall performance than the commercial coating, RTV11. Sylgard 184 containing sodium benzoate had 41-52% less biofilm in comparison to the control Sylgard 184, whereas both the control and NaB-entrapped RTV11 coatings had significant biofilm coverage.

  12. Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Indrani; Pangule, Ravindra C.; Kane, Ravi S. [Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Ricketts Building, Troy, NY 12180 (United States)

    2011-02-08

    The major strategies for designing surfaces that prevent fouling due to proteins, bacteria, and marine organisms are reviewed. Biofouling is of great concern in numerous applications ranging from biosensors to biomedical implants and devices, and from food packaging to industrial and marine equipment. The two major approaches to combat surface fouling are based on either preventing biofoulants from attaching or degrading them. One of the key strategies for imparting adhesion resistance involves the functionalization of surfaces with poly(ethylene glycol) (PEG) or oligo(ethylene glycol). Several alternatives to PEG-based coatings have also been designed over the past decade. While protein-resistant coatings may also resist bacterial attachment and subsequent biofilm formation, in order to overcome the fouling-mediated risk of bacterial infection it is highly desirable to design coatings that are bactericidal. Traditional techniques involve the design of coatings that release biocidal agents, including antibiotics, quaternary ammonium salts (QAS), and silver, into the surrounding aqueous environment. However, the emergence of antibiotic- and silver-resistant pathogenic strains has necessitated the development of alternative strategies. Therefore, other techniques based on the use of polycations, enzymes, nanomaterials, and photoactive agents are being investigated. With regard to marine antifouling coatings, restrictions on the use of biocide-releasing coatings have made the generation of nontoxic antifouling surfaces more important. While considerable progress has been made in the design of antifouling coatings, ongoing research in this area should result in the development of even better antifouling materials in the future. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Change in interfacial properties of polymer antifouling coating by controlling ring architecture of functional nanocomposites

    International Nuclear Information System (INIS)

    Greener protocols, long duration and applications are the necessary conditions of antifouling coating. The stability of anti-bacterial function decides its duration. Core–shell structured nanoparticles with Ag NPs and Ag+ were successfully in situ fabricated in polyelectrolyte matrix, to avoid antimicrobial nanomaterials leaching out in the form of Ag or Ag+ from the matrix. The nanocomposite materials prepared were well characterized by XRD, XPS, TEM and UV–visible. Through monitoring the hybrid polymer films soaked in the solution, sparingly soluble AgI as the shell in the hybrid structure nanoparticles showed excellent barrier effect. Using the synergy of Ag NPs and Ag+ toward the killing of microbes, the duration of antimicrobial activity was prolonged. (paper)

  14. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials.

    Science.gov (United States)

    D'Souza, Fraddry; Bruin, Anouk; Biersteker, Rens; Donnelly, Glen; Klijnstra, Job; Rentrop, Corne; Willemsen, Peter

    2010-04-01

    An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and release properties of many surfaces when compared to a reference. The method is based upon the staining of attached bacterial cells with the nucleic acid-binding, green fluorescent SYTO 13 stain. A strong linear correlation exists between the fluorescence of the bacterial suspension measured (RFU) using a plate reader and the total bacterial count measured with epifluorescence microscopy. This relationship allows the fluorescent technique to be used for the quantification of bacterial cells attached to surfaces. As the bacteria proliferate on the surface over a period of time, the relative fluorescence unit (RFU) measured using the plate reader also shows an increase with time. This was observed on all three test surfaces (glass, Epikote and Silastic T2) over a period of 4 h of bacterial growth, followed by a release assay, which was carried out by the application of hydrodynamic shear forces using a custom-made rotary device. Different fixed rotor speeds were tested, and based on the release analysis, 12 knots was used to provide standard shear force. The assay developed was then applied for assessing three different antifouling coatings of different surface roughness. The novel assay allows the rapid and sensitive enumeration of attached bacteria directly on the coated surface. This is the first plate reader assay technique that allows estimation of irreversibly attached bacterial cells directly on the coated surface without their removal from the surface or extraction of a stain into solution.

  15. Bioassays and selected chemical analysis of biocide-free antifouling coatings

    NARCIS (Netherlands)

    Watermann, B.T.; Daehne, B.; Sievers, S.; Dannenberg, R.; Overbeke, J.C.; Klijnstra, J.W.; Heemken, O.

    2005-01-01

    Over the years several types of biocide-free antifouling paints have entered the market. The prohibition of biocidal antifouling paints in special areas of some European countries such as Sweden, Denmark and Germany has favoured the introduction of these paints to the market. Several types of biocid

  16. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  17. Industrial Market Research Report: Feasibility of commercialization of the advanced antifouling coating of Copperlok, Inc.

    Energy Technology Data Exchange (ETDEWEB)

    Gormley, G.J.

    1990-10-01

    The Copperlok antifouling process was designed to prevent marine growth on surfaces exposed to sea water. It is a method of bonding thermally sprayed Cu and Cu alloys onto an epoxy material containing microballoons (hollow spheres). After the epoxy cures, the surface is abraded so that the microballoons are fractured, exposing microscopic concave porosity. The sprayed material is directed to the surface, where it impregnates the pores, bridges and then welds across the surface, creating a very thin laminate of the metal materials security bonded to the bond coat and to the substrate. The Copperlok process laminates an approximate layer of Cu-Ni alloy 8 mils thick with an expected active life of 15--20 y. This report addresses the perceived acceptability of the process in several different marketplaces with the hope of directing the invention to the most receptive consumer group. The opinion surveys of the recreational marine industry were limited to the three coastal areas of the Atlantic, Gulf, and Pacific.

  18. Quantification of bacteria on abiotic surfaces by laser scanning cytometry: An automated approach to screen the antifouling properties of new surface coatings

    DEFF Research Database (Denmark)

    Regina, Viduthalai R.; Poulsen, Morten; Søhoel, Helmer;

    2012-01-01

    Bacterial biofilms are a persistent source of contamination, and much effort invested in developing antifouling surfaces or coatings. A bottle-neck in developing such coatings is often the time-consuming task of screening and evaluating a large number of surface materials. An automated high...

  19. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment.

    Science.gov (United States)

    Liu, HaoRan; Raza, Aikifa; Aili, Abulimiti; Lu, JinYou; AlGhaferi, Amal; Zhang, TieJun

    2016-01-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h(-1 )m(-2)), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life. PMID:27160349

  20. Sunlight-Sensitive Anti-Fouling Nanostructured TiO2 coated Cu Meshes for Ultrafast Oily Water Treatment

    Science.gov (United States)

    Liu, Haoran; Raza, Aikifa; Aili, Abulimiti; Lu, Jinyou; Alghaferi, Amal; Zhang, Tiejun

    2016-05-01

    Nanostructured materials with desired wettability and optical property can play an important role in reducing the energy consumption of oily water treatment technologies. For effective oily water treatment, membrane materials with high strength, sunlight-sensitive anti-fouling, relative low fabrication cost, and controllable wettability are being explored. In the proposed oily water treatment approach, nanostructured TiO2-coated copper (TNS-Cu) meshes are used. These TNS-Cu meshes exhibit robust superhydrophilicity and underwater oleophobicity (high oil intrusion pressure) as well as excellent chemical and thermal stability (≈250 °C). They have demonstrated high separation efficiency (oil residue in the filtrate ≤21.3 ppm), remarkable filtration flux (≥400 kL h-1 m-2), and sunlight-sensitive anti-fouling properties. Both our theoretical analysis and experimental characterization have confirmed the enhanced light absorption property of TNS-Cu meshes in the visible region (40% of the solar spectrum) and consequently strong anti-fouling capability upon direct solar light illumination. With these features, the proposed approach promises great potential in treating produced oily wastewater from industry and daily life.

  1. Antifouling and Antibacterial Multifunctional Polyzwitterion/Enzyme Coating on Silicone Catheter Material Prepared by Electrostatic Layer-by-Layer Assembly.

    Science.gov (United States)

    Vaterrodt, Anne; Thallinger, Barbara; Daumann, Kevin; Koch, Dereck; Guebitz, Georg M; Ulbricht, Mathias

    2016-02-01

    The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest

  2. Surface anchored metal-organic frameworks as stimulus responsive antifouling coatings.

    Science.gov (United States)

    Sancet, Maria Pilar Arpa; Hanke, Maximilian; Wang, Zhengbang; Bauer, Stella; Azucena, Carlos; Arslan, Hasan K; Heinle, Marita; Gliemann, Hartmut; Wöll, Christof; Rosenhahn, Axel

    2013-12-01

    Surface-anchored, crystalline and oriented metal organic frameworks (SURMOFs) have huge potential for biological applications due to their well-defined and highly-porous structure. In this work we describe a MOF-based, fully autonomous system, which combines sensing, a specific response, and the release of an antimicrobial agent. The Cu-containing SURMOF, Cu-SURMOF 2, is stable in artificial seawater and shows stimulus-responsive anti-fouling properties against marine bacteria. When Cobetia marina adheres on the SURMOF, the framework's response is lethal to the adhering microorganism. A thorough analysis reveals that this response is induced by agents secreted from the microbes after adhesion to the substrate, and includes a release of Cu ions resulting from a degradation of the SURMOF. The stimulus-responsive antifouling effect of Cu-SURMOF 2 demonstrates the first application of Cu-SURMOF 2 as autonomous system with great potential for further microbiological and cell culture applications.

  3. Testing methods to assess both the efficacy and ecotoxicity of antifouling coatings

    OpenAIRE

    Quiniou, Francoise; Compere, Chantal; Caisey, Xavier; Davy, Romain; Matarere, Marcel; Mazeas, Florence; Peleau, Michel

    2009-01-01

    Since 1998, the European Biocidal Products Directive (BPD; 98/8/EC), applied to 23 product types (PT) for specific uses, including PT 21 the « antifouling products », regulates biocidal products before they are placed on the market. On the one hand, the efficacy of active substances and their formulations must be demonstrated for their specific employment ; on the other hand their non impact on workers neither users and environment must be proved and specifically against non target specie...

  4. Aqueous-Based Fabrication of Low-VOC Nanostructured Block Copolymer Films as Potential Marine Antifouling Coatings.

    Science.gov (United States)

    Kim, Kris S; Gunari, Nikhil; MacNeil, Drew; Finlay, John; Callow, Maureen; Callow, James; Walker, Gilbert C

    2016-08-10

    The ability to fabricate nanostructured films by exploiting the phenomenon of microphase separation has made block copolymers an invaluable tool for a wide array of coating applications. Standard approaches to engineering nanodomains commonly involve the application of organic solvents, either through dissolution or annealing protocols, resulting in the release of volatile organic compounds (VOCs). In this paper, an aqueous-based method of fabricating low-VOC nanostructured block copolymer films is presented. The reported procedure allows for the phase transfer of water insoluble triblock copolymer, poly(styrene-block-2 vinylpyridine-block-ethylene oxide) (PS-b-P2VP-b-PEO), from a water immiscible phase to an aqueous environment with the assistance of a diblock copolymeric phase transfer agent, poly(styrene-block-ethylene oxide) (PS-b-PEO). Phase transfer into the aqueous phase results in self-assembly of PS-b-P2VP-b-PEO into core-shell-corona micelles, which are characterized by dynamic light scattering techniques. The films that result from coating the micellar solution onto Si/SiO2 surfaces exhibit nanoscale features that disrupt the ability of a model foulant, a zoospore of Ulva linza, to settle. The multilayered architecture consists of a pH-responsive P2VP-"shell" which can be stimulated to control the size of these features. The ability of these nanostructured thin films to resist protein adsorption and serve as potential marine antifouling coatings is supported through atomic force microscopy (AFM) and analysis of the settlement of Ulva linza zoospore. Field trials of the surfaces in a natural environment show the inhibition of macrofoulants for 1 month. PMID:27388921

  5. In situ glass antifouling using Pt nanoparticle coating for periodic electrolysis of seawater

    Science.gov (United States)

    Xue, Yuxi; Zhao, Jin; Qiu, Ri; Zheng, Jiyong; Lin, Cunguo; Ma, Bojiang; Wang, Peng

    2015-12-01

    In situ electrochemical chlorination is a promising way to prohibit the biofouling on glass used for optical devices in seawater. To make this approach practical, a conductive glass should have low overpotential to generate Cl2, so that the electrical energy consumption, a critical issue for field application, will be low. Moreover, a long sustainability should also be taken into consideration from the application perspective. Following these criteria, we propose Pt/ITO surface to electrochemically generate Cl2, which immunizes biofouling for glass substrate. In this report, firstly, Pt nanoparticle/ITO is prepared via an electrodeposition approach. Secondly, electrocatalysis capability of Pt/ITO is elucidated, which shows the catalysis for Cl2 generation from NaCl solution and seawater has been sparked with Pt on the surface. Also, Pt/ITO is more sustainable and efficient than the bare ITO in natural seawater. Thirdly, the antifouling property is evaluated taking diatom as the target organism. Electrochemical chlorination on Pt/ITO can efficiently prevent the glass from fouling.

  6. Research Progress of High Performance Anticorrosive and Antifouling Warship Coatings%舰船高性能防腐蚀防污涂料研究进展

    Institute of Scientific and Technical Information of China (English)

    叶章基; 王晶晶; 蔺存国; 陈光章; 李瑛; 吴建华

    2014-01-01

    The development history and research status of marine anticorrosive and antifouling coating were introduced briefly.The latest research progresses of high performance anticorrosive and antifouling warship coatings were discussed emphatically.Self-polishing antifouling coatings based on acrylic acid zinc,acrylic acid copper and acrylic acid silane have been used widely after organictin self-polishing being prohibited.The technologies based on biocide grafting,degrad-able resin and surface micro-structure are the topic research in antifouling coating.The relationships between structure and degradation properties,mechanical properties of the degradable resin were discussed in detail.The relationships between surface mico-structure and antifouling properties of the fouling release coating were also discussed.The development direc-tions of anticorrosive coating are solventless (or high solid content)and long-term service with more and more strict envi-ronmental protection laws.This paper reported a method for improving wet adhesion and compactness,which can greatly improve mechanical properties and corrosion resistance of anticorrosive coatings.These anticorrosive and antifouling coat-ings meet the development needs of the ocean liner and deep-sea equipments.%简要论述了海洋防腐蚀防污涂料的发展历史和研究现状,重点论述了舰船高性能防腐蚀防污涂料的最新研究进展。有机锡自抛光防污涂料被禁止使用之后,基于丙烯酸锌、丙烯酸铜和丙烯酸硅烷酯的自抛光防污涂料得到了广泛应用。基于含防污功能基团树脂的防污涂料、基于降解树脂的防污涂料以及基于表面结构特性的防污涂料技术成为当前防污涂料研究的热点。文中详细报道了降解树脂的结构对降解性能及力学性能影响规律,以及表面结构特性对污损释放型防污涂料防污性能的影响规律。随着环境保护法规的日趋严格,防腐蚀涂料向无溶剂

  7. Bubbles versus biofilms: a novel method for the removal of marine biofilms attached on antifouling coatings using an ultrasonically activated water stream

    Science.gov (United States)

    Salta, M.; Goodes, L. R.; Maas, B. J.; Dennington, S. P.; Secker, T. J.; Leighton, T. G.

    2016-09-01

    The accumulation of marine organisms on a range of manmade surfaces, termed biofouling, has proven to be the Achilles’ heel of the shipping industry. Current antifouling coatings, such as foul release coatings (FRCs), only partially inhibit biofouling, since biofilms remain a major issue. Mechanical ship hull cleaning is commonly employed to remove biofilms, but these methods tend to damage the antifouling coating and often do not result in full removal. Here, we report the effectiveness of biofilm removal from FRCs through a novel cleaning device that uses an ultrasonically activated stream (UAS). In this device, ultrasound enhances the cleaning properties of microbubbles in a freely flowing stream of water. The UAS was applied on two types of commercial FRCs which were covered with biofilm growth following twelve days immersion in the marine environment. Biofilm removal was quantified in terms of reduction in biovolume and surface roughness, both measured using an optical profilometer, which were then compared with similar measurements after cleaning with a non-ultrasonically activated water stream. It was found that the UAS significantly improves the cleaning capabilities of a water flow, up to the point where no detectable biofilm remained on the coating surfaces. Overall biofilm surface coverage was significantly lower on the FRC coatings cleaned with the UAS system when compared to the coatings cleaned with water or not cleaned at all. When biofilm biomass removal was investigated, the UAS system resulted in significantly lower biovolume values even when compared to the water cleaning treatment with biovolume values close to zero. Remarkably, the surface roughness of the coatings after cleaning with the UAS was found to be comparable to that of the blank, non-immersed coatings, illustrating that the UAS did not damage the coatings in the process. The data supporting this study are openly available from the University of Southampton repository at http

  8. Bacterial assay for the rapid assessment of antifouling and fouling release properties of coatings and materials

    NARCIS (Netherlands)

    D'Souza, F.; Bruin, A.; Biersteker, R.; Donnelly, G.T.; Klijnstra, J.W.; Rentrop, C.H.A.; Willemsen, P.R.

    2010-01-01

    An assay has been developed to accurately quantify the growth and release behaviour of bacterial biofilms on several test reference materials and coatings, using the marine bacterium Cobetia marina as a model organism. The assay can be used to investigate the inhibition of bacterial growth and relea

  9. Tea stains-inspired initiator primer for surface grafting of antifouling and antimicrobial polymer brush coatings.

    Science.gov (United States)

    Pranantyo, Dicky; Xu, Li Qun; Neoh, Koon-Gee; Kang, En-Tang; Ng, Ying Xian; Teo, Serena Lay-Ming

    2015-03-01

    Inspired by tea stains, plant polyphenolic tannic acid (TA) was beneficially employed as the primer anchor for functional polymer brushes. The brominated TA (TABr) initiator primer was synthesized by partial modification of TA with alkyl bromide functionalities. TABr with trihydroxyphenyl moieties can readily anchor on a wide range of substrates, including metal, metal oxide, polymer, glass, and silicon. Concomitantly, the alkyl bromide terminals serve as initiation sites for atom transfer radical polymerization (ATRP). Cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride (META) and zwitterionic 2-methacryloyloxyethyl phosphorylcholine (MPC) and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) were graft-polymerized from the TABr-anchored stainless steel (SS) surface. The cationic polymer brushes on the modified surfaces are bactericidal, while the zwitterionic coatings exhibit resistance against bacterial adhesion. In addition, microalgal attachment (microfouling) and barnacle cyprid settlement (macrofouling) on the functional polymer-grafted surfaces were significantly reduced, in comparison to the pristine SS surface. Thus, the bifunctional TABr initiator primer provides a unique surface anchor for the preparation of functional polymer brushes for inhibiting both microfouling and macrofouling. PMID:25650890

  10. Hybrid Antifouling and Antimicrobial Coatings Prepared by Electroless Co-Deposition of Fluoropolymer and Cationic Silica Nanoparticles on Stainless Steel: Efficacy against Listeria monocytogenes.

    Science.gov (United States)

    Huang, Kang; Chen, Juhong; Nugen, Sam R; Goddard, Julie M

    2016-06-29

    Controlling formation, establishment, and proliferation of microbial biofilms on surfaces is critical for ensuring public safety. Herein, we report on the synthesis of antimicrobial nanoparticles and their co-deposition along with fluorinated nanoparticles during electroless nickel plating of stainless steel. Plating bath composition is optimized to ensure sufficiently low surface energy to resist fouling and microbial adhesion as well as to exert significant (>99.99% reduction) antimicrobial activity against Listeria monocytogenes. The resulting coatings present hybrid antifouling and antimicrobial character, can be applied onto stainless steel, and do not rely on leaching or migration of the antimicrobial nanoparticles to be effective. Such coatings can support reducing public health issues related to microbial cross-contamination in areas such as food processing, hospitals, and water purification. PMID:27268033

  11. Complex shaped ZnO nano- and microstructure based polymer composites: mechanically stable and environmentally friendly coatings for potential antifouling applications.

    Science.gov (United States)

    Hölken, Iris; Hoppe, Mathias; Mishra, Yogendra K; Gorb, Stanislav N; Adelung, Rainer; Baum, Martina J

    2016-03-14

    Since the prohibition of tributyltin (TBT)-based antifouling paints in 2008, the development of environmentally compatible and commercially realizable alternatives is a crucial issue. Cost effective fabrication of antifouling paints with desired physical and biocompatible features is simultaneously required and recent developments in the direction of inorganic nanomaterials could play a major role. In the present work, a solvent free polymer/particle-composite coating based on two component polythiourethane (PTU) and tetrapodal shaped ZnO (t-ZnO) nano- and microstructures has been synthesized and studied with respect to mechanical, chemical and biocompatibility properties. Furthermore, antifouling tests have been carried out in artificial seawater tanks. Four different PTU/t-ZnO composites with various t-ZnO filling fractions (0 wt%, 1 wt%, 5 wt%, 10 wt%) were prepared and the corresponding tensile, hardness, and pull-off test results revealed that the composite filled with 5 wt% t-ZnO exhibits the strongest mechanical properties. Surface free energy (SFE) studies using contact angle measurements showed that the SFE value decreases with an increase in t-ZnO filler amounts. The influence of t-ZnO on the polymerization reaction was confirmed by Fourier transform infrared-spectroscopy measurements and thermogravimetric analysis. The immersion tests demonstrated that fouling behavior of the PTU/t-ZnO composite with a 1 wt% t-ZnO filler has been decreased in comparison to pure PTU. The composite with a 5 wt% t-ZnO filler showed almost no biofouling.

  12. A methodology for evaluating biocide release rate, surface roughness and leach layer formation in a TBT-free, self-polishing antifouling coating.

    Science.gov (United States)

    Howell, Dickon; Behrends, Brigitte

    2006-01-01

    Due to the forthcoming IMO ban on the use of tributyltin (TBT) antifouling paints, a new generation of TBT-free coatings has been developed that typically contain cuprous oxide and an organic co-biocide. Accurate and reproducible test methods are needed to evaluate the performance and environmental impact of these new coatings. This study investigated a methodology for evaluating TBT-free, AF coatings containing cuprous oxide. A commercially available AF coating underwent rotary immersion testing at 0, 0.51 and 2.05 m s-1. Scanning electron microscopy (SEM) and energy dispersive x-ray (EDX) analysis were used to assess leach layer formation, percentage cuprous oxide by weight and particle size distribution (PSD). Biocide release rates and surface roughness were also measured. An increase in rotary speed caused a spike in Cu2+ release rate after which the release rate stabilised to previous levels. An increase in leach layer thickness was also observed after the rotary speed increase. A model is suggested to account for the observations. PMID:17110354

  13. The status and countermeasures for the application and supervision of antifouling coating for fishing vessels in China%我国渔船用防污漆的应用与监管现状及对策建议

    Institute of Scientific and Technical Information of China (English)

    张祝利; 王贤瑞

    2014-01-01

    使用含DDT等防污剂的防污漆,可杀死在渔船船体表面自由活动的附着生物幼体而有效防止海洋生物对渔船船体的附着污损,使涂层表面保持光洁,达到保持船速和节省燃油的目的。然而,这些防污漆在防除污损生物的同时,对有益的微生物、植物和动物也同时具有杀生作用,甚至对人体也有致畸、致癌作用,因而对生态环境具有持久的危害性,国际社会早已禁止使用这类防污漆。但由于DDT和TBT防污漆过去在中国使用比较普遍,要淘汰这类防污漆会受到一些因素的阻碍。本文阐述了添加有机污染物防污漆的危害性、渔船防污漆的应用及监管现状,并提出对策建议,以期为有关部门的进一步有效监管提供借鉴。%The use of antifouling paints containing DDT and other antifoulants could prevent fouling organisms from attaching to the hull of fishing vessels through killing the juvenile attaching organisms , and keep coating surface tends to smooth, which could reach the purpose of saving fuel and keeping speed. However, these anti-fouling paints will kill beneficial microorganisms, plants and animals, and even lead to human teratogenic and carcinogenic, while controlling fouling organisms. Thus these anti-fouling paints will do the lasting clamage to the ecological environment , and the international community has already banned the use of such anti-fouling paints for a long time. This paper deals with the harmfulness of antifoulants is elabrated in this paper and the status and countermeasures for the application and supervision of antifouling paints on fishing vessels are also stated and raised, which are expected to provide for regulatory authorities to further improve the effective supervision.

  14. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin.

    Science.gov (United States)

    Pérez, Miriam; García, Mónica; Ruiz, Diego; Autino, Juan Carlos; Romanelli, Gustavo; Blustein, Guillermo

    2016-02-01

    In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings.

  15. Antifouling leaching technique for optical lenses

    Science.gov (United States)

    Strahle, William J.; Perez, C. L.; Martini, Marinna A.

    1994-01-01

    The effectiveness of optical lenses deployed in water less than 100 m deep is significantly reduced by biofouling caused by the settlement of macrofauna, such as barnacles, hydroids, and tunicates. However, machineable porous plastic rings can be used to dispense antifoulant into the water in front of the lens to retard macrofaunal growth without obstructing the light path. Unlike coatings which can degrade the optical performance, antifouling rings do not interfere with the instrument optics. The authors have designed plastic, reusable cup-like antifouling rings to slip over the optical lenses of a transmissometer. These rings have been used for several deployments on shallow moorings in Massachusetts Bay, MA and have increased the time before fouling degrades optical characteristics

  16. Antifouling Activity of Marine Natural Products

    KAUST Repository

    Qian, Pei-Yuan

    2012-01-01

    With the global ban of application of organotin-based marine coatings by International Maritime Organization in 2008, there is a practical and urgent need of identifying environmentally friendly low-toxic and nontoxic antifouling compounds for marine industries. Marine natural products have been considered as one of the most promising sources of antifouling compounds in recent years. In antifouling compound screening processes, bioassay systems often play most critical/vital roles in screening efforts. To meet various needs, a variety of bioassay systems have been developed and/or adopted in both research and commercial laboratories. In this chapter, we provide a brief outline of common bioassay procedures for both antimicrofouling and antimacrofouling assays, which can serve as a general guideline for setting up bioassay systems in laboratories engaged in antifouling compound screening. Some bioassay procedures currently practiced in various laboratories are not included in this book chapter for various reasons. Individual laboratories should modify bioassay protocols based on their research interests or needs. Nevertheless, we highly recommend the research laboratories to adapt high-throughput assays as much as possible for preliminary screening assays, followed by more complex bioassay processes using multiple target species. We argue strongly for studies in mode-of-action of antifouling compounds against settling propagules, which shall lead to discovery of molecular biomarkers (genes, proteins, receptors, or receptor system) and will allow us to design more targeted bioassay systems.

  17. Natural product antifoulants

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; Mol, V.P.L.

    .U. larvae, Sea Urchin larvae. Figure 1. Published studies on antifouling research from marine organisms. Figure 2. Activity chart. team of researchers of the Fusetani Biofouling Project, Japan under the leadership of Nobuhiro Fusetani...

  18. Antifouling Properties of Smooth and Structured Polyelectrolyte Thin Films

    OpenAIRE

    Cao, Xinyu

    2008-01-01

    The goal of this thesis is the development of smooth and structured polyelectrolyte surfaces and to correlate the surface properties with their antifouling performance. Strategies in antifouling are focused on two aspects: surface chemistry and surface topography. Therefore, two types of surfaces, polysaccharide coatings with different chemistries and poly(acrylic acid)/polyethylenimine multilayers with different topographies, have been studied in this thesis. Three polysaccharides, hyaluroni...

  19. Preliminary Discussion on Current Status and Development of Technology of Marine Antifouling Coatings from the Chinese Patents Application%从中国专利申请浅析海洋防污涂料技术发展现状

    Institute of Scientific and Technical Information of China (English)

    李超

    2011-01-01

    Quantity of application, major domestic/foreign applicants, general application status of major foreign countries and proportion of application of different domestic applicant of Chinese patents on marine antifouling coating from 1985 -2006 were searched and analyzed by using key words and international patent classification (IPC). And also major technology and overall development trend of Chinese patents in marine antifouling coating were analyzed, combining the specific patent application of domestic/foreign applicants.Meanwhile, the problems and suggestions for domestic patent application were discussed.%使用关键词和国际专利分类体系(IPC)对1985-2009年间关于海洋防污涂料方面的中国专利信息进行了检索,统计分析了国内海洋防污涂料专利申请量的总体变化、国内外主要申请人申请专利的数量、世界主要国家在我国的专利申请状况以及国内不同类型的申请人专利申请量所占的比例,并结合国内外重点申请人在中国的具体专利申请,对国内海洋防污涂料专利申请的技术构成、总体技术发展趋势进行了分析,同时给出了在该领域中国内专利申请存在的问题及发展建议.

  20. Antifouling property of the fruits of Randia brandisii (Rubiaceae) and Sapindus trifoliatus (Sapindaceae)

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    Methanol extracts of fruits of Randia brandisii (Gamble) and Sapindus trifoliatus (Vah) were assessed for marine antifouling properties. The coatings of these crude extracts on aluminium coupons were found to inhibit settlement of macrofoulers...

  1. Enzymatic generation of hydrogen peroxide shows promising antifouling effect

    DEFF Research Database (Denmark)

    Kristensen, J.B.; Olsen, Stefan Møller; Laursen, B.S.;

    2010-01-01

    The antifouling (AF) potential of hydrogen peroxide (H2O2) produced enzymatically in a coating containing starch, glucoamylase, and hexose oxidase was evaluated in a series of laboratory tests and in-sea field trials. Dissolved H2O2 inhibited bacterial biofilm formation by eight of nine marine Pr...

  2. Improved estimates of environmental copper release rates from antifouling products.

    Science.gov (United States)

    Finnie, Alistair A

    2006-01-01

    The US Navy Dome method for measuring copper release rates from antifouling paint in-service on ships' hulls can be considered to be the most reliable indicator of environmental release rates. In this paper, the relationship between the apparent copper release rate and the environmental release rate is established for a number of antifouling coating types using data from a variety of available laboratory, field and calculation methods. Apart from a modified Dome method using panels, all laboratory, field and calculation methods significantly overestimate the environmental release rate of copper from antifouling coatings. The difference is greatest for self-polishing copolymer antifoulings (SPCs) and smallest for certain erodible/ablative antifoulings, where the ASTM/ISO standard and the CEPE calculation method are seen to typically overestimate environmental release rates by factors of about 10 and 4, respectively. Where ASTM/ISO or CEPE copper release rate data are used for environmental risk assessment or regulatory purposes, it is proposed that the release rate values should be divided by a correction factor to enable more reliable generic environmental risk assessments to be made. Using a conservative approach based on a realistic worst case and accounting for experimental uncertainty in the data that are currently available, proposed default correction factors for use with all paint types are 5.4 for the ASTM/ISO method and 2.9 for the CEPE calculation method. Further work is required to expand this data-set and refine the correction factors through correlation of laboratory measured and calculated copper release rates with the direct in situ environmental release rate for different antifouling paints under a range of environmental conditions. PMID:17110352

  3. New antifouling silica hydrogel.

    Science.gov (United States)

    Beltrán-Osuna, Ángela A; Cao, Bin; Cheng, Gang; Jana, Sadhan C; Espe, Matthew P; Lama, Bimala

    2012-06-26

    In this work, a new antifouling silica hydrogel was developed for potential biomedical applications. A zwitterionic polymer, poly(carboxybetaine methacrylate) (pCBMA), was produced via atom-transfer radical polymerization and was appended to the hydrogel network in a two-step acid-base-catalyzed sol-gel process. The pCBMA silica aerogels were obtained by drying the hydrogels under supercritical conditions using CO(2). To understand the effect of pCBMA on the gel structure, pCBMA silica aerogels with different pCBMA contents were characterized using scanning electron microscopy (SEM), nuclear magnetic resonance (NMR) spectroscopy, and the surface area from Brauner-Emmet-Teller (BET) measurements. The antifouling property of pCBMA silica hydrogel to resist protein (fibrinogen) adsorption was measured using enzyme-linked immunosorbent assay (ELISA). SEM images revealed that the particle size and porosity of the silica network decreased at low pCBMA content and increased at above 33 wt % of the polymer. The presence of pCBMA increased the surface area of the material by 91% at a polymer content of 25 wt %. NMR results confirmed that pCBMA was incorporated completely into the silica structure at a polymer content below 20 wt %. A protein adsorption test revealed a reduction in fibrinogen adsorption by 83% at 25 wt % pCBMA content in the hydrogel compared to the fibrinogen adsorption in the unmodified silica hydrogel. PMID:22607091

  4. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments

    NARCIS (Netherlands)

    Ekblad, T.; Bergström, G.; Ederth, T.; Conlan, S.L.; Mutton, R.; Clare, A.S.; Wang, S.; Liu, Y.; Zhao, Q.; D'Souza, F.; Donnelly, G.T.; Willemsen, P.R.; Pettitt, M.E.; Callow, M.E.; Callow, J.A.; Liedberg, B.

    2008-01-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on polystyrene-co

  5. Comparative environmental assessment of biocides used in antifouling paints.

    Science.gov (United States)

    Voulvoulis, Nikolaos; Scrimshaw, Mark D; Lester, John N

    2002-05-01

    In response to increasing scientific evidence on the toxicity and persistence of organotin residues from antifouling paints in the aquatic environment, the use of triorganotin antifouling products was banned on boats of less than 25 m length in many countries during 1987. Alternatives to tributyltin (TBT) paint are mainly copper based coatings containing organic booster biocides to improve the efficacy of the formulation, and have been utilised on small boats for the last 10 years. With policies encouraging a total ban on TBT, it is expected that these biocides will be used to a greater extent in the future. Limited data and information are available on the environmental occurrence, fate, toxicity, and persistence of these biocides, and thus any decisions on policies regulating antifoulants cannot be fully informed. In this study, a multicriteria comparison of alternative biocides, based on a general assessment of available information in the literature, provided support for the use of the precautionary principle with respect to policies on antifouling products. This assessment was validated by a more detailed comparison of four selected biocides and TBT. Results indicate that TCMS pyridine and TCMTB demonstrate environmental characteristics similar to TBT and thus detail risk assessments are needed before their use is permitted. The widespread use of the other biocides should be allowed only after research to fill the gaps in knowledge with respect to their toxicity and persistence in aquatic environments. PMID:12079074

  6. Non-toxic antifouling strategies

    Directory of Open Access Journals (Sweden)

    Chelsea M. Magin

    2010-04-01

    Full Text Available The term fouling generally refers to an undesirable process in which a surface becomes encrusted with material from the surrounding environment. In the case of biofouling, that material consists of organisms and their by-products e.g., extracellular polysaccharides and metabolites. Biofouling limits the performance of devices in numerous applications; however, this review focuses on antifouling biomaterials for marine and biomedical applications. The surface chemistry and physical properties of the substratum are both crucial to preventing the recruitment of biofouling organisms. Natural antifouling surfaces exhibit both chemical and physical attributes. The chemical structure is discussed briefly as it relates to both anti-fouling and fouling-release properties. However, our focus has been to study physical cues as they relate to the initial attachment of fouling organisms.

  7. Antifouling activities of marine bacteria associated with sponge ( Sigmadocia sp.)

    Science.gov (United States)

    Satheesh, S.; Soniamby, A. R.; Sunjaiy Shankar, C. V.; Mary Josephine Punitha, S.

    2012-09-01

    The present study aimed at assessing the antifouling activity of bacteria associated with marine sponges. A total of eight bacterial strains were isolated from the surface of sponge Sigmadocia sp., of them, SS02, SS05 and SS06 showed inhibitory activity against biofilm-forming bacteria. The extracts of these 3 strains considerably affected the extracellular polymeric substance producing ability and adhesion of biofilm-forming bacterial strains. In addition to disc diffusion assay, microalgal settlement assay was carried out with the extracts mixed with polyurethane wood polish and coated onto stainless steel coupons. The extract of strain SS05 showed strong microalgal settlement inhibitory activity. Strain SS05 was identified as Bacillus cereus based on its 16S rRNA gene. Metabolites of the bacterial strains associated with marine invertebrates promise to be developed into environment-friendly antifouling agents.

  8. 基胶与填料对 RTV 硅橡胶防污闪涂层憎水迁移性的影响%Effects of Base Rubber and Fillers on Hydrophobic-migration of RTV Silicone Rubber Anti-fouling Flashover Coatings

    Institute of Scientific and Technical Information of China (English)

    卢明; 胡扬宇; 周德波

    2015-01-01

    Experimental samples were polluted by the circumstance of haze simulation.The effect ofα,ω-dihydroxy polydimethylsiloxane (107 silicone rubber) with different chemical constituents on surface drying time and hydrophobicity transference of RTV anti-fouling flashover silicone coatings was investigated.Results show that the tack-free time of anti-fouling flashover coatings with 107 silicone rubber of high and low molar mass as the base rubber is shorter than those with only one as base rubber.Adjusting the mixing proportion of 107 sili-cone rubber of high and low molar mass in silicone coatings can improve its hydrophobicity transference, better than that with one base rubber.When the mass ratio of the 107 rubber with a molar mass of 50 000 g/mol and 4 000 g/mol is 4:1, the hydrophobicity of the coatings is the best.Alumina will improve the hydrophobicity and hydrophobic migration of the anti-fouling flashover coatings, especially when alumina is 10%.Excessive fumed silica will affect the hydrophobicity and hydrophobic migration of the coatings.When the fumed silica is 5%, the hydrophobicity and hydrophobic migration of the anti-fouling flashover coatings are the best.%采用模拟雾霾环境污染处理实验样品,研究了以α,ω-二羟基聚二甲基硅氧烷(107硅橡胶)为基胶的硅橡胶防污闪涂层的表干时间和憎水迁移性变化规律。研究发现,同时以高、低摩尔质量的107硅橡胶混合物为基胶的防污闪涂层的表干时间比单纯以其中一种107硅橡胶为基胶的防污闪涂层的表干时间短。调整高、低摩尔质量107硅橡胶的混合比例得到的防污闪涂层的憎水迁移性效果较好,相对于单一基胶配制的防污闪涂层更优。当摩尔质量为50000 g/mol及4000 g/mol的107硅橡胶的质量比为4∶1时,防污闪涂层的憎水迁移性最好。添加氧化铝可以增加防污闪涂层的憎水性和憎水迁移性,当氧化铝用量为10%时效果最好

  9. Mimetic marine antifouling films based on fluorine-containing polymethacrylates

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Qianhui [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Li, Hongqi, E-mail: hongqili@dhu.edu.cn [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Xian, Chunying; Yang, Yihang [College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); Song, Yanxi [School of Environmental Science and Technology, Donghua University, 2999 North Renmin Road, Shanghai 201620 (China); State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Cong, Peihong [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2015-07-30

    Graphical abstract: - Highlights: • Copolymers containing catechol and trifluoromethyl groups were prepared. • The copolymers could adhere to surfaces of glass, plastics and metals. • The polymer films showed excellent resistance to water, salt, base and acid. • The polymer films displayed good antifouling property. - Abstract: Novel methacrylate copolymers containing catechol and trifluoromethyl pendant side groups were synthesized by free radical polymerization of N-(3,4-dihydroxyphenyl)ethyl methacrylamide (DMA) and 2,2,2-trifluoroethyl methacrylate (TFME) with α,α′-azobisisobutyronitrile (AIBN) as initiator. A series of copolymers with different content of TFME ranging from 3% to 95% were obtained by changing the molar ratio of DMA to TFME from 25:1 to 1:25. Fourier transform infrared (FT-IR) spectroscopy, gel permeation chromatography (GPC), thermal gravimetric analysis (TGA), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM) were used to characterize the copolymers, which displayed a certain degree of hardness and outstanding thermostability reflected from their high glass transition temperatures. The copolymers could adhere to surfaces of glass, plastics and metals due to introduction of catechol groups as multivalent hydrogen bonding anchors. Water contact angle on the polymer films was up to 117.4°. Chemicals resistance test manifested that the polymer films possessed excellent resistance to water, salt, acid and alkali. Moreover, the polymer films displayed fair antifouling property and might be used as promising environmentally friendly marine antifouling coatings.

  10. Imprinting of metal receptors into multilayer polyelectrolyte films: fabrication and applications in marine antifouling

    NARCIS (Netherlands)

    Puniredd, S.R.; Janczewski, D.; Go, D.P.; Zhu, X.; Guo, S.; Teo, S.L.M.; Lee, S.S.C.; Vancso, G.J.

    2015-01-01

    Polymeric films constructed using the layer-by-layer (LbL) fabrication process were employed as a platform for metal ion immobilization and applied as a marine antifouling coating. The novel Cu2+ ion imprinting process described is based on the use of metal ion templates and LbL multilayer covalent

  11. Bienzyme system immobilized in biomimetic silica for application in antifouling coatings☆

    Institute of Scientific and Technical Information of China (English)

    Hongwu Wang; Yanjun Jiang; Liya Zhou; Jing Gao

    2015-01-01

    Antifouling coatings are used extensively on vessels and underwater structures. Conventional antifouling coat-ings contain toxic biocides and heavy metals, which may induce unwanted adverse effects such as toxicity to non-target organisms, imposex in gastropods and increased multiresistance among bacteria. Therefore, enzyme-based coatings could be a new alternative solution. A H2O2-producing bienzyme system was developed in this study. H2O2 can be produced from starch by the cooperation ofα-amylase and glucose oxidase, which pro-motes the hydrolysis of polymeric chain and oxidizes the glucose to produce H2O2, respectively. The encapsulated bienzyme (A-G@BS) exhibits enhanced stabilities of thermal, pH, recycling and tolerance of xylene. The A-G@BS-containing coating releases H2O2 at rates exceeding a target of 36 nmol·cm−2·d−1 for 90 days in a laboratory assay. The results demonstrate that the method is a promising coating technology for entrapping active enzymes, presenting an interesting avenue for enzyme-based antifouling solutions.

  12. Potent antifouling compounds produced by marine Streptomyces

    KAUST Repository

    Xu, Ying

    2010-02-01

    Biofouling causes huge economic loss and a recent global ban on organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. Five structurally similar compounds were isolated from the crude extract of a marine Streptomyces strain obtained from deep-sea sediments. Antifouling activities of these five compounds and four other structurally-related compounds isolated from a North Sea Streptomyces strain against major fouling organisms were compared to probe structure-activity relationships of compounds. The functional moiety responsible for antifouling activity lies in the 2-furanone ring and that the lipophilicity of compounds substantially affects their antifouling activities. Based on these findings, a compound with a straight alkyl side-chain was synthesized and proved itself as a very effective non-toxic, anti-larval settlement agent against three major fouling organisms. The strong antifouling activity, relatively low toxicity, and simple structures of these compounds make them promising candidates for new antifouling additives. © 2009 Elsevier Ltd. All rights reserved.

  13. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition.

    Science.gov (United States)

    Liu, Shao Qiong; Yang, Chuan; Huang, Yuan; Ding, Xin; Li, Yan; Fan, Wei Min; Hedrick, James L; Yang, Yi-Yan

    2012-12-18

    A novel class of antimicrobial cationic polycarbonate/PEG hydrogels are designed and synthesized by Michael addition chemistry. These hydrogels demonstrate strong broad-spectrum antimicrobial activities against various clinically isolated multidrug-resistant microbes. Moreover, they exhibit nonfouling properties and prevent the substrate from microbial adhesion. These antimicrobial and antifouling gels are promising materials as catheter coatings and wound dressings to prevent infections.

  14. Light-Emitting Diodes with Hierarchical and Multifunctional Surface Structures for High Light Extraction and an Antifouling Effect.

    Science.gov (United States)

    Leem, Young-Chul; Park, Jung Su; Kim, Joon Heon; Myoung, NoSoung; Yim, Sang-Youp; Jeong, Sehee; Lim, Wantae; Kim, Sung-Tae; Park, Seong-Ju

    2016-01-13

    Bioinspired hierarchical structures on the surface of vertical light-emitting diodes (VLEDs) are demonstrated by combining a self-assembled dip-coating process and nanopatterning transfer method using thermal release tape. This versatile surface structure can efficiently reduce the total internal reflection and add functions, such as superhydrophobicity and high oleophobicity, to achieve an antifouling effect for VLEDs.

  15. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    Dong Zhongjie; Li Yunlong; Fan Xuezhi; Hong Qingyao

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units wereexplored through study of thecomposition of pyrolysis gasoline, C5 distillate and fouling deposits from the depentanizer while takinginto consideration the processing parameters. A variety of antifouling measures, in particular the injec-tion of a special anti-fouling agent into the Cs gas phase pipeline and the C5 distillate reflux pipelinewere introduced. Commercial evaluation test of a multifunctional anti-fouling agent, the RIPP-1404anti-fouling agent, was also described.

  16. Hydrogel brushes grafted from stainless steel via surface-initiated atom transfer radical polymerization for marine antifouling

    Science.gov (United States)

    Wang, Jingjing; Wei, Jun

    2016-09-01

    Crosslinked hydrogel brushes were grafted from stainless steel (SS) surfaces for marine antifouling. The brushes were prepared by surface-initiated atom transfer radical polymerization (SI-ATRP) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and poly(ethylene glycol) methyl ether methacrylate (PEGMA) respectively with different fractions of crosslinker in the feed. The grafted layers prepared with different thickness were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), ellipsometry and water contact angle measurements. With the increase in the fraction of crosslinker in the feed, the thickness of the grafted layer increased and the surface became smooth. All the brush-coated SS surfaces could effectively reduce the adhesion of bacteria and microalgae and settlement of barnacle cyprids, as compared to the pristine SS surface. The antifouling efficacy of the PEGMA polymer (PPEGMA)-grafted surface was higher than that of the MPC polymer (PMPC)-grafted surfaces. Furthermore, the crosslinked hydrogel brush-grafted surfaces exhibited better fouling resistance than the non-crosslinked polymer brush-grafted surfaces, and the antifouling efficacy increased with the crosslinking density. These hydrogel coatings of low toxicity and excellent anti-adhesive characteristics suggested their useful applications as environmentally friendly antifouling coatings.

  17. Anticorrosion/antifouling properties of bacterial spore-loaded sol-gel type coating for mild steel in saline marine condition: a case of thermophilic strain of Bacillus licheniformis

    OpenAIRE

    Eduok, Ubong; Suleiman, Rami; Gittens, Jeanette; Khaled, Mazen; Smith, Thomas J.; Akid, Robert; El Ali, Bassam; Khalil, Amjad

    2015-01-01

    This work reports the performance of a sol-gel type coating encapsulated with biofilm of inoculums of protective thermophilic strain of Bacillus licheniformis endospores isolated from the Gazan hot springs- Saudi Arabia for the inhibition of marine fouling and corrosion protection of S36-grade mild steel in 3.5 wt% NaCl medium. In order to improve its anticorrosion properties, the hybrid sol-gel coating is further doped with zinc molybdate (MOLY) and zinc aluminum polyphosphate (Z...

  18. Zwitterionic Modifications for Enhancing the Antifouling Properties of Poly(vinylidene fluoride) Membranes.

    Science.gov (United States)

    Venault, Antoine; Huang, Wen-Yu; Hsiao, Sheng-Wen; Chinnathambi, Arunachalam; Alharbi, Sulaiman Ali; Chen, Hong; Zheng, Jie; Chang, Yung

    2016-04-26

    The development of effective antibiofouling membranes is critical for many scientific interests and industrial applications. However, the existing available membranes often suffer from the lack of efficient, stable, and scalable antifouling modification strategy. Herein, we designed, synthesized, and characterized alternate copolymers of p(MAO-DMEA) (obtained by reaction between poly(maleic anhydride-alt-1-octadecene) and N,N-dimethylenediamine) and p(MAO-DMPA) (obtained by reaction between poly(maleic anhydride-alt-1-octadecene) and 3-(dimethylamino)-1-propylamine) of different carbon space length (CSL) using a ring-opening zwitterionization. We coated these copolymers on poly(vinylidene fluoride) (PVDF) membranes using a self-assembled anchoring method. Two important design parameters-the CSL of polymers and the coating density of polymers on membrane-were extensively examined for their effects on the antifouling performance of the modified membranes using a series of protein, cell, and bacterial assays. Both zwitterionic-modified membranes with different coating densities showed improved membrane hydrophilicity, increased resistance to protein, bacteria, blood cells, and platelet adsorption. However, while p(MAO-DMEA) with two CSLs and p(MAO-DMPA) with three CSLs only differ by one single carbon between the amino and ammonium groups, such subtle structural difference between the two polymers led to the fact that the membranes self-assembled with MAO-DMEA outperformed those modified with MAO-DMPA in all aspects of surface hydration, protein and bacteria resistance, and blood biocompatibility. This work provides an important structural-based design principle: a subtle change in the CSL of polymers affects the surface and antifouling properties of the membranes. It can help to achieve the design of more effective antifouling membranes for blood contacting applications. PMID:27044737

  19. -A practical application of reduced-copper antifouling paint in marine biological research.

    Science.gov (United States)

    Jerabek, Andrea S; Wall, Kara R; Stallings, Christopher D

    2016-01-01

    Biofouling of experimental cages and other field apparatuses can be problematic for scientists and has traditionally been addressed using frequent manual removal (e.g., scraping, scrubbing). Recent environmental restrictions and legislative changes have driven the development of less hazardous antifouling products, making antifouling paint a potential alternative option to manual removal. Consequently, the viability of using these newly developed products as a replacement for the manual cleaning of exclusion cages was experimentally investigated. There were six treatments tested, comprising three with settlement tiles in experimental cages coated with antifouling paint, two with settlement tiles in unpainted experimental cages, and one cage-free suspended tile. The three antifouling treatments comprised two reduced-copper paints (21% Cu2O and 40% Cu2O) and one copper-free, Econea (™)-based paint (labeled "ecofriendly"). Antifouling paints were assessed for performance of preventing fouling of the cages and whether they elicited local effects on settlement tiles contained within them. All three paints performed well to reduce fouling of the cages during the initial six weeks of the experiment, but the efficacy of "ecofriendly" paint began to decrease during an extended deployment that lasted 14 weeks. The macro-community composition, biomass, and percent cover of settled organism on tiles within cages treated with copper-based paints (21% and 40% concentrations) were indistinguishable from tiles within the manually scrubbed cages. In contrast, settlement to tiles from the "ecofriendly" treatment was different in composition of macro-community and lower in biomass, suggesting the presence of local effects and therefore rendering it unsuitable for use in settlement experiments. The results of this study suggest that reduced-copper paints have the potential to serve as an alternative to manual maintenance, which may be useful for deployments in locations that are

  20. Poly(ethylene glycol)-containing hydrogel surfaces for antifouling applications in marine and freshwater environments.

    Science.gov (United States)

    Ekblad, Tobias; Bergström, Gunnar; Ederth, Thomas; Conlan, Sheelagh L; Mutton, Robert; Clare, Anthony S; Wang, Su; Liu, Yunli; Zhao, Qi; D'Souza, Fraddry; Donnelly, Glen T; Willemsen, Peter R; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Liedberg, Bo

    2008-10-01

    This work describes the fabrication, characterization, and biological evaluation of a thin protein-resistant poly(ethylene glycol) (PEG)-based hydrogel coating for antifouling applications. The coating was fabricated by free-radical polymerization on silanized glass and silicon and on polystyrene-covered silicon and gold. The physicochemical properties of the coating were characterized by infrared spectroscopy, ellipsometry, and contact angle measurements. In particular, the chemical stability of the coating in artificial seawater was evaluated over a six-month period. These measurements indicated that the degradation process was slow under the test conditions chosen, with the coating thickness and composition changing only marginally over the period. The settlement behavior of a broad and diverse group of marine and freshwater fouling organisms was evaluated. The tested organisms were barnacle larvae (Balanus amphitrite), algal zoospores (Ulva linza), diatoms (Navicula perminuta), and three bacteria species (Cobetia marina, Marinobacter hydrocarbonoclasticus, and Pseudomonas fluorescens). The biological results showed that the hydrogel coating exhibited excellent antifouling properties with respect to settlement and removal. PMID:18759475

  1. Control of biofouling on reverse osmosis polyamide membranes modified with biocidal nanoparticles and antifouling polymer brushes

    KAUST Repository

    Rahaman, Md. Saifur

    2014-01-01

    Thin-film composite (TFC) polyamide reverse osmosis (RO) membranes are prone to biofouling due to their inherent physicochemical surface properties. In order to address the biofouling problem, we have developed novel surface coatings functionalized with biocidal silver nanoparticles (AgNPs) and antifouling polymer brushes via polyelectrolyte layer-by-layer (LBL) self-assembly. The novel surface coating was prepared with polyelectrolyte LBL films containing poly(acrylic acid) (PAA) and poly(ethylene imine) (PEI), with the latter being either pure PEI or silver nanoparticles coated with PEI (Ag-PEI). The coatings were further functionalized by grafting of polymer brushes, using either hydrophilic poly(sulfobetaine) or low surface energy poly(dimethylsiloxane) (PDMS). The presence of both LBL films and sulfobetaine polymer brushes at the interface significantly increased the hydrophilicity of the membrane surface, while PDMS brushes lowered the membrane surface energy. Overall, all surface modifications resulted in significant reduction of irreversible bacterial cell adhesion. In microbial adhesion tests with E. coli bacteria, a normalized cell adhesion in the range of only 4 to 16% on the modified membrane surfaces was observed. Modified surfaces containing silver nanoparticles also exhibited strong antimicrobial activity. Membranes coated with LBL films of PAA/Ag-PEI achieved over 95% inactivation of bacteria attached to the surface within 1 hour of contact time. Both the antifouling and antimicrobial results suggest the potential of using these novel surface coatings in controlling the fouling of RO membranes. © The Royal Society of Chemistry 2014.

  2. Risks of using antifouling biocides in aquaculture.

    Science.gov (United States)

    Guardiola, Francisco Antonio; Cuesta, Alberto; Meseguer, José; Esteban, Maria Angeles

    2012-01-01

    Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211(®)), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  3. Risks of Using Antifouling Biocides in Aquaculture

    Directory of Open Access Journals (Sweden)

    José Meseguer

    2012-02-01

    Full Text Available Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT. The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®, Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine, zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.

  4. Antifouling Activities of Marine Bacteria Associated with Sponge(Sigmadocia sp.)

    Institute of Scientific and Technical Information of China (English)

    S.Satheesh; A.R.Soniamby; C.V.Sunjaiy Shankar; S.Mary Josephine Punitha

    2012-01-01

    The present study aimed at assessing the antifouling activity of bacteria associated with marine sponges.A total of eight bacterial strains were isolated from the surface of sponge Sigmadocia sp.,of them,SS02,SS05 and SS06 showed inhibitory activity against biofilm-forming bacteria.The extracts of these 3 strains considerably affected the extracellular polymeric substance producing ability and adhesion of biofilm-forming bacterial strains.In addition to disc diffusion assay,microalgal settlement assay was carried out with the extracts mixed with polyurethane wood polish and coated onto stainless steel coupons.The extract of strain SS05 showed strong microalgal settlement inhibitory activity.Strain SS05 was identified as Bacillus cereus based on its 16S rRNA gene.Metabolites of the bacterial strains associated with marine invertebrates promise to be developed into environment-friendly antifouling agents.

  5. Antifouling Transparent ZnO Thin Films Fabricated by Atmospheric Pressure Cold Plasma Deposition

    Science.gov (United States)

    Suzaki, Yoshifumi; Du, Jinlong; Yuji, Toshifumi; Miyagawa, Hayato; Ogawa, Kazufumi

    2015-09-01

    One problem with outdoor-mounted solar panels is that power generation efficiency is reduced by face plate dirt; a problem with electronic touch panels is the deterioration of screen visibility caused by finger grease stains. To solve these problems, we should fabricate antifouling surfaces which have superhydrophobic and oil-repellent properties without spoiling the transparency of the transparent substrate. In this study, an antifouling surface with both superhydrophobicity and oil-repellency was fabricated on a glass substrate by forming a fractal microstructure. The fractal microstructure was constituted of transparent silica particles 100 nm in diameter and transparent zinc-oxide columns grown on silica particles through atmospheric pressure cold plasma deposition; the sample surface was coated with a chemically adsorbed monomolecular layer. Samples were obtained which had a superhydrophobic property (with a water droplet contact angle of more than 150°) and a high average transmittance of about 90% (with wavelengths ranging from 400 nm to 780 nm).

  6. Strategies for creating antifouling surfaces using selfassembled poly(ethylene glycol) thiol molecules

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    Microorganisms are one of the most important parts of our ecosystem influencing the sustenance of human society. The beneficial microbes are of high relevance to food industry, development of antibiotics and processing of many raw materials. Mankind has indeed benefitted a lot from large number...... polymers for making non-adhesive coatings. The work presented in this thesis involves grafting PEG chains onto surfaces using different modifications of the ‘grafting to’ technique. The main aim of studies presented in this thesis was to develop surfaces which would prevent bacteria from forming biofilm...... for polymer grafting. The fouling properties of such layers were ascertained by quantitative protein adsorption studies and bacterial attachment studies. The detailed surface characterization of grafted polymeric layer and antifouling studies helped in development of novel ways to create antifouling surfaces...

  7. Challenges for the Development of New Non-Toxic Antifouling Solutions

    Directory of Open Access Journals (Sweden)

    Jean-Philippe Maréchal

    2009-10-01

    Full Text Available Marine biofouling is of major economic concern to all marine industries. The shipping trade is particularly alert to the development of new antifouling (AF strategies, especially green AF paint as international regulations regarding the environmental impact of the compounds actually incorporated into the formulations are becoming more and more strict. It is also recognised that vessels play an extensive role in invasive species propagation as ballast waters transport potentially threatening larvae. It is then crucial to develop new AF solutions combining advances in marine chemistry and topography, in addition to a knowledge of marine biofoulers, with respect to the marine environment. This review presents the recent research progress made in the field of new non-toxic AF solutions (new microtexturing of surfaces, foul-release coatings, and with a special emphasis on marine natural antifoulants as well as the perspectives for future research directions.

  8. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  9. Fouling and Antifouling of Depetanizer in Ethylene Units

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Factors affecting fouling of depentanizer in ethylene units were explored through study of thecomposition of pyrolysis gasoline, C5 distillate and fouling deposits from the depentanizer while takinginto consideration the processing parameters. A variety of antifouling measures, in particular the injec-tion of a special anti-fouling agent into the Cs gas phase pipeline and the C5 distillate reflux pipelinewere introduced. Commercial evaluation test of a multifunctional anti-fouling agent, the RIPP-1404anti-fouling agent, was also described.

  10. Worldwide occurrence and effects of antifouling paint booster biocides in the aquatic environment: a review.

    Science.gov (United States)

    Konstantinou, I K; Albanis, T A

    2004-04-01

    Organic booster biocides were recently introduced as alternatives to organotin compounds in antifouling products, after restrictions imposed on the use of tributyltin (TBT) in 1987. Replacement products are generally based on copper metal oxides and organic biocides. This ban has led to an increase in alternative coating products containing the above biocides. The most commonly used biocides in antifouling paints are: Irgarol 1051, diuron, Sea-nine 211, dichlofluanid, chlorothalonil, zinc pyrithione, TCMS (2,3,3,6-tetrachloro-4-methylsulfonyl) pyridine, TCMTB [2-(thiocyanomethylthio) benzothiazole], and zineb. Since 1993, several studies have demonstrated the presence of these biocides in European coastal environment as a result of their increased use. More recently, the presence of these biocides was also revealed in waters from Japan, United States, Singapore, Australia and Bermuda. This paper reviews the currently available data on the occurrence of these biocides in the aquatic environment. Some data dealing with the environmental fate, partitioning, behaviour and risk assessment of antifouling paint booster biocides are also reported in order to discuss the detected levels of contamination. PMID:14749112

  11. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  12. Field results of antifouling techniques for optical instruments

    Science.gov (United States)

    Strahle, W.J.; Hotchkiss, F.S.; Martini, M.A.

    1998-01-01

    An anti-fouling technique is developed for the protection of optical instruments from biofouling which leaches a bromide compound into a sample chamber and pumps new water into the chamber prior to measurement. The primary advantage of using bromide is that it is less toxic than the metal-based antifoulants. The drawback of the bromide technique is also discussed.

  13. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    Science.gov (United States)

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm.

  14. Fabrication of transparent antifouling thin films with fractal structure by atmospheric pressure cold plasma deposition.

    Science.gov (United States)

    Miyagawa, Hayato; Yamauchi, Koji; Kim, Yoon-Kee; Ogawa, Kazufumi; Yamaguchi, Kenzo; Suzaki, Yoshifumi

    2012-12-21

    Antifouling surface with both superhydrophobicity and oil-repellency has been fabricated on glass substrate by forming fractal microstructure(s). The fractal microstructure was constituted by transparent silica particles of 100 nm diameter and transparent zinc-oxide columns grown on silica particles by atmospheric pressure cold plasma deposition. The sample surface was coated with a chemically adsorbed monomolecular layer. We found that one sample has the superhydrophobic ability with a water droplet contact angle of more than 150°, while another sample has a high transmittance of more than 85% in a wavelength range from 400 to 800 nm. PMID:23186100

  15. Mini-review: Molecular mechanisms of antifouling compounds

    KAUST Repository

    Qian, Pei-Yuan

    2013-04-01

    Various antifouling (AF) coatings have been developed to protect submerged surfaces by deterring the settlement of the colonizing stages of fouling organisms. A review of the literature shows that effective AF compounds with specific targets are ones often considered non-toxic. Such compounds act variously on ion channels, quorum sensing systems, neurotransmitters, production/release of adhesive, and specific enzymes that regulate energy production or primary metabolism. In contrast, AF compounds with general targets may or may not act through toxic mechanisms. These compounds affect a variety of biological activities including algal photosynthesis, energy production, stress responses, genotoxic damage, immunosuppressed protein expression, oxidation, neurotransmission, surface chemistry, the formation of biofilms, and adhesive production/release. Among all the targets, adhesive production/release is the most common, possibly due to a more extensive research effort in this area. Overall, the specific molecular targets and the molecular mechanisms of most AF compounds have not been identified. Thus, the information available is insufficient to draw firm conclusions about the types of molecular targets to be used as sensitive biomarkers for future design and screening of compounds with AF potential. In this review, the relevant advantages and disadvantages of the molecular tools available for studying the molecular targets of AF compounds are highlighted briefly and the molecular mechanisms of the AF compounds, which are largely a source of speculation in the literature, are discussed. © 2013 Copyright Taylor and Francis Group, LLC.

  16. Nontoxic piperamides and their synthetic analogues as novel antifouling reagents

    KAUST Repository

    Huang, Xiang-Zhong

    2014-03-25

    Bioassay-guided isolation of an acetone extract from a terrestrial plant Piper betle produced four known piperamides with potent antifouling (AF) activities, as evidenced by inhibition of settlement of barnacle cypris larvae. The AF activities of the four piperamides and 15 synthesized analogues were compared and their structure-activity relationships were probed. Among the compounds, piperoleine B and 1-[1-oxo-7-(3′,4′-methylenedioxyphenyl)-6E-heptenyl]-piperidine (MPHP) showed strong activity against settlement of cyprids of the barnacle Balanus amphitrite, having EC50 values of 1.1 ± 0.3 and 0.5 ± 0.2 μg ml-1, respectively. No toxicity against zebra fish was observed following incubation with these two compounds. Besides being non-toxic, 91% of piperoleine B-treated cyprids and 84% of MPHP-treated cyprids at a concentration of 100 μM completed normal metamorphosis in recovery bioassays, indicating that the anti-settlement effect of these two compounds was reversible. Hydrolysis and photolysis experiments indicated that MPHP could be decomposed in the marine environment. It is concluded that piperamides are promising compounds for use in marine AF coatings. © 2014 © 2014 Taylor & Francis.

  17. Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces.

    Science.gov (United States)

    Xu, Binbin; Feng, Chun; Hu, Jianhua; Shi, Ping; Gu, Guangxin; Wang, Lei; Huang, Xiaoyu

    2016-03-01

    Surfaces modified with amphiphilic polymers can dynamically alter their physicochemical properties in response to changes of their environmental conditions; meanwhile, amphiphilic polymer coatings with molecular hydrophilic and hydrophobic patches, which can mitigate biofouling effectively, are being actively explored as advanced coatings for antifouling materials. Herein, a series of well-defined amphiphilic asymmetric polymer brushes containing hetero side chains, hydrophobic polystyrene (PS) and hydrophilic poly(ethylene glycol) (PEG), was employed to prepare uniform thin films by spin-casting. The properties of these films were investigated by water contact angle, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and quartz crystal microbalance (QCM). AFM showed smooth surfaces for all films with the roughness less than 2 nm. The changes in water contact angle and C/O ratio (XPS) evidenced the enrichment of PEG or PS chains at film surface after exposed to selective solvents, indicative of stimuli- responsiveness. The adsorption of proteins on PEG functionalized surface was quantified by QCM and the results verified that amphiphilic polymer brush films bearing PEG chains could lower or eliminate protein-material interactions and resist to protein adsorption. Cell adhesion experiments were performed by using HaCaT cells and it was found that polymer brush films possess good antifouling ability. PMID:26905980

  18. Pseudoalteromonas spp. Serve as Initial Bacterial Attractants in Mesocosms of Coastal Waters but Have Subsequent Antifouling Capacity in Mesocosms and when Embedded in Paint

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yin; Møller, Stefan;

    2013-01-01

    . Pseudoalteromonas piscicida survived on a steel surface and retained antifouling activity for at least 53 days in sterile seawater, whereas P. tunicata survived and had antifouling activity for only 1 week. However, during the first week, all Pseudoalteromonas strains facilitated rather than prevented bacterial...... attachment when used to coat stainless steel surfaces and submerged in mesocosms with natural seawater. The bacterial density on surfaces coated with sterile growth medium was 105 cells/cm2 after 7 days, whereas counts on surfaces precoated with Pseudoalteromonas were significantly higher, at 106 to 108....... Larger fouling organisms were observed on all plates precoated with Pseudoalteromonas; however, plates coated only with sterile growth medium were dominated by a bacterial biofilm. Suspensions of a P. piscicida strain and a P. tunicata strain were incorporated into ship paints (Hempasil x3 87500...

  19. Probing structure-antifouling activity relationships of polyacrylamides and polyacrylates.

    Science.gov (United States)

    Zhao, Chao; Zhao, Jun; Li, Xiaosi; Wu, Jiang; Chen, Shenfu; Chen, Qiang; Wang, Qiuming; Gong, Xiong; Li, Lingyan; Zheng, Jie

    2013-07-01

    We have synthesized two different polyacrylamide polymers with amide groups (polySBAA and polyHEAA) and two corresponding polyacrylate polymers without amide groups (polySBMA and polyHEA), with particular attention to the evaluation of the effect of amide group on the hydration and antifouling ability of these systems using both computational and experimental approaches. The influence of polymer architectures of brushes, hydrogels, and nanogels, prepared by different polymerization methods, on antifouling performance is also studied. SPR and ELISA data reveal that all polymers exhibit excellent antifouling ability to repel proteins from undiluted human blood serum/plasma, and such antifouling ability can be further enhanced by presenting amide groups in polySBAA and polyHEAA as compared to polySBMA and polyHEA. The antifouling performance is positively correlated with the hydration properties. Simulations confirm that four polymers indeed have different hydration characteristics, while all presenting a strong hydration overall. Integration of amide group with pendant hydroxyl or sulfobetaine group in polymer backbones is found to increase their surface hydration of polymer chains and thus to improve their antifouling ability. Importantly, we present a proof-of-concept experiment to synthesize polySBAA nanogels, which show a switchable property between antifouling and pH-responsive functions driven by acid-base conditions, while still maintaining high stability in undiluted fetal bovine serum and minimal toxicity to cultured cells. This work provides important structural insights into how very subtle structural changes in polymers can yield great improvement in biological activity, specifically the inclusion of amide group in polymer backbone/sidechain enables to obtain antifouling materials with better performance for biomedical applications. PMID:23562049

  20. Marine sponges: a potential source of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Wagh, A; Thakur, N.L.; Anil, A; Venkat, K.

    Antifouling protocols rely to a great extent on the application of paints or altering substratum characteristics. It has been evidence that commercial antifouling paints which are currently in use employ toxic biocides. The use of such toxic...

  1. Terrestrial plants: a potent source for isolation of eco-friendly antifouling compounds

    Digital Repository Service at National Institute of Oceanography (India)

    Sawant, S.S.; Wagh, A.B.

    All over the world efforts are oriented towardes isolation of eco-friently antifouling toxins from marine plants and organisms. Consequently number of compounds having antifouling properties have been identified from marine plants and organisms...

  2. 绿色环保近海渔船防污涂料的制备%Preparation of Environment-Friendly Antifouling Paints for Offshore Fishing Boat

    Institute of Scientific and Technical Information of China (English)

    陈绍平; 国耀东; 康思波; 刘希燕; 蒋健明

    2012-01-01

    介绍了绿色环保近海渔船防污涂料的特点.采用自由基聚合制备了丙烯酸锌聚合物,经级差和方差分析后,确定了单体的浓度、反应温度、滴加时间、引发剂用量.经海水溶解性实验、海水干湿交替试验,确定了混合单体比例.制备了两类绿色环保近海渔船防污涂料,对防污涂料的影响因素进行了考察,确定了防污涂料浅海浸泡实验条件.防污涂料浅海浸泡实验结果表明,所制备的绿色环保近海渔船防污涂料34个月防污效果良好.防污涂料涂船试验表明,所制备的防污涂料可满足近海渔船的使用需求.%This article introduced the characteristics of the environment — friendly antifouling paints for offshore fishing boats. The zinc acrylate polymer was prepared by radical polymerization. The concentration of monomer, reaction temperature, the dropping time and the amount of initiator were determined after the a-nalysis of differentials and variance. The proportion of mixed monomers was determined by seawater solubility experiments and the alternative dry and wet test in seawater. Two types of green offshore fishing boat antifouling paints were prepared and the influencing factors were investigated to determine the conditions of antifouling coatings shallow immersion test. Antifouling coating shallow immersion test results indicated that the prepared green offshore fishing antifouling paint showed good antifouling property over 34 months. The test results on boat showed that antifouling paints prepared could meet the demand of offshore fishing boats user.

  3. Antifouling potential of the marine microalga Dunaliella salina.

    Science.gov (United States)

    Gao, Min; Li, Fengchao; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2014-11-01

    Marine organisms have usually been viewed as sources of environmentally friendly compounds with antifouling activity. We performed a series of operations to investigate the antifouling potential of the marine microalga Dunaliella salina. For the ethyl acetate crude extract, the antialgal activity was significant, and the EC50 value against Skeletonema costatum was 58.9 μg ml(-1). The isolated purified extract was tested for antifouling activity, the EC 50 value against S. costatum was 21.2 μg ml(-1), and the LC50 against Balanus amphitrite larvae was 18.8 μg ml(-1). Subsequently, both UHR-TOF-MS and GC-MS were used for the structural elucidation of the compounds, and a series of unsaturated and saturated 16- and 18-carbon fatty acids were detected. The data suggested that the fatty acid extracts from D. salina possess high antifouling activity, and could be used as substitutes for potent, toxic antifouling compounds. PMID:25096202

  4. A survey analysis of heavy metals bio-accumulation in internal organs of sea shell animals affected by the sustainable pollution of antifouling paints used for ships anchored at some domestic maritime spaces

    Institute of Scientific and Technical Information of China (English)

    WANG JunLian; WANG FengQi; YU Jie; ZHUANG Yan; ZHOU XiangFeng; ZHANG XiaoBin; PENG BiXian

    2008-01-01

    Some samples of sea shell animals stuck and multiplied on the bottom (beneath the seawater) coated with antifouling paints were collected at some domestic maritime spaces,and the content of heavy metals was detected through Inductively Coupled Plasma-Mass Spectroscopy.Meanwhile,comparison with sea shell animals was made on market for edible use.It shows that the content of heavy metals in internal organs of these marine animals is very high due to the large amount of copper and zinc con-tained in the antifouling paints,and this also does severely harm to sea environment and ecology.To study and develop the novel antifouling paints without copper(I) oxide is an imperative task which brooks no delay.

  5. Antifouling surfaces for proteins labeled with dye-doped silica nanoparticles.

    Science.gov (United States)

    Wang, Hui; Tong, Qi; Yan, Mingdi

    2013-01-01

    We report that proteins labeled with fluorescein-doped silica nanoparticles (FSNPs) showed drastically different fouling behavior than those labeled with the fluorescein dye. Arrays of polymer films were covalently immobilized on silicon wafers and were treated with protein conjugated on FSNPs. Fluorescence imaging showed that the protein-FSNP conjugate adsorbed strongly on hydrophilic polymers such as poly(ethylene oxide) (PEO) and weakly on hydrophobic polymers such as polystyrene (PS), and the extent of adsorption decreased with increasing hydrophobicity of the polymer film. Thus, carbohydrate microarrays probed with FSNP-labeled lectin showed significantly enhanced signals when PS was used as the antifouling coating than when PEO was used, or when using bovine serum albumin as the blocking agent. PMID:23236953

  6. Environmental risk limits for antifouling substances

    Energy Technology Data Exchange (ETDEWEB)

    Wezel, Annemarie P. van; Vlaardingen, P. van

    2004-03-10

    In 1989, the EU restricted the use of tributyl-tin (TBT) and the International Maritime Organisation (IMO) decided for a world-wide ban on TBT in 2003. As a replacement for TBT, new antifouling agents are entering the market. Environmental risk limits (ERLs) are derived for substances that are used as TBT-substitutes, i.e. the compounds Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB. ERLs represent the potential risk of the substances to the ecosystem and are derived using data on (eco)toxicology and environmental chemistry. Only toxicity studies with endpoints related to population dynamics are taken into account. For Irgarol 1051 especially plants appear to be sensitive; the mode of action is inhibition of photosynthetic electron transport. Despite the higher sensitivity of the plants, the calculated ERL for water based on plants only is higher than the ERL based on all data due to the lower variability in the plant only dataset. Because there is a mechanistic basis to state that plants are the most sensitive species, we propose to base the ERL for water on the plants only dataset. As dichlofluanid is highly unstable in the water phase, it is recommended to base the ERL on the metabolites formed and not on the parent compound. No toxicity data of the studied compounds for organisms living in sediments were found, the ERLs for sediment are derived with help of the equilibrium partitioning method. For dichlofluanid and chlorothalonil the ERL for soil is directly based on terrestrial data, for Irgarol 1051 and ziram the ERL for soil is derived using equilibrium partitioning. Except for Irgarol 1051, no information was encountered in the open literature on the environmental occurrence in The Netherlands of the chemicals studied. The measured concentrations for Irgarol 1051 are close to the derived ERL. For this compound it is concluded that the species composition and thereby ecosystem functioning cannot be considered as protected.

  7. Environmental risk limits for antifouling substances.

    Science.gov (United States)

    van Wezel, Annemarie P; van Vlaardingen, P

    2004-03-10

    In 1989, the EU restricted the use of tributyl-tin (TBT) and the International Maritime Organisation (IMO) decided for a world-wide ban on TBT in 2003. As a replacement for TBT, new antifouling agents are entering the market. Environmental risk limits (ERLs) are derived for substances that are used as TBT-substitutes, i.e. the compounds Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB. ERLs represent the potential risk of the substances to the ecosystem and are derived using data on (eco)toxicology and environmental chemistry. Only toxicity studies with endpoints related to population dynamics are taken into account. For Irgarol 1051 especially plants appear to be sensitive; the mode of action is inhibition of photosynthetic electron transport. Despite the higher sensitivity of the plants, the calculated ERL for water based on plants only is higher than the ERL based on all data due to the lower variability in the plant only dataset. Because there is a mechanistic basis to state that plants are the most sensitive species, we propose to base the ERL for water on the plants only dataset. As dichlofluanid is highly unstable in the water phase, it is recommended to base the ERL on the metabolites formed and not on the parent compound. No toxicity data of the studied compounds for organisms living in sediments were found, the ERLs for sediment are derived with help of the equilibrium partitioning method. For dichlofluanid and chlorothalonil the ERL for soil is directly based on terrestrial data, for Irgarol 1051 and ziram the ERL for soil is derived using equilibrium partitioning. Except for Irgarol 1051, no information was encountered in the open literature on the environmental occurrence in The Netherlands of the chemicals studied. The measured concentrations for Irgarol 1051 are close to the derived ERL. For this compound it is concluded that the species composition and thereby ecosystem functioning cannot be considered as protected. PMID:15168950

  8. 船舶海洋污损生物防治技术及装置研究进展%progress of marine Antifouling Solutions and Devices

    Institute of Scientific and Technical Information of China (English)

    陈永红; 孙团; 孙俊忠; 王辉波; 吴冬华

    2015-01-01

    海洋污损生物增加附着基体的摩擦阻力,甚至对基体的腐蚀产生影响。海洋污损生物的附着过程主要分为三个过程,同时在粘附界面存在多种粘结作用。材料学、防污涂层、电化学、电解技术、超声波和紫外照射等技术是目前海洋污损生物防治的主要方法;在石油平台常用物理除污装置进行防污,而电解防污装置则在船体、管道等的污损生物防治中广泛使用。对海洋环境无污染、防污时间长、防污效果明显、经济是海洋污损生物防治技术的一种趋势,装置设计简单、易于操作、能耗低则是防污装置的发展方向。%The adhesion of marine biofouling can significant increase the frictional drag (FD) of substrate surfaces, and lead to the substrate corrosion. In fouling adhesion, there are three processes and many adhesion attractions in interface. Materials Science, antifouling coating, electrochemistry, electrolysis, ultrasonic and ultraviolet irradiation are the main solution to control the marine biofouling. The physics antifouling devices are used in oil platform, and electrolysis antifouling devices are widely used in ship hull and pipes. Non-toxic, long duration, effective and economical are the target of antifouling solutions reaserach, simply design, handly and low energy are the direction of antifouling development.

  9. Antifouling Activity of Secondary Metabolites Isolated from Chinese Marine Organisms

    KAUST Repository

    Li, Yong Xin

    2013-04-25

    Biofouling results in tremendous economic losses to maritime industries around the world. A recent global ban on the use of organotin compounds as antifouling agents has further raised demand for safe and effective antifouling compounds. In this study, 49 secondary metabolites, including diterpenoids, steroids, and polyketides, were isolated from soft corals, gorgonians, brown algae, and fungi collected along the coast of China, and their antifouling activity was tested against cyprids of the barnacle Balanus (Amphibalanus) amphitrite. Twenty of the compounds were found to inhibit larval settlement significantly at a concentration of 25 μg ml-1. Two briarane diterpenoids, juncin O (2) and juncenolide H (3), were the most promising non-toxic antilarval settlement candidates, with EC50 values less than 0.13 μg ml-1 and a safety ratio (LC50/EC50) higher than 400. A preliminary structure-activity relationships study indicated that both furanon and furan moieties are important for antifouling activity. Intriguingly, the presence of hydroxyls enhanced their antisettlement activity. © 2013 Springer Science+Business Media New York.

  10. Antiparasitic, Nematicidal and Antifouling Constituents from Juniperus Berries

    Science.gov (United States)

    A bioassay-guided fractionation of Juniperus procera berries yielded antiparasitic, nematicidal and antifouling constituents, including a wide range of known abietane, pimarane and labdane diterpenes. Among these, abieta-7,13-diene (1) demonstrated in vitro antimalarial activity against Plasmodium f...

  11. Antifouling potential of bacteria isolated from a marine biofilm

    Science.gov (United States)

    Gao, Min; Wang, Ke; Su, Rongguo; Li, Xuzhao; Lu, Wei

    2014-10-01

    Marine microorganisms are a new source of natural antifouling compounds. In this study, two bacterial strains, Kytococcus sedentarius QDG-B506 and Bacillus cereus QDG-B509, were isolated from a marine biofilm and identified. The bacteria fermentation broth could exert inhibitory effects on the growth of Skeletonema costatum and barnacle larvae. A procedure was employed to extract and identify the antifouling compounds. Firstly, a toxicity test was conducted by graduated pH and liquid-liquid extraction to determine the optimal extraction conditions. The best extraction conditions were found to be pH 2 and 100% petroleum ether. The EC 50 value of the crude extract of K. sedentarius against the test microalgae was 236.7 ± 14.08 μg mL-1, and that of B. cereus was 290.6 ± 27.11 μg mL-1. Secondly, HLB SPE columns were used to purify the two crude extracts. After purification, the antifouling activities of the two extracts significantly increased: the EC 50 of the K. sedentarius extract against the test microalgae was 86.4 ± 3.71 μg mL-1, and that of B. cereus was 92.6 ± 1.47 μg mL-1. These results suggest that the metabolites produced by the two bacterial strains are with high antifouling activities and they should be fatty acid compounds. Lastly, GC-MS was used for the structural elucidation of the compounds. The results show that the antifouling compounds produced by the two bacterial strains are myristic, palmitic and octadecanoic acids.

  12. Nano-silica fabricated with silver nanoparticles: antifouling adsorbent for efficient dye removal, effective water disinfection and biofouling control

    Science.gov (United States)

    Das, Sujoy K.; Khan, Md. Motiar R.; Parandhaman, T.; Laffir, Fathima; Guha, Arun K.; Sekaran, G.; Mandal, Asit Baran

    2013-05-01

    A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through protein mediated reduction of silver ions at ambient temperature for development of sustainable nanotechnology. The coated proteins on AgNPs led to the formation of stable NSAgNP and protected the AgNPs from oxidation and other ions commonly present in water. The NSAgNP exhibited excellent dye adsorption capacity both in single and multicomponent systems, and demonstrated satisfactory tolerance against variations in pH and dye concentration. The adsorption mainly occurred through electrostatic interaction, though π-π interaction and pore diffusion also contributed to the process. Moreover, the NSAgNP showed long-term antibacterial activity against both planktonic cells and biofilms of Gram-negative Escherichia coli and Pseudomonas aeruginosa. The antibacterial activity of AgNPs retarded the initial attachment of bacteria on NSAgNP and thus significantly improved the antifouling properties of the nanomaterial, which further inhibited biofilm formation. Scanning electron and fluorescence microscopic studies revealed that cell death occurred due to irreversible damage of the cell membrane upon electrostatic interaction of positively charged NSAgNP with the negatively charged bacterial cell membrane. The high adsorption capacity, reusability, good tolerance, removal of multicomponent dyes and E. coli from the simulated contaminated water and antifouling properties of NSAgNP will provide new opportunities to develop cost-effective and ecofriendly water purification processes.A nano-silica-AgNPs composite material is proposed as a novel antifouling adsorbent for cost-effective and ecofriendly water purification. Fabrication of well-dispersed AgNPs on the nano-silica surface, designated as NSAgNP, has been achieved through

  13. Antifouling polymeric films against marine organisms. Kaiyo seibutsu fuchaku boshi to kobunshi

    Energy Technology Data Exchange (ETDEWEB)

    Yamamori, N. (Nippon Paint Co. Ltd., Tokyo (Japan))

    1991-07-15

    An introduction is made on prevention of marine organisms from depositing on bridges and vessels, and on anti-fouling function of highly anti-fouling silicone resin and hydrolytic resins. First, in the case of silicone rubber, its surface is hydrophobic making it more difficult for sticking constituent (glycoprotein) in a depositing organism to deposit, in addition to its resilience, which sheds off easily the deposited organisms by its impact resilience. On the one hand, organism deposition can be prevented by means of micro-domain structure. Further, a description is given on the hydrolytic resins as to their anti-fouling agent releasing mechanism in hydrolytic paint film, and capability of prolonging the anti-fouling life by means of making the film thicker because the anti-fouling life is proportional to film thickness. In addition, explanations are given on elusion mechanism of hydrolytic resins, their behaviors in anti-fouling agent dispersion, the importance of controlling the elusion since the film elusion amount is an important factor to determine the release amount of the dispersed anti-fouling agent and the anti-fouling life, and the improvement of anti-fouling performance of the resins by means of adding monobasic acid into copper-acrylic resin. 9 refs., 13 figs., 8 tabs.

  14. Bio-inspired strategies for designing antifouling biomaterials

    OpenAIRE

    Vinod B. Damodaran; Murthy, N. Sanjeeva

    2016-01-01

    Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling. Many of these appr...

  15. Evaluation of dihydrooroidin as an antifouling additive in marine paint

    OpenAIRE

    Melander, Christian; Moeller, Peter D. R.; Ballard, T. Eric; Justin J. Richards; Huigens, Robert W.; Cavanagh, John

    2009-01-01

    Methods used to deter biofouling of underwater structures and marine vessels present a serious environmental issue and are both problematic and costly for government and commercial marine vessels worldwide. Current antifouling methods include compounds that are toxic to aquatic wildlife and marine ecosystems. Dihydrooroidin (DHO) was shown to completely inhibit Halomonas pacifica biofilms at 100 μM in a static biofilm inhibition assay giving precedence for the inhibition of other marine-biofi...

  16. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Science.gov (United States)

    Tebben, Jan; Guest, James R; Sin, Tsai M; Steinberg, Peter D; Harder, Tilmann

    2014-01-01

    The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  17. Corals like it waxed: paraffin-based antifouling technology enhances coral spat survival.

    Directory of Open Access Journals (Sweden)

    Jan Tebben

    Full Text Available The early post-settlement stage is the most sensitive during the life history of reef building corals. However, few studies have examined the factors that influence coral mortality during this period. Here, the impact of fouling on the survival of newly settled coral spat of Acropora millepora was investigated by manipulating the extent of fouling cover on settlement tiles using non-toxic, wax antifouling coatings. Survival of spat on coated tiles was double that on control tiles. Moreover, there was a significant negative correlation between percentage cover of fouling and spat survival across all tiles types, suggesting that fouling in direct proximity to settled corals has detrimental effects on early post-settlement survival. While previous studies have shown that increased fouling negatively affects coral larval settlement and health of juvenile and adult corals, to the best of our knowledge, this is the first study to show a direct relationship between fouling and early post-settlement survival for a broadcast spawning scleractinian coral. The negative effects of fouling on this sensitive life history stage may become more pronounced in the future as coastal eutrophication increases. Our results further suggest that targeted seeding of coral spat on artificial surfaces in combination with fouling control could prove useful to improve the efficiency of sexual reproduction-based coral propagation for reef rehabilitation.

  18. Mathematical Modeling of Tin-Free Chemically-Active Antifouling Paint Behavior

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Dam-Johansen, Kim;

    2006-01-01

    Mathematical modeling has been used to characterize and validate the working mechanisms of tin-free, chemically-active antifouling (AF) paints. The model-based analysis of performance data from lab-scale rotary experiments has shown significant differences between antifouling technologies as rega...... of Chemical Engineers....

  19. Mathematical modelling of a self-polishing antifouling paint exposed to seawater: A parameter study

    DEFF Research Database (Denmark)

    Kiil, Søren; Weinell, Claus Erik; Pedersen, M. S.;

    2002-01-01

    A Fundamental mathematical model for a self-polishing antifouling paint was used to conduct a parameter study. The aims were to show how a mathematical model can reduce the amount of experimental work needed to estimate the behaviour of self-polishing antifouling paints at different conditions, a...... for the pertinent rate-influencing steps....

  20. Copper Based Antifouling Paints for Prevention of Marine Growth on ship Hulls

    Directory of Open Access Journals (Sweden)

    Y.P.S. Nirvan

    1982-01-01

    Full Text Available "The mode of action and requirements of ingredients of copper based antifouling paints used in the country for the prevention of fouling, on ship-hulls have been described. The studies on performance of antifouling paints based on cuprous oxide-chlorinated rubber-rosin system have also been reported. Antifouling life improves with increase in concentration of cuprous oxide, 43 per cent by volume being the optimum toxic content. A minimum rosin to resin ratio of 3:1 is required to permit adequate release of copper for prolonged periods. Hydrolysable plasticizer namely tricresyl phosphate has been found to be superior to chlorinated paraffin wax for the design of antifouling compositions. The antifouling paint based on chlorinated rubber resin is expected to give a life of 15-18 months in service."

  1. Antifouling Activity of Simple Synthetic Diterpenoids against Larvae of the Barnacle Balanus albicostatus Pilsbry

    Directory of Open Access Journals (Sweden)

    Dan-Qing Feng

    2010-11-01

    Full Text Available Five new pimarane diterpenoids 1-5 were synthesized using ent-8(14-pimarene-15R,16-diol as starting material. The structures were elucidated by means of extensive NMR and MS analysis. The antifouling activity against larval settlement of the barnacle Balanus albicostatus were evaluated using capsaicin as a positive control. Compounds 1-3 and 5 showed more potent antifouling activity than capsaicin. Compound 5, which exhibited almost the same antifouling activity as starting material, showed better stability than starting material. These compounds all showed antifouling activity in a non-toxic way against larval settlement of the barnacle B. albicostatus. Analysis of structure-activity relationships (SAR demonstrated that the substituents on the C-15 and C-16 position of pimarane diterpenoid were responsible for the antifouling activity.

  2. Various mortars for anti-fouling purposes in marine environments

    Energy Technology Data Exchange (ETDEWEB)

    Kanematsu, Hideyuki; Masuda, Tomoka [Department of Materials Science and Engineering, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Miura, Yoko; Kuroda, Daisuke [Department of General Education, The Company, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Hirai, Nobumitsu [Department of Chemistry and Biochemistry, Suzuka National College of Technology, Shiroko-cho, Suzuka, Mie 510-0294 (Japan); Yokoyama, Seiji [Department of Mechanical Engineering, Toyohashi University of Technology, 1-1, Hibarigaoka, Tenpaku, Toyohashi, Aichi, 441-8580 (Japan)

    2014-02-20

    The antifouling properties for some mortars with steel making slags were investigated by real marine immersion tests and a unique laboratory acceleration tests with a specially devised biofilm acceleration reactors. Mortars mixed with steel making slags containing abundant iron elements tended to form biofilm and also bifouling. The two kinds of biofilm formation tests were used in this study. Real immersion in marine environments and laboratory test with a specially devised biofilm acceleration reactor. The former evaluated the biofouling characteristics more properly, while the latter did the biofilm formation characteristics more effectively.

  3. A new concept for anti-fouling paint for Yachts

    DEFF Research Database (Denmark)

    Wallstroem, Eva; Jespersen, Henrik T.; Schaumburg, Kjeld

    2011-01-01

    -fouling products for yachts. To be able to reduce the amount of biocide, in this case zinc pyrithione, it is necessary to have control over the amount of biocide present in the surface layer. The control is achieved by encapsulating the biocide in a silica gel. The silica gel is dispersed together with pigments...... it is encapsulated in a gel compared to a situation where it is not. This conclusion is based on the fact that the gel swells when exposed to water, and therefore the leach of zinc pyrithione is initially delayed and the biocide may start to solubilise and degrade. The result is an anti-fouling product...

  4. Bio-inspired strategies for designing antifouling biomaterials.

    Science.gov (United States)

    Damodaran, Vinod B; Murthy, N Sanjeeva

    2016-01-01

    Contamination of biomedical devices in a biological medium, biofouling, is a major cause of infection and is entirely avoidable. This mini-review will coherently present the broad range of antifouling strategies, germicidal, preventive and cleaning using one or more of biological, chemical and physical techniques. These techniques will be discussed from the point of view of their ability to inhibit protein adsorption, usually the first step that eventually leads to fouling. Many of these approaches draw their inspiration from nature, such as emulating the nitric oxide production in endothelium, use of peptoids that mimic protein repellant peptides, zwitterionic functionalities found in membrane structures, and catechol functionalities used by mussel to immobilize poly(ethylene glycol) (PEG). More intriguing are the physical modifications, creation of micropatterns on the surface to control the hydration layer, making them either superhydrophobic or superhydrophilic. This has led to technologies that emulate the texture of shark skin, and the superhyprophobicity of self-cleaning textures found in lotus leaves. The mechanism of antifouling in each of these methods is described, and implementation of these ideas is illustrated with examples in a way that could be adapted to prevent infection in medical devices. PMID:27326371

  5. Occurrence of antifouling biocides in the Spanish Mediterranean marine environment.

    Science.gov (United States)

    Martínez, K; Ferrer, I; Hernando, M D; Fernández-Alba, A R; Marcé, R M; Borrull, F; Barceló, D

    2001-05-01

    A compilation of the results of a monitoring program of the recently used antifouling pesticides diuron (3-(3,4-dichlorophenyl)-1,1-dimethylurea), Irgarol 1051 (2-methylthio-4-tertiary-butylamino-6-cyclopropylamino-s-teiazine), seanine 211 (4,5-dichloro-2-n-octyl-4-isothazolin-3-one), chlorothalonil (2,4,5,6-tetrachloro-isophthalonitrile), dichlofluanid (N'-dimethyl-N-phenylsulphanamide), TCMTB ((2-thiocyanomethylthio) benzothiazole), and three degradation products demethyldiuron (3-(3,4-dichlorophenyl)-1-methylurea),3,4-dichlorophenylurea and 2-methylthio-4-tert-butylamino-s-triazine (Irgarol degradation product) that was carried out between April 1996 and February 2000 in enclosed seawaters from Catalonia and Almería (Spanish Mediterranean coast) is reported. Nine points were sampled along the Catalan coast: Barcelona Olympic port, Masnou, Blanes, Sant Carles de la Ràpita, Tarragona, Cambrils and Salou marinas as well as the Cambrils and Tarragona fishing harbors and in marinas and ports from Almeria: Aguadulce port, Almería port, Almerimar fishing harbour and Almerimar marina. The analytical methodologies were based on Solid Phase Extraction followed by liquid chromatography (LC) or gas chromatography (GC) coupled to a mass spectrometry (MS) or -Diode Array Detector. The main pollutants found in the sampled points were diuron and Irgarol 1051 that were detected at concentrations up to 2.19 micrograms l-1 and 0.33 microgram l-1, respectively. On the other hand, seanine 211 was found at the highest concentration (up to 3.7 micrograms l-1) during the summer of 1999. Low concentrations of dichlofluanid and the above mentioned degradation products were detected for the first time in the Spanish coasts. Chlorothalonil, TCMTB were not found at concentrations higher than 1 and 20 ng l-1 respectively which were the limit of determination (LOD) of the method for these compounds. In general the contamination at the different marinas is higher at the end of spring and in

  6. Maximum permissible concentrations and negligible concentrations for antifouling substances. Irgarol 1051, dichlofluanid, ziram, chlorothalonil and TCMTB

    NARCIS (Netherlands)

    Wezel AP van; Vlaardingen P van; CSR

    2001-01-01

    This report presents maximum permissible concentrations and negligible concentrations that have been derived for various antifouling substances used as substitutes for TBT. Included here are Irgarol 1051, dichlofluanide, ziram, chlorothalonil and TCMTB.

  7. Efficacy and toxicity of self-polishing biocide-free antifouling paints.

    Science.gov (United States)

    Löschau, Margit; Krätke, Renate

    2005-11-01

    The ban on harmful substances in antifouling paints requires the development of new antifouling strategies. Alternatives should be as effective as conventional paints but of lower toxicity. In the present study two commercially available, self-polishing antifouling paints were examined in order to get information on their antifouling properties and toxicological potential. Efficacy was shown in settlement assays with the marine barnacle species Balanus amphitrite, however, efficacy was related to toxic effects observed on target and non-target organisms. Toxicity of the paint extracts was concentration-dependent and differed according to the paint and the species investigated. Toxicity could at least partially be attributed to zinc leached from the paints. Effects of a water-soluble paint were more pronounced in larvae of B. amphitrite, Artemia salina and in the green algae Dunaliella tertiolecta. Embryos of the freshwater species Danio rerio and Vibrio fisheri were more affected by a paint based on organic solvents. PMID:15955603

  8. Probing the hydration of ultrathin antifouling organosilane adlayers using neutron reflectometry.

    Science.gov (United States)

    Pawlowska, Natalia M; Fritzsche, Helmut; Blaszykowski, Christophe; Sheikh, Sonia; Vezvaie, Mansoor; Thompson, Michael

    2014-02-11

    Neutron reflectometry data and modeling support the existence of a relatively thick, continuous phase of water stemming from within an antifouling monoethylene glycol silane adlayer prepared on oxidized silicon wafers. In contrast, this physically distinct (from bulk) interphase is much thinner and only interfacial in nature for the less effective adlayer lacking internal ether oxygen atoms. These results provide further insight into the link between antifouling and surface hydration. PMID:24471689

  9. Antifouling activity of seaweed extracts from Guarujá, São Paulo, Brazil

    OpenAIRE

    Heloisa Elias Medeiros; Bernardo Antonio Perez da Gama; Gianfranco Gallerani

    2007-01-01

    Marine biofouling historically constitutes one of the major constraints faced by mankind in its oceanic activities. The search for alternatives to TBT-based antifouling paints has led several researchers to focus efforts in the development of environmentally friendly natural compounds. This work has contributed with this search, testing the antifouling potential of crude organic extracts from four seaweed species collected at Praia Branca, Guarujá district, São Paulo, Brazil. Throughout labor...

  10. Chemical study and antifouling activity of Caribbean octocoral Eunicea laciniata

    International Nuclear Information System (INIS)

    The bioassay guided purification of the octocoral Eunicea laciniata organic extract, collected at Santa Marta bay, Colombia, allowed the isolation of the new compound (-)-3β-pregna-5,20-dienyl-β-D-arabinopyranoside (1), along with the known compounds 1(S*),11(R*)-dolabell-3(E),7(E),12(18)-triene (2), 13-keto-1(S),11(R)-dolabell-3(E),7(E),12(18)-triene (3), cholest- 5,22-dien-3β-ol (4), cholesterol (5), y brassicasterol (6). The structure and absolute configuration of 1 was determined on based spectroscopic analyses (NMR and CD). The extract showed antifouling activity against five strains of marine bacteria associated to heavy fouled surfaces. Also showed activity against the cypris of the cosmopolitan barnacle Balanus amphitrite, and low toxicity in Artemia salina test. (author)

  11. Antifouling Metabolites from the Mangrove Plant Ceriops tagal

    Directory of Open Access Journals (Sweden)

    Yi Ming Lin

    2008-01-01

    Full Text Available The new diterpene methoxy-ent-8(14-pimarenely-15-one (1 and three knownmetabolites: ent-8(14-pimarene-15R,16-diol (2, stigmasterol (3 and β-sitosterol (4, wereisolated from the roots of the mangrove plant Ceriops tagal. Their structures and relativestereochemistry were elucidated by means of extensive NMR, IR and MS analysis.Compounds 1, 2, 3 and 4 exhibited significant antifouling activities against cyprid larvaeof the barnacle Balanus albicostatus Pilsbry, with EC50 values of 0.32 ± 0.01, 0.04 ± 0.00,4.05 ± 0.15 and 18.47 ± 0.40 μg/cm2, respectively, whereas their toxicities towards cypridswere very low, with LC50 values all above 10 μg/cm2.

  12. Environmental management aspects for TBT antifouling wastes from the shipyards.

    Science.gov (United States)

    Kotrikla, Anna

    2009-02-01

    Tributyltin (TBT)-based antifouling paints have been successfully used for over 40 years to protect a ship's hull from biofouling. However, due to its high toxicity to marine organisms, the International Maritime Organization (IMO), in 1990, adopted a resolution recommending governments to adopt measures to eliminate antifouling paints containing TBT. High concentrations of TBT are detected in the vicinity of ports and shipyards. TBT is also usually detected in the sediment, in which it accumulates. This study reviews recent literature for the best management practices (BMPs) in order to minimize the environmental effects of TBT. The paper focuses on the evaluation of the available techniques for the removal of TBT from shipyard wastes and from the sediment. The most effective treatment methods are highlighted. BMPs include recycling of abrasive materials, use of cleaner abrasive materials, reuse of spent abrasive materials, substitution of hydroblasting by vacuum blasting or containment or ultra-high-pressure water blasting and confinement of pollution by enclosure and containment systems. The treatment of the TBT wastes by conventional biological wastewater treatment processes is probably not suitable, because the concentrations of TBT found in shipyards' wastewaters are toxic to microorganisms. Advanced technologies such as activated carbon adsorption and dissolved air flotation, in combination with filtration and coagulation-clarification, photodegradation and electrochemical treatment, are required to remove TBT. However, advanced methods should be further optimized to meet the regulatory limit of 200 ng/L. To date, only one published work examines the efficiency of incineration for the treatment of solid sandblast wastes. Regarding the treatment of sediment, land deposition of the less polluted fraction of sediment is a feasible option. Such treatment must take into account the risk of contamination of groundwater and the surroundings, and it requires

  13. INTERGRATED DESIGN AND STUDY OF MARINE ANTIFOULING POLYMER MATERIALS%海洋防污高分子材料的综合设计和研究

    Institute of Scientific and Technical Information of China (English)

    解来勇; 洪飞; 刘剑洪; 张广照; 吴奇

    2012-01-01

    综述了海洋防污高分子材料与技术的发展现状.简介了海洋生物污损的形成过程,概述了杀生防污涂料、污损可脱附性涂层、阻止附着型防污技术以及其它现存的防污方法,并在此基础上提出了一种新的海洋防污高分子材料的综合设计方案,最后展示了有关海洋防污材料研究的最新成果.%To solve biofouling problems, different antifouling paints have been designed, developed andpractically applied. Here we briefly introduce the nature and process of biofouling; review several currentlyused common strategies in the development of different biocidal antifouling coatings; illustrate how we are ableto combine a number of existing approaches into some integrated novel designs; and finally report some of ourrecent R&D progresses in direction.

  14. Click synthesis of neutral, cationic, and zwitterionic poly(propargyl glycolide)-co-poly(ɛ-caprolactone)-based aliphatic polyesters as antifouling biomaterials.

    Science.gov (United States)

    Tu, Qin; Wang, Jian-Chun; Liu, Rui; Chen, Yun; Zhang, Yanrong; Wang, Dong-En; Yuan, Mao-Sen; Xu, Juan; Wang, Jinyi

    2013-08-01

    With the development of polymer-based biomaterials, aliphatic polyesters have attracted considerable interest because of their non-toxicity, non-allergenic property, and good biocompatibility. However, the hydrophobic nature and the lack of side chain functionalities of aliphatic polyesters limit their biomedical applications. In this study, we prepared four new polyesters: poly(sulfobetaine methacrylate)-, poly(2-methacryloyloxyethyl phosphotidylcholine)-, poly(ethylene glycol)-, and quaternized poly[(2-dimethylamino)ethyl methacrylate]-grafted poly(propargyl glycolide)-co-poly(ɛ-caprolactone). Their synthesis was conducted through ring-opening polymerization of acetylene-functionalized lactones and subsequent graft of bioactive units using click chemistry. The chemical structures of the polyesters were characterized through nuclear magnetic resonance and Fourier-transform infrared spectroscopy, and their physical properties (including molecular weight, glass transition temperature, and melting point) were determined using gel permeation chromatography and differential scanning calorimetry. For studies on their hydrophilicity, stability, and anti-bioadhesive property, a series of polymeric surfaces of these polyesters was prepared by coating them onto glass substrates. The hydrophilicity and stability of these polyester surfaces were examined by contact angle measurements and attenuated total reflection Fourier-transform infrared spectroscopy. Their anti-bioadhesive property was investigated through protein adsorption, as well as cellular and bacterial adhesion assays. The prepared polyesters showed good hydrophilicity and long-lasting stability, as well as significant anti-fouling property. The newly prepared polyesters could be developed as promising anti-fouling materials with extensive biomedical applications. PMID:23511626

  15. Self-Healing Superhydrophobic Fluoropolymer Brushes as Highly Protein-Repellent Coatings.

    Science.gov (United States)

    Wang, Zhanhua; Zuilhof, Han

    2016-06-28

    Superhydrophobic surfaces with micro/nanostructures are widely used to prevent nonspecific adsorption of commercial polymeric and/or biological materials. Herein, a self-healing superhydrophobic and highly protein-repellent fluoropolymer brush was grafted onto nanostructured silicon by surface-initiated atom transfer radical polymerization (ATRP). Both the superhydrophobicity and antifouling properties (as indicated for isolated protein solutions and for 10% blood plasma) are well repaired upon serious chemical degradation (by e.g. air plasma). This brush still maintains excellent superhydrophobicity and good antifouling properties even after 5 damage-repair cycles, which opens a new door to fabricate long-term antifouling coatings on various substrates that can be used in harsh environments. PMID:27305351

  16. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities. PMID:26986442

  17. Molecular Understanding and Structural-Based Design of Polyacrylamides and Polyacrylates as Antifouling Materials.

    Science.gov (United States)

    Chen, Hong; Zhao, Chao; Zhang, Mingzhen; Chen, Qiang; Ma, Jie; Zheng, Jie

    2016-04-12

    Design and synthesis of highly bioinert and biocompatible antifouling materials are crucial for a broad range of biomedical and engineering applications. Among antifouling materials, polyacrylamides and polyacrylates have proved so promising because of cheap raw materials, ease of synthesis and applicability, and abundant functional groups. The strong surface hydration and the high surface packing density of polyacrylamides and polyacrylates are considered to be the key contributors to their antifouling property. In this article, we review our studies on the design and synthesis of a series of polyacrylamides and polyacrylates with different molecular structures. These polymers can be fabricated into different architectural forms (brushes, nanoparticles, nanogels, and hydrogels), all of which are highly resistant to the attachment of proteins, cells, and bacteria. We find that small structural changes in the polymers can lead to large enhancement in surface hydration and antifouling performance, both showing a positive correlation. This reveals a general design rule for effective antifouling materials. Furthermore, polyacrylamides and polyacrylates are readily functionalized with other bioactive compounds to achieve different new multifunctionalities.

  18. Efficacy and toxicity of self-polishing biocide-free antifouling paints

    International Nuclear Information System (INIS)

    The ban on harmful substances in antifouling paints requires the development of new antifouling strategies. Alternatives should be as effective as conventional paints but of lower toxicity. In the present study two commercially available, self-polishing antifouling paints were examined in order to get information on their antifouling properties and toxicological potential. Efficacy was shown in settlement assays with the marine barnacle species Balanus amphitrite, however, efficacy was related to toxic effects observed on target and non-target organisms. Toxicity of the paint extracts was concentration-dependent and differed according to the paint and the species investigated. Toxicity could at least partially be attributed to zinc leached from the paints. Effects of a water-soluble paint were more pronounced in larvae of B. amphitrite, Artemia salina and in the green algae Dunaliella tertiolecta. Embryos of the freshwater species Danio rerio and Vibrio fisheri were more affected by a paint based on organic solvents. - For alternative antifouling paints efficacy as well as adverse effects on non-target organisms and the aquatic environment should be carefully assessed

  19. Efficacy and toxicity of self-polishing biocide-free antifouling paints

    Energy Technology Data Exchange (ETDEWEB)

    Loeschau, Margit [Technische Universitaet Berlin, Institut fuer Technischen Umweltschutz, Sekretariat CR1, Strasse des 17. Juni 135, D-10623 Berlin (Germany)]. E-mail: loeschau@ut.tu-berlin.de; Kraetke, Renate [Technische Universitaet Berlin, Institut fuer Technischen Umweltschutz, Sekretariat CR1, Strasse des 17. Juni 135, D-10623 Berlin (Germany)]. E-mail: r.kraetke@bfr.bund.de

    2005-11-15

    The ban on harmful substances in antifouling paints requires the development of new antifouling strategies. Alternatives should be as effective as conventional paints but of lower toxicity. In the present study two commercially available, self-polishing antifouling paints were examined in order to get information on their antifouling properties and toxicological potential. Efficacy was shown in settlement assays with the marine barnacle species Balanus amphitrite, however, efficacy was related to toxic effects observed on target and non-target organisms. Toxicity of the paint extracts was concentration-dependent and differed according to the paint and the species investigated. Toxicity could at least partially be attributed to zinc leached from the paints. Effects of a water-soluble paint were more pronounced in larvae of B. amphitrite, Artemia salina and in the green algae Dunaliella tertiolecta. Embryos of the freshwater species Danio rerio and Vibrio fisheri were more affected by a paint based on organic solvents. - For alternative antifouling paints efficacy as well as adverse effects on non-target organisms and the aquatic environment should be carefully assessed.

  20. Preparation and Characterization of Amphiphilic Triblock Terpolymer-Based Nanofibers as Antifouling Biomaterials

    KAUST Repository

    Cho, Youngjin

    2012-05-14

    Antifouling surfaces are critical for the good performance of functional materials in various applications including water filtration, medical implants, and biosensors. In this study, we synthesized amphiphilic triblock terpolymers (tri-BCPs, coded as KB) and fabricated amphiphilic nanofibers by electrospinning of solutions prepared by mixing the KB with poly(lactic acid) (PLA) polymer. The resulting fibers with amphiphilic polymer groups exhibited superior antifouling performance to the fibers without such groups. The adsorption of bovine serum albumin (BSA) on the amphiphilic fibers was about 10-fold less than that on the control surfaces from PLA and PET fibers. With the increase of the KB content in the amphiphilic fibers, the resistance to adsorption of BSA was increased. BSA was released more easily from the surface of the amphiphilic fibers than from the surface of hydrophobic PLA or PET fibers. We have also investigated the structural conformation of KB in fibers before and after annealing by contact angle measurements, transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and coarse-grained molecular dynamics (CGMD) simulation to probe the effect of amphiphilic chain conformation on antifouling. The results reveal that the amphiphilic KB was evenly distributed within as-spun hybrid fibers, while migrated toward the core from the fiber surface during thermal treatment, leading to the reduction in antifouling. This suggests that the antifouling effect of the amphiphilic fibers is greatly influenced by the arrangement of amphiphilic groups in the fibers. © 2012 American Chemical Society.

  1. Preparation of hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties

    Science.gov (United States)

    Rajabzadeh, Saeid; Sano, Rie; Ishigami, Toru; Kakihana, Yuriko; Ohmukai, Yoshikage; Matsuyama, Hideto

    2015-01-01

    Hydrophilic vinyl chloride copolymer hollow fiber membranes with antifouling properties were prepared from brominated vinyl chloride-hydroxyethyl methacrylate copolymer (poly(VC-co-HEMA-Br)). The base membrane was grafted with two different zwitterionic monomers, (2-methacryloyloxyethylphosphorylcholine) (MPC) and [2-(methacryloyloxy) ethyl] dimethyl (3-sulfopropyl) ammonium hydroxide) (MEDSAH), and poly(ethylene glycol) methyl ether methacrylate (PEGMA). The effect of the grafting on the base membrane hydrophilicity and antifouling properties was investigated. For comparison of the results, the pure water permeabilities and pore sizes at the outer surfaces of the grafted hollow fiber membranes were controlled to be similar. A poly(VC-co-HEMA-Br) hollow fiber membrane with similar pure water permeability and pore size was also prepared as a control membrane. A BSA solution was used as a model fouling solution for evaluation of the antifouling properties. Grafting with zwitterionic monomers and PEGMA improved the antifouling properties compared with the control membrane. The PEGMA grafted membrane showed the best antifouling properties among the grafted membranes

  2. Seawater-Soluble Pigments and Their Potential Use in Self-Polishing Antifouling Paints: Simulation-based Screening Tool

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Weinell, Claus Erik;

    2002-01-01

    This work concerns the on-going development of efficient and environmentally friendly antifouling paints for biofouling control on large ocean-going ships. It is illustrated how a detailed mathematical model for a self-polishing antifouling paint exposed to seawater can be used as a product...

  3. Influence of microstructure and surface condition on antifouling property of 90Cu-10Ni alloy in seawater

    Institute of Scientific and Technical Information of China (English)

    林乐耘; 王晓华; 赵月红

    2001-01-01

    Through the experiment of natural seawater exposure corrosion, the antifouling properties of the plate specimens of 90Cu-10Ni alloy were studied, which were processed by different deformations, annealing treatments and surface treatments. The results indicate that after exposure corrosion for half a year, the antifouling properties of the specimens are quite different. The specimens processed by suitable deformations, annealing treatment at 650℃ and pretreatment of surface film possess both good corrosion resistance and antifouling properties. However, the specimens processed by different deformations and annealing treatment at 450℃ possess lower corrosion resistance, although they are also treated by the pretreatment of surface film; their antifouling properties change with different deformations. The relationships among the corrosion morphology and microstructure with the antifouling property of 90Cu-10Ni alloy are observed under the scanning electron microscopy (SEM).

  4. Economic and Social Impact Assessment of the Alternatives to DDT Usage for Antifouling Paint Production in China

    Institute of Scientific and Technical Information of China (English)

    Zhang Yi; Xiao Yali; Lu Yongsen

    2008-01-01

    China is the only nation that uses DDT in antifouling pain at present, approximately 5% of DDT is applied as the additive of the antifouling paint production. Therefore, actions shall be taken urgently for banning the use of DDT and substituting with non-POPs alternatives in antifouling paints. The paper researches the social and economic backgrounds of DDT booster antifouling paint production and usage, analyzes the social and economic impact assessment of the alternatives to DDT usage for antifouiing paint. The implementation of the project of alternatives will completely eliminate the adverse impact of DDT booster antifouling paint on terrestrial, marine ecosystem and human health. The broad use of alkali silicate and pepper alkali as substitutes will be feasible if appropriate measures will be taken to encourage their development, and the social and economic risk will be reduced to accepted levels.

  5. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc.

  6. Les peintures marines antisalissures à base de polymères organostanniques Antifouling Marine Paints Containing Organo-Tin Polymers

    Directory of Open Access Journals (Sweden)

    Dawans F.

    2006-11-01

    Full Text Available Le dépôt des salissures marines sur les ouvrages immergés est influencé par plusieurs facteurs et il entraîne des conséquences néfastes, en particulier pour la maintenance des supports de plates-formes de production du pétrole en mer et pour la consommation d'énergie requise pour la propulsion des navires. Divers moyens de lutte antisalissure ont été envisagés parmi lesquels les peintures marines antisalissures occupent une place de choix. Ces peintures contiennent, en général, un composé métallique toxique envers les organismes marins d'origine animale ou végétale et différents mécanismes d'action ont été proposés. Les dérivés organostanniques sont des agents biocides très efficaces et lorsqu'ils sont liés chimiquement sur un polymère, en particulier sous forme de greffons, on obtient un contrôle amélioré de leur lixiviation dans la phase aqueuse et par conséquent la durée de vie du revêtement antisalissure est prolongée. La synthèse de polymères comportant un cation organostannique toxique peut être effectuée, soit par la polymérisation ou la copolymérisation de monomères insaturés organostanniques, soit par la réaction chimique de composés organostanniques avec un substrat polymère comportant des groupes fonctionnels appropriés. Les avantages et les inconvénients de diverses formulations de peintures à base de dérivés organostanniques sont discutés. Marine fouling deposits on submerged structures are influenced by several factors and bring about harmful consequences, especially with regard to offshore oil-production platform structures and for the energy consumption required for ship propulsion. Various antifouling methods have been considered, including antifouling marine coatings in particular. Such paints generally contain a metallic compound which is toxic with regard to marine organisms of animal or vegetable origin, and various action mechanisms have been proposed. Organo

  7. Measurement of copper release rates from antifouling paint under laboratory and in situ conditions: implications for loading estimation to marine water bodies.

    Science.gov (United States)

    Valkirs, Aldis O; Seligman, Peter F; Haslbeck, Elizabeth; Caso, Joaquin S

    2003-06-01

    The release of biocides, such as copper (Cu), from antifouling (AF) coatings on vessel hulls represents a significant proportion of overall Cu loading in those harbors and estuaries where substantial numbers of small craft or large vessels are berthed. Copper release rates were measured on several self-polishing, tin-free coatings and an ablative Cu reference coating applied to steel panels using three measurement methods. The panels were exposed in natural seawater in San Diego Bay, and release rates were measured both in the laboratory and field over 2 years. Results with the static (20 cm x 30 cm) panels indicated that Cu release rates were initially high (25-65 microg Cu cm(-2)day(-1)), with a large range of values between paint types. Release rates declined to substantially lower rates (8-22 microg cm(-2)day(-1)) with reduced variability within 2 months. Release rates continued to decrease over time for approximately 6 months when relatively constant release rates were observed for most coatings. Over time, relative differences in Cu release rates measured by three exposure methods decreased, with all coatings exhibiting similar behavior toward the end of the study. Lowest overall Cu release rates were observed with the self-polishing experimental paint no. 7 in static-dynamic and in situ treatments. The highest periodic release rates were measured from panels that experienced periods of both static and dynamic exposure (8.7 ms(-1) rotation). The lowest release rates were measured from panels that experienced static, constant depth exposure, and where release rates were evaluated in situ, using a novel diver-deployed measurement system. Results from this in situ technique suggests that it more closely reflects actual Cu release rates on vessel hulls measured with intact natural biofilms under ambient conditions than measurements using standardized laboratory release rate methods. In situ measurements made directly on the AF surface of vessels demonstrated

  8. Investigation of Antifouling Properties of Surfaces Featuring Zwitterionic α-Aminophosphonic Acid Moieties.

    Science.gov (United States)

    Wagner, Natalie; Zimmermann, Phyllis; Heisig, Peter; Klitsche, Franziska; Maison, Wolfgang; Theato, Patrick

    2015-12-01

    Zwitterionic thin films containing α-amino phosphonic acid moieties were successfully introduced on silicon surfaces and their antifouling properties were investigated. Initially, the substrates were modified with a hybrid polymer, composed of poly(methylsilsesquioxane) (PMSSQ) and poly(4-vinyl benzaldehyde) (PStCHO). Next, a Kabachnik-Fields post-polymerization modification (sur-KF-PMR) of the functionalized aldehyde surfaces was conducted with different amines and dialkyl phosphonates. After subsequent deprotection reaction of dialkyl phosphonates, the obtained zwitterionic surfaces were characterized by various techniques and we found excellent antifouling properties of the resulting films. PMID:26332285

  9. Coatings against corrosion and microbial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Telegdi, J.; Szabo, T.; Al-Taher, F.; Pfeifer, E.; Kuzmann, E.; Vertes, A. [Chemical Research Center, Hungarian Academy of Sciences, 1025 Budapest, Pusztaszeri ut 59/67 (Hungary)

    2010-12-15

    A systematic study on anti-corrosion and anti-fouling effect of hydrophobic Langmuir-Blodgett and self-assembled molecular layers deposited on metal surfaces, as well as anti-microbial adhesion properties of coatings with biocide is presented. Both types of efficiencies produced by LB films are enhanced by Fe{sup 3+} ions built in the molecular film. The quaternary ammonium type biocide embedded into the cross-linked gelatin decreased significantly the microbial adhesion, the biofilm formation. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Are anti-fouling effects in coralline algae species specific?

    Directory of Open Access Journals (Sweden)

    Alexandre Bigio Villas Bôas

    2004-03-01

    Full Text Available The crustose coralline algae are susceptible to be covered by other algae, which in turn can be affected by anti-fouling effects. In this study the hypothesis tested was that these algae can inhibit the growth of epiphytes in a species specific way. In the laboratory, propagules of Sargassum furcatum and Ulva fasciata were liberated and cultivated on pieces of coralline algae and slide covers (controls and their survival and growth were compared. Spongites and Hydrolithon significantly inhibited the growth of U. fasciata but not Sargassum. In the field, pieces of three species of live and dead coralline algae and their copies in epoxy putty discs were fixed on the rock. After one month epiphytic algae were identified and their dry mass quantified. Lithophyllum did not affect the epiphyte growth. In contrast Spongites and an unidentified coralline significantly inhibited the growth of Enteromorpha spp., Ulva fasciata and Hincksia mitchelliae. Colpomenia sinuosa was absent on all living crusts, but present on controls. Results show that the epiphyte-host relation depends on the species that are interacting. The sloughing of superficial cells of coralline crusts points to the possible action of physical anti-fouling effect, though a chemical one is not rejected.As algas calcárias crostosas são susceptíveis ao recobrimento por outras algas, entretanto, estas podem ser afetadas por efeitos anti-incrustantes. Neste estudo foi testada a hipótese de que estas algas possam inibir o crescimento somente de algumas espécies de epífitas. No laboratório, propágulos de Sargassum furcatum e Ulva fasciata foram liberados e cultivados sobre pedaços de algas calcárias e lamínulas de microscopia (controle e as suas sobrevivência e crescimento comparadas. Spongites e Hydrolithon inibiram significativamente o crescimento de U. fasciata, mas não de Sargassum. No campo, pedaços de três espécies de algas calcárias vivas, mortas e cópias destas em

  11. Influence of the molecular design on the antifouling performance of poly(ethylene glycol) monolayers grafted on (111) Si.

    Science.gov (United States)

    Perez, Emmanuel; Lahlil, Khalid; Rougeau, Cyrille; Moraillon, Anne; Chazalviel, Jean-Noël; Ozanam, François; Gouget-Laemmel, Anne Chantal

    2012-10-16

    Various poly(ethylene glycol) monomethyl ether moieties were grafted onto hydrogenated silicon surfaces in order to investigate the influence of the molecular design on the antifouling performance of such coatings. The grafted chains were either oligo(ethylene oxide) chains (EG)(n)OMe bound to silicon via Si-O-C covalent bonds, or hybrid alkyl/oligo(ethylene oxide) chains C(p)(EG)(n)OMe bound via Si-C covalent bonds (from home-synthesized precursors). Quantitative IR spectroscopy gave the molecular coverage of the grafted layers, and AFM imaging demonstrated that a proper surfactinated rinse yields C(p)(EG)(n)OMe layers free of unwanted residues. The protein-repellent character of these grafted layers (here, toward BSA) was studied by IR and AFM imaging. C(p)(EG)(n)OMe layers exhibit a lower surface concentration than (EG)(n)OMe layers, because of the presence of a solvent in the grafting solution; they however demonstrate high resistance against BSA adsorption for high values of the n/p ratio and a higher stability than (EG)(n)OMe. This behavior is consistently explained by the poor ordering capability of the alkyl part of the layer, contrary to what is observed for similar layers on Au, and the key role of an entangled arrangement of the ethylene oxide chains which forms when these chains are long enough. PMID:22988984

  12. Antifouling Self-assembled Monolayers on Microelectrodes for Patterning Biomolecules

    OpenAIRE

    Noel, John; Teizer, Winfried; Hwang, Wonmuk

    2009-01-01

    We present a procedure for forming a poly(ethylene glycol) (PEG) trimethoxysilane self-assembled monolayer (SAM) on a silicon substrate with gold microelectrodes. The PEG-SAM is formed in a single assembly step and prevents biofouling on silicon and gold surfaces. The SAM is used to coat microelectrodes patterned with standard, positive-tone lithography. Using the microtubule as an example, we apply a DC voltage to induce electrophoretic migration to the SAM-coated electrode in a reversible m...

  13. Construction and screening of 2-aryl benzimidazole library identifies a new antifouling and antifungal agent.

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Tilvi, S.; Mascarenhas, S.; Kumar, Vikash.; Chatterjee, Amrita; Banerjee, Mainak.

    and 4l, showed a broad spectrum of antifouling activities against nine marine fouling species, whereas 2-(furan-2-yl)-1H-benzo[d]imidazole 4g showed strong antifungal activity against the clinical pathogen Aspergillus niger. Our results reveal that the 2...

  14. Release and detection of nanosized copper from a commercial antifouling paint.

    Science.gov (United States)

    Adeleye, Adeyemi S; Oranu, Ekene A; Tao, Mengya; Keller, Arturo A

    2016-10-01

    One major concern with the use of antifouling paints is the release of its biocides (mainly copper and zinc) into natural waters, where they may exhibit toxicity to non-target organisms. While many studies have quantified the release of biocides from antifouling paints, very little is known about the physicochemical state of released copper. For proper risk assessment of antifouling paints, characterization of copper released into water is necessary because the physicochemical state determines the metal's environmental fate and effects. In this study, we monitored release of different fractions of copper (dissolved, nano, and bulk) from a commercial copper-based antifouling paint. Release from painted wood and aluminum mini-bars that were submerged in natural waters was monitored for 180 days. Leachates contained both dissolved and particulate copper species. X-ray diffraction and X-ray photoelectron spectroscopy were used to determine the chemical phase of particles in the leachate. The amount of copper released was strongly dependent on water salinity, painted surface, and paint drying time. The presence of nanosized Cu2O particles was confirmed in paint and its leachate using single-particle inductively coupled plasma-mass spectrometry and electron microscopy. Toxicity of paint leachate to a marine phytoplankton was also evaluated. PMID:27393962

  15. Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Weinell, Claus Erik;

    2003-01-01

    The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites. In this rev...

  16. Presence and effects of marine microbial biofilms on biocide-based antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    Marine microorganisms are capable of successfully colonizing toxic surfaces through the formation of biofilm structures. In this article, most of the literature reporting the presence of marine biofilms on chemically-active antifouling paints is briefly reviewed. Of special concern is the influen...

  17. Reaction rate estimation of controlled-release antifouling paint binders: Rosin-based systems

    DEFF Research Database (Denmark)

    Meseguer Yebra, Diego; Kiil, Søren; Dam-Johansen, Kim;

    2005-01-01

    Biofouling on ship hulls is prevented by the use of antifouling (A/F) paints. Typically, sea water soluble rosin or rosin-derivatives are used as the primary means of adjusting the polishing rate of the current chemically active self-polishing paint systems to a suitable value. Previous studies...

  18. Antifouling behaviour of silicon surfaces modified with self-assembled monolayers containing both ethylene glycol and charged moieties

    Science.gov (United States)

    Ng, Cheuk Chi Albert; Ciampi, Simone; Harper, Jason B.; Gooding, J. Justin

    2010-08-01

    Herein reported is the synthesis of functionalised oligoethylene glycol molecules, with an azido group at one end and an ionisable group at the other end, and their attachment onto alkyne-terminated silicon(100) surfaces using 'click' chemistry. The modified surfaces were characterised using X-ray photoelectron spectroscopy (XPS) and water contact angle goniometry. The antifouling behaviour of these surfaces was assessed and it was shown that while surfaces presenting both charged and ethylene glycol moieties are antifouling, the antifouling effectiveness is influenced by the surface charge as modulated via the pH of the solution.

  19. Antifouling self-assembled monolayers on microelectrodes for patterning biomolecules.

    Science.gov (United States)

    Noel, John; Teizer, Winfried; Hwang, Wonmuk

    2009-01-01

    We present a procedure for forming a poly(ethylene glycol) (PEG) trimethoxysilane self-assembled monolayer (SAM) on a silicon substrate with gold microelectrodes. The PEG-SAM is formed in a single assembly step and prevents biofouling on silicon and gold surfaces. The SAM is used to coat microelectrodes patterned with standard, positive-tone lithography. Using the microtubule as an example, we apply a DC voltage to induce electrophoretic migration to the SAM-coated electrode in a reversible manner. A flow chamber is used for imaging the electrophoretic migration and microtubule patterning in situ using epifluorescence microscopy. This method is generally applicable to biomolecule patterning, as it employs electrophoresis to immobilize target molecules and thus does not require specific molecular interactions. Further, it avoids problems encountered when attempting to pattern the SAM molecules directly using lithographic techniques. The compatibility with electron beam lithography allows this method to be used to pattern biomolecules at the nanoscale. PMID:19707178

  20. Assessment of organotin and tin-free antifouling paints contamination in the Korean coastal area.

    Science.gov (United States)

    Lee, Mi-Ri-Nae; Kim, Un-Jung; Lee, In-Seok; Choi, Minkyu; Oh, Jeong-Eun

    2015-10-15

    Twelve organotins (methyl-, octyl-, butyl-, and phenyl-tin), and eight tin-free antifouling paints and their degradation products were measured in marine sediments from the Korean coastal area, and Busan and Ulsan bays, the largest harbor area in Korea. The total concentration of tin-free antifouling paints was two- to threefold higher than the total concentration of organotins. Principal component analysis was used to identify sites with relatively high levels of contamination in the inner bay area of Busan and Ulsan bays, which were separated from the coastal area. In Busan and Ulsan bays, chlorothalonil and DMSA were more dominant than in the coastal area. However, Sea-Nine 211 and total diurons, including their degradation products, were generally dominant in the Korean coastal area. The concentrations of tin and tin-free compounds were significantly different between the east and west coasts.

  1. Antifouling briarane type diterpenoids from South China Sea gorgonians Dichotella gemmacea

    KAUST Repository

    Sun, Jian Fan

    2013-01-01

    Our continued investigation on the South China Sea gorgonian Dichotella gemmacea led to the isolation of 16 new briarane-type diterpenoids, dichotellides F-U (1-16), along with 18 known analogues (17-34). Their structures were determined by MS, 1D and 2D NMR spectra analyses and by comparison with those reported in literature. The absolute configuration of 15 was confirmed by single-crystal X-ray diffraction data. The antifouling test showed that compounds 3, 4, 6-11, 16, and 23 had potent antifouling activities at nontoxic concentrations with EC50 values of 4.1, 1.82, 6.3, 7.6, 4.6, 1.2, 5.6, 0.79, 2.0, and 0.2 μg/mL, respectively. © 2012 Elsevier Ltd. All rights reserved.

  2. Effect of film thickness on the antifouling performance of poly(hydroxy-functional methacrylates) grafted surfaces.

    Science.gov (United States)

    Zhao, Chao; Li, Lingyan; Wang, Qiuming; Yu, Qiuming; Zheng, Jie

    2011-04-19

    The development of nonfouling biomaterials to prevent nonspecific protein adsorption and cell/bacterial adhesion is critical for many biomedical applications, such as antithrombogenic implants and biosensors. In this work, we polymerize two types of hydroxy-functional methacrylates monomers of 2-hydroxyethyl methacrylate (HEMA) and hydroxypropyl methacrylate (HPMA) into polymer brushes on the gold substrate via surface-initiated atom transfer radical polymerization (SI-ATRP). We systematically examine the effect of the film thickness of polyHEMA and polyHPMA brushes on their antifouling performance in a wide range of biological media including single-protein solution, both diluted and undiluted human blood serum and plasma, and bacteria culture. Surface plasmon resonance (SPR) results show a strong correlation between antifouling property and film thickness. Too thin or too thick polymer brushes lead to large protein adsorption. Surfaces with the appropriate film thickness of ∼25-45 nm for polyHPMA and ∼20-45 nm for polyHEMA can achieve almost zero protein adsorption (thickness of ∼20-30 nm adsorb only ∼3.0 and ∼3.5 ng/cm(2) proteins, respectively, while polyHPMA brushes at a film thickness of ∼30 nm adsorb more proteins of ∼13.5 and ∼50.0 ng/cm(2), respectively. Moreover, both polyHEMA and polyHPMA brushes with optimal film thickness exhibit very low bacteria adhesion. The excellent antifouling ability and long-term stability of polyHEMA and polyHPMA brushes make them, especially for polyHEMA, effective and stable antifouling materials for usage in blood-contacting devices. PMID:21405141

  3. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    Science.gov (United States)

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  4. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions.

    Science.gov (United States)

    Chen, Lianguo; Xu, Ying; Wang, Wenxiong; Qian, Pei-Yuan

    2015-01-01

    Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4 °C, 25 °C and 40 °C were>64 d, 30.5 d and 3.9 d, respectively. Similar half-lives were recorded for DCOIT: >64 d at 4 °C, 27.9 d at 25 °C and 4.5d at 40 °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7 d and 6.8 d, respectively, compared with 9.7 d and 14.4 d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5 d, while no obvious degradation was observed for DCOIT after incubation for 4 d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry. PMID:25460745

  5. Degradation kinetics of a potent antifouling agent, butenolide, under various environmental conditions

    KAUST Repository

    Chen, Lianguo

    2015-01-01

    © 2014 Elsevier Ltd. Here, we investigated the degradation kinetics of butenolide, a promising antifouling compound, under various environmental conditions. The active ingredient of the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT), was used as positive control. The results showed that the degradation rate increased with increasing temperature. Half-lives of butenolide at 4. °C, 25. °C and 40. °C were. >64. d, 30.5. d and 3.9. d, respectively. Similar half-lives were recorded for DCOIT: >64. d at 4. °C, 27.9. d at 25. °C and 4.5. d at 40. °C. Exposure to sunlight accelerated the degradation of both butenolide and DCOIT. The photolysis half-lives of butenolide and DCOIT were 5.7. d and 6.8. d, respectively, compared with 9.7. d and 14.4. d for the dark control. Biodegradation led to the fastest rate of butenolide removal from natural seawater, with a half-life of 0.5. d, while no obvious degradation was observed for DCOIT after incubation for 4. d. The biodegradative ability of natural seawater for butenolide was attributed mainly to marine bacteria. During the degradation of butenolide and DCOIT, a gradual decrease in antifouling activity was observed, as indicated by the increased settlement percentage of cypris larvae from barnacle Balanus amphitrite. Besides, increased cell growth of marine diatom Skeletonema costatum demonstrated that the toxicity of seawater decreased gradually without generation of more toxic by-products. Overall, rapid degradation of butenolide in natural seawater supported its claim as a promising candidate for commercial antifouling industry.

  6. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces.

    Science.gov (United States)

    Wang, Yanfang; Shen, Jian; Yuan, Jiang

    2016-10-15

    Zwitterionic surface has been proven to be a good candidate for improving hemocompatible and antibiofouling properties. However, it can only passively repel the adsorption of microbes and is unable to kill the adherent or trapped microbes. The purpose of our study is to develop a facile method based on synergy "repel and kill" strategy and prepare dual antifouling and antibacterial surface. Herein, the poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) was first constructed via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (ARGET-ATRP) method, followed by partial quaternization in order to form polycarboxybetaine and polysulfobetaine. The conversion rates of PDMAEMA to polyzwitterions were evaluated by X-ray photoelectron spectroscopy analysis (XPS). Surface characterizations by ATR-FTIR, XPS, and AFM demonstrated that zwitterionic polymer brushes were successfully grafted. The remained PDMAEMA(weak cationic) and formed zwitterions(neutral) endowed the surface with the synergetic antibacterial and antifouling properties. The resulting PET sheets showed outstanding antifouling property featured by the reduced adhesion of 3T3 fibroblast cells and E. coli. Additionally, these sheets displayed excellent hemocompatibility such as non-cytotoxicity, repelled protein adsorption, reduced platelet adhesion, and prolonged blood blotting time. These synergistic surfaces with neutral zwitterions and weak cations are promising for biomedical applications. PMID:27442148

  7. Dual functionality of antimicrobial and antifouling of poly(N-hydroxyethylacrylamide)/salicylate hydrogels.

    Science.gov (United States)

    Zhao, Chao; Li, Xiaosi; Li, Lingyan; Cheng, Gang; Gong, Xiong; Zheng, Jie

    2013-02-01

    The emergence and reemergence of microbial infection demand an urgent response to develop effective biomaterials that prevent biofilm formation and associated bacterial infection. In this work, we have synthesized and characterized hybrid poly(N-hydroxyethylacrylamide) (polyHEAA)/salicylate (SA) hydrogels with integrated antifouling and antimicrobial capacities. The antifouling efficacy of polyHEAA hydrogels was examined via exposure to proteins, cells, and bacteria, while the antimicrobial activity of SA-treated polyHEAA hydrogels was investigated against both gram-negative Escherichia coli RP437 and gram-positive Staphylococcus epidermidis. The results showed that polyHEAA/SA hydrogels exhibited high surface resistance to protein adsorption, cell adhesion, and bacteria attachment. The polyHEAA hydrogels were also characterized by their water content and state of water, revealing a strong ability to contain and retain high nonfreezable water content. This work demonstrates that the hybrid polyHEAA/SA hydrogels can be engineered to possess both antifouling and antimicrobial properties, which can be used for different in vitro and in vivo applications against bacterial infection.

  8. Hydrophilicity and antifouling property of membrane materials from cellulose acetate/polyethersulfone in DMAc.

    Science.gov (United States)

    Sun, Zhonghua; Chen, Fushan

    2016-10-01

    In this study, cellulose acetate (CA) was blended with polyethersulfone (PES) to endow the ultrafiltration membrane with the improved hydrophilicity and antifouling property by using N,N-dimethylacetamide (DMAc) as the solvent. The effects of blend composition and evaporation time on the mechanical strength and pure water flux were investigated. It was found that the optimal composition of the casting solution was: 18wt% (PES), 4wt% (Polyvinylpyrrolidone K30), 3wt% (CA) and 20s (Evaporation time). The characteristics of CA-PES blend membranes were investigated through the methods of contact angle goniometer, antifouling property, compatibility, thermo gravimetric analysis and SEM. The results showed that the hydrophilicity and antifouling property of CA-PES ultrafiltration membranes were enhanced in comparison with the pure PES membranes. The CA-PES membranes exhibited semi-compatibility and good thermal stability below 270°C. This study provided a potential industrial application prospect of CA-PES membranes prepared in DMAc. PMID:27211301

  9. Inspection method for the identification of TBT-containing antifouling paints.

    Science.gov (United States)

    Senda, Tetsuya; Miyata, Osamu; Kihara, Takeshi; Yamada, Yasujiro

    2003-04-01

    In order to ensure the effectiveness of the international convention which will prohibit the use of organotin compounds in antifouling paints applied to ships, it is essential to establish an inspection system to determine the presence of the prohibited compounds in the paint. In the present study, a method for the identification of organotin containing antifouling paints using a two-stage analysis process is investigated. Firstly, X-ray fluorescence analysis (XRF) is utilized, which could be used at the place of ship surveys or port state control. Using a portable XRF instrument customized for ship inspection, analysis is automatically executed and determines whether tin is present or not. If the presence of tin is confirmed by XRF, the sample is subsequently examined at an analytical laboratory using more rigorous analytical techniques, such as gas chromatograph mass spectrometry (GC-MS). A sampling device has been designed. It is a disc of approximately 10 mm diameter and has abrasive paper pasted to one of its flat surfaces. The device is pressed onto and then slid along a ship hull to lightly scrape off fragments of paint onto the abrasive paper. Preliminary field tests have revealed that sampling from a ship in dock yields successful collection of the paint for XRD analysis and that the resultant damage caused to the antifouling paint surface by the sampling technique was found to be negligible.

  10. Improved antifouling properties of polymer membranes using a ‘layer-by-layer’ mediated method

    KAUST Repository

    Chen, Lin

    2013-01-01

    Polymeric reverse osmosis membranes were modified with antifouling polymer brushes through a \\'layer by layer\\' (LBL) mediated method. Based on pure physical electrostatic interaction, the attachment of LBL films did not alter separation performance of the membranes. In addition, the incorporation of an LBL film also helped to amplify the number of potential reaction sites on the membrane surfaces for attachment of antifouling polymer brushes, which were then attached to the surface. Attachment of the brushes included two different approaches, grafting to and grafting from. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and water contact angle measurements showed successful growth of the LBL films and subsequently the polymer brushes. Using this method to modify reverse osmosis membranes, preliminary performance testing showed the antifouling properties of the as-modified membranes were much better than the virgin membrane with no significant loss in water flux and salt rejection. © 2013 The Royal Society of Chemistry.

  11. Anti-HER2 antibody and ScFvEGFR-conjugated antifouling magnetic iron oxide nanoparticles for targeting and magnetic resonance imaging of breast cancer

    Directory of Open Access Journals (Sweden)

    Chen H

    2013-10-01

    Full Text Available Hongwei Chen,1,* Liya Wang,1,2,* Qiqi Yu,1,2 Weiping Qian,3 Diana Tiwari,1 Hong Yi,4 Andrew Y Wang,5 Jing Huang,1,2 Lily Yang,3 Hui Mao1,2 1Department of Radiology and Imaging Sciences, 2Center for Systems Imaging, 3Department of Surgery, Emory University School of Medicine, 4Robert Apkarian Electron Microscopy Core, Emory University, Atlanta, GA, 5Ocean NanoTech LLC, Springdale, AK, USA *These authors contributed equally to this work Abstract: Antifouling magnetic iron oxide nanoparticles (IONPs coated with block copolymer poly(ethylene oxide-block-poly(γ-methacryloxypropyltrimethoxysilane (PEO-b-PγMPS were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv of antibody against epidermal growth factor receptor (ScFvEGFR to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs. The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs

  12. Effects of marine microbial biofilms on the biocide release rate from antifouling paints – A model-based analysis

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    . The effects of biofilms on the leaching of any generic active compound (e.g. natural antifoulants) are discussed in relation to their potential release mechanisms. The largest influence of biofilms is predicted for those active compounds that are released by a diffusion-controlled mechanism (typically tin......The antifouling (AF) paint model of Kiil et al. [S. Kiil, C.E. Weinell, M.S. Pedersen, K. Dam-Johansen, Analysis of self-polishing antifouling paints using rotary experiments and mathematical modelling, Ind. Eng. Chem. Res. 40 (2001) 3906-3920] and the simplified biofilm. growth model of Gujer...... and Warmer [W. Gujer, O. Warmer, Modeling mixed population biofilms, in: W.G. Characklis, K.C. Marshall (Eds.), Biofilms, Wiley-Interscience, New York, 1990] are used to provide a reaction engineering-based insight to the effects of marine microbial slimes on biocide leaching and, to a minor extent...

  13. Effects of antifouling biocides to the germination and growth of the marine macroalga, Hormosira banksii (Turner) Desicaine

    International Nuclear Information System (INIS)

    The International Maritime Organisation's (IMO) ban on the use of tributyltin in antifouling paints has inevitability increased the use of old fashioned antifoulants and/or the development of new paints containing 'booster biocides'. These newer paints are intended to be environmentally less harmful, however the broader environmental effects of these 'booster biocides' are poorly known. Germination and growth inhibition tests using the marine macroalga, Hormosira banksii (Turner) Desicaine were conducted to evaluate the toxicity of four new antifouling biocides in relation to tributyltin-oxide (TBTO). Each of the biocides significantly inhibited germination and growth of Hormosira banksii spores. Toxicity was in increasing order: diuron < zineb < seanine 211 < zinc pyrithione < TBTO. However, the lack of knowledge on partitioning in the environment makes it difficult to make a full assessment on whether the four biocides tested offer an advantage over organotin paints in terms of environmental impact

  14. Chemical study and antifouling activity of Caribbean octocoral Eunicea laciniata;Estudio quimico y evaluacion de la actividad antifouling del octocoral caribeno Eunicea laciniata

    Energy Technology Data Exchange (ETDEWEB)

    Cuadrado Silva, Carmen Tatiana; Castellanos Hernandez, Leonardo; Osorno Reyes, Oscar Eduardo; Ramos Rodriguez, Freddy Alejandro; Duque Beltran, Carmenza, E-mail: lcastellanosh@bt.unal.edu.c [Universidad Nacional de Colombia, Bogota (Colombia). Fac. de Ciencias. Dept. de Quimica; Puyana Hegedus, Monica [Universidad Jorge Tadeo Lozano, Bogota (Colombia)

    2010-07-01

    The bioassay guided purification of the octocoral Eunicea laciniata organic extract, collected at Santa Marta bay, Colombia, allowed the isolation of the new compound (-)-3beta-pregna-5,20-dienyl-beta-D-arabinopyranoside (1), along with the known compounds 1(S{sup *}),11(R{sup *})-dolabell-3(E),7(E),12(18)-triene (2), 13-keto-1(S),11(R)-dolabell-3(E),7(E),12(18)-triene (3), cholest- 5,22-dien-3beta-ol (4), cholesterol (5), y brassicasterol (6). The structure and absolute configuration of 1 was determined on based spectroscopic analyses (NMR and CD). The extract showed antifouling activity against five strains of marine bacteria associated to heavy fouled surfaces. Also showed activity against the cypris of the cosmopolitan barnacle Balanus amphitrite, and low toxicity in Artemia salina test. (author)

  15. A degradable polydopamine coating based on disulfide-exchange reaction

    Science.gov (United States)

    Hong, Daewha; Lee, Hojae; Kim, Beom Jin; Park, Taegyun; Choi, Ji Yu; Park, Matthew; Lee, Juno; Cho, Hyeoncheol; Hong, Seok-Pyo; Yang, Sung Ho; Jung, Sun Ho; Ko, Sung-Bo; Choi, Insung S.

    2015-11-01

    Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies.Although the programmed degradation of biocompatible films finds applications in various fields including biomedical and bionanotechnological areas, coating methods have generally been limited to be substrate-specific, not applicable to any kinds of substrates. In this paper, we report a dopamine derivative, which allows for both universal coating of various substrates and stimuli-responsive film degradation, inspired by mussel-adhesive proteins. Two dopamine moieties are linked together by the disulfide bond, the cleavage of which enables the programmed film degradation. Mechanistic analysis of the degradable films indicates that the initial cleavage of the disulfide linkage causes rapid uptake of water molecules, hydrating the films, which leads to rapid degradation. Our substrate-independent coating of degradable films provides an advanced tool for drug delivery systems, tissue engineering, and anti-fouling strategies. Electronic supplementary information (ESI) available: Synthesis, characterization, and other additional details. See DOI: 10

  16. Optimisation and Characterisation of Anti-Fouling Ternary SAM Layers for Impedance-Based Aptasensors

    Directory of Open Access Journals (Sweden)

    Anna Miodek

    2015-09-01

    Full Text Available An aptasensor with enhanced anti-fouling properties has been developed. As a case study, the aptasensor was designed with specificity for human thrombin. The sensing platform was developed on screen printed electrodes and is composed of a self-assembled monolayer made from a ternary mixture of 15-base thiolated DNA aptamers specific for human thrombin co-immobilised with 1,6-hexanedithiol (HDT and further passivated with 1-mercapto-6-hexanol (MCH. HDT binds to the surface by two of its thiol groups forming alkyl chain bridges and this architecture protects from non-specific attachment of molecules to the electrode surface. Using Electrochemical Impedance Spectroscopy (EIS, the aptasensor is able to detect human thrombin as variations in charge transfer resistance (Rct upon protein binding. After exposure to a high concentration of non-specific Bovine Serum Albumin (BSA solution, no changes in the Rct value were observed, highlighting the bio-fouling resistance of the surface generated. In this paper, we present the optimisation and characterisation of the aptasensor based on the ternary self-assembled monolayer (SAM layer. We show that anti-fouling properties depend on the type of gold surface used for biosensor construction, which was also confirmed by contact angle measurements. We further studied the ratio between aptamers and HDT, which can determine the specificity and selectivity of the sensing layer. We also report the influence of buffer pH and temperature used for incubation of electrodes with proteins on detection and anti-fouling properties. Finally, the stability of the aptasensor was studied by storage of modified electrodes for up to 28 days in different buffers and atmospheric conditions. Aptasensors based on ternary SAM layers are highly promising for clinical applications for detection of a range of proteins in real biological samples.

  17. Preparation of PES ultrafiltration membranes with natural amino acids based zwitterionic antifouling surfaces

    Science.gov (United States)

    Xu, Chen; Liu, Xiaojiu; Xie, Binbin; Yao, Chen; Hu, Wenhan; Li, Yi; Li, Xinsong

    2016-11-01

    In this report, a simple and facile approach to enhance the antifouling property of poly(ether sulfone) (PES) ultrafiltration membrane was developed by grafting natural amino acids onto surface. First of all, poly(ether sulfone) composite membranes blended with poly(glycidyl methacrylate) were fabricated by phase inversion method followed by grafting of different types of natural amino acids onto the membrane surface through epoxy ring opening reaction. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy (ATR/FTIR) and X-ray photoelectron spectroscopy (XPS) verified the substantial enrichment of amino acids onto the surface of PES membranes. The hydrophilicity of the PES membranes was improved after grafting amino acids. The mechanical property and morphologies of the PES membranes proved that their basic performances were not obviously affected by grafting reaction, and these parameters were all still in the typical range for ultrafiltration membranes. The antifouling property of the grafted PES membranes against bovine serum albumin (BSA) and lysozyme (Lyz) was investigated in detail. It was found that PES membranes incorporated with neutral amino acids exhibited higher fouling resistance to both BSA and Lyz than the parent PES membrane. It can be ascribed to the formation of zwitterionic structure on the surface consisting of protonated secondary amino cations and carboxyl anions. Meanwhile, PES membranes grafted with charged amino acids had better antifouling properties against protein with same electric charges and improved adsorption related to protein with opposite electric charges. Furthermore, the ultrafiltration performance of the zwitterionic PES membranes was evaluated. The results showed that the modified membranes possessed of enhanced pure water flux, relative flux recovery and mildly lower rejection. The Darcy's Law analysis illustrated that the acidic amino acid grafted PES membranes had much lower permeation

  18. Library of Antifouling Surfaces Derived From Natural Amino Acids by Click Reaction.

    Science.gov (United States)

    Xu, Chen; Hu, Xin; Wang, Jie; Zhang, Ye-Min; Liu, Xiao-Jiu; Xie, Bin-Bin; Yao, Chen; Li, Yi; Li, Xin-Song

    2015-08-12

    Biofouling is of great concern in numerous applications ranging from ophthalmological implants to catheters, and from bioseparation to biosensors. In this report, a general and facile strategy to combat surface fouling is developed by grafting of amino acids onto polymer substrates to form zwitterionic structure through amino groups induced epoxy ring opening click reaction. First of all, a library of poly(2-hydroxyethyl methacrylate-co-glycidyl methacrylate) hydrogels with zwitterionic surfaces were prepared, resulting in the formation of pairs of carboxyl anions and protonated secondary amino cations. The analysis of attenuated total reflectance Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the successful immobilization of amino acids on the hydrogel surfaces. After that, the contact angle and equilibrium water content of the modified hydrogels showed that the hydrogels exhibited improved hydrophilicity compared with the parent hydrogel. Furthermore, the protein deposition was evaluated by bicinchoninic acid assay using bovine serum albumin (BSA) and lysozyme as models. The results indicated that the performance of the hydrogels was determined by the nature of incorporated amino acid: the hydrogels incorporated with neutral amino acids had nonspecific antiadsorption capability to both BSA and lysozyme; the hydrogels incorporated with charged amino acids showed antiadsorption behaviors against protein with same charge and enhanced adsorption to the protein with opposite charge; the optimal antiadsorption performance was observed on the hydrogels incorporated with polar amino acids with a hydroxyl residual. The improvement of antiprotein fouling of the neutral amino acids grafted hydrogels can be ascribed to the formation of zwitterionic surfaces. Finally, a couple of soft contact lenses grafted with amino acids were fabricated having improved antifouling property and hydrophilicity. The result demonstrated the success of

  19. Arene ruthenium(II) complexes with 2-acetamidothiazole derived ligands: Synthesis, structural studies, antifouling and antibacterial properties

    Digital Repository Service at National Institute of Oceanography (India)

    Singh, K.S.; PrabhaDevi; Sawant, S.G.; Kaminsky, W.

    free antifouling paints [16], including NPA’s (Natural product Antifouling) [17-21] and other metal based complexes [22, 23] have been explored as alternatives. Although NPA were claimed to be eco-friendly [17, 24- 29], there are several disadvantages... hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C--H distances in the range 0.95-1.0 Å. Refinement converged at a final R1 = 0.0202 (for observed data F), and wR2 = 0.0415 (for unique data...

  20. Antifouling activity of seaweed extracts from Guarujá, São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Heloisa Elias Medeiros

    2007-12-01

    Full Text Available Marine biofouling historically constitutes one of the major constraints faced by mankind in its oceanic activities. The search for alternatives to TBT-based antifouling paints has led several researchers to focus efforts in the development of environmentally friendly natural compounds. This work has contributed with this search, testing the antifouling potential of crude organic extracts from four seaweed species collected at Praia Branca, Guarujá district, São Paulo, Brazil. Throughout laboratory antifouling assays in which the attachment of a common fouling organism, the brown mussel Perna perna, was employed, antifouling activity (p A incrustação biológica constitui, historicamente, um dos maiores problemas encontrados pelo homem em suas atividades no mar. A busca por alternativas a tintas antiincrustantes contendo tributilestanho (TBT tem levado diversos pesquisadores a concentrar esforços no desenvolvimento de substâncias naturais menos danosas à biota marinha. Este trabalho procurou contribuir com essa busca, testando o potencial antiincrustante de quatro diferentes espécies de macroalgas da Praia Branca, município de Guarujá, SP. Através de testes antiincrustantes em laboratório utilizando a fixação de um organismo incrustante comum, o mexilhão Perna perna, foi constatado que os extratos de Jania rubens (Rhodophyta, Cryptonemiales e Bryothamnion seaforthii (Rhodophyta, Ceramiales, à concentração natural, apresentaram atividade antiincrustante significativa (p < 0,05, enquanto Dictyopteris delicatula (Phaeophyta, Dictyotales e Heterosiphonia gibbesii (Rhodophyta, Ceramiales não demonstraram eficiência na inibição da fixação de bissos do molusco. Das algas que indicaram potencial atividade contra a incrustação, J. rubens apresentou melhor desempenho em relação a B. seaforthii. Futuras investigações em campo serão necessárias para a obtenção de resultados que possam refletir melhor as condições naturais

  1. Estimation of Polishing and Leaching Behaviour of Antifouling Paints Using Mathematical Modelling

    DEFF Research Database (Denmark)

    Kiil, Søren; Dam-Johansen, Kim; Weinell, Claus Erik;

    2003-01-01

    such as proteins or biocides, as well as for the estimation of release rates from different compositions of paints under various seawater conditions. Insoluble matrix, soluble matrix and self-polishing paints will be considered. Simulations from recent publications that show the effects of dynamic......The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites. In this...

  2. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    , the former showed higher antifouling properties generally. Aluminium-zinc alloy spray coated films had higher antifouling property. And the anti-property decreased in this order: Al-Zn alloy spray coating > Zinc spray coating > Aluminium spray coating > Stacked chromium/nickel spray coating. Aluminium and zinc spray coating has been evaluated high conventionally for anti-biofouling in marine environment. However, the Cr/Ni spray coating showed pretty high anti-fouling property.

  3. Effects of surface-active block copolymers with oxyethylene and fluoroalkyl side chains on the antifouling performance of silicone-based films.

    Science.gov (United States)

    Martinelli, Elisa; Gunes, Deniz; Wenning, Brandon M; Ober, Christopher K; Finlay, John A; Callow, Maureen E; Callow, James A; Di Fino, Alessio; Clare, Anthony S; Galli, Giancarlo

    2016-01-01

    Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite. PMID:26769148

  4. Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVD

    International Nuclear Information System (INIS)

    A range of SiOx-like coatings was deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD. The effect of varying deposition parameters, specifically ion cleaning time and HMDSO/O2 ratios, on the coating properties and antifouling performance was investigated. At low HMDSO/O2 ratios, the resulting coatings were close to SiO2. Carbon content in the bulk of the coatings increased with increasing HMDSO/O2 ratio. Coatings deposited at high HMDSO/O2 ratios and with the longest cleaning time (30 min), elevated the relative carbon content to 25 atomic %. Surface energies (22-43 mJ/m) were correlated with the degree of surface oxidation and hydrocarbon content. With the exception of the most polar coatings the apolar component of the surface energy (γLW) was the dominant component. In the most hydrophilic coatings, the Lewis base component of the surface energy (γ-) was dominant. Significantly improved antifouling performance was detected with the most reduced coatings deposited using the extended ion cleaning times. For both, the removal of sporelings of the marine green alga, Ulvalinza and the initial adhesion of the freshwater bacterium, Pseudomonas fluorescens, there was a strong, positive correlation between strength of attachment and ion cleaning time. Increased ion cleaning time will elevate the deposition temperature, increasing decomposition rates and thus the crosslinking of the polymer. Increased cross-linking may render these coatings less permeable to penetration and mechanical interlocking by the adhesive polymers used by these organisms, thus reducing their adhesion. Films with improved biological performance have potential for use as coatings in the control of biofouling in applications such as heat exchangers, where thin films are important for effective thermal transfer, or optical windows where transparency is important.

  5. Deposition parameters to improve the fouling-release properties of thin siloxane coatings prepared by PACVD

    Energy Technology Data Exchange (ETDEWEB)

    Akesso, Laurent; Navabpour, Parnia; Teer, Dennis [TEER Coatings Ltd, West Stone House, Berry Hill Industrial Estate, Droitwich, Worcestershire, WR9 9AS (United Kingdom); Pettitt, Michala E.; Callow, Maureen E. [School of Biosciences, University of Birmingham, Birmingham B15 2TT (United Kingdom); Liu Chen; Su Xueju; Wang Su; Zhao Qi [Department of Mechanical Engineering, University of Dundee (United Kingdom); Donik, Crtomir; Kocijan, Aleksandra; Jenko, Monika [Institute of Metals and Technology, Lepi pot 11, p.p. 431, SI-1001 Ljubljana (Slovenia); Callow, James A., E-mail: j.a.callow@bham.ac.uk [School of Biosciences, The University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-04-15

    A range of SiO{sub x}-like coatings was deposited on glass slides from a hexamethylsiloxane precursor by plasma-assisted CVD. The effect of varying deposition parameters, specifically ion cleaning time and HMDSO/O{sub 2} ratios, on the coating properties and antifouling performance was investigated. At low HMDSO/O{sub 2} ratios, the resulting coatings were close to SiO{sub 2}. Carbon content in the bulk of the coatings increased with increasing HMDSO/O{sub 2} ratio. Coatings deposited at high HMDSO/O{sub 2} ratios and with the longest cleaning time (30 min), elevated the relative carbon content to 25 atomic %. Surface energies (22-43 mJ/m) were correlated with the degree of surface oxidation and hydrocarbon content. With the exception of the most polar coatings the apolar component of the surface energy ({gamma}{sup LW}) was the dominant component. In the most hydrophilic coatings, the Lewis base component of the surface energy ({gamma}{sup -}) was dominant. Significantly improved antifouling performance was detected with the most reduced coatings deposited using the extended ion cleaning times. For both, the removal of sporelings of the marine green alga, Ulvalinza and the initial adhesion of the freshwater bacterium, Pseudomonas fluorescens, there was a strong, positive correlation between strength of attachment and ion cleaning time. Increased ion cleaning time will elevate the deposition temperature, increasing decomposition rates and thus the crosslinking of the polymer. Increased cross-linking may render these coatings less permeable to penetration and mechanical interlocking by the adhesive polymers used by these organisms, thus reducing their adhesion. Films with improved biological performance have potential for use as coatings in the control of biofouling in applications such as heat exchangers, where thin films are important for effective thermal transfer, or optical windows where transparency is important.

  6. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge

    KAUST Repository

    Chandramouli, Kondethimmanahalli

    2013-08-01

    Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds. © 2013 Copyright Taylor and Francis Group, LLC.

  7. Zwitterionic modification of polyurethane membranes for enhancing the anti-fouling property.

    Science.gov (United States)

    Liu, Peiming; Huang, Tao; Liu, Pingsheng; Shi, Shufeng; Chen, Qiang; Li, Li; Shen, Jian

    2016-10-15

    Polyurethane (PU) is a biopolymer that has been commonly used for biomedical applications. However, the biofouling phenomenon on the hydrophobic PU surface is one of the crucial issues that embarrassing its applications. Here, we report a facile & efficient approach to improve the anti-biofouling ability of the PU substrates. Active residues were firstly generated on the PU surface by using the low temperature air-plasma treatment, promoting the immobilization of the atom transfer radical polymerization (ATRP) initiators on the surface. Then, three types of zwitterionic polymer brushes, as well as PEG brushes, have been fabricated on the PU substrates through surface-initiated ATRP (SI-ATRP). Robust surface characterizations that capable of revealing the surface chemistry (including X-ray photoelectron spectroscopy (XPS) and wettability tests), and antifouling evaluations of the PU substrates (protein adsorption, platelet adhesion, and cell adhesion measurements) were performed. Results showed that three types of zwitterionic brushes have been successful grafted on the PU surface, respectively. And the three types of zwitterionic brushes, in general, significantly inhibited the protein adsorption, the platelet adhesion, and the cell adhesion on the PU surface, endowing a significantly improved anti-fouling ability to the PU substrates. Furthermore, we found that this facial zwitterionic surface modification did not compromise the mechanical property of the PU substrates. This strategy could be easily exploited to PU-based biomaterials to improve their performance in many applications. PMID:27416290

  8. Preparation Method of Crack-free PVDF Microfiltration Membrane with Enhanced Antifouling Characteristics.

    Science.gov (United States)

    Woo, Sahng Hyuck; Lee, Ju Sung; Lee, Hyun Ho; Park, Jinwon; Min, Byoung Ryul

    2015-08-01

    This study proposes a method to prepare a crack-free poly(vinylidene fluoride) (PVDF) microfiltration (MF) membrane with enhanced antifouling property. In the study, blending 4% poly(vinylidene fluoride)-graft-poly(sulfopropyl methacrylate) (PVDF-g-PSPMA) and 1.5% potassium perchlorate (KClO4) led to crack prevention during membrane preparation via nonsolvent induced phase separation (NIPS) when compared with blending with 4% PVDF-g-PSPMA only (without KClO4). The resulting crack-free membrane (A3) had both smooth surface structure and hydrophilicity in comparison with pristine PVDF membrane (A1). In addition, blending with PVDF-g-PSPMA and KClO4 also allowed the A3 membrane to exhibit uniform pore size distribution (PSD) and smooth surface structure, compared with PVDF membrane commercially available from company "M" in Germany. The aforementioned properties led to antifouling characteristics in the crack-free membrane (A3). According to flux performances, flux recovery and cumulative permeate volume (between 120 and 240 min) of crack-free membrane (A3) were 11.41 and 17.41% superior to those of commercial membrane, respectively. PMID:26172403

  9. XPS and AFM analysis of antifouling PEG interfaces for microfabricated silicon biosensors.

    Science.gov (United States)

    Sharma, Sadhana; Johnson, Robert W; Desai, Tejal A

    2004-09-15

    In the past two decades, the biological and medical fields have seen great advances in the development of biosensors capable of quantifying biomolecules. Many of these biosensors have micro- and nano-scale features, are fabricated using biochip technology, and use silicon as a base material. The creation of antifouling sensor interfaces is critical to avoid serious consequences that arise due to their contact with biological fluids. To this end, we have created thin PEG interfaces of various grafting densities on silicon using a single-step PEG-silane coupling reaction scheme. Initial PEG concentration (5-50 mM) and coupling time (0.5-24 h) were varied to attain different grafting densities, and different PEG interfaces so created were analyzed using XPS and AFM. Furthermore, all the PEG interfaces were evaluated using XPS and AFM for their antifouling abilities using fibrinogen as the model protein. Results indicated that PEG interfaces created in this investigation are appropriate for biosensors with micro- and nano-scale features, and are efficient in controlling protein fouling. PMID:15308226

  10. Biomimetic anchors applied to the host-guest antifouling functionalization of titanium substrates.

    Science.gov (United States)

    Cai, Xiao Yan; Li, Ning Ning; Chen, Jiu Cun; Kang, En-Tang; Xu, Li Qun

    2016-08-01

    A biomimetic strategy was developed for the construction of antifouling titanium oxide (Ti(oxide)) surfaces based on host-guest interactions. Two catecholic derivatives, dopamine 4-(phenylazo)benzamide (AZODopa) and dopamine 1-adamantanecarboxamide (AdaDopa) were synthesized and immobilized onto the Ti(oxide) surfaces. The guest molecules-anchored Ti(oxide) surfaces were further functionalized with zwitterionic heptakis[6-deoxy-6-(N-3-sulfopropyl-N,N-dimethylammonium ethyl sulfanyl)]-β-cyclodextrin (SBCD) and hydrophilic β-CD polymer (CDP). The surface elemental compositions and hydrophobic/hydrophilic properties of the Ti(oxide) surfaces before and after modification were characterized by X-ray photoelectron spectroscopy (XPS) and static water contact angle measurements, respectively. The antifouling properties of the modified Ti(oxide) surfaces were evaluated by the protein adsorption and bacterial adhesion assays. The zwitterionic SBCD- and hydrophilic CDP-functionalized Ti(oxide) surfaces can reduce the adsorption of bovine plasma fibrinogen and adhesion of Escherichia coli, as compared to the pristine and guest molecules-anchored Ti(oxide) surfaces. PMID:27135943

  11. Novel antifouling surface with improved hemocompatibility by immobilization of polyzwitterions onto silicon via click chemistry

    Science.gov (United States)

    Zheng, Sunxiang; Yang, Qian; Mi, Baoxia

    2016-02-01

    A novel procedure is presented to develop an antifouling silicon surface with improved hemocompatibility by using a zwitterionic polymer, poly(sulfobetaine methacrylate) (polySBMA). Functionalization of the silicon surface with polySBMA involved the following three steps: (1) an alkyne terminated polySBMA was synthesized by RAFT polymerization; (2) a self-assembled monolayer with bromine end groups was constructed on the silicon surface, and then the bromine end groups were replaced by azide groups; and (3) the polySBMA was attached to the silicon surface by azide-alkyne cycloaddition click reaction. Membrane characterization confirmed a successful silicon surface modification with almost 100% coverage by polySBMA and an extremely hydrophilic surface after such modification. The polySBMA-modified silicon surface was found to have excellent anti-nonspecific adsorption properties for both bovine serum albumin (BSA) protein and model bacterial cells. Whole blood adsorption experiments showed that the polySBMA-modified silicon surface exhibited excellent hemocompatibility and effective anti-adhesion to blood cells. Silicon membranes with such antifouling and hemocompatible surfaces can be advantageously used to drastically extend the service life of implantable medical devices such as artificial kidney devices.

  12. Natural antifouling compounds produced by a novel fungus Aureobasidium pullulans HN isolated from marine biofilm.

    Science.gov (United States)

    Gao, Min; Su, Rongguo; Wang, Ke; Li, Xuzhao; Lu, Wei

    2013-12-15

    A fungus, Aureobasidium pullulans, was isolated from marine biofilm and identified. A bioassay-guided fractionation procedure was developed to isolate and purify antifouling compounds from A. pullulans HN. The procedure was: fermentation broth-aeration and addition of sodium thiosulfate-graduated pH and liquid-liquid extraction-SPE purification-GC-MS analysis. Firstly, the fermentation broth was tested for its toxicity. Then it was treated with aeration and addition of sodium thiosulfate, and its toxicity was almost not changed. Lastly, antifouling compounds were extracted at different pH, the extract had high toxicity at pH 2 but almost no toxicity at pH 10, which suggested the toxicants should be fatty acids. The EC50 of the extract against Skeletonema costatum was 90.9 μg ml(-1), and its LC50 against Balanus amphitrete larvae was 22.2 μg ml(-1). After purified by HLB SPE column, the EC50 of the extract against S. costatum was 49.4 μg ml(-1). The myristic and palmitic acids were found as the main toxicants by GC-MS. PMID:24210009

  13. Anti-fouling properties of Fab' fragments immobilized on silane-based adlayers

    Science.gov (United States)

    Crivianu-Gaita, Victor; Romaschin, Alexander; Thompson, Michael

    2015-12-01

    Biosensors require surfaces that are highly specific towards the target analyte and that are minimally fouling. However, surface tuning to minimize fouling is a difficult task. The last decade has seen an increase in the use of immobilized antigen-binding antibody fragments (Fab') in biosensors. One Fab' linker compound S-(11-trichlorosilyl-undecanyl)-benzothiosulfonate (TUBTS) and three spacers were used to create the silane-based adlayers. The ultra-high frequency electromagnetic piezoelectric acoustic sensor (EMPAS) was used to gauge the fouling properties of the various surfaces using bovine serum albumin (BSA), goat IgG, and mouse serum. X-ray photoelectron spectroscopy (XPS), contact angle, and atomic force microscopy (AFM) were employed to characterize the surfaces. It was discovered that immobilized oriented Fab' fragments reduced the fouling levels of surfaces up to 80% compared to the surfaces without fragments. An explanation for this phenomenon is that the antibody fragments increase the hydration of the surfaces and aid in the formation of an anti-fouling water barrier. The anti-fouling effect of the Fab' fragments is at its maximum when there is an even distribution of fragments across the surfaces. Finally, using Fab'-covered surfaces, a cancer biomarker was detected from serum, showing the applicability of this work to the field of biodetection.

  14. Improved antifouling properties of polyamide nanofiltration membranes by reducing the density of surface carboxyl groups.

    Science.gov (United States)

    Mo, Yinghui; Tiraferri, Alberto; Yip, Ngai Yin; Adout, Atar; Huang, Xia; Elimelech, Menachem

    2012-12-18

    Carboxyls are inherent functional groups of thin-film composite polyamide nanofiltration (NF) membranes, which may play a role in membrane performance and fouling. Their surface presence is attributed to incomplete reaction of acyl chloride monomers during the membrane active layer synthesis by interfacial polymerization. In order to unravel the effect of carboxyl group density on organic fouling, NF membranes were fabricated by reacting piperazine (PIP) with either isophthaloyl chloride (IPC) or the more commonly used trimesoyl chloride (TMC). Fouling experiments were conducted with alginate as a model hydrophilic organic foulant in a solution, simulating the composition of municipal secondary effluent. Improved antifouling properties were observed for the IPC membrane, which exhibited lower flux decline (40%) and significantly greater fouling reversibility or cleaning efficiency (74%) than the TMC membrane (51% flux decline and 40% cleaning efficiency). Surface characterization revealed that there was a substantial difference in the density of surface carboxyl groups between the IPC and TMC membranes, while other surface properties were comparable. The role of carboxyl groups was elucidated by measurements of foulant-surface intermolecular forces by atomic force microscopy, which showed lower adhesion forces and rupture distances for the IPC membrane compared to TMC membranes in the presence of calcium ions in solution. Our results demonstrated that a decrease in surface carboxyl group density of polyamide membranes fabricated with IPC monomers can prevent calcium bridging with alginate and, thus, improve membrane antifouling properties. PMID:23205860

  15. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO{sub 2}/polyethylene glycol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Wang, Zhiwei, E-mail: zwwang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Xingran [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zheng, Xiang, E-mail: zhengxiang7825@163.com [School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 (China); Wu, Zhichao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Nano-TiO{sub 2}/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO{sub 2}/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO{sub 2} nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO{sub 2} was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  16. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Nano-TiO2/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO2/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO2) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane

  17. Novel antifouling self-healing poly(carboxybetaine methacrylamide-co-HEMA) nanocomposite hydrogels with superior mechanical properties

    NARCIS (Netherlands)

    Kostina, Nina Yu.; Sharifi, Shahriar; Pereira, Andres de los Santos; Michalek, Jiri; Grijpma, Dirk W.; Rodriguez-Emmenegger, Cesar

    2013-01-01

    Novel antifouling highly wettable hydrogels with superior mechanical and self-healing properties are presented. Hydrogels were prepared by UV-initiated copolymerisation of non-fouling zwitterionic carboxybetaine methacrylamide (CBMAA-3) and 2-hydroxyethyl methacrylate (HEMA) in the presence of unifo

  18. Antifouling effect of bioactive compounds from marine sponge Acanthella elongata and different species of bacterial film on larval attachment of Balanus amphitrite (cirripedia, crustacea

    Directory of Open Access Journals (Sweden)

    Viswambaran Ganapiriya

    2012-06-01

    Full Text Available The antifouling activity of bioactive compounds from marine sponge Acanthella elongata (Dendy and five species of bacterial biofilm were studied. Larvae of Balanus amphitrite (Cyprids and nauplii were used to monitor the settlement inhibition and the extent to which inhibition was due to toxicity. The crude extract and partially purified fractions of A.elongata showed significant inhibition over the settlement individually, and with the interaction of bacterial species. No bacterial film stimulated the barnacle settlement. The high but variable levels of antifouling activity in combination with less amount of toxicity showed the potential of these metabolites in environmentally-friendly antifouling preparations.

  19. Influence of polyelectrolyte multilayer coating on the degree and type of biofouling in freshwater environment.

    Science.gov (United States)

    Frueh, Johannes; Gai, Meiyu; Yang, Zhibo; He, Qiang

    2014-06-01

    Biofouling is one of the biggest problems of water-borne systems. Since not only marine but also freshwater-based structures are affected, the biofouling in this environment is studied. The focus of this study lies on the antifouling properties of novel coating materials like polyelectrolyte multilayers (PEM) compared with currently used silicon rubber (PDMS) based fouling release coatings. The following article contains the results of a systematical screening of the mechanical, surface charge and surface nano-heterogeneous properties of the investigated PEM and PDMS systems. The results show that negatively charged non crosslinked and crosslinked PEM coated PDMS can surpass current PDMS based fouling release coatings. The PEM films are not only able to reduce the biofouling, but are additionally able to control the type of settled bacteria (gram positive or negative). The negative terminated surfaces inhibit the settlement of gram positive bacteria, whereby the positive terminated surfaces inhibit the settlement of gram negative bacteria. PMID:24738394

  20. Electroreduction of the antifouling agent TCMTB and its electroanalytical determination in tannery wastewaters.

    Science.gov (United States)

    Meneses, Elaine S; Arguelho, Maria Lara P M; Alves, José P H

    2005-10-15

    The electrochemical reduction of antifouling agent 2-thiocyanomethylthiobenzothiazole (TCMTB) was investigated by cyclic and pulse differential voltammetry. The irreversible electrode reduction of TCMTB proceeded by ECEC reaction mechanism by two electrons transfer with one irreversible wave. Upon the basis of electrochemical evidence, the electrodic reaction mechanism was suggested to formation of mercaptobenzothiazole (MTB) in solution. Subsequently, a pulse differential method is described for the formation of TCMTB based on this electroreduction. Having been obtained a detection limit of 1.0 x 10(-7)mol L(-1) and recovery to 98% to concentration of 2.0 x 10(-6)mol L(-1). Therefore, the proposed method in this study is practical, sensitive and accurate for the analysis of TCMTB in tannery wastewater samples. PMID:18970225

  1. Joint-action of antifouling substances in copper-free paints.

    Science.gov (United States)

    Faÿ, Fabienne; Carteau, David; Linossier, Isabelle; Delbury, Maxime; Vallée-Réhel, Karine

    2013-02-01

    Due to the environmentally harmful impact of tributyltin self-polishing paints, there is a critical need of more ecological alternatives. The aim of the present work is to study the joint-action of three molecules chosen in order to combine the two modes of prevention: chemical and physical repelling of biofouling. This "hybrid" system is principally dedicated to disturb durable settlement of microfouling. Each component was chosen according to its specific properties: chlorhexidine is a bisdiguanide antiseptic with antibacterial activity, zinc peroxide is an inorganic precursor of high instable entities which react with seawater to create hydrogen peroxide, Tween 85 is a non ionic surfactant disturbing interactions between colonizing organisms and surface. Obtained results highlighted the interest on mixing such molecules to get additive action on antifouling efficiency. PMID:23104027

  2. Grafting poly ethylene glycol chains for antifouling purposes using supercritical CO2

    DEFF Research Database (Denmark)

    Lokanathan, Arcot R.

    2011-01-01

    . Here we demonstrate that PEG grafting using supercritical carbon dioxide (scCO2) results in higher PEG thickness (figure 2) relative to ethanol or toluene based grafting in thiol or silane based grafting respectively. Adsorption of bovine serum albumin (BSA), lysozyme, casein and lactoglobulin (Lacto......-G) on PEG grafted surfaces were quantified using quartz crystal microbalance (QCM-D) (figure 4) and x-ray photoelectron spectroscopy (XPS) (figure 3). In conclusion scCO2 based PEG grafting resulted in surfaces that could significantly lower the adsorption of proteins and hence can be used as an efficient...... solvent in processes involving PEG grafting for antifouling purposes. Significant chemical efficiency and extremely low surface tension makes scCO2 an apt solvent for Grafting PEG brushes into three dimensional micro or nano porous scaffolds related to tissue engineering. References: 1. Peter Kingshott...

  3. Ecotoxicity and Preliminary Risk Assessment of Nonivamide as a Promising Marine Antifoulant

    Directory of Open Access Journals (Sweden)

    Sujing Liu

    2016-01-01

    Full Text Available The unclear environmental performance of nonivamide limits its application as a marine antifoulant. In this study, the natural degradation of nonivamide was studied in seawater and tap water. The half-life was 5.8 d, 8.8 d, 12.2 d, and 14.7 d in seawater and tap water in photolysis and biolysis, respectively. Furthermore, the ecotoxicity of nonivamide was assessed using marine microalgae, Chlorella vulgaris and Platymonas sp.; EC50,  6 d values on the growth of Chlorella vulgaris and Platymonas sp. were 16.9 mg L−1 and 19.21 mg L−1, respectively. The toxicity and environmental risk of nonivamide on microalgae were significantly decreased due to the natural degradation in seawater.

  4. Occurrence and distribution of antifouling biocide Irgarol-1051 in coastal waters of Peninsular Malaysia.

    Science.gov (United States)

    Ali, Hassan Rashid; Arifin, Marinah Mohd; Sheikh, Mohammed Ali; Mohamed Shazili, Noor Azhar; Bachok, Zainudin

    2013-05-15

    Emerging booster biocides contamination raises particular attention in the marine ecosystem health. This study provides the baseline data on the occurrence of Irgarol-1051 (2-methylthio-4-tert-butylamino-6-cyclopropylamiono-s-triazine) in the selected coastal water around Malaysia. The maximum detected concentration of Irgarol was 2021 ng/L at Klang West, commercial and cargo port. Coral reef Islands (Redang and Bidong) were relatively less contaminated compared to other coastal areas. The temporal variation revealed that only 1% of 28 stations sampled on November, 2011 was above the environmental risk limit of 24 ng/L as suggested by Dutch Authorities, while in January and April, 2012; 46% and 92% of the stations were above the limit respectively. The present findings demonstrate the wide detection of novel antifouling materials Irgarol-1051 which advocates the need for proper monitoring and conservation strategies for the coastal resources. PMID:23490347

  5. Dissolution rate measurements of sea water soluble pigments for antifouling paints

    DEFF Research Database (Denmark)

    Yebra, Diego Meseguer; Kiil, Søren; Weinell, Claus E.;

    2006-01-01

    of defects in the lattice structure, are hypothesised to be responsible for the faster sea water attack of the pellets compared to the ZnO crystals. In any case, the ZnO dissolution rates reported in this paper are markedly lower than those associated with the sea water dissolution of cuprous oxide (Cu2O......) particles which are also used in AF paints. Experimental performance testing of model antifouling paints formulated with ZnO and/or Cu2O demonstrates that the binder/pigment interaction should not be disregarded if the leaching of sea water soluble pigments from paint systems is to be determined. (C) 2006...... Elsevier B.V. All rights reserved....

  6. Antifouling polyethersulfone hemodialysis membranes incorporated with poly (citric acid) polymerized multi-walled carbon nanotubes.

    Science.gov (United States)

    Abidin, Muhammad Nidzhom Zainol; Goh, Pei Sean; Ismail, Ahmad Fauzi; Othman, Mohd Hafiz Dzarfan; Hasbullah, Hasrinah; Said, Noresah; Kadir, Siti Hamimah Sheikh Abdul; Kamal, Fatmawati; Abdullah, Mohd Sohaimi; Ng, Be Cheer

    2016-11-01

    Poly (citric acid)-grafted-MWCNT (PCA-g-MWCNT) was incorporated as nanofiller in polyethersulfone (PES) to produce hemodialysis mixed matrix membrane (MMM). Citric acid monohydrate was polymerized onto the surface of MWCNTs by polycondensation. Neat PES membrane and PES/MWCNTs MMMs were fabricated by dry-wet spinning technique. The membranes were characterized in terms of morphology, pure water flux (PWF) and bovine serum albumin (BSA) protein rejection. The grafting yield of PCA onto MWCNTs was calculated as 149.2%. The decrease of contact angle from 77.56° to 56.06° for PES/PCA-g-MWCNTs membrane indicated the increase in surface hydrophilicity, which rendered positive impacts on the PWF and BSA rejection of the membrane. The PWF increased from 15.8Lm(-2)h(-1) to 95.36Lm(-2)h(-1) upon the incorporation of PCA-g-MWCNTs due to the attachment of abundant hydrophilic groups that present on the MWCNTs, which have improved the affinity of membrane towards the water molecules. For protein rejection, the PES/PCA-g-MWCNTs MMM rejected 95.2% of BSA whereas neat PES membrane demonstrated protein rejection of 90.2%. Compared to commercial PES hemodialysis membrane, the PES/PCA-g-MWCNTs MMMs showed less flux decline behavior and better PWF recovery ratio, suggesting that the membrane antifouling performance was improved. The incorporation of PCA-g-MWCNTs enhanced the separation features and antifouling capabilities of the PES membrane for hemodialysis application. PMID:27524052

  7. Degradation of triphenylborane-pyridine antifouling agent in water by copper ions.

    Science.gov (United States)

    Tsuboi, Ai; Okamura, Hideo; Kaewchuay, Netnapit; Fukushi, Keiichi; Zhou, Xiaojian; Nishida, Tomoaki

    2013-01-01

    Triphenylborane-pyridine (TPBP) is an antifouling compound used in Asian countries, including Japan, and its residue has not been detected in aquatic environments to date. There are limited data on its fate for environmental management. The purpose of this study was to evaluate whether TPBP is degraded by metal ions in aquatic environments. TPBP with metal ions in 20 mM sodium acetate buffer at pH 8.0 was placed at 25 degrees C in the dark for 24 h. The concentrations of TPBP and its degradation products, such as diphenylboronic acid, phenylboronic acid (MPB), phenol, benzene, biphenyl, and boron were determined. The presence of copper ions (50 mg/l), but not zinc or manganese ions, resulted in complete degradation of TPBP in 24 h. The TPBP degradation was much faster than the boron production in the initial reaction (0-1 h) with copper salts, depending on the copper salts tested. TPBP was degraded by copper ions (5 mg/l) in 24 h, producing phenol, MPB, biphenyl, and borate. Cu2+ as copper(II) chloride or copper(II) acetate led to complete degradation of TPBP, and thylenediaminetetraacetic acid disodium salt addition suppressed the TPBP degradation. Cu+ as copper(I) acetate also completely degraded TPBP, and bathocuproine addition suppressed the TPBP degradation. This suggests that copper ions existing in natural environments might degrade TPBP released from antifouling paint into water, and this could be one of the important mechanisms to dissipate TPBP residues in aquatic environments. PMID:24527648

  8. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    OpenAIRE

    Karine Lemarchand; Claudie Bonnet; Émilien Pelletier

    2009-01-01

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including ...

  9. Biofouling growth in cold estuarine waters and evaluation of some chitosan and copper anti-fouling paints.

    Science.gov (United States)

    Pelletier, Emilien; Bonnet, Claudie; Lemarchand, Karine

    2009-06-01

    Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada) were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan-and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions. PMID:19742133

  10. Hydration effects and antifouling properties of poly(vinyl chloride-co-PEGMA) membranes studied using molecular dynamics simulations

    Science.gov (United States)

    Shaikh, Abdul Rajjak; Rajabzadeh, Saeid; Matsuo, Ryuichi; Takaba, Hiromitsu; Matsuyama, Hideto

    2016-04-01

    Polyvinyl chloride (PVC) membranes are widely used in water treatment because of their low cost and chemical stability. However, PVC membranes can become fouled, and this restricts their applications in membrane technology. In order to enhance the antifouling property of PVC membranes, copolymers such as poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate) (poly(VC-co-PEGMA)) with different PEGMA segment percentages were synthesized in our previous work. Experimentally, it was observed that the poly(VC-co-PEGMA) copolymer has better antifouling properties than those of PVC membranes. Here, we explore effect of the PEGMA segment percentage on the surface hydration properties of poly(VC-co-PEGMA) copolymers. Density functional theory calculations and molecular dynamics simulations were carried out to understand the interactions between PVC and PEGMA. Model structures of these systems were validated by comparing the simulated values of their volumetric properties with the experimental values. MD studies showed that increasing PEGMA percentage in the copolymer increases the interaction with water molecules, leading to improved resistance to fouling. The antifouling mechanism is also discussed with respect to surface hydration and water dynamicity. This study could form a basis for the systematic studies of polymeric membranes as well as their stability from the extent of solvent-polymer, solvent-solvent, and polymer-polymer interactions.

  11. Biofouling Growth in Cold Estuarine Waters and Evaluation of Some Chitosan and Copper Anti-Fouling Paints

    Directory of Open Access Journals (Sweden)

    Karine Lemarchand

    2009-07-01

    Full Text Available Ecological concerns about antifouling paints containing non-green tin and copper compounds have highlighted the need for environmentally friendly alternatives. We report here a field test conducted in estuarine waters over two months designed to evaluate the efficiency of a number of active natural and man-made chemical ingredients added into a silicon-polyurethane marine paint. Early steps of biofouling in cold seawater of the St. Lawrence Estuary (Canada were observed. Analyses, including dry biomass, flow cytometry and spectrofluorimetry, demonstrated a short-term antibacterial action of chitosan-based paints although no significant anti-algal action was observed. Cuprous oxide paints were efficient against bacteria and algae invasion in the first two weeks, especially those with added organic biocides such as isothiazolone and copper pyrithione. However, the overall dry biomass and chlorophyll a content were similar for all chitosan- and copper-based paints after 63 days. Microscopic observations revealed variation in the highly diverse benthic diatom population including species Navicula, Melosira, Cocconeis, Nitshzcia, Fragilaria and Amphora. Results suggest no real long-term efficiency for tested antifouling paints and highlight a particular need for green antifouling ingredients that are active under northern estuarine conditions.

  12. Research on biofilm gel antifouling technology%生物膜凝胶防污技术的研究

    Institute of Scientific and Technical Information of China (English)

    余浩杰; 赵君; 桂泰江; 于雪艳; 陈正涛; 王科

    2013-01-01

    The biodegradable antifouling paint and the biodegradable resin synthesized by MCRI are introduced. The biodegradable resin has oligomeric lactic acid as the main structural units containing block structures. The recent progress of biodegradable environment-friendly antifouling paints by MCRI are summarized. The biodegradable/biofilm gel antifouling new technology is put forward. Its latest research progress is proposed as well.%介绍了生物可降解防污涂料和海洋化工研究院合成的以低聚乳酸为主要结构单元、含嵌段结构的可降解树脂,同时报道了海洋化工研究院在生物降解生态友好型防污涂料方面的最新研究成果.提出了生物降解/生物膜凝胶防污新技术,总结了近期在这一新研究方向的进展情况.

  13. Poly(dimethyl siloxane) (PDMS) network blends of amphiphilic acrylic copolymers with poly(ethylene glycol)-fluoroalkyl side chains for fouling-release coatings. II. Laboratory assays and field immersion trials.

    Science.gov (United States)

    Martinelli, Elisa; Sarvothaman, Mahesh K; Galli, Giancarlo; Pettitt, Michala E; Callow, Maureen E; Callow, James A; Conlan, Sheelagh L; Clare, Anthony S; Sugiharto, Albert B; Davies, Cait; Williams, David

    2012-01-01

    Amphiphilic copolymers containing different amounts of poly(ethylene glycol)-fluoroalkyl acrylate and polysiloxane methacrylate units were blended with a poly(dimethyl siloxane) (PDMS) matrix in different proportions to investigate the effect of both copolymer composition and loading on the biological performance of the coatings. Laboratory bioassays revealed optimal compositions for the release of sporelings of Ulva linza, and the settlement of cypris larvae of Balanus amphitrite. The best-performing coatings were subjected to field immersion tests. Experimental coatings containing copolymer showed significantly reduced levels of hard fouling compared to the control coatings (PDMS without copolymer), their performance being equivalent to a coating based on Intersleek 700™. XPS analysis showed that only small amounts of fluorine at the coating surface were sufficient for good antifouling/fouling-release properties. AFM analyses of coatings under immersion showed that the presence of a regular surface structure with nanosized domains correlated with biological performance.

  14. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  15. Surface-initiated hyperbranched polyglycerol as an ultralow-fouling coating on glass, silicon, and porous silicon substrates.

    Science.gov (United States)

    Moore, Eli; Delalat, Bahman; Vasani, Roshan; McPhee, Gordon; Thissen, Helmut; Voelcker, Nicolas H

    2014-09-10

    Anionic ring-opening polymerization of glycidol was initiated from activated glass, silicon, and porous silicon substrates to yield thin, ultralow-fouling hyperbranched polyglycerol (HPG) graft polymer coatings. Substrates were activated by deprotonation of surface-bound silanol functionalities. HPG polymerization was initiated upon the addition of freshly distilled glycidol to yield films in the nanometer thickness range. X-ray photoelectron spectroscopy, contact angle measurements, and ellipsometry were used to characterize the resulting coatings. The antifouling properties of HPG-coated surfaces were evaluated in terms of protein adsorption and the attachment of mammalian cells. The adsorption of bovine serum albumin and collagen type I was found to be reduced by as much as 97 and 91%, respectively, in comparison to untreated surfaces. Human glioblastoma and mouse fibroblast attachment was reduced by 99 and 98%, respectively. HPG-grafted substrates outperformed polyethylene glycol (PEG) grafted substrates of comparable thickness under the same incubation conditions. Our results demonstrate the effectiveness of antifouling HPG graft polymer coatings on a selected range of substrate materials and open the door for their use in biomedical applications. PMID:25137525

  16. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes

    Science.gov (United States)

    He, Wei; Zhang, Yi; Li, Jiehua; Gao, Yunlong; Luo, Feng; Tan, Hong; Wang, Kunjie; Fu, Qiang

    2016-08-01

    Contact-active antibacterial surfaces play a vital role in preventing bacterial contamination of artificial surfaces. In the past, numerous researches have been focused on antibacterial surfaces comprising of antifouling upper-layer and antibacterial sub-layer. In this work, we demonstrate a reversed surface structure which integrate antibacterial upper-layer and antifouling sub-layer. These surfaces are prepared by simply casting gemini quaternary ammonium salt waterborne polyurethanes (GWPU) and their blends. Due to the high interfacial energy of gemini quaternary ammonium salt (GQAS), chain segments containing GQAS can accumulate at polymer/air interface to form an antibacterial upper-layer spontaneously during the film formation. Meanwhile, the soft segments composed of polyethylene glycol (PEG) formed the antifouling sub-layer. Our findings indicate that the combination of antibacterial upper-layer and antifouling sub-layer endow these surfaces strong, long-lasting antifouling and contact-active antibacterial properties, with a more than 99.99% killing efficiency against both gram-positive and gram-negative bacteria attached to them.

  17. Highly durable superhydrophobic coatings with gradient density by movable spray method

    Science.gov (United States)

    Tenjimbayashi, Mizuki; Shiratori, Seimei

    2014-09-01

    Superhydrophobic surface is expected to be applied in anti-fouling, anti-icing, and anti-bacterial. However, practical use is interrupted by low mechanical strength, time-consuming process, and limited coating substrate. Here highly durable superhydrophobic coatings were prepared by simple and novel spraying method, which sprays with changing the "spray distance between substrate and spray" (SD), named "movable spray method." We prepared the solution that changes wettability and durability with spraying distance by mixing SiO2 nanoparticles and ethyl alpha cyanoacrylate polymer (EAC). Then, we evaluated the chemical components and surface morphologies of each spraying distance coatings (0 ˜ 50 cm) by XPS, SEM, and laser scanning microscope. It revealed that surface roughness and SiO2/EAC ratio increased as the SD increases. Thus, durable superhydrophobic coatings were designed by spraying with increasing SD gradually. Glow discharge-optical emission spectrometry analysis revealed that designed coatings showed the gradual increase of SiO2/EAC ratio. As a result, coatings prepared on glass, wood, or aluminum substrates maintained their superhydrophobicity up to the abrasion at 40 kPa. This movable spray method is simple coating by the wet process and prepares robust hydrophobic coating on complex shape and large area substrates. The gradient functional surface was found to have mechanical durability and superhydrophobicity, and wide area applications will be expected.

  18. Bacterial attachment and removal properties of silicon- and nitrogen-doped diamond-like carbon coatings.

    Science.gov (United States)

    Zhao, Qi; Su, Xueju; Wang, Su; Zhang, Xiaoling; Navabpour, Parnia; Teer, Dennis

    2009-01-01

    Si- and N-doped diamond-like carbon (DLC) coatings with various Si and N contents were deposited on glass slides using magnetron sputter ion-plating and plasma-enhanced chemical vapour deposition. Surface energy analysis of the DLC coatings revealed that with increasing Si content, the electron acceptor gamma(s)(+) value decreased while the electron donor gamma(s)(-) value increased. The antifouling property of DLC coatings was evaluated with the bacterium, Pseudomonas fluorescens, which is one of the most common microorganisms forming biofilms on the surface of heat exchangers in cooling water systems. P. fluorescens had a high value of the gamma(s)(-) component (69.78 mN m(-1)) and a low value of the gamma(s)(+) component (5.97 mN m(-1)), and would be negatively charged with the zeta potential of -16.1 mV. The experimental results showed that bacterial removal by a standardised washing procedure increased significantly with increasing electron donor gamma(s)(-) values and with decreasing electron acceptor gamma(s)(+) values of DLC coatings. The incorporation of 2%N into the Si-doped DLC coatings further significantly reduced bacterial attachment and significantly increased ease of removal. The best Si-N-doped DLC coatings reduced bacterial attachment by 58% and increased removal by 41%, compared with a silicone coating, Silastic T2. Bacterial adhesion strength on the DLC coatings is explained in terms of thermodynamic work of adhesion. PMID:19283517

  19. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes

    Directory of Open Access Journals (Sweden)

    Norhan Nady

    2016-04-01

    Full Text Available A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme and nontoxic modifier, which can be safely labelled “green surface modification”. This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone (PES membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers—ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid—is presented.

  20. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-04-18

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented.

  1. Acute Toxicity of the Antifouling Compound Butenolide in Non-Target Organisms

    KAUST Repository

    Zhang, Yi-Fan

    2011-08-29

    Butenolide [5-octylfuran-2(5H)-one] is a recently discovered and very promising anti-marine-fouling compound. In this study, the acute toxicity of butenolide was assessed in several non-target organisms, including micro algae, crustaceans, and fish. Results were compared with previously reported results on the effective concentrations used on fouling (target) organisms. According to OECD\\'s guideline, the predicted no effect concentration (PNEC) was 0.168 µg l^(−1), which was among one of the highest in representative new biocides. Mechanistically, the phenotype of butenolide-treated Danio rerio (zebrafish) embryos was similar to the phenotype of the pro-caspase-3 over-expression mutant with pericardial edema, small eyes, small brains, and increased numbers of apoptotic cells in the bodies of zebrafish embryos. Butenolide also induced apoptosis in HeLa cells, with the activation of c-Jun N-terminal kinases (JNK), Bcl-2 family proteins, and caspases and proteasomes/lysosomes involved in this process. This is the first detailed toxicity and toxicology study on this antifouling compound.

  2. Nanostructured antifouling poly(ethylene glycol) films for silicon-based microsystems.

    Science.gov (United States)

    Sharma, Sadhana; Desai, Tejal A

    2005-02-01

    The creation of antifouling surfaces is one of the major prerequisites for silicon-based micro-electrical-mechanical systems for biomedical and analytical applications (known as BioMEMS). Poly(ethylene glycol) (PEG), a water-soluble, nontoxic, and nonimmunogenic polymer has the unique ability to reduce nonspecific protein adsorption and cell adhesion and, therefore, is generally coupled with a wide variety of surfaces to improve their biocompatibility. To this end, we have analyzed PEG thin films of various grafting densities (i.e., number of PEG chains per unit area) coupled to silicon using a single-step PEG-silane coupling reaction scheme using variable-angle ellipsometry. Initial PEG concentration and coupling time were varied to attain different grafting densities. These data were theoretically analyzed to understand the phenomenon of PEG film formation. Furthermore, all the PEG films were evaluated for their ability to control biofouling using albumin and fibrinogen as the model proteins. PEG thin films formed by using higher PEG concentrations ( > or = 10 mM PEG) or coupling time ( > or = 1 h) demonstrated enhanced protein fouling resistance behavior. This analysis is expected to be useful to form PEG films of desired grafting density on silicon substrates for appropriate application. PMID:15853141

  3. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes.

    Science.gov (United States)

    Kobayashi, Motoyasu; Terayama, Yuki; Yamaguchi, Hiroki; Terada, Masami; Murakami, Daiki; Ishihara, Kazuhiko; Takahara, Atsushi

    2012-05-01

    The surface wettabilities of polymer brushes with hydrophobic and hydrophilic functional groups were discussed on the basis of conventional static and dynamic contact angle measurements of water and hexadecane in air and captive bubble measurements in water. Various types of high-density polymer brushes with nonionic and ionic functional groups were prepared on a silicon wafer by surface-initiated atom-transfer radical polymerization. The surface free energies of the brushes were estimated by Owens-Wendt equation using the contact angles of various probe liquids with different polarities. The decrease in the water contact angle corresponded to the polarity of fluoroalkyl, hydroxy, ethylene oxide, amino, carboxylic acid, ammonium salt, sulfonate, carboxybetaine, sulfobetaine, and phosphobetaine functional groups. The poly(2-perfluorooctylethyl acrylate) brush had a low surface free energy of approximately 8.7 mN/m, but the polyelectrolyte brushes revealed much higher surface free energies of 70-74 mN/m, close to the value for water. Polyelectrolyte brushes repelled both air bubbles and hexadecane in water. Even when the silicone oil was spread on the polyelectrolyte brush surfaces in air, once they were immersed in water, the oil quickly rolled up and detached from the brush surface. The oil detachment behavior observed on the superhydrophilic polyelectrolyte brush in water was explained by the low adhesion force between the brush and the oil, which could contribute to its excellent antifouling and self-cleaning properties. PMID:22500465

  4. Estimation of polishing and leaching behaviour of antifouling paints using mathematical modelling: a literature review.

    Science.gov (United States)

    Kiil, Søren; Dam-Johansen, Kim; Weinell, Claus E; Pedersen, Michael S; Codolar, Santiago Arîas

    2003-04-01

    The development of chemically active antifouling paints has traditionally been based on an empirical approach. Optimisation and evaluation of novel and existing products are frequently conducted by means of, for example, systematic paint rotary tests in the laboratory or at sea sites. In this review, the usefulness of combining rotary experiments with the development of detailed mathematical models of paint behaviour will be discussed with reference to the relevant literature. Mathematical models can generally be used in the design of suitable release systems for various active components such as proteins or biocides, as well as for the estimation of release rates from different compositions of paints under various seawater conditions. Insoluble matrix, soluble matrix and self-polishing paints will be considered. Simulations from recent publications that show the effects of dynamic changes in seawater on paint behaviour will be presented. Examples of potential uses of paint models for accelerated polishing and leaching tests and screening of novel paint components will also be discussed. Directions of future modelling work are suggested. PMID:14618702

  5. PES Surface Modification Using Green Chemistry: New Generation of Antifouling Membranes.

    Science.gov (United States)

    Nady, Norhan

    2016-01-01

    A major limitation in using membrane-based separation processes is the loss of performance due to membrane fouling. This drawback can be addressed thanks to surface modification treatments. A new and promising surface modification using green chemistry has been recently investigated. This modification is carried out at room temperature and in aqueous medium using green catalyst (enzyme) and nontoxic modifier, which can be safely labelled "green surface modification". This modification can be considered as a nucleus of new generation of antifouling membranes and surfaces. In the current research, ferulic acid modifier and laccase bio-catalyst were used to make poly(ethersulfone) (PES) membrane less vulnerable to protein adsorption. The blank and modified PES membranes are evaluated based on e.g., their flux and protein repellence. Both the blank and the modified PES membranes (or laminated PES on silicon dioxide surface) are characterized using many techniques e.g., SEM, EDX, XPS and SPM, etc. The pure water flux of the most modified membranes was reduced by 10% on average relative to the blank membrane, and around a 94% reduction in protein adsorption was determined. In the conclusions section, a comparison between three modifiers-ferulic acid, and two other previously used modifiers (4-hydroxybenzoic acid and gallic acid)-is presented. PMID:27096873

  6. Environmental risk assessment on capsaicin used as active substance for antifouling system on ships.

    Science.gov (United States)

    Wang, Jianbing; Shi, Ting; Yang, Xiaoling; Han, Wenya; Zhou, Yunrui

    2014-06-01

    Biodegradation experiments were carried out with capsaicin to evaluate its degradability. The results show that capsaicin was readily biodegradable under aerobic conditions. The values of Kow and the calculated bioconcentration factor indicate that capsaicin have a low potential for bioconcentration. The fish acute toxicity tests conducted with Brachydanio rerio show LC50 for capsaicin was 5.98 mg L(-1). The tests of alga growth inhibition conducted with Selenastrum capricornutum suggest EC50 for capsaicin was 114 mg L(-1). The calculated PNEC (Predicted No Effect Concentration) was 4.9×10(-4) mg L(-1). The average PEC (Predicted Environmental Concentration) for OECD-EU commercial harbor and marina were 3.99×10(-6) and 2.49×10(-5) mg L(-1), respectively. These indicate that the PEC was much less than the PNEC for capsaicin. The low Kp value of capsaicin suggests the data about the risk of capsaicin to sediment organisms can be waived. According to the results from the analysis of the degradation, bioaccumulation, toxicity and accumulation in sediment, it can be concluded that capsaicin used as active substance for antifouling system on ships poses relatively low risk to marine environment.

  7. Acetylcholinesterase in Biofouling Species: Characterization and Mode of Action of Cyanobacteria-Derived Antifouling Agents.

    Science.gov (United States)

    Almeida, Joana R; Freitas, Micaela; Cruz, Susana; Leão, Pedro N; Vasconcelos, Vitor; Cunha, Isabel

    2015-07-24

    Effective and ecofriendly antifouling (AF) compounds have been arising from naturally produced chemicals. The objective of this study is to use cyanobacteria-derived agents to investigate the role of acetylcholinesterase (AChE) activity as an effect and/or mode of action of promising AF compounds, since AChE inhibitors were found to inhibit invertebrate larval settlement. To pursue this objective, in vitro quantification of AChE activity under the effect of several cyanobacterial strain extracts as potential AF agents was performed along with in vivo AF (anti-settlement) screening tests. Pre-characterization of different cholinesterases (ChEs) forms present in selected tissues of important biofouling species was performed to confirm the predominance of AChE, and an in vitro AF test using pure AChE activity was developed. Eighteen cyanobacteria strains were tested as source of potential AF and AChE inhibitor agents. Results showed effectiveness in selecting promising eco-friendly AF agents, allowing the understanding of the AF biochemical mode of action induced by different compounds. This study also highlights the potential of cyanobacteria as source of AF agents towards invertebrate macrofouling species.

  8. Potent Antifouling Resorcylic Acid Lactones from the Gorgonian-Derived Fungus Cochliobolus lunatus

    KAUST Repository

    Shao, Chang Lun

    2011-04-25

    Three new 14-membered resorcylic acid lactones, two with a rare natural acetonide group and one with a 5-chloro-substituted lactone, named cochliomycins A-C (1-3), together with four known analogues, zeaenol (4), LL-Z1640-1 (5), LL-Z1640-2 (6), and paecilomycin F (7), were isolated from the culture broth of Cochliobolus lunatus, a fungus obtained from the gorgonian Dichotella gemmacea collected in the South China Sea. Their structures and the relative configurations of 1-3 were elucidated using comprehensive spectroscopic methods including NOESY spectra and chemical conversions. A transetherification reaction was also observed in which cochliomycin B (2) in a solution of CDCl3 slowly rearranged to give cochliomycin A (1) at room temperature. These resorcylic acid lactones were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. The antibacterial and cytotoxic activities of these compounds were also examined. © 2011 The American Chemical Society and American Society of Pharmacognosy.

  9. Occurrence and distribution of antifouling biocide Irgarol-1051 in coral reef ecosystems, Zanzibar.

    Science.gov (United States)

    Sheikh, Mohammed A; Juma, Fatma S; Staehr, Peter; Dahl, Karsten; Rashid, Rashid J; Mohammed, Mohammed S; Ussi, Ali M; Ali, Hassan R

    2016-08-15

    2-methythiol-4-tert-butylamino-6-cyclopropylamino-s-triazine (Irgarol-1051) has been widely used as effective alternative antifouling paint in marine structures including ships. However, it has been causing deleterious effects to marine organisms including reef building corals. The main objective of this study was to establish baseline levels of Irgarol-1051 around coral reefs and nearby ecosystems along coastline of Zanzibar Island. The levels of Irgarol-1051 ranged from 1.35ng/L around coral reefs to 15.44ng/L around harbor with average concentration of 4.11 (mean)±0.57 (SD) ng/L. This is below Environmental Risk Limit of 24ng/L as proposed by Dutch Authorities which suggests that the contamination is not alarming especially for coral reef ecosystem health. The main possible sources of the contamination are from shipping activities. This paper provides important baseline information of Irgarol-1051 around the coral reef ecosystems within the Western Indian Ocean (WIO) region and may be useful for formulation of marine conservation strategies and policies. PMID:27234364

  10. Sprayed coatings

    Science.gov (United States)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  11. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics.

    Science.gov (United States)

    Zilio, Caterina; Sola, Laura; Damin, Francesco; Faggioni, Lucia; Chiari, Marcella

    2014-02-01

    A number of materials used to fabricate disposable microfluidic devices are hydrophobic in nature with water contact angles on their surface ranging from 80° to over 100°. This characteristic makes them unsuitable for a number of microfluidic applications. Both the wettability and analyte adsorption parameters are highly dependent on the surface hydrophobicity. In this article, we propose a general method to coat the surface of five materials: polydimethylsiloxane (PDMS), cyclic olefin copolymer (COC), polyethylene terephthalate (PET), polycarbonate (PC), and polytetrafluoroethylene (PTFE). This fast and robust process, which is easily implementable in any laboratory including microfabrication clean room facilities, was devised by combining gas-phase and wet chemical modification processes. Two different coatings that improve the surface hydrophilicity were prepared via the "dip and rinse" approach by immersing the plasma oxidized materials into an aqueous solution of two different poly(dimethylacrylamide) copolymers incorporating a silane moiety and functionalized with either N-acryloyloxysuccinimide (NAS) (poly(DMA-NAS-MAPS) or glycidyl methacrylate (GMA) (poly(DMA-GMA-MAPS). The coating formation was confirmed by contact angle (CA) analysis comparing the variation of CAs of uncoated and coated surfaces subjected to different aging treatments. The antifouling character of the polymer was demonstrated by fluorescence and interferometric detection of proteins adsorbed on the surafce. This method is of great interest in microfluidics due to its broad applicability to a number of materials with varying chemical compositions. PMID:24037663

  12. Potent Antifouling Marine Dihydroquinolin-2(1H)-one-Containing Alkaloids from the Gorgonian Coral-Derived Fungus Scopulariopsis sp.

    KAUST Repository

    Shao, Chang Lun

    2015-04-02

    Marine biofouling has a major economic impact, especially when it occurs on ship hulls or aquaculture facilities. Since the International Maritime Organization (IMO) treaty to ban the application of organotin-based paints to ships went into effect in 2008, there is an urgent demand for the development of efficient and environmentally friendly antifouling agents. Marine microorganisms have proved to be a potential source of antifouling natural compounds. In this study, six dihydroquinolin-2-one-containing alkaloids, three monoterpenoids combined with a 4-phenyl-3,4-dihydroquinolin-2(1H)-one (1–3) and three 4-phenyl-3,4-dihydroquinolin-2(1H)-one alkaloids (4–6), were isolated from the gorgonian coral-derived fungus Scopulariopsis sp. collected in the South China Sea. These dihydroquinolin-2-one-containing alkaloids were evaluated against the larval settlement of barnacle Balanus amphitrite, and antifouling activity was detected for the first time for this class of metabolites. All of them except 6 showed strong antifouling activity. Compounds 1 and 2 were discovered to be the most promising non-toxic antilarval settlement candidates. Especially, compound 1 is the strongest antifouling compound in nature until now which showed highly potent activity with picomolar level (EC50 17.5 pM) and a very safety and high therapeutic ratio (LC50/EC50 1200). This represents an effective non-toxic, anti-larval settlement structural class of promising antifouling lead compound. © 2015 Springer Science+Business Media New York

  13. Hard coatings

    OpenAIRE

    Dan, J.; Boving, H.; Hintermann, H.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many process...

  14. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.

    Science.gov (United States)

    GhavamiNejad, Amin; Park, Chan Hee; Kim, Cheol Sang

    2016-03-14

    A multifunctional hydrogel that combines the dual functionality of both antifouling and antimicrobial capacities holds great potential for many bioapplications. Many approaches and different materials have been employed to synthesize such a material. However, a systematic study, including in vitro and in vivo evaluation, on such a material as wound dressings is highly scarce at present. Herein, we report on a new strategy that uses catecholic chemistry to synthesize antimicrobial silver nanoparticles impregnated into antifouling zwitterionic hydrogels. For this purpose, hydrophobic dopamine methacrylamide monomer (DMA) was mixed in an aqueous solution of sodium tetraborate decahydrate and DMA monomer became soluble after increasing pH to 9 due to the complexation between catechol groups and boron. Then, cross-linking polymerization of zwitterionic monomer was carried out with the solution of the protected dopamine monomer to produce a new hydrogel. When this new hydrogel comes in contact with a silver nitrate solution, silver nanoparticles (AgNPs) are formed in its structure as a result of the redox property of the catechol groups and in the absence of any other external reducing agent. The results obtained from TEM and XRD measurements indicate that AgNPs with diameters of around 20 nm had formed within the networks. FESEM images confirmed that the silver nanoparticles were homogeneously incorporated throughout the hydrogel network, and FTIR spectroscopy demonstrated that the catechol moiety in the polymeric backbone of the hydrogel is responsible for the reduction of silver ions into the AgNPs. Finally, the in vitro and in vivo experiments suggest that these mussel-inspired, antifouling, antibacterial hydrogels have great potential for use in wound healing applications.

  15. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.

    Science.gov (United States)

    M El Saeed, Ashraf; Abd El-Fattah, M; Azzam, Ahmed M; Dardir, M M; Bader, Magd M

    2016-08-01

    Cuprous oxide is commonly used as a pigment; paint manufacturers begin to employ cuprous oxide as booster biocides in their formulations, to replace the banned organotins as the principal antifouling compounds. Epoxy coating was reinforced with cuprous oxide nanoparticles (Cu2O NPs). The antibacterial as well as antifungal activity of Cu2O epoxy nanocomposite (Cu2O EN) coating films was investigated. Cu2O NPs were also experimented for antibiofilm and time-kill assay. The thermal stability and the mechanical properties of Cu2O EN coating films were also investigated. The antimicrobial activity results showed slowdown, the growth of organisms on the Cu2O EN coating surface. TGA results showed that incorporating Cu2O NPs into epoxy coating considerably enhanced the thermal stability and increased the char residue. The addition of Cu2O NPs at lower concentration into epoxy coating also led to an improvement in the mechanical resistance such as scratch and abrasion. Cu2O NPs purity was confirmed by XRD. The TEM photograph demonstrated that the synthesized Cu2O NPs were of cubic shape and the average diameter of the crystals was around 25nm. The resulting perfect dispersion of Cu2O NPs in epoxy coating revealed by SEM ensured white particles embedded in the epoxy matrix. PMID:27103492

  16. Mitigation of fouling in refinery pre-heat trains by optimal management of cleaning and antifoulant treatment

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, D.I.; Smaili, F.; Vassiliadis, V.S. [Dept. of Chemical Engineering, Cambridge (United Kingdom)

    2000-08-01

    Mitigation of fouling on a refinery heat exhanger network by optimising the cleaning schedule is demonstrated using a case study based on a refinery distillation pre-heat train. The scheduling problem is formulated as a mixed integer non-linear programming (MINLP) problem and solved using two different approaches. The results for a 3 year case study involving 27 exchangers illustrate the nature of this optimisation problem. The results for a 3.5 year operating horizon are discussed in terms of mitigation strategies, including the alternative use of antifoulant chemicals. (au)

  17. Functionalization of a Membrane Sublayer Using Reverse Filtration of Enzymes and Dopamine Coating

    DEFF Research Database (Denmark)

    Luo, Jianquan; Meyer, Anne S.; Mateiu, Ramona Valentina;

    2014-01-01

    High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case, and the result......High permeability, high enzyme loading, and strong antifouling ability are the desired features for a biocatalytic membrane to be used in an enzymatic membrane reactor (EMR). To achieve these goals, the membrane sublayer was enriched with laccase by reverse filtration in this case......, and the resulting enzyme-loaded sublayer was covered with a dopamine coating. After membrane reversal, the virgin membrane skin layer was facing the feed and the enzymes were entrapped by a polydopamine network in the membrane sublayer. Thus, the membrane sublayer was functionalized as a catalytically active layer....... The effects of the original membrane properties (i.e., materials, pore size, and structure), enzyme type (i.e., laccase and alcohol dehydrogenase), and coating conditions (i.e., time and pH) on the resulting biocatalytic membrane permeability, enzyme loading, and activity were investigated. Using a RC10 k...

  18. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    Science.gov (United States)

    Hou, Xu; Hu, Yuhang; Grinthal, Alison; Khan, Mughees; Aizenberg, Joanna

    2015-03-01

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems. But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries, a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable. Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold--the pressure needed to open the pores--can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  19. Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Hou, X; Hu, YH; Grinthal, A; Khan, M; Aizenberg, J

    2015-03-04

    Living organisms make extensive use of micro- and nanometre-sized pores as gatekeepers for controlling the movement of fluids, vapours and solids between complex environments. The ability of such pores to coordinate multiphase transport, in a highly selective and subtly triggered fashion and without clogging, has inspired interest in synthetic gated pores for applications ranging from fluid processing to 3D printing and lab-on-chip systems(1-10). But although specific gating and transport behaviours have been realized by precisely tailoring pore surface chemistries and pore geometries(6,11-17), a single system capable of controlling complex, selective multiphase transport has remained a distant prospect, and fouling is nearly inevitable(11,12). Here we introduce a gating mechanism that uses a capillary-stabilized liquid as a reversible, reconfigurable gate that fills and seals pores in the closed state, and creates a non-fouling, liquid-lined pore in the open state. Theoretical modelling and experiments demonstrate that for each transport substance, the gating threshold-the pressure needed to open the pores-can be rationally tuned over a wide pressure range. This enables us to realize in one system differential response profiles for a variety of liquids and gases, even letting liquids flow through the pore while preventing gas from escaping. These capabilities allow us to dynamically modulate gas-liquid sorting in a microfluidic flow and to separate a three-phase air-water-oil mixture, with the liquid lining ensuring sustained antifouling behaviour. Because the liquid gating strategy enables efficient long-term operation and can be applied to a variety of pore structures and membrane materials, and to micro- as well as macroscale fluid systems, we expect it to prove useful in a wide range of applications.

  20. Hard coatings

    International Nuclear Information System (INIS)

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  1. Improvement of the antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Surface modification by physical adsorption of Tween 20 was accomplished on polypropylene microporous membranes (PPMMs). Attenuated total reflection-Fourier transform infrared spectroscopy (ATR/FT-IR) and scanning electron microscope (SEM) were used to characterize the chemical and morphological changes on the membrane surfaces. Water contact angles and relative pure water fluxes were measured. The data showed that the hydrophilic performance for the modified membranes increased with the increase in the adsorption amount of Tween 20 onto the surface or into the pores of polypropylene microporous membranes. To test the antifouling property of the membranes by the adsorption of Tween 20 in a membrane bioreactor (MBR), filtration for active sludge was performed using synthetic wastewater. With the help of the data of water fluxes and the FE-SEM photos of the modified PPMMs before or after operating in a MBR for about 12 d, the PPMMs with monolayer adsorption of Tween 20 showed higher remained flux and stronger antifouling ability than unmodified membrane and other modification membranes studied.

  2. Leaching of hydrophobic Cu and Zn from discarded marine antifouling paint residues: Evidence for transchelation of metal pyrithiones

    International Nuclear Information System (INIS)

    Leaching of Cu and Zn from a composite of discarded antifouling paint residues ([Cu] = 288 mg g-1; [Zn] = 96 mg g-1) into natural sea water has been studied over a period of 75 h. Total Cu and Zn were released according to a pseudo first-order reaction, with rate constants on the order of 0.3 and 2.5 (mg L-1)-1 h-1, respectively, and final concentrations equivalent to the dissolution of about 8 and 2% of respective concentrations in the composite. Time-distributions of hydrophobic metals, determined by solid phase extraction-methanol elution, were more complex. Net release of hydrophobic Cu was greater in the absence of light than under a sequence of light-dark cycles; however, hydrophobic Zn release was not detected under the former conditions but contributed up to 50% of total aqueous Zn when light was present. These observations are interpreted in terms of the relative thermodynamic and photolytic stabilities of biocidal pyrithione complexes. - Hydrophobic Cu and Zn leached from antifouling paint particles into sea water appear to be pyrithione complexes.

  3. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance

    International Nuclear Information System (INIS)

    Highlights: •The myristic acid iron superhydrophobic surface was formatted on AZ31. •Two procedures to build a super-hydrophobic were simplified to one step. •The superhydrophobic surface shows good anticorrosion, antifouling properties. •We report a new approach for the superhydrophobic surface protection on AZ31. -- Abstract: Inspired by the lotus leaf, various methods to fabricate artificial superhydrophobic surfaces have been developed. Our purpose is to create a simple, one-step and environment-friendly method to construct a superhydrophobic surface on a magnesium alloy substrate. The substrate was immersed in a solution containing ferric chloride (FeCl3·6H2O), deionized water, tetradecanoic acid (CH3(CH2)12COOH) and ethanol. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and Fourier transformed infrared (FT-IR) were employed to characterize the substrate surface. The obtained surface showed a micron rough structure, a high contact angle (CA) of 165° ± 2° and desirable corrosion protection and antifouling properties

  4. Marine Antifouling for Underwater Archaeological Sites: TiO2 and Ag-Doped TiO2

    Directory of Open Access Journals (Sweden)

    Silvestro A. Ruffolo

    2013-01-01

    Full Text Available Marine fouling plays a crucial role in the degradation of underwater archaeological sites. Limitation of fouling activity and its damages are one of the most critical issues for archaeologists and conservators. The common cleaning procedure, consisting in the manual removal of fouling, requires a continuous maintenance, while a proper inhibition of biological colonisation would provide a long-time protection against biofouling. On the other hand, the most used antifouling paints, especially for ship hulls, show considerable toxicity level. Since submerged archaeological sites are often included in environmental protected areas, more eco-friendly products must be used. We have explored the possibility to use titanium dioxide and Ag-doped titanium dioxide as antifouling agents. For this purpose, they have been synthetized by sol-gel method, and then XRD, XPS, and reflectance spectroscopy measurements have been carried out to gain structural information. The powders have been dispersed in a polymer and then applied to marble surface to evaluate the chromatic alteration induced by the treatments. By means of biological tests, it was possible to assess their behaviour as biofouling agents. Results show a decreasing of biofouling activity on treated stony surfaces.

  5. Poly-ethers from Winogradskyella poriferorum: Antifouling potential, time-course study of production and natural abundance

    KAUST Repository

    Dash, Swagatika

    2011-08-01

    A sponge-associated bacterium, Winogradskyella poriferorum strain UST030701-295T was cultured up to 100l for extraction of antifouling bioactive compounds. Five poly-ethers were isolated and partially characterized based on nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS); two of them showed inhibitory effects on biofilm formation of marine bacteria and larval settlement of macro-foulers but did not produce any adverse effects on the phenotypes of zebra fish embryos at a concentration of 5μgml -1. The effect of culture duration on the production of the poly-ethers and the bioactivity of the relevant extracts was monitored over a period of 12days. The total crude poly-ether production increased from day 2 to day 5 and the highest bioactivity was observed on day 3. The poly-ethers were found to be localized in the cellular fraction of the extracts, implying their natural occurrence. The potent bioactivity of these poly-ethers together with their high natural abundance in bacteria makes them promising candidates as ingredients in antifouling applications. © 2011 Elsevier Ltd.

  6. Click synthesis of quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide with improved antibacterial and antifouling ability.

    Science.gov (United States)

    Tu, Qin; Tian, Chang; Ma, Tongtong; Pang, Long; Wang, Jinyi

    2016-05-01

    A quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA) was successfully prepared in this study via click chemistry. Alkyne-functionalized graphene oxide (GO-alkyne) was first synthesized through a two-step amidation reaction of GO-COOH. Meanwhile, azide-terminated poly(dimethylaminoethyl methacrylate) (PDMAEMA-N3) was prepared via the atom-transfer radical-polymerization of dimethylaminoethyl methacrylate (DMAEMA). Subsequently, PDMAEMA-N3 was grafted onto the GO-alkyne through click chemistry to obtain PDMAEMA modified graphene oxide (GO-PDMAEMA). Finally, the tertiary amino groups of GO-PDMAEMA were quaternized by ethyl bromide to provide a quaternized poly(dimethylaminoethyl methacrylate) functionalized graphene oxide (GO-QPDMAEMA). Various characterization techniques, including Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis spectrometry, ζ potential, Raman, contact angle analyses and field emission scanning electron microscope were used to ascertain the successful preparation of the quaternized GO-QPDMAEMA. Furthermore, antibacterial and antifouling activities of GO-QPDMAEMA were investigated via protein adsorption, as well as bacterial and cell adhesion studies. The results suggest that the GO-QPDMAEMA surface exhibited significant antibacterial and antifouling properties, compared with the GO-COOH and GO-PDMAEMA surfaces. PMID:26852103

  7. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane.

    Science.gov (United States)

    Bidsorkhi, H Cheraghi; Riazi, H; Emadzadeh, D; Ghanbari, M; Matsuura, T; Lau, W J; Ismail, A F

    2016-10-14

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading. PMID:27607307

  8. Nanostructured Coatings

    Science.gov (United States)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  9. Self-Healing Underwater Superoleophobic and Antibiofouling Coatings Based on the Assembly of Hierarchical Microgel Spheres.

    Science.gov (United States)

    Chen, Kunlin; Zhou, Shuxue; Wu, Limin

    2016-01-26

    Marine biofouling has been plaguing people for thousands of years. While various strategies have been developed for antifouling (including superoleophobic) coatings, none of these exhibits self-healing properties because the bestowal of a zoetic self-repairing function to lifeless artificial water/solid interfacial materials is usually confronted with tremendous challenges. Here, we present a self-repairing underwater superoleophobic and antibiofouling coating through the self-assembly of hydrophilic polymeric chain modified hierarchical microgel spheres. The obtained surface material not only has excellent underwater superoleophobicity but also has very good subaqueous antibiofouling properties. More importantly, this surface material can recover the oil- and biofouling-resistant properties once its surface is mechanically damaged, similar to the skins of some marine organisms such as sharks or whales. This approach is feasible and easily mass-produced and could open a pathway and possibility for the fabrication of other self-healing functional water/solid interfacial materials. PMID:26687925

  10. Total Synthesis of Sarcophytonolide H and Isosarcophytonolide D: Structural Revision of Isosarcophytonolide D and Structure-Antifouling Activity Relationship of Sarcophytonolide H.

    Science.gov (United States)

    Takamura, Hiroyoshi; Kikuchi, Takahiro; Endo, Noriyuki; Fukuda, Yuji; Kadota, Isao

    2016-05-01

    The first total syntheses of sarcophytonolide H and the originally proposed and correct structures of isosarcophytonolide D have been achieved via transannular ring-closing metathesis (RCM). These total syntheses culminated in the stereostructural confirmation of sarcophytonolide H and the reassignment of isosarcophytonolide D, respectively. The antifouling activity of the synthetic sarcophytonolide H and its analogues was also evaluated. PMID:27093115

  11. Revealing Amphiphilic Nanodornains of Anti-Biofouling Polymer Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Amadei, CA; Yang, R; Chiesa, M; Gleason, KK; Santos, S

    2014-04-09

    Undesired bacterial adhesion and biofilm formation on wetted surfaces leads to significant economic and environmental costs in various industries. Amphiphilic coatings with molecular hydrophilic and hydrophobic patches can mitigate such biofouling effectively in an environmentally friendly manner. The coatings are synthesized by copolymerizing (Hydroxyethyl)methacrylate and perfluorodecylacrylate via initiated chemical vapor deposition (iCVD). In previous studies, the size of the patches was estimated to be similar to 1.4-1.75 nm by fitting protein adsorption data to a theoretical model. However, no direct observations of the molecular heterogeneity exist and therefore the origin of the fouling resistance of amphiphilic coatings remains unclear. Here, the amphiphilic nature is investigated by amplitude modulation atomic force microscopy (AM-AFM). High-resolution images obtained by penetrating and oscillating the AFM tip under the naturally present water layer with sub-nanometer amplitudes reveal, for the first time, the existence of amphiphilic nanodomains (1-2 nm(2)). Compositional heterogeneity at the nanoscale is further corroborated by a statistical analysis on the data obtained with dynamic AM-AFM force spectroscopy. Variations in the long range attractive forces, responsible for water affinity, are also identified. These nanoscopic results on the polymers wettability are also confirmed by contact angle measurements (i.e., static and dynamic). The unprecedented ability to visualize the amphiphilic nanodomains as well as sub-nanometer crystalline structures provides strong evidence for the existence of previously postulated nanostructures, and sheds light on the underlying antifouling mechanism of amphiphilic chemistry.

  12. Polysulfone and polyacrylate-based zwitterionic coatings for the prevention and easy removal of marine biofouling.

    Science.gov (United States)

    Hibbs, Michael R; Hernandez-Sanchez, Bernadette A; Daniels, Justin; Stafslien, Shane J

    2015-01-01

    A series of polysulfone and polyacrylate-based zwitterionic coatings were prepared on epoxy-primed aluminum substrata and characterized for their antifouling (AF) and fouling-release (FR) properties towards marine bacteria, microalgae and barnacles. The zwitterionic polymer coatings provided minimal resistance against bacterial biofilm retention and microalgal cell attachment, but facilitated good removal of attached microbial biomass by exposure to water-jet apparatus generated hydrodynamic shearing forces. Increasing the ion content of the coatings improved the AF properties, but required a stronger adhesive bond to the epoxy-primed aluminum substratum to prevent coating swelling and dissolution. Grafted poly(sulfobetaine) (gpSBMA), the most promising zwitterionic coating identified from microfouling evaluations, enabled the removal of four out of five barnacles reattached to its surface without incurring damage to their baseplates. This significant result indicated that gpSBMA relied predominately on its surface chemistry for its FR properties since it was very thin (~1-2 µm) relative to commercial coating standards (>200 µm).

  13. Effects of metal pyrithione antifoulants on freshwater macrophyte Lemna gibba G3 determined by image analysis.

    Science.gov (United States)

    Okamura, Hideo; Togosmaa, Luvsantsend; Sawamoto, Takuya; Fukushi, Keiichi; Nishida, Tomoaki; Beppu, Toshio

    2012-05-01

    Copper pyrithione (CuPT(2)) and zinc pyrithione (ZnPT(2)) are two popular antifouling agents that prevent biofouling. Research into the environmental effects of metal pyrithiones has mainly focused on aquatic animal species such as fish and crustaceans, and little attention has been paid to primary producers. There have been few reports on residues in environmental matrices because of the high photolabile characteristics of the agents. Residue analyses and ecological effects of the metabolites and metal pyrithiones are not yet fully understood. This study was undertaken to assess the effects of CuPT(2), ZnPT(2), and six metabolites (PT(2): 2,2'-dithio-bispyridine N-oxide, PS(2): 2,2'-dithio-bispyridine, PSA: pyridine-2-sulfonic acid, HPT: 2-mercaptopyridine N-oxide, HPS: 2-mercaptopyridine, and PO: pyridine N-oxide) on a freshwater macrophyte. A 7-day static bioassay using axenic duckweed Lemna gibba G3 was performed under laboratory conditions. Toxic effects of test compounds were assessed by biomass reduction and morphological changes were determined in image analysis. Concentrations of ZnPT(2) and CuPT(2) and those of PT(2) and HPT in the medium were determined by derivatizing 2,2'-dithio-bispyridine mono-N-oxide with pyridine disulfide/ethylene diamine tetra-acetic acid reagent that was equimolar with pyrithione. The toxic intensity of the compounds was calculated from the measured concentrations after 7-day exposure. ZnPT(2), CuPT(2), PT(2), and HPT inhibited the growth of L. gibba with EC(50) ranging from 77 to 140 μg/l as calculated from the total frond number as the conventional index, whereas the other four metabolites had less effect even at 10 mg/l. The presence of the former four toxic derivatives resulted in abnormally shaped and unhealthily colored fronds, whose size was about 20% of the control fronds. EC(50), calculated from the healthy frond area determined in image analysis, ranged from 10 to 53 μg/l. Thus, image analysis as part of a duckweed

  14. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-09-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles coatings display water contact angles >160° with tilt angles coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised.

  15. Coumarins from the Herb Cnidium monnieri and Chemically Modified Derivatives as Antifoulants against Balanus albicostatus and Bugula neritina Larvae

    Directory of Open Access Journals (Sweden)

    Zhan-Chang Wang

    2013-01-01

    Full Text Available In the search for new environmental friendly antifouling (AF agents, four coumarins were isolated from the herbal plant Cnidium monnieri, known as osthole (1, imperatorin (2, isopimpinellin (3 and auraptenol (4. Furthermore, five coumarin derivatives, namely 8-epoxypentylcoumarin (5, meranzin hydrate (6, 2'-deoxymetranzin hydrate (7, 8-methylbutenalcoumarin (8, and micromarin-F (9 were synthesized from osthole. Compounds 1, 2, 4, 7 showed high inhibitory activities against larval settlement of Balanus albicostatus with EC50 values of 4.64, 3.39, 3.38, 4.67 μg mL−1. Compound 8 could significantly inhibit larval settlement of Bugula neritina with an EC50 value of 3.87 μg mL−1. The impact of functional groups on anti-larval settlement activities suggested that the groups on C-5' and C-2'/C-3' of isoamylene chian could affect the AF activities.

  16. ANTIFOULING PROPERTIES OF POLY(VINYL CHLORIDE) MEMBRANES MODIFIED BY AMPHIPHILIC COPOLYMERS P(MMA-b-MAA)

    Institute of Scientific and Technical Information of China (English)

    Wei-dong Liu; Yong-hua Zhang; Li-feng Fang; Bao-ku Zhu; Li-ping Zhu

    2012-01-01

    Three well-defined diblock copolymers ofpoly(methyl methacrylate-b-methaerylic acid) (P(MMA-b-MAA)) were synthesized using atom transfer radical polymerization method and varying poly(methacrylic acid) (PMAA) chain lengths.These copolymers were blended with PVC to fabricate porous membranes via phase inversion process.Membrane morphologies were observed by scanning electron microscopy (SEM),and chemical composition changes of the membrane surfaces were measured by X-ray photoelectron spectroscopy (XPS).Static and dynamic protein adsorption experiments were used to evaluate antifouling properties of the blend membranes.It was found that,the blend membranes containing longer PMAA arm length showed lower static protein adsorption,higher water permeation flux and better protein solution flux recovery.

  17. Evaluation of coatings to control zebra mussel colonization: Year two interim report, 1990-1991

    Energy Technology Data Exchange (ETDEWEB)

    Leitch, E.G.

    1992-05-25

    A study was carried out to identify coatings which are effective in protecting structures from zebra mussel fouling. Plates coated with antifouling paints were tested at Ontario Hydro's Nanticoke thermal generating station in 1990 and 1991 and were rated for their ability to resist mussel fouling or provide easily cleaned surfaces. Of the paints evaluated in 1990, only two silicones demonstrated good resistance to fouling, with the few mussels which did attach easily dislodged. Silicon-coated trash racks, after a year in use, were found to be in good condition and virtually free of mussels. All other coatings failed to prevent strong mussel attachment and were excluded from the 1991 trials. In addition to the two successful 1990 coatings, four silicones, a zinc silicate and a polyurethane were tested. The two silicones that were successful in 1990 continued to be in 1991. Three of the four 1991 silicones and the zinc silicate showed excellent resistance to mussel attachment, however mussels attached to the remaining silicone and the polyurethane with maximum percentage covers of 45% and 40%, respectively. 23 refs., 2 figs., 3 tabs.

  18. Stability of nonfouling electroless nickel-polytetrafluoroethylene coatings after exposure to commercial dairy equipment sanitizers.

    Science.gov (United States)

    Huang, Kang; Goddard, Julie M

    2015-09-01

    Application of nonfouling coatings on thermal processing equipment can improve operational efficiency. However, to enable effective commercial translation, a need exists for more comprehensive studies on the stability of nonfouling coatings after exposure to different sanitizers. In the current study, the influence of different commercial dairy equipment sanitizers on the nonfouling properties of stainless steel modified with electroless Ni-polytetrafluoroethylene (PTFE) coatings was determined. Surface properties, such as dynamic contact angle, surface energy, surface morphology, and elemental composition, were measured before and after the coupons were exposed to the sanitizers for 168 cleaning cycles. The fouling behavior of Ni-PTFE-modified stainless steel coupons after exposure was also evaluated by processing raw milk on a self-fabricated benchtop-scale plate heat exchanger. The results indicated that peroxide sanitizer had only minor effect on the Ni-PTFE-modified stainless steel surface, whereas chlorine- and iodine-based sanitizers influenced the surface properties drastically. The coupons after 168 cycles of exposure to peroxide sanitizer accumulated the least amount of fouling material (4.44±0.24mg/cm(2)) compared with the coupons exposed to the other 3 sanitizers. These observations indicated that the Ni-PTFE nonfouling coating retained antifouling properties after 168 cycles of exposure to peroxide-based sanitizer, supporting their potential application as nonfouling coatings for stainless steel dairy processing equipment. PMID:26142857

  19. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  20. Health and ecological risk-based characterization of soil and sediment contamination in shipyard with long-term use of DDT-containing antifouling paint

    International Nuclear Information System (INIS)

    Dichlorodiphenyltrichloroethane (DDT) was a frequently occurring type of persistent organic environmental pollutant in China and DDT-containing antifouling paint could be the main contributor of DDT to shipyards and fishing harbors. A field survey was conducted in a shipyard in southern China to investigate the content and distribution of DDT in soil and sediments. Human health and screening-level ecological risk assessments were conducted for DDT contamination in soil and sediments and the results indicated that total DDT in all samples tested exceeded present advisory safe limits. Analysis of the composition and distribution implicated DDT-containing antifouling paint used for ship maintenance as an important source of DDT. Individual and cumulative health risks for residents exceeded the extra lifetime cancer risks of 10−6 and 10−5, mainly from exposure to soil, ingestion and dermal contact. DDT in sediments is associated with a high level of toxicity for the benthic community when > 99% of samples exceed the threshold concentration likely to be responsible for effects and severe effects. Further risk control for DDT is required to ensure safety for human health, the benthic community and the environment. - Highlights: ► DDT ranked high concentration both in sediments and soil in a shipyard. ► Composition analysis indicated DDT antifouling paint was the main source. ► High loading DDT in sediments resulted in high probability of ecological risks. ► Potential health risks for residents were mainly from the exposure of ingestion

  1. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects. PMID:27265834

  2. Investigation of Sol-Gel coatings exposed in the condenser at Fynsvaerket. Part 3

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, M. [DTU Mekanik, Kgs. Lyngby (Denmark); Vilhelmsen, T. [Vattenfall Heat Nordic, Copenhagen (Denmark)

    2009-05-15

    The Danish Technological Institute (DTI) has developed a technique using Hybrid Solgel nanotechnology to produce coatings which can change the surface characteristics of various components. It is the purpose of this project to investigate where such coatings can be utilised in the power generating industry with respect to fouling and corrosion resistance. The initial results with sol-gel coatings on the condenser tubes at Fysnvaerket showed that due to the presence of corrosion products on the unexposed tubes which influences the adherence and protectiveness of coatings applied, the effect of sol-gel coatings was difficult to assess. Further specimens were tested where the outer surface had been mechanically cleaned by sand blasting or by grinding and polishing. The results of 3 months exposure in the condenser plate at the outlet (hottest part of condenser) has been reported. Many coatings showed the anti-fouling effect, however closer inspection with scanning electron microscopy revealed cracks in the coating and oxide below the coating indicating the coating was permeable to corrosive species. The specimens described in this report are from the cold side of the condenser after 1 year's exposure. Due to lack of time, the assessment is based on visual assessment and light optical microscopy. Two different sol-gel coatings have been applied to brass and titanium condenser tubes about 10 cm in length. Based on the experience from previous exposures, the surface of the condenser tubes was mechanically cleaned before coating with the sol-gel components. One set was sandblasted and the other set was grinded to a polished finish using sandpaper. The specimens grinded and polished were exposed tubes that had been removed from the condenser. Investigations of unexposed cleaned condenser tubes with and without sol-gel have been reported previously. Before application of the coatings, the tubes were mechanically cleaned either by sandblasting or by grinding to a

  3. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  4. Principles of biofouling protection in marine sponges: a model for the design of novel biomimetic and bio-inspired coatings in the marine environment?

    Science.gov (United States)

    Müller, Werner E G; Wang, Xiaohong; Proksch, Peter; Perry, Carole C; Osinga, Ronald; Gardères, Johan; Schröder, Heinz C

    2013-08-01

    The process of biofouling of marine structures and substrates, such as platforms or ship hulls, proceeds in multiple steps. Soon after the formation of an initial conditioning film, formed via the adsorption of organic particles to natural or man-made substrates, a population of different bacterial taxa associates under the formation of a biofilm. These microorganisms communicate through a complex quorum sensing network. Macro-foulers, e.g., barnacles, then settle and form a fouling layer on the marine surfaces, a process that globally has severe impacts both on the economy and on the environment. Since the ban of tributyltin, an efficient replacement of this antifouling compound by next-generation antifouling coatings that are environmentally more acceptable and also showing longer half-lives has not yet been developed. The sponges, as sessile filter-feeder animals, have evolved antifouling strategies to protect themselves against micro- and subsequent macro-biofouling processes. Experimental data are summarized and suggest that coating of the sponge surface with bio-silica contributes to the inhibition of the formation of a conditioning film. A direct adsorption of the surfaces by microorganisms can be impaired through poisoning the organisms with direct-acting secondary metabolites or toxic peptides. In addition, first, compounds from sponges have been identified that interfere with the anti-quorum sensing network. Sponge secondary metabolites acting selectively on diatom colonization have not yet been identified. Finally, it is outlined that direct-acting secondary metabolites inhibiting the growth of macro-fouling animals and those that poison the multidrug resistance pump are available. It is concluded that rational screening programs for inhibitors of the complex and dynamic problem of biofilm production, based on multidisciplinary studies and using sponges as a model, are required in the future. PMID:23525893

  5. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  6. A biomimetic nano hybrid coating based on the lotus effect and its anti-biofouling behaviors

    Science.gov (United States)

    Li, Jiang; Wang, Guoqing; Meng, Qinghua; Ding, Chunhua; Jiang, Hong; Fang, Yongzeng

    2014-10-01

    To develop an environmentally friendly anti-biofouling coating in virtue of bionics, a block copolymer containing fluorine (Coplm_F) of low surface energy was prepared by copolymerization. The Ag-loaded mesoporous silica (Ag@SBA) acting as a controlled-release antifoulant was prepared from the mesoporous silica (SBA-15). The nano hybrid coating (Ag@SBA/Coplm_F) composing of the Coplm_F and Ag@SBA was to biomimetically simulate the lotus microstructure. The concentration of fluorine element on surface was analyzed by the energy dispersive spectroscopy (EDS) and found rising to 1.45% after hybridation, which could be explained by the driving effect of SBA-15 via the hydrogen bond. This nanoscale morphology of the hybrid coating was measured and found highly semblable to the microstructure of the lotus surface. The contact angle was determined as 151° which confirmed the superhydrophobicity and lotus effect. The adhesion behaviors of Pseudomonas fluorescens, Diatoms, and Chlorella on the surface of the nano hybrid coating (Ag@SBA/Coplm_F) were studied and good effects of anti-biofouling were observed.

  7. 基于Copula函数的流域防污标准研究%Research on the Anti-fouling Standards for River Basins Based on Copulas

    Institute of Scientific and Technical Information of China (English)

    吴绍飞; 张翔; 邓志民

    2013-01-01

    流域防污体系由各种水污染防治的工程措施和通过水量的合理调配和水质预测预警等非工程措施共同组成的;流域防污标准用来表征流域防污体系的防污能力,即防止水污染事故发生的能力大小.应用Copula函数,详细的分析了组成淮河防污体系的各方案防污标准问题.结果表明,方案2能在一定程度上降低高锰酸盐指数的超标风险,对流域高锰酸盐指数的防污标准有一定的提高;当流量小于3 000m3/s时,方案3对应的流域防污标准最高,流量大于4 000m3/s以上时,方案6能更好地降低氨氮水质的超标风险,方案3次之,采用方案6能最大限度地提高流域防污体系的防污标准;随着流量继续增大,同一方案对降低流域内水质超标风险的作用越来越有限,需要寻求其他的工程和非工程措施减小流域水污染事故的发生率,共同提高流域防污体系的防污标准.%River basin anti-fouling system refers to those water pollution control engineering measures and non-engineering measures including water quantity operation and water quality prediction and early warnings. River basin anti-fouling standard represents the anti-fouling ability of the above system, that is, how much it costs to prevent the pollution incident. The system anti-fouling standard carried by each of the scheduling schemes is analyzed in detail based on Copulas. Results show that, the 2nd scheme can reduce the concentration of CODmn to a certain extent, that is, it has some on lowering the system anti-fouling standard CODmn;when the flow rate is below 3 000 m3/s, the 3rd scheme is the best one improving the system standard. While the flow rate is above 4 000 m3/ s, the 6th scheme will be best lowering the concentration of NH3-N, and the 3rd one takes the second place, in other words, the system standard of the 6th scheme is the highest What's more, for a certain scheme, as the flow rate increases, the reduction of

  8. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  9. Superhydrophilic Thin-Film Composite Forward Osmosis Membranes for Organic Fouling Control: Fouling Behavior and Antifouling Mechanisms

    KAUST Repository

    Tiraferri, Alberto

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. © 2012 American Chemical Society.

  10. Impact of thermal annealing on wettability and antifouling characteristics of alginate poly-l-lysine polyelectrolyte multilayer films.

    Science.gov (United States)

    Diamanti, Eleftheria; Muzzio, Nicolas; Gregurec, Danijela; Irigoyen, Joseba; Pasquale, Miguel; Azzaroni, Omar; Brinkmann, Martin; Moya, Sergio Enrique

    2016-09-01

    Polyelectrolyte multilayers (PEMs) of poly-l-lysine (PLL) and alginic acid sodium salt (Alg) are fabricated applying the layer by layer technique and annealed at a constant temperature; 37, 50 and 80°C, for 72h. Atomic force microscopy reveals changes in the topography of the PEM, which is changing from a fibrillar to a smooth surface. Advancing contact angle in water varies from 36° before annealing to 93°, 77° and 95° after annealing at 37, 50 and 80°C, respectively. Surface energy changes after annealing were calculated from contact angle measurements performed with organic solvents. Quartz crystal microbalance with dissipation, contact angle and fluorescence spectroscopy measurements show a significant decrease in the adsorption of the bovine serum albumin protein to the PEMs after annealing. Changes in the physical properties of the PEMs are interpreted as a result of the reorganization of the polyelectrolytes in the PEMs from a layered structure into complexes where the interaction of polycations and polyanions is enhanced. This work proposes a simple method to endow bio-PEMs with antifouling characteristics and tune their wettability. PMID:27209385

  11. A System-Wide Approach to Identify the Mechanisms of Barnacle Attachment: Toward the Discovery of New Antifouling Compounds

    KAUST Repository

    Al-Aqeel, Sarah

    2015-11-01

    Biofouling is a significant economic problem, particularly for marine and offshore oil industries. The acorn barnacle (Amphibalanus (Balanus) amphitrite) is the main biofouling organism in marine environments. Environmental conditions, the physiology of the biofouling organism, the surrounding microbial community, and the properties of the substratum can all influence the attachment of biofouling organisms to substrates. My dissertation investigated the biological processes involved in B. amphitrite development and attachment in the unique environment of the Red Sea, where the average water surface temperature is 34°C and the salinity reaches 41‰. I profiled the transcriptome and proteome of B. amphitrite at different life stages (nauplius II, nauplius VI, and cyprid) and identified 65,784 expressed contigs and 1387 expressed proteins by quantitative proteomics. During the planktonic stage, genes related to osmotic stress, salt stress, the hyperosmotic response, and the Wnt signaling pathway were strongly up-regulated, hereas genes related to the MAPK pathway, lipid metabolism, and cuticle development were down-regulated. In the transition from the nauplius VI to cyprid stages, there was up-regulation of genes involved in blood coagulation, cuticle development, and eggshell formation, and down-regulation of genes in the nitric oxide pathway, which stimulates the swimming and feeding responses of marine invertebrates. This system-wide integrated approach elucidated the development and attachment pathways important in B. amphitrite. Enzymes and metabolites in these pathways are potential molecular targets for the development of new antifouling compounds.

  12. Development of high performance nano-porous polyethersulfone ultrafiltration membranes with hydrophilic surface and superior antifouling properties

    International Nuclear Information System (INIS)

    Hydrophilic nano-porous polyethersulfone ultrafiltration membranes were developed for milk concentration. The membranes were prepared from new dope solution containing polyethersulfone (PES)/polyvinylpirrolidone (PVP)/polyethyleneglycole (PEG)/cellulose acetate phthalate (CAP)/acrylic acid/Triton X-100 using phase inversion induced by immersion precipitation technique. This casting solution leads to formation of new hydrophilic membranes. The morphological studies were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). In addition, the hydrophilicity and performance of membranes were examined by contact angel measurements and cross-flow filtration (pure water flux, milk water permeation, protein rejection and antifouling measurements). The contact angle measurements indicate that a surface with superior hydrophilicity was obtained for PES membranes. Two concentrations of PES (16 and 14.4 wt.%) and two different non-solvents (pure water and mixtures of water and IPA) were used for preparation of membranes. The morphological studies showed that the higher concentration of PES and the presence of IPA in the gelation media results in formation of a membrane with a dense top and sub-layer with small pores on the surface. The pure water flux of membranes was decreased when higher polymer concentration and mixtures of water and IPA were employed for membrane formation. On the other hand, the milk water permeation and protein rejection were increased using mixtures of water and IPA as non-solvent. Furthermore, the fouling analysis of the membranes demonstrated that the membrane surface with fewer tendencies for fouling was obtained.

  13. Changes in the proteome and phosphoproteome expression in the bryozoan Bugula neritina larvae in response to the antifouling agent butenolide

    KAUST Repository

    Qian, Pei Yuan

    2010-09-08

    Larval attachment and metamorphosis, commonly referred to as larval settlement, of marine sessile invertebrates can be triggered or blocked by chemical cues and affected by changes in overall protein expression pattern and phosphorylation dynamics. This study focuses on the effects of butenolide, an effective larval settlement inhibitor, on larval settlement at the proteome level in the bryozoan Bugula neritina. Liquid-phase IEF sample prefractionation combined with 2-DE and MALDI-TOF MS was used to identify the differentially expressed proteins. Substantial changes occurred both in protein abundance and in phosphorylation status during larval settlement and when settling larvae were challenged with butenolide. The proteins that responded to treatment were identified as structural proteins, molecular chaperones, mitochondrial peptidases and calcium-binding proteins. Compared with our earlier results, both genistein and butenolide inhibited larval settlement of B. neritina primarily by changes in protein abundance and the phosphorylation status of proteins but have different protein targets in the same species. Clearly, to design potent antifouling compounds and to understand the mode of action of compounds, more studies on the effects of different compounds on proteome and phosphoproteome of different larval species are required. © 2010 Wiley-VCH Verlag GmbH & Co. KGaA.

  14. Carbon Nanotube/Alumina/Polyethersulfone Hybrid Hollow Fiber Membranes with Enhanced Mechanical and Anti-Fouling Properties

    Directory of Open Access Journals (Sweden)

    Yi Feng

    2015-08-01

    Full Text Available Carbon nanotubes (CNTs were incorporated into alumina/polyethersulfone hollow fibre membranes to enhance the mechanical property and the efficiency of water treatment. Results show that the incorporation of CNTs can greatly limit the formation of large surface pores, decrease the void size in support layers and improve the porosity and pore connectivity of alumina/polyethersulfone membranes. As a result of such morphology change and pore size change, both improved flux and rejection were achieved in such CNTs/alumina/polyethersulfone membranes. Moreover, the CNTs/alumina/PES membranes show higher antifouling ability and the flux recoveries after being fouled by bovine serum albumin (BSA and humic acid were improved by 84.1% and 53.2% compared to the samples without CNT incorporation. Besides the improvement in water treatment performance, the incorporation of CNTs enhanced the tensile properties of inorganic/polymer membranes. Therefore, such CNTs/alumina/PES hollow fiber membranes are very promising candidates for good filter media in industry, considering their high efficiency and high mechanical properties.

  15. A novel composite conductive microfiltration membrane and its anti-fouling performance with an external electric field in membrane bioreactors

    Science.gov (United States)

    Huang, Jian; Wang, Zhiwei; Zhang, Junyao; Zhang, Xingran; Ma, Jinxing; Wu, Zhichao

    2015-03-01

    Membrane fouling remains an obstacle to wide-spread applications of membrane bioreactors (MBRs) for wastewater treatment and reclamation. Herein, we report a simple method to prepare a composite conductive microfiltration (MF) membrane by introducing a stainless steel mesh into a polymeric MF membrane and to effectively control its fouling by applying an external electric field. Linear sweep voltammetry and electrochemical impedance spectroscopy analyses showed that this conductive membrane had very good electrochemical properties. Batch tests demonstrated its anti-fouling ability in filtration of bovine serum albumin, sodium alginate, humic acid and silicon dioxide particles as model foulants. The fouling rate in continuous-flow MBRs treating wastewater was also decreased by about 50% for this conductive membrane with 2 V/cm electric field compared to the control test during long-term operation. The enhanced electrostatic repulsive force between foulants and membrane, in-situ cleaning by H2O2 generated from oxygen reduction, and decreased production of soluble microbial products and extracellular polymeric substances contributed to fouling mitigation in this MBR. The results of this study shed light on the control strategy of membrane fouling for achieving a sustainable operation of MBRs.

  16. Superhydrophilic thin-film composite forward osmosis membranes for organic fouling control: fouling behavior and antifouling mechanisms.

    Science.gov (United States)

    Tiraferri, Alberto; Kang, Yan; Giannelis, Emmanuel P; Elimelech, Menachem

    2012-10-16

    This study investigates the fouling behavior and fouling resistance of superhydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles. Fouling experiments in both forward osmosis and reverse osmosis modes are performed with three model organic foulants: alginate, bovine serum albumin, and Suwannee river natural organic matter. A solution comprising monovalent and divalent salts is employed to simulate the solution chemistry of typical wastewater effluents. Reduced fouling is consistently observed for the superhydrophilic membranes compared to control thin-film composite polyamide membranes, in both reverse and forward osmosis modes. The fouling resistance and cleaning efficiency of the functionalized membranes is particularly outstanding in forward osmosis mode where the driving force for water flux is an osmotic pressure difference. To understand the mechanism of fouling, the intermolecular interactions between the foulants and the membrane surface are analyzed by direct force measurement using atomic force microscopy. Lower adhesion forces are observed for the superhydrophilic membranes compared to the control thin-film composite polyamide membranes. The magnitude and distribution of adhesion forces for the different membrane surfaces suggest that the antifouling properties of the superhydrophilic membranes originate from the barrier provided by the tightly bound hydration layer at their surface, as well as from the neutralization of the native carboxyl groups of thin-film composite polyamide membranes. PMID:23002900

  17. Portable, Easy-to-Operate, and Antifouling Microcapsule Array Chips Fabricated by 3D Ice Printing for Visual Target Detection.

    Science.gov (United States)

    Zhang, Hong-Ze; Zhang, Fang-Ting; Zhang, Xiao-Hui; Huang, Dong; Zhou, Ying-Lin; Li, Zhi-Hong; Zhang, Xin-Xiang

    2015-06-16

    Herein, we proposed a portable, easy-to-operate, and antifouling microcapsule array chip for target detection. This prepackaged chip was fabricated by innovative and cost-effective 3D ice printing integrating with photopolymerization sealing which could eliminate complicated preparation of wet chemistry and effectively resist outside contaminants. Only a small volume of sample (2 μL for each microcapsule) was consumed to fulfill the assay. All the reagents required for the analysis were stored in ice form within the microcapsule before use, which guaranteed the long-term stability of microcapsule array chips. Nitrite and glucose were chosen as models for proof of concept to achieve an instant quantitative detection by naked eyes without the need of external sophisticated instruments. The simplicity, low cost, and small sample consumption endowed ice-printing microcapsule array chips with potential commercial value in the fields of on-site environmental monitoring, medical diagnostics, and rapid high-throughput point-of-care quantitative assay.

  18. Effects of antifouling booster biocide Irgarol 1051 on the structure of free living nematodes: a laboratory experiment.

    Science.gov (United States)

    Hannachi, Amel; Elarbaoui, Soumaya; Khazri, Abdelhafidh; D'Agostino, Fabio; Sellami, Badreddine; Beyrem, Hamouda; Gambi, Cristina; Danovaro, Roberto; Mahmoudi, Ezzeddine

    2016-07-13

    A mesocosm experiment was conducted to evaluate the effects of Irgarol on nematode diversity, composition and trophic structure. Sediment samples were experimentally contaminated using four increasing Irgarol concentrations [I1 (11.5 ng g(-1)), I2 (35 ng g(-1)), I3 (105 ng g(-1)) and I4 (315 ng g(-1))] and compared to non-contaminated sediments (controls). Nematode diversity as the number of nematodes species (S) and species richness (d) was significantly lower in all Irgarol treatments than in the controls while the evenness (J') increased significantly in I4 treated mesocosms. The nematode species composition significantly changed following Irgarol concentrations. Paracomesoma dubiun and Terschellingia longicaudata appeared as "tolerant" species to the highest Irgarol concentration. Additionally, Chromadorina germanica and Microlaimus cyatholaimoides appeared as "opportunistic" species. In contrast, Daptonema normandicum seemed to be a "sensitive" species to Irgarol contamination. Irgarol modified also the nematode trophic structure where the relative abundance of deposit feeders decreased significantly in all the treatments compared to control mesocosms and optional predators decreased only in treated mesocosms with I3. Epigrowth feeders increased significantly in treated mesocosms with I3 and I4 and the microvores increased with I1 and decreased with I4. The relative abundance of ciliate consumers appeared unaffected by the presence of Irgarol contamination. Our results open new perspectives on the potential impact of antifouling booster biocide Irgarol 1051 on nematode biodiversity and functional diversity as trophic structures. PMID:27285609

  19. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass.

    Science.gov (United States)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-04-21

    Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2˙(-)) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.

  20. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  1. Application of Self-Cleaning Effect of Lotus Leaf in Development of Antifouling Paints%荷叶效应功能在防污涂料中的应用

    Institute of Scientific and Technical Information of China (English)

    姜立萍; 黄磊

    2013-01-01

    A review was provided of the application of self-cleaning effect of lotus leaf in the bionic design and preparation of antifouling paints. The design of novel antifouling paints as well as their structural characteristics, fabrication method and application perspective was introduced. Moreover, prospect was given about the development trend of bionic antifouling paints.%随着环境保护和节能降耗意识的增强,防污涂料的品种及应用领域不断拓展,已成为研发热点.综述了“荷叶自洁效应”新型防污涂料的设计和涂层结构特点、开发方法和应用前景,指出了防污涂料的发展方向.

  2. Coating of pumps; coating af pumper

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Hans; Moritzen, J.; Thoegersen, Jeanette

    2005-11-15

    Coating of pumps is a quite new activity. For many years pipes and containers have been coated inside in order to avoid corrosion, but the technology has only been used inside pumps for the last ten years. The technology comes from USA and is originally developed in the space technology industry as an exceptionally durable and corrosion constant coating. The project is a further development of results found in a previous R and D project in which measurements were performed before and after coating two different installations. Both installations showed large efficiency improvements. This project supplements the theory behind losses in pumps with measurements on more pumps. (BA)

  3. Applications of Energy Saving and Environmental Protection Ship Coating%船舶节能环保涂料的应用

    Institute of Scientific and Technical Information of China (English)

    丁霞琴; 孔德陆

    2014-01-01

    对比分析几种防污涂料在实际船舶案例中的应用,结合目前节能型涂料的市场需求及应用前景,说明新型有机硅弹性体低表面能防污漆对船舶运营成本,以及人类环境保护的重大意义。%The characteristic and applications of different energy saving and environmental protection ship coatings were ana -lyzed.According to the market requirement and application prospects , the significance of the new organic-silicon sealion repulse ship anti-fouling coating was explained for ship operating cost and environmental protection .

  4. Layer-by-layer assembly of graphene oxide on polypropylene macroporous membranes via click chemistry to improve antibacterial and antifouling performance

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Clickable membrane prepared by photo bromination and SN2 nucleophilic substitution. • Azide graphene oxide prepared by ring-opening reaction. • Alkyne graphene oxide was prepared via esterification reaction. • Layer-by-layer assembly of graphene oxide on membrane by click chemistry. • Antibacterial and antifouling characteristics were enhanced greatly. - Abstract: Polypropylene is an extensively used membrane material; yet, polypropylene membranes exhibit extremely poor resistance to protein fouling. To ameliorate this issue, graphene oxide (GO) nanosheets were used to modify macroporous polypropylene membrane (MPPM) via layer-by-layer assembly technique through click reaction. First, alkyne-terminated GO was prepared through esterification between carboxyl groups in GO and amide groups in propargylamine; azide-terminated GO was synthesized by the ring-opening reaction of epoxy groups in GO with sodium azide. Second, GO was introduced to the membrane by click chemistry. Characterizations of infrared spectra and X-ray photoelectron spectroscopy confirmed the modification. The sharply decreasing of static water contact angle indicated the improvement of the surface hydrophilicity for GO modified membrane. Introducing GO to the membrane results in a dramatic increase of water flux, improvements in the antifouling characteristics and antibacterial property for the membranes. The pure water flux through the 5-layered GO modified membrane is 1.82 times that through the unmodified one. The water flux restores to 43.0% for the unmodified membrane while to 79.8% for the modified membrane. The relative flux reduction decreases by 32.1% due to GO modification. The antibacterial property was also enhanced by two-thirds. These results demonstrate that the antifouling and antibacterial characteristics can be raised by tethering GO to the membrane surface

  5. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Lianguo [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong); Ye, Rui [State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Xu, Ying; Gao, Zhaoming [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong); Au, Doris W.T. [State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region (Hong Kong); Qian, Pei-Yuan, E-mail: boqianpy@ust.hk [Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong Special Administrative Region (Hong Kong)

    2014-04-01

    Highlights: • Adverse effects of antifouling compound butenolide were studied using marine medaka. • The active ingredient in SeaNine 211, DCOIT, was employed as positive control. • Butenolide induced transient, reversible biological effects on marine medaka. • Lower toxicity of butenolide on marine biota highlights its promising application. • The increased sensitivity of male medaka addresses the gender difference. - Abstract: This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E{sub 2}) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E{sub 2}/T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be

  6. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    International Nuclear Information System (INIS)

    Highlights: • Adverse effects of antifouling compound butenolide were studied using marine medaka. • The active ingredient in SeaNine 211, DCOIT, was employed as positive control. • Butenolide induced transient, reversible biological effects on marine medaka. • Lower toxicity of butenolide on marine biota highlights its promising application. • The increased sensitivity of male medaka addresses the gender difference. - Abstract: This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E2) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E2/T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be gradually

  7. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    Science.gov (United States)

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives. PMID:27338487

  8. iTRAQ-Based Proteomic Profiling of the Barnacle Balanus amphitrite in Response to the Antifouling Compound Meleagrin

    KAUST Repository

    Han, Zhuang

    2013-05-03

    Marine biofouling refers to the unwanted accumulation of fouling organisms, such as barnacles, on artificial surfaces, resulting in severe consequences for marine industries. Meleagrin is a potential nontoxic antifoulant that is isolated from the fungus Penicillium sp.; however, its mechanistic effect mode of action on larval settlement remains unknown. Here, we applied iTRAQ coupled with 2D LC-MS/MS proteomic analysis to investigate the effect of meleagrin on the proteomic expression profile of cyprid development and aging in the barnacle Balanus amphitrite. Fifty proteins were differentially expressed in response to treatment with meleagrin, among which 26 proteins were associated with cyprid development/aging and 24 were specifically associated with the meleagrin treatment. The 66 proteins that were associated with aging only remained unaltered during exposure to meleagrin. Using KEGG analysis, those proteins were assigned to several groups, including metabolic pathways, ECM-receptor interactions, and the regulation of the actin cytoskeleton. Among the 24 proteins that were not related to the development/aging process, expression of the cyprid major protein (CMP), a vitellogenin-like protein, increased after the meleagrin treatment, which suggested that meleagrin might affect the endocrine system and prevent the larval molting cycle. With the exception of the chitin binding protein that mediates the molting process and ATPase-mediated energy processes, the majority of proteins with significant effects in previous studies in response to cyprid treatment with butenolide and polyether B remained unchanged in the present study, suggesting that meleagrin may exhibit a different mechanism. © 2013 American Chemical Society.

  9. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2016-06-01

    Full Text Available In this study, flat sheet asymmetric polyphenylsulfone (PPSU ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM, contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R, Rm (membrane inherent resistance, Rc (cake layer resistance, and Rp (pore plugging resistance. The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m2·h, the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  10. Development of High-Antifouling PPSU Ultrafiltration Membrane by Using Compound Additives: Preparation, Morphologies, and Filtration Resistant Properties.

    Science.gov (United States)

    Liu, Jie; Zhong, Zhencheng; Ma, Rui; Zhang, Weichen; Li, Jiding

    2016-01-01

    In this study, flat sheet asymmetric polyphenylsulfone (PPSU) ultrafiltration membranes with enhanced antifouling properties were prepared with a non-solvent induced phase separation (NIPS) method through compound additives containing a polymeric pore-forming agent, a small molecular non-solvent and a surfactant. The formation processes of the porous asymmetric membranes with different kinds of additives were studied in detail, and the microstructure controllable preparation of membrane was achieved by establishing a bridge between the membrane preparation parameters and separation performances. All prepared membranes were characterized by using a scanning electron microscope (SEM), contact angle analysis, porosity, maximum pore size, water and BSA solution permeability studies. The performance efficiency of the membrane was evaluated by using BSA as a model foulant in terms of permeability, solute rejection (R), Rm (membrane inherent resistance), Rc (cake layer resistance), and Rp (pore plugging resistance). The results showed that when the compound additives were used, the inter-connected pores were observed, maximum pore size, contact angle and membrane filtration resistance decreased, while the porosity increased. When PVP compound additives were added, the water flux increased from 80.4 to 148.1 L/(m²·h), the BSA rejection increased from 53.2% to 81.5%. A similar trend was observed for membranes with added PEG compound additives; the water flux and BSA rejection simultaneously increased. The filtration resistance decreased as a result of compound additives. The uniformity of membrane and the number of effective pores could be enhanced by adding compound additives through the cooperation of different additives.

  11. Self-cleaning antimicrobial surfaces by bio-enabled growth of SnO2 coatings on glass

    Science.gov (United States)

    André, Rute; Natalio, Filipe; Tahir, Muhammad Nawaz; Berger, Rüdiger; Tremel, Wolfgang

    2013-03-01

    Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its photoactivity - creates a self-cleaning surface. The intrinsic self-cleaning properties could lead to the development of new protective, antifouling coatings on various substrates.Conventional vapor-deposition techniques for coatings require sophisticated equipment and/or high-temperature resistant substrates. Therefore bio-inspired techniques for the fabrication of inorganic coatings have been developed in recent years. Inspired by the biology behind the formation of the intricate skeletons of diatoms orchestrated by a class of cationic polyamines (silaffins) we have used surface-bound spermine, a naturally occurring polyamine, to promote the fast deposition of homogeneous, thin and transparent biomimetic SnO2 coatings on glass surfaces. The bio-enabled SnO2 film is highly photoactive, i.e. it generates superoxide radicals (O2&z.rad;-) upon sunlight exposure resulting in a strong degradation of organic contaminants and a strong antimicrobial activity. Upon illumination the biomimetic SnO2 coating exhibits a switchable amphiphilic behavior, which - in combination with its

  12. PIT Coating Requirements Analysis

    International Nuclear Information System (INIS)

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  13. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  14. Optical Properties of Window Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Window coating used for the building in recent years is described. Important design principles, practical coating materials, and attainable optical properties for research-type coatings are introduced. Discussion is carried out on the spectrally selective coatings, the electrochromic coatings, and the thermochromic coatings.

  15. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  16. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen;

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...... in order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  17. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  18. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  19. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim;

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers......, and inhibitive coatings are outlined. In the past decades, several alternatives to organic solvent-borne coatings have reached the commercial market. This review also presents some of these technologies and discusses some of their advantages and limitations. Finally, some of the mechanisms leading to degradation...... of their suitability for use. An important aspect in the development of new VOC-compliant, high-performance anticorrosive coating systems is a thorough knowledge of the components in anticorrosive coatings, their interactions, their advantages and limitations, as well as a detailed knowledge on the failure modes...

  20. Simultaneous determination of antifouling herbicides in marina water samples by on-line solid-phase extraction followed by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Ferrer, I; Barceló, D

    1999-08-27

    Solid-phase extraction (SPE) coupled on-line with either liquid chromatography-diode array detection (LC-DAD) or liquid chromatography-atmospheric pressure chemical ionization mass spectrometry was applied to the simultaneous analysis of several antifouling herbicides such as diuron, TCMTB (2-thiocyanomethylthiobenzothiazole), Irgarol and chlorothalonil in seawater samples. SPE was carried out on polymeric cartridges (PLRP-s) after the percolation of 100 ml of seawater sample, with recoveries ranging from 96 to 111% for the antifouling compounds. LC-MS detection was used in negative and positive ion mode. In positive ion mode, additional structural information for diuron and Irgarol was obtained by increasing the fragmentor voltage, thus permitting the unequivocal identification of these compounds in environmental waters. Method detection limits were in the range of 0.005 microg/l. This methodology was also compared to LC-DAD in terms of selectivity and sensitivity. Finally, the method was evaluated for the analysis of environmental seawater samples, from the Ebre Delta area and Masnou marina, in Catalonia (Spain). PMID:10497940

  1. Toxicity of anti-fouling paints for use on ships and leisure boats to non-target organisms representing three trophic levels

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Jenny [Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden); Ytreberg, Erik, E-mail: erik.ytreberg@itm.su.s [Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden); Eklund, Britta [Department of Applied Environmental Science (ITM), Stockholm University, SE-106 91 Stockholm (Sweden)

    2010-03-15

    Leachates of anti-fouling paints for use on ships and leisure boats are examined for their ecotoxicological potential. Paint leachates were produced in both 7 per mille artificial (ASW) and natural seawater (NSW) and tested on three organisms, the bacterium Vibrio fischeri, the macroalga Ceramium tenuicorne, and the crustacean Nitocra spinipes. Generally, leaching in ASW produced a more toxic leachate and was up to 12 times more toxic to the organisms than was the corresponding NSW leachate. The toxicity could be explained by elevated concentrations of Cu and Zn in the ASW leachates. Of the NSW leachates, those from the ship paints were more toxic than those from leisure boat paints. The most toxic paint was the biocide-free leisure boat paint Micron Eco. This implies that substances other than added active agents (biocides) were responsible for the observed toxicity, which would not have been discovered without the use of biological tests. - Leachate from a biocide-free anti-fouling paint for leisure boat use was more toxic than leachates from ship paints.

  2. Structural optimization and evaluation of butenolides as potent antifouling agents: modification of the side chain affects the biological activities of compounds

    KAUST Repository

    Li, Yongxin

    2012-09-01

    A recent global ban on the use of organotin compounds as antifouling agents has increased the need for safe and effective antifouling compounds. In this study, a series of new butenolide derivatives with various amine side chains was synthesized and evaluated for their anti-larval settlement activities in the barnacle, Balanus amphitrite. Side chain modification of butenolide resulted in butenolides 3c-3d, which possessed desirable physico-chemical properties and demonstrated highly effective non-toxic anti-larval settlement efficacy. A structure-activity relationship analysis revealed that varying the alkyl side chain had a notable effect on anti-larval settlement activity and that seven to eight carbon alkyl side chains with a tert-butyloxycarbonyl (Boc) substituent on an amine terminal were optimal in terms of bioactivity. Analysis of the physico-chemical profile of butenolide analogues indicated that lipophilicity is a very important physico-chemical parameter contributing to bioactivity. © 2012 Copyright Taylor and Francis Group, LLC.

  3. Investigations of inorganic and organic fouling behaviors, antifouling and cleaning strategies for pressure retarded osmosis (PRO) membrane using seawater desalination brine and wastewater.

    Science.gov (United States)

    Han, Gang; Zhou, Jieliang; Wan, Chunfeng; Yang, Tianshi; Chung, Tai-Shung

    2016-10-15

    By employing seawater desalination brine (SWBr) and wastewater brine (WWBr) as the feed pair, membrane fouling behaviors as well as antifouling and cleaning strategies for the state-of-the-art thin-film composite polyethersulfone (TFC-PES) hollow fiber membrane have been systematically investigated under pressure retarded osmosis (PRO) operations. Fouling on the polyamide selective layer induced by the SWBr draw solution is relatively mild because of the outstanding membrane rejection and the hydration antifouling layer formed by the permeating water. However, using WWBr as the feed causes fast and severe internal concentration polarization (ICP) and fouling within the porous PES substrate, which result in dramatic flux and power density declines. In addition, the PRO fouling upon and within the porous substrate is highly irreversible. Experimental data show that both anti-scalant pretreatment and pH adjustment of WWBr could effectively mitigate inorganic fouling, while increasing feed flow velocity along the substrate surface is ineffective for fouling control. To clean the fouled membranes, hydraulic-pressure induced backwash and flushing with alkaline and NaOCl solutions on the fouled surface are effective strategies to remove foulants and regenerate membranes with a flux recovery of 83-90%. However, osmotic backwash shows low cleaning efficiency in PRO. In summary, a proper combination of feed pretreatment and membrane cleaning strategies has been demonstrated in this study to sustain PRO operations with a high water flux and power density. PMID:27470469

  4. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  5. COMPOSICIÓN QUIMICA Y ACTIVIDAD ANTIFOULING DE LA FRACCION LIPIDICA DE LA ESPONJA MARINA Cliona tenuis (Clionidae

    Directory of Open Access Journals (Sweden)

    Leonardo Castellanos

    2009-04-01

    Full Text Available Normal 0 21 false false false st1\\:*{behavior:url(#ieooui } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabla normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman"; mso-ansi-language:#0400; mso-fareast-language:#0400; mso-bidi-language:#0400;} Del extracto orgánico de la esponja marina Cliona tenuis, recolectada en las Islas del Rosario (Colombia, Mar Caribe, fue obtenida la fracción lipídica, la cual presentó propiedades antifouling en pruebas en campo. Esta fracción fue separada por CC sobre gel de sílice hasta obtener fracciones de ésteres metílicos, glicéridos, glicolípidos, fosfolípidos y ácidos grasos libres, las cuales fueron identificadas por CCD y técnicas de dereplicación (RMN 1H y 13C. Posteriormente, las fracciones de glicéridos, glicolípidos y fosfolípidos fueron hidrolizadas y los ácidos obtenidos, junto con los provenientes de la fracción de ácidos grasos libres, fueron transformados en ésteres metílicos y todos se analizaron por CGAR-EM. Para ubicar las insaturaciones y ramificaciones, los ésteres metílicos se transformaron luego en sus correspondientes pirrolididas, las cuales también se analizaron por CGAR-EM. El estudio cromatográfico (valores de ECL y de los espectros de masas de los ésteres metílicos y de sus derivados pirrolididas permitió identificar 81 ácidos grasos diferentes, de los cuales no habían sido previamente reportados: los ácidos 4,8-hexadecadienoico, 11-metil-4,10-octadecadienoico, 6,9,12,14-icosatetraenoico, y 6,9,12,14,17-icosapentanoico.

  6. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland;

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used for these...... designs and present test results from coatings....

  7. Biocompatibility of Niobium Coatings

    OpenAIRE

    René Olivares-Navarrete; Jhon Jairo Olaya; Claudia Ramírez; Sandra Elizabeth Rodil

    2011-01-01

    Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS) substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainles...

  8. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  9. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  10. Comparative safety of the antifouling compound butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) to the marine medaka (Oryzias melastigma)

    KAUST Repository

    Chen, Lianguo

    2014-04-01

    This study evaluated the potential adverse effects of butenolide, a promising antifouling compound, using the marine medaka (Oryzias melastigma), a model fish for marine ecotoxicology. The active ingredient used in the commercial antifoulant SeaNine 211, 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) was employed as the positive control. Adult marine medaka (4-month-old) were exposed to various concentrations of butenolide or DCOIT for 28 days and then depurated in clean seawater for 14 days (recovery). A suite of sensitive biomarkers, including hepatic oxidative stress, neuronal signal transmission, endocrine disruption, and reproductive function, was used to measure significant biological effects induced by the chemicals. Compared to DCOIT, chronic exposure to butenolide induced a lower extent of oxidative stress in the liver of male and female medaka. Furthermore, butenolide-exposed fish could recover faster from oxidative stress than fish exposed to DCOIT. Regarding neurotransmission, DCOIT significantly inhibited acetylcholinesterase (AChE) activity in the brain of both male and female medaka, whereas this was not significant for butenolide. In addition, plasma estradiol (E2) level was elevated and testosterone (T) level was decreased in male medaka exposed to DCOIT. This greatly imbalanced sex hormones ratio (E2/T) in exposed males, indicating that DCOIT is a potent endocrine disruptive chemical. In contrast, butenolide induced only moderate effects on sex hormone levels in exposed males, which could be gradually recovered during depuration. Moreover, the endocrine disruptive effect induced by butenolide did not affect normal development of offspring. In contrast, DCOIT-exposed fish exhibited a decrease of egg production and impaired reproductive success. Overall, the above findings demonstrated that chronic exposure to butenolide induced transient, reversible biological effect on marine medaka, while DCOIT could impair reproductive success of fish, as

  11. Innovations in coating technology.

    Science.gov (United States)

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review. PMID:19075909

  12. Surface modification of ultrafiltration membranes by grafting glycine-functionalized PVA based on polydopamine coatings

    Science.gov (United States)

    Li, Fang; Ye, Jianfeng; Yang, Linming; Deng, Chunhua; Tian, Qing; Yang, Bo

    2015-08-01

    Due to the ease of processing and stability during filtration, polydopamine (PD) coatings with grafted hydrophilic polymers have recently received significant attention. In this study, glycine-functionalized PVA was synthesized and grafted to a PD-coated ultrafiltration (UF) membrane to improve its performance during wastewater filtration. The membranes were modified by grafting PD with glycine-functionalized PVA (PD-g-PVA), and the resultant materials were characterized using surface morphology analyses, contact angle measurements, flux, oil/water emulsion separation tests, and grafted layer stability tests. The performance of the PD-g-PVA membrane was compared to that of the membrane modified with PD-g-polyethylene glycol (PEG). After grafting the PD-g-PVA, the surface roughness of the membranes decreased significantly. The grafted PVA layer, which was stable under acidic and alkaline conditions, protected the PD layer. The filtration experiments with an oil/water emulsion indicated that modifying the glycine-functionalized PVA by grafting can significantly improve the antifouling ability of membranes.

  13. Formation, Removal, and Reformation of Surface Coatings on Various Metal Oxide Surfaces Inspired by Mussel Adhesives.

    Science.gov (United States)

    Kang, Taegon; Oh, Dongyeop X; Heo, Jinhwa; Lee, Han-Koo; Choy, Seunghwan; Hawker, Craig J; Hwang, Dong Soo

    2015-11-11

    Mussels survive by strongly attaching to a variety of different surfaces, primarily subsurface rocks composed of metal oxides, through the formation of coordinative interactions driven by protein-based catechol repeating units contained within their adhesive secretions. From a chemistry perspective, catechols are known to form strong and reversible complexes with metal ions or metal oxides, with the binding affinity being dependent on the nature of the metal ion. As a result, catechol binding with metal oxides is reversible and can be broken in the presence of a free metal ion with a higher stability constant. It is proposed to exploit this competitive exchange in the design of a new strategy for the formation, removal, and reformation of surface coatings and self-assembled monolayers (SAM) based on catechols as the adhesive unit. In this study, catechol-functionalized tri(ethylene oxide) (TEO) was synthesized as a removable and recoverable self-assembled monolayer (SAM) for use on oxides surfaces. Attachment and detachment of these catechol derivatives on a variety of surfaces was shown to be reversible and controllable by exploiting the high stability constant of catechol to soluble metal ions, such as Fe(III). This tunable assembly based on catechol binding to metal oxides represents a new concept for reformable coatings with applications in fields ranging from friction/wettability control to biomolecular sensing and antifouling.

  14. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  15. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  16. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  17. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  18. Fast-drying coating

    Science.gov (United States)

    Bartoszek, E. J.

    1978-01-01

    Nontoxic coating has excellent optical properties and can be pigmented in many different colors. It bonds well, can be applied by conventional methods, weathers well, and is self-extinguishing. Coating composition comprises latex blends of fluorocarbons, acrylic resins, stabilizers, modifiers, variety of inorganic pigments, and other additives. Suitable latex primers have also been developed from acrylic latex base.

  19. Effects of adsorbed proteins, an antifouling agent and long-duration DC voltage pulses on the impedance of silicon-based neural microelectrodes.

    Science.gov (United States)

    Sommakia, Salah; Rickus, Jenna L; Otto, Kevin J

    2009-01-01

    The successful use of implantable neural microelectrodes as neuroprosthetic devices depends on the mitigation of the reactive tissue response of the brain. One of the factors affecting the ultimate severity of the reactive tissue response and the in vivo electrical properties of the microelectrodes is the initial adsorption of proteins onto the surface of the implanted microelectrodes. In this study we quantify the increase in microelectrode impedance magnitude at physiological frequencies following electrode immersion in a 10% bovine serum albumin (BSA) solution. We also demonstrate the efficacy of a common antifouling molecule, poly(ethylene glycol) (PEG), in preventing a significant increase in microelectrode impedance. In addition, we show the feasibility of using long-duration DC voltage pulses to remove adsorbed proteins from the microelectrode surface. PMID:19963693

  20. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  1. Charged-particle coating

    International Nuclear Information System (INIS)

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  2. Modern coating processes

    International Nuclear Information System (INIS)

    Articles collected in this volume explain both the present state of technique and current developments and problems in the environment of the following coating processes: - Hardfacing welding and soldering; - Thermal spraying; - Thin film technique (CVD, PVD); - Galvanising. Apart from basic representation of the conventional use of the different processes, both the new technological and material developments are to the fore. In this context, the purposeful post-treatment of coatings and the combination of different processes to achieve special coating properties should be mentioned. Examples of this show the hot isostatic pressing or laser melting of sprayed coatings, the simultaneous spraying and shot-blasting and the combination of galvanic and thin film techniques for the manufacture of hybrid systems. A further important group of subjects concerns the testing of various coatings. (orig.)

  3. Metal contamination at recreational boatyards linked to the use of antifouling paints-investigation of soil and sediment with a field portable XRF.

    Science.gov (United States)

    Lagerström, Maria; Norling, Matz; Eklund, Britta

    2016-05-01

    The application of a field portable X-ray fluorescence spectrometer (FPXRF) to measure Cu, Zn, and Pb in soil and sediments at recreational boatyards by Lake Mälaren in Sweden was investigated. Confirmatory chemical analysis on freeze-dried samples shows that, ex situ, the FPXRF produces definitive level data for Cu and Zn and quantitative screening data for Pb, according to USEPA criteria for data quality. Good agreement was also found between the ex situ measurements and the in situ screening. At each of the two studied boatyards, >40 in situ soil measurements were carried out. Statistical differences in soil concentration based on land use were consequently found: the areas used for boat storage and maintenance were significantly higher in Cu and Zn than the areas used for car parking and transportation. The metal pollution in the boat storage areas is therefore shown to be directly linked to hull maintenance activities during which metal-containing antifouling paint particles are shed, end up on the ground, and consequently pollute the soil. In the boat storage areas, the Cu and Zn concentrations often exceeded the national guideline values for soil. In this study, they were also shown to increase with increasing age of the boatyard operation. Pb soil concentrations were only elevated at a few measurement points, reflecting the phasing out of Pb compounds from antifouling products over the past 2 decades. In the surface sediments, concentrations of Cu and Zn were 2-3 times higher compared to deeper levels. No decrease in metal concentration with time was found in the sediments, indicating that boat owners are not complying with the ban of biocide-containing paints in freshwater introduced over 20 years ago. PMID:26873824

  4. Isomolybdate conversion coatings

    Science.gov (United States)

    Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)

    2002-01-01

    A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).

  5. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  6. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  7. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.

  8. Friction surfaced Stellite6 coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rao, K. Prasad; Damodaram, R. [Department of Metallurgical and Materials Engineering - Indian Institute of Technology Madras, Chennai 600 036 (India); Rafi, H. Khalid, E-mail: khalidrafi@gmail.com [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Ram, G.D. Janaki [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600 036 (India); Reddy, G. Madhusudhan [Metal Joining Group, Defence Metallurgical Research Laboratory (DMRL) Kanchanbagh, Hyderabad 500 058 (India); Nagalakshmi, R. [Welding Research Institute, Bharat Heavy Electricals Limited, Tiruchirappalli 620 014 (India)

    2012-08-15

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: Black-Right-Pointing-Pointer Stellite6 used as coating material for friction surfacing. Black-Right-Pointing-Pointer Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. Black-Right-Pointing-Pointer Finer and uniformly distributed carbides in friction surfaced coatings. Black-Right-Pointing-Pointer Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  9. Nanostructured Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    None

    2009-03-01

    This factsheet describes a research project that deals with the nanostructured superhydrophobic (SH) powders developed at ORNL. This project seeks to (1) improve powder quality; (2) identify binders for plastics, fiberglass, metal (steel being the first priority), wood, and other products such as rubber and shingles; (3) test the coated product for coating quality and durability under operating conditions; and (4) application testing and production of powders in quantity.

  10. Spin coating apparatus

    Science.gov (United States)

    Torczynski, John R.

    2000-01-01

    A spin coating apparatus requires less cleanroom air flow than prior spin coating apparatus to minimize cleanroom contamination. A shaped exhaust duct from the spin coater maintains process quality while requiring reduced cleanroom air flow. The exhaust duct can decrease in cross section as it extends from the wafer, minimizing eddy formation. The exhaust duct can conform to entrainment streamlines to minimize eddy formation and reduce interprocess contamination at minimal cleanroom air flow rates.

  11. Advanced coated particle fuels

    International Nuclear Information System (INIS)

    The coated particle fuel (cpf) has been developed for use in high-temperature gas-cooled reactors, but it may find applications in other types of reactors. In JAERI, besides the development of cpf for High Temperature Engineering Test Reactor, conceptual studies of the cpf applications in actinide burner reactors and space reactors have been made. The conceptual design studies as well as the research and development of advanced coatings, ZrC and TiN, are reviewed. (author)

  12. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  13. Residual stresses within sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    JIANG Yi; XU Bin-shi; WANG Hai-dou

    2005-01-01

    Some important developments of residual stress researches for coating-based systems were studied. The following topics were included the sources of residual stresses in coatings: error analysis of Stoney's equation in the curvature method used for the measurement of coating residual stress, the modeling of residual stress and some analytical models for predicting the residual stresses in coatings. These topics should provide some important insights for the fail-safe design of the coating-based systems.

  14. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  15. Coated particle waste form development

    International Nuclear Information System (INIS)

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  16. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation.

    Science.gov (United States)

    Chen, Si Cong; Amy, Gary L; Chung, Tai-Shung

    2016-01-01

    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m(2) at 20 bar. The average power density increased to 12.6 W/m(2) by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m(2) by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in

  17. Membrane fouling and anti-fouling strategies using RO retentate from a municipal water recycling plant as the feed for osmotic power generation.

    Science.gov (United States)

    Chen, Si Cong; Amy, Gary L; Chung, Tai-Shung

    2016-01-01

    RO retentate from a municipal water recycling plant is considered as a potential feed stream for osmotic power generation in this paper. The feasibility of using RO retentate from a municipal water recycling plant was examined from two aspects: (a) the membrane fouling propensity of RO retentate, and (b) the efficacy of anti-fouling strategies. The membranes used in this study were the inner selective thin film composite polyethersulfone (TFC/PES) hollow fiber membranes, which possessed a high water permeability and good mechanical strength. Scaling by phosphate salts was found to be one possible inorganic fouling on the innermost layer of the PES membrane, whereas silica fouling was observed to be the governing fouling on the outmost surface of the PES membrane. Two anti-fouling pretreatments, i.e., pH adjustment and anti-scalant pre-treatment for the feed stream, were studied and found to be straightforward and effective. Using RO retentate at pH 7.2 as the feed and 1 M NaCl as the draw solution, the average power density was 7.3 W/m(2) at 20 bar. The average power density increased to 12.6 W/m(2) by modifying RO retentate with an initial pH value of 5.5 using HCl and to 13.4 W/m(2) by adding 1.1 mM ethylenediaminetetraacetic acid (EDTA). Moreover, the flux recovery of the fouled membranes, without the indicated pretreatments, reached 84.9% using deionized (DI) water flushing and 95.0% using air bubbling under a high crossflow velocity of 23.3 cm/s (Re = 2497) for 30 min. After pretreatment by pH adjustment, the flux recovery increased to 94.6% by DI water flushing and 100.0% by air bubbling. After pretreatment by adding 1.1 mM EDTA into RO retentate, flux was almost fully restored by physical cleaning by DI water flushing and air bubbling. These results provide insight into developing an effective pretreatment by either pH adjustment or EDTA addition before PRO and physical cleaning methods by DI water flushing and air bubbling for membrane used in

  18. Conductive epoxypolyamide coating composition

    Energy Technology Data Exchange (ETDEWEB)

    Mirabeau, M.N.; Rohrbacher, F.

    1991-10-01

    This patent describes a conductive coating composition comprising a film forming binder and pigment in a pigment to binder weight ratio of about 15:100 to 100:100. It comprises 40-70% by weight of an amine component having at least two reactive amine groups selected from the group consisting of an amine, polyamide, polyamido amine resin or mixtures thereof; and 30-60% by weight of an epoxy resin having at least two epoxy groups per resin molecule; wherein the pigment comprises an electrically conductive pigment that comprises silica selected from the group consisting of amorphous silica, a silica containing material or silica coated pigment, the silica being in association with a two- dimensional network of antimony-containing tin oxide crystallites in which the antimony content ranges from about 1-30% by weight of the tin oxide and the composition forms a coating having a surface conductivity of at least 100 Ransburg units.

  19. Hydrogel-coated feed spacers in two-phase flow cleaning in spiral wound membrane elements: a novel platform for eco-friendly biofouling mitigation.

    Science.gov (United States)

    Wibisono, Yusuf; Yandi, Wetra; Golabi, Mohsen; Nugraha, Roni; Cornelissen, Emile R; Kemperman, Antoine J B; Ederth, Thomas; Nijmeijer, Kitty

    2015-03-15

    Biofouling is still a major challenge in the application of nanofiltration and reverse osmosis membranes. Here we present a platform approach for environmentally friendly biofouling control using a combination of a hydrogel-coated feed spacer and two-phase flow cleaning. Neutral (polyHEMA-co-PEG10MA), cationic (polyDMAEMA) and anionic (polySPMA) hydrogels have been successfully grafted onto polypropylene (PP) feed spacers via plasma-mediated UV-polymerization. These coatings maintained their chemical stability after 7 days incubation in neutral (pH 7), acidic (pH 5) and basic (pH 9) environments. Anti-biofouling properties of these coatings were evaluated by Escherichia coli attachment assay and nanofiltration experiments at a TMP of 600 kPag using tap water with additional nutrients as feed and by using optical coherence tomography. Especially the anionic polySPMA-coated PP feed spacer shows reduced attachment of E. coli and biofouling in the spacer-filled narrow channels resulting in delayed biofilm growth. Employing this highly hydrophilic coating during removal of biofouling by two-phase flow cleaning also showed enhanced cleaning efficiency, feed channel pressure drop and flux recoveries. The strong hydrophilic nature and the presence of negative charge on polySPMA are most probably responsible for the improved antifouling behavior. A combination of polySPMA-coated PP feed spacers and two-phase flow cleaning therefore is promising and an environmentally friendly approach to control biofouling in NF/RO systems employing spiral-wound membrane modules.

  20. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable and long lasting fixation between living bone and the implant surface. In total joint replacements of cementless designs, coatings of calcium phosphates were introduced as a means...... of improving the fixation of implants. Of these, hydroxyapatite (HA) is the most widely used and most extensively investigated. HA is highly osseoconductive, and the positive effect is well documented in both basic and long-term clinical research [1–6]. This chapter describes experimental and clinical studies...... evaluating bone-implant fixation with HA coatings....

  1. Preparation of hydrophobic coatings

    Science.gov (United States)

    Branson, Eric D.; Shah, Pratik B.; Singh, Seema; Brinker, C. Jeffrey

    2009-02-03

    A method for preparing a hydrophobic coating by preparing a precursor sol comprising a metal alkoxide, a solvent, a basic catalyst, a fluoroalkyl compound and water, depositing the precursor sol as a film onto a surface, such as a substrate or a pipe, heating, the film and exposing the film to a hydrophobic silane compound to form a hydrophobic coating with a contact angle greater than approximately 150.degree.. The contact angle of the film can be controlled by exposure to ultraviolet radiation to reduce the contact angle and subsequent exposure to a hydrophobic silane compound to increase the contact angle.

  2. Methods and means for coating paper by film coating

    NARCIS (Netherlands)

    van der Maarel, Marc; Ter Veer, Arend Berend Cornelis; Vrieling-Smit, Annet; Delnoye, Pierre

    2015-01-01

    This invention relates to the field of paper coating, more in particular to means and methods for providing paper with at least one layer of pigment using film coating to obtain a well printable surface. Provided is a method for preparing coated paper comprising the steps of: a) providing a pigmente

  3. Nacre-inspired design of mechanical stable coating with underwater superoleophobicity.

    Science.gov (United States)

    Xu, Li-Ping; Peng, Jitao; Liu, Yibiao; Wen, Yongqiang; Zhang, Xueji; Jiang, Lei; Wang, Shutao

    2013-06-25

    Because of the frequent oil spill accidents in marine environment, stable superoleophobic coatings under seawater are highly desired. Current underwater superoleophobic surfaces often suffer from mechanical damages and lose their superoleophobicity gradually. It remains a challenge to fabricate a stable and robust underwater superoleophobic film which can endure harsh conditions in practical application. Nacre is one of most extensively studied rigid biological materials. Inspired by the outstanding mechanical property of seashell nacre and those underwater superoleophobic surfaces from nature, we fabricated a polyelectrolyte/clay hybrid film via typical layer-by-layer (LBL) method based on building blocks with high surface energy. 'Bricks-and-mortar' structure of seashell nacre was conceptually replicated into the prepared film, which endows the obtained film with excellent mechanical property and great abrasion resistance. In addtion, the prepared film also exhibits stable underwater superoleophobicity, low oil adhesion, and outstanding environment durability in artificial seawater. We anticipate that this work will provide a new method to design underwater low-oil-adhesion film with excellent mechanical property and improved stability, which may advance the practical applications in marine antifouling and microfluidic devices.

  4. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications.

  5. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    Energy Technology Data Exchange (ETDEWEB)

    Buga, Mihaela-Ramona [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Zaharia, Cătălin, E-mail: zaharia.catalin@gmail.com [Advanced Polymer Materials Group, University Politehnica of Bucharest, 1-7, Gh. Polizu Street, Sector 1, 011061 Bucharest (Romania); Bălan, Mihai [National Research and Development Institute for Cryogenics and Isotopic Technologies, ICIT Rm. Valcea, 240050 Rm. Valcea, Uzinei 4, CP7, Raureni, Valcea (Romania); Bressy, Christine [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France); Ziarelli, Fabio [Fédération des Sciences Chimiques de Marseille, CNRS-FR1739, Spectropole, 13397 Marseille (France); Margaillan, André [Université de Toulon, MAPIEM, EA 4323, 83957 La Garde (France)

    2015-06-01

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, {sup 13}C, {sup 29}Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents.

  6. Multiresidue method for the analysis of five antifouling agents in marine and coastal waters by gas chromatography-mass spectrometry with large-volume injection.

    Science.gov (United States)

    Agüera, A; Piedra, L; Hernando, M D; Fernández-Alba, A R

    2000-08-11

    A simple multiresidue method has been developed for the determination of five pesticides, commonly used as active ingredients in antifouling paints, in seawater samples. The pesticides studied were: chlorothalonil (2,4,5,6-tetrachloroisophthalonitrile), dichlofluanid (N-dimethyl-N-phenylsulphamide), Sea-Nine 211 (4,5-dichloro-2-n-octyl-4-isothazolin-3-one), Irgarol 1051 (2-methylthio-4-tert.-butylamino-6-cyclopropylamino-s-triazine) and TCMTB (2-thiocyanomethylthiobenzothiazole). The analytes were extracted from 200 ml water samples, using solid-phase extraction. A copolymer with hydrophilic-lipophilic balance was used as sorbent yielding good recoveries (82-95%) for most compounds except dichlofluanid and Sea-Nine 211 (<60%). Large volume injection (10 microl) gas chromatography and electron impact ionization MS (selected ion monitoring mode) detection enabled these compounds to be identified and quantified at the 1.2-3.0 ng/l level. Analysis of samples performed in three marinas in Almería (Spain) revealed the presence of Irgarol 1051 in all the cases, at concentration levels between 25 and 450 ng/l. PMID:10985557

  7. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications

    International Nuclear Information System (INIS)

    In this study, silk fibroin surface containing hydroxyl and aminogroups was firstly modified using a polymerizable coupling agent 3-(trimethoxysilyl) propyl methacrylate (MPS), in order to induce vinyl groups onto the fiber surface. The reversible addition–fragmentation chain transfer (RAFT)-mediated polymerization of methyl methacrylate (MMA) and tributylsilyl methacrylate (TBSiMA) through the immobilized vinyl bond on the silk fibroin surface in the presence of 2-cyanoprop-2-yl dithiobenzoate (CPDB) as chain-transfer agent and 2,2′-azobis(isobutyronitrile) (AIBN) as initiator was conducted in toluene solution at 70 °C for 24 h. The structure and properties of the modified fiber were characterized by Fourier Transform Infrared Spectroscopy, 13C, 29Si Nuclear Magnetic Resonance (NMR) spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS), confirming the presence of the coupling molecule and the methacrylate groups onto the silk fibroin fiber surface. Molecular weight distributions were assessed by triple detection size exclusion chromatography (TD-SEC) in order to verify the livingness of the polymerization. - Highlights: • SF surface containing hydroxyl and amino groups was firstly modified with MPS. • RAFT polymerizations of MMA and TBSiMA were studied. • TD-SEC was used to verify the livingness of the RAFT polymerization. • The grafted polymer chains enhance the thermal stability of the SF fibers. • The grafted fibers could be potentially promising candidates as antifouling agents

  8. Functionalization of alkyne-terminated thermally hydrocarbonized porous silicon nanoparticles with targeting peptides and antifouling polymers: effect on the human plasma protein adsorption.

    Science.gov (United States)

    Wang, Chang-Fang; Mäkilä, Ermei M; Bonduelle, Colin; Rytkönen, Jussi; Raula, Janne; Almeida, Sérgio; Närvänen, Ale; Salonen, Jarno J; Lecommandoux, Sebastien; Hirvonen, Jouni T; Santos, Hélder A

    2015-01-28

    Porous silicon (PSi) nanomaterials combine a high drug loading capacity and tunable surface chemistry with various surface modifications to meet the requirements for biomedical applications. In this work, alkyne-terminated thermally hydrocarbonized porous silicon (THCPSi) nanoparticles were fabricated and postmodified using five bioactive molecules (targeting peptides and antifouling polymers) via a single-step click chemistry to modulate the bioactivity of the THCPSi nanoparticles, such as enhancing the cellular uptake and reducing the plasma protein association. The size of the nanoparticles after modification was increased from 176 to 180-220 nm. Dextran 40 kDa modified THCPSi nanoparticles showed the highest stability in aqueous buffer. Both peptide- and polymer-functionalized THCPSi nanoparticles showed an extensive cellular uptake which was dependent on the functionalized moieties presented on the surface of the nanoparticles. The plasma protein adsorption study showed that the surface modification with different peptides or polymers induced different protein association profiles. Dextran 40 kDa functionalized THCPSi nanoparticles presented the least protein association. Overall, these results demonstrate that the "click" conjugation of the biomolecules onto the alkyne-terminated THCPSi nanoparticles is a versatile and simple approach to modulate the surface chemistry, which has high potential for biomedical applications. PMID:25539741

  9. The performance of hybrid titania/silica-derived xerogels as active antifouling/fouling-release surfaces against the marine alga Ulva linza: in situ generation of hypohalous acids.

    Science.gov (United States)

    Damon, Corey A; Gatley, Caitlyn M; Beres, Joshua J; Finlay, John A; Franco, Sofia C; Clare, Anthony S; Detty, Michael R

    2016-09-13

    Mixed titania/silica xerogels were prepared using titanium tetraisopropoxide (TTIP) and tetraethoxy orthosilicate (TEOS). Xerogel properties were modified by incorporating n-octyltriethoxysilane (C8). The xerogels catalyze the oxidation of bromide and chloride with hydrogen peroxide (H2O2) to produce hypohalous acids at pH 7 and pH 8. The antifouling/ fouling-release performance of a TTIP/C8/TEOS xerogel in the presence and absence of H2O2 was evaluated for the settlement of zoospores of the marine alga Ulva linza and for the removal of sporelings (young plants). In the absence of H2O2, differences in the settlement of zoospores and removal of sporelings were not significant relative to a titanium-free C8/TEOS xerogel. Addition of H2O2 gave a significant reduction in zoospore settlement and sporeling removal relative to the C8/TEOS xerogel and relative to peroxide-free conditions. The impact of TTIP on xerogel characteristics was evaluated by comprehensive contact angle analysis, scanning electron microscopy, and X-ray photoelectron spectroscopy. PMID:27458654

  10. Improved antifouling properties and selective biofunctionalization of stainless steel by employing heterobifunctional silane-polyethylene glycol overlayers and avidin-biotin technology

    Science.gov (United States)

    Hynninen, Ville; Vuori, Leena; Hannula, Markku; Tapio, Kosti; Lahtonen, Kimmo; Isoniemi, Tommi; Lehtonen, Elina; Hirsimäki, Mika; Toppari, J. Jussi; Valden, Mika; Hytönen, Vesa P.

    2016-07-01

    A straightforward solution-based method to modify the biofunctionality of stainless steel (SS) using heterobifunctional silane-polyethylene glycol (silane-PEG) overlayers is reported. Reduced nonspecific biofouling of both proteins and bacteria onto SS and further selective biofunctionalization of the modified surface were achieved. According to photoelectron spectroscopy analyses, the silane-PEGs formed less than 10 Å thick overlayers with close to 90% surface coverage and reproducible chemical compositions. Consequently, the surfaces also became more hydrophilic, and the observed non-specific biofouling of proteins was reduced by approximately 70%. In addition, the attachment of E. coli was reduced by more than 65%. Moreover, the potential of the overlayer to be further modified was demonstrated by successfully coupling biotinylated alkaline phosphatase (bAP) to a silane-PEG-biotin overlayer via avidin-biotin bridges. The activity of the immobilized enzyme was shown to be well preserved without compromising the achieved antifouling properties. Overall, the simple solution-based approach enables the tailoring of SS to enhance its activity for biomedical and biotechnological applications.

  11. Carbon coatings for medical implants

    OpenAIRE

    K. Bakowicz-Mitura; P. Couvrat; I. Kotela; P. Louda; D. Batory; J. Grabarczyk

    2007-01-01

    Purpose: In this paper we report in vitro and in vivo results of Nanocrystalline Diamond Coatings whichare used in medicine onto medical implants The very important property of carbon coatings is the protectionliving organism against the metalosis. Different medical implants with complicated shapes are covering byNanocrystalline Diamond Coatings by RF dense plasma CVD.Design/methodology/approach: 1) Material characterizations of deposited coatings have been evaluated by using:Transmission Ele...

  12. Foam coating of filtration media

    OpenAIRE

    Johansson, Mirva

    2015-01-01

    The objective of this thesis was to find out if foam coating could be applied to non-woven filtration media. The goal was to increase collection efficiency without significantly decreasing air permeability. In the theoretical part, foams and their characteristics were the centre of attention. Coating in general and, of course, foam coating were also studied. The empirical part consisted of series of foaming experiments and pilot scale coating experiments. In the foaming experiments differ...

  13. Optical coatings for fiber lasers

    Institute of Scientific and Technical Information of China (English)

    HONG Dong-mei; ZHU Zhen; YUE Wei

    2005-01-01

    Fiber laser is the future development direction for the high energy lasers. This paper describs two kinds of optical coatings for fiber laser, including long and short wave pass filters. The one characteristic of fiber laser coatings lies in that coatings should separate two closely wavelength light including laser pump wavelength (980 nm) and laser irradiation wavelength(1 050~1 100 nm). At the same time, the coatings should have high laser damage threshold.

  14. TABLET COATING TECHNIQUES: CONCEPTS AND RECENT TRENDS

    Directory of Open Access Journals (Sweden)

    Gupta Ankit

    2012-09-01

    Full Text Available Tablet coating is a common pharmaceutical technique of applying a thin polymer-based film to a tablet or a granule containing active pharmaceutical ingredients (APIs. Solid dosage forms are coated for a number of reasons, the most important of which is controlling the release profiles. The amount of coating on the surface of a tablet is critical to the effectiveness of the oral dosage form. Tablets are usually coated in horizontal rotating pans with the coating solution sprayed onto the free surface of the tablet bed. The advantages of tablet coating are taste masking, odour masking, physical and chemical protection, protects the drug from the gastric environment etc. There are various techniques for tablet coating such as sugar coating, film coating, and enteric coating. Recent trends in pharmaceutical technologies are the development of coating methods which overcomes the various disadvantages associated with solvent based coatings. In these latest technologies coating materials are directly coated onto the surface of solid dosage forms without using any solvent. Various solventless coatings are available such as electrostatic dry coating, magnetically assisted impaction coating, compression coating, hot melt coating, powder coating, and supercritical fluid coating. Supercell Coating Technology is a revolutionary tablet coating that accurately deposits controlled amounts of coating materials on tablets even if they are extremely hygroscopic or friable. Magnetically assisted impaction coating, electrostatic dry coating in solventless coatings, aqueous film coating and Supercell coating technology are also available recent technique of coating. An ideal tablet should be free from any visual defect or functional defect. The advancements and innovations in tablet manufacture have not decreased the problems, often encountered in the production, instead have increased the problems, mainly because of the complexities of tablet presses; and/or the

  15. Tribological characterization of selected hard coatings

    OpenAIRE

    Karlsson, Patrik

    2009-01-01

    Hard coatings are often used for protection of tool surfaces due to coating properties like low friction and high wear resistance. Even though many of the hard coatings have been tested for wear, it is important to try new wear test setups to fully understand tribological mechanisms and the potential of hard coatings. Few experiments have been performed with dual-coated systems where the sliding contact surfaces are coated with the same, or different, hard coating. The dual-coated system coul...

  16. Coatings and Tints of Spectacle Lenses

    OpenAIRE

    H. Zeki Büyükyıldız

    2012-01-01

    Spectacle lenses are made of mineral or organic (plastic) materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1) Anti-reflection coatings, 2) Hard coatings, 3) Clean coat, 4) Mirror coatings, 5) Color tint coating (one of coloring processes), 6) Photochromic coating (one of photochromic processes), and 7) Anti-fog...

  17. Waterborne coatings for videotape

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Fan, H.; Gogineni, N.; Jacobs, B.; Harrell, J.W.; Jefcoat, I.A.; Lane, A.M.; Nikles, D.E. [Univ. of Alabama, Tuscaloosa, AL (United States). Center for Materials for Information Technology

    1995-10-01

    Magnetic tape provides a low-cost, high-density information storage medium. There is a problem, however, because current manufacturing technology uses organic solvents to apply the magnetic wailing to the film. Here the authors describe a waterborne formulation that shows promise as a technology for pollution prevention. The organic solvents used in magnetic tape coating formulations include 2-butanone (methylethyl ketone [MEK]), 4-methyl-2-pentanone (methyl-iso-butyl ketone [MIBK]), tetrahydrofuran, toluene, and cyclohexanone. These solvents present an occupational hazard to the workers and emissions hazard to the environment. The authors developed a new waterborne coating formulation and prepared magnetic tape in a pilot coating trial. The tape has mechanical and magnetic properties comparable to those of the commercial VHS tape. There is a clear economic and environmental incentive to consider adopting this waterborne process for magnetic tape manufacture. This process is not commercial, and a development effort by a tape manufacturer is required to bring it to commercial reality. They have not addressed the important issue of long-term reliability of the materials package, an object of current research. However, they have made a case for a reexamination of the use of waterborne coating formulations by the magnetic tape industry.

  18. Niobium coating techniques

    CERN Document Server

    Calatroni, S

    2008-01-01

    We will give a historical overview of the niobium on copper sputtering technology for RF cavities and discuss the main advantages and disadvantages with respect to bulk niobium cavities. Some highlights of the present understanding will be given and some recent developments in the coating technology will be discussed.

  19. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention relates to a composition comprising encapsulated particles in a polymeric material. The composition comprises a continuous phase and a discontinuous phase incorporated therein, wherein the continuous phase comprises a first polymeric material and wherein the discontinuous ph...... invisible polymer coatings....

  20. Coatings for transport industry

    Directory of Open Access Journals (Sweden)

    Krzysztof LUKASZKOWICZ

    2014-09-01

    Full Text Available The investigations concerned structural analysis, as well as mechanical properties and wear resistant of MeN/DLC double-layer coating deposited by hybrid PVD/PACVD method. In sliding dry friction conditions, after the break-in time, the friction coefficient for the investigated elements is set in the range between 0.03-0.06.

  1. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  2. 磺化聚醚砜/纳米TiO2复合超滤膜制备及其抗污染机理%Fabrication of SPES/Nano-TiO2 Composite Ultrafiltration Membrane and Its Anti-fouling Mechanism*

    Institute of Scientific and Technical Information of China (English)

    罗明良; 温庆志; 刘佳林; 刘洪见; 贾自龙

    2011-01-01

    Membrane fouling is one of the major obstacles for reaching a high flux over a prolonged period of ultrafiltrafion (UF) process. In this study, a sulfonated-polyethersulfone (SPES)/nano-TiO2 composite UF membrane with good anti-fouling performance was fabricated by phase inversion and self-assembly methods. The TiO2 nanoparticle self-assembly on the SPES membrane surface was confirmed by X-ray photoelectron spectroscopy (XPS) and FT-IR spectrometer. The morphology and hydrophilicity were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle goniometer, respectively. The anti-fouling mechanism of composite UF membrane was discussed through the analysis of the micro-structure and component of UF membrane surface. The results showed that the TiO2 content and the micro-structure of the composite UF membrane surface had great influence on the separation and anti-fouling performance.

  3. Infrared optical coatings in SITP

    Institute of Scientific and Technical Information of China (English)

    LIU Ding-quan; ZHANG Feng-shan

    2005-01-01

    Infrared optical coatings in SITP (Shanghai Institute of Technical Physics) mainly cover the spectrum range from 0.7 μm to 15 μm, and visible and near-UV range are also been included. The coatings are mainly used for metal-reflectance mirrors, Anti-reflection(AR) lens and windows, filters, and dichroic beam splitters. Coatings passed some dependability tests. These optical coated devices usually consist in a remote observing instrument. Most coating materials are commercial products. And one kind of special material PbTe is made by ourselves. Some main results of our research department are reported.

  4. BIODEGRADABLE COATING FROM AGATHIS ALBA

    Directory of Open Access Journals (Sweden)

    NORYAWATI MULYONO

    2012-11-01

    Full Text Available The adhesive property of copal makes it as a potential coating onto aluminum foil to replace polyethylene. This research aimed to develop copal-based coating. The coating was prepared by extracting the copal in ethyl acetate and dipping the aluminium foil in ethyl acetate soluble extract of copal. The characterization of coating included its thickness, weight, thermal and chemical resistance, and biodegradation. The results showed that the coating thickness and weight increased as the copal concentration and dipping frequency increased. Thermal resistance test showed that the coating melted after being heated at 110°C for 30 min. Copal-based coating wasresistant to acidic solution (pH 4.0, water, and coconut oil, but was deteriorated in detergent 1% (w/v and basic solution (pH 10.0. Biodegradability test using Pseudomonas aeruginosa showed weight reduction of 76.82% in 30 days.

  5. Methods for Coating Particulate Material

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2013-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  6. Proteomic changes in brain tissues of marine medaka (Oryzias melastigma) after chronic exposure to two antifouling compounds: Butenolide and 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT)

    KAUST Repository

    Chen, Lianguo

    2014-12-01

    SeaNine 211 with active ingredient of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) has been used as a "green" antifouling agent worldwide but has raised serious biosafety concerns in coastal environments. DCOIT has the potential to disrupt the neurotransmission in nervous system, but the underlying mechanism has not been clarified. In the present study, we used TMT six-plex labeling coupled with two-dimensional LC-MS/MS analysis to investigate the protein expression profiles in brain tissues of the marine medaka (Oryzias melastigma) after a 28-day exposure to environmentally-realistic concentration of DCOIT at 2.55. μg/L (0.009. μM) or butenolide, one promising antifouling compound, at 2.31. μg/L (0.012. μM). DCOIT and butenolide induced differential expression of 26 and 18 proteins in male brains and of 27 and 23 proteins in female brains, respectively. Distinct mechanisms of toxicity were initiated by DCOIT and butenolide in males, whereas the protein expression profiles were largely similar in females treated by these two compounds. In males, DCOIT exposure mainly led to disruption of mitogen-activated protein kinase (MAPK) signaling pathway, while butenolide affected proteins related to the cytoskeletal disorganization that is considered as a general response to toxicant stress. Furthermore, a sex-dependent protein expression profile was also noted between male and female fish, as evident by the inverse changes in the expressions of common proteins (5 proteins for butenolide- and 2 proteins for DCOIT-exposed fish). Overall, this study provided insight into the molecular mechanisms underlying the toxicity of DCOIT and butenolide. The extremely low concentrations used in this study highlighted the ecological relevance, arguing for thorough assessments of their ecological risks before the commercialization of any new antifouling compound.

  7. Coat proteins isolated from clathrin coated vesicles can assemble into coated pits

    OpenAIRE

    1989-01-01

    Isolated human fibroblast plasma membranes that were attached by their extracellular surface to a solid substratum contained numerous clathrin coated pits that could be removed with a high pH buffer (Moore, M.S., D.T. Mahaffey, F.M. Brodsky, and R.G.W. Anderson. 1987. Science [Wash. DC]. 236:558-563). When these membranes were incubated with coat proteins extracted from purified bovine coated vesicles, new coated pits formed that were indistinguishable from native coated pits. Assembly was de...

  8. Antithrombogenic Polymer Coating.

    Science.gov (United States)

    Huang, Zhi Heng; McDonald, William F.; Wright, Stacy C.; Taylor, Andrew C.

    2003-01-21

    An article having a non-thrombogenic surface and a process for making the article are disclosed. The article is formed by (i) coating a polymeric substrate with a crosslinked chemical combination of a polymer having at least two amino substituted side chains, a crosslinking agent containing at least two crosslinking functional groups which react with amino groups on the polymer, and a linking agent containing a first functional group which reacts with a third functional group of the crosslinking agent, and (ii) contacting the coating on the substrate with an antithrombogenic agent which covalently bonds to a second functional group of the linking agent. In one example embodiment, the polymer is a polyamide having amino substituted alkyl chains on one side of the polyamide backbone, the crosslinking agent is a phosphine having the general formula (A).sub.3 P wherein A is hydroxyalkyl, the linking agent is a polyhydrazide and the antithrombogenic agent is heparin.

  9. Acrylic purification and coatings

    CERN Document Server

    ,

    2012-01-01

    Radon (Rn) and its decay daughters are a well-known source of background in direct WIMP detection experiments, as either a Rn decay daughter or an alpha particle emitted from a thin inner surface layer of a detector could produce a WIMP-like signal. Different surface treatment and cleaning techniques have been employed in the past to remove this type of contamination. A new method of dealing with the problem has been proposed and used for a prototype acrylic DEAP-1 detector. Inner surfaces of the detector were coated with a layer of ultra pure acrylic, meant to shield the active volume from alphas and recoiling nuclei. An acrylic purification technique and two coating techniques are described: a solvent-borne (tested on DEAP-1) and solvent-less (being developed for the full scale DEAP-3600 detector).

  10. Permeability of edible coatings.

    Science.gov (United States)

    Mishra, B; Khatkar, B S; Garg, M K; Wilson, L A

    2010-01-01

    The permeabilities of water vapour, O2 and CO2 were determined for 18 coating formulations. Water vapour transmission rate ranged from 98.8 g/m(2).day (6% beeswax) to 758.0 g/m(2).day (1.5% carboxymethyl cellulose with glycerol). O2 permeability at 14 ± 1°C and 55 ± 5% RH ranged from 1.50 to 7.95 cm(3)cm cm(-2)s(-1)Pa(-1), with CO2 permeability 2 to 6 times as high. Permeability to noncondensable gases (O2 and CO2) was higher for hydrophobic (peanut oil followed by beeswax) coatings as compared to hydrophilic (whey protein concentrate and carboxymethyl cellulose).

  11. Superelastic Orthopedic Implant Coatings

    Science.gov (United States)

    Fournier, Eric; Devaney, Robert; Palmer, Matthew; Kramer, Joshua; El Khaja, Ragheb; Fonte, Matthew

    2014-07-01

    The demand for hip and knee replacement surgery is substantial and growing. Unfortunately, most joint replacement surgeries will fail within 10-25 years, thereby requiring an arduous, painful, and expensive revision surgery. To address this issue, a novel orthopedic implant coating material ("eXalt") has been developed. eXalt is comprised of super elastic nitinol wire that is knit into a three-dimensional spacer fabric structure. eXalt expands in vivo to conform to the implantation site and is porous to allow for bone ingrowth. The safety and efficacy of eXalt were evaluated through structural analysis, mechanical testing, and a rabbit implantation model. The results demonstrate that eXalt meets or exceeds the performance of current coating technologies with reduced micromotion, improved osseointegration, and stronger implant fixation in vivo.

  12. Environmentally regulated aerospace coatings

    Science.gov (United States)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  13. Biomimetic implant coatings.

    Science.gov (United States)

    Eisenbarth, E; Velten, D; Breme, J

    2007-02-01

    Biomaterials and tissue engineering technologies are becoming increasingly important in biomedical practice, particularly as the population ages. Cellular responses depend on topographical properties of the biomaterial at the nanometer scale. Structures on biomaterial surfaces are used as powerful tools to influence or even control interactions between implants and the biological system [; ]. The influence of nanometer sized surface structures on osteoblastlike cell interactions was tested with niobium oxide coatings on polished titanium slices (cp-Ti grade 2). The aim of the study was to investigate the influence of nanoscopic surface structures on osteoblast interactions in order to support collagen I production and cell adhesion. The coatings were done by means of the sol-gel process. The surface structure was adjusted by annealing of the metaloxide ceramic coatings due to temperature depended crystal growth. The applied annealing temperatures were 450, 550 and 700 degrees C for 1 h, corresponding to Ra-numbers of 7, 15 and 40 nm. The surfaces were characterized by means of AFM, DTA/TG, diffractometry and white light interferometry. The cell reactions were investigated concerning adhesion kinetics, migration, spreading, cell adhesion, and collagen I synthesis. The smooth surface (Ra=7 nm) resulted in the fastest cell anchorage and cell migration. The closest cell adhesion was reached with the surface structure of Ra=15 nm. The roughest surface (Ra=40 nm) impedes the cell migration as well as a proper spreading of the cells. The best results concerning cell adhesion and spreading was reached with an intermediate surface roughness of Ra=15 nm of the niobium oxide coating on cp-titanium slices. PMID:16828342

  14. Thermal barrier coating materials

    Directory of Open Access Journals (Sweden)

    David R. Clarke

    2005-06-01

    Full Text Available Improved thermal barrier coatings (TBCs will enable future gas turbines to operate at higher gas temperatures. Considerable effort is being invested, therefore, in identifying new materials with even better performance than the current industry standard, yttria-stabilized zirconia (YSZ. We review recent progress and suggest that an integrated strategy of experiment, intuitive arguments based on crystallography, and simulation may lead most rapidly to the development of new TBC materials.

  15. 聚四氟乙烯微孔膜亲水性与抗污性的关系研究%Relationship between the Hydrophilicity and Antifouling Performance of Polytetrafluoroethylene(PTFE)Microporous Membrane

    Institute of Scientific and Technical Information of China (English)

    王峰; 朱海霖; 郭玉海

    2012-01-01

    The relationship between the hydrohilicity and antifouling performance of polytetrafluoroethylene (PTFE) microporous membrane in cross-flow filtration is determined. The effects of the sulfonic group ( -SO3H) on the water contact angle, Zeta potential, static absorption of bovine serum albumin (BSA) , and water flux were studied by scanning electron microscopy, Fourier-transform infrared spectros-copy,and surface potential analysis of solid surface after introducing -SO3H onto the surface of a PTFE membrane. The Zeta potential is negative, owing to the absorption of electronegative ion onto the hydro-phobic PTFE membrane. The PTFE membrane shows abundant static absorption of BSA and obviously decreased water flux, which demonstrates a weak antifouling property. However, the PTFE/P(AA-co-NaSS) composite membrane shows excellent antifouling performance because the introduction of -SO3H makes the absorption of electronegative ions and BSA difficult. The electrostatic repulsion between the membrane and BSA is enhanced because the Zeta potential becomes more negative with increased -SO3-from the ionization of-SO3H, which improves the antifouling performance.%探讨错流过滤中聚四氟乙烯微孔膜亲水性与抗污性的关系.在聚四氟乙烯(PTFE)膜表面引入磺酸基(-SO3H),通过扫描电镜(SEM)、傅里叶红外光谱(FTIR)、固体表面电位分析仪(SurPASS)等研究-SO3H含量对膜亲水性、Zeta电位、牛血清蛋白(BSA)静态吸附量及水通量的影响.结果表明:疏水的PTFE膜易吸附负离子,Zeta电位<0,BSA吸附量高,水通量降幅大,抗污性差;经过亲水改性后,由于--SO3H的引入,膜表面不易吸附负离子,Zeta电位升高,BSA吸附量降低,水通量降幅小;随-SO3H含量增加,膜Zeta电位因-SO3H电离而降低,与负电性BSA之间的静电斥力增强,抗污性进一步提高.

  16. Edison's vacuum coating patents

    International Nuclear Information System (INIS)

    Among the over one thousand patents bearing Thomas A. Edison's name are several for vacuum coating processes including chemical vapor deposition, evaporation, and sputter deposition. Beginning in 1880 Edison applied for patents that described carbon deposition processes that would now be called pyrolytic chemical vapor deposition. In 1884 Edison applied for a patent (granted in 1894) that described coating by evaporation in a vacuum by direct resistance heating or arc heating using a continuous current. Edison called the process 'electro vacuous deposition'. He prophetically wrote, 'the uses of the invention are almost infinite'. Edison also employed sputter deposition and in 1900 applied for a patent on a 'Process of Coating Phonograph Records'. Issued in 1902, the patent describes using a 'silent or brush electrical discharge' produced by an induction coil. The National Phonograph Company, one of Edison's many enterprises, used the sputtering process to deposit a thin layer of gold on wax phonograph cylinder masters that could then be electroplated to form molds to mass produce celluloid duplicates. The method was used for 20 years, from 1901 to 1921. It enabled the reproduction of cylinder grooves less than 0.001 in. deep at a density of 200 grooves per in. From 1913 to 1921, 10-in.-diameter Edison Diamond Disc phonograph records were made using the same method. Sputtering was abandoned in 1927, as it could not be scaled up to produce the 12 in. disks that were then introduced

  17. Surface coating of plastics

    International Nuclear Information System (INIS)

    Electron beam hardening technology has been used mainly for the cross-linking reaction of plastic materials, but recently attention has been paid to the easiness of handling due to the reduction of equipment size and as the countermeasures for preventing atmospheric pollution caused by solvent type paints, Particularly the authors notices the excellent surface properties of electron beam-hardened coatings themselves, and advanced the research and development as one means to give functions to plastic films. In this paper, the transcription foil films having hardness and blur-preventing films are reported. The transcription process for the transcription foils on which hard coating is applied beforehand is shown. The electron beam hardening hard coating was provided next to a supporting film, and its material was polymer or oligomer/polyfunctional monomer/additive. As a primer layer, acrylic polymer was used. The procedure of making transcription foils is explained, and it is important to form uniform, smooth films. If the formation of water drops on surfaces can be prevented, blur does not arise. By heightening the hydrophilicity of material surfaces with electron beam, it may be done. By the selection of the irradiation amount of electron beam and materials, the balance must be maintained. (K.I.)

  18. for zeolite coating

    Directory of Open Access Journals (Sweden)

    Carlos Renato Rambo

    2006-01-01

    Full Text Available Biotemplating is the processing of microcellular ceramics by reproduction of natural morphologies, where the microstructural features of the biotemplate are maintained in the biomorphic ceramic. Different biotemplates with distinct pore anatomies were used to produce biomorphic supports for the zeolite coating: wood, cardboard, sea-sponge and sisal. The biomorphic ceramics were produced by distinguished processing routes: Al-gas infiltration-reaction, liquid-metal infiltration, dip-coating and sol-gel synthesis, in order to produce nitrides, carbides and oxides, depending on the processing conditions. The zeolite coating was performed by hydrothermal growth of MFI-type (Silicalite-1 and ZSM-5 zeolite crystals onto the internal pore walls of the biomorphic templates. The final biomorphic ceramic-zeolite composites were physically characterized, evaluated in terms of their gas adsorption capabilities and correlated to their microstructure and specific pore anatomy. The combination of the properties of the biomorphic ceramics with the adsorption properties of zeolites results in materials with distinct properties as potential candidates for adsorption and catalytic applications due to their characteristic porosity, molecular sieving capabilities and high thermo-mechanical strength.

  19. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  20. Changes of exoskeleton surface roughness and expression of crucial participation genes for chitin formation and digestion in the mud crab (Macrophthalmus japonicus) following the antifouling biocide irgarol.

    Science.gov (United States)

    Park, Kiyun; Nikapitiya, Chamilani; Kim, Won-Seok; Kwak, Tae-Soo; Kwak, Ihn-Sil

    2016-10-01

    Irgarol is a common antifoulant present in coastal sediment. The mud crab Macrophthalmus japonicus is one of the most abundant of the macrobenthos in the costal environment, and its exoskeleton has a protective function against various environmental threats. We evaluated the effects of irgarol toxicity on the exoskeleton of M. japonicus, which is the outer layer facing the environment. We analyzed transcriptional expression of exoskeleton, molting, and proteolysis-related genes in the gill and hepatopancreas of these exposed M. japonicus. In addition, changes in survival and exoskeleton surface characteristics were investigated. In the hepatopancreas, mRNA expression of chitinase 1 (Mj-chi1), chitinase 4 (Mj-chi4), and chitinase 5 (Mj-chi5) increased in M. japonicus exposed to all concentrations of irgarol. Mj-chi1 and Mj-chi4 expressions from 1 to 10μgL(-1) were dose- and time-dependent. Ecdysteroid receptor (Mj-EcR), trypsin (Mj-Tryp), and serine proteinase (Mj-SP) in the hepatopancreas were upregulated in response to different exposure levels of irgarol at day 1, 4, or 7. In contrast, gill Mj-chi5, Mj-Tryp, and Mj-SP exhibited late upregulated responses to 10μgL(-1) irgarol compared to the control at day 7. Mj-chi1 showed early upregulation upon exposure to 10μgL(-1) irgarol and Mj-chi4 showed no changes in transcription in the gill. Gill Mj-EcR presented generally downregulated expression patterns. In addition, decreased survival and change of exoskeleton surface roughness were observed in M. japonicus exposed to the three concentrations of irgarol. These results suggest that exposure to irgarol induces changes in the exoskeleton, molting, and proteolysis metabolism of M. japonicus. PMID:27318560

  1. One step growth of protein antifouling surfaces: monolayers of poly(ethylene oxide) (PEO) derivatives on oxidized and hydrogen-passivated silicon surfaces.

    Science.gov (United States)

    Cecchet, Francesca; De Meersman, Benoît; Demoustier-Champagne, Sophie; Nysten, Bernard; Jonas, Alain M

    2006-01-31

    We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2. PMID:16430281

  2. Coating and curing apparatus and methods

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, Brenor L.; Gonsalves, Peter R.; Maghsoodi, Sina; Colson, Thomas E.; Yang, Yu S.; Abrams, Ze' ev R.

    2016-04-19

    Disclosed is a coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly, systems and methods for curing sol-gel coatings deposited onto the surface of glass substrates using high temperature air-knives, infrared emitters and direct heat applicators are disclosed.

  3. Coating and curing apparatus and methods

    Science.gov (United States)

    Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S

    2015-02-24

    Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.

  4. High-temperature protective coatings on superalloys

    Institute of Scientific and Technical Information of China (English)

    刘培生; 梁开明; 周宏余

    2002-01-01

    Protective coatings are essential for superalloys to serve as blades of gas turb ines at high temperatures, and they primarily include aluminide coating, MCrAlY overlay coating, thermal barrier coating and microcrystalline coating. In this paper, all these high-temperature coatings are reviewed as well as their preparing techniques. Based on the most application and the main failure way, the importance is then presented for further deepgoing study on the high-temperature oxidation law of aluminide coatings.

  5. Dense protective coatings, methods for their preparation and coated articles

    Energy Technology Data Exchange (ETDEWEB)

    Tulyani, Sonia; Bhatia, Tania; Smeggil, John G.

    2015-12-29

    A method for depositing a protective coating on a complex shaped substrate includes the steps of: (1) dipping a complex shaped substrate into a slurry to form a base coat thereon, the slurry comprising an aqueous solution, at least one refractory metal oxide, and at least one transient fluid additive present in an amount of about 0.1 percent to 10 percent by weight of the slurry; (2) curing the dipped substrate; (3) dipping the substrate into a precursor solution to form a top barrier coat thereon; and (4) heat treating the dipped, cured substrate to form a protective coating.

  6. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  7. Electrophoretic Deposition of Hydroxyapatite Coating

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Hydroxyapatite (HAP) coatings were deposited onto titanium substrates by electrophoretic deposition (EPD) fromethanol. The results indicated that the addition of very small amount of HCI resulted in a decrease in the aging timeas well as the suspension concentration required to obtain a coating. In addition, the results revealed the existenceof a critical saturated voltage (Vsat), which had significant effect on the quality of deposition. The mean interfacialshear strengths of HAP coatings after sintering were found to be greater than 13 MPa.

  8. Antifouling and antimicrobial mechanism of tethered quaternary ammonium salts in a cross-linked poly(dimethylsiloxane) matrix studied using sum frequency generation vibrational spectroscopy.

    Science.gov (United States)

    Ye, Shuji; Majumdar, Partha; Chisholm, Bret; Stafslien, Shane; Chen, Zhan

    2010-11-01

    Poly(dimethylsiloxane) (PDMS) materials containing chemically bound (''tethered'') quaternary ammonium salt (QAS) moieties are being developed as new contact-active antimicrobial coatings. Such coatings are designed to inhibit the growth of microorganisms on surfaces for a variety of applications which include ship hulls and biomedical devices. The antimicrobial activity of these coatings is a function of the molecular surface structure generated during film formation. Sum frequency generation (SFG) vibrational spectroscopy has been demonstrated to be a powerful technique to study polymer surface structures at the molecular level in different chemical environments. SFG was successfully used to characterize the surface structures of PDMS coatings containing tethered QAS moieties that possess systematic variations in QAS chemical composition in air, in water, and in a nutrient growth medium. The results indicated that the surface structure was largely dependent on the length of the alkyl chain attached to the nitrogen atom of the QAS moiety as well as the length of alkyl chain spanning between the nitrogen atom and silicon atom of the QAS moiety. The SFG results correlated well with the antimicrobial activity, providing a molecular interpretation of the activity. This research showed that SFG can be effectively used to aid in the development of new antimicrobial coating technologies by correlating the chemical structure of a coating surface to its antimicrobial activity. PMID:20345165

  9. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  10. Thermoplastic coating of carbon fibers

    Science.gov (United States)

    Edie, D. D.; Lickfield, G. C.; Allen, L. E.; Mccollum, J. R.

    1989-01-01

    A continuous powder coating system was developed for coating carbon fiber with LaRC-TPI (Langley Research Center-Thermoplastic Polyimide), a high-temperature thermoplastic polymide invented by NASA-Langley. The coating line developed used a pneumatic fiber spreader to separate the individual fibers. The polymer was applied within a recirculating powder coating chamber then melted using a combination of direct electrical resistance and convective heating to make it adhere to the fiber tow. The tension and speed of the line were controlled with a dancer arm and an electrically driven fiber wind-up and wind-off. The effects of heating during the coating process on the flexibility of the prepreg produced were investigated. The uniformity with which the fiber tow could be coated with polymer also was examined. Composite specimens were fabricated from the prepreg and tested to determine optimum process conditions. The study showed that a very uniform and flexible prepeg with up to 50 percent by volume polymer could be produced with this powder coating system. The coating line minimized powder loss and produced prepeg in lengths of up to 300 m. The fiber spreading was found to have a major effect on the coating uniformity and flexibility. Though test results showed low composite tensile strengths, analysis of fracture surfaces under scanning electron microscope indicated that fiber/matrix adhesion was adequate.

  11. Corrosion behavior of duplex coatings

    Directory of Open Access Journals (Sweden)

    K. Raghu Ram Mohan Reddy

    2016-07-01

    Full Text Available The titanium alloys are used in defense, aerospace, automobile, chemical plants and biomedical applications due to their very high strength and lightweight properties. However, corrosion is a life-limiting factor when Ti alloys are exposed to different chemical environments at high temperatures. In the present paper, duplex NiCrAlY/WC–Co coating is coated onto Ti6Al4V substrate to investigate the corrosion behavior of both coated samples and the substrate. The duplex coating was performed with NiCrAlY as the intermediate coat of 200 μm thickness deposited by HVOF process and WC–Co ceramic top coat with varying thicknesses of 250 μm, 350 μm and 450 μm deposited by DS process. Potentiodynamic polarization tests were employed to investigate the corrosion performance of duplex coated samples and substrate in Ringer’s solution at 37 °C and pH value was set to 5.7. Finally the results reveal that 350 μm thick coated samples showed highest corrosion resistance compared to 250 μm thick samples as well as bare substrate. However, the 450 μm thick coated sample showed poor corrosion resistance compared to the substrate. The scale formed on the samples upon corrosion was characterized by using SEM analysis to understand the degree of corrosion behavior.

  12. Decontamination and coating of lead

    International Nuclear Information System (INIS)

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  13. Ceramic electrolyte coating and methods

    Science.gov (United States)

    Seabaugh, Matthew M.; Swartz, Scott L.; Dawson, William J.; McCormick, Buddy E.

    2007-08-28

    Aqueous coating slurries useful in depositing a dense coating of a ceramic electrolyte material (e.g., yttrium-stabilized zirconia) onto a porous substrate of a ceramic electrode material (e.g., lanthanum strontium manganite or nickel/zirconia) and processes for preparing an aqueous suspension of a ceramic electrolyte material and an aqueous spray coating slurry including a ceramic electrolyte material. The invention also includes processes for depositing an aqueous spray coating slurry including a ceramic electrolyte material onto pre-sintered, partially sintered, and unsintered ceramic substrates and products made by this process.

  14. Protective coatings on extensible biofibres

    Science.gov (United States)

    Holten-Andersen, Niels; Fantner, Georg E.; Hohlbauch, Sophia; Waite, J. Herbert; Zok, Frank W.

    2007-09-01

    Formulating effective coatings for use in nano- and biotechnology poses considerable technical challenges. If they are to provide abrasion resistance, coatings must be hard and adhere well to the underlying substrate. High hardness, however, comes at the expense of extensibility. This property trade-off makes the design of coatings for even moderately compliant substrates problematic, because substrate deformation easily exceeds the strain limit of the coating. Although the highest strain capacity of synthetic fibre coatings is less than 10%, deformable coatings are ubiquitous in biological systems. With an eye to heeding the lessons of nature, the cuticular coatings of byssal threads from two species of marine mussels, Mytilus galloprovincialis and Perna canaliculus, have been investigated. Consistent with their function to protect collagenous fibres in the byssal-thread core, these coatings show hardness and stiffness comparable to those of engineering plastics and yet are surprisingly extensible; the tensile failure strain of P. canaliculus cuticle is about 30% and that of M. galloprovincialis is a remarkable 70%. The difference in extensibility is attributable to the presence of deformable microphase-separated granules within the cuticle of M. galloprovincialis. The results have important implications in the design of bio-inspired extensible coatings.

  15. Electrochemically switchable polypyrrole coated membranes

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, Claudia, E-mail: weidlich@dechema.d [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany); Mangold, Klaus-Michael [DECHEMA e.V., Karl-Winnacker-Institut, Theodor-Heuss-Allee 25, D-60486 Frankfurt am Main (Germany)

    2011-04-01

    A method for coating membranes with polypyrrole (PPy) has been developed. Different membranes, such as microfiltration as well as ion exchanger membranes have been coated with PPy to yield electrical conductivity of the membranes. The coated membranes have been investigated by cyclic voltammetry and scanning electron microscopy and their permeability and permselectivity have been tested. The results show that PPy can be tailored as cation or anion exchanger and its porosity can be controlled to avoid any impairment of the membrane by the polymer layer. These PPy coated membranes can be applied as electrochemically switchable, functionalised membranes with controllabel and variable separation properties.

  16. Conduit Coating Abrasion Testing

    Science.gov (United States)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  17. SPS: scrubbing or coating ?

    CERN Document Server

    Jimenez, J M

    2012-01-01

    The operation of the SPS with high intensity bunched beams is limited by the electron cloud building-up in both the arcs and long straight sections. Two consolidation options have been considered: mitigation of the electron cloud using coatings or relying, as before, on the scrubbing runs. A status report on both options will be given with a particular emphasis on measurements plans for 2012 and pending issues. The testing needs, corresponding beam parameters and MD time in 2012 will be addressed. The criteria for the decision making and the corresponding schedule will be discussed.

  18. Microplasma sprayed hydroxyapatite coatings

    CERN Document Server

    Dey, Arjun

    2015-01-01

    ""This unique book on development of microplasma sprayed HAp coating has been organized in a very compact yet comprehensive manner. This book also highlights the horizons of future research that invites the attention of global community, particularly those in bio-medical materials and bio-medical engineering field. This book will surely act as a very useful reference material for both graduate/post-graduate students and researchers in the field of biomedical, orthopedic and manufacturing engineering and research. I truly believ that this is the first ever effort which covers almost all the

  19. Report on the FY 1999 research survey on the industrial utilization/development of the biofilm formation mechanism and antifouling substances; 1999 nendo bio film keisei kiko oyobi sogai busshitsu no sangyoteki riyo kaihatsu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The paper described the results of the FY 1999 research on the fouling by marine aufwuchs. The survey is aimed at searching the nature world for active substances for biological antifouling. The fouling mechanism in the ocean is as follows. The adsorption of organisms called the conditioning film first occurs on the surface, and next, bacteria and diatom around the surface form biofilm and cover. After that, biological fouling by large aufwuchs occurs. Therefore, the control of biofilm formation was regarded as most important, and with this as a guidepost, the search was conducted. Using biofilm anti-formation activity and periphytic bacteria anti-growth activity as guideposts, some compounds were searched for. Being aimed at Porifera, in particular, new compounds were isolated from it. Since few of other organisms attaches on the surface of sponge, there is a great possibility of Porifera's producing any anti-fouling substances. Further, it is thought that symbiotic microorganisms of sponge (40% of the total weight) produce various biologically active substances. Synthetic phenethyl amine derivatives were also studied. (NEDO)

  20. CP300钻井平台外加电流防腐污装置的方案设计及应用%The Project Design and Application of Impressed Current Anticorrosice and Antifouling on CP300 Drilling Rigs

    Institute of Scientific and Technical Information of China (English)

    朱小辉

    2014-01-01

    本文简要介绍了外加电流防腐污装置的原理和特点。结合我厂设计建造的CP300系列钻井平台,理论结合实际分析了外加电流防腐污装置在船舶平台上应用的可行性,总结出了一套理论的计算方法;提出了装置使用和维护建议。%This paper briefly introduces the principles and features of impressed current anticorrosive and antifouling device. It first analyzes the feasibility of applying the impressed current anticorrosive and antifouling device to ship platforms by integrating theory with practice. In combination with the CP300 drilling rigs designed and constructed by my factory, and then summarizes a series of theoretical computing methods and finally proposes suggestions on how to use and maintain the device.

  1. Evaluation of anti-fouling performance for ion-rod water treater with automatic dynamic simulator of fouling%离子棒水处理器的阻垢性能评价

    Institute of Scientific and Technical Information of China (English)

    孙灵芳; 杨善让; 秦裕琨; 徐志明

    2005-01-01

    The application of a novel Automatic Dynamic Simulator of Fouling (ADSF) to evaluate the effectiveness of ion-rod water treater is reported.The effects of some parameters of the water treater were studied with an ADSF made according to patented technology, and orthogonal experimental design was adopted with the use of artificial hard water.Experimental results validated that the ion-rod water treater could mitigate fouling,and the anti-fouling efficiency varies with the test conditions.The anti-fouling efficiency of treater increased with the increase of flow velocity in the range of 0.8-1.2 m·s-1 and output voltage in the range of 7500-15000 V.The efficiency weat up initially, and then went down with the increase in hardness.The rough surface of ion-rod was superior to the smooth one.The order of influence on treater performance with respect to these factors was as follows: water hardness, roughness of surface, flow velocity and output voltage.The research also provided a guide to improving the performance of ion-rod water treater.

  2. 改性化合物对聚酰胺膜材料亲水性及抗污染性能影响的分子力学计算与实验研究%Effects of modification chemical on hydrophilic and antifouling properties of polyamide membranes: molecular mechanics calculation and experimental investigation

    Institute of Scientific and Technical Information of China (English)

    张雪杰; 李亮; 蔡志强; 钟璟; 殷开梁; 王车礼

    2012-01-01

    The molecular mechanics method was introduced in the context of seawater reverse osmosis desalination process to investigate the interaction between membrane materials and water or alginic acid in terms of interaction energy, probability, and mean interaction energy of the H-bond complexes, thus providing theoretical information on the selection of chemicals for membrane modification to promote hydrophilic and antifouling properties. According to molecular mechanics calculation, the order of mean interaction energy between membrane materials and water was PEGMA>PA>SPM>AMPS, and that between these materials and alginic acid was AMPS>PA>SPM>PEGMA. so PEGMA was considered as the best modification chemical among the three chemicals. Using the click chemistry method, a new modified membrane MSW30 was prepared by coating 2-bilayer PEGA onto the polyamide membrane SW30. It was confirmed by contact angle measurements and fouling experiments that the modified membrane MSW30 was more hydrophilic and showed better resistance to fouling by alginic acid than the unmodified membrane SW30, which was also in agreement with the molecular mechanics calculation.%以反渗透技术应用于海水淡化为背景,采用分子力学方法计算聚酰胺反渗透膜材料PA及3种改性化合物(PEGMA、SPM、AMPS)与水分子、典型有机污染物海藻酸AA形成各种氢键复合物的相互作用能、生成概率与平均相互作用能,以此为基础选择适宜的膜改性化合物,增加膜表面亲水性,降低海藻酸污染.分子力学计算表明.PA及3种改性化合物与水分子结合的强弱顺序为:PEGMA>PA>SPM>AMPS;它们与海藻酸AA分子结合的强弱顺序为:AMPS>PA>SPM>PEGMA.将PEGA“链接”到聚酰胺膜SW30表面,制得改性聚酰胺膜MSW30.实验表明,改性聚酰胺膜MSW30的亲水性能及抗污染性能均较原膜SW30有显著提高,实验结果与分子力学计算结果一致.

  3. External coating of colonic anastomoses

    DEFF Research Database (Denmark)

    Pommergaard, Hans-Christian; Achiam, Michael Patrick; Rosenberg, Jacob

    2012-01-01

    Colon anastomotic leakage remains both a frequent and serious complication in gastrointestinal surgery. External coating of colonic anastomoses has been proposed as a means to lower the rate of this complication. The aim of this review was to evaluate existing studies on external coating of colonic...

  4. Intumescent coatings under fast heating

    DEFF Research Database (Denmark)

    Nørgaard, Kristian Petersen; Dam-Johansen, Kim; Català, Pere;

    2012-01-01

    Intumescent coatings are widely used to delay or minimise the destructive effects of fire. They are usually tested under conditions that simulate the relatively slow build-up of heat in a normal fire. Here, the effects of damage during a fire causing sudden heating of the coating were studied....

  5. Bright Prospects for Fluorine Coatings

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Fluorine coatings are a category of new coatings with fluorine-containing resins as the major film forming substances.They have excellent weather resistance,solvent resistance, acid/alkali resistance, no toxicity and no hazards,and they contribute to film stability.

  6. Lignin based controlled release coatings

    NARCIS (Netherlands)

    Mulder, W.J.; Gosselink, R.J.A.; Vingerhoeds, M.H.; Harmsen, P.F.H.; Eastham, D.

    2011-01-01

    Urea is a commonly used fertilizer. Due to its high water-solubility, misuse easily leads to excess nitrogen levels in the soil. The aim of this research was to develop an economically feasible and biodegradable slow-release coating for urea. For this purpose, lignin was selected as coating material

  7. Pack cementation coatings for alloys

    Energy Technology Data Exchange (ETDEWEB)

    He, Yi-Rong; Zheng, Minhui; Rapp, R.A. [Ohio State Univ., Columbus, OH (United States)

    1996-08-01

    The halide-activated pack cementation process was modified to produce a Ge-doped silicide diffusion coating on a Cr-Cr{sub 2}Nb alloy in a single processing step. The morphology and composition of the coating depended both on the composition of the pack and on the composition and microstructure of the substrate. Higher Ge content in the pack suppressed the formation of CrSi{sub 2} and reduced the growth kinetics of the coating. Ge was not homogeneously distributed in the coatings. In cyclic and isothermal oxidation in air at 700 and 1050{degrees}C, the Ge-doped silicide coating protected the Cr-Nb alloys from significant oxidation by the formation of a Ge-doped silica film. The codeposition and diffusion of aluminum and chromium into low alloy steel have been achieved using elemental Al and Cr powders and a two-step pack cementation process. Sequential process treatments at 925{degrees}C and 1150{degrees}C yield dense and uniform ferrite coatings, whose compositions are close to either Fe{sub 3}Al or else FeAl plus a lower Cr content, when processed under different conditions. The higher content of Al in the coatings was predicted by thermodynamic calculations of equilibrium in the gas phase. The effect of the particle size of the metal powders on the surface composition of the coating has been studied for various combinations of Al and Cr powders.

  8. Behavior of plasma-sprayed coatings

    Science.gov (United States)

    Berndt, Christopher C.

    1984-01-01

    The microstructural development of plasma sprayed oxide coatings is described with particualr reference to aluminum oxide coatings and thermal barrier coatings of yttria stabilized zirconia (YSZ). The microstructural features of these coatings, observed by optical and electron microscopy, are related to their mechanical behavior. The adhesion of the coatings is also investigated using fracture toughness and tensile tests. It is noted that acoustic emission is valuable in formulating possible fracture mechanisms for YSZ coatings.

  9. Studies on soft centered coated snacks

    OpenAIRE

    Pavithra, A. S.; Chetana, Ramakrishna; Babylatha, R.; Archana, S. N.; Bhat, K. K.

    2011-01-01

    Roasted groundnut seeds, amaranth and dates pulp formed the center filling which was coated with sugar, breadings, desiccated coconut and roasted Bengalgram flour (BGF) to get 4 coated snacks. Physicochemical characteristics, microbiological profile, sorption behaviour and sensory quality of 4 coated snacks were determined. Centre filling to coating ratio of the products were in the range of 3:2–7:1, the product having BGF coating had the thinnest coating. Center filling had soft texture and ...

  10. Dynamic residual stress in thermal sprayed coatings

    Institute of Scientific and Technical Information of China (English)

    Wang Zhiping; Yang Yuanyuan

    2005-01-01

    With the modified Almen method, the forming and development process of residual stress in a thermal sprayed coating has been obtained. The test results identify that the residual stress in a coating is depend on coating material properties, technique and coating thickness. The paper pays much attention to the hysteresis between the coating temperature and residual stress in the coating or between the applied stress and the strain of the coating, and confirms that the fact is resulted from the"Gas Fix" character of a thermal sprayed coating.

  11. Radiation curing: coatings and composites

    International Nuclear Information System (INIS)

    The initial experiments conducted in the late 1960's at Radiation Dynamics, Inc. (now IBA Industrial, Inc.) showed that by removing the pigment from a radiation curable coating formulation, the same binder system could be used as a matrix system for electron beam (EB) cured fiber reinforced composites. Recently, the binder systems used for EB curable coatings have also been successfully used (without pigments) as the matrices for EB and X-ray cured fiber composites. Insights gained from the development of coatings were translated into desirable properties for matrix materials. For example, understanding the surface wetting characteristics of a coating facilitated the development of a matrix that would wet fibers; the development of coatings that would adhere to rigid substrates as metal while being bent, as for coil coatings, and which would exhibit impact resistance when cured on a metal also imparted impact resistance to cured composite materials. Thermal analyses conducted on the coating binder cured at low energies were consistent with analyses performed on thick cross-sections as used for matrices. The configuration of the final product then dictated the modality of curing, be it low-energy EB for coatings or higher energy EB or X-ray curing for composites. In industrial radiation chemistry, one deals with monomers and oligomers (∼ 102 and ∼ 103 to 104 Daltons molecular weight, respectively). Thus, one can approach the development of coating binders or matrix systems as one would approach the synthesis of organic polymers. The desired final material is a fully cured and cross-linked polymer. In contrast, concepts involved in '' formulating '' are often derived from dealing with high molecular weight polymers (∼ 105 + Daltons) in which intense mechanical mixing is used to bring different ingredients together. When synthesizing a radiation curable coating or matrix system, greater attention is given to microphase compatibility as reflected in the

  12. Optical coating preparation

    International Nuclear Information System (INIS)

    In order to optimize the properties of optical components, thin film deposition with controlled thickness and refractive index is often needed. Two different deposition techniques are proposed in this article and illustrated with examples: physical vapor deposition (PVD) and liquid sol-gel process (LSG). PVD and LSG techniques are equivalent as far as the following topics are concerned: elaboration of oxide or composite coated material, optical performance, mechanical performance, and laser performance. PVD is better for the elaboration of metallic films, the design of multi-layers or complex pile-up of layers. LSG is better for the treatment of large surfaces, for substrates with complicated shapes and for its low cost. PVD technique has been widely used so it benefited from an industrial maturity and a clean technology concerning wastes and effluents. On the contrary LSG is a new technique not yet widely used in industrial processes but that looks promising. (A.C.)

  13. Metasurface optical antireflection coating

    Science.gov (United States)

    Zhang, Boyang; Hendrickson, Joshua; Nader, Nima; Chen, Hou-Tong; Guo, Junpeng

    2014-12-01

    Light reflection at the boundary of two different media is one of the fundamental phenomena in optics, and reduction of reflection is highly desirable in many optical systems. Traditionally, optical antireflection has been accomplished using single- or multiple-layer dielectric films and graded index surface structures in various wavelength ranges. However, these approaches either impose strict requirements on the refractive index matching and film thickness, or involve complicated fabrication processes and non-planar surfaces that are challenging for device integration. Here, we demonstrate an antireflection coating strategy, both experimentally and numerically, by using metasurfaces with designer optical properties in the mid-wave infrared. Our results show that the metasurface antireflection is capable of eliminating reflection and enhancing transmission over a broad spectral band and a wide incidence angle range. The demonstrated antireflection technique has no requirement on the choice of materials and is scalable to other wavelengths.

  14. Tribological Performance of Coated Surfaces

    Institute of Scientific and Technical Information of China (English)

    Kenneth Holmberg; Anssi Laukkanen

    2004-01-01

    The fundamentals of coating tribology is presented in a generalised holistic approach to friction and wear mechanisms of coated surfaces in dry sliding contacts. It is based on a classification of the tribological contact process into macromechanical, micromechanical, tribochemical contact mechanisms and material transfer. The tribological contact process is dominated by the macromechanical mechanisms, which have been systematically analysed by using four main parameters: the coating-to-substrate hardness relationship, the film thickness, the surface roughness and the debris in the contact. In this paper special attention is given to the microlevel mechanisms, and in particular new techniques for modelling the elastic, plastic and brittle behaviour of the surface by finite element (FEM) computer simulations. The contact condition with a sphere sliding over a plate coated with a very thin hard coating is analysed. A three dimensional FEM model has been developed for calculating the first principal stress distribution in the scratch tester contact of a diamond spherical tip moving with increased load on a 2 μm thick titanium nitride (TiN) coated steel surface. The model is comprehensive in that sense that it considers elastic, plastic and fracture behaviour of the contact surfaces. By identifying from a scratch experiment the location of the first crack and using this as input data can the fracture toughness of the coating be determined.

  15. Carbon coatings for medical implants

    Directory of Open Access Journals (Sweden)

    K. Bakowicz-Mitura

    2007-01-01

    Full Text Available Purpose: In this paper we report in vitro and in vivo results of Nanocrystalline Diamond Coatings whichare used in medicine onto medical implants The very important property of carbon coatings is the protectionliving organism against the metalosis. Different medical implants with complicated shapes are covering byNanocrystalline Diamond Coatings by RF dense plasma CVD.Design/methodology/approach: 1 Material characterizations of deposited coatings have been evaluated by using:Transmission Electron Microscopy (TEM, Scanning Electron Microscopy (SEM, Atomic Force Microscopy(AFM, Auger electron spectroscopy (AES, microX-Ray Spectroscopy and bend test 2 Biological investigationbased on: (a in vivo and (b in vitro examinations as well (c clinical investigations – contact allergy.Findings: It was revealed that Nanocrystalline Diamond Coatings form the barrier diffusion between implantand human environment as a consequence prevent leaching of metallic ions into the body. Additionally, theresearch on carbon coatings proved that diamond layers are biocompatible with living organism. Contact allergyon nickel is inhibited by diamond powders.Practical implications: Practical application metal implants with NCD in orthopedy, cardiosurgery, oralsurgery, maxillo-facial surgery and dermatology.Originality/value: We have observed anti-inflammatory, antiallergic and anticancerogenic responses from thecarbon coatings layers onto medical implants like wires and screws.

  16. Antimicrobial and antifouling activities achieved by extracts of seaweeds from Gulf of California, Mexico Actividades antimicrobiana y anti-incrustante obtenidas de los extractos de algas marinas del Golfo de California, México

    Directory of Open Access Journals (Sweden)

    Ruth Noemí Águila-Ramírez

    2012-04-01

    Full Text Available Six species of common seaweed extracts were tested in laboratory assays: Dictyota flabellata, Padina concrescens, Laurencia johnstonii, Gymnogongrus martinensis, Ulva lactuca and Codium fragile for potential industrial applications through evaluation of the antibacterial activity against pathogenic bacteria (5 strains and the antifouling potency against the growth of key species of marine colonisers (7 bacteria, 5 fungi and 11 microalgae. The organic extract of L. johnstonii, U. lactuca and D. flabellata have bacterial antibiosis. The ethereal extracts were more active in comparison with buthanol extracts against the bacterial strain Staphylococcus aureus. The best antifouling results were obtained with U. lactuca and L. johnstonii(0.1-1 μg ml-1 against all strains tested. C.fragile exhibited significant antifouling activity with minimum inhibitory concentration (MIC between 1-10 μg ml-1 against marine microalgae Rhodosorus magnei, Neorhodella cyanea and Prymnesium calathiferum.Se analizaron seis especies de macroalgas comunes del Golfo de California: Dictyota flabellata, Padina concrescens, Laurencia johnstonii, Gymnogongrus martinensis, Ulva lactuca y Codium fragile para determinar su potencial aplicación industrial, a través de la evaluación de la actividad antibacteriana frente a bacterias patógenas (5 cepas, y el potencial anti-incrustante como inhibidores de crecimiento de especies colonizadoras en ambientes marinos (7 bacterias, 5 hongos y 11 microalgas. Los extractos orgánicos de L. johnstonii, U. lactuca y D. flabellata presentaron antibiosis bacteriana. Los extractos etéreos fueron más activos en comparación con los extractos de butanol frente a la cepa bacteriana Staphylococcus aureus. Los mejores resultados de actividad anti-incrustante se obtuvieron con U. lactuca y L. johnstonii (0.1-1 μg ml-1 frente a todas las cepas probadas. C. fragile mostró una significativa actividad anti-incrustante, presentando una concentraci

  17. Protective coatings for commercial particulates

    DEFF Research Database (Denmark)

    Kindl, B.; Teng, Y.H.; Liu, Y.L.

    1994-01-01

    of alumina and zirconia on SiC particulates by sol-gel techniques. Aqueous and organic precursors have been used. The extent of the reaction, i.e., the Si and Al4C3 content in the matrix, was determined by differential thermal analysis and X-ray diffraction. The reaction rates of some coated particulates...... in liquid Al are decreased by as much as one order of magnitude during the first 15 min of immersion. Pretreatments of the SiC surface, the composition and thickness of the coating interphase and heat treatments of the coated materials have been studied, and are discussed in relation to their effect...

  18. Foundry Coating Technology: A Review

    DEFF Research Database (Denmark)

    Nwaogu, Ugochukwu Chibuzoh; Tiedje, Niels Skat

    2011-01-01

    The importance of foundry coating in improving the surface quality of castings cannot be over emphasized. The appli-cation of mould and core washes creates a high thermal integrity barrier between the metal and the mould resulting in the reduction of the thermal shock experienced by the sand system...... is important. In this review, a detailed description of these topics and examples are provided where necessary. A potential area of research in foundry coating development, using sol-gel process is suggested. The application of sol-gel technology in the development of foundry coatings is a novel approach....

  19. Laser-based coatings removal

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  20. Mechanical properties of boron coatings

    International Nuclear Information System (INIS)

    Internal stress of coatings will cause reliability problems, such as adhesion failure and peeling. We measured the internal stress in boron coatings, which was prepared by the ion plating method, with an apparatus based on the optically levered laser technique. The boron coatings exhibited large compressive stress in the range from -0.5 GPa to -2.6 GPa. It was found that these compressive stresses were decreasing functions of the deposition rate and were increasing functions of the ion bombardment energy. ((orig.))

  1. Experimental evaluation of coating delamination in vinyl coated metal forming

    International Nuclear Information System (INIS)

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  2. A novel trilayer antireflection coating using dip-coating technique

    Institute of Scientific and Technical Information of China (English)

    Jian Xu; Yi Yin; Haiming Ma; Hui Ye; Xu Liu

    2011-01-01

    We report a new structure for broadband antireflection coating by dip-coating technique,which has minimal cost and is compatible with large-scale manufacturing.The coatings are prepared by depositing SiO2 sol-gel film on a glass substrate,subsequently depositing SiO2 single-layer particle coating through electrostatic attraction,and depositing a final very thin Si02 sol-gel film to improve the mechanical strength of the whole coating structure.The refractive index of the structure changes gradually from the top to the substrate.The transmittance of a glass substrate has been experimentally found to be improved in the spectral range of 400-1400 nn and in the incidence angle range from 0° to at least 45°.The mechanical strength is immensely improved because of the additional thin Si02 sol-gel layer.The surface texture can be applied to the substrates of different materials and shapes as an add-on coating.

  3. Thin CVD Coating Protects Titanium Aluminide Alloys

    Science.gov (United States)

    Clark, Ronald; Wallace, Terryl; Cunnington, George; Robinson, John

    1994-01-01

    Feasibility of using very thin CVD coatings to provide both protection against oxidation and surfaces of low catalytic activity for thin metallic heat-shield materials demonstrated. Use of aluminum in compositions increases emittances of coatings and reduces transport of oxygen through coatings to substrates. Coatings light in weight and applied to foil-gauge materials with minimum weight penalties.

  4. Hex Chrome Free Coatings for Electronics Overview

    Science.gov (United States)

    Kessel, Kurt

    2013-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.

  5. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible i

  6. Environmental aspects of coating removal techniques

    International Nuclear Information System (INIS)

    Application of coatings to materials is constantly evolving: the number of techniques for coating application continue to grow and combinations of coating compositions on substrates continue to be expanded. This has lead to the use of ''exotic'' materials for coatings, some of which are considered to be ''toxic''. The growing interest in preserving the environment has begun to impact the coating industry. Residuals from coating removal processes can contaminate the soil, water, and air. Precautions are required to avoid environmental degradation. Coating removal techniques discussed include: microwave, laser ablation, CO, blasting, and plastic blast media. 62 refs., 7 figs., 4 tabs

  7. DLC coatings for hydraulic applications

    Institute of Scientific and Technical Information of China (English)

    Luca NOBILI; Luca MAGAGNIN

    2009-01-01

    Replacement of lubricating oils with water or low-viscosity fluids is highly desirable in many industrial fields, on account of the environmental and economical advantages. Low lubricity of water might be insufficient for proper operation of hydraulic components, and diamond-like carbon(DLC) coatings are very attractive as solid lubricant films. A remote-plasma PACVD process was utilized to deposit hydrogenated DLC coatings (a-C:H) on different substrates. Microindentation measurements show that the coating hardness is around 35 GPa. Tribological behavior was evaluated by block-on-ring tests performed in water and water with alumina. The wear rate was calculated after measuring the wear volume by a laser profilemeter. Morphological and compositional analysis of the wear tracks reveal that coating failure may occur by abrasive wear or delamination, depending on the substrate properties. Hard and smooth substrates give the best results and dispersed alumina particles increase the wear rate.

  8. Cementless Hydroxyapatite Coated Hip Prostheses

    Directory of Open Access Journals (Sweden)

    Antonio Herrera

    2015-01-01

    Full Text Available More than twenty years ago, hydroxyapatite (HA, calcium phosphate ceramics, was introduced as a coating for cementless hip prostheses. The choice of this ceramic is due to its composition being similar to organic apatite bone crystals. This ceramic is biocompatible, bioactive, and osteoconductive. These qualities facilitate the primary stability and osseointegration of implants. Our surgical experience includes the implantation of more than 4,000 cementless hydroxyapatite coated hip prostheses since 1990. The models implanted are coated with HA in the acetabulum and in the metaphyseal area of the stem. The results corresponding to survival and stability of implants were very satisfactory in the long-term. From our experience, HA-coated hip implants are a reliable alternative which can achieve long term survival, provided that certain requirements are met: good design selection, sound choice of bearing surfaces based on patient life expectancy, meticulous surgical technique, and indications based on adequate bone quality.

  9. Lutetium Oxide Coatings by PVD

    OpenAIRE

    Topping, Stephen G; Park, CH; Rangan, SK; Sarin, VK

    2007-01-01

    Due to its high density and cubic structure, Lutetium oxide (Lu2O3) has been extensively researched for scintillating applications. Present manufacturing methods, such as hot pressing and sintering, do not provide adequate resolution due to light scattering of polycrystalline materials. Vapor deposition has been investigated as an alternative manufacturing method. Lutetium oxide transparent optical coatings by magnetron sputtering offer a means of tailoring the coating for optimum scintillati...

  10. Corrosion resistant neutron absorbing coatings

    Science.gov (United States)

    Choi, Jor-Shan; Farmer, Joseph C.; Lee, Chuck K.; Walker, Jeffrey; Russell, Paige; Kirkwood, Jon; Yang, Nancy; Champagne, Victor

    2012-05-29

    A method of forming a corrosion resistant neutron absorbing coating comprising the steps of spray or deposition or sputtering or welding processing to form a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material. Also a corrosion resistant neutron absorbing coating comprising a composite material made of a spray or deposition or sputtering or welding material, and a neutron absorbing material.

  11. Coating of silicon pore optics

    DEFF Research Database (Denmark)

    Cooper-Jensen, Carsten P.; Ackermann, M.; Christensen, Finn Erland;

    2009-01-01

    For the International X-ray observatory (IXO), a mirror module with an effective area of 3 m2 at 1.25 keV and at least 0.65 m2 at 6 keV has to be realized. To achieve this goal, coated silicon pore optics has been developed over the last years. One of the challenges is to coat the Si plates...

  12. Silicone nanocomposite coatings for fabrics

    Science.gov (United States)

    Eberts, Kenneth (Inventor); Lee, Stein S. (Inventor); Singhal, Amit (Inventor); Ou, Runqing (Inventor)

    2011-01-01

    A silicone based coating for fabrics utilizing dual nanocomposite fillers providing enhanced mechanical and thermal properties to the silicone base. The first filler includes nanoclusters of polydimethylsiloxane (PDMS) and a metal oxide and a second filler of exfoliated clay nanoparticles. The coating is particularly suitable for inflatable fabrics used in several space, military, and consumer applications, including airbags, parachutes, rafts, boat sails, and inflatable shelters.

  13. Marine Bacteria from Danish Coastal Waters Show Antifouling Activity against the Marine Fouling Bacterium Pseudoalteromonas sp. Strain S91 and Zoospores of the Green Alga Ulva australis Independent of Bacteriocidal Activity

    DEFF Research Database (Denmark)

    Bernbom, Nete; Ng, Yoke Yin; Kjelleberg, Staffan;

    2011-01-01

    bacteria with anti-Vibrio activity from different sample types and locations during a 1-year sampling from Danish coastal waters. The strains were identified as Pseudoalteromonas, Phaeobacter, and Vibrionaceae based on phenotypic tests and partial 16S rRNA gene sequence similarity. The numbers of bioactive...... bacteria were significantly higher in warmer than in colder months. While some species were isolated at all sampling locations, others were niche specific. We repeatedly isolated Phaeobacter gallaeciensis at surfaces from one site and Pseudoalteromonas tunicata at two others. Twenty-two strains...... the number of strain S91 or Ulva spores attaching to a preformed biofilm of each of the 22 strains. The strongest antifouling activity was found in Pseudoalteromonas strains. Biofilms of Pseudoalteromonas piscicida, Pseudoalteromonas tunicata, and Pseudoalteromonas ulvae prevented Pseudoalteromonas S91 from...

  14. Material Science Smart Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Rubinstein, A. I. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Sabirianov, R. F. [Univ. of Nebraska Medical Center, Omaha, NE (United States); Namavar, Fereydoon [Univ. of Nebraska Medical Center, Omaha, NE (United States)

    2014-07-01

    The contribution of electrostatic interactions to the free energy of binding between model protein and a ceramic implant surface in the aqueous solvent, considered in the framework of the nonlocal electrostatic model, is calculated as a function of the implant low-frequency dielectric constant. We show that the existence of a dynamically ordered (low-dielectric) interfacial solvent layer at the protein-solvent and ceramic-solvent interface markedly increases charging energy of the protein and ceramic implant, and consequently makes the electrostatic contribution to the protein-ceramic binding energy more favorable (attractive). Our analysis shows that the corresponding electrostatic energy between protein and oxide ceramics depends nonmonotonically on the dielectric constant of ceramic, εC. Obtained results indicate that protein can attract electrostatically to the surface if ceramic material has a moderate εC below or about 35 (in particularly ZrO2 or Ta2O5). This is in contrast to classical (local) consideration of the solvent, which demonstrates an unfavorable electrostatic interaction of protein with typical metal oxide ceramic materials (εC>10). Thus, a solid implant coated by combining oxide ceramic with a reduced dielectric constant can be beneficial to strengthen the electrostatic binding of the protein-implant complex.

  15. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  16. Composite hydrophilic coating for conditioner aluminum fins

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    To solve the so-called "white rust" and 'water bridge" problems of the aluminum fins for heat exchanger of automobile air conditioner, aimed at nationalizing the art of hydrophilic coating technology, the choice of coating forming and curing materials was investigated. By measuring the water contact angle, SEM surface scanning and ingredients analysis of the coating, optimal parameters and composition are acquired. The coating forming mechanisms of the composition was also expatiated. The coating obtained has good hydrophilic and other properties.

  17. Coating, Titanium Dioxide and Solar Cell

    OpenAIRE

    Yang, Aohan

    2011-01-01

    The objective of this bachelor’s thesis is to get basic ideas about coating and a deep understanding of properties of titanium dioxide pigments as well as their application and performance in solar electricity energy technology. This thesis consists of three main parts, eight chapters. The first part is about basic knowledge of coating and tests of coated paper. Coating pigments are generally introduced in the part. In the second part, coating additives are introduced in details from ...

  18. Part-per-trillion level determination of antifouling pesticides and their byproducts in seawater samples by off-line solid-phase extraction followed by high-performance liquid chromatography-atmospheric pressure chemical ionization mass spectrometry.

    Science.gov (United States)

    Martínez, K; Ferrer, I; Barceló, D

    2000-05-19

    A new method for the simultaneous determination of antifouling pesticides and some of their byproducts such as dichlofluanid, diuron and its byproducts [demethyldiuron and 1-(3,4-dichlorophenyl)urea], (2-thiocyanomethylthio)ben: zothiazole, chlorothalonil, Sea-nine 211, Irgarol 1051 and one of its byproducts (2-methylthio-4-tert.-butylamino-s-triazine) in seawater was developed. The extraction of these compounds from the filtered seawater samples was performed off-line with different solid-phase extraction sorbents using (I) a 500 mg graphitized carbon black cartridge (ENVI-Carb) and (II) 200 mg polymeric cartridges (LiChrolut EN and Isolute ENV+) and passing 500 ml of the sample through these cartridges. The detection was carried out by reversed-phase high-performance liquid chromatography coupled with atmospheric pressure chemical ionization mass spectrometry both in the negative and positive ion modes. The recovery ranged from 76 to 96% for the whole antifouling group with the ENVI-Carb cartridges and the detection limit was at the part-per-trillion level except for TCMTB. The method utilizing the polymeric cartridge proved to be very useful, time saving and with good recoveries when only Irgarol and its byproduct, Sea-nine 211 and diuron and its byproducts, have to be analyzed. The different cartridges were applied to the analysis of these pesticides in different marinas of the Catalan coast; diuron, dichlofluanid, Sea-nine 211, Irgarol as well as demethyldiuron and the Irgarol byproduct being the must ubiquitous pollutants. Maximum concentration levels were 2-3.5 microg/l of diuron and Sea-nine 211, respectively. PMID:10870693

  19. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Semblante, Galilee Uy [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Lu, Shao-Chung [Department of Civil Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); Damodar, Rahul A. [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Wei, Ta-Chin [R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Plasma and grafting parameters that maximized TiO{sub 2} binding sites were found. Black-Right-Pointing-Pointer PVDF hydrophilicity was vastly improved compared to other modification techniques. Black-Right-Pointing-Pointer At least 1.5% TiO{sub 2} and 30 min UV exposure were needed to attain full flux recovery. Black-Right-Pointing-Pointer Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO{sub 2} is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 Degree-Sign C for 2 h maximized the number of TiO{sub 2} binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO{sub 2}, following a direct proportionality to TiO{sub 2} loading. The membrane with 0.5% TiO{sub 2} loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO{sub 2} and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO{sub 2}-modified membranes removed 30-42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  20. Hepatic Proteomic Responses in Marine Medaka ( Oryzias melastigma ) Chronically Exposed to Antifouling Compound Butenolide [5-octylfuran-2(5H)-one] or 4,5-Dichloro-2- N -Octyl-4-Isothiazolin-3-One (DCOIT)

    KAUST Repository

    Chen, Lianguo

    2015-02-03

    The pollution of antifoulant SeaNine 211, with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one (DCOIT) as active ingredient, in coastal environment raises concerns on its adverse effects, including endocrine disruption and impairment of reproductive function in marine organisms. In the present study, we investigated the hepatic protein expression profiles of both male and female marine medaka (Oryzias melastigma) exposed to low concentrations of DCOIT at 2.55 mu g/L (0.009 mu M) or butenolide, a promising antifouling agent, at 2.31 mu g/L (0.012 mu M) for 28 days. The results showed that proteins involved in phase I (CYP450 enzyme) metabolism, phase II (UDPGT and GST) conjugation as well as mobilization of retinoid storage, an effective nonenzymatic antioxidant, were consistently up-regulated, possibly facilitating the accelerated detoxification of butenolide. Increased synthesis of bile acid would promote the immediate excretion of butenolide metabolites. Activation of fatty acid beta-oxidation and ATP synthesis were consistent with elevated energy consumption for butenolide degradation and excretion. However, DCOIT did not significantly affect the detoxification system of male medaka, but induced a marked increase of vitellogenin (VTG) by 2.3-fold in the liver of male medaka, suggesting that there is estrogenic activity of DCOIT in endocrine disruption. Overall, this study identified the molecular mechanisms and provided sensitive biomarkers characteristic of butenolide and DCOIT in the liver of marine medaka. The low concentrations of butenolide and DCOIT used in the exposure regimes highlight the needs for systematic evaluation of their environmental risk. In addition, the potent estrogenic activity of DCOIT should be considered in the continued applications of SeaNine 211.

  1. Application of High-Performance Liquid Chromatography in Test of Antifouling Compounds of Marine Coatings%HPLC在海洋船舶涂料防污剂检测中的应用

    Institute of Scientific and Technical Information of China (English)

    狄兰兰; 蔺存国; 郑纪勇; 张桂玲

    2008-01-01

    介绍了HPLC)高效液相色谱法)在海水环境中涂料防污剂含量检测方而的应用,综述了敌草隆,Irgarol 1051及其降解产物在海洋沉积物和海水中的HPLC-PAD)高效液相色谱二极管阵列榆测器)检测方法;以及HPLC-APCI-MS)高效液相色谱大气压化学电离质谱),HPLC-UV)高效液相色谱紫外检测器)在Kathon 5287,TCMTB,TCMS吡啶等防污剂测定中的应用;辣椒素的HPLC-UV检测方法;HPLC及其联用技术在水环境中有机锡含量检测方面的应用.

  2. Preparation and Performance of BA/MMA/AA Terpolymer Based Peelable Antifouling Coating%BA/MMA/AA三元共聚物基可剥离去污涂料的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    何智宇; 周元林; 谢长琼; 代海; 刘希伟; 李永升

    2015-01-01

    以丙烯酸丁酯(BA)、甲基丙烯酸甲酯(MMA)、丙烯酸(AA)为反应单体,十二烷基硫酸钠为活性剂,过硫酸钾为引发剂,水为分散介质,采用预乳液聚合法合成了三元体系可剥离涂料,利用红外光谱(FT-IR)、核磁共振(1H-NMR)、原子吸收光谱仪、热重分析(TG)和激光粒度分析方法对其结构、热稳定性及相形态进行研究;并且在不同单体配比条件下,对产物微球的粒径和粒径分布以及合成产物在不同基材表面的成膜性及可剥离性进行了研究;同时考察了涂料对模拟核素Cs+、Sr2+以及Cs+ +Sr2+的去污效果.结果表明:实验成功合成了目标产物,该产物热分解温度为376℃,具有良好的热稳定性;涂料能在不同基材表面连续成膜且完整剥离,具有优良的成膜及可剥离性;对模拟核素Cs+、Sr2+以及Cs+ +Sr2+的吸附去污率均能达到85%以上.

  3. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  4. Coating of catalyst supports - links between slurry characteristics, coating process and final coating quality

    OpenAIRE

    Adegbite, SA

    2010-01-01

    Tightening legislation for vehicles across the world has caused the use of monolith catalysts in automotive emission control to become ubiquitous. Control of the adherence and homogeneity of the platinum group metal (PGM) coating onto the monolith block, to maximise catalytic performance for a minimum PGM loading, is therefore paramount. In this study, an automatic film application is used for coating γ–alumina slurries onto Fecralloy®, an integral component of metallic monolith catalysts, to...

  5. Progress in Multi-Functional Coatings Applied for Surface of Heat Exchangers%换热器多功能涂料的研究进展

    Institute of Scientific and Technical Information of China (English)

    于庆杰

    2011-01-01

    尽管进行了大量研究和尝试了各种手段,换热器表面的腐蚀和污垢沉积依然是换热器设计和运行过程中必须面对的重要问题.在换热表面涂装耐腐蚀、抗垢以及高导热率涂料改性是解决换热器腐蚀和结垢问题的重要途径.文章介绍了目前应用于换热器表面的各种多功能涂料的研究现状,分析了这些多功能涂料体系的优缺点.并结合纳米科技的发展,提出了换热器多功能涂料进一步的研究方向和发展趋势.%Despite numerous studies and measures were used, corrosion and deposition of fouling on the heat transfer surfaces are still the major problems in design and operation of industrial heat exchangers. Surface of heat exchangers with enhanced corrosion resistance, antifouling and high thermal conductivity coatings is the most important approach to solve these problems. This article described the development of raulti - functional coatings applied on the surface of heat exchangers. The main advantages and disadvantges of these systems were presented along with a brief introduction of their scientific basis. Finally, combined with the development of nano - technology, the further development of multi - functional coatings for surface of heat exchangers and its prospects were proposed.

  6. Modifications of thermal barrier coatings (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Schmitt-Thomas, K.G.; Haindl, H.; Fu, D. [Technische Univ. Muenchen (Germany). Lehrstuhl fuer Werkstoffe im Maschinenbau

    1997-10-01

    To develop highly efficient gas turbines, thermal barrier coating systems with a high reliability and a long lifetime under severe operating conditions are required. The failure of TBC-systems is caused by thermal cycling conditions, oxidation attack, and insufficient adhesion at the interface of the ceramic coating and the bond coat. Coating failure occurs mostly near the interface top coat-bond coat. Two modifications of a conventional duplex TBC-system consisting of a Ni-base alloy substrate/MCrAlY-bond coat/ZrO{sub 2} 7 wt.% Y{sub 2}O{sub 3}-top coat, which is used as the reference system, are presented as follows. (i) By contouring the MCrAlY-bond coat with a laser, the stress distribution at the ZrO{sub 2}-bond coat interface can be modified by forming folds within the laminate structure of the ceramic top coat and increasing the bonding area. TBC-systems containing a contoured bond coat show better thermal cycling behaviour. FEM-simulation of thermally induced stress shows an alternating stress distribution which is caused by the contoured bond coat interface. (ii) High-velocity oxygen fuel (HVOF)-sprayed MCrAlY layers are a new possibility to create homogeneous bond coats. Thermal barrier coatings with LPPS- (low pressure plasma sprayed) or HVOF-CoNiCrAlY bond coats are compared by investigating their porosity, roughness, and oxidation behaviour. The porosity is proportional to the roughness of the HVOF bond coats. The oxide content was examined by TEM and EDX analysis. HVOF-CoNiCrAlY bond coats show oxidation behaviour similar to coatings produced by LPPS. (orig.) 10 refs.

  7. Coating Carbon Fibers With Platinum

    Science.gov (United States)

    Effinger, Michael R.; Duncan, Peter; Coupland, Duncan; Rigali, Mark J.

    2007-01-01

    A process for coating carbon fibers with platinum has been developed. The process may also be adaptable to coating carbon fibers with other noble and refractory metals, including rhenium and iridium. The coated carbon fibers would be used as ingredients of matrix/fiber composite materials that would resist oxidation at high temperatures. The metal coats would contribute to oxidation resistance by keeping atmospheric oxygen away from fibers when cracks form in the matrices. Other processes that have been used to coat carbon fibers with metals have significant disadvantages: Metal-vapor deposition processes yield coats that are nonuniform along both the lengths and the circumferences of the fibers. The electrical resistivities of carbon fibers are too high to be compatible with electrolytic processes. Metal/organic vapor deposition entails the use of expensive starting materials, it may be necessary to use a furnace, and the starting materials and/or materials generated in the process may be hazardous. The present process does not have these disadvantages. It yields uniform, nonporous coats and is relatively inexpensive. The process can be summarized as one of pretreatment followed by electroless deposition. The process consists of the following steps: The surfaces of the fiber are activated by deposition of palladium crystallites from a solution. The surface-activated fibers are immersed in a solution that contains platinum. A reducing agent is used to supply electrons to effect a chemical reduction in situ. The chemical reduction displaces the platinum from the solution. The displaced platinum becomes deposited on the fibers. Each platinum atom that has been deposited acts as a catalytic site for the deposition of another platinum atom. Hence, the deposition process can also be characterized as autocatalytic. The thickness of the deposited metal can be tailored via the duration of immersion and the chemical activity of the solution.

  8. Weathering of Thermal Control Coatings

    Science.gov (United States)

    Jaworske, Donald A.; Tuan, George C.; Westheimer, David T.; Peters, Wanda C.; Kauder, Lonny R.; Triolo, Jack J.

    2007-01-01

    Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an applique. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliques upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel. This is a challenge, as new composite radiator panels are being considered as replacements for the aluminum panels used previously. Various thermal control paints, coatings, and appliques were applied to aluminum and isocyanate ester composite coupons and were exposed for 30 days at the Atmospheric Exposure Site of the Kennedy Space Center s Beach Corrosion Facility for the purpose of identifying their durability to weathering. Selected coupons were subsequently exposed to simulated solar wind and vacuum ultraviolet radiation to identify the effect of a simulated space environment on the as-weathered surfaces. Optical properties and adhesion testing were used to document the durability of the paints and coatings. The purpose of this paper is to present the results of the weathering testing and to summarize the durability of several thermal control paints, coatings, and appliques to weathering and postweathering environments.

  9. Kinetic regulation of coated vesicle secretion

    CERN Document Server

    Foret, Lionel

    2008-01-01

    The secretion of vesicles for intracellular transport often rely on the aggregation of specialized membrane-bound proteins into a coat able to curve cell membranes. The nucleation and growth of a protein coat is a kinetic process that competes with the energy-consuming turnover of coat components between the membrane and the cytosol. We propose a generic kinetic description of coat assembly and the formation of coated vesicles, and discuss its implication to the dynamics of COP vesicles that traffic within the Golgi and with the Endoplasmic Reticulum. We show that stationary coats of fixed area emerge from the competition between coat growth and the recycling of coat components, in a fashion resembling the treadmilling of cytoskeletal filaments. We further show that the turnover of coat components allows for a highly sensitive switching mechanism between a quiescent and a vesicle producing membrane, upon a slowing down of the exchange kinetics. We claim that the existence of this switching behaviour, also tri...

  10. Design of Polymer Coatings in Automotive Engines

    Institute of Scientific and Technical Information of China (English)

    LIAO Han-lin; ZHANG Ga; BORDES Jean-Michel; CHRISTIAN Coddet

    2004-01-01

    Driven by economical and ecological reasons, thermoplastics based coatings were more and more used in automotive engines. Two design concepts, flame spraying and serigraphy PEEK coatings on light metal substrate, were introduced in this paper. The friction and wear behavior of PEEK based coatings were investigated systematically. Coatings with different crystallinities can be obtained when cooling speed is controlled. Among three sprayed coatings considered with different crystallinities, the one with highest crystallinity exhibits best friction and wear behavior under dry sliding condition. Under lubricated sliding condition, however, the amorphous coating gives lower friction coefficient. The micron particles such as SiC,MoS2 and graphite in composite coatings can improve significantly the coating wear resistance and have a impact on coating friction behavior.

  11. Sputtering process and apparatus for coating powders

    Science.gov (United States)

    Makowiecki, Daniel M.; Kerns, John A.; Alford, Craig S.; McKernan, Mark A.

    2002-01-01

    A process and apparatus for coating small particles and fibers. The process involves agitation by vibrating or tumbling the particles or fibers to promote coating uniformly, removing adsorbed gases and static charges from the particles or fibers by an initial plasma cleaning, and coating the particles or fibers with one or more coatings, a first coating being an adhesion coating, and with subsequent coatings being deposited in-situ to prevent contamination at layer interfaces. The first coating is of an adhesion forming element (i.e. W, Zr, Re, Cr, Ti) of a 100-10,000 .ANG. thickness and the second coating or final coating of a multiple (0.1-10 microns) being Cu or Ag, for example for brazing processes, or other desired materials that defines the new surface related properties of the particles. An essential feature of the coating process is the capability to deposit in-situ without interruption to prevent the formation of a contaminated interface that could adversely affect the coating adhesion. The process may include screening of the material to be coated and either continuous or intermittent vibration to prevent agglomeration of the material to be coated.

  12. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  13. Radiation curable compositions useful as transfer coatings

    International Nuclear Information System (INIS)

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  14. Innovative coatings and surface modification of titanium for sea water condenser applications

    International Nuclear Information System (INIS)

    Effectiveness of cooling water systems in various power plants to maintain highest electrical energy output per tonne of fuel is important as part of good energy management. Cooling water systems of nuclear power plants using seawater for cooling comes under constant attack from the marine and sea water environment. Many metallic components and civil structures in the cooling water systems like bridges, intake wells, intake pipes, pump house wells, water boxes, condenser pipes are subjected to severe fouling and corrosion which limits the service life and availability of power plants. The experience with a coastal water cooled power plant at Kalpakkam (MAPS), India, showed that chlorination and screening control macrofouling to a great extend by controlling protozoans, invertebrates, algae and fungi. However 90% of marine bacteria are resistant to such control measures, and they cause microfouling of condenser pipes leading to poor heat transfer and microbially influenced corrosion (MIC) failures. Titanium is used as condenser for Indian nuclear power plants employing sea water cooling, including the PFBR at Kalpakkam. Though titanium is excellent with respect to corrosion behavior under sea water conditions, its biocompatible nature results in biofouling and MIC during service. Therefore innovative antifouling coatings and surface modification techniques for titanium condenser applications in seawater and marine environments are the need of the hour. Extensive investigations were carried out by different methods including nanostructuring of surfaces for making them antibacterial. The microroughness of titanium was produced by repeated pickling and polishing which by itself reduced microbial adhesion. To utilize photocatalytic activity for antibacterial property, anodization of titanium surfaces followed by heat treatment was adopted and this also has controlled microbial fouling. Electroless plating of nanofilm of copper-nickel alloy decreased biofouling of

  15. Dielectric Coatings for IACT Mirrors

    CERN Document Server

    Förster, A; Chadwick, P; Held, M

    2013-01-01

    Imaging Atmospheric Cherenkov Telescopes for very-high energy gamma-ray astronomy need mirror with high reflectance roughly in the wavelength between 300 and 550 nm. The current standard reflective layer of such mirrors is aluminum. Being permanently exposed to the environment they show a constant degradation over the years. New and improved dielectric coatings have been developed to enhance their resistance to environmental impact and to extend their possible lifetime. In addition, these customized coatings have an increased reflectance of over 95% and are designed to significantly lower the night-sky background contribution. The development of such coatings for mirrors with areas up to 2 m2 and low application temperatures to suite the composite materials used for the new mirror susbtrates of the Cherenkov Telescope Array (CTA) and the results of extensive durability tests are presented.

  16. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  17. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    International Nuclear Information System (INIS)

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic

  18. Nano-Ceramic Coated Plastics

    Science.gov (United States)

    Cho, Junghyun

    2013-01-01

    Plastic products, due to their durability, safety, and low manufacturing cost, are now rapidly replacing cookware items traditionally made of glass and ceramics. Despite this trend, some still prefer relatively expensive and more fragile ceramic/glassware because plastics can deteriorate over time after exposure to foods, which can generate odors, bad appearance, and/or color change. Nano-ceramic coatings can eliminate these drawbacks while still retaining the advantages of the plastic, since the coating only alters the surface of the plastic. The surface coating adds functionality to the plastics such as self-cleaning and disinfectant capabilities that result from a photocatalytic effect of certain ceramic systems. These ceramic coatings can also provide non-stick surfaces and higher temperature capabilities for the base plastics without resorting to ceramic or glass materials. Titanium dioxide (TiO2) and zinc oxide (ZnO) are the candidates for a nano-ceramic coating to deposit on the plastics or plastic films used in cookware and kitchenware. Both are wide-bandgap semiconductors (3.0 to 3.2 eV for TiO2 and 3.2 to 3.3 eV for ZnO), so they exhibit a photocatalytic property under ultraviolet (UV) light. This will lead to decomposition of organic compounds. Decomposed products can be easily washed off by water, so the use of detergents will be minimal. High-crystalline film with large surface area for the reaction is essential to guarantee good photocatalytic performance of these oxides. Low-temperature processing (nano-ceramic coatings (TiO2, ZnO) on plastic materials (silicone, Teflon, PET, etc.) that can possess both photocatalytic oxide properties and flexible plastic properties. Processing cost is low and it does not require any expensive equipment investment. Processing can be scalable to current manufacturing infrastructure.

  19. Studies on soft centered coated snacks.

    Science.gov (United States)

    Pavithra, A S; Chetana, Ramakrishna; Babylatha, R; Archana, S N; Bhat, K K

    2013-04-01

    Roasted groundnut seeds, amaranth and dates pulp formed the center filling which was coated with sugar, breadings, desiccated coconut and roasted Bengalgram flour (BGF) to get 4 coated snacks. Physicochemical characteristics, microbiological profile, sorption behaviour and sensory quality of 4 coated snacks were determined. Centre filling to coating ratio of the products were in the range of 3:2-7:1, the product having BGF coating had the thinnest coating. Center filling had soft texture and the moisture content was 10.2-16.2% coating had lower moisture content (4.4-8.6%) except for Bengal gram coating, which had 11.1% moisture. Sugar coated snack has lowest fat (11.6%) and protein (7.2%) contents. Desiccated coconut coated snack has highest fat (25.4%) and Bengal gram flour coated snack had highest protein content (15.4%). Sorption studies showed that the coated snack had critical moisture content of 11.2-13.5%. The products were moisture sensitive and hence require packaging in films having higher moisture barrier property. In freshly prepared snacks coliforms, yeast and mold were absent. Mesophillic aerobes count did not show significant change during 90 days of storage at 27 °C and 37 °C. Sensory analysis showed that products had a unique texture due to combined effect of fairly hard coating and soft center. Flavour and overall quality of all the products were rated as very good. PMID:24425933

  20. Matching Performance among Visible and near Infrared Coating, Low Infrared Emitting Coating and Microwave Absorbing Coating

    Institute of Scientific and Technical Information of China (English)

    XIE Guohua; ZHANG Zuoguang; WU Ruibin

    2005-01-01

    The matching performance among the visible and near infrared conting, the low infrared emitting coating and the microwave absorbing coating was investigated. Experimental results shaw that the resulting material is characteristic of wideband effect ranging from the visible, near infrared and 3-5μm, 8- 14 μm infrared portion of the spectrum, as well as the radar region from 8 to 18 GHz when these three materials form a layerstructure material system. The microwave absorbing ability of material is hardly changed. The resonance peak moves towards lower frequency as the thickness of the visible, near infrared coating and the low infrared emitting coating increases. This problem can be resolved by controlling the thickness of the material. On the other hand,the infrared emissivity ε of the material system increases as the thickness of the visible, near infrared coating increases. This can be resolved by increasing infrared transparency of the visible and near infrared topcoating or controlling its thickness. The experimental resulting material system has spectral reflection characteristics in visible and near infrared regions that are similar to those of the natural bnckground.

  1. Photodegradation mechanisms of TPB coatings

    Science.gov (United States)

    VanGemert, J. K.

    2013-10-01

    In these proceedings I discuss results of a degradation mechanism study of tetraphenyl butadiene (TPB) coatings of the type used in neutrino and dark matter liquid argon experiments. Using gas chromatography coupled to mass spectrometry (GCMS) we identified the UV blocking impurity benzophenone. We monitored the drop in performance and increase of benzophenone concentration in TPB plates with exposure to ultraviolet (UV) light, and demonstrate the correlation between these two variables. We show promisng results obtained by adding a free radical inhibiting stabilizing compound, which improves the initial performance of light-guide coatings by up to 20% and significantly improves their UV stability. These proceedings summarize work previously published in JINST [1].

  2. Coated carbon nanotube array electrodes

    Science.gov (United States)

    Ren, Zhifeng; Wen, Jian; Chen, Jinghua; Huang, Zhongping; Wang, Dezhi

    2008-10-28

    The present invention provides conductive carbon nanotube (CNT) electrode materials comprising aligned CNT substrates coated with an electrically conducting polymer, and the fabrication of electrodes for use in high performance electrical energy storage devices. In particular, the present invention provides conductive CNTs electrode material whose electrical properties render them especially suitable for use in high efficiency rechargeable batteries. The present invention also provides methods for obtaining surface modified conductive CNT electrode materials comprising an array of individual linear, aligned CNTs having a uniform surface coating of an electrically conductive polymer such as polypyrrole, and their use in electrical energy storage devices.

  3. Corrosion-resistant coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.; Kupp, D.M.; Martin, R.L. [Oak Ridge National Lab., TN (United States)

    1997-12-01

    SiC-based heat exchangers have been identified as the prime candidate material for use as heat exchangers in advanced combined cycle power plants. Unfortunately, hot corrosion of the SiC-based materials created by alkali metal salts present in the combustion gases dictates the need for corrosion-resistant coatings. The well-documented corrosion resistance of CS-50 combined with its low (and tailorable) coefficient of thermal expansion and low modulus makes CS-50 an ideal candidate for this application. Coatings produced by gelcasting and traditional particulate processing have been evaluated.

  4. Thin Films for Coating Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    S.M.Mukhopadhyay; P.Joshi; R.V.Pulikollu

    2005-01-01

    For nano-structured solids (those with one or more dimensions in the 1-100 nm range), attempts of surface modification can pose significant and new challenges. In traditional materials, the surface coating could be several hundreds nanometers in thickness, or even microns and millimeters. In a nano-structured material, such as particle or nanofibers, the coating thickness has to be substantially smaller than the bulk dimensions (100 nm or less), yet be durable and effective. In this paper, some aspects of effective nanometer scale coatings have been discussed. These films have been deposited by a non-line of sight (plasma)techniques; and therefore, they are capable of modifying nanofibers, near net shape cellular foams, and other high porosity materials. Two types of coatings will be focused upon: (a) those that make the surface inert and (b) those designed to enhance surface reactivity and bonding. The former has been achieved by forming 1-2 nm layer of -CF2- (and/or CF3) groups on the surface, and the latter by creating a nanolayer of SiO2-type compound. Nucleation and growth studies of the plasma-generated film indicate that they start forming as 2-3 nm high islands that grow laterally, and eventually completely cover the surface with 2-3nm film. Contact angle measurements indicate that these nano-coatings are fully functional even before they have achieved complete coverage of 2-3 nm. They should therefore be applicable to nano-structural solids.This is corroborated by application of these films on vapor grown nanofibers of carbon, and on graphitic foams. Coated and uncoated materials are infiltrated with epoxy matrix to form composites and their microstructure, as well as mechanical behaviors are compared. The results show that the nano-oxide coating can significantly enhance bond formation between carbon and organic phases, thereby enhancing wettability,dispersion, and composite behavior. The fluorocarbon coating, as expected, reduces bond formation, and

  5. Durable Dust Repellent Coating for Metals Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Durable Dust Repellent Coating (DDRC) consists of nano-phase silica, titania, or other oxide coatings to repel dust in a vacuum environment over a wide range of...

  6. STUDY ON VISCOELASTIC BEHAVIOR OF PAPER COATING

    Institute of Scientific and Technical Information of China (English)

    Heng Zhang; Kefu Chen; Rendang Yang

    2004-01-01

    The flow behavior of paper coating is critical to the coating operation. In this work, the influence of the added agents on the flow behavior and the viscoelastic behavior is investigated using rheometer in steady and dynamic oscillatory modes.

  7. Antireflective Coatings for Glass and Transparent Polymers.

    Science.gov (United States)

    Buskens, Pascal; Burghoorn, Marieke; Mourad, Maurice Christian Danho; Vroon, Zeger

    2016-07-12

    Antireflective coatings (ARCs) are applied to reduce surface reflections. We review coatings that reduce the reflection of the surface of the transparent substrates float glass, polyethylene terephthalate, poly(methyl methacrylate), and polycarbonate. Three main coating concepts exist to lower the reflection at the interface of a transparent substrate and air: multilayer interference coatings, graded index coatings, and quarter-wave coatings. We introduce and discuss these three concepts, and zoom in on porous quarter-wave coatings comprising colloidal particles. We extensively discuss the four routes for introducing porosity in quarter-wave coatings through the use of colloidal particles, which have the highest potential for application: (1) packing of dense nanospheres, (2) integration of voids through hollow nanospheres, (3) integration of voids through sacrificial particle templates, and (4) packing of nonspherical nanoparticles. Finally, we address the remaining challenges in the field of ARCs, and elaborate on potential strategies for future research in this area. PMID:27187719

  8. Measurements of the optical mirror coating properties

    OpenAIRE

    Braginsky, V. B.; Samoilenko, A. A.

    2003-01-01

    The results of measurement of optical mirror coating are presented. These results indicate that Standard Quantum Limit of sensitivity can be reached in the second stage of LIGO project if it is limited by thermoelastic noise in the coating only.

  9. Fusion silicide coatings for tantalum alloys.

    Science.gov (United States)

    Warnock, R. V.; Stetson, A. R.

    1972-01-01

    Calculation of the performance of fusion silicide coatings under simulated atmospheric reentry conditions to a maximum temperature of 1810 K (2800 F). Both recently developed and commercially available coatings are included. Data are presented on oxidation rate with and without intentional defecting, the influence of the coatings on the ductile-brittle bend transition temperature, and the mechanical properties. Coatings appear capable of affording protection for at least 100 simulated cycles to 2600 F and 63 cycles to 2800 F.

  10. Use of nanofillers in wood coatings

    DEFF Research Database (Denmark)

    Nikolic, Miroslav; Lawther, John Mark; Sanadi, Anand Ramesh

    2015-01-01

    Wood has been used for thousands of years and remains an important material in the construction industry, most often protected with coatings. Development of nanotechnology allows further improvements or new performance properties to be achieved in wood coatings. Increased UV protection...... like a low level of loading, have already established nanoparticles in some areas of wood coatings. This article is a comprehensive scientific review of the published work in the use of nanofillers in wood coatings....

  11. Sputter coating of microspherical substrates by levitation

    Science.gov (United States)

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  12. Friction- and wear-reducing coating

    Science.gov (United States)

    Zhu, Dong; Milner, Robert; Elmoursi, Alaa AbdelAzim

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  13. Deposition and Coating Properties on CVD Tungsten

    Institute of Scientific and Technical Information of China (English)

    DU Ji-hong; LI Zheng-xiang; LIU Gao-jian; ZHOU Hui-Huang; CHUN liang

    2004-01-01

    Surface characterization and microstructure studies are performed on chemical vapor deposited (CVD) tungsten coating. There is about 2 μm thickness diffusion layer of tungsten in the molybdenum substrate. The thermal shock test shows tungsten coating has good adhesion with molybdenum substrate, but the elements of oxygen and carbon in the tungsten coating have the bad affection to the adhesion. The result of high-temperature diffusion experiment is the diffusion rate from molybdenum substrate to tungsten coating is faster.

  14. RECENT TECHNIQUES OF PHARMACEUTICAL SOLVENTLESS COATING: A REVIEW

    OpenAIRE

    Shital Dhuppe , S.S. Mitkare*, D.M. Sakarkar

    2012-01-01

    The coating of solid pharmaceutical dosage forms began in the 9th century B. C., with the Egyptians. Conventional coating techniques are based on solvents or water. Solventless coatings are alternative technique of coating. In solventless coating, the coating material is directly spread on the core and then it is cured by special method to form coat. Solventless coating avoids the use of water or it reduces to very small amounts with respect t...

  15. Mechanically reliable scales and coatings

    Energy Technology Data Exchange (ETDEWEB)

    Tortorelli, P.F.; Alexander, K.B. [Oak Ridge National Lab., TN (United States)

    1995-06-01

    In many high-temperature fossil energy systems, corrosion and deleterious environmental effects arising from reactions with reactive gases and condensible products often compromise materials performance and, as a consequence, degrade operating efficiencies. Protection of materials from such reactions is best afforded by the formation of stable surface oxides (either as deposited coatings or thermally grown scales) that are slowly reacting, continuous, dense, and adherent to the substrate. However, the ability of normally brittle ceramic films and coatings to provide such protection has long been problematical, particularly for applications involving numerous or severe high-temperature thermal cycles or very aggressive (for example, sulfidizing) environments. A satisfactory understanding of how scale and coating integrity and adherence are improved by compositional, microstructural, and processing modifications is lacking. Therefore, to address this issue, the present work is intended to define the relationships between substrate characteristics (composition, microstructure, and mechanical behavior) and the structure and protective properties of deposited oxide coatings and/or thermally grown scales. Such information is crucial to the optimization of the chemical, interfacial, and mechanical properties of the protective oxides on high-temperature materials through control of processing and composition and directly supports the development of corrosion-resistant, high-temperature materials for improved energy and environmental control systems.

  16. Optical trapping of coated microspheres

    NARCIS (Netherlands)

    Bormuth, V.; Jannasch, A.; Ander, M.; van Kats, C.M.; van Blaaderen, A.; Howard, J.; Schäffer, E.

    2008-01-01

    In an optical trap, micron-sized dielectric particles are held by a tightly focused laser beam. The optical force on the particle is composed of an attractive gradient force and a destabilizing scattering force. We hypothesized that using anti-reflection-coated microspheres would reduce scattering a

  17. Optical trapping of coated microspheres.

    Science.gov (United States)

    Bormuth, Volker; Jannasch, Anita; Ander, Marcel; van Kats, Carlos M; van Blaaderen, Alfons; Howard, Jonathon; Schäffer, Erik

    2008-09-01

    In an optical trap, micron-sized dielectric particles are held by a tightly focused laser beam. The optical force on the particle is composed of an attractive gradient force and a destabilizing scattering force. We hypothesized that using anti-reflection-coated microspheres would reduce scattering and lead to stronger trapping. We found that homogeneous silica and polystyrene microspheres had a sharp maximum trap stiffness at a diameter of around 800 nm--the trapping laser wavelength in water--and that a silica coating on a polystyrene microsphere was a substantial improvement for larger diameters. In addition, we noticed that homogeneous spheres of a correct size demonstrated anti-reflective properties. Our results quantitatively agreed with Mie scattering calculations and serve as a proof of principle. We used a DNA stretching experiment to confirm the large linear range in detection and force of the coated microspheres and performed a high-force motor protein assay. These measurements show that the surfaces of the coated microspheres are compatible with biophysical assays.

  18. Microstructure and properties of high emissivity coatings

    Institute of Scientific and Technical Information of China (English)

    Zhigang Dan; Daqiang Cang; Huimin Zhou; Hao Bai; Yanbin Zong

    2008-01-01

    A new coating on lining in industrial furnace for energy saving has been developed. Properties and microstructure of the coatings were revealed by emissivity instrument, X-ray diffraction (XRD), transmission electron microscope (TEM) and scanning electron microscope (SEM), respectively. The result indicates that the emissivity of coatings is higher than 0.90 and the thickness of coatings is about 200 μm. ZrO2, Cr2O3 and SiC in the coating benefit practical applications of coatings at high temperature with du-rable high emissivity and the continuous structure between the coatings and the substrate makes the coatings high cohesion and ex-cellent adhesion for both specimens with and without sintering at high temperature. Result fi'om laboratory experiment shows that the heating speed of specimen with coating is higher than that of controlled specimen and the temperature increases 30℃ during the heating. The average temperature drop of specimen with coatings has a 13.5% improvement in the cooling speed. The application of coatings on the checker brick in a blast furnace of 1750 m3 indicates that the coating causes the blast temperature to an average in-crease of 28℃, reduces the fluctuation of blast temperature before the blowing-in and leads to a fuel saving of 10% approximately.

  19. Natural-oxide solar-collector coatings

    Science.gov (United States)

    Krupnick, A. C.; Roberts, M. L.; Sharpe, M. H.

    1979-01-01

    Optically selective coatings for solar collectors are produced by thermally treating stainless steel in furnace after series of cleaning and soaking operations. Coatings have withstood 18-month exposure tests at 100 percent relative humidity and temperatures of 95 F. Room temperature coatings are valuable as they are inexpensive to produce, highly production oriented, and environmentally stable.

  20. Optimized coating removal by cold shock treatment

    International Nuclear Information System (INIS)

    The method of removing coatings from nuclear power plant components, especially such with residual contamination, makes use of the self-contained stress developing during heat extraction. In this connection the nitrogen application process without and with preheating by means of hot air, infrared and microwave radiation was tested. The problem of auxiliary coatings was examined, and model coatings were developed. (DG)

  1. Moisture in organic coatings - a review

    NARCIS (Netherlands)

    Wel, G.K. van der; Adan, O.C.G.

    1999-01-01

    A review is given on transport and equilibrium sorption of moisture in polymer films and organic coatings. Polymeric material forms the continuous phase of a coating and is therefore important for transport properties. Besides polymer, coatings consist of pigments and fillers and various additives,

  2. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  3. Antireflective Coatings for Glass and Transparent Polymers

    NARCIS (Netherlands)

    Buskens, P.; Burghoorn, M.; Danho Mourad, M.C.; Vroon, Z.

    2016-01-01

    Antireflective coatings (ARCs) are applied to reduce surface reflections. We review coatings that reduce the reflection of the surface of the transparent substrates float glass, polyethylene terephthalate, poly(methyl methacrylate), and polycarbonate. Three main coating concepts exist to lower the r

  4. Pipeline coating comparison methods for northern pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Singh, P. [Shaw Pipe Protection, Calgary, AB (Canada); Purves, G.A. [Cimarron Engineering Ltd., Calgary, AB (Canada)

    2004-07-01

    Two high-quality pipe coatings designed for northern environments were compared for their relative costs and suitability for the conditions that will be encountered in the field. Coating selection should consider local conditions to achieve the optimum life-cycle costs for the system. Some of the key factors affecting the integrity of the protective coating on a pipe include the effects of cold temperature and soil types. In this study, both Fusion Bonded Epoxy (FBE) and High Performance Composite Coatings (HPCC) were evaluated for an entire pipeline installation in a northern environment, from the coating plant to the pipe trench. The evaluation focused on the advantages of better abrasion resistance of the HPCC coating. This was compared against the incremental cost of HPCC coating over FBE on large diameter NPS 30 to NPS 48 pipelines. The following parameters influenced the choice of coating: storage, transportation and handling; bending ability under cold weather conditions; pipe installation and backfilling; weld joint coatings; coating repair and cathodic protection and pipeline integrity. Some of the construction costs that are indirectly affected by the choice of pipe coating include right-of-way preparation and restoration; trenching; supervision, service and downtime and specialist crossings. It was concluded that HPCC has better resistance to abrasion than FBE and is more flexible in extremely cold temperatures. Standard FBE is about 10 per cent less expensive than HPCC. In general HPCC will require less coating protection than FBE, depending on site conditions. 3 refs., 18 tabs., 8 figs.

  5. Superhard nano-multilayers and nanocomposite coatings

    Institute of Scientific and Technical Information of China (English)

    BAI Xiaoming; ZHENG Weitao; AN Tao

    2005-01-01

    This paper reviews the recent development of nano-multilayers and nanocomposite coatings. The hardening mechanisms and design of hard coating are discussed in details. Recent research on Ti/TiN and nitride/nitride multilayer, Ti-Si-N and Ti-Al-Si-N nanocomposite coatings is described, and the perspectives of the related research are proposed.

  6. Supra-amphiphilic transparent mesoporous silica coating

    Institute of Scientific and Technical Information of China (English)

    MA Jin; YANG Zhenglong; QU Xiaozhong; YANG Zhenzhong

    2006-01-01

    Transparent mesoporous silica coatings were achieved by conventional sol-gel process. The obtained coatings display permanent supraamphiphilicity, transparent appearance and good wetting property with very fast spread rate. Incorporation of functional materials such as crystalline titania nanoparticles into the coatings was also carried out without affecting the transparency and supraamphiphilicity.

  7. Finite Element Analysis of Ceramic Coatings under Spherical Indentation with Metallic Interlayer: Part Ⅰ Uncracked Coatings

    Institute of Scientific and Technical Information of China (English)

    Minh-Quy LE; Seock-Sam KIM

    2006-01-01

    Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.

  8. Dip coating of boron nitride thin films on nicalon fibers

    International Nuclear Information System (INIS)

    This paper discusses a process involving dip coating of ceramic fibers in H3BO3 solution followed by reaction with NH3 has resulted in the formation of a BN coating on Nicalon and a carbon coated Nicalon fiber. BN coated C-Nicalon fiber maintained its strength during the coating process, while the BN coated Nicalon did not

  9. Atomically Bonded Transparent Superhydrophobic Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL

    2015-08-01

    Maintaining clarity and avoiding the accumulation of water and dirt on optically transparent surfaces such as US military vehicle windshields, viewports, periscope optical head windows, and electronic equipment cover glasses are critical to providing a high level of visibility, improved survivability, and much-needed safety for warfighters in the field. Through a combination of physical vapor deposition techniques and the exploitation of metastable phase separation in low-alkali borosilicate, a novel technology was developed for the fabrication of optically transparent, porous nanostructured silica thin film coatings that are strongly bonded to glass platforms. The nanotextured films, initially structurally superhydrophilic, exhibit superior superhydrophobicity, hence antisoiling ability, following a simple but robust modification in surface chemistry. The surfaces yield water droplet contact angles as high as 172°. Moreover, the nanostructured nature of these coatings provides increased light scattering in the UV regime and reduced reflectivity (i.e., enhanced transmission) over a broad range of the visible spectrum. In addition to these functionalities, the coatings exhibit superior mechanical resistance to abrasion and are thermally stable to temperatures approaching 500°C. The overall process technology relies on industry standard equipment and inherently scalable manufacturing processes and demands only nontoxic, naturally abundant, and inexpensive base materials. Such coatings, applied to the optical components of current and future combat equipment and military vehicles will provide a significant strategic advantage for warfighters. The inherent self-cleaning properties of such superhydrophobic coatings will also mitigate biofouling of optical windows exposed to high-humidity conditions and can help decrease repair/replacement costs, reduce maintenance, and increase readiness by limiting equipment downtime.

  10. Settlement Behavior of Marine Benthic Diatoms on Tourmaline Coatings%海洋底栖硅藻在电气石涂层上的附着行为

    Institute of Scientific and Technical Information of China (English)

    张占平; 齐育红; 刘德良

    2011-01-01

    For exploitation new non-toxic antifouling paints, marine benthic diatoms were incubated and used for the settlement tests in laboratory. Four coatings were prepared in which it contained respectively with 2%, 3%, 5% and 10% of tourmaline powders. The settlement behavior of marine benthic diatoms on these coatings was investigated according to the measurement of chlorophyll a and quantitative image processing based on the photos taken by stereo-microscope. The results showed that the fraction of the benthic diatoms attached on the coatings changes with the increase of tourmaline contents in paint. The coating with 2% tourmaline doesn't inhabit obviously the settlement of benthic diatoms. The coating with 3% tourmaline strongly inhabit the settlement of benthic diatoms. The tourmaline content increases from 3% to 10% , the inhabiting effect of tourmaline decreases. The mechanism of tourmaline inhabiting the activity and the attachment of marine benthic diatoms can be attributed to that tourmaline makes water molecule decompose into H+and OH~ , at the same time, it electrolyses seawater and results in the sodium hypochlorite, Cl2, HC1O and C1O~ made on the surface of the coatings, these strong oxidabnts are toxic for the benthic diatoms and inhabit the activity and the attachment of marine benthic diatoms. It predicates the application potential of tourmaline in new non-toxic marine antifouling coatings.%为了开发新型无毒海洋防污涂料,培养了舟形海洋底栖硅藻,采用叶绿素a值测定、体视显微镜拍照和图像定量分析方法,研究了底柄硅藻在质量分数为2%、3%、5%、10%的4种电气石涂层上的附着行为.结果表明,含2%电气石涂层对底栖硅藻的附着无明显抑制作用,含3%电气石涂层对底栖硅藻附着的抑制作用最为明显,电气石含量继续增大为5%和10%,其抑制作用逐渐减小.电气石对底栖硅藻在涂层上附着的抑制机理在于,当电气石与海水接

  11. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    OpenAIRE

    Wei Sun; Ying Liu; Guangyu Du

    2015-01-01

    Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytica...

  12. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  13. Nanostructured zirconia layers as thermal barrier coatings

    Directory of Open Access Journals (Sweden)

    Radu Robert PITICESCU

    2011-09-01

    Full Text Available The coatings obtained by thermal spray are used both as antioxidant and connection materials (e.g. MCrAlY type alloys as well as thermal barrier coatings (e.g. partially stabilized zirconia oxide with yttria oxide. This paper studies the characteristics of the coatings obtained with nanostructured powders by thermal spraying and air plasma jet metallization. Testing of coatings is done against the most disturbing factor, thermal shock. Structural changes occurring after thermal shock tests are highlighted by investigations of optical and electronic microscopy. The results obtained after quick thermal shock show a good morphological and surface behavior of the developed coatings.

  14. Levitation, coating, and transport of particulate materials

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, C.D.

    1981-10-12

    Several processes in various fields require uniformly thick coatings and layers on small particles. The particles may be used as carriers of catalytic materials (platinum or other coatings), as laser fusion targets (various polymer or metallic coatings), or for biological or other tracer or interactive processes. We have devised both molecular beam and electro-dynamic techniques for levitation of the particles during coating and electrodynamic methods of controlling and transporting the particles between coating steps and to final use locations. Both molecular beam and electrodynamic techniques are described and several advantages and limitations of each will be discussed. A short movie of an operating electrodynamic levitation and transport apparatus will be shown.

  15. TABLET COATING TECHNIQUES: CONCEPTS AND RECENT TRENDS

    OpenAIRE

    Gupta Ankit; Bilandi Ajay; Kataria Mahesh Kumar; Khatri Neetu

    2012-01-01

    Tablet coating is a common pharmaceutical technique of applying a thin polymer-based film to a tablet or a granule containing active pharmaceutical ingredients (APIs). Solid dosage forms are coated for a number of reasons, the most important of which is controlling the release profiles. The amount of coating on the surface of a tablet is critical to the effectiveness of the oral dosage form. Tablets are usually coated in horizontal rotating pans with the coating solution sprayed onto the free ...

  16. Nanocrystalline Ni-W coatings on copper

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulos, C.N., E-mail: chpanag@metal.ntua.gr [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece); Plainakis, G.D.; Lagaris, D.A. [Laboratory of Physical Metallurgy, National Technical University of Athens, Zografos, 15780, Athens (Greece)

    2011-04-15

    Nanocrystalline Ni-W coatings were produced on copper substrates with the aid of electrodeposition technique. The morphology, chemical composition and structure of the produced coatings were examined with the aid of scanning electron microscopy (SEM), electron dispersive spectroscopy (EDS) and X-ray diffraction (XRD) techniques. The microhardness of alloy Ni-W coatings on copper substrate was also studied. The adhesion between the Ni-W coating, having W content 50 wt%, and the copper substrate, was also studied with a scratch testing apparatus. The scratch tests resulted in the coatings suffering an intensive brittle fracture and minor delamination.

  17. Method for making nanoporous hydrophobic coatings

    Science.gov (United States)

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  18. Coating metals on micropowders by magnetron sputtering

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Magnetron sputtering was used to coat various metals on micropowder surfaces. By using this method, the fine particles are better dispersed and can therefore be coated more homogeneously. The micro-powders used include cenospheres from fly ash of coal-burning electric power plants (diameter 40-200 μm and particle density 0.7±0.1 g/cm3), as well as carborundum particles of different sizes. Aluminum, silver, copper, cobalt and nickel were used as the coating metals. Tests showed that the coated metal film was compact adhering tightly on the base powders, and the coated powders possess adequate flow properties.

  19. Black Molecular Adsorber Coatings for Spaceflight Applications

    Science.gov (United States)

    Abraham, Nithin Susan; Hasegawa, Mark Makoto; Straka, Sharon A.

    2014-01-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  20. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.