WorldWideScience

Sample records for anticancer drug cisplatin

  1. Modelling the encapsulation of the anticancer drug cisplatin into carbon nanotubes

    International Nuclear Information System (INIS)

    Hilder, Tamsyn A; Hill, James M

    2007-01-01

    The proposed use of nanocapsules in drug delivery systems promises many advantages over current procedures. The major advantage is the potential for patients to have significantly reduced side effects from taking the drug, especially for highly toxic drugs such as those used for cancer treatments. Nanotubes have been suggested as one such carrier to deliver a drug to a specific site, giving rise to the notion of the 'magic bullet'. The aim of this paper is to determine whether a particular nanotube would accept a particular drug, and to determine the radius of the nanotube that provides the maximum uptake of the drug molecule. In particular, this paper looks at the drug cisplatin, a platinum based anticancer drug widely used in the treatment of tumours. Three orientations of cisplatin, a polar molecule, are investigated as it enters the nanotube. It is shown that, for all three orientations of cisplatin to be accepted into the carbon nanotube, the minimum radius must be at least 4.785 A, which is slightly smaller than a (9, 5) nanotube and that the maximum suction energy occurs when the carbon nanotube radius is approximately 5.3 A, which is approximately equivalent to a (11, 4) nanotube. This paper presents for the first time a calculation of this nature, and although the model represents only a first approximation, it constitutes a necessary preliminary calculation which might provide medical scientists with some overall guidelines

  2. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-01

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  3. In vivo evaluation on the effects of HemoHIM in promoting anticancer activities and reducing the side-effects of anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran; Ju, Eun Jin; Cho, Eun Hee

    2009-07-15

    In this project, we aimed to obtain the preclinical in vivo evaluation data for the development of the herbal composition (HemoHIM) as the auxiliary agent for the anticancer treatment that can reduce the side-effects of anticancer drugs and enhance their anticancer activities. Firstly, in vitro studies showed that HemoHIM did not show any effects on the tumor cell growth inhibition by 2 anticancer drugs (cisplatin, 5-FU), which indicated that at least HemoHIM does not exert any adverse effects on the activities of anticancer drugs. Next, the in vivo studies with mice implanted with tumor cells(B16F0, LLC1) showed that HemoHIM partially enhanced the anticancer activities of drugs (cisplatin, 5-FU), and improved endogenous anticancer immune activities. Furthermore, in the same animal models, HemoHIM effectively reduced the side-effects of anticancer drugs (liver and renal toxicities by cisplatin, immune and hematopoietic disorders by 5-FU). These results collectively showed that HemoHIM can enhance the activities of anticancer drugs and reduce their side-effects in vitro and in vivo and HemoHIM does not exert any adverse effects on the efficacy of anticancer drugs. The results of this project can be utilized as the basic preclinical data for the development and approval of HemoHIM as the auxiliary agent for the anticancer treatment

  4. Developments in platinum anticancer drugs

    Science.gov (United States)

    Tylkowski, Bartosz; Jastrząb, Renata; Odani, Akira

    2018-01-01

    Platinum compounds represent one of the great success stories of metals in medicine. Following the unexpected discovery of the anticancer activity of cisplatin (Fig. 1) in 1965 by Prof. Rosenberg [1], a large number of its variants have been prepared and tested for their ability to kill cancer cells and inhibit tumor growth. Although cisplatin has been in use for over four decades, new and more effective platinum-based therapeutics are finally on the horizon. A wide introduction to anticancer studies is given by the authors of the previous chapter. This chapter aims at providing the readers with a comprehensive and in-depth understanding of recent developments of platinum anticancer drugs and to review the state of the art. The chapter is divided into two parts. In the first part we present a historical aspect of platinum and its complexes, while in the second part we give an overview of developments in the field of platinum anticancer agents.

  5. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    Energy Technology Data Exchange (ETDEWEB)

    Roosta, Sara [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Hashemianzadeh, Seyed Majid, E-mail: hashemianzadeh@iust.ac.ir [Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science & Technology, Tehran (Iran, Islamic Republic of); Ketabi, Sepideh, E-mail: sepidehketabi@yahoo.com [Department of Chemistry, East Tehran Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-10-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol{sup −1} and − 2457.124 kcal mol{sup −1} respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol{sup −1} which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol{sup −1}) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  6. Encapsulation of cisplatin as an anti-cancer drug into boron-nitride and carbon nanotubes: Molecular simulation and free energy calculation

    International Nuclear Information System (INIS)

    Roosta, Sara; Hashemianzadeh, Seyed Majid; Ketabi, Sepideh

    2016-01-01

    Encapsulation of cisplatin anticancer drug into the single walled (10, 0) carbon nanotube and (10, 0) boron-nitride nanotube was investigated by quantum mechanical calculations and Monte Carlo Simulation in aqueous solution. Solvation free energies and complexation free energies of the cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube complexes was determined as well as radial distribution functions of entitled compounds. Solvation free energies of cisplatin@ carbon nanotube and cisplatin@ boron-nitride nanotube were − 4.128 kcal mol"−"1 and − 2457.124 kcal mol"−"1 respectively. The results showed that cisplatin@ boron-nitride nanotube was more soluble species in water. In addition electrostatic contribution of the interaction of boron- nitride nanotube complex and solvent was − 281.937 kcal mol"−"1 which really more than Van der Waals and so the electrostatic interactions play a distinctive role in the solvation free energies of boron- nitride nanotube compounds. On the other hand electrostatic part of the interaction of carbon nanotube complex and solvent were almost the same as Van der Waals contribution. Complexation free energies were also computed to study the stability of related structures and the free energies were negative (− 374.082 and − 245.766 kcal mol"−"1) which confirmed encapsulation of drug into abovementioned nanotubes. However, boron-nitride nanotubes were more appropriate for encapsulation due to their larger solubility in aqueous solution. - Highlights: • Solubility of cisplatin@ boron-nitride nanotube is larger than cisplatin@ carbon nanotube. • Boron- nitride nanotube complexes have larger electrostatic contribution in solvation free energy. • Complexation free energies confirm encapsulation of drug into the nanotubes in aqueous solution. • Boron- nitride nanotubes are appropriate drug delivery systems compared with carbon nanotubes.

  7. Prolonged local persistence of cisplatin-loaded gelatin microspheres and their chemoembolic anti-cancer effect in rabbits

    International Nuclear Information System (INIS)

    Ohta, Shinichi; Nitta, Norihisa; Sonoda, Akinaga; Seko, Ayumi; Tanaka, Toyohiko; Takahashi, Masashi; Takemura, Shizuki; Tabata, Yasuhiko; Murata, Kiyoshi

    2009-01-01

    Purpose: To confirm prolonged cisplatin release from drug-loaded gelatin microspheres (GMSs) and their improved chemoembolic anti-cancer effect against VX2 liver tumors in rabbits. Materials and methods: Two groups of twelve rabbits each were treated intraarterially either with 2 mg/kg cisplatin-loaded GMSs (=0.04 mg/kg cisplatin) or 0.04 mg/kg cisplatin solution by administering them into the right renal artery. Platinum concentrations within the renal parenchyma were analyzed immediately following infusion (day 0) and on days 1, 3, and 7 using the atomic absorption method. In a second experiment four groups of five rabbits each with implanted VX2 liver tumors were treated intraarterially through the hepatic artery with the following drugs: 2 mg/kg cisplatin-loaded GMSs (=0.04 mg/kg cisplatin) (group I), 2 mg/kg GMSs without any drug (group II), 1.5 mg/kg cisplatin solution (group III) and saline (group IV). Tumor volumes were analyzed pre-injection and 7 days after with MRI allowing calculating the relative tumor growth rate (%). Degree of liver cell necrosis was assessed on the histopathological specimens. Results: The renal parenchymal platinum concentrations (μg/ml) with 4.51 ± 2.25 (day 0), 1.59 ± 0.70 (day 1), 0.72 ± 0.10 (day 3) and 0.20 ± 0.06 (day 7) were significantly more pronounced after cisplatin-loaded GMS on days one and three compared to cisplatin with 1.99 ± 0.55, 0.08 ± 0.03, 0.18 ± 0.01 and 0.10 ± 0.07, respectively. Relative tumor growth rates resulted in 84.5% ± 26.4 (group I); 241.4% ± 145.1 (II); 331.9% ± 72.2 (III), and 413.6% ± 103.6 (IV) with statistical significant differences between groups I and III, and groups I and IV. Similar degrees of necrosis were observed in both GMSs treated groups, while ballooning of hepatocytes was highest in cisplatin-loaded GMSs. Conclusions: With cisplatin-loaded GMSs more pronounced and prolonged local parenchymal cisplatin concentrations may be achieved offering the advantage of an

  8. Supramolecular "Trojan Horse" for Nuclear Delivery of Dual Anticancer Drugs.

    Science.gov (United States)

    Cai, Yanbin; Shen, Haosheng; Zhan, Jie; Lin, Mingliang; Dai, Liuhan; Ren, Chunhua; Shi, Yang; Liu, Jianfeng; Gao, Jie; Yang, Zhimou

    2017-03-01

    Nuclear delivery and accumulation are very important for many anticancer drugs that interact with DNA or its associated enzymes in the nucleus. However, it is very difficult for neutrally and negatively charged anticancer drugs such as 10-hydroxycamptothecine (HCPT). Here we report a simple strategy to construct supramolecular nanomedicines for nuclear delivery of dual synergistic anticancer drugs. Our strategy utilizes the coassembly of a negatively charged HCPT-peptide amphiphile and the positively charged cisplatin. The resulting nanomaterials behave as the "Trojan Horse" that transported soldiers (anticancer drugs) across the walls of the castle (cell and nucleus membranes). Therefore, they show improved inhibition capacity to cancer cells including the drug resistant cancer cell and promote the synergistic tumor suppression property in vivo. We envision that our strategy of constructing nanomaterials by metal chelation would offer new opportunities to develop nanomedicines for combination chemotherapy.

  9. Anticancer properties and enhancement of therapeutic potential of cisplatin by leaf extract of Zanthoxylum armatum DC

    Directory of Open Access Journals (Sweden)

    Thangjam Davis Singh

    2015-01-01

    Full Text Available BACKGROUND: Clinical use of chemotherapeutic drug, cisplatin is limited by its toxicity and drug resistance. Therefore, efforts continue for the discovery of novel combination therapies with cisplatin, to increase efficacy and reduce its toxicity. Here, we screened 16 medicinal plant extracts from Northeast part of India and found that leaf extract of Zanthoxylum armatum DC. (ZALE induced cytotoxicity as well as an effect on the increasing of the efficiency of chemotherapeutic drugs (cisplatin, mitomycin C and camptothecin. This work shows detail molecular mechanism of anti-cancer activity of ZALE and its potential for combined treatment regimens to enhance the apoptotic response of chemotherapeutic drugs. RESULTS: ZALE induced cytotoxicity, nuclear blebbing and DNA fragmentation in HeLA cells suggesting apoptosis induction in human cervical cell line. However, the apoptosis induced was independent of caspase 3 activation and poly ADP ribose polymerase (PARP cleavage. Further, ZALE activated Mitogen-activated protein kinases (MAPK pathway as revealed by increased phosphorylation of extracellular-signal-regulated kinases (ERK, p38 and c-Jun N-ter-minal kinase (JNK. Inhibition of ERK activation but not p38 or JNK completely blocked the ZALE induced apoptosis suggesting an ERK dependent apoptosis. Moreover, ZALE generated DNA double strand breaks as suggested by the induction γH2AX foci formation. Interestingly, pretreatment of certain cancer cell lines with ZALE, sensitized the cancer cells to cisplatin and other chemotherapeutic drugs. Enhanced caspase activation was observed in the synergistic interaction among chemotherapeutic drugs and ZALE. CONCLUSION: Purification and identification of the bio-active molecules from the ZALE or as a complementary treatment for a sequential treatment of ZALE with chemotherapeutic drugs might be a new challenger to open a new therapeutic window for the novel anti-cancer treatment.

  10. Synergistic anticancer effects of cisplatin and histone deacetylase inhibitors (SAHA and TSA) on cholangiocarcinoma cell lines.

    Science.gov (United States)

    Asgar, Md Ali; Senawong, Gulsiri; Sripa, Banchob; Senawong, Thanaset

    2016-01-01

    Clinical application of cisplatin against cholangiocarcinoma is often associated with resistance and toxicity posing urgent demand for combination therapy. In this study, we evaluated the combined anticancer effect of cisplatin and histone deacetylase inhibitors (HDACIs), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA), on the cholangiocarcinoma KKU-100 and KKU-M214 cell lines. Antiproliferative activity was evaluated using MTT assay. Apoptosis induction and cell cycle arrest were analyzed by flow cytometry. Cell cycle and apoptosis regulating proteins were evaluated by western blot analysis. MTT assay showed that cisplatin, SAHA and TSA dose-dependently reduced the viability of KKU-100 and KKU-M214 cells. The combination of cisplatin and HDACIs exerted significantly more cytotoxicity than the single drugs. Combination indices below 1.0 reflect synergism between cisplatin and HDACIs, leading to positive dose reductions of cisplatin and HDACIs. Cisplatin and HDACIs alone induced G0/G1 phase arrest in KKU-100 cells, but the drug combinations increased sub-G1 percent more than either drug. However, cisplatin and HDACIs alone or in combination increased only the sub-G1 percent in KKU-M214 cells. Annexin V-FITC staining revealed that cisplatin and HDACIs combinations induced more apoptotic cell death of both KKU-100 and KKU-M214 cells than the single drug. In KKU-100 cells, growth inhibition was accompanied by upregulation of p53 and p21 and downregulation of CDK4 and Bcl-2 due to exposure to cisplatin, SAHA and TSA alone or in combination. Moreover, combination of agents exerted higher impacts on protein expression. Single agents or combination did not affect p53 expression, however, combination of cisplatin and HDACIs increased the expression of p21 in KKU-M214 cells. Taken together, cisplatin and HDACIs combination may improve the therapeutic outcome in cholangiocarcinoma patients.

  11. A Systems Biology Approach to Understanding the Mechanisms of Action of an Alternative Anticancer Compound in Comparison to Cisplatin

    Science.gov (United States)

    Wright, Elise P.; Padula, Matthew P.; Higgins, Vincent J.; Aldrich-Wright, Janice R.; Coorssen, Jens R.

    2014-01-01

    Many clinically available anticancer compounds are designed to target DNA. This commonality of action often yields overlapping cellular response mechanisms and can thus detract from drug efficacy. New compounds are required to overcome resistance mechanisms that effectively neutralise compounds like cisplatin and those with similar chemical structures. Studies have shown that 56MESS is a novel compound which, unlike cisplatin, does not covalently bind to DNA, but is more toxic to many cell lines and active against cisplatin-resistant cells. Furthermore, a transcriptional study of 56MESS in yeast has implicated iron and copper metabolism as well as the general yeast stress response following challenge with 56MESS. Beyond this, the cytotoxicity of 56MESS remains largely uncharacterised. Here, yeast was used as a model system to facilitate a systems-level comparison between 56MESS and cisplatin. Preliminary experiments indicated that higher concentrations than seen in similar studies be used. Although a DNA interaction with 56MESS had been theorized, this work indicated that an effect on protein synthesis/ degradation was also implicated in the mechanism(s) of action of this novel anticancer compound. In contrast to cisplatin, the different mechanisms of action that are indicated for 56MESS suggest that this compound could overcome cisplatin resistance either as a stand-alone treatment or a synergistic component of therapeutics. PMID:28250393

  12. Is Glutathione the Major Cellular Target of Cisplatin?

    DEFF Research Database (Denmark)

    Kasherman, Yonit; Stürup, Stefan; gibson, dan

    2009-01-01

    Cisplatin is an anticancer drug whose efficacy is limited because tumors develop resistance to the drug. Resistant cells often have elevated levels of cellular glutathione (GSH), believed to be the major cellular target of cisplatin that inactivates the drug by binding to it irreversibly, forming...

  13. Cisplatin binds to pre-miR-200b and impairs its processing to mature microRNA.

    Science.gov (United States)

    Mezencev, R; Wartell, R M

    2018-01-01

    Cisplatin is an important anticancer drug with a complex mode of action, a variety of possible targets, and numerous resistance mechanisms. While genomic DNA has traditionally been considered to be its most critical anticancer target, several lines of evidence suggest that various RNAs and other biomolecules may play a role in its anticancer mode of action. In this report we demonstrate that cisplatin modifies pre-miR-200b, impairs its processing to mature miRNA, and decreases miR-200b expression in ovarian cancer cells. Considering the role of miR-200b in epithelial-to-mesenchymal transition and cancer chemosensitivity, cisplatin-induced modification of pre-miR-200b and subsequent deregulation of mature miR-200b may, depending on cell context, limit anticancer activity of this important anticancer drug. More gener- ally, precursor miRNAs may be important targets of cisplatin and play a role in this drug's anticancer activity or modulate cell responses to this drug.

  14. Cisplatin-Induced Eosinophilic Pneumonia

    Directory of Open Access Journals (Sweden)

    Hideharu Ideguchi

    2014-01-01

    Full Text Available A 67-year-old man suffering from esophageal cancer was admitted to our hospital complaining of dyspnea and hypoxemia. He had been treated with cisplatin, docetaxel, and fluorouracil combined with radiotherapy. Chest computed tomography revealed bilateral ground-glass opacity, and bronchoalveolar lavage fluid showed increased eosinophils. Two episodes of transient eosinophilia in peripheral blood were observed after serial administration of anticancer drugs before the admission, and drug-induced lymphocyte stimulation test to cisplatin was positive. Thus cisplatin-induced eosinophilic pneumonia was suspected, and corticosteroid was effectively administered. To our knowledge, this is the first reported case of cisplatin-induced eosinophilic pneumonia.

  15. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies.

    Science.gov (United States)

    Pabla, N; Dong, Z

    2008-05-01

    Cisplatin is one of the most widely used and most potent chemotherapy drugs. However, side effects in normal tissues and organs, notably nephrotoxicity in the kidneys, limit the use of cisplatin and related platinum-based therapeutics. Recent research has shed significant new lights on the mechanism of cisplatin nephrotoxicity, especially on the signaling pathways leading to tubular cell death and inflammation. Renoprotective approaches are being discovered, but the protective effects are mostly partial, suggesting the need for combinatorial strategies. Importantly, it is unclear whether these approaches would limit the anticancer effects of cisplatin in tumors. Examination of tumor-bearing animals and identification of novel renoprotective strategies that do not diminish the anticancer efficacy of cisplatin are essential to the development of clinically applicable interventions.

  16. A rapid in vitro screening system for the identification and evaluation of anticancer drugs

    International Nuclear Information System (INIS)

    Kao, J.W.; Collins, J.L.

    1989-01-01

    We report the development of an in vitro screening system that can be used to identify new anticancer drugs that are specifically cytotoxic for dividing cells. The screening system takes advantage of the potential of many cell lines, including tumor cells, to stop dividing when they are plated at high cell density. The cytotoxic effects of anticancer drugs on dividing (i.e., cells plated at low cell density) and nondividing cells (i.e., cells plated at high cell density) is measured by the incorporation of 51Cr. This in vitro system was evaluated by measuring the cytotoxic effects of the anticancer drugs cisplatin, thiotepa, doxorubicin, methotrexate, and vinblastine on the cell lines B/C-N, ME-180, and MCF-7. In this in vitro system the concentrations of the anticancer drugs that produced significant cytotoxicity on only dividing cells are similar to the concentrations that are used clinically. The fact that this in vitro system is rapid, simple, applicable to many cell types, and able to predict effective concentrations of anticancer drugs should make it useful for the screening of new anticancer drugs and for the design of preclinical studies

  17. Hierarchical mesosilicalite nanoformulation integrated with cisplatin exhibits target-specific efficient anticancer activity

    Science.gov (United States)

    Jermy, B. Rabindran; Acharya, Sadananda; Ravinayagam, Vijaya; Alghamdi, Hajer Saleh; Akhtar, Sultan; Basuwaidan, Rehab S.

    2018-04-01

    Hierarchically structured zeolitic ZSM-5 and meso MCM-41 interlinked domain had an impeccable use as catalysis in many applications. The aim of the study was to develop a new drug delivery nanoformulation, specifically, cisplatin/mesosilicalite using top-down approach for cancer therapy. Hierarchical mesosilicalite with variable porosity was synthesized using alkaline molar solution (0.2 and 0.7 M NaOH) and was loaded with cisplatin through equilibrium adsorption technique. Physico-chemical properties of the nanoformulation (IAUM-56—Imam Abdulrahman Bin Faisal University Mesosilicalite-56) were characterized using X-ray diffraction, surface area analysis (BET), Fourier transformed infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis spectroscopy, and transmission electron microscopy. Drug release study and anticancer activity were assayed on HeLa and MCF7 cancer cells using MTT assay. X-ray diffraction pattern showed interrelated meso- and microphases, while BET analysis revealed considerable mesoporosity formation with a remodulation of isotherm hysteresis indicating the presence of hierarchical pores. FT-IR showed the presence of nanozeolitic subunits into mesostructure with a band at about 550 cm-1. IAUM-56 demonstrated high cytotoxic activity against HeLa cancer cells with an LC50 of 0.02 mg/ml, MCF7 cancer cells with an LC50 of 0.05 mg/ml, and less toxic to normal fibroblast cells with an LC50 of approximately ten times higher at 0.5 mg/ml. Overall, IAUM-56 showed a high rate of sustained release of cisplatin imparting target specific cytotoxic effect against tumor cells with at least tenfold lower toxicity on normal fibroblast cells. Our nanoformulation has the potential use in cancer therapy as a targeted drug delivery system.

  18. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    International Nuclear Information System (INIS)

    Feng, Xue; Li, Ling; Jiang, Hong; Jiang, Keping; Jin, Ye; Zheng, Jianhua

    2014-01-01

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells

  19. Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: involvement of apoptosis and autophagy

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Xue [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Li, Ling [Department of Brain Cognition Computing Lab, University of Kent, Kent CT2 7NZ (United Kingdom); Jiang, Hong; Jiang, Keping; Jin, Ye [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China); Zheng, Jianhua, E-mail: zhengjianhua1115@126.com [Department of Gynecology and Obstetrics, The First Affiliated Hospital of Harbin Medical University, Harbin 150001 (China)

    2014-02-14

    Highlights: • Phosphorylation of mTOR is abnormal activation in SKOV3/DDP ovarian cancer cells. • Downregulation of mTOR by DHA helps to sensitize the SKOV3/DDP cells to chemotherapy. • DHA has the potential of induce autophagy in cancer cells. - Abstract: Dihydroartemisinin (DHA) exhibits anticancer activity in tumor cells but its mechanism of action is unclear. Cisplatin (DDP) is currently the best known chemotherapeutic available for ovarian cancer. However, tumors return de novo with acquired resistance over time. Mammalian target of rapamycin (mTOR) is an important kinase that regulates cell apoptosis and autophagy, and its dysregulation has been observed in chemoresistant human cancers. Here, we show that compared with control ovarian cancer cells (SKOV3), mTOR phosphorylation was abnormally activated in cisplatin-resistant ovarian cancer cells (SKOV3/DDP) following cisplatin monotherapy. Treatment with cisplatin combined with DHA could enhance cisplatin-induced proliferation inhibition in SKOV3/DDP cells. This mechanism is at least partially due to DHA deactivation of mTOR kinase and promotion of apoptosis. Although autophagy was also induced by DHA, the reduced cell death was not found by suppressing autophagic flux by Bafilomycin A1 (BAF). Taken together, we conclude that inhibition of cisplatin-induced mTOR activation is one of the main mechanisms by which DHA dramatically promotes its anticancer effect in cisplatin-resistant ovarian cancer cells.

  20. Study of small-cell lung cancer cell-based sensor and its applications in chemotherapy effects rapid evaluation for anticancer drugs.

    Science.gov (United States)

    Guohua, Hui; Hongyang, Lu; Zhiming, Jiang; Danhua, Zhu; Haifang, Wan

    2017-11-15

    Small cell lung cancer (SCLC) is a smoking-related cancer disease. Despite improvement in clinical survival, SCLC outcome remains extremely poor. Cisplatin (DDP) is the first-line chemotherapy drug for SCLC, but the choice of second-line chemotherapy drugs is not clear. In this paper, a SCLC cell-based sensor was proposed, and its applications in chemotherapy effects rapid evaluation for anticancer drugs were investigated. SCLC cell lines lung adenocarcinoma cell (LTEP-P) and DDP-resistant lung adenocarcinoma cell (LTEP-P/DDP-1.0) are cultured on carbon screen-printed electrode (CSPE) to fabricate integrated cell-based sensor. Several chemotherapy anticancer drugs, including cisplatin, ifosmamide, gemcitabine, paclitaxel, docetaxel, vinorelbine, etoposide, camptothecin, and topotecan, are selected as experimental chemicals. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) tests are conducted to evaluate chemotherapy drug effects on LTEP-P and LTEP-P/DDP-1.0 cell lines. Electrical cell-substrate impedance sensing (ECIS) responses to anti-tumor chemicals are measured and processed by double-layered cascaded stochastic resonance (DCSR). Cisplatin solutions in different concentrations measurement results demonstrate that LTEP-P cell-based sensor presents quantitative analysis abilities for cisplatin and topotecan. Cisplatin and its mixtures can also be discriminated. Results demonstrate that LTEP-P cell-based sensor sensitively evaluates chemotherapy drugs' apoptosis function to SCLC cells. LTEP-P/DDP-1.0 cell-based sensor responses demonstrate that gemcitabine, vinorelbine, and camptothecin are ideal second-line drugs for clinical post-cisplatin therapy than other drugs according to MTT test results. This work provides a novel way for SCLC second-line clinical chemotherapy drug screening. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Modeling of hyaluronic acid containing anti-cancer drugs-loaded polylactic-co-glycolic acid bioconjugates for targeted delivery to cancer cells

    Science.gov (United States)

    Gul-e-Saba, Adulphakdee, A.; Madthing, A.; Zafar, M. N.; Abdullah, M. A.

    2012-09-01

    Molecular modeling of hyaluronan (HA), polylactic-co-glycolic acid (PLGA), polyethylene glycol-bis-amine (PEG-bis-amine), Curcumin, Cisplatin and the conjugate HA-PEG-PLGA containing Curcumin/Cisplatin were performed using Discovery Studio 2.5 to better understand issues and constraints related to targeted delivery of potent anticancer drugs to cancer cells. HA, a versatile biopolymer is a ligand of cancer cell receptor, CD44 that can be particularly useful in a receptor-mediated cellular uptake of drug-incorporated nanoparticles. Biocompatible and biodegradable polymers, PLGA and PEG, serve as polymeric micelles for controlled-release of drug. Curcumin as a natural anticancer agent has poor solubility that limits its use in drug therapeutics, while platinum-based Cisplatin exhibits systemic cytotoxicity. These can be overcome via drug delivery in polymeric biocompatible vehicles. The PLGA-PEG-HA conjugate shows the total measurement of 105 bond length with average bond length of 1.274163 Å. The conjugation between PEG and HA occurs at C8-O1 atoms and can be manipulated to improve properties.

  2. Antitumor efficacy of conventional anticancer drugs is enhanced by the vascular targeting agent ZD6126

    International Nuclear Information System (INIS)

    Siemann, Dietmar W.; Rojiani, Amyn M.

    2002-01-01

    Purpose: The present report reviews the preclinical data on combined chemotherapy/vascular targeting agent treatments. Basic principles are illustrated in studies evaluating the antitumor efficacy of the vascular targeting agent ZD6126 (N-acetylcochinol-O-phosphate) when combined with the anticancer drug cisplatin in experimental rodent (KHT sarcoma) and human renal (Caki-1) tumor models. Methods and Materials: C3H/HeJ and NCR/nu-nu mice bearing i.m. tumors were injected i.p. with ZD6126 (0-150 mg/kg) or cisplatin (0-20 mg/kg) either alone or in combination. Tumor response to treatment was assessed by clonogenic cell survival. Results: Treatment with ZD6126 was found to damage existing neovasculature, leading to a rapid vascular shutdown. Histologic evaluation showed dose-dependent morphologic damage of tumor cells within a few hours after drug exposure, followed by extensive central tumor necrosis and neoplastic cell death as a result of prolonged ischemia. ZD6126 doses that led to pathophysiologic effects also enhanced the tumor cell killing of cisplatin when administered either 24 h before or 1-24 h after chemotherapy. In both tumor models, the administration of a 150 mg/kg dose of ZD6126 1 h after a range of doses of cisplatin resulted in an increase in tumor cell kill 10-500-fold greater than that seen with chemotherapy alone. In contrast, the inclusion of the antivascular agent did not increase bone marrow stem cell toxicity associated with this anticancer drug. Conclusion: The results obtained in the KHT and Caki-1 tumor models indicate that ZD6126 effectively enhanced the antitumor effects of cisplatin therapy. These findings are representative of the marked enhancements generally observed when vascular targeting agents are combined with chemotherapy in solid tumor therapy

  3. Cellular Responses to Cisplatin-Induced DNA Damage

    Directory of Open Access Journals (Sweden)

    Alakananda Basu

    2010-01-01

    Full Text Available Cisplatin is one of the most effective anticancer agents widely used in the treatment of solid tumors. It is generally considered as a cytotoxic drug which kills cancer cells by damaging DNA and inhibiting DNA synthesis. How cells respond to cisplatin-induced DNA damage plays a critical role in deciding cisplatin sensitivity. Cisplatin-induced DNA damage activates various signaling pathways to prevent or promote cell death. This paper summarizes our current understandings regarding the mechanisms by which cisplatin induces cell death and the bases of cisplatin resistance. We have discussed various steps, including the entry of cisplatin inside cells, DNA repair, drug detoxification, DNA damage response, and regulation of cisplatin-induced apoptosis by protein kinases. An understanding of how various signaling pathways regulate cisplatin-induced cell death should aid in the development of more effective therapeutic strategies for the treatment of cancer.

  4. New developments in cisplatin chemotherapy for cancer

    OpenAIRE

    力石, 秀実

    2005-01-01

    Cisplatin is one of the most potent and widely used anticancer agents for the treatment of various solid cancers. Its cytotoxic mode of action is mediated by its interaction with DNA to form DNA adducts, thereby activating apoptosis. However, the development of resistance (acquired or intrinsic) to cisplatin is a major clinical problem. Several mechanisms are implicated in cisplatin resistance, including decreased intracellular drug accumulation, increased levels of cellular thiols, increased...

  5. Transportan 10 improves the anticancer activity of cisplatin.

    Science.gov (United States)

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a

  6. Mechanisms of cisplatin-induced muscle atrophy

    International Nuclear Information System (INIS)

    Sakai, Hiroyasu; Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara; Sato, Ken; Chiba, Yoshihiko; Yamazaki, Mitsuaki; Matoba, Motohiro; Narita, Minoru

    2014-01-01

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin

  7. Mechanisms of cisplatin-induced muscle atrophy

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Hiroyasu, E-mail: sakai@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sagara, Atsunobu; Arakawa, Kazuhiko; Sugiyama, Ryoto; Hirosaki, Akiko; Takase, Kazuhide; Jo, Ara [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Sato, Ken [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Division of Pharmacy Professional Development and Research, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Chiba, Yoshihiko [Department of Biology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan); Yamazaki, Mitsuaki [Department of Anesthesiology, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama-shi, Toyama 9300194 (Japan); Matoba, Motohiro [Department of Palliative Medicine and Psychooncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo 1040045 (Japan); Narita, Minoru, E-mail: narita@hoshi.ac.jp [Department of Pharmacology, Hoshi University, 2-4-41 Ebara, Shinagawa-ku, Tokyo 1428501 (Japan)

    2014-07-15

    Fatigue is the most common side effect of chemotherapy. However, the mechanisms of “muscle fatigue” induced by anti-cancer drugs are not fully understood. We therefore investigated the muscle-atrophic effect of cisplatin, a platinum-based anti-cancer drug, in mice. C57BL/6J mice were treated with cisplatin (3 mg/kg, i.p.) or saline for 4 consecutive days. On Day 5, hindlimb and quadriceps muscles were isolated from mice. The loss of body weight and food intake under the administration of cisplatin was the same as those in a dietary restriction (DR) group. Under the present conditions, the administration of cisplatin significantly decreased not only the muscle mass of the hindlimb and quadriceps but also the myofiber diameter, compared to those in the DR group. The mRNA expression levels of muscle atrophy F-box (MAFbx), muscle RING finger-1 (MuRF1) and forkhead box O3 (FOXO3) were significantly and further increased by cisplatin treated group, compared to DR. Furthermore, the mRNA levels of myostatin and p21 were significantly upregulated by the administration of cisplatin, compared to DR. On the other hand, the phosphorylation of Akt and FOXO3a, which leads to the blockade of the upregulation of MuRF1 and MAFbx, was significantly and dramatically decreased by cisplatin. These findings suggest that the administration of cisplatin increases atrophic gene expression, and may lead to an imbalance between protein synthesis and protein degradation pathways, which would lead to muscle atrophy. This phenomenon could, at least in part, explain the mechanism of cisplatin-induced muscle fatigue. - Highlights: • Cisplatin decreased mass and myofiber diameter in quadriceps muscle. • The mRNA of MAFbx, MuRF1 and FOXO3 were increased by the cisplatin. • The mRNA of myostatin and p21 were upregulated by cisplatin. • The phosphorylation of Akt and FOXO3a was decreased by cisplatin.

  8. Vorinostat enhances the cisplatin-mediated anticancer effects in small cell lung cancer cells.

    Science.gov (United States)

    Pan, Chun-Hao; Chang, Ying-Fang; Lee, Ming-Shuo; Wen, B-Chen; Ko, Jen-Chung; Liang, Sheng-Kai; Liang, Mei-Chih

    2016-11-07

    Vorinostat, a histone deacetylase (HDAC) inhibitor, is a promising agent for cancer therapy. Combining vorinostat with cisplatin may relax the chromatin structure and facilitate the accessibility of cisplatin, thus enhancing its cytotoxicity. Studies have not yet investigated the effects of the combination of vorinostat and cisplatin on small cell lung cancer (SCLC). We first assessed the efficacy of vorinostat with etoposide/cisplatin (EP; triple combination) and then investigated the effects of cotreatment with vorinostat and cisplatin on H209 and H146 SCLC cell lines. The anticancer effects of various combinations were determined in terms of cell viability, apoptosis, cell cycle distribution, and vorinostat-regulated proteins. We also evaluated the efficacy of vorinostat/cisplatin combination in H209 xenograft nude mice. Our data revealed that the triple combination engendered a significant reduction of cell viability and high apoptotic cell death. In addition, vorinostat combined with cisplatin enhanced cell growth inhibition, induced apoptosis, and promoted cell cycle arrest. We observed that the acetylation levels of histone H3 and α-tubulin were higher in combination treatments than in vorinostat treatment alone. Moreover, vorinostat reduced the expression of thymidylate synthase (TS), and TS remained inhibited after cotreament with cisplatin. Furthermore, an in vivo study revealed that the combination of vorinostat and cisplatin significantly inhibited tumor growth in xenograft nude mice (tumor growth inhibition T/C% = 20.5 %). Combined treatments with vorinostat promote the cytotoxicity of cisplatin and induce the expression of vorinostat-regulated acetyl proteins, eventually enhancing antitumor effects in SCLC cell lines. Triple combinations with a low dosage of cisplatin demonstrate similar therapeutic effects. Such triple combinations, if applied clinically, may reduce the undesired adverse effects of cisplatin. The effects of the combination of

  9. Anticancer Properties of Distinct Antimalarial Drug Classes

    Science.gov (United States)

    Hooft van Huijsduijnen, Rob; Guy, R. Kiplin; Chibale, Kelly; Haynes, Richard K.; Peitz, Ingmar; Kelter, Gerhard; Phillips, Margaret A.; Vennerstrom, Jonathan L.; Yuthavong, Yongyuth; Wells, Timothy N. C.

    2013-01-01

    We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase) inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase) and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor), emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings. PMID:24391728

  10. Anticancer properties of distinct antimalarial drug classes.

    Directory of Open Access Journals (Sweden)

    Rob Hooft van Huijsduijnen

    Full Text Available We have tested five distinct classes of established and experimental antimalarial drugs for their anticancer potential, using a panel of 91 human cancer lines. Three classes of drugs: artemisinins, synthetic peroxides and DHFR (dihydrofolate reductase inhibitors effected potent inhibition of proliferation with IC50s in the nM- low µM range, whereas a DHODH (dihydroorotate dehydrogenase and a putative kinase inhibitor displayed no activity. Furthermore, significant synergies were identified with erlotinib, imatinib, cisplatin, dasatinib and vincristine. Cluster analysis of the antimalarials based on their differential inhibition of the various cancer lines clearly segregated the synthetic peroxides OZ277 and OZ439 from the artemisinin cluster that included artesunate, dihydroartemisinin and artemisone, and from the DHFR inhibitors pyrimethamine and P218 (a parasite DHFR inhibitor, emphasizing their shared mode of action. In order to further understand the basis of the selectivity of these compounds against different cancers, microarray-based gene expression data for 85 of the used cell lines were generated. For each compound, distinct sets of genes were identified whose expression significantly correlated with compound sensitivity. Several of the antimalarials tested in this study have well-established and excellent safety profiles with a plasma exposure, when conservatively used in malaria, that is well above the IC50s that we identified in this study. Given their unique mode of action and potential for unique synergies with established anticancer drugs, our results provide a strong basis to further explore the potential application of these compounds in cancer in pre-clinical or and clinical settings.

  11. Anticancer drugs during pregnancy.

    Science.gov (United States)

    Miyamoto, Shingo; Yamada, Manabu; Kasai, Yasuyo; Miyauchi, Akito; Andoh, Kazumichi

    2016-09-01

    Although cancer diagnoses during pregnancy are rare, they have been increasing with the rise in maternal age and are now a topic of international concern. In some cases, the administration of chemotherapy is unavoidable, though there is a relative paucity of evidence regarding the administration of anticancer drugs during pregnancy. As more cases have gradually accumulated and further research has been conducted, we are beginning to elucidate the appropriate timing for the administration of chemotherapy, the regimens that can be administered with relative safety, various drug options and the effects of these drugs on both the mother and fetus. However, new challenges have arisen, such as the effects of novel anticancer drugs and the desire to bear children during chemotherapy. In this review, we outline the effects of administering cytotoxic anticancer drugs and molecular targeted drugs to pregnant women on both the mother and fetus, as well as the issues regarding patients who desire to bear children while being treated with anticancer drugs. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Oral delivery of anticancer drugs

    DEFF Research Database (Denmark)

    Thanki, Kaushik; Gangwal, Rahul P; Sangamwar, Abhay T

    2013-01-01

    The present report focuses on the various aspects of oral delivery of anticancer drugs. The significance of oral delivery in cancer therapeutics has been highlighted which principally includes improvement in quality of life of patients and reduced health care costs. Subsequently, the challenges...... incurred in the oral delivery of anticancer agents have been especially emphasized. Sincere efforts have been made to compile the various physicochemical properties of anticancer drugs from either literature or predicted in silico via GastroPlus™. The later section of the paper reviews various emerging...... trends to tackle the challenges associated with oral delivery of anticancer drugs. These invariably include efflux transporter based-, functional excipient- and nanocarrier based-approaches. The role of drug nanocrystals and various others such as polymer based- and lipid based...

  13. Renoprotective effects of antioxidants against cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hajian Shabnam

    2014-04-01

    Full Text Available Nephrotoxicity is the major limitation for the clinical use of cisplatin as an anti-tumoural drug. Intracellular effects of cisplatin cause tubular damage and tubular dysfunction with sodium, potassium, and magnesium wasting. Renoperotective strategies against cisplatin are classified on 8 targets: 1 Decrease of cisplatin uptake by renal cell, 2 Inhibition of cisplatin metabolism, 3 Blocking cell death pathways, 4 Cyclin-dependent kinase inhibitors, 5 Pharmacologic, molecular, and genetic blockade of p53, 6 Inhibition of specific Mitogen-activated protein kinase, 7 Antioxidants usage for renoprotection against cisplatin injury and inhibit of oxidative stress, 8 Suppress of inflammation. The oxidation reactions can produce free radicals, which start chain reactions and subsequently can cause a large number of diseases in humans. Antioxidant from natural products have attracted the physicians’ attentions, nowadays. The natural product antioxidants detoxify reactive oxygen species (ROS in kidneys, without affecting the anticancer efficacy of cisplatin. Hence, antioxidants have potential therapeutic applications.

  14. Optimization of carboxylate-terminated poly(amidoamine) dendrimer-mediated cisplatin formulation.

    Science.gov (United States)

    Kulhari, Hitesh; Pooja, Deep; Singh, Mayank K; Chauhan, Abhay S

    2015-02-01

    Abstract Cisplatin is mainly used in the treatment of ovarian, head and neck and testicular cancer. Poor solubility and non-specific interactions causes hurdles in the development of successful cisplatin formulation. There were few reports on poly(amidoamine) (PAMAM) dendrimer-cisplatin complexes for anticancer treatment. But the earlier research was mainly focused on therapeutic effect of PAMAM dendrimer-cisplatin complex, with less attention paid on the formulation development of these complexes. Objective of the present study is to optimize and validate the carboxylate-terminated, EDA core PAMAM dendrimer-based cisplatin formulation with respect to various variables such as dendrimer core, generation, drug entrapment, purification, yield, reproducibility, stability, storage and in-vitro release. Dendrimer-cisplatin complex was prepared by an efficient method which significantly increases the % platinum (Pt) content along with the product yield. Dendrimers showed reproducible (∼27%) platinum loading by weight. Variation in core and generations does not produce significant change in the % Pt content. Percentage Pt content of dendrimeric formulation increases with increase in drug/dendrimer mole ratio. Formulation with low drug/dendrimer mole ratio showed delayed release compared to the higher drug/dendrimer mole ratio; these dendrimer formulations are stable in room temperature. In vitro release profiles of the stored dendrimer-cisplatin samples showed comparatively slow release of cisplatin, which may be due to formation of strong bond between cisplatin and dendrimer. This study will contribute to create a fine print for the formulation development of PAMAM dendrimer-cisplatin complexes.

  15. Characterization and in vitro studies on anticancer activity of ...

    African Journals Online (AJOL)

    SAM

    2014-05-21

    May 21, 2014 ... The exopolymer produced by B. thuringiensis S13, showed potent ... Polysaccharides derived from a microorganism have specific broad .... polymer and cisplatin (an anticancer drug as standard) separately in triplicates to ...

  16. Biodegradable polymeric system for cisplatin delivery: Development, in vitro characterization and investigation of toxicity profile

    International Nuclear Information System (INIS)

    Alam, Noor; Khare, Vaibhav; Dubey, Ravindra; Saneja, Ankit; Kushwaha, Manoj; Singh, Gurdarshan; Sharma, Neelam; Chandan, Balkrishan; Gupta, Prem N.

    2014-01-01

    Cisplatin is one of the most potent anticancer agent used in the treatment of various solid tumors, however, its clinical use is limited due to severe adverse effects including nephrotoxicity. In this investigation cisplatin loaded poly (lactic-co-glycolic acid) (PLGA) nanoparticles were developed and characterized for various in vitro characteristics including size distribution, zeta potential, drug loading and release profile. PLGA nanoparticles were successfully developed as investigated using scanning electron microscopy and exhibited average particles size and zeta potential as 284.8 nm and − 15.8 mV, respectively. Fourier transform infrared spectroscopy and differential scanning calorimetry indicated an absence of any polymer–drug interactions. Cisplatin nanoparticles exhibited in vitro anticancer activity against A549 cells comparable to that of cisplatin solution. The biodistribution study in mice indicated that the kidney cisplatin level was significantly (p < 0.01) lower with cisplatin nanoparticles than cisplatin solution. Following two cycles of cisplatin treatment, a week apart, blood urea nitrogen level was found to be higher in case of cisplatin solution as compared to cisplatin nanoparticles. Further, there was a significant (p < 0.01) increase in plasma creatinine level in case of cisplatin solution as compared to cisplatin nanoparticles. Histopathological examination of kidney from cisplatin nanoparticles treated group revealed no kidney damage, however, a sign of nephrotoxicity was observed in the case of cisplatin solution. The results suggest that PLGA nanoparticle based formulation could be a potential option for cisplatin delivery. - Highlights: • Cisplatin is detected by LCMS following complexation with DDTC. • Nanoparticles showed lower cisplatin accumulation in the kidney. • Nephrotoxicity was evaluated by BUN and creatinine level and by histopathology. • Nanoparticles exhibited lower nephrotoxicity

  17. Heterocyclic Scaffolds: Centrality in Anticancer Drug Development.

    Science.gov (United States)

    Ali, Imran; Lone, Mohammad Nadeem; Al-Othman, Zeid A; Al-Warthan, Abdulrahman; Sanagi, Mohd Marsin

    2015-01-01

    Cancer has been cursed for human beings for long time. Millions people lost their lives due to cancer. Despite of the several anticancer drugs available, cancer cannot be cured; especially at the late stages without showing any side effect. Heterocyclic compounds exhibit exciting medicinal properties including anticancer. Some market selling heterocyclic anticancer drugs include 5-flourouracil, methortrexate, doxorubicin, daunorubicin, etc. Besides, some natural products such as vinblastine and vincristine are also used as anticancer drugs. Overall, heterocyclic moeities have always been core parts in the expansion of anticancer drugs. This article describes the importance of heterocyclic nuclei in the development of anticancer drugs. Besides, the attempts have been made to discuss both naturally occurring and synthetic heterocyclic compounds as anticancer agents. In addition, some market selling anticancer heterocyclic compounds have been described. Moreover, the efforts have been made to discuss the mechanisms of actions and recent advances in heterocyclic compounds as anticancer agents. The current challenges and future prospectives of heterocyclic compounds have also been discussed. Finally, the suggestions for syntheses of effective, selective, fast and human friendly anticancer agents are discussed into the different sections.

  18. Current situation and future usage of anticancer drug databases.

    Science.gov (United States)

    Wang, Hongzhi; Yin, Yuanyuan; Wang, Peiqi; Xiong, Chenyu; Huang, Lingyu; Li, Sijia; Li, Xinyi; Fu, Leilei

    2016-07-01

    Cancer is a deadly disease with increasing incidence and mortality rates and affects the life quality of millions of people per year. The past 15 years have witnessed the rapid development of targeted therapy for cancer treatment, with numerous anticancer drugs, drug targets and related gene mutations been identified. The demand for better anticancer drugs and the advances in database technologies have propelled the development of databases related to anticancer drugs. These databases provide systematic collections of integrative information either directly on anticancer drugs or on a specific type of anticancer drugs with their own emphases on different aspects, such as drug-target interactions, the relationship between mutations in drug targets and drug resistance/sensitivity, drug-drug interactions, natural products with anticancer activity, anticancer peptides, synthetic lethality pairs and histone deacetylase inhibitors. We focus on a holistic view of the current situation and future usage of databases related to anticancer drugs and further discuss their strengths and weaknesses, in the hope of facilitating the discovery of new anticancer drugs with better clinical outcomes.

  19. Cisplatin in cancer therapy: molecular mechanisms of action

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-01-01

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is given to its molecular mechanisms of action, and its undesirable side effects. PMID:25058905

  20. Polypharmacology of Approved Anticancer Drugs.

    Science.gov (United States)

    Amelio, Ivano; Lisitsa, Andrey; Knight, Richard A; Melino, Gerry; Antonov, Alexey V

    2017-01-01

    The major drug discovery efforts in oncology have been concentrated on the development of selective molecules that are supposed to act specifically on one anticancer mechanism by modulating a single or several closely related drug targets. However, a bird's eye view on data from multiple available bioassays implies that most approved anticancer agents do, in fact, target many more proteins with different functions. Here we will review and systematize currently available information on the targets of several anticancer drugs along with revision of their potential mechanisms of action. Polypharmacology of the current antineoplastic agents suggests that drug clinical efficacy in oncology can be achieved only via modulation of multiple cellular mechanisms. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment

    Science.gov (United States)

    Eka Putra, Gusti Ngurah Putu; Huang, Leaf; Hsu, Yih-Chih

    2016-03-01

    The knowledge of manipulating size of biomaterials encapsulated drug into nano-scale particles has been researched and developed in treating cancer. Cancer is the second worldwide cause of death, therefore it is critical to treat cancers challenging with therapeutic modality of various mechanisms. Our preliminary investigation has studied cisplatin encapsulated into lipid-based nanoparticle and examined the therapeutic effect on xenografted animal model. We used mice with tumor volume ranging from 195 to 214 mm3 and then few mice were grouped into three groups including: control (PBS), lipid platinum chloride (LPC) nanoparticles and CDDP (cis-diamminedichloroplatinum(II) at dose of 3mg cisplatin /kg body weight. The effect of the treatment was observed for 12 days post-injection. It showed that LPC NPs demonstrated a better therapeutic effect compared to CDDP at same 3mg cisplatin/kg drug dose of tumor size reduction, 96.6% and 11.1% respectively. In addition, mouse body weight loss of LPC, CDDP and PBS treated group are 12.1%, 24.3% and 1.4%. It means that by compared to CDDP group, LPC group demonstrated less side effect as not much reduction of body weight have found. Our findings have shown to be a potential modality to further investigate as a feasible cancer therapy modality.

  2. DNA-crosslinker cisplatin eradicates bacterial persister cells.

    Science.gov (United States)

    Chowdhury, Nityananda; Wood, Thammajun L; Martínez-Vázquez, Mariano; García-Contreras, Rodolfo; Wood, Thomas K

    2016-09-01

    For all bacteria, nearly every antimicrobial fails since a subpopulation of the bacteria enter a dormant state known as persistence, in which the antimicrobials are rendered ineffective due to the lack of metabolism. This tolerance to antibiotics makes microbial infections the leading cause of death worldwide and makes treating chronic infections, including those of wounds problematic. Here, we show that the FDA-approved anti-cancer drug cisplatin [cis-diamminodichloroplatinum(II)], which mainly forms intra-strand DNA crosslinks, eradicates Escherichia coli K-12 persister cells through a growth-independent mechanism. Additionally, cisplatin is more effective at killing Pseudomonas aeruginosa persister cells than mitomycin C, which forms inter-strand DNA crosslinks, and cisplatin eradicates the persister cells of several pathogens including enterohemorrhagic E. coli, Staphylococcus aureus, and P. aeruginosa. Cisplatin was also highly effective against clinical isolates of S. aureus and P. aeruginosa. Therefore, cisplatin has broad spectrum activity against persister cells. Biotechnol. Bioeng. 2016;113: 1984-1992. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Dendrimers bind antioxidant polyphenols and cisplatin drug.

    Directory of Open Access Journals (Sweden)

    Amine Abderrezak

    Full Text Available Synthetic polymers of a specific shape and size play major role in drug delivery systems. Dendrimers are unique synthetic macromolecules of nanometer dimensions with a highly branched structure and globular shape with potential applications in gene and drug delivery. We examine the interaction of several dendrimers of different compositions mPEG-PAMAM (G3, mPEG-PAMAM (G4 and PAMAM (G4 with hydrophilic and hydrophobic drugs cisplatin, resveratrol, genistein and curcumin at physiological conditions. FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on dendrimer stability and conformation. Structural analysis showed that cisplatin binds dendrimers in hydrophilic mode via Pt cation and polymer terminal NH(2 groups, while curcumin, genistein and resveratrol are located mainly in the cavities binding through both hydrophobic and hydrophilic contacts. The overall binding constants of durg-dendrimers are ranging from 10(2 M(-1 to 10(3 M(-1. The affinity of dendrimer binding was PAMAM-G4>mPEG-PAMAM-G4>mPEG-PAMAM-G3, while the order of drug-polymer stability was curcumin>cisplatin>genistein>resveratrol. Molecular modeling showed larger stability for genisten-PAMAM-G4 (ΔG = -4.75 kcal/mol than curcumin-PAMAM-G4 ((ΔG = -4.53 kcal/mol and resveratrol-PAMAM-G4 ((ΔG = -4.39 kcal/mol. Dendrimers might act as carriers to transport hydrophobic and hydrophilic drugs.

  4. Chemistry and pharmacology of anticancer drugs

    National Research Council Canada - National Science Library

    Thurston, David E

    2007-01-01

    ... in the development of novel drugs and therapies has occurred within the last 60 years and, thanks to the discovery of drugs such as cisplatin, the taxanes, and the nitrogen mustards in the last century, trea...

  5. Cdt1 is differentially targeted for degradation by anticancer chemotherapeutic drugs.

    Directory of Open Access Journals (Sweden)

    Athanasia Stathopoulou

    Full Text Available BACKGROUND: Maintenance of genome integrity is crucial for the propagation of the genetic information. Cdt1 is a major component of the pre-replicative complex, which controls once per cell cycle DNA replication. Upon DNA damage, Cdt1 is rapidly targeted for degradation. This targeting has been suggested to safeguard genomic integrity and prevent re-replication while DNA repair is in progress. Cdt1 is deregulated in tumor specimens, while its aberrant expression is linked with aneuploidy and promotes tumorigenesis in animal models. The induction of lesions in DNA is a common mechanism by which many cytotoxic anticancer agents operate, leading to cell cycle arrest and apoptosis. METHODOLOGY/PRINCIPAL FINDING: In the present study we examine the ability of several anticancer drugs to target Cdt1 for degradation. We show that treatment of HeLa and HepG2 cells with MMS, Cisplatin and Doxorubicin lead to rapid proteolysis of Cdt1, whereas treatment with 5-Fluorouracil and Tamoxifen leave Cdt1 expression unaffected. Etoposide affects Cdt1 stability in HepG2 cells and not in HeLa cells. RNAi experiments suggest that Cdt1 proteolysis in response to MMS depends on the presence of the sliding clamp PCNA. CONCLUSION/SIGNIFICANCE: Our data suggest that treatment of tumor cells with commonly used chemotherapeutic agents induces differential responses with respect to Cdt1 proteolysis. Information on specific cellular targets in response to distinct anticancer chemotherapeutic drugs in different cancer cell types may contribute to the optimization of the efficacy of chemotherapy.

  6. Chick embryo chorioallantoic membrane (CAM): an alternative predictive model in acute toxicological studies for anti-cancer drugs.

    Science.gov (United States)

    Kue, Chin Siang; Tan, Kae Yi; Lam, May Lynn; Lee, Hong Boon

    2015-01-01

    The chick embryo chorioallantoic membrane (CAM) is a preclinical model widely used for vascular and anti-vascular effects of therapeutic agents in vivo. In this study, we examine the suitability of CAM as a predictive model for acute toxicology studies of drugs by comparing it to conventional mouse and rat models for 10 FDA-approved anticancer drugs (paclitaxel, carmustine, camptothecin, cyclophosphamide, vincristine, cisplatin, aloin, mitomycin C, actinomycin-D, melphalan). Suitable formulations for intravenous administration were determined before the average of median lethal dose (LD50) and median survival dose (SD(50)) in the CAM were measured and calculated for these drugs. The resultant ideal LD(50) values were correlated to those reported in the literature using Pearson's correlation test for both intravenous and intraperitoneal routes of injection in rodents. Our results showed moderate correlations (r(2)=0.42 - 0.68, PLD(50) values obtained using the CAM model with LD(50) values from mice and rats models for both intravenous and intraperitoneal administrations, suggesting that the chick embryo may be a suitable alternative model for acute drug toxicity screening before embarking on full toxicological investigations in rodents in development of anticancer drugs.

  7. Fractionation and delivery schedules in combined radiotherapy-cisplatin for head and neck cancer

    International Nuclear Information System (INIS)

    Marcu, L.; Van Doorn, T.; Royal Adelaide Hospital,; Olver, I.

    2000-01-01

    Full text: Since Rosenberg's initial discovery, cisplatin has become one of the most effective anticancer drugs, with particular significance in head and neck cancer. For advanced disease, where the tumour is unresectable, radiotherapy and chemotherapy, either singularly or combined, remain the possible therapeutic modalities. The majority of the trials using a combination of cisplatin and radiation obtained much better results than the single-agent trials. But the best schedule, dosage and timing between radiation and drug administration are still unknown. Many positive steps were however made to eliminate the cisplatin-produced side effects, as much as possible. The tendency in current trials is to fractionate the drug dose by daily administration and also to hyperfractionate the radiation. In this way the long-term benefits are improved and the toxicity is better tolerated

  8. Cisplatin in cancer therapy: molecular mechanisms of action.

    Science.gov (United States)

    Dasari, Shaloam; Tchounwou, Paul Bernard

    2014-10-05

    Cisplatin, cisplatinum, or cis-diamminedichloroplatinum (II), is a well-known chemotherapeutic drug. It has been used for treatment of numerous human cancers including bladder, head and neck, lung, ovarian, and testicular cancers. It is effective against various types of cancers, including carcinomas, germ cell tumors, lymphomas, and sarcomas. Its mode of action has been linked to its ability to crosslink with the purine bases on the DNA; interfering with DNA repair mechanisms, causing DNA damage, and subsequently inducing apoptosis in cancer cells. However, because of drug resistance and numerous undesirable side effects such as severe kidney problems, allergic reactions, decrease immunity to infections, gastrointestinal disorders, hemorrhage, and hearing loss especially in younger patients, other platinum-containing anti-cancer drugs such as carboplatin, oxaliplatin and others, have also been used. Furthermore, combination therapies of cisplatin with other drugs have been highly considered to overcome drug-resistance and reduce toxicity. This comprehensive review highlights the physicochemical properties of cisplatin and related platinum-based drugs, and discusses its uses (either alone or in combination with other drugs) for the treatment of various human cancers. A special attention is paid to its molecular mechanisms of action, and its undesirable side effects. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. A Mathematical Model for Cisplatin Cellular Pharmacodynamics

    Directory of Open Access Journals (Sweden)

    Ardith W. El-Kareh

    2003-03-01

    Full Text Available A simple theoretical model for the cellular pharmacodynamics of cisplatin is presented. The model, which takes into account the kinetics of cisplatin uptake by cells and the intracellular binding of the drug, can be used to predict the dependence of survival (relative to controls on the time course of extracellular exposure. Cellular pharmacokinetic parameters are derived from uptake data for human ovarian and head and neck cancer cell lines. Survival relative to controls is assumed to depend on the peak concentration of DNA-bound intracellular platinum. Model predictions agree well with published data on cisplatin cytotoxicity for three different cancer cell lines, over a wide range of exposure times. In comparison with previously published mathematical models for anticancer drug pharmacodynamics, the present model provides a better fit to experimental data sets including long exposure times (∼100 hours. The model provides a possible explanation for the fact that cell kill correlates well with area under the extracellular concentration-time curve in some data sets, but not in others. The model may be useful for optimizing delivery schedules and for the dosing of cisplatin for cancer therapy.

  10. Protein phosphatase 2A inhibition and circumvention of cisplatin cross-resistance by novel TCM-platinum anticancer agents containing demethylcantharidin.

    Science.gov (United States)

    To, Kenneth K W; Wang, Xinning; Yu, Chun Wing; Ho, Yee-Ping; Au-Yeung, Steve C F

    2004-09-01

    Novel TCM-platinum compounds [Pt(C(8)H(8)O(5))(NH(2)R)(2)] 1-5, derived from integrating demethylcantharidin, a modified component from a traditional Chinese medicine (TCM) with a platinum moiety, possess anticancer and protein phosphatase 2A inhibition properties. The compounds are able to circumvent cisplatin resistance by apparently targeting the DNA repair mechanism. Novel isosteric analogues [Pt(C(9)H(10)O(4))(NH(2)R)(2)] A and B, devoid of PP2A-inhibitory activity, were found to suffer from an enhanced DNA repair and were cross-resistant to cisplatin. The results advocate a well-defined structure-activity requirement associating the PP2A-inhibiting demethylcantharidin with the circumvention of cisplatin cross-resistance demonstrated by TCM-Pt compounds 1-5.

  11. Clinical pharmacology of novel anticancer drug formulations

    NARCIS (Netherlands)

    Stuurman, F.E.

    2013-01-01

    Studies outlined in this thesis describe the impact of drug formulations on pharmacology of anticancer drugs. It consists of four parts and starts with a review describing the mechanisms of low oral bioavailability of anti-cancer drugs and strategies for improvement of the bioavailability. The

  12. A comparison inhibitory effects of cisplatin and MNPs-PEG-cisplatin on the adhesion capacity of bone metastatic breast cancer.

    Science.gov (United States)

    Mokhtari, Mohammad Javad; Koohpeima, Fatemeh; Mohammadi, Hadi

    2017-10-01

    To date, high mortality in women due to malignancy breast cancer related to the metastasis to the bone is a significant challenge. As, magnetic nanoparticles (MNPs) conjugated with the biocompatible polymers was employed for the delivery of some hydrophobic anticancer agents, the main aim of the current research was to assess whether cisplatin-loaded MNPs enhanced the anticancer effect of free cisplatin in breast cancer cells. MNPs decorated with PEG were synthesized by an improved coprecipitation technique, and then cisplatin was loaded onto the MNPs via a simple mixing method. Afterward, its morphology, size, chemical structure, magnetic property, hydrodynamic diameter, zeta potential, and crystal structure were characterized by scanning and transmittance electron microscopy, Fourier transforms infrared spectroscopy, vibrating sample magnetometer, dynamic light scattering, and X-ray powder diffraction and flame atomic absorption spectroscopy respectively. Additionally, the effects of cisplatin and MNPs-PEG-cisplatin on viability, migration and adhesion capacity of T47D cells were investigated by evaluating α2-integrin and β1-integrin; mRNAs were assessed by real-time RT-PCR. Consequently, the in vitro assay results showed a considerable dose-dependent inhibitory effect of cisplatin and MNPs-PEG-cisplatin on proliferation, migration, and adhesion of T47D cells. Finally, current research was shown that MNPs-PEG-cisplatin strongly increased anticancer effects compared with free cisplatin in the T47D cell line. © 2017 John Wiley & Sons A/S.

  13. Prospective Evaluation of Transcatheter Arterial Chemoembolization (TACE) with Multiple Anti-Cancer Drugs (Epirubicin, Cisplatin, Mitomycin C, 5-Fluorouracil) Compared with TACE with Epirubicin for Treatment of Hepatocellular Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Sahara, Shinya; Kawai, Nobuyuki; Sato, Morio, E-mail: morisato@mail.wakayama-med.ac.jp; Tanaka, Takami; Ikoma, Akira; Nakata, Kouhei; Sanda, Hiroki; Minamiguchi, Hiroki; Nakai, Motoki; Shirai, Shintaro; Sonomura, Tetsuo [Wakayama Medical University, Department of Radiology (Japan)

    2012-12-15

    Purpose: To compare the efficacy of transcatheter arterial chemoembolization (TACE) using multiple anticancer drugs (epirubicin, cisplatin, mitomycin C, and 5-furuorouracil: Multi group) with TACE using epirubicin (EP group) for hepatocellular carcinoma (HCC). Materials and Methods: The study design was a single-center, prospective, randomized controlled trial. Patients with unrespectable HCC confined to the liver, unsuitable for radiofrequency ablation, were assigned to the Multi group or the EP group. We assessed radiographic response as the primary endpoint; secondary endpoints were progression-free survival (PFS), safety, and hepatic branch artery abnormality (Grade I, no damage or mild vessel wall irregularity; Grade II, overt stenosis; Grade III, occlusion; Grades II and III indicated significant hepatic artery damage). A total of 51 patients were enrolled: 24 in the Multi group vs. 27 in the EP group. Results: No significant difference in HCC patient background was found between the groups. Radiographic response, PFS, and 1- and 2-year overall survival of the Multi vs. EP group were 54% vs. 48%, 6.1 months vs. 8.7 months, and 95% and 65% vs. 85% and 76%, respectively, with no significant difference. Significantly greater Grade 3 transaminase elevation was found in the Multi group (p = 0.023). Hepatic artery abnormality was observed in 34% of the Multi group and in 17.1% of the EP group (p = 0.019). Conclusion: TACE with multiple anti-cancer drugs was tolerable but appeared not to contribute to an increase in radiographic response or PFS, and caused significantly more hepatic arterial abnormalities compared with TACE with epirubicin alone.

  14. Gold-Based Medicine: A Paradigm Shift in Anti-Cancer Therapy?

    Science.gov (United States)

    Yeo, Chien Ing; Ooi, Kah Kooi; Tiekink, Edward R T

    2018-06-11

    A new era of metal-based drugs started in the 1960s, heralded by the discovery of potent platinum-based complexes, commencing with cisplatin [(H₃N)₂PtCl₂], which are effective anti-cancer chemotherapeutic drugs. While clinical applications of gold-based drugs largely relate to the treatment of rheumatoid arthritis, attention has turned to the investigation of the efficacy of gold(I) and gold(III) compounds for anti-cancer applications. This review article provides an account of the latest research conducted during the last decade or so on the development of gold compounds and their potential activities against several cancers as well as a summary of possible mechanisms of action/biological targets. The promising activities and increasing knowledge of gold-based drug metabolism ensures that continued efforts will be made to develop gold-based anti-cancer agents.

  15. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    International Nuclear Information System (INIS)

    Florea, Ana-Maria; Büsselberg, Dietrich

    2011-01-01

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects

  16. Cisplatin as an Anti-Tumor Drug: Cellular Mechanisms of Activity, Drug Resistance and Induced Side Effects

    Energy Technology Data Exchange (ETDEWEB)

    Florea, Ana-Maria [Department of Neuropathology, Heinrich-Heine University, Düsseldorf (Germany); Büsselberg, Dietrich, E-mail: dib2015@qatar-med.cornell.edu [Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha (Qatar)

    2011-03-15

    Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.

  17. Nuclear proteome analysis of cisplatin-treated HeLa cells

    International Nuclear Information System (INIS)

    Wu Wei; Yan Chunlan; Gan Tieer; Chen Zhanghui; Lu Xianghong; Duerksen-Hughes, Penelope J.; Zhu Xinqiang; Yang Jun

    2010-01-01

    Cisplatin has been widely accepted as one of the most efficient anticancer drugs for decades. However, the mechanisms for the cytotoxic effects of cisplatin are still not fully understood. Cisplatin primarily targets DNA, resulting in the formation of DNA double strand breaks and eventually causing cell death. In this study, we applied two-dimensional electrophoresis coupled with LC-MS/MS to analyze the nuclear proteome of HeLa cells treated with cisplatin, in an effort to uncover new mechanistic clues regarding the cellular response to cisplatin. A total of 19 proteins were successfully identified, and these proteins are involved in a variety of basal metabolic and biological processes in cells, including biosynthesis, cell cycle, glycolysis and apoptosis. Six were related to the regulation of mRNA splicing, and we therefore asked whether the Fas gene might undergo alternative splicing following cisplatin treatment. This proved to be the case, as the splicing forms of Fas were modified in cisplatin-treated HeLa cells. This work provides novel information, from the perspective of the nuclear response, for understanding the cytotoxicity caused by cisplatin-induced DNA damage.

  18. The promising anticancer drug 3-bromopyruvate is metabolized through glutathione conjugation which affects chemoresistance and clinical practice: An evidence-based view.

    Science.gov (United States)

    El Sayed, Salah Mohamed; Baghdadi, Hussam; Zolaly, Mohammed; Almaramhy, Hamdi H; Ayat, Mongi; Donki, Jagadish G

    2017-03-01

    3-Bromopyruvate (3BP) is a promising effective anticancer drug against many different tumors in children and adults. 3BP exhibited strong anticancer effects in both preclinical and human studies e.g. energy depletion, oxidative stress, anti-angiogenesis, anti-metastatic effects, targeting cancer stem cells and antagonizing the Warburg effect. There is no report about 3BP metabolism to guide researchers and oncologists to improve clinical practice and prevent drug resistance. In this article, we provide evidences that 3BP is metabolized through glutathione (GSH) conjugation as a novel report where 3BP was confirmed to be attached to GSH followed by permanent loss of pharmacological effects in a picture similar to cisplatin. Both cisplatin and 3BP are alkylating agents. Reported decrease in endogenous cellular GSH content upon 3BP treatment was confirmed to be due to the formation of 3BP-GSH complex i.e. GSH consumption for conjugation with 3BP. Cancer cells having high endogenous GSH exhibit resistance to 3BP while 3BP sensitive cells acquire resistance upon adding exogenous GSH. Being a thiol blocker, 3BP may attack thiol groups in tissues and serum proteins e.g. albumin and GSH. That may decrease 3BP-induced anticancer effects and the functions of those proteins. We proved here that 3BP metabolism is different from metabolism of hydroxypyruvate that results from metabolism of D-serine using D-amino acid oxidase. Clinically, 3BP administration should be monitored during albumin infusion and protein therapy where GSH should be added to emergency medications. GSH exerts many physiological effects and is safe for human administration both orally and intravenously. Based on that, reported GSH-induced inhibition of 3BP effects makes 3BP effects reversible, easily monitored and easily controlled. This confers a superiority of 3BP over many anticancer agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Switching the Loaded Agent from Epirubicin to Cisplatin: Salvage Transcatheter Arterial Chemoembolization with Drug-eluting Microspheres for Unresectable Hepatocellular Carcinoma

    International Nuclear Information System (INIS)

    Seki, Akihiko; Hori, Shinich

    2012-01-01

    Purpose: There is no consensus on switching anticancer agents loaded onto drug carriers in transcatheter arterial chemoembolization (TACE) for hepatocellular carcinoma (HCC). This study aimed to evaluate the safety and clinical outcomes of TACE with cisplatin-loaded microspheres (CLM-TACE) in HCC patients refractory to TACE with epirubicin-loaded microspheres (ELM-TACE). Methods: Between February 2008 and June 2010, 85 patients with unresectable HCC refractory to ELM-TACE were enrolled to undergo CLM-TACE. The number of ELM-TACE sessions until judgment of resistance ranged from 1 to 4 (median, 2.1). CLM-TACE was performed using 50–100-μm superabsorbent polymer microspheres loaded with 1 mg cisplatin/1 mg microspheres together with hepatic arterial infusion of 25 mg cisplatin and 500 mg 5-fluorouracil per patient. Tumor responses were evaluated by computed tomography according to the European Association for the Study of the Liver criteria. Results: The median number of CLM-TACE treatment sessions was 1.8 (range, 1–5), and the mean total dose of cisplatin per session was 42.8 mg (range, 30.0–59.0). After 6 months, 3 (3.5%) patients achieved complete response, 31 (36.5%) had partial response, 15 (17.6%) had stable disease, and 36 (42.4%) had progressive disease. The median overall survival and time to treatment failure after initial CLM-TACE were 13.3 and 7.2 months, respectively. Overall, 9.4% of patients experienced grade 3/4 adverse events. Conclusions: witching the loaded agent from epirubicin to cisplatin is a safe, well-tolerated, and efficacious treatment strategy for salvage TACE with drug-eluting microspheres in HCC patients refractory to ELM-TACE.

  20. Impact of intracellular chloride concentration on cisplatin accumulation in sensitive and resistant GLC4 cells

    NARCIS (Netherlands)

    Salerno, Milena; Yahia, Dalila; Dzamitika, Simplice; de Vries, Elisabeth G. E.; Pereira-Maia, Elene; Garnier-Suillerot, Arlette

    Resistance to cisplatin [cis-diamminedichloroplatinum(II), CDDP] chemotherapy is a major problem in the clinic. Understanding the molecular basis of the intracellular accumulation of CDDP and other platinum-based anticancer drugs is of importance in delineating the mechanism of resistance to these

  1. Allicin protects against cisplatin-induced vestibular dysfunction by inhibiting the apoptotic pathway.

    Science.gov (United States)

    Wu, Xianmin; Cai, Jing; Li, Xiaofei; Li, He; Li, Jianfeng; Bai, Xiaohui; Liu, Wenwen; Han, Yuechen; Xu, Lei; Zhang, Daogong; Wang, Haibo; Fan, Zhaomin

    2017-06-15

    Cisplatin is an anticancer drug that causes the impairment of inner ear function as side effects, including hearing loss and balance dysfunction. The purpose of this study was to investigate the effects of allicin against cisplatin-induced vestibular dysfunction in mice and to make clear the mechanism underlying the protective effects of allicin on oto-vestibulotoxicity. Mice intraperitoneally injected with cisplatin exhibited vestibular dysfunction in swimming test, which agreed with impairment in vestibule. However, these impairments were significantly prevented by pre-treatment with allicin. Allicin markedly reduced cisplatin-activated expression of cleaved-caspase-3 in hair cells and vascular layer cells of utricule, saccule and ampulla, but also decreased AIF nuclear translocation of hair cells in utricule, saccule and ampulla. These results showed that allicin played an effective role in protecting vestibular dysfunction induced by cisplatin via inhibiting caspase-dependent and caspase-independent apoptotic pathways. Therefore, allicin may be useful in preventing oto-vestibulotoxicity mediated by cisplatin. Copyright © 2017. Published by Elsevier B.V.

  2. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    van Leeuwen, R. W. F.; Brundel, D. H. S.; Neef, C.; van Gelder, T.; Mathijssen, R. H. J.; Burger, D. M.; Jansman, F. G. A.

    2013-01-01

    Background: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment. Methods: A

  3. Prevalence of potential drug-drug interactions in cancer patients treated with oral anticancer drugs

    NARCIS (Netherlands)

    R.W.F. van Leeuwen (Roelof); D.H.S. Brundel (D. H S); C. Neef (Cees); T. van Gelder (Teun); A.H.J. Mathijssen (Ron); D.M. Burger (David); F.G.A. Jansman (Frank)

    2013-01-01

    textabstractBackground: Potential drug-drug interactions (PDDIs) in patients with cancer are common, but have not previously been quantified for oral anticancer treatment. We assessed the prevalence and seriousness of potential PDDIs among ambulatory cancer patients on oral anticancer treatment.

  4. Anticancer drugs and the regulation of Hedgehog genes GLI1 and PTCH1, a comparative study in nonmelanoma skin cancer cell lines

    DEFF Research Database (Denmark)

    Olesen, Uffe H; Bojesen, Sophie; Gehl, Julie

    2017-01-01

    Nonmelanoma skin cancer is the most common cancer in humans, comprising mainly basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). BCC proliferation is highly dependent on the Hedgehog signaling pathway. We aimed to investigate a panel of anticancer drugs with known activity against skin...... of immortalized keratinocytes (HaCaT), BCC (UWBCC1 and BCC77015), and SCC (A431 and SCC25) cell lines. The impact of treatment on the regulation of Hedgehog pathway target genes (GLI1 and PTCH1), measured by real-time PCR, was compared between UWBCC1 and HaCaT. Varying cell line sensitivity profiles...... to the examined anticancer drugs were observed. Generally, 24-h drug exposure was sufficient to reduce cell viability. We found that 5-FU, MTX, and cisplatin significantly downregulated the expression of two genes controlled by the Hedgehog pathway (≤25-, 2.9-, and 12.5-fold, respectively, for GLI1 in UWBCC1...

  5. Oridonin effectively reverses the drug resistance of cisplatin involving induction of cell apoptosis and inhibition of MMP expression in human acute myeloid leukemia cells

    Directory of Open Access Journals (Sweden)

    Yuan Zhang

    2017-03-01

    Full Text Available Cisplatin is the first generation platinum-based chemotherapy agent. However, the extensive application of cisplatin inevitably causes drug resistance, which is a major obstacle to cancer chemotherapy. Oridonin is a diterpenoid isolated from Rabdosia rubescens with potent anticancer activity. The aim of our study is to investigate the role of oridonin to reverse the cisplatin-resistance in human acute myeloid leukemia (AML cells. The effect of oridonin on human AML cell proliferation was evaluated by MTT assay, cell migration and invasion were evaluated by transwell migration and invasion assays in cisplatin-resistant human AML cells. Furthermore, cell apoptosis was examined by flow cytometry. The inhibitive effect of oridonin in vivo was determined using xenografted nude mice. In addition, the expressions of MMP2 and MMP9 were detected by Western blot. There was a synergistic antitumor effect between cisplatin and oridonin on cisplatin-resistant human AML cells in vitro and in vivo. In addition, the combination of cisplatin and oridonin synergistically induced cell apoptosis. Furthermore, the combination treatment not only inhibited AML cell migration and invasion, but more significantly, decreased the expressions of MMP2 and MMP9 proteins. Our results suggest that the synergistic effect between both agents is likely to be driven by the inhibition of MMP expression and the resulting increased apoptosis.

  6. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Science.gov (United States)

    Rayan, Anwar; Raiyn, Jamal; Falah, Mizied

    2017-01-01

    Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam) have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  7. A ruthenium anticancer compound interacts with histones and impacts differently on epigenetic and death pathways compared to cisplatin.

    Science.gov (United States)

    Licona, Cynthia; Spaety, Marie-Elodie; Capuozzo, Antonelle; Ali, Moussa; Santamaria, Rita; Armant, Olivier; Delalande, Francois; Van Dorsselaer, Alain; Cianferani, Sarah; Spencer, John; Pfeffer, Michel; Mellitzer, Georg; Gaiddon, Christian

    2017-01-10

    Ruthenium complexes are considered as potential replacements for platinum compounds in oncotherapy. Their clinical development is handicapped by a lack of consensus on their mode of action. In this study, we identify three histones (H3.1, H2A, H2B) as possible targets for an anticancer redox organoruthenium compound (RDC11). Using purified histones, we confirmed an interaction between the ruthenium complex and histones that impacted on histone complex formation. A comparative study of the ruthenium complex versus cisplatin showed differential epigenetic modifications on histone H3 that correlated with differential expression of histone deacetylase (HDAC) genes. We then characterized the impact of these epigenetic modifications on signaling pathways employing a transcriptomic approach. Clustering analyses showed gene expression signatures specific for cisplatin (42%) and for the ruthenium complex (30%). Signaling pathway analyses pointed to specificities distinguishing the ruthenium complex from cisplatin. For instance, cisplatin triggered preferentially p53 and folate biosynthesis while the ruthenium complex induced endoplasmic reticulum stress and trans-sulfuration pathways. To further understand the role of HDACs in these regulations, we used suberanilohydroxamic acid (SAHA) and showed that it synergized with cisplatin cytotoxicity while antagonizing the ruthenium complex activity. This study provides critical information for the characterization of signaling pathways differentiating both compounds, in particular, by the identification of a non-DNA direct target for an organoruthenium complex.

  8. Formation of carbonato and hydroxo complexes in the reaction of platinum anticancer drugs with carbonate.

    Science.gov (United States)

    Di Pasqua, Anthony J; Centerwall, Corey R; Kerwood, Deborah J; Dabrowiak, James C

    2009-02-02

    The second-generation Pt(II) anticancer drug carboplatin is here shown to react with carbonate, which is present in blood, interstitial fluid, cytosol, and culture medium, to produce platinum-carbonato and -hydroxo complexes. Using [(1)H-(15)N] HSQC NMR and (15)N-labeled carboplatin, we observe that cis-[Pt(CBDCA-O)(OH)(NH(3))(2)](-), cis-[Pt(OH)(2)(NH(3))(2)], cis-[Pt(CO(3))(OH)(NH(3))(2)](-), and what may be cis-[Pt(CO(3))(NH(3))(2)] are produced when 1 is allowed to react in 23.8 mM carbonate buffer. When (15)N-labeled carboplatin is allowed to react in 0.5 M carbonate buffer, these platinum species, as well as other hydroxo and carbonato species, some of which may be dinuclear complexes, are produced. Furthermore, we show that the carbonato species cis-[Pt(CO(3))(OH)(NH(3))(2)](-) is also produced when cisplatin is allowed to react in carbonate buffer. The study outlines the conditions under which carboplatin and cisplatin form carbonato and aqua/hydroxo species in carbonate media.

  9. Riboflavin ameliorates cisplatin induced toxicities under photoillumination.

    Directory of Open Access Journals (Sweden)

    Iftekhar Hassan

    Full Text Available BACKGROUND: Cisplatin is an effective anticancer drug that elicits many side effects mainly due to induction of oxidative and nitrosative stresses during prolonged chemotherapy. The severity of these side effects consequently restricts its clinical use under long term treatment. Riboflavin is an essential vitamin used in various metabolic redox reactions in the form of flavin adenine dinucleotide and flavin mononucleotide. Besides, it has excellent photosensitizing property that can be used to ameliorate these toxicities in mice under photodynamic therapy. METHODS AND FINDINGS: Riboflavin, cisplatin and their combinations were given to the separate groups of mice under photoilluminated condition under specific treatment regime. Their kidney and liver were excised for comet assay and histopathological studies. Furthermore, Fourier Transform Infrared Spectroscopy of riboflavin-cisplatin combination in vitro was also conducted to investigate any possible interaction between the two compounds. Their comet assay and histopathological examination revealed that riboflavin in combination with cisplatin was able to protect the tissues from cisplatin induced toxicities and damages. Moreover, Fourier Transform Infrared Spectroscopy analysis of the combination indicated a strong molecular interaction among their constituent groups that may be assigned for the protective effect of the combination in the treated animals. CONCLUSION: Inclusion of riboflavin diminishes cisplatin induced toxicities which may possibly make the cisplatin-riboflavin combination, an effective treatment strategy under chemoradiotherapy in pronouncing its antineoplastic activity and sensitivity towards the cancer cells as compared to cisplatin alone.

  10. Nature is the best source of anticancer drugs: Indexing natural products for their anticancer bioactivity.

    Directory of Open Access Journals (Sweden)

    Anwar Rayan

    Full Text Available Cancer is considered one of the primary diseases that cause morbidity and mortality in millions of people worldwide and due to its prevalence, there is undoubtedly an unmet need to discover novel anticancer drugs. However, the traditional process of drug discovery and development is lengthy and expensive, so the application of in silico techniques and optimization algorithms in drug discovery projects can provide a solution, saving time and costs. A set of 617 approved anticancer drugs, constituting the active domain, and a set of 2,892 natural products, constituting the inactive domain, were employed to build predictive models and to index natural products for their anticancer bioactivity. Using the iterative stochastic elimination optimization technique, we obtained a highly discriminative and robust model, with an area under the curve of 0.95. Twelve natural products that scored highly as potential anticancer drug candidates are disclosed. Searching the scientific literature revealed that few of those molecules (Neoechinulin, Colchicine, and Piperolactam have already been experimentally screened for their anticancer activity and found active. The other phytochemicals await evaluation for their anticancerous activity in wet lab.

  11. Anticancer drugs in Portuguese surface waters - Estimation of concentrations and identification of potentially priority drugs.

    Science.gov (United States)

    Santos, Mónica S F; Franquet-Griell, Helena; Lacorte, Silvia; Madeira, Luis M; Alves, Arminda

    2017-10-01

    Anticancer drugs, used in chemotherapy, have emerged as new water contaminants due to their increasing consumption trends and poor elimination efficiency in conventional water treatment processes. As a result, anticancer drugs have been reported in surface and even drinking waters, posing the environment and human health at risk. However, the occurrence and distribution of anticancer drugs depend on the area studied and the hydrological dynamics, which determine the risk towards the environment. The main objective of the present study was to evaluate the risk of anticancer drugs in Portugal. This work includes an extensive analysis of the consumption trends of 171 anticancer drugs, sold or dispensed in Portugal between 2007 and 2015. The consumption data was processed aiming at the estimation of predicted environmental loads of anticancer drugs and 11 compounds were identified as potentially priority drugs based on an exposure-based approach (PEC b > 10 ng L -1 and/or PEC c > 1 ng L -1 ). In a national perspective, mycophenolic acid and mycophenolate mofetil are suspected to pose high risk to aquatic biota. Moderate and low risk was also associated to cyclophosphamide and bicalutamide exposition, respectively. Although no evidences of risk exist yet for the other anticancer drugs, concerns may be associated with long term effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Liposomal Drug Delivery of Anticancer Agents

    DEFF Research Database (Denmark)

    Pedersen, Palle Jacob

    and retention (EPR) effect. The liposomes consists of sPLA2 IIA sensitive phospholipids having anticancer drugs covalently attached to the sn-2 position of the glycerol backbone in the phospholipids, hence drug leakage is avoided from the carrier system. Various known anticancer agents, like chlorambucil, all......) based strategy using a limited number of reaction types. Upon coupling of unsaturated building blocks ring closing metathesis cascades were used to “reprogram” the molecular scaffold and highly diverse structures were obtained. In total 20 novel compounds with a broad structural diversity were prepared...

  13. Cisplatin-Loaded Porous Si Microparticles Capped by Electroless Deposition of Platinum

    Science.gov (United States)

    Park, Jennifer S.; Kinsella, Joseph M.; Jandial, Danielle D.; Howell, Stephen B.

    2012-01-01

    The loading and release of the anti-cancer drug platinum cis-dichlorodiamine (cisplatin) from mesoporous silicon (pSi) microparticles is studied. The pSi microparticles are modified with 1-dodecene or with 1,12-undecylenic acid by hydrosilylation, and each modified pSi material acts as a reducing agent, forming a deposit of Pt on its surface that nucleates further deposition, capping the mesoporous structure and trapping free (unreduced) cisplatin within. Slow oxidation and hydrolytic dissolution of the Si/SiO2 matrix in buffer solution or in culture medium leads to the release of drugs from the microparticles. The drug-loaded particles show significantly greater toxicity toward human ovarian cancer cells (in vitro), relative to an equivalent quantity of free cisplatin. This result is consistent with the mechanism of drug release, which generates locally high concentrations of the drug in the vicinity of the degrading particles. Control assays with pSi particles loaded in a similar manner with the therapeutically inactive trans isomer of the platinum drug, and with pSi particles containing no drug, result in low cellular toxicity. A hydrophobic prodrug, cis,trans,cis-[Pt(NH3)2(O2C(CH2)8CH3)2Cl2], is loaded into the pSi films from chloroform without concomitant reduction of the pSi carrier. PMID:21630444

  14. 5-Aminolevulinic acid protects against cisplatin-induced nephrotoxicity without compromising the anticancer efficiency of cisplatin in rats in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshio Terada

    Full Text Available Nephrotoxicity is a frequent and major limitation in cisplatin (CDDP-based chemotherapy. 5-Aminolevulinic acid (ALA is widely distributed in animal cells, and it is a precursor of tetrapyrole compounds such as heme that is fundamentally important in aerobic energy metabolism. The aim of this study is to evaluate the protective role of ALA in CDDP-induced acute kidney injury (AKI.We used CDDP-induced AKI rat model and cultured renal tubular cells (NRK-52E. We divided four groups of rats: control, CDDP only, CDDP + ALA(post;(ALA 10 mg/kg + Fe in drinking water after CDDP, CDDP + ALA(pre & post.CDDP increased Cr up to 6.5 mg/dl, BUN up to 230 mg/dl, and ALA significantly reduced these changes. ALA ameliorates CDDP-induced morphological renal damages, and reduced tubular apoptosis evaluated by TUNEL staining and cleaved caspase 3. Protein and mRNA levels of ATP5α, complex(COX IV, UCP2, PGC-1α in renal tissue were significantly decreased by CDDP, and ALA ameliorates reduction of these enzymes. In contrast, Heme Oxigenase (HO-1 level is induced by CDDP treatment, and ALA treatment further up-regulates HO-1 levels. In NRK-52E cells, the CDDP-induced reduction of protein and mRNA levels of mitochondrial enzymes was significantly recovered by ALA + Fe. CDDP-induced apoptosis were ameliorated by ALA + Fe treatment. Furthermore, we evaluated the size of transplantated bladder carcinoma to the rat skin, and ALA did not change the anti cancer effects of CDDP.These data suggested that the protective role of ALA in cisplatin-induced AKI is via protection of mitochondrial viability and prevents tubular apoptosis. Also there are no significant effects of ALA on anticancer efficiency of CDDP in rats. Thus, ALA has the potential to prevent CDDP nephrotoxicity without compromising its anticancer efficacy.

  15. Cisplatin Induces a Mitochondrial-ROS Response That Contributes to Cytotoxicity Depending on Mitochondrial Redox Status and Bioenergetic Functions

    Science.gov (United States)

    Marullo, Rossella; Werner, Erica; Degtyareva, Natalya; Moore, Bryn; Altavilla, Giuseppe; Ramalingam, Suresh S.; Doetsch, Paul W.

    2013-01-01

    Cisplatin is one of the most effective and widely used anticancer agents for the treatment of several types of tumors. The cytotoxic effect of cisplatin is thought to be mediated primarily by the generation of nuclear DNA adducts, which, if not repaired, cause cell death as a consequence of DNA replication and transcription blockage. However, the ability of cisplatin to induce nuclear DNA (nDNA) damage per se is not sufficient to explain its high degree of effectiveness nor the toxic effects exerted on normal, post-mitotic tissues. Oxidative damage has been observed in vivo following exposure to cisplatin in several tissues, suggesting a role for oxidative stress in the pathogenesis of cisplatin-induced dose-limiting toxicities. However, the mechanism of cisplatin-induced generation of ROS and their contribution to cisplatin cytotoxicity in normal and cancer cells is still poorly understood. By employing a panel of normal and cancer cell lines and the budding yeast Saccharomyces cerevisiae as model system, we show that exposure to cisplatin induces a mitochondrial-dependent ROS response that significantly enhances the cytotoxic effect caused by nDNA damage. ROS generation is independent of the amount of cisplatin-induced nDNA damage and occurs in mitochondria as a consequence of protein synthesis impairment. The contribution of cisplatin-induced mitochondrial dysfunction in determining its cytotoxic effect varies among cells and depends on mitochondrial redox status, mitochondrial DNA integrity and bioenergetic function. Thus, by manipulating these cellular parameters, we were able to enhance cisplatin cytotoxicity in cancer cells. This study provides a new mechanistic insight into cisplatin-induced cell killing and may lead to the design of novel therapeutic strategies to improve anticancer drug efficacy. PMID:24260552

  16. Observation and Analysis of Anti-cancer Drug Use and Dose ...

    African Journals Online (AJOL)

    As all anti-cancer drugs are of narrow therapeutic window so dose individualization is required to be done. A study was conducted to check the use of anti-cancer drugs in the local anti-cancer facility of Bahawalpur i.e. Bahawalpur Institute of Nuclear Medicine and Oncology (BINO). In this study, the dose individualization ...

  17. Anatomical and physiological basis for the allometric scaling of cisplatin clearance in dogs.

    Science.gov (United States)

    Achanta, S; Sewell, A; Ritchey, J W; Broaddus, K; Bourne, D W A; Clarke, C R; Maxwell, L K

    2016-06-01

    Cisplatin is a platinum-containing cytotoxic drug indicated for the treatment of solid tumors in veterinary and human patients. Several of the algorithms used to standardize the doses of cytotoxic drugs utilize allometry, or the nonproportional relationships between anatomical and physiological variables, but the underlying basis for these relationships is poorly understood. The objective of this proof of concept study was to determine whether allometric equations explain the relationships between body weight, kidney weight, renal physiology, and clearance of a model, renally cleared anticancer agent in dogs. Postmortem body, kidney, and heart weights were collected from 364 dogs (127 juveniles and 237 adults, including 51 dogs ≥ 8 years of age). Renal physiological and cisplatin pharmacokinetic studies were conducted in ten intact male dogs including two juvenile and eight adult dogs (4-55 kg). Glomerular filtration rate (GFR), effective renal plasma flow, effective renal blood flow, renal cisplatin clearance, and total cisplatin clearance were allometrically related to body weight with powers of 0.75, 0.59, 0.61, 0.71, and 0.70, respectively. The similar values of these diverse mass exponents suggest a common underlying basis for the allometry of kidney size, renal physiology, and renal drug handling. © 2015 John Wiley & Sons Ltd.

  18. Magnetic polymer nanospheres for anticancer drug targeting

    Energy Technology Data Exchange (ETDEWEB)

    JurIkova, A; Csach, K; Koneracka, M; Zavisova, V; Tomasovicova, N; Lancz, G; Kopcansky, P; Timko, M; Miskuf, J [Institute of Experimental Physics, Slovak Academy of Sciences, 040 01 Kosice (Slovakia); Muckova, M, E-mail: akasard@saske.s [Hameln rds a.s., 900 01 Modra (Slovakia)

    2010-01-01

    Poly(D,L-lactide-co-glycolide) polymer (PLGA) nanospheres loaded with biocom-patible magnetic fluid as a magnetic carrier and anticancer drug Taxol were prepared by the modified nanoprecipitation method with size of 200-250 nm in diameter. The PLGA polymer was utilized as a capsulation material due to its biodegradability and biocompatibility. Taxol as an important anticancer drug was chosen for its significant role against a wide range of tumours. Thermal properties of the drug-polymer system were characterized using thermal analysis methods. It was determined the solubility of Taxol in PLGA nanospheres. Magnetic properties investigated using SQUID magnetometry showed superparamagnetism of the prepared magnetic polymer nanospheres.

  19. The importance of drug metabolites synthesis: the case-study of cardiotoxic anticancer drugs.

    Science.gov (United States)

    Hrynchak, Ivanna; Sousa, Emília; Pinto, Madalena; Costa, Vera Marisa

    2017-05-01

    Anticancer drugs are presently guarantying more survivors as a result of more powerful drugs or combinations of drugs used in therapy. Thus, it has become more crucial to study and overcome the side effects of these therapies. Cardiotoxicity is one of the most relevant side effects on the long-term cancer survivors, because of its high social and economic impact. Drug metabolism can result in active metabolites or toxic metabolites that can lead to important side effects. The metabolites of anticancer drugs are possible culprits of cardiotoxicity; however, the cardiotoxicity of many of the metabolites in several drug classes was not yet suitably studied so far. On the other hand, the use of prodrugs that are bioactivated through metabolism can be a good alternative to obtain more cardio safe drugs. In this review, the methods to obtain and study metabolites are summarized and their application to the study of a group of anticancer drugs with acknowledged cardiotoxicity is highlighted. In this group of drugs, doxorubicin (DOX, 1), mitoxantrone (MTX, 2), cyclophosphamide (CTX, 3) and 5-fluorouracil (5-FU, 4) are included, as well as the tyrosine kinase inhibitors, such as imatinib (5), sunitinib (6) and sorafenib (7). Only with the synthesis and purification of considerable amounts of the metabolites can reliable studies be performed, either in vitro or in vivo that allow accurate conclusions regarding the cardiotoxicity of anticancer drug metabolites and then pharmacological prevention or treatment of the cardiac side effects can be done.

  20. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  1. Organotin(IV) Carboxylates as Promising Potential Drug Candidates in the Field of Cancer Chemotherapy.

    Science.gov (United States)

    Sirajuddin, Muhammad; Ali, Saqib

    2016-01-01

    Medicinal inorganic chemistry plays an important role in exploring the properties of metal ions for the designing of new drugs. The field has been stimulated by the success of cis-platin, the world best selling anticancer drug and platinum complexes with reduced toxicity, oral activity and activity against resistant tumors are currently on clinical trial. The use of cis-platin is, however, severely limited by its toxic side-effects. This has stimulated chemists to employ different strategies in the development of new metal-based anticancer agents with different mechanisms of action. The discovery of new non-covalent interactions with the classical target, DNA, was the first developing step in the treatment of cancer. The use of organometallic compounds as a medicine is very common now a days because it offers potential advantages over the more common organic-based drugs. In this article we have highlighted the anticancer activity of the organotin(IV) carboxylates published in the last few years (from 2008 to 2016). In most cases they present lower IC50 values than those of cisplatin, which indicates their high activity against the cancer cell lines. The summarized data reveal that every year new organotin(IV) carboxylate complexes are synthesized with the aim of new anticancer agent with much better results than the than the corresponding activity of cis-platin or other clinically approved drugs. In addition to the advantages of high activity, compared to the platinum compound, tin complexes are much cheaper. Thus by using organotin carboxylate for clinical medicine, cost reduction, dosage reduction and effect enhancement will be reached. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. [The Necessity and the Current Status of Safe Handling of Anticancer Drugs].

    Science.gov (United States)

    Kanda, Kiyoko

    2017-07-01

    Number of people who handle anticancer drugs in their profession is increasing. Anticancer drugs, which are hazardous drugs(HD), exert cytocidal effects on cancer cells, but many have also been shown to have mutagenicity, teratogenicity and carcinogenicity; therefore, safe handling of anticancer drugs is necessary. In July 2015, the first Japanese guidelines for exposure control measures, namely, the "Joint Guidelines for Safe Handling of Cancer Chemotherapy Drugs", were published jointly by 3 societies. Our guideline is the creation of the Japanese Society of Cancer Nursing(JSCN), Japanese Society of Medical Oncology(JSMO)and Japanese Society of Pharmaceutical Oncology(JASPO)and has a historical significance. This paper states the necessity of safe handling of anticancer drugs, Japan's recent movement of safe handling, the introduction of joint guidelines of safe handling of anticancer drugs, and new movement of safe handling of USP chapter 800 in the United States.

  3. Small-scale screening of anticancer drugs acting specifically on neural stem/progenitor cells derived from human-induced pluripotent stem cells using a time-course cytotoxicity test.

    Science.gov (United States)

    Fukusumi, Hayato; Handa, Yukako; Shofuda, Tomoko; Kanemura, Yonehiro

    2018-01-01

    Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo . Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue-derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.

  4. Enhancing cisplatin delivery to hepatocellular carcinoma HepG2 cells using dual sensitive smart nanocomposite.

    Science.gov (United States)

    Salimi, Farzaneh; Dilmaghani, Karim Akbari; Alizadeh, Effat; Akbarzadeh, Abolfazl; Davaran, Soodabeh

    2017-07-07

    Targeted entrance and accumulation of higher doses of drugs into malignant cells could help in intensification of tumor specific cytotoxicity. A dual-responsive nanogel, poly(N-isopropylacrylamide)-co-poly(N,N-(dimethylamino)ethyl methacrylate) [P(NIPAM-co-DMA)] containing N-isopropylacrylamide (NIPAM) as thermoresponsive monomer and N,N-(dimethylamino)ethyl methacrylate (DMA) as pH-responsive monomer and methylene-bis-acrylamide (MBA) as cross-linking agent, was synthesized by free radical emulsion polymerization. Cisplatin along with magnetic Fe 3 O 4 nanoparticles (MNPs) was loaded into the nanogel by physically embedding the magnetic nanoparticles into hydrogel matrix after gelation to obtain drug-loaded magnetic nanocomposite [P(NIPAM-co-DMA)/Fe 3 O 4 ]. Drug loading efficiencies and drug release profiles of cisplatin-loaded P(NIPAM-co-DMA) nanogel and P(NIPAM-co-DMA)/Fe 3 O 4 nanocomposite were evaluated in vitro for controlled drug delivery in different temperature and pH conditions. Finally, the anticancer activity of P(NIPAM-co-DMA)/Fe 3 O 4 nanocomposite on human liver HepG2 cells was evaluated. Nanogel and nanocomposite showed significantly higher (p < .05) cisplatin release at 40 °C compared to 37 °C and at pH 5.7 compared to pH 7.4, demonstrating their temperature and pH sensitivity, respectively. The cytotoxicity assay of drug free nanogel on HepG2 cell line indicated that the nanogel is biocompatible and suitable as drug carrier. Moreover, MTT assay revealed that the cisplatin-loaded nanocomposite represented significant superior cytotoxicity (p < .05) to HepG2 cells as compared with free cisplatin.

  5. Anticancer Drug-Incorporated Layered Double Hydroxide Nanohybrids and Their Enhanced Anticancer Therapeutic Efficacy in Combination Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Tae-Hyun Kim

    2014-01-01

    Full Text Available Objective. Layered double hydroxide (LDH nanoparticles have been studied as cellular delivery carriers for anionic anticancer agents. As MTX and 5-FU are clinically utilized anticancer drugs in combination therapy, we aimed to enhance the therapeutic performance with the help of LDH nanoparticles. Method. Anticancer drugs, MTX and 5-FU, and their combination, were incorporated into LDH by reconstruction method. Simply, LDHs were thermally pretreated at 400°C, and then reacted with drug solution to simultaneously form drug-incorporated LDH. Thus prepared MTX/LDH (ML, 5-FU/LDH (FL, and (MTX + 5-FU/LDH (MFL nanohybrids were characterized by X-ray diffractometer, scanning electron microscopy, infrared spectroscopy, thermal analysis, zeta potential measurement, dynamic light scattering, and so forth. The nanohybrids were administrated to the human cervical adenocarcinoma, HeLa cells, in concentration-dependent manner, comparing with drug itself to verify the enhanced therapeutic efficacy. Conclusion. All the nanohybrids successfully accommodated intended drug molecules in their house-of-card-like structures during reconstruction reaction. It was found that the anticancer efficacy of MFL nanohybrid was higher than other nanohybrids, free drugs, or their mixtures, which means the multidrug-incorporated LDH nanohybrids could be potential drug delivery carriers for efficient cancer treatment via combination therapy.

  6. Multiparametric analysis of cisplatin-induced changes in cancer cells using FLIM

    Science.gov (United States)

    Shirmanova, Marina V.; Sergeeva, Tatiana F.; Gavrina, Alena I.; Dudenkova, Varvara V.; Lukyanov, Konstantin A.; Zagaynova, Elena V.

    2018-02-01

    Cisplatin is an effective anticancer drug commonly used in the treatment of solid tumors. Although DNA is considered as the primary target, the cisplatin action at the cellular level remains unknown. Advanced fluorescence microscopy techniques allow probing various physiological and physicochemical parameters in living cells and tissues with unsurpassed sensitivity in real time. This study was focused on the investigation of cellular bioenergetics and cytosolic pH in colorectal cancer cells during chemotherapy with cisplatin. Special attention was given to the changes in cisplatininduced apoptosis that was identified using genetically encoded FLIM/FRET sensor of caspase-3 activity. Metabolic measurements using FLIM of the metabolic cofactor NAD(P)H showed decreased contribution from free NAD(P)H (a1, %) in all treated cells with more pronounced alterations in the cells undergoing apoptosis. Analysis of cytosolic pH using genetically encoded fluorescent sensor SypHer1 revealed a rapid increase of the pH value upon cisplatin exposure irrespective of the induction of apoptosis. To the best of our knowledge, a simultaneous assessment of metabolic state, cytosolic pH and caspase-3 activity after treatment with cisplatin was performed for the first time. These findings improve our understanding of the cell response to chemotherapy and mechanisms of cisplatin action.

  7. Detoxifying antitumoral drugs via nanoconjugation: the case of gold nanoparticles and cisplatin.

    Directory of Open Access Journals (Sweden)

    Joan Comenge

    Full Text Available Nanoparticles (NPs have emerged as a potential tool to improve cancer treatment. Among the proposed uses in imaging and therapy, their use as a drug delivery scaffold has been extensively highlighted. However, there are still some controversial points which need a deeper understanding before clinical application can occur. Here the use of gold nanoparticles (AuNPs to detoxify the antitumoral agent cisplatin, linked to a nanoparticle via a pH-sensitive coordination bond for endosomal release, is presented. The NP conjugate design has important effects on pharmacokinetics, conjugate evolution and biodistribution and results in an absence of observed toxicity. Besides, AuNPs present unique opportunities as drug delivery scaffolds due to their size and surface tunability. Here we show that cisplatin-induced toxicity is clearly reduced without affecting the therapeutic benefits in mice models. The NPs not only act as carriers, but also protect the drug from deactivation by plasma proteins until conjugates are internalized in cells and cisplatin is released. Additionally, the possibility to track the drug (Pt and vehicle (Au separately as a function of organ and time enables a better understanding of how nanocarriers are processed by the organism.

  8. Emblica extract prevents cisplatin-induced apoptosis in dermal papilla fibroblasts

    OpenAIRE

    Sudjit Luanpitpong; Varisa Pongrakhananon; Ubonthip Nimmannit; Pithi Chanvorachote

    2008-01-01

    Cisplatin is a widely prescribed anticancer agent that causes hair loss in patients. Since the dermal papilla (DP) fibroblasts are known to be a key mediator in controlling hair growth and loss, understanding the effect and underlying mechanism of cisplatin on these cells may lead to new strategy for hair loss protection in chemotherapy patients. Less is known regarding the effect of cisplatin on DP fibroblasts. We thus treated DP cells with cisplatin (0-250 mmol/L) and found that cisplatin i...

  9. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    LENUS (Irish Health Repository)

    Doherty, Ben

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer.

  10. Structure Determination of Cisplatin-Amino Acid Analogues by Infrared Multiple Photon Dissociation Action Spectroscopy

    Science.gov (United States)

    He, Chenchen; Bao, Xun; Zhu, Yanlong; Strobehn, Stephen; Kimutai, Bett; Nei, Y.-W.; Chow, C. S.; Rodgers, M. T.; Gao, Juehan; Oomens, J.

    2015-06-01

    To gain a better understanding of the binding mechanism and assist in the optimization of relevant drug and chemical probe design, both experimental and theoretical studies were performed on a series of amino acid-linked cisplatin derivatives, including glycine-, lysine-, and ornithine-linked cisplatin, Gplatin, Kplatin, and Oplatin, respectively. Cisplatin, the first FDA-approved platinum-based anticancer drug, has been widely used in cancer chemotherapy. Its pharmacological mechanism has been identified as its ability to coordinate to genomic DNA, and guanine is its major target. In previous reports, cisplatin was successfully utilized as a chemical probe to detect solvent accessible sites in ribosomal RNA (rRNA). Among the amino-acid-linked cisplatin derivatives, Oplatin exhibits preference for adenine over guanine. The mechanism behind its different selectivity compared to cisplatin may relate to its potential of forming a hydrogen bond between the carboxylate group in Pt (II) complex and the 6-amino moiety of adenosine stabilizes A-Oplatin products. Tandem mass spectrometry analysis also indicates that different coordination sites of Oplatin on adenosine affect glycosidic bond stability. Infrared multiple photon dissociation (IRMPD) action spectroscopy experiments were performed on all three amino acid-linked cisplatin to characterize their structures. An extensive theoretical study has been performed on Gplatin to guide the selection of the most effective theory and basis set based on its geometric information. The results for Gplatin provide the foundation for characterization of the more complex amino acid-linked cisplatin derivatives, Oplatin and Kplatin. Structural and energetic information elucidated for these compounds, particularly Oplatin reveal the reason for its alternative selectivity compared to cisplatin.

  11. Tumor treatment by sustained intratumoral release of cisplatin: effects of drug alone and combined with radiation

    International Nuclear Information System (INIS)

    Yapp, Donald T.T.; Lloyd, David K.; Zhu, Julian; Lehnert, Shirley M.

    1997-01-01

    Purpose: The effect of intratumoral delivery of cisplatin to a mouse tumor model (RIF-1) by means of a biodegradable polymer implant with and without radiation was studied. Methods and Materials: The polymer bis(p-carboxyphenoxy)propane-sebacic acid (CPP:SA; 80:20) and its degradation products have been characterized. Polymer rods (8 x 0.5 mm) containing 17% cisplatin by weight were prepared by extrusion, and the in vitro degradation rate measured. The implants were placed into mouse tumors and their effect (with and without radiation) on tumor growth delay studied. The levels of Pt in the mouse kidney, tumor, and blood plasma at selected intervals after implant were also determined. These results were compared with those obtained when cisplatin was delivered systematically. Results: When cisplatin was delivered by the polymer implants, higher levels were present in the tumor for longer time periods (cf. systemic delivery of the drug). For both nonirradiated and irradiated tumors, those treated with the polymer implants had significantly longer tumor growth delays compared to nonimplanted controls and to systematically treated tumors. Conclusions: The results show that intratumoral delivery of cisplatin is more efficient than systemic delivery. Using the biodegradable polymer implant, higher doses of cisplatin can be tolerated by the animal as the drug is localized within the tumor, and the high levels of the drug in the tumor can be maintained for an extended period of time. When radiation is given in conjunction with cisplatin, the tumor response is supraadditive for all modes of cisplatin administration but is potentiated to a greater extent when cisplatin is delivered through the polymer implant. The greatest effect is seen for treatment with cisplatin delivered by polymer implant combined with fractionated radiation

  12. Unique characteristics of regulatory approval and pivotal studies of orphan anticancer drugs in Japan.

    Science.gov (United States)

    Nakayama, Hiroki; Tsukamoto, Katsura

    2018-04-17

    The approval of orphan anticancer drugs has increased, with the number exceeding that of non-orphan drugs in Japan in recent years. Although orphan anticancer drugs may have unique characteristics due to their rarity, these have not been fully characterized. We investigated anticancer drugs approved in Japan between April 2004 and November 2017 to reveal the characteristics of regulatory approval and pivotal studies on orphan anticancer drugs compared to non-orphan drugs. The median regulatory review time and number of patients in pivotal studies on orphan anticancer drugs (281.0 days [interquartile range, 263.3-336.0]; 222.5 patients [66.0-454.3]) were significantly lower than those on non-orphan drugs (353.0 days [277.0-535.5]; 521.0 patients [303.5-814.5], respectively) (P < 0.001). Phase II, non-randomized and non-controlled designs were more frequently used in pivotal studies on orphan anticancer drugs (45.9%, 41.9% and 43.2%) than non-orphan drugs (17.2%, 14.1% and 14.1%, respectively). Response rate was more commonly used as a primary endpoint in pivotal studies on orphan anticancer drugs (48.6%) than non-orphan drugs (17.2%). Indications limited by molecular features, second or later treatment line, and accelerated approval in the United States were associated with the use of response rate in orphan anticancer drug studies. In conclusion, we demonstrated that orphan anticancer drugs in Japan have unique characteristics compared to non-orphan drugs: shorter regulatory review and pivotal studies frequently using phase II, non-randomized, or non-controlled designs and response rate as a primary endpoint, with fewer patients.

  13. Direct intercalation of cisplatin into zirconium phosphate nanoplatelets for potential cancer nanotherapy

    Science.gov (United States)

    Díaz, Agustín; González, Millie L.; Pérez, Riviam J.; David, Amanda; Mukherjee, Atashi; Báez, Adriana; Clearfield, Abraham

    2014-01-01

    We report the use of zirconium phosphate nanoplatelets (ZrP) for the encapsulation of the anticancer drug cisplatin and its delivery to tumor cells. Cisplatin was intercalated into ZrP by direct-ion exchange and was tested in-vitro for cytotoxicity in the human breast cancer (MCF-7) cell line. The structural characterization of the intercalated cisplatin in ZrP suggests that during the intercalation process, the chloride ligands of the cisplatin complex were substituted by phosphate groups within the layers. Consequently, a new phosphate phase with the platinum complex directly bound to ZrP (cisPt@ZrP) is produced with an interlayer distance of 9.3 Å. The in-vitro release profile of the intercalated drug by pH stimulus shows that at low pH under lysosomal conditions the platinum complex is released with simultaneous hydrolysis of the zirconium phosphate material, while at higher pH the complex is not released. Experiments with the MCF-7 cell line show that cisPt@ZrP reduced the cell viability up to 40%. The cisPt@ZrP intercalation product is envisioned as a future nanotherapy agent for cancer. Taking advantage of the shape and sizes of the ZrP particles and controlled release of the drug at low pH, it is intended to exploit the enhanced permeability and retention effect of tumors, as well as their intrinsic acidity, for the destruction of malignant cells. PMID:24072038

  14. Biotin-Pt (IV)-indomethacin hybrid: A targeting anticancer prodrug providing enhanced cancer cellular uptake and reversing cisplatin resistance.

    Science.gov (United States)

    Hu, Weiwei; Fang, Lei; Hua, Wuyang; Gou, Shaohua

    2017-10-01

    A Pt(IV) prodrug (2) composed of cancer-targeting biotin and nonsteroidal anti-inflammatory drug indomethacin in the axial positions of the six-coordinated octahedral geometry derived from cisplatin was developed, which could be highly accumulated in cancer cells more than normal ones and activated by endogenous reducing molecules to release cisplatin and indomethacin moieties simultaneously to inhibit tumor progression synergistically. In vitro assays revealed that 2 exhibited significantly selective inhibition to the tested cancer cell lines and sensitivity to cisplatin resistant cancer cells. Moreover, 2 presented cyclooxygenases inhibition properties to reduce tumor-associated inflammation, reduced the invasiveness of the highly aggressive PC-3 cells, and disrupted capillary-like tube formation in EA.hy926 cells. In all, this study offers a new strategy to enhance sensitivity and reduce toxicity of cisplatin. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Sensitivity test of tumor cell to anticancer drug using diffusion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Soejima, S [Hirosaki Univ., Aomori (Japan). School of Medicine

    1978-11-01

    The diffusion chamber method and xenogeneic transplantation of human cancer cells in rats were studied clinically to test the sensitivity of these cells to anticancer drugs. The growth of Hirosaki sarcoma in a diffusion chamber inserted in to Wistar rats was influenced by the difference in tumor cell counts in the chamber. The growth rate in the chamber inserted in to the subcutaneous tissue was more constant than in the abdominal cavity, but the degree of proliferation of tumor cells in the abdominal cavity was more than in the subcutaneous tissue. Sarcoma and solid type sarcoma were affected by mitomycin C (MMC). The effect was greater in dd-mice than in Donryu rats. Solid type Yoshida sarcoma inserted in to the subcutaneous tissue of Donryu rat was not affected by MMC. The degree of sensitivity of methylcholanthrene induced tumor cells, inserted in to the subcutaneous tissue of Donryu rats, to MMC differed according to various conditions of the hosts. Clinically, the influences of anticancer drugs on human cancer cells inserted in to the subcutaneous tissue of /sup 60/Co-irradiated Donryu rats were observed. There were various grades of sensitivity of gastric cancer cells to anticancer drugs. MMC was effective in 53% of the cases, Cyclophosphamide in 40%, 5-FU in 54%, cytosine arabinoside in 32%, and FT-207 in 57%. Twenty-seven percent were not affected by anticancer drugs. On histological examination, tubular adenocarcinoma cells had a high sensitivity to anticancer drugs, while poorly differentiated adenocarcinoma cells had a low sensitive. Anticancer drugs selected according to the sensitivity of human cancer cells had a marked effective on advanced cancer cells. The diffusion chamber method was useful in determining the degree of bone marrow toxicity of anticancer drugs.

  16. Small-scale screening of anticancer drugs acting specifically on neural stem/progenitor cells derived from human-induced pluripotent stem cells using a time-course cytotoxicity test

    Directory of Open Access Journals (Sweden)

    Hayato Fukusumi

    2018-01-01

    Full Text Available Since the development of human-induced pluripotent stem cells (hiPSCs, various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs derived from hiPSCs (hiPSC-NSPCs have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo. Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue—derived NSPCs (hN-NSPCs to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.

  17. Review of pharmacological interactions of oral anticancer drugs provided at pharmacy department

    Directory of Open Access Journals (Sweden)

    E. Sánchez Gómez

    2014-07-01

    Full Text Available Abstract: Objective: To identify the pharmacologic interactions of oral anti-cancer drugs provided at an outpatient clinic. Material and methods: Anti-cancer drugs included in the Phamacotherapeutic Guideline of the Hospital were identified. A literature search was carried out on the pharmacologic interactions in MEDLINE® and EMBASE® (with the filer language English or Spanish, and the descriptors: “name of the anti-cancer drug” AND (“drug interactions” OR “pharmacokinetic”, Up-to-date®, MICROMEDEX® and the drug information sheet for the EMA and the FDA. Information was also gathered from the abstract presented to European and Spanish scientific meetings for the last 4 years. When an interaction was analyzed and had clinical relevance, the best pharmacotherapeutic interaction-free alternative was sought. Results: Twenty-three drugs were identified, of which Chlorambucil, Fludarabine, Lenalidomide, Melphalan, and Thalidomide were the active compounds with the lowest likelihood of producing a pharmacologic interaction. Tyrosine kinase inhibitors (particularly Erlotinib, Imatinib, Lapatinib, and Pazopanib are the drugs with highest number of pharmacologic interactions described, many of them with severe clinical consequences, with increases and decreases of the plasma levels of anti-cancer drugs. The active compounds identified that may have pharmacologic interactions with anticancer drugs were mainly: Allopurinol, Amiodarone, Carbamazepine, Dabigatran, Digoxin, Spironolactone, Phenytoin, Itraconazol, Repaglinide, Silodosin, Tamoxifen, Verapamil, and Warfarin. Pharmacologic interactions through the cytochrome P450 1A2, 2D6, 2C8, 2C9, 3A4 were the most important for tyrosine kinase inhibitors. Other non-pharmacologic compounds, with an important potential of producing relevant pharmacologic interaction were immunomodulators (Echinacea extracts and Hypericum perforatum. Conclusions: Oral anticancer drugs have numerous pharmacologic

  18. PhytoNanotechnology: Enhancing Delivery of Plant Based Anti-cancer Drugs

    Directory of Open Access Journals (Sweden)

    Tabassum Khan

    2018-02-01

    Full Text Available Natural resources continue to be an invaluable source of new, novel chemical entities of therapeutic utility due to the vast structural diversity observed in them. The quest for new and better drugs has witnessed an upsurge in exploring and harnessing nature especially for discovery of antimicrobial, antidiabetic, and anticancer agents. Nature has historically provide us with potent anticancer agents which include vinca alkaloids [vincristine (VCR, vinblastine, vindesine, vinorelbine], taxanes [paclitaxel (PTX, docetaxel], podophyllotoxin and its derivatives [etoposide (ETP, teniposide], camptothecin (CPT and its derivatives (topotecan, irinotecan, anthracyclines (doxorubicin, daunorubicin, epirubicin, idarubicin, and others. In fact, half of all the anti-cancer drugs approved internationally are either natural products or their derivatives and were developed on the basis of knowledge gained from small molecules or macromolecules that exist in nature. Three new anti-cancer drugs introduced in 2007, viz. trabectedin, epothilone derivative ixabepilone, and temsirolimus were obtained from microbial sources. Selective drug targeting is the need of the current therapeutic regimens for increased activity on cancer cells and reduced toxicity to normal cells. Nanotechnology driven modified drugs and drug delivery systems are being developed and introduced in the market for better cancer treatment and management with good results. The use of nanoparticulate drug carriers can resolve many challenges in drug delivery to the cancer cells that includes: improving drug solubility and stability, extending drug half-lives in the blood, reducing adverse effects in non-target organs, and concentrating drugs at the disease site. This review discusses the scientific ventures and explorations involving application of nanotechnology to some selected plant derived molecules. It presents a comprehensive review of formulation strategies of phytoconstituents in

  19. Fascaplysin Sensitizes Anti-Cancer Effects of Drugs Targeting AKT and AMPK

    Directory of Open Access Journals (Sweden)

    Taek-In Oh

    2017-12-01

    Full Text Available Fascaplysin, a natural product isolated from marine sponges, is a potential candidate for the development of anti-cancer drugs. However, the mechanism underlying its therapeutic effect of strengthening anti-cancer efficacy of other drugs is poorly understood. Here, we found that fascaplysin increases phosphorylation of protein kinase B (PKB, also known as AKT, and adenosine monophosphate-activated protein kinase (AMPK, which are considered therapeutic targets for cancer treatment due to their anti-apoptotic or pro-survival functions in cancer. A cell viability assay revealed that pharmacological suppression of AKT using LY294002 enhanced the anti-cancer effect of fascaplysin in various cancer cells. Similarly, fascaplysin was observed to have improved anti-cancer effects in combination with compound C, a selective AMPK inhibitor. Another challenge showed that fascaplysin increased the efficacy of methotrexate (MTX-mediated cancer therapy by suppressing genes related to folate and purine metabolism. Overall, these results suggest that fascaplysin may be useful for improving the anti-cancer efficacy of targeted anti-cancer drugs, such as inhibitors of phosphoinositide 3-kinase AKT signaling, and chemotherapeutic agents, such as MTX.

  20. Modulation of cisplatin-induced reactive oxygen species production by fullerene C(60 in normal and transformed lymphoid cells

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2016-02-01

    Full Text Available The early response of normal (Wistar rat thymocytes and transformed (mice lymphoid leukemia L1210 cells to treatment with anticancer drug cisplatin or to combined treatment with cisplatin and carbon nanostructure fullerene C60 was studied. We demonstrated with fluorescent probes DCFH-DA and TMRE that cisplatin at concentration 1 μg/ml induced reactive oxygen species (ROS production and decreased the value of mitochondrial membrane potential in both cell types. The combined treatment with cisplatin (1 μg/ml and fullerene C60 (7.2 μg/ml was shown to be followed by oppositely directed modulation of ROS production in thymocytes and L1210 cells. Cisplatin-induced ROS production was intensified in L1210 cells, while in thymocytes it was decreased. It is supposed that the different effects of combined treatment are associated with peculiarities of fullerene C60 accumulation and localization in normal and cancer cells.

  1. A combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer

    International Nuclear Information System (INIS)

    Okuno, Yumiko; Zaitsu, Masayoshi; Mikami, Koji; Takeuchi, Takumi; Matsuda, Izuru; Arahira, Satoko

    2017-01-01

    The gold standard for the treatment of muscle-invasive bladder cancer Without metastasis is radical cystectomy. However, there increase patients very elderly and with serious complications. They are not good candidates for invasive surgical operation. Intraarterial infusion of 70 mg/m"2 of cisplatin and 30 mg/m"2 of pirarubicin into bilateral bladder arteries was conducted for 5 patients diagnosed with muscle invasive bladder cancers without distant metastasis. Right and left distribution of anti-cancer drugs was determined based on the location of bladder tumor(s). External beam radiation therapy was commenced immediately following intraarterial infusion. The patients were followed up with clinical and radiographic investigations and bladderbiopsy was performed as needed. Patients were all males who are smoking or with smoking history ranging from 73 to 85 years of age (median 82). The duration between transurethral resection of bladder tumors (TUR-Bt) and intraarterial infusion of anti-cancer drugs was 47.4 days (range 26-68), the median follow-up period after intraarterial infusion was 21.5 months (range 87-547) without death. Total radiation dose was 59.2 ±3.0 Gy. Complete remission was accomplished in all cases. One patient showed intravesical recurrence of non muscle-invasive tumors 45.8 months following intraarterial infusion and underwent TUR-Bt. Two cases underwent bladder biopsies showing no tumors. All patients but one case with bladder recurrence were free of tumor recurrence with radiographic investigation. For adverse events, acute renal failure was in one case and leukocytopenia was in all 5 cases, Grade 2 for one and Grade 3 for 4 cases. Follow-up periods are not long enough, but early results of a combination therapy of selective intraarterial anti-cancer drug infusion and radiation therapy for muscle-invasive bladder cancer were good. (author)

  2. Ibuprofen enhances the anticancer activity of cisplatin in lung cancer cells by inhibiting the heat shock protein 70

    Science.gov (United States)

    Endo, H; Yano, M; Okumura, Y; Kido, H

    2014-01-01

    Hsp70 is often overexpressed in cancer cells, and the selective cellular survival advantage that it confers may contribute to the process of tumour formation. Thus, the pharmacological manipulation of Hsp70 levels in cancer cells may be an effective means of preventing the progression of tumours. We found that the downregulation of Hsp70 by ibuprofen in vitro enhances the antitumoural activity of cisplatin in lung cancer. Ibuprofen prominently suppressed the expression of Hsp70 in A549 cells derived from lung adenocarcinoma and sensitized them to cisplatin in association with an increase in the mitochondrial apoptotic cascade, whereas ibuprofen alone did not induce cell death. The cisplatin-dependent events occurring up- and downstream of mitochondrial disruption were accelerated by treatment with ibuprofen. The increase in cisplatin-induced apoptosis caused by the depletion of Hsp70 by RNA interference is evidence that the increased apoptosis by ibuprofen is mediated by its effect on Hsp70. Our observations indicate that the suppression of Hsp70 by ibuprofen mediates the sensitivity to cisplatin by enhancing apoptosis at several stages of the mitochondrial cascade. Ibuprofen, therefore, is a potential therapeutic agent that might allow lowering the doses of cisplatin and limiting the many challenge associated with its toxicity and development of drug resistance. PMID:24481441

  3. Analysis of spatiotemporal metabolomic dynamics for sensitively monitoring biological alterations in cisplatin-induced acute kidney injury.

    Science.gov (United States)

    Irie, Miho; Hayakawa, Eisuke; Fujimura, Yoshinori; Honda, Youhei; Setoyama, Daiki; Wariishi, Hiroyuki; Hyodo, Fuminori; Miura, Daisuke

    2018-01-29

    Clinical application of the major anticancer drug, cisplatin, is limited by severe side effects, especially acute kidney injury (AKI) caused by nephrotoxicity. The detailed metabolic mechanism is still largely unknown. Here, we used an integrated technique combining mass spectrometry imaging (MSI) and liquid chromatography-mass spectrometry (LC-MS) to visualize the diverse spatiotemporal metabolic dynamics in the mouse kidney after cisplatin dosing. Biological responses to cisplatin was more sensitively detected within 24 h as a metabolic alteration, which is much earlier than possible with the conventional clinical chemistry method of blood urea nitrogen (BUN) measurement. Region-specific changes (e.g., medulla and cortex) in metabolites related to DNA damage and energy generation were observed over the 72-h exposure period. Therefore, this metabolomics approach may become a novel strategy for elucidating early renal responses to cisplatin, prior to the detection of kidney damage evaluated by conventional method. Copyright © 2018. Published by Elsevier Inc.

  4. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S. (Keio Univ., Tokyo (Japan). School of Medicine)

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  5. Application of radioimmunoassay for virus and anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Toyoshima, S [Keio Univ., Tokyo (Japan). School of Medicine

    1980-05-01

    Recent progress in RIA for virus and anticancer drugs was described. DNA and RNA virus and antivirus antibody which could be detected by RIA were mentioned, and then causes of arteriosclerosis, Paget's disease, multiple sclerosis, and diabetus mellitus were analysed virologically. Diagnostic significance of RIA was also described. Application of RIA to the measurement of interferon and carcinogenic virus at substantial level and recent information of viral hepatitis obtained by RIA were stated. Finally, application of RIA to the measurement of anticancer drugs acting on protective mechanism of the living body and measurement range by RIA were stated.

  6. Histone Deacetylase Inhibitors as Anticancer Drugs.

    Science.gov (United States)

    Eckschlager, Tomas; Plch, Johana; Stiborova, Marie; Hrabeta, Jan

    2017-07-01

    Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC) and histone acetyltransferases (HAT). HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  7. Histone Deacetylase Inhibitors as Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Tomas Eckschlager

    2017-07-01

    Full Text Available Carcinogenesis cannot be explained only by genetic alterations, but also involves epigenetic processes. Modification of histones by acetylation plays a key role in epigenetic regulation of gene expression and is controlled by the balance between histone deacetylases (HDAC and histone acetyltransferases (HAT. HDAC inhibitors induce cancer cell cycle arrest, differentiation and cell death, reduce angiogenesis and modulate immune response. Mechanisms of anticancer effects of HDAC inhibitors are not uniform; they may be different and depend on the cancer type, HDAC inhibitors, doses, etc. HDAC inhibitors seem to be promising anti-cancer drugs particularly in the combination with other anti-cancer drugs and/or radiotherapy. HDAC inhibitors vorinostat, romidepsin and belinostat have been approved for some T-cell lymphoma and panobinostat for multiple myeloma. Other HDAC inhibitors are in clinical trials for the treatment of hematological and solid malignancies. The results of such studies are promising but further larger studies are needed. Because of the reversibility of epigenetic changes during cancer development, the potency of epigenetic therapies seems to be of great importance. Here, we summarize the data on different classes of HDAC inhibitors, mechanisms of their actions and discuss novel results of preclinical and clinical studies, including the combination with other therapeutic modalities.

  8. Proteomics of anti-cancer drugs

    Czech Academy of Sciences Publication Activity Database

    Kovářová, Hana; Martinková, Jiřina; Hrabáková, Rita; Skalníková, Helena; Novák, Petr; Hajdůch, M.; Gadher, S. J.

    2009-01-01

    Roč. 276, Supplement 1 (2009), s. 84-84 E-ISSN 1742-4658. [34th FEBS Congress. 04.07.2009-09.07.2009, Praha] R&D Projects: GA MŠk LC07017 Institutional research plan: CEZ:AV0Z50450515; CEZ:AV0Z50200510 Keywords : proteomics * anti-cancer drugs * biomarkers Subject RIV: FD - Oncology ; Hematology

  9. Combination studies of platinum(II)-based metallointercalators with buthionine-S,R-sulfoximine, 3-bromopyruvate, cisplatin or carboplatin.

    Science.gov (United States)

    Garbutcheon-Singh, K Benjamin; Harper, Benjamin W J; Myers, Simon; Aldrich-Wright, Janice R

    2014-01-01

    With current chemotherapeutic treatment regimes often limited by adverse side effects, the synergistic combination of complexes with anticancer activity appears to offer a promising strategy for effective cancer treatment. This work investigates the anti-proliferative activity using a combination therapy approach where metallointercalators of the type [Pt(IL)(AL)](2+) (where IL is the intercalating ligand and AL is the ancillary ligand) are used in combination with currently approved anticancer drugs cisplatin and carboplatin and organic molecules buthionine-S,R-sulfoximine and 3-bromopyruvate. Synergistic relationships were observed, indicating a potential to decrease dose-dependent toxicity and improve therapeutic efficacy.

  10. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    OpenAIRE

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-01-01

    Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of ...

  11. Alkaloids as Cyclooxygenase Inhibitors in Anticancer Drug Discovery.

    Science.gov (United States)

    Hashmi, Muhammad Ali; Khan, Afsar; Farooq, Umar; Khan, Sehroon

    2018-01-01

    Cancer is the leading cause of death worldwide and anticancer drug discovery is a very hot area of research at present. There are various factors which control and affect cancer, out of which enzymes like cyclooxygenase-2 (COX-2) play a vital role in the growth of tumor cells. Inhibition of this enzyme is a very useful target for the prevention of various types of cancers. Alkaloids are a diverse group of naturally occurring compounds which have shown great COX-2 inhibitory activity both in vitro and in vivo. In this mini-review, we have discussed different alkaloids with COX-2 inhibitory activities and anticancer potential which may act as leads in modern anticancer drug discovery. Different classes of alkaloids including isoquinoline alkaloids, indole alkaloids, piperidine alkaloids, quinazoline alkaloids, and various miscellaneous alkaloids obtained from natural sources have been discussed in detail in this review. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Consensus-based evaluation of clinical significance and management of anticancer drug interactions

    NARCIS (Netherlands)

    Jansman, F.G.A.; Reyners, A.K.L.; van Roon, E.N.; Smorenburg, C.H.; Helgason, H.H.; le Comte, M.; Wensveen, B.M.; van den Tweel, A.M.A.; de Blois, M.; Kwee, W.; Kerremans, A.L.; Brouwers, J.R.B.J.

    Background: Anticancer drug interactions can affect the efficacy and toxicity of anticancer treatment and that of the interacting drugs. However, information on the significance, prevention, and management of these interactions is currently lacking. Objective: The purpose of this study was to assess

  13. Preclinical and clinical pharmacology of oral anticancer drugs

    NARCIS (Netherlands)

    Oostendorp, R.L.

    2009-01-01

    Nowadays, more than 25% of all anticancer drugs are developed as oral formulations. Oral administration of drugs has several advantages over intravenous (i.v.) administration. It will on average be more convenient for patients, because they can take oral medication themselves, there is no need for

  14. Curcuma longa (curcumin) decreases in vivo cisplatin-induced ototoxicity through heme oxygenase-1 induction.

    Science.gov (United States)

    Fetoni, Anna R; Eramo, Sara L M; Paciello, Fabiola; Rolesi, Rolando; Podda, Maria Vittoria; Troiani, Diana; Paludetti, Gaetano

    2014-06-01

    To investigate whether curcumin may have in vivo protective effects against cisplatin ototoxicity by its direct scavenger activity and/or by curcumin-mediated upregulation of HO-1. Cisplatin-induced ototoxicity is a major dose-limiting side effect in anticancer chemotherapy. A protective approach to decrease cisplatin ototoxicity without compromising its therapeutic efficacy remains a critical goal for anticancer therapy. Recent evidences indicate that curcumin exhibits antioxidant, anti-inflammatory, and chemosensitizer activities. In male adult Wistar rats, a curcumin dose of 200 mg/kg, selected from a dose-response curve, was injected 1 hour before cisplatin administration and once daily for the following 3 days. A single dose of cisplatin (16 mg/kg) was administered intraperitoneally. Rats were divided as follows: 1) control, 2) curcumin control, 3) vehicle control, 4) cisplatin, 5) cisplatin+ vehicle, and 6) curcumin+cisplatin. ABRs were measured before and at Days 3 and 5 after cisplatin administration. Rhodamine-phalloidin staining, 4-hydroxy-2-nonenal and heme-oxigenase-1 immunostainings, and Western blot analyses were performed to assess and quantify OHC loss, lipid peroxidation, and the endogenous response to cisplatin-induced damage and to curcumin protection. Curcumin treatment attenuated hearing loss induced by cisplatin, increased OHC survival, decreased 4-HNE expression, and increased HO-1 expression. This preclinical study demonstrates that systemic curcumin attenuates ototoxicity and provides molecular evidence for a role of HO-1 as an additional mediator in attenuating cisplatin-induced damage.

  15. Nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs.

    Science.gov (United States)

    Huang, Wei; Chen, Liqing; Kang, Lin; Jin, Mingji; Sun, Ping; Xin, Xin; Gao, Zhonggao; Bae, You Han

    2017-06-01

    Anticancer therapy has always been a vital challenge for the development of nanomedicine. Repeated single therapeutic agent may lead to undesirable and severe side effects, unbearable toxicity and multidrug resistance due to complex nature of tumor. Nanomedicine-based combination anticancer therapy can synergistically improve antitumor outcomes through multiple-target therapy, decreasing the dose of each therapeutic agent and reducing side effects. There are versatile combinational anticancer strategies such as chemotherapeutic combination, nucleic acid-based co-delivery, intrinsic sensitive and extrinsic stimulus combinational patterns. Based on these combination strategies, various nanocarriers and drug delivery systems were engineered to carry out the efficient co-delivery of combined therapeutic agents for combination anticancer therapy. This review focused on illustrating nanomedicine-based combination anticancer therapy between nucleic acids and small-molecular drugs for synergistically improving anticancer efficacy. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. [Different effects of anticancer drugs on two human thyroid cell lines with different stages of differentiation].

    Science.gov (United States)

    Yamanaka, T; Hishinuma, A

    1995-01-20

    We established two human thyroid tumor cell lines. One cell line (hPTC) was established from the tissue of a papillary thyroid carcinoma surgically excised from a 27-year-old female patient. The other cell line (hAG) was established from the tissue of an adenomatous goiter excised from a 59-year old female patient. Synthesis of cAMP by hPTC and hAG increased when they were stimulated by TSH. hPTC and hAG continued to divide as a monolayer in a tissue culture for three years and two years, respectively. We assessed the efficacy of anticancer drugs (doxorubicin:ADR, cisplatin:CDDP, nimustine:ACNU, bleomycin:BLM, cyclophosphamide:CPA, aclarubicin:ACR) with resard to hPTC. The hPTC cells were cultured in 24-well plates in the presence of the anticancer drugs for 48 hours, and the cellular DNA of the live cells was measured with diaminobenzoic acid. ADR had the lowest ED50 (0.029 mu g/ml) and the clinical blood concentration was 13.8 times that of the ED50. The clinical blood concentration divided by ED50 for the other anticancer drugs are, in order of higher values, 2.3 for CPA, 1.7 for BLM, 1.2 for CDDP, 0.5 for ACR, and less than 0.1 for ACNU. ADR showed time-independent effects since a 2-hour exposure of ADR to the hPTC cells resulted in the significant reduction of the cellular DNA content of the live cells even after 48 hours. The effects of the other anticancer drugs were time-dependent. We then studied the difference of the effects of ADR on hPTC and hAG. ED50 for hPTC was significantly low (0.035 mu g/ml) compared to that for hAG (0.460 mu g/ml). Since free radical formation is one of the major anticancer mechanisms of ADR the effects of free radicals on ED50's for hPTC and hAG were measured by adding glutathione (GSH), N-acetylcystein (NAC), buthionine sulfoximine (BSO), and alpha-tocopherol (alpha-toco) into the culture media. GSH catches up with free radicals in the extracellular fluid. NAC promotes production of GSH in the cytoplasm, but BSO interferes with

  17. Raman scattering of Cisplatin near silver nanoparticles

    Science.gov (United States)

    Mirsaleh-Kohan, Nasrin; Duplanty, Michael; Torres, Marjorie; Moazzezi, Mojtaba; Rostovtsev, Yuri V.

    2018-03-01

    The Raman scattering of Cisplatin (the first generation of anticancer drugs) has been studied. In the presence of silver nanoparticles, strong modifications of Raman spectra have been observed. The Raman frequencies have been shifted and the line profiles are broadened. We develop a theoretical model to explain the observed features of the Raman scattering. The model takes into account self-consistently the interaction of molecules with surface plasmonic waves excited in the silver nanoparticles, and it provides a qualitative agreement with the observed Raman spectra. We have demonstrated that the using silver nanoparticles can increase sensitivity of the technique, and potentially it has a broader range of applications to both spectroscopy and microscopy.

  18. PEGylated Silk Nanoparticles for Anticancer Drug Delivery.

    Science.gov (United States)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew J; Seib, F Philipp

    2015-11-09

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of "stealth" design principals is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential -56 ± 5.6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using clinically established and emerging anticancer drugs. Overall, PEGylated silk nanoparticles showed high encapsulation efficiency (>93%) and a pH-dependent release over 14 days. Finally, we demonstrated significant cytotoxicity of drug loaded silk nanoparticles applied as single and combination nanomedicines to human breast cancer cells. In conclusion, these results, taken together with prior silk nanoparticle data, support a viable future for silk-based nanomedicines.

  19. Core-shell polymer nanoparticles for prevention of GSH drug detoxification and cisplatin delivery to breast cancer cells

    Science.gov (United States)

    Surnar, Bapurao; Sharma, Kavita; Jayakannan, Manickam

    2015-10-01

    Platinum drug delivery against the detoxification of cytoplasmic thiols is urgently required for achieving efficacy in breast cancer treatment that is over expressed by glutathione (GSH, thiol-oligopeptide). GSH-resistant polymer-cisplatin core-shell nanoparticles were custom designed based on biodegradable carboxylic functional polycaprolactone (PCL)-block-poly(ethylene glycol) diblock copolymers. The core of the nanoparticle was fixed as 100 carboxylic units and the shell part was varied using various molecular weight poly(ethylene glycol) monomethyl ethers (MW of PEGs = 100-5000 g mol-1) as initiator in the ring-opening polymerization. The complexation of cisplatin aquo species with the diblocks produced core-shell nanoparticles of 75 nm core with precise size control the particles up to 190 nm. The core-shell nanoparticles were found to be stable in saline solution and PBS and they exhibited enhanced stability with increase in the PEG shell thickness at the periphery. The hydrophobic PCL layer on the periphery of the cisplatin core behaved as a protecting layer against the cytoplasmic thiol residues (GSH and cysteine) and exhibited embryonic fibroblast cells (Wt-MEFs), and breast cancer (MCF-7) and cervical cancer (HeLa) cell lines. Free cisplatin and polymer drug core-shell nanoparticles showed similar cytotoxicity effects in the HeLa cells. In MCF-7 cells, the free cisplatin drug exhibited 50% cell death whereas complete cell death (100%) was accomplished by the polymer-cisplatin core-shell nanoparticles. Confocal microscopic images confirmed that the core-shell nanoparticles were taken up by the MCF-7 and HeLa cells and they were accumulated both at the cytoplasm as well at peri-nuclear environments. The present investigation lays a new foundation for the polymer-based core-shell nanoparticles approach for overcoming detoxification in platinum drugs for the treatment of GSH over-expressed breast cancer cells.Platinum drug delivery against the detoxification

  20. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes.

    Science.gov (United States)

    Shen, Ding-Wu; Pouliot, Lynn M; Hall, Matthew D; Gottesman, Michael M

    2012-07-01

    Cisplatin is one of the most effective broad-spectrum anticancer drugs. Its effectiveness seems to be due to the unique properties of cisplatin, which enters cells via multiple pathways and forms multiple different DNA-platinum adducts while initiating a cellular self-defense system by activating or silencing a variety of different genes, resulting in dramatic epigenetic and/or genetic alternations. As a result, the development of cisplatin resistance in human cancer cells in vivo and in vitro by necessity stems from bewilderingly complex genetic and epigenetic changes in gene expression and alterations in protein localization. Extensive published evidence has demonstrated that pleiotropic alterations are frequently detected during development of resistance to this toxic metal compound. Changes occur in almost every mechanism supporting cell survival, including cell growth-promoting pathways, apoptosis, developmental pathways, DNA damage repair, and endocytosis. In general, dozens of genes are affected in cisplatin-resistant cells, including pathways involved in copper metabolism as well as transcription pathways that alter the cytoskeleton, change cell surface presentation of proteins, and regulate epithelial-to-mesenchymal transition. Decreased accumulation is one of the most common features resulting in cisplatin resistance. This seems to be a consequence of numerous epigenetic and genetic changes leading to the loss of cell-surface binding sites and/or transporters for cisplatin, and decreased fluid phase endocytosis.

  1. Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study.

    Science.gov (United States)

    Naseem, Imrana; Hassan, Iftekhar; Alhazza, Ibrahim M; Chibber, Sandesh

    2015-01-01

    The toxicity exerted by the anticancer drug, cisplatin in vivo is functional to many factors such as dose, duration, gender and age etc. The present study is aimed to investigate if ameliorative potential of riboflavin on cisplatin induced toxicity is gender dependent. Eighty four adult mice from male and female sex were divided into seven groups (n=6) for both sexes. They were treated with riboflavin (2mg/kg), cisplatin (2mg/kg) and their two different combinations (cisplatin at 2mg/kg with 1mg/kg and 2mg/kg of riboflavin) under photoillumination with their respective controls for the combination groups without photoillumination. After treatment, all groups were sacrificed and their kidney, liver and serum were collected for biochemical estimations, comet assay and histopathology. In the present investigation, it was evident from antioxidant and detoxification studies (SOD, CAT, GSH, GST, MDA and carbonyl level) that the female mice exhibited better tolerance towards cisplatin inducted toxicity and the ameliorative effect of riboflavin against cisplatin toxicity was found stronger in their combination groups as compared to the male groups as the activity of all antioxidant enzymes were found better concomitant with lower level of MDA and carbonyl contents in the female combination groups than their male counterparts. Furthermore, single cell gel electrophoresis and histopathological examination confirmed that restoration of normal nuclear and cellular integrity was more prominent in female with respect to the males after treatment in the combination groups in a dose-dependent manner. Hence, this study reveals that cisplatin is more toxic in male mice and the ameliorative effect of riboflavin against cisplatin toxicity is stronger in female mice. Copyright © 2014. Published by Elsevier GmbH.

  2. Cisplatin-induced hypokalemic paralysis.

    Science.gov (United States)

    Mohammadianpanah, Mohammad; Omidvari, Shapour; Mosalaei, Ahmad; Ahmadloo, Niloofar

    2004-08-01

    Profound hypokalemic conditions resulting from cisplatin therapy have been known to produce hypokalemic paralysis in rare cases. We describe such a case of cisplatin-induced hypokalemic paralysis. A 15-year-old Persian girl with ovarian dysgerminoma presented with severe generalized weakness and paraplegia 1 week after the fourth course of cisplatin-based chemotherapy. On physical examination, there was symmetric flaccid paralysis and areflexia in all of the extremities and particularly in the lower limbs. Her serum potassium concentration was 1.7 mmol/L. Metastatic disease was excluded by a comprehensive systemic evaluation. Complete clinical and paraclinical recovery was achieved after short-term administration of potassium supplement. Adverse drug reactions are common with cisplatin, but the drug is only rarely associated with hypokalemic paralysis. Based on the Naranjo causality algorithm, an objective assessment revealed cisplatin to be a probable cause of hypokalemic paralysis in this case. This adverse drug event--whether isolated or secondary to hypomagnesemia--may be deceptive, leading to a fatal mistake in the oncology setting, and should therefore be precisely differentiated from cancer-related complications. This case suggests that cisplatin should be added to the list of agents causing hypokalemic paralysis. Regular serum electrolyte measurement, the early detection of cation deficiency, and appropriate replacement of cations are all recommended.

  3. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    Directory of Open Access Journals (Sweden)

    Kim Sung-Ho

    2009-03-01

    Full Text Available Abstract Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W. reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  4. Mechanisms of Cisplatin-Induced Apoptosis and of Cisplatin Sensitivity: Potential of BIN1 to Act as a Potent Predictor of Cisplatin Sensitivity in Gastric Cancer Treatment

    OpenAIRE

    Tanida, Satoshi; Mizoshita, Tsutomu; Ozeki, Keiji; Tsukamoto, Hironobu; Kamiya, Takeshi; Kataoka, Hiromi; Sakamuro, Daitoku; Joh, Takashi

    2012-01-01

    Cisplatin is the most important and efficacious chemotherapeutic agent for the treatment of advanced gastric cancer. Cisplatin forms inter- and intrastrand crosslinked DNA adducts and its cytotoxicity is mediated by propagation of DNA damage recognition signals to downstream pathways involving ATR, p53, p73, and mitogen-activated protein kinases, ultimately resulting in apoptosis. Cisplatin resistance arises through a multifactorial mechanism involving reduced drug uptake, increased drug inac...

  5. Synergetic Effects of PARP Inhibitor AZD2281 and Cisplatin in Oral Squamous Cell Carcinoma in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Masaaki Yasukawa

    2016-02-01

    Full Text Available Cisplatin is a commonly used chemotherapeutic drug for treatment of oral carcinoma, and combinatorial effects are expected to exert greater therapeutic efficacy compared with monotherapy. Poly(ADP-ribosylation is reported to be involved in a variety of cellular processes, such as DNA repair, cell death, telomere regulation, and genomic stability. Based on these properties, poly(ADP-ribose polymerase (PARP inhibitors are used for treatment of cancers, such as BRCA1/2 mutated breast and ovarian cancers, or certain solid cancers in combination with anti-cancer drugs. However, the effects on oral cancer have not been fully evaluated. In this study, we examined the effects of PARP inhibitor on the survival of human oral cancer cells in vitro and xenografted tumors derived from human oral cancer cells in vivo. In vitro effects were assessed by microculture tetrazolium and survival assays. The PARP inhibitor AZD2281 (olaparib showed synergetic effects with cisplatin in a dose-dependent manner. Combinatorial treatment with cisplatin and AZD2281 significantly inhibited xenografted tumor growth compared with single treatment of cisplatin or AZD2281. Histopathological analysis revealed that cisplatin and AZD2281 increased TUNEL-positive cells and decreased Ki67- and CD31-positive cells. These results suggest that PARP inhibitors have the potential to improve therapeutic strategies for oral cancer.

  6. Antioxidant and Anticancer Activities of Wampee (Clausena lansium (Lour. Skeels Peel

    Directory of Open Access Journals (Sweden)

    K. Nagendra Prasad

    2009-01-01

    Full Text Available Antioxidant activities of wampee peel extracts using five different solvents (ethanol, hexane, ethyl acetate, butanol and water were determined by using in-vitro antioxidant models including total antioxidant capability, 1,1-diphenyl-2-picryl hydrazyl (DPPH radical scavenging activity, reducing power, and superoxide scavenging activity. Ethyl acetate fraction (EAF exhibited the highest antioxidant activity compared to other fractions, even higher than synthetic antioxidant butylated hydroxyl toluene (BHT. In addition, the EAF exhibited strong anticancer activities against human gastric carcinoma (SGC-7901, human hepatocellular liver carcinoma (HepG-2 and human lung adenocarcinoma (A-549 cancer cell lines, higher than cisplatin, a conventional anticancer drug. The total phenolic content of wampee fraction was positively correlated with the antioxidant activity. This is the first report on the antioxidant and anticancer activities of the wampee peel extract. Thus, wampee peel can be used potentially as a readily accessible source of natural antioxidants and a possible pharmaceutical supplement.

  7. Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy.

    Science.gov (United States)

    Piktel, Ewelina; Niemirowicz, Katarzyna; Wątek, Marzena; Wollny, Tomasz; Deptuła, Piotr; Bucki, Robert

    2016-05-26

    The rapid development of nanotechnology provides alternative approaches to overcome several limitations of conventional anti-cancer therapy. Drug targeting using functionalized nanoparticles to advance their transport to the dedicated site, became a new standard in novel anti-cancer methods. In effect, the employment of nanoparticles during design of antineoplastic drugs helps to improve pharmacokinetic properties, with subsequent development of high specific, non-toxic and biocompatible anti-cancer agents. However, the physicochemical and biological diversity of nanomaterials and a broad spectrum of unique features influencing their biological action requires continuous research to assess their activity. Among numerous nanosystems designed to eradicate cancer cells, only a limited number of them entered the clinical trials. It is anticipated that progress in development of nanotechnology-based anti-cancer materials will provide modern, individualized anti-cancer therapies assuring decrease in morbidity and mortality from cancer diseases. In this review we discussed the implication of nanomaterials in design of new drugs for effective antineoplastic therapy and describe a variety of mechanisms and challenges for selective tumor targeting. We emphasized the recent advantages in the field of nanotechnology-based strategies to fight cancer and discussed their part in effective anti-cancer therapy and successful drug delivery.

  8. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells

    DEFF Research Database (Denmark)

    Pines, Alex; Kelstrup, Christian D; Vrouwe, Mischa G

    2011-01-01

    (stable isotope labeling by amino acids in cell culture)-labeled murine embryonic stem cells with the anticancer drug cisplatin. Network and pathway analyses indicated that processes related to the DNA damage response and cytoskeleton organization were significantly affected. Although the ATM (ataxia...... rearrangements. Integration of transcriptomic and proteomic data revealed a poor correlation between changes in the relative levels of transcripts and their corresponding proteins, but a large overlap in affected pathways at the levels of mRNA, protein, and phosphoprotein. This study provides an integrated view...

  9. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    International Nuclear Information System (INIS)

    Stubbert, Lawton J; Smith, Jennifer M; McKay, Bruce C

    2010-01-01

    One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. RNA interference (RNAi) was used to reduce the transcription-coupled nucleotide excision repair (TC-NER) capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B) transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic

  10. Decreased transcription-coupled nucleotide excision repair capacity is associated with increased p53- and MLH1-independent apoptosis in response to cisplatin

    Directory of Open Access Journals (Sweden)

    Smith Jennifer M

    2010-05-01

    Full Text Available Abstract Background One of the most commonly used classes of anti-cancer drugs presently in clinical practice is the platinum-based drugs, including cisplatin. The efficacy of cisplatin therapy is often limited by the emergence of resistant tumours following treatment. Cisplatin resistance is multi-factorial but can be associated with increased DNA repair capacity, mutations in p53 or loss of DNA mismatch repair capacity. Methods RNA interference (RNAi was used to reduce the transcription-coupled nucleotide excision repair (TC-NER capacity of several prostate and colorectal carcinoma cell lines with specific defects in p53 and/or DNA mismatch repair. The effect of small inhibitory RNAs designed to target the CSB (Cockayne syndrome group B transcript on TC-NER and the sensitivity of cells to cisplatin-induced apoptosis was determined. Results These prostate and colon cancer cell lines were initially TC-NER proficient and RNAi against CSB significantly reduced their DNA repair capacity. Decreased TC-NER capacity was associated with an increase in the sensitivity of tumour cells to cisplatin-induced apoptosis, even in p53 null and DNA mismatch repair-deficient cell lines. Conclusion The present work indicates that CSB and TC-NER play a prominent role in determining the sensitivity of tumour cells to cisplatin even in the absence of p53 and DNA mismatch repair. These results further suggest that CSB represents a potential target for cancer therapy that may be important to overcome resistance to cisplatin in the clinic.

  11. Activity of Saponins from Medicago species Against HeLa and MCF-7 Cell Lines and their Capacity to Potentiate Cisplatin Effect.

    Science.gov (United States)

    Avato, Pinarosa; Migoni, Danilo; Argentieri, Mariapia; Fanizzi, Francesco P; Tava, Aldo

    2017-11-24

    Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Dunnione ameliorates cisplatin-induced small intestinal damage by modulating NAD{sup +} metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Arpana; Kim, Hyung-Jin; Oh, Gi-Su; Shen, AiHua; Lee, Su-Bin; Khadka, Dipendra; Lee, SeungHoon [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Shim, Hyeok; Yang, Sei-Hoon; Cho, Eun-Young [Department of Internal Medicine, School of Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwon, Kang-Beom [Department of Oriental Medical Physiology, School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); Kwak, Tae Hwan [PAEAN Biotechnology, 160 Techno-2 Street, Yuseong-gu, Daejeon 305-500 (Korea, Republic of); Choe, Seong-Kyu; Park, Raekil [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of); So, Hong-Seob, E-mail: jeanso@wku.ac.kr [Center for Metabolic Function Regulation & Department of Microbiology, Wonkwang University, Iksan, Jeonbuk 570-749 (Korea, Republic of)

    2015-11-27

    Although cisplatin is a widely used anticancer drug for the treatment of a variety of tumors, its use is critically limited because of adverse effects such as ototoxicity, nephrotoxicity, neuropathy, and gastrointestinal damage. Cisplatin treatment increases oxidative stress biomarkers in the small intestine, which may induce apoptosis of epithelial cells and thereby elicit damage to the small intestine. Nicotinamide adenine dinucleotide (NAD{sup +}) is a cofactor for various enzymes associated with cellular homeostasis. In the present study, we demonstrated that the hyper-activation of poly(ADP-ribose) polymerase-1 (PARP-1) is closely associated with the depletion of NAD{sup +} in the small intestine after cisplatin treatment, which results in downregulation of sirtuin1 (SIRT1) activity. Furthermore, a decrease in SIRT1 activity was found to play an important role in cisplatin-mediated small intestinal damage through nuclear factor (NF)-κB p65 activation, facilitated by its acetylation increase. However, use of dunnione as a strong substrate for the NADH:quinone oxidoreductase 1 (NQO1) enzyme led to an increase in intracellular NAD{sup +} levels and prevented the cisplatin-induced small intestinal damage correlating with the modulation of PARP-1, SIRT1, and NF-κB. These results suggest that direct modulation of cellular NAD{sup +} levels by pharmacological NQO1 substrates could be a promising therapeutic approach for protecting against cisplatin-induced small intestinal damage. - Highlights: • NAD{sup +} acts as a cofactor for numerous enzymes including Sirtuins and PARP. • Up-regulation of SIRT1 could attenuate the cisplatin-induced intestinal damage. • Modulation of the cellular NAD{sup +} could be a promising therapeutic approach.

  13. Ethnobotany and ethnopharmacy--their role for anti-cancer drug development.

    Science.gov (United States)

    Heinrich, Michael; Bremner, Paul

    2006-03-01

    Local and traditional knowledge has been the starting point for many successful drug development projects over the last decades. Here we discuss some examples of anti-cancer drugs which have had enormous impact as anti-cancer agents (camptothecan, taxol and derivatives) and a few examples of drugs currently under various stages of preclinical development. Ethnobotanists investigate the relationship between humans and plants in all its complexity, and such research is generally based on a detailed observation and study of the use a society makes of plants. The requirements of modern research on natural products as, for example, outlined in the Convention on Biological Diversity (Rio Convention) and the overall approach in ethnobotanical research are also discussed. Selected phytochemical-pharmacological studies based on traditional plant use are used to highlight the potential of ethnobotany driven anti-cancer research. The link between traditionally used plants and targets of the NF-kappaB pathway is discussed using on an EU-funded, multidisciplinary project as an example. Lastly the potential of chemopreventive agents derived from traditional food plants is briefly addressed.

  14. 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells.

    Science.gov (United States)

    Lim, Juhee; Lee, Sung Ho; Cho, Sera; Lee, Ik-Soo; Kang, Bok Yun; Choi, Hyun Jin

    2013-10-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcriptional regulator for the protection of cells against oxidative and xenobiotic stresses. Recent studies have demonstrated that high constitutive expression of Nrf2 is observed in many types of cancer cells showing resistance to anti-cancer drugs, suggesting that the suppression of overexpressed Nrf2 could be an attractive therapeutic strategy to overcome cancer drug resistance. In the present study, we aimed to find small molecule compounds that enhance the sensitivity of tumor cells to cisplatin induced cytotoxicity by suppressing Nrf2-mediated defense mechanism. A549 lung cancer cells were shown to be more resistant to the anti-cancer drug cisplatin than HEK293 cells, with higher Nrf2 signaling activity; constitutively high amounts of Nrf2-downstream target proteins were observed in A549 cells. Among the three chalcone derivatives 4-methoxy-chalcone (4-MC), hesperidin methylchalcone, and neohesperidin dihydrochalcone, 4-MC was found to suppress transcriptional activity of Nrf2 in A549 cells but to activate it in HEK293 cells. 4-MC was also shown to down-regulate expression of Nrf2 and the downstream phase II detoxifying enzyme NQO1 in A549 cells. The PI3K/Akt pathway was found to be involved in the 4-MC-induced inhibition of Nrf2/ARE activity in A549 cells. This inhibition of Nrf2 signaling results in the accelerated generation of reactive oxygen species and exacerbation of cytotoxicity in cisplatin-treated A549 cells. Taken together, these results suggest that the small molecule compound 4-MC could be used to enhance the sensitivity of tumor cells to the therapeutic effect of cisplatin through the regulation of Nrf2/ARE signaling.

  15. Nanostructured surfaces for analysis of anticancer drug and cell diagnosis based on electrochemical and SERS tools

    Science.gov (United States)

    El-Said, Waleed A.; Yoon, Jinho; Choi, Jeong-Woo

    2018-04-01

    Discovering new anticancer drugs and screening their efficacy requires a huge amount of resources and time-consuming processes. The development of fast, sensitive, and nondestructive methods for the in vitro and in vivo detection of anticancer drugs' effects and action mechanisms have been done to reduce the time and resources required to discover new anticancer drugs. For the in vitro and in vivo detection of the efficiency, distribution, and action mechanism of anticancer drugs, the applications of electrochemical techniques such as electrochemical cell chips and optical techniques such as surface-enhanced Raman spectroscopy (SERS) have been developed based on the nanostructured surface. Research focused on electrochemical cell chips and the SERS technique have been reviewed here; electrochemical cell chips based on nanostructured surfaces have been developed for the in vitro detection of cell viability and the evaluation of the effects of anticancer drugs, which showed the high capability to evaluate the cytotoxic effects of several chemicals at low concentrations. SERS technique based on the nanostructured surface have been used as label-free, simple, and nondestructive techniques for the in vitro and in vivo monitoring of the distribution, mechanism, and metabolism of different anticancer drugs at the cellular level. The use of electrochemical cell chips and the SERS technique based on the nanostructured surface should be good tools to detect the effects and action mechanisms of anticancer drugs.

  16. Anticancer drugs from marine flora: an overview.

    Science.gov (United States)

    Sithranga Boopathy, N; Kathiresan, K

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  17. Anticancer Drugs from Marine Flora: An Overview

    Directory of Open Access Journals (Sweden)

    N. Sithranga Boopathy

    2010-01-01

    Full Text Available Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharides. The chemicals have displayed an array of pharmacological properties especially antioxidant, immunostimulatory, and antitumour activities. The phytochemicals possibly activate macrophages, induce apoptosis, and prevent oxidative damage of DNA, thereby controlling carcinogenesis. In spite of vast resources enriched with chemicals, the marine floras are largely unexplored for anticancer lead compounds. Hence, this paper reviews the works so far conducted on this aspect with a view to provide a baseline information for promoting the marine flora-based anticancer research in the present context of increasing cancer incidence, deprived of the cheaper, safer, and potent medicines to challenge the dreadful human disease.

  18. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice.

    Science.gov (United States)

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho; Yee, Sung-Tae

    2009-03-17

    Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-gamma secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin.

  19. Cisplatin and doxorubicin induce distinct mechanisms of ovarian follicle loss; imatinib provides selective protection only against cisplatin.

    Directory of Open Access Journals (Sweden)

    Stephanie Morgan

    Full Text Available Chemotherapy treatment in premenopausal women has been linked to ovarian follicle loss and premature ovarian failure; the exact mechanism by which this occurs is uncertain. Here, two commonly used chemotherapeutic agents (cisplatin and doxorubicin were added to a mouse ovary culture system, to compare the sequence of events that leads to germ cell loss. The ability of imatinib mesylate to protect the ovary against cisplatin or doxorubicin-induced ovarian damage was also examined.Newborn mouse ovaries were cultured for a total of six days, exposed to a chemotherapeutic agent on the second day: this allowed for the examination of the earliest stages of follicle development. Cleaved PARP and TUNEL were used to assess apoptosis following drug treatment. Imatinib was added to cultures with cisplatin and doxorubicin to determine any protective effect.Histological analysis of ovaries treated with cisplatin showed oocyte-specific damage; in comparison doxorubicin preferentially caused damage to the granulosa cells. Cleaved PARP expression significantly increased for cisplatin (16 fold, p<0.001 and doxorubicin (3 fold, p<0.01. TUNEL staining gave little evidence of primordial follicle damage with either drug. Imatinib had a significant protective effect against cisplatin-induced follicle damage (p<0.01 but not against doxorubicin treatment.Cisplatin and doxorubicin both induced ovarian damage, but in a markedly different pattern, with imatinib protecting the ovary against damage by cisplatin but not doxorubicin. Any treatment designed to block the effects of chemotherapeutic agents on the ovary may need to be specific to the drug(s the patient is exposed to.

  20. Artemisinin–Second Career as Anticancer Drug?

    Directory of Open Access Journals (Sweden)

    Thomas Efferth

    2015-10-01

    Full Text Available Artemisinin represents a showcase example not only for the activity of medicinal herbs deriving from traditional chinese medicine, but for phytotherapy in general. Its isolation from Sweet Wormwood (qinhao, Artemisia annua L. represents the starting point for an unprecedent success story in the treatment of malaria worldwide. Beyond the therapeutic value against Plasmodium parasites, it turned out in recent years that the bioactivity of artemisinin is not restricted to malaria. We and others found that this sesquiterpenoid also exerts profound anticancer activity in vitro and in vivo. Artemisinin-type drugs exert multi-factorial cellular and molecular actions in cancer cells. Ferrous iron reacts with artemisinin, which leads to the formation of reactive oxygen species and ultimately to a plethora anticancer effects of artemisinins, e.g. expression of antioxidant response genes, cell cycle arrest (G1 as well as G2 phase arrests, DNA damage that is repaird by base excision repair, homogous recombination and non-homologous end-joining, as well as different modes of cell death (intrinsic and extrinsic apoptosis, autophagy, necrosis, necroptosis, oncosis, and ferroptosis. Furthermore, artemisinins inhibit neoangiogenesis in tumors. The signaling of major transcription factors (NF-κB, MYC/MAX, AP-1, CREBP, mTOR etc. and signaling pathways are affected by artemisinins (e.g. Wnt/β-catenin pathway, AMPK pathway, metastatic pathways, nitric oxide signaling, and others. Several case reports on the compassionate use of artemisinins as well as clinical Phase I/II pilot studies indicate the clinical activity of artemisinins in veterinary and human cancer patients. Larger scale of Phase II and III clinical studies are required now to further develop artemisinin-type compounds as novel anticancer drugs.

  1. Stem cells as anticancer drug carrier to reduce the chemotherapy side effect

    Science.gov (United States)

    Salehi, Hamideh; Al-Arag, Siham; Middendorp, Elodie; Gergley, Csilla; Cuisinier, Frederic

    2017-02-01

    Chemotherapy used for cancer treatment, due to the lack of specificity of drugs, is associated to various damaging side effects that have severe impact on patients' quality of life. Over the past 30 years, increasing efforts have been placed on optimizing chemotherapy dosing with the main goal of increasing antitumor efficacy while reducing drug-associated toxicity. A novel research shows that stem cells may act as a reservoir for the anticancer agent, which will subsequently release some of the drug's metabolites, or even the drug in its original form, in vicinity of the cancer cells. These cells may play a dual role in controlling drug toxicity depending on their capacity to uptake and release the chemotherapeutic drug. In our study, we show that Dental Pulp Stem Cells DPSCs are able to rapidly uptake Paclitaxel PTX, and to release it in the culture medium in a time-dependent manner. This resulting conditioned culture medium is to be transferred to breast cancer cells, the MCF-7. By applying Confocal Raman Microscopy, the anticancer drug uptake by the MCF-7 was measured. Surprisingly, the cancer cells -without any direct contact with PTX- showed a drug uptake. This proves that the stem cells carried and delivered the anticancer drug without its modification. It could be a revolution in chemotherapy to avoid the drug's side effects and increase its efficacy.

  2. Glutamic acid and its derivatives: candidates for rational design of anticancer drugs.

    Science.gov (United States)

    Ali, Imran; Wani, Waseem A; Haque, Ashanul; Saleem, Kishwar

    2013-05-01

    Throughout the history of human civilizations, cancer has been a major health problem. Its treatment has been interesting but challenging to scientists. Glutamic acid and its derivative glutamine are known to play interesting roles in cancer genesis, hence, it was realized that structurally variant glutamic acid derivatives may be designed and developed and, might be having antagonistic effects on cancer. The present article describes the state-of-art of glutamic acid and its derivatives as anticancer agents. Attempts have been made to explore the effectivity of drug-delivery systems based on glutamic acid for the delivery of anticancer drugs. Moreover, efforts have also been made to discuss the mechanism of action of glutamic acid derivatives as anticancer agents, clinical applications of glutamic acid derivatives, as well as recent developments and future perspectives of glutamic acid drug development have also been discussed.

  3. Understanding the Effect of Carbonate Ion on Cisplatin Binding to DNA

    Science.gov (United States)

    Todd, Ryan C.; Lovejoy, Katherine S.; Lippard, Stephen J.

    2008-01-01

    The role of carbonate in the binding of cis-diamminedichloroplatinum(II) to DNA was investigated in order to understand the potential involvement of carbonato-cisplatin species in the mechanism of action of platinum anticancer agents. Cisplatin was allowed to react with both double- and single-stranded DNA in carbonate, phosphate, and HEPES buffers, and the products were analyzed by agarose gel electrophoresis and enzymatic digestion/mass spectrometry, respectively. The data from these experiments demonstrate (1) that carbonate, like other biological nucleophiles, forms relatively inert complexes with platinum that inactivate cisplatin, and (2) that the major cisplatin-DNA adduct formed is a bifunctional cross-link. These results are in accord with previous studies of cisplatin-DNA binding and reveal that the presence of carbonate has no consequence on the nature of the resulting adducts. PMID:17465550

  4. Enhancement of anticancer activity in antineovascular therapy is based on the intratumoral distribution of the active targeting carrier for anticancer drugs

    International Nuclear Information System (INIS)

    Maeda, Noriyuki; Miyazawa, Souichiro; Shimizu, Kosuke; Asai, Tomohiro; Yonezawa, Sei; Oku, Naoto; Kitazawa, Sadaya; Namba, Yukihiro; Tsukada, Hideo

    2006-01-01

    We previously observed the enhanced anticancer efficacy of anticancer drugs encapsulated in Ala-Pro-Arg-Pro-Gly-polyethyleneglycol-modified liposome (APRPG-PEG-Lip) in tumor-bearing mice, since APRPG peptide was used as an active targeting tool to angiogenic endothelium. This modality, antineovascular therapy (ANET), aims to eradicate tumor cells indirectly through damaging angiogenic vessels. In the present study, we examined the in vivo trafficking of APRPG-PEG-Lip labeled with [2- 18 F]2-fluoro-2-deoxy- D -glucose ([2- 18 F]FDG) by use of positron emission tomography (PET), and observed that the trafficking of this liposome was quite similar to that of non-targeted long-circulating liposome (PEG-Lip). Then, histochemical analysis of intratumoral distribution of both liposomes was performed by use of fluorescence-labeled liposomes. In contrast to in vivo trafficking, intratumoral distribution of both types of liposomes was quite different: APRPG-PEG-Lip was colocalized with angiogenic endothelial cells that were immunohistochemically stained for CD31, although PEG-Lip was localized around the angiogenic vessels. These results strongly suggest that intratumoral distribution of drug carrier is much more important for therapeutic efficacy than the total accumulation of the anticancer drug in the tumor, and that active delivery of anticancer drugs to angiogenic vessels is useful for cancer treatment. (author)

  5. Clinical practice guidelines for translating pharmacogenomic knowledge to bedside. Focus on anticancer drugs.

    Directory of Open Access Journals (Sweden)

    José A G Agúndez

    2014-08-01

    Full Text Available The development of clinical practice recommendations or guidelines for the clinical use of pharmacogenomics data is an essential issue for improving drug therapy, particularly for drugs with high toxicity and/or narrow therapeutic index such as anticancer drugs. Although pharmacogenomic-based recommendations have been formulated for over 40 anticancer drugs, the number of clinical practice guidelines available is very low. The guidelines already published indicate that pharmacogenomic testing is useful for patient selection, but final dosing adjustment should be carried out on the basis of clinical or analytical parameters rather than on pharmacogenomic information.Patient selection may seem a modest objective, but it constitutes a crucial improvement with regard to the pre-pharmacogenomics situation and it saves patients’ lives. However we should not overstate the current power of pharmacogenomics. At present the pharmacogenomics of anticancer drugs is not sufficiently developed for dose adjustments based on pharmacogenomics only, and no current guidelines recommend such adjustments without considering clinical and/or analytical parameters.

  6. Novel anticancer activity of phloroglucinol against breast cancer stem-like cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Rae-Kwon; Uddin, Nizam [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Hyun, Jin-Won [College of Medicine and Applied Radiological Science Research Institute, Jeju National University, Jeju-si 690-756 (Korea, Republic of); Kim, Changil [Department of Biotechnology, Konkuk University, Chungju 380-701 (Korea, Republic of); Suh, Yongjoon, E-mail: hiswork@hanmail.net [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of); Lee, Su-Jae, E-mail: sj0420@hanyang.ac.kr [Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2015-08-01

    Poor prognosis of breast cancer patients is closely associated with metastasis and relapse. There is substantial evidence supporting that cancer stem-like cells (CSCs) are primarily responsible for relapse in breast cancer after anticancer treatment. However, there is a lack of suitable drugs that target breast cancer stem-like cells (BCSCs). Here, we report that phloroglucinol (PG), a natural phlorotannin component of brown algae, suppresses sphere formation, anchorage-independent colony formation and in vivo tumorigenicity. In line with these observations, treatment with PG also decreased CD44{sup +} cancer cell population as well as expression of CSC regulators such as Sox2, CD44, Oct4, Notch2 and β-catenin. Also, treatment with PG sensitized breast cancer cells to anticancer drugs such as cisplatin, etoposide, and taxol as well as to ionizing radiation. Importantly, PG inhibited KRAS and its downstream PI3K/AKT and RAF-1/ERK signaling pathways that regulate the maintenance of CSCs. Taken together, our findings implicate PG as a good candidate to target BCSCs and to prevent the disease relapse. - Highlights: • Phloroglucinol suppresses in vivo tumor formation. • Phloroglucinol sensitizes breast cancer cells to anticancer agents. • Phloroglucinol inhibits breast cancer stem-like cells. • Phloroglucinol inhibits PI3K/AKT and KRAS/RAF/ERK signaling pathways.

  7. Poly(allyl methacrylate) functionalized hydroxyapatite nanocrystals via the combination of surface-initiated RAFT polymerization and thiol-ene protocol: a potential anticancer drug nanocarrier.

    Science.gov (United States)

    Bach, Long Giang; Islam, Md Rafiqul; Vo, Thanh-Sang; Kim, Se-Kwon; Lim, Kwon Taek

    2013-03-15

    Hydroxyapatite nanocrystals (HAP NCs) were encapsulated by poly(allyl methacrylate) (PolyAMA) employing controlled surface-initiated reversible addition-fragmentation chain transfer (SI-RAFT) polymerization of allyl methacrylate to afford HAP-PolyAMA nanohybrids. The subsequent thiol-ene coupling of nanohybrids with 2-mercaptosuccinic acid resulted HAP-Poly(AMA-COOH) possessing multicarboxyl group. The formation of the nanohybrids was confirmed by FT-IR and EDS analyses. The TGA and FE-SEM investigation were further suggested the grafting of PolyAMA onto HAP NCs. The utility of the HAP-PolyAMA nanohybrid as drug carrier was also explored. The pendant carboxyl groups on the external layers of nanohybrids were conjugated with anticancer drug cisplatin to afford HAP-Poly(AMA-COOH)/Pt complex. The formation of the complex was confirmed by FT-IR, XPS, and FE-SEM. In vitro evaluation of the synthesized complex as nanomedicine revealed its potential chemotherapeutic efficacy against cancer cell lines. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Decreased cisplatin uptake by resistant L1210 leukemia cells

    International Nuclear Information System (INIS)

    Hromas, R.A.; North, J.A.; Burns, C.P.

    1987-01-01

    Cisplatin resistance remains poorly understood compared to other forms of anti-neoplastic drug resistance. In this report radiolabelled cisplatin and rapid separation techniques were used to compare drug uptake by L1210 leukemia cells that are sensitive (K25) or resistant (SCR9) to cisplatin. Uptake of cisplatin by both cell lines was linear without saturation kinetics up to 100 μM. The resistant ZCR9 cells had 36-60% reduced drug uptake as compared to its sensitive parent line, K25. In contrast, there was no difference in the rate of efflux. We conclude that a decreased rate of uptake is one possible mechanism of cellular cisplatin resistance. (Author)

  9. Collateral sensitivity to cisplatin in KB-8-5-11 drug-resistant cancer cells.

    Science.gov (United States)

    Doherty, Ben; Lawlor, Denise; Gillet, Jean-Pierre; Gottesman, Michael; O'Leary, John J; Stordal, Britta

    2014-01-01

    KB-8-5-11 cells are a drug-resistant cervical cell model that overexpresses ABCB1 (P-glycoprotein). KB-8-5-11 has become sensitive to non-ABCB1 substrate cisplatin. Understanding the mechanism of collateral sensitivity to cisplatin may lead to biomarker discovery for platinum sensitivity in patients with cancer. A Taqman low-density array was used to characterize the expression of 380 genes previously associated with chemoresistance. Identified pathways were further analyzed using cytotoxicity assays, metabolomics and western blots. KB-8-5-11 cells were sensitive to CuSO4 and the glutathione inhibitor buthionine sulphoximine. Expression of ATPase, Cu(2+) transporting alpha (ATP7A) and ATP7B were decreased at the protein and gene levels respectively in KB-8-5-11. KB-8-5-11 had decreased gene expression of glutathione S-transferase pi 1 (GSTP1), GSTA4 and GSTK1. Cisplatin treatment significantly lowered total cellular glutathione in parental KB-3-1 cells. Glutathione also tended to be lower in KB-8-5-11 cells compared to KB-3-1 cells. KB-8-5-11 cells have alterations in their copper transporters and glutathione metabolism, contributing to their cisplatin-sensitive phenotype.

  10. Case report: An unusual case of cisplatin induced paralytic ileus

    Directory of Open Access Journals (Sweden)

    Rosdiana Abd Rahim

    2017-12-01

    Full Text Available Background: Ileus is a failure of normal intestinal motility in the absence of mechanical obstruction. Ileus is thought to result from an imbalance between sympathetic and parasympathetic motor activity, resulting in intestinal atony. Few anti-cancer therapies reported to be associated with paralytic ileus, such as vincristine, vinblastine and paclitaxel. It is thought as a consequences of autonomic neuropathy. Here we present a paralytic ileus experience during cisplatin therapy. Case presentation: We present a case of 57 years old gentleman with diagnosis of metastatic nasopharyngeal carcinoma to lung and multiple bones who develop paralytic ileus following chemotherapy cisplatin and fluorouracil. The patient complained of abdominal discomfort with bloating and not tolerating Ryle tube feeding started 3 days after completion of cycle 2 cisplatin & fluorouracil infusion chemotherapy. No vomiting and still passing out small amount of stool everyday. Physical examination revealed abdominal distension, lower abdominal tenderness, sluggish bowel sound and empty rectum. The blood investigations for electrolyte, renal and hepatic function, and amylase were normal. Abdominal computerized tomography showed diffuse dilatation of small and large bowels extending to the rectum, without any obstructive pathology which was consistent with paralytic ileus. He was hospitalized and treated with nasogastric decompression and partial parenteral nutrition started. The symptoms improved after few days of decompression. Conclusion: Peripheral neuropathy due to cisplatin has been well described, however paralytic ileus has not previously been reported in medical literature. From patient self-reported outcome study, however, this complication was not that uncommon, and was reported by 0.76% of patients receiving cisplatin, especially people who are male, 60 years old and more, have been taking the drug for more than 1 month, also take medication dexamethasone. The

  11. Enhancement of Cisplatin-Mediated Apoptosis in Ovarian Cancer Cells through Potentiating G2/M Arrest and p21 Upregulation by Combinatorial Epigallocatechin Gallate and Sulforaphane

    Directory of Open Access Journals (Sweden)

    Huaping Chen

    2013-01-01

    Full Text Available Advanced-stage ovarian cancer is characterized by high mortality due to development of resistance to conventional chemotherapy. Novel compounds that can enhance the efficacy of conventional chemotherapy in ovarian cancer may overcome this drug resistance. Consumption of green tea (epigallocatechin gallate, EGCG and cruciferous vegetables (sulforaphane, SFN is inversely associated with occurrence of ovarian cancer and has anticancer effects through targeting multiple molecules in cancer cells. However, the effects of EGCG and SFN combinational treatment on ovarian cancer cells and on efficacy of cisplatin to these cells are unknown. In this study, EGCG or SFN was used to treat both cisplatin-sensitive (A2780 and cisplatin-resistant (A2780/CP20 ovarian cancer cells alone or in combination with cisplatin. We found that EGCG and SFN combinational treatment can reduce cell viability of both ovarian cancer cell lines time- and dose-dependently. Furthermore, EGCG and SFN combinational treatment can enhance cisplatin-induced apoptosis and G2/M phase arrest, thereby enhancing the efficacy of cisplatin on both cisplatin-sensitive and cisplatin-resistant ovarian cancer cells. EGCG and SFN combinational treatment upregulated p21 expression induced by cisplatin in cisplatin-sensitive ovarian cancer cells, while p27 expression was not regulated by these treatments. Collectively, these studies provide novel approaches to overcoming cisplatin chemotherapy resistance in ovarian cancer.

  12. In vivo near-infrared fluorescence imaging of apoptosis using histone H1-targeting peptide probe after anti-cancer treatment with cisplatin and cetuximab for early decision on tumor response.

    Directory of Open Access Journals (Sweden)

    Hyun-Kyung Jung

    Full Text Available Early decision on tumor response after anti-cancer treatment is still an unmet medical need. Here we investigated whether in vivo imaging of apoptosis using linear and cyclic (disulfide-bonded form of ApoPep-1, a peptide that recognizes histone H1 exposed on apoptotic cells, at an early stage after treatment could predict tumor response to the treatment later. Treatment of stomach tumor cells with cistplatin or cetuximab alone induced apoptosis, while combination of cisplatin plus cetuximab more efficiently induced apoptosis, as detected by binding with linear and cyclic form of ApoPep-1. However, the differences between the single agent and combination treatment were more remarkable as detected with the cyclic form compared to the linear form. In tumor-bearing mice, apoptosis imaging was performed 1 week and 2 weeks after the initiation of treatment, while tumor volumes and weights were measured 3 weeks after the treatment. In vivo fluorescence imaging signals obtained by the uptake of ApoPep-1 to tumor was most remarkable in the group injected with cyclic form of ApoPep-1 at 1 week after combined treatment with cisplatin plus cetuximab. Correlation analysis revealed that imaging signals by cyclic ApoPep-1 at 1 week after treatment with cisplatin plus cetuximab in combination were most closely related with tumor volume changes (r2 = 0.934. These results demonstrate that in vivo apoptosis imaging using Apopep-1, especially cyclic ApoPep-1, is a sensitive and predictive tool for early decision on stomach tumor response after anti-cancer treatment.

  13. Dose critical in-vivo detection of anti-cancer drug levels in blood

    Science.gov (United States)

    Miller, Holly H.; Hirschfeld, deceased, Tomas B.

    1991-01-01

    A method and apparatus are disclosed for the in vivo and in vitro detection and measurement of dose critical levels of DNA-binding anti-cancer drug levels in biological fluids. The apparatus comprises a laser based fiber optic sensor (optrode) which utilizes the secondary interactions between the drug and an intercalating fluorochrome bound to a probe DNA, which in turn is attached to the fiber tip at one end thereof. The other end of the optical fiber is attached to an illumination source, detector and recorder. The fluorescence intensity is measured as a function of the drug concentration and its binding constant to the probe DNA. Anticancer drugs which lend themselves to analysis by the use of the method and the optrode of the present invention include doxorubicin, daunorubicin, carminomycin, aclacinomycin, chlorambucil, cyclophosphamide, methotrexate, 5-uracil, arabinosyl cytosine, mitomycin, cis-platinum 11 diamine dichloride procarbazine, vinblastine vincristine and the like. The present method and device are suitable for the continuous monitoring of the levels of these and other anticancer drugs in biological fluids such as blood, serum, urine and the like. The optrode of the instant invention also enables the measurement of the levels of these drugs from a remote location and from multiple samples.

  14. The anti-fibrotic agent pirfenidone synergizes with cisplatin in killing tumor cells and cancer-associated fibroblasts

    International Nuclear Information System (INIS)

    Mediavilla-Varela, Melanie; Boateng, Kingsley; Noyes, David; Antonia, Scott J.

    2016-01-01

    Anti-fibrotic drugs such as pirfenidone have been developed for the treatment of idiopathic pulmonary fibrosis. Because activated fibroblasts in inflammatory conditions have similar characteristics as cancer-associated fibroblasts (CAFs) and CAFs contribute actively to the malignant phenotype, we believe that anti-fibrotic drugs have the potential to be repurposed as anti-cancer drugs. The effects of pirfenidone alone and in combination with cisplatin on human patient-derived CAF cell lines and non-small cell lung cancer (NSCLC) cell lines were examined. The impact on cell death in vitro as well as tumor growth in a mouse model was determined. Annexin V/PI staining and Western blot analysis were used to characterize cell death. Synergy was assessed with the combination index method using Calcusyn software. Pirfenidone alone induced apoptotic cell death in lung CAFs at a high concentration (1.5 mg/mL). However, co-culture in vitro experiments and co-implantation in vivo experiments showed that the combination of low doses of cisplatin (10 μM) and low doses of pirfenidone (0.5 mg/mL), in both CAFs and tumors, lead to increased cell death and decreased tumor progression, respectively. Furthermore, the combination of cisplatin and pirfenidone in NSCLC cells (A549 and H157 cells) leads to increased apoptosis and synergistic cell death. Our studies reveal for the first time that the combination of cisplatin and pirfenidone is active in preclinical models of NSCLC and therefore may be a new therapeutic approach in this disease. The online version of this article (doi:10.1186/s12885-016-2162-z) contains supplementary material, which is available to authorized users

  15. Anticancer Drugs from Marine Flora: An Overview

    OpenAIRE

    Sithranga Boopathy, N.; Kathiresan, K.

    2010-01-01

    Marine floras, such as bacteria, actinobacteria, cyanobacteria, fungi, microalgae, seaweeds, mangroves, and other halophytes are extremely important oceanic resources, constituting over 90% of the oceanic biomass. They are taxonomically diverse, largely productive, biologically active, and chemically unique offering a great scope for discovery of new anticancer drugs. The marine floras are rich in medicinally potent chemicals predominantly belonging to polyphenols and sulphated polysaccharide...

  16. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    Science.gov (United States)

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  17. Nanotech revolution for the anti-cancer drug delivery through blood-brain barrier.

    Science.gov (United States)

    Caraglia, M; De Rosa, G; Salzano, G; Santini, D; Lamberti, M; Sperlongano, P; Lombardi, A; Abbruzzese, A; Addeo, R

    2012-03-01

    Nanotechnology-based drug delivery was born as a chance for pharmaceutical weapons to be delivered in the body sites where drug action is required. Specifically, the incorporation of anti-cancer agents in nanodevices of 100-300 nm allows their delivery in tissues that have a fenestrated vasculature and a reduced lymphatic drainage. These two features are typical of neoplastic tissues and, therefore, allow the accumulation of nanostructured devices in tumours. An important issue of anti-cancer pharmacological strategies is the overcoming of anatomical barriers such as the bloodbrain- barrier (BBB) that protects brain from toxicological injuries but, at the same time, makes impossible for most of the pharmacological agents with anti-cancer activity to reach tumour cells placed in the brain and derived from either primary tumours or metastases. In fact, only highly lipophilic molecules can passively diffuse through BBB to reach central nervous system (CNS). Another possibility is to use nanotechnological approaches as powerful tools to across BBB, by both prolonging the plasma half-life of the drugs and crossing fenestrations of BBB damaged by brain metastases. Moreover, modifications of nanocarrier surface with specific endogenous or exogenous ligands can promote the crossing of intact BBB as in the case of primary brain tumours. This aim can be achieved through the binding of the nanodevices to carriers or receptors expressed by the endothelial cells of BBB and that can favour the internalization of the nanostructured devices delivering anti-cancer drugs. This review summarizes the most meaningful advances in the field of nanotechnologies for brain delivery of drugs.

  18. Inhibition of OCT2, MATE1 and MATE2-K as a possible mechanism of drug interaction between pazopanib and cisplatin.

    Science.gov (United States)

    Sauzay, C; White-Koning, M; Hennebelle, I; Deluche, T; Delmas, C; Imbs, D C; Chatelut, E; Thomas, F

    2016-08-01

    We hypothesized that pazopanib is an inhibitor of cisplatin renal transporters OCT2, MATE1 and MATE2-K based on previous studies demonstrating an interaction between tyrosine kinase inhibitors and these transporters. Because several combinations of targeted therapies and cytotoxics are currently in development for cancer treatment, such an interaction is worth investigating. Experiments on HEK293 cells stably transfected to express OCT2, MATE1, MATE2-K or an empty vector (EV) were conducted. The inhibitory effect of pazopanib on these transporters was measured using the uptake of fluorescent substrate ASP+ and cisplatin in the different cell lines. The effect of pazopanib on cisplatin-induced cytotoxicity was also evaluated. A decrease of ASP+ uptake was observed in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines after addition of pazopanib at increasing concentrations. Pazopanib inhibited cisplatin specific uptake in OCT2-HEK, MATE1-HEK and MATE2K-HEK lines. Cytotoxicity experiments showed that co-incubation of cisplatin with pazopanib multiplied up to 2.7, 2.4 and 1.6 times the EC50 values of cisplatin in OCT2-HEK, MATE1-HEK and MATE2K-HEK cell lines respectively, reaching about the same values as in EV-HEK cells. To conclude, pazopanib inhibits OCT2, MATE1 and MATE2-K, which are involved in cisplatin secretion into urine. The combination of these two drugs may lead to an interaction and increase the cisplatin-induced systemic toxicity. Given the wide variability of plasma pazopanib concentrations observed in vivo, the interaction may occur in a clinical setting, particularly in overexposed patients. The existence of a drug-drug interaction should be investigated when pazopanib is associated with a substrate of these transporters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Hydrogen Inhalation Protects against Ototoxicity Induced by Intravenous Cisplatin in the Guinea Pig

    Directory of Open Access Journals (Sweden)

    Anette E. Fransson

    2017-09-01

    Full Text Available Introduction: Permanent hearing loss and tinnitus as side-effects from treatment with the anticancer drug cisplatin is a clinical problem. Ototoxicity may be reduced by co-administration of an otoprotective agent, but the results in humans have so far been modest.Aim: The present preclinical in vivo study aimed to explore the protective efficacy of hydrogen (H2 inhalation on ototoxicity induced by intravenous cisplatin.Materials and Methods: Albino guinea pigs were divided into four groups. The Cispt (n = 11 and Cispt+H2 (n = 11 groups were given intravenous cisplatin (8 mg/kg b.w., injection rate 0.2 ml/min. Immediately after, the Cispt+H2 group also received gaseous H2 (2% in air, 60 min. The H2 group (n = 5 received only H2 and the Control group (n = 7 received neither cisplatin nor H2. Ototoxicity was assessed by measuring frequency specific ABR thresholds before and 96 h after treatment, loss of inner (IHCs and outer (OHCs hair cells, and by performing densitometry-based immunohistochemistry analysis of cochlear synaptophysin, organic transporter 2 (OCT2, and copper transporter 1 (CTR1 at 12 and 7 mm from the round window. By utilizing metabolomics analysis of perilymph the change of metabolites in the perilymph was assessed.Results: Cisplatin induced electrophysiological threshold shifts, hair cell loss, and reduced synaptophysin immunoreactivity in the synapse area around the IHCs and OHCs. H2 inhalation mitigated all these effects. Cisplatin also reduced the OCT2 intensity in the inner and outer pillar cells and in the stria vascularis as well as the CTR1 intensity in the synapse area around the IHCs, the Deiters' cells, and the stria vascularis. H2 prevented the majority of these effects.Conclusion: H2 inhalation can reduce cisplatin-induced ototoxicity on functional, cellular, and subcellular levels. It is proposed that synaptopathy may serve as a marker for cisplatin ototoxicity. The effect of H2 on the antineoplastic activity of

  20. Cyclometalated Ruthenium(II) Anthraquinone Complexes Exhibit Strong Anticancer Activity in Hypoxic Tumor Cells.

    Science.gov (United States)

    Zeng, Leli; Chen, Yu; Huang, Huaiyi; Wang, Jinquan; Zhao, Donglei; Ji, Liangnian; Chao, Hui

    2015-10-19

    Hypoxia is the critical feature of the tumor microenvironment that is known to lead to resistance to many chemotherapeutic drugs. Six novel ruthenium(II) anthraquinone complexes were designed and synthesized; they exhibit similar or superior cytotoxicity compared to cisplatin in hypoxic HeLa, A549, and multidrug-resistant (A549R) tumor cell lines. Their anticancer activities are related to their lipophilicity and cellular uptake; therefore, these physicochemical properties of the complexes can be changed by modifying the ligands to obtain better anticancer candidates. Complex 1, the most potent member of the series, is highly active against hypoxic HeLa cancer cells (IC50 =0.53 μM). This complex likely has 46-fold better activity than cisplatin (IC50 =24.62 μM) in HeLa cells. This complex tends to accumulate in the mitochondria and the nucleus of hypoxic HeLa cells. Further mechanistic studies show that complex 1 induced cell apoptosis during hypoxia through multiple pathways, including those of DNA damage, mitochondrial dysfunction, and the inhibition of DNA replication and HIF-1α expression, making it an outstanding candidate for further in vivo studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Screening of potent anticancer drug taxol from Entophytic fungus ...

    African Journals Online (AJOL)

    Muthumary

    2011-02-21

    Feb 21, 2011 ... Isolation and detection of taxol, an anticancer drug produced from ... cancer cell line, taxol produced by the test fungus in MID culture medium was isolated for its .... then plotted on a graph. RESULTS AND ... Wavelength (nm).

  2. Current trends in the use of vitamin E-based micellar nanocarriers for anticancer drug delivery.

    Science.gov (United States)

    Muddineti, Omkara Swami; Ghosh, Balaram; Biswas, Swati

    2017-06-01

    Owing to the complexity of cancer pathogenesis, conventional chemotherapy can be an inadequate method of killing cancer cells effectively. Nanoparticle-based drug delivery systems have been widely exploited pre-clinically in recent years. Areas covered: Incorporation of vitamin-E in nanocarriers have the advantage of (1) improving the hydrophobicity of the drug delivery system, thereby improving the solubility of the loaded poorly soluble anticancer drugs, (2) enhancing the biocompatibility of the polymeric drug carriers, and (3) improving the anticancer potential of the chemotherapeutic agents by reversing the cellular drug resistance via simultaneous administration. In addition to being a powerful antioxidant, vitamin E demonstrated its anticancer potential by inducing apoptosis in various cancer cell lines. Various vitamin E analogs have proven their ability to cause marked inhibition of drug efflux transporters. Expert opinion: The review discusses the potential of incorporating vitamin E in the polymeric micelles which are designed to carry poorly water-soluble anticancer drugs. Current applications of various vitamin E-based polymeric micelles with emphasis on the use of α-tocopherol, D-α-tocopheryl succinate (α-TOS) and its conjugates such as D-α-tocopheryl polyethylene glycol-succinate (TPGS) in micellar system is delineated. Advantages of utilizing polymeric micelles for drug delivery and the challenges to treat cancer, including multiple drug resistance have been discussed.

  3. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles.

    Science.gov (United States)

    Nascimento, Ana Vanessa; Singh, Amit; Bousbaa, Hassan; Ferreira, Domingos; Sarmento, Bruno; Amiji, Mansoor M

    2017-01-01

    Efficiency of chemotherapy is often limited by low therapeutic index of the drug as well as emergence of inherent and acquired drug resistance in cancer cells. As a common strategy to overcome drug resistance, higher doses of chemo-agents are administered. However, adverse side effects are usually increased as a consequence. A potentially effective approach is to combine chemotherapy with other therapeutic strategies such as small interfering RNAs (siRNAs) that allow the use of lower yet efficient doses of the anticancer drugs. We previously developed epidermal growth factor receptor (EGFR)-targeted chitosan (CS) nanoparticles as a versatile delivery system for silencing the essential mitotic checkpoint gene Mad2, and induce cell death. Here, we tested this system as a single therapy and in combination with cisplatin in cisplatin sensitive and resistant lung cancer models, and characterized its in vivo efficacy and safety. Combination treatment resulted in significant improvement in tumor inhibition that was strikingly more effective in cisplatin-resistant tumors. Importantly, effective cisplatin dosage was dramatically reduced in the co-therapy regimen resulting in negligible toxic effects from the drug as confirmed by parameters such as body weight gain, biochemical markers of hepatic and renal function, and histopathology of liver/kidney/spleen tissues. Overall, we demonstrate that the combination of Mad2 siRNA-loaded CS nanoparticles strategy with chemotherapeutic agents such as cisplatin constitutes an efficient and safe approach for the treatment of drug resistant tumors. Lung cancer remains one of the leading killers in the United States and around the world. Platinum agents, including cisplatin, are the first line treatment in lung cancer, including non-small cell lung cancer (NSCLC), which is the predominant form of lung cancer. In this study, we have evaluated Mad2 cell-cycle checkpoint gene silencing using small interfering RNA (siRNA) delivered

  4. Anticancer Drugs Targeting the Mitochondrial Electron Transport Chain

    Czech Academy of Sciences Publication Activity Database

    Rohlena, Jakub; Dong, L.-F.; Ralph, S.J.; Neužil, Jiří

    2011-01-01

    Roč. 15, č. 12 (2011), s. 2951-2974 ISSN 1523-0864 R&D Projects: GA AV ČR(CZ) KAN200520703 Institutional research plan: CEZ:AV0Z50520701 Keywords : Targets for anticancer drugs * mitochondrial electron transport chain * mitocans Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.456, year: 2011

  5. Robust prediction of anti-cancer drug sensitivity and sensitivity-specific biomarker.

    Directory of Open Access Journals (Sweden)

    Heewon Park

    Full Text Available The personal genomics era has attracted a large amount of attention for anti-cancer therapy by patient-specific analysis. Patient-specific analysis enables discovery of individual genomic characteristics for each patient, and thus we can effectively predict individual genetic risk of disease and perform personalized anti-cancer therapy. Although the existing methods for patient-specific analysis have successfully uncovered crucial biomarkers, their performance takes a sudden turn for the worst in the presence of outliers, since the methods are based on non-robust manners. In practice, clinical and genomic alterations datasets usually contain outliers from various sources (e.g., experiment error, coding error, etc. and the outliers may significantly affect the result of patient-specific analysis. We propose a robust methodology for patient-specific analysis in line with the NetwrokProfiler. In the proposed method, outliers in high dimensional gene expression levels and drug response datasets are simultaneously controlled by robust Mahalanobis distance in robust principal component space. Thus, we can effectively perform for predicting anti-cancer drug sensitivity and identifying sensitivity-specific biomarkers for individual patients. We observe through Monte Carlo simulations that the proposed robust method produces outstanding performances for predicting response variable in the presence of outliers. We also apply the proposed methodology to the Sanger dataset in order to uncover cancer biomarkers and predict anti-cancer drug sensitivity, and show the effectiveness of our method.

  6. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Fungal Anticancer Metabolites: Synthesis Towards Drug Discovery.

    Science.gov (United States)

    Barbero, Margherita; Artuso, Emma; Prandi, Cristina

    2018-01-01

    Fungi are a well-known and valuable source of compounds of therapeutic relevance, in particular of novel anticancer compounds. Although seldom obtainable through isolation from the natural source, the total organic synthesis still remains one of the most efficient alternatives to resupply them. Furthermore, natural product total synthesis is a valuable tool not only for discovery of new complex biologically active compounds but also for the development of innovative methodologies in enantioselective organic synthesis. We undertook an in-depth literature searching by using chemical bibliographic databases (SciFinder, Reaxys) in order to have a comprehensive insight into the wide research field. The literature has been then screened, refining the obtained results by subject terms focused on both biological activity and innovative synthetic procedures. The literature on fungal metabolites has been recently reviewed and these publications have been used as a base from which we consider the synthetic feasibility of the most promising compounds, in terms of anticancer properties and drug development. In this paper, compounds are classified according to their chemical structure. This review summarizes the anticancer potential of fungal metabolites, highlighting the role of total synthesis outlining the feasibility of innovative synthetic procedures that facilitate the development of fungal metabolites into drugs that may become a real future perspective. To our knowledge, this review is the first effort to deal with the total synthesis of these active fungi metabolites and demonstrates that total chemical synthesis is a fruitful means of yielding fungal derivatives as aided by recent technological and innovative advancements. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. NCX-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols

    Directory of Open Access Journals (Sweden)

    Ignarro Louis J

    2008-02-01

    Full Text Available Abstract Background Ovarian carcinoma is the leading cause of mortality among gynecological cancers in the world. The high mortality rate is associated with lack of early diagnosis and development of drug resistance. The antitumor efficacy and mechanism of NCX-4040, a nitric oxide-releasing aspirin derivative, against ovarian cancer is studied. Methods NCX-4040, alone or in combination with cisplatin (cis-diamminedichloroplatinum, cDDP, was studied in cisplatin-sensitive (A2780 WT and cisplatin-resistant (A2780 cDDP cell lines as well as xenograft tumors grown in nude mice. Electron paramagnetic resonance (EPR was used for measurements of nitric oxide and redox state. Immunoblotting analysis of A2780 cDDP tumor xenografts from mice was used for mechanistic studies. Results Cells treated with NCX-4040 (25 μM showed a significant reduction of cell viability (A2780 WT, 34.9 ± 8.7%; A2780 cDDP, 41.7 ± 7.6%; p versus NCX-4040+cisplatin, 26.4 ± 7.6%; p versus NCX-4040+cisplatin, 56.4 ± 7.8%; p Conclusion The results suggested that NCX-4040 could resensitize drug-resistant ovarian cancer cells to cisplatin possibly by depletion of cellular thiols. Thus NCX-4040 appears to be a potential therapeutic agent for the treatment of human ovarian carcinoma and cisplatin-resistant malignancies.

  9. International comparison of the factors influencing reimbursement of targeted anti-cancer drugs.

    Science.gov (United States)

    Lim, Carol Sunghye; Lee, Yun-Gyoo; Koh, Youngil; Heo, Dae Seog

    2014-11-29

    Reimbursement policies for anti-cancer drugs vary among countries even though they rely on the same clinical evidence. We compared the pattern of publicly funded drug programs and analyzed major factors influencing the differences. We investigated reimbursement policies for 19 indications with targeted anti-cancer drugs that are used variably across ten countries. The available incremental cost-effectiveness ratio (ICER) data were retrieved for each indication. Based on the comparison between actual reimbursement decisions and the ICERs, we formulated a reimbursement adequacy index (RAI): calculating the proportion of cost-effective decisions, either reimbursement of cost-effective indications or non-reimbursement of cost-ineffective indications, out of the total number of indications for each country. The relationship between RAI and other indices were analyzed, including governmental dependency on health technology assessment, as well as other parameters for health expenditure. All the data used in this study were gathered from sources publicly available online. Japan and France were the most likely to reimburse indications (16/19), whereas Sweden and the United Kingdom were the least likely to reimburse them (5/19 and 6/19, respectively). Indications with high cost-effectiveness values were more likely to be reimbursed (ρ = -0.68, P = 0.001). The three countries with high RAI scores each had a healthcare system that was financed by general taxation. Although reimbursement policies for anti-cancer drugs vary among countries, we found a strong correlation of reimbursements for those indications with lower ICERs. Countries with healthcare systems financed by general taxation demonstrated greater cost-effectiveness as evidenced by reimbursement decisions of anti-cancer drugs.

  10. Tumour resistance to cisplatin: a modelling approach

    Energy Technology Data Exchange (ETDEWEB)

    Marcu, L [School of Chemistry and Physics, University of Adelaide, North Terrace, SA 5000 (Australia); Bezak, E [School of Chemistry and Physics, University of Adelaide, North Terrace, SA 5000 (Australia); Olver, I [Faculty of Medicine, University of Adelaide, North Terrace, SA 5000 (Australia); Doorn, T van [School of Chemistry and Physics, University of Adelaide, North Terrace, SA 5000 (Australia)

    2005-01-07

    Although chemotherapy has revolutionized the treatment of haematological tumours, in many common solid tumours the success has been limited. Some of the reasons for the limitations are: the timing of drug delivery, resistance to the drug, repopulation between cycles of chemotherapy and the lack of complete understanding of the pharmacokinetics and pharmacodynamics of a specific agent. Cisplatin is among the most effective cytotoxic agents used in head and neck cancer treatments. When modelling cisplatin as a single agent, the properties of cisplatin only have to be taken into account, reducing the number of assumptions that are considered in the generalized chemotherapy models. The aim of the present paper is to model the biological effect of cisplatin and to simulate the consequence of cisplatin resistance on tumour control. The 'treated' tumour is a squamous cell carcinoma of the head and neck, previously grown by computer-based Monte Carlo techniques. The model maintained the biological constitution of a tumour through the generation of stem cells, proliferating cells and non-proliferating cells. Cell kinetic parameters (mean cell cycle time, cell loss factor, thymidine labelling index) were also consistent with the literature. A sensitivity study on the contribution of various mechanisms leading to drug resistance is undertaken. To quantify the extent of drug resistance, the cisplatin resistance factor (CRF) is defined as the ratio between the number of surviving cells of the resistant population and the number of surviving cells of the sensitive population, determined after the same treatment time. It is shown that there is a supra-linear dependence of CRF on the percentage of cisplatin-DNA adducts formed, and a sigmoid-like dependence between CRF and the percentage of cells killed in resistant tumours. Drug resistance is shown to be a cumulative process which eventually can overcome tumour regression leading to treatment failure.

  11. Tumour resistance to cisplatin: a modelling approach

    International Nuclear Information System (INIS)

    Marcu, L; Bezak, E; Olver, I; Doorn, T van

    2005-01-01

    Although chemotherapy has revolutionized the treatment of haematological tumours, in many common solid tumours the success has been limited. Some of the reasons for the limitations are: the timing of drug delivery, resistance to the drug, repopulation between cycles of chemotherapy and the lack of complete understanding of the pharmacokinetics and pharmacodynamics of a specific agent. Cisplatin is among the most effective cytotoxic agents used in head and neck cancer treatments. When modelling cisplatin as a single agent, the properties of cisplatin only have to be taken into account, reducing the number of assumptions that are considered in the generalized chemotherapy models. The aim of the present paper is to model the biological effect of cisplatin and to simulate the consequence of cisplatin resistance on tumour control. The 'treated' tumour is a squamous cell carcinoma of the head and neck, previously grown by computer-based Monte Carlo techniques. The model maintained the biological constitution of a tumour through the generation of stem cells, proliferating cells and non-proliferating cells. Cell kinetic parameters (mean cell cycle time, cell loss factor, thymidine labelling index) were also consistent with the literature. A sensitivity study on the contribution of various mechanisms leading to drug resistance is undertaken. To quantify the extent of drug resistance, the cisplatin resistance factor (CRF) is defined as the ratio between the number of surviving cells of the resistant population and the number of surviving cells of the sensitive population, determined after the same treatment time. It is shown that there is a supra-linear dependence of CRF on the percentage of cisplatin-DNA adducts formed, and a sigmoid-like dependence between CRF and the percentage of cells killed in resistant tumours. Drug resistance is shown to be a cumulative process which eventually can overcome tumour regression leading to treatment failure

  12. (Turcz) Schisandraceae seed extracts and cisplatin on cytotoxicity ...

    African Journals Online (AJOL)

    Purpose: Schisandra chinensis is a plant used in traditional Chinese and Russian medicine. An S. chinensis seed extract was tested for its ability to potentiate the effects of the anticancer agent cisplatin in MCF-7 breast cancer cells. Methods: S. chinensis seeds were extracted with ethanol and the ethanol was evaporated ...

  13. Mathematical modeling of efficacy and safety for anticancer drugs clinical development.

    Science.gov (United States)

    Lavezzi, Silvia Maria; Borella, Elisa; Carrara, Letizia; De Nicolao, Giuseppe; Magni, Paolo; Poggesi, Italo

    2018-01-01

    Drug attrition in oncology clinical development is higher than in other therapeutic areas. In this context, pharmacometric modeling represents a useful tool to explore drug efficacy in earlier phases of clinical development, anticipating overall survival using quantitative model-based metrics. Furthermore, modeling approaches can be used to characterize earlier the safety and tolerability profile of drug candidates, and, thus, the risk-benefit ratio and the therapeutic index, supporting the design of optimal treatment regimens and accelerating the whole process of clinical drug development. Areas covered: Herein, the most relevant mathematical models used in clinical anticancer drug development during the last decade are described. Less recent models were considered in the review if they represent a standard for the analysis of certain types of efficacy or safety measures. Expert opinion: Several mathematical models have been proposed to predict overall survival from earlier endpoints and validate their surrogacy in demonstrating drug efficacy in place of overall survival. An increasing number of mathematical models have also been developed to describe the safety findings. Modeling has been extensively used in anticancer drug development to individualize dosing strategies based on patient characteristics, and design optimal dosing regimens balancing efficacy and safety.

  14. Optimal Anti-cancer Drug Profiles for Effective Penetration of the Anti-cancer Drug Market by Generic Drugs in Japan.

    Science.gov (United States)

    Shibata, Shoyo; Matsushita, Maiko; Saito, Yoshimasa; Suzuki, Takeshi

    2017-01-01

    The increased use of generic drugs is a good indicator of the need to reduce the increasing costs of prescription drugs. Since there are more expensive drugs compared with other therapeutic areas, "oncology" is an important one for generic drugs. The primary objective of this article was to quantify the extent to which generic drugs in Japan occupy each level of the Anatomical Therapeutic Chemical (ATC) classification system. The dataset used in this study was created from publicly available information obtained from the IMS Japan Pharmaceutical Market database. Data on the total amount of sales and number of prescriptions for anti-cancer drugs between 2010 and 2016 in Japan were selected. The data were categorized according to the third level of the ATC classification system. All categories of the ATC classification system had increased market shares in Japan between 2010 and 2016. The barriers to market entry were relatively low in L01F (platinum anti-neoplastics), L01C (plant-based neoplastics), L02B (cytostatic hormone antagonists), and L01D (anti-neoplastic antibiotics) but were high in L02A (cytostatic hormones), L01H (protein kinase inhibitors), and L01B (anti-metabolites). Generic cancer drugs could bring savings to Japanese health care systems. Therefore, their development should be directed toward niche markets, such as L02A, L01H, and L01B, and not competitive markets.

  15. Bioanalysis and metabolite identification of anticancer drugs in mass balance studies

    NARCIS (Netherlands)

    Dubbelman, A.C.

    2012-01-01

    Anticancer drugs are valuable assets in the treatment of cancer. However, before a new drug is admitted to the market and available for patients, it has to survive a lengthy path of pre-clinical and clinical studies to demonstrate its efficacy and safety. Critical information required to understand

  16. Beneficial Effects of Bioactive Compounds in Mulberry Fruits against Cisplatin-Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Dahae Lee

    2018-04-01

    Full Text Available Mulberry, the fruit of white mulberry tree (Morus alba L., Moraceae, is commonly used in traditional Chinese medicines as a sedative, tonic, laxative, and emetic. In our continuing research of the bioactive metabolites from mulberry, chemical analysis of the fruits led to the isolation of five compounds, 1–5. The compounds were identified as butyl pyroglutamate (1, quercetin 3-O-β-d-glucoside (2, kaempferol 3-O-β-d-rutinoside (3, rutin (4, and 2-phenylethyl d-rutinoside (5 by spectroscopic data analysis, comparing their nuclear magnetic resonance (NMR data with those in published literature, and liquid chromatography–mass spectrometry analysis. The isolated compounds 1–5 were evaluated for their effects on anticancer drug-induced side effects by cell-based assays. Compound 1 exerted the highest protective effect against cisplatin-induced kidney cell damage. This effect was found to be mediated through the attenuation of phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, p38, mitogen-activated protein kinase, and caspase-3 in cisplatin-induced kidney cell damage.

  17. Pharmacomicrobiomics: exploiting the drug-microbiota interactions in anticancer therapies.

    Science.gov (United States)

    Panebianco, Concetta; Andriulli, Angelo; Pazienza, Valerio

    2018-05-22

    Cancer is a major health burden worldwide, and despite continuous advances in medical therapies, resistance to standard drugs and adverse effects still represent an important cause of therapeutic failure. There is a growing evidence that gut bacteria can affect the response to chemo- and immunotherapeutic drugs by modulating either efficacy or toxicity. Moreover, intratumor bacteria have been shown to modulate chemotherapy response. At the same time, anticancer treatments themselves significantly affect the microbiota composition, thus disrupting homeostasis and exacerbating discomfort to the patient. Here, we review the existing knowledge concerning the role of the microbiota in mediating chemo- and immunotherapy efficacy and toxicity and the ability of these therapeutic options to trigger dysbiotic condition contributing to the severity of side effects. In addition, we discuss the use of probiotics, prebiotics, synbiotics, postbiotics, and antibiotics as emerging strategies for manipulating the microbiota in order to improve therapeutic outcome or at least ensure patients a better quality of life all along of anticancer treatments.

  18. Marketed drugs used for the management of hypercholesterolemia as anticancer armament

    Directory of Open Access Journals (Sweden)

    Papanagnou P

    2017-09-01

    Full Text Available Panagiota Papanagnou,1 Theodora Stivarou,2 Ioannis Papageorgiou,1 Georgios E Papadopoulos,3 Anastasios Pappas1 1Department of Urology, Agios Savvas Cancer Hospital, Athens, Greece; 2Immunology Laboratory, Immunology Department, Hellenic Pasteur Institute, Athens, Greece; 3Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece Abstract: The design of novel pharmacologic agents as well as their approval for sale in markets all over the world is a tedious and pricey process. Inevitably, oncologic patients commonly experience unwanted effects of new anticancer drugs, while the acquisition of clinical experience for these drugs is largely based on doctor–patient partnership which is not always effective. The repositioning of marketed non-antineoplastic drugs that hopefully exhibit anticancer properties into the field of oncology is a challenging option that gains ground and attracts preclinical and clinical research in an effort to override all these hindrances and minimize the risk for reduced efficacy and/or personalized toxicity. This review aims to present the anticancer properties of drugs used for the management of hypercholesterolemia. A global view of the antitumorigenicity of all marketed antihypercholesterolemic drugs is of major importance, given that atherosclerosis, which is etiologically linked to hypercholesterolemia, is a leading worldwide cause of morbidity and mortality, while hypercholesterolemia and tumorigenesis are known to be interrelated. In vitro, in vivo and clinical literature data accumulated so far outline the mechanistic basis of the antitumor function of these agents and how they could find application at the clinical setting. Keywords: antihypercholesterolemic agents, cancer, synergism, repurposing

  19. Microtubule destabilising agents: far more than just antimitotic anticancer drugs

    OpenAIRE

    Bates, Darcy; Eastman, Alan

    2016-01-01

    Vinca alkaloids have been approved as anticancer drugs for more than 50 years. They have been classified as cytotoxic chemotherapy drugs that act during cellular mitosis, enabling them to target fast growing cancer cells. With the evolution of cancer drug development there has been a shift towards new “targeted” therapies to avoid the side effects and general toxicities of “cytotoxic chemotherapies” such as the vinca alkaloids. Due to their original classification, many have overlooked the fa...

  20. Abrogation of cisplatin-induced hepatotoxicity in mice by xanthorrhizol is related to its effect on the regulation of gene transcription

    International Nuclear Information System (INIS)

    Hwan Kim, Seong; Ok Hong, Kyoung; Chung, Won-Yoon; Kwan Hwang, Jae; Park, Kwang-Kyun

    2004-01-01

    Cisplatin is a widely used anticancer drug, but at high dose, it can produce undesirable side effects such as hepatotoxicity. Because Curcuma xanthorrhiza Roxb. (Zingiberaceae) has been traditionally used to treat liver disorders, the protective effect of xanthorrhizol, which is isolated from C. xanthorrhiza, on cisplatin-induced hepatotoxicity was evaluated in mice. The pretreatment of xanthorrhizol (200 mg/kg/day, po) for 4 days prevented the hepatotoxicity induced by cisplatin (45 mg/kg, ip) with statistical significance. Interestingly, it abrogated cisplatin-induced DNA-binding activity of nuclear factor-kappaB (NF-κB), which consequently affected mRNA expression levels of NF-κB-dependent genes, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), even in part. It also attenuated the cisplatin-suppressed DNA-binding activity of activator protein 1 (AP-1). Using differential display reverse transcription-polymerase chain reaction (DDRT-PCR), seven upregulated genes including S100 calcium binding protein A9 (S100A9) mRNA and antigenic determinant for rec-A protein mRNA and five downregulated genes including caseinolytic protease X (ClpX) mRNA and ceruloplasmin (CP) mRNA by cisplatin were identified. Although these mRNA expression patterns were not totally consistent with gel shift patterns, altered expression levels by cisplatin were reversed by the pretreatment of xanthorrhizol. In conclusion, the ability of xanthorrhizol to regulate the DNA-binding activities of transcription factors, NF-κB and AP-1, could be one possible mechanism to elucidate the preventive effect of xanthorrhizol on cisplatin-induced hepatotoxicity. Furthermore, genes identified in this study could be helpful to understand the mechanism of cisplatin-induced hepatotoxicity. Finally, the combination treatment of xanthorrhizol and cisplatin may provide more advantage than single treatment of cisplatin in cancer therapy

  1. The mechanism of interaction between cisplatin and selenite

    NARCIS (Netherlands)

    Baldew, G S; Mol, J G; de Kanter, F J; van Baar, B; De Goeij, J J; Vermeulen, N P

    1991-01-01

    Cisplatin is a widely used antitumor drug, highly effective in the treatment of several tumors. Cisplatin exerts its antitumor activity through an interaction with DNA, which results in the formation of bidentate adducts. An important side-effects of cisplatin is nephrotoxicity. Selenite can reduce

  2. A functional perspective of nitazoxanide as a potential anticancer drug

    International Nuclear Information System (INIS)

    Di Santo, Nicola; Ehrisman, Jessie

    2014-01-01

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  3. A functional perspective of nitazoxanide as a potential anticancer drug

    Energy Technology Data Exchange (ETDEWEB)

    Di Santo, Nicola, E-mail: nico.disanto@duke.edu; Ehrisman, Jessie, E-mail: jessie.ehrisman@duke.edu

    2014-10-15

    Highlights: • Combination anti-cancer therapies are associated with increased toxicity and cross-resistance. • Some antiparasitic compounds may have anti-cancer potential. • Nitazoxanide interferes with metabolic and pro-death signaling. • Preclinical studies are needed to confirm anticancer ability of nitazoxanide. - Abstract: Cancer is a group of diseases characterized by uncontrolled cell proliferation, evasion of cell death and the ability to invade and disrupt vital tissue function. The classic model of carcinogenesis describes successive clonal expansion driven by the accumulation of mutations that eliminate restraints on proliferation and cell survival. It has been proposed that during cancer's development, the loose-knit colonies of only partially differentiated cells display some unicellular/prokaryotic behavior reminiscent of robust ancient life forms. The seeming “regression” of cancer cells involves changes within metabolic machinery and survival strategies. This atavist change in physiology enables cancer cells to behave as selfish “neo-endo-parasites” that exploit the tumor stromal cells in order to extract nutrients from the surrounding microenvironment. In this framework, it is conceivable that anti-parasitic compounds might serve as promising anticancer drugs. Nitazoxanide (NTZ), a thiazolide compound, has shown antimicrobial properties against anaerobic bacteria, as well as against helminths and protozoa. NTZ has also been successfully used to promote Hepatitis C virus (HCV) elimination by improving interferon signaling and promoting autophagy. More compelling however are the potential anti-cancer properties that have been observed. NTZ seems to be able to interfere with crucial metabolic and pro-death signaling such as drug detoxification, unfolded protein response (UPR), autophagy, anti-cytokine activities and c-Myc inhibition. In this article, we review the ability of NTZ to interfere with integrated survival mechanisms of

  4. Pricing appraisal of anti-cancer drugs in the South East Asian, Western Pacific and East Mediterranean Region.

    Science.gov (United States)

    Salmasi, Shahrzad; Lee, Kah Seng; Ming, Long Chiau; Neoh, Chin Fen; Elrggal, Mahmoud E; Babar, Zaheer-Ud- Din; Khan, Tahir Mehmood; Hadi, Muhammad Abdul

    2017-12-28

    Globally, cancer is one of the leading causes of mortality. High treatment cost, partly owing to higher prices of anti-cancer drugs, presents a significant burden on patients and healthcare systems. The aim of the present study was to survey and compare retail prices of anti-cancer drugs between high, middle and low income countries in the South-East Asia, Western Pacific and Eastern Mediterranean regions. Cross-sectional survey design was used for the present study. Pricing data from ten counties including one from South-East Asia, two from Western Pacific and seven from Eastern Mediterranean regions were used in this study. Purchasing power parity (PPP)-adjusted mean unit prices for 26 anti-cancer drug presentations (similar pharmaceutical form, strength, and pack size) were used to compare prices of anti-cancer drugs across three regions. A structured form was used to extract relevant data. Data were entered and analysed using Microsoft Excel®. Overall, Taiwan had the lowest mean unit prices while Oman had the highest prices. Six (23.1%) and nine (34.6%) drug presentations had a mean unit price below US$100 and between US$100 and US$500 respectively. Eight drug presentations (30.7%) had a mean unit price of more than US$1000 including cabazitaxel with a mean unit price of $17,304.9/vial. There was a direct relationship between income category of the countries and their mean unit price; low-income countries had lower mean unit prices. The average PPP-adjusted unit prices for countries based on their income level were as follows: low middle-income countries (LMICs): US$814.07; high middle income countries (HMICs): US$1150.63; and high income countries (HICs): US$1148.19. There is a great variation in pricing of anticancer drugs in selected countires and within their respective regions. These findings will allow policy makers to compare prices of anti-cancer agents with neighbouring countries and develop policies to ensure accessibility and affordability of

  5. Synthesis of [13N]cisplatin

    International Nuclear Information System (INIS)

    Haber, M.T.; Risenspire, K.C.

    1985-01-01

    A method for the ''carrier-added'' synthesis of [ 13 N]cisplatin is described. Yields were approx.1-4 mCi from 20-40 mCi of [ 13 N]ammonia with a total synthesis time of 19-28 minutes. The product was approx.96% radiochemically pure as judged by HPLC analysis and had a specific activity of approx.100 mCi/mmole in 1.0 ml of saline. [ 13 N)Cisplatin was administered intraperitoneally to mice. Of the tissues investigated, concentration of label was highest in kidneys. At 10 min, considerable label in the blood, liver, and kidney was in a form other than cisplatin. However, no evidence was obtained that [ 13 N]ammonia was released from [ 13 N]cisplatin in vivo. [ 13 N]Cisplatin may be used to assess drug delivery to primary and metastatic brain tumors in patients receiving intravenous or intraarterial cisplatin chemotherapy. (author)

  6. Intelligent anticancer drug delivery performances of two poly(N-isopropylacrylamide)-based magnetite nanohydrogels.

    Science.gov (United States)

    Poorgholy, Nahid; Massoumi, Bakhshali; Ghorbani, Marjan; Jaymand, Mehdi; Hamishehkar, Hamed

    2018-08-01

    This article evaluates the anticancer drug delivery performances of two nanohydrogels composed of poly(N-isopropylacrylamide-co-itaconic anhydride) [P(NIPAAm-co-IA)], poly(ethylene glycol) (PEG), and Fe 3 O 4 nanoparticles. For this purpose, the magnetite nanohydrogels (MNHGs) were loaded with doxorubicin hydrochloride (DOX) as a universal anticancer drug. The morphologies and magnetic properties of the DOX-loaded MNHGs were investigated using transmission electron microscopy (TEM) and vibrating-sample magnetometer (VSM), respectively. The sizes and zeta potentials (ξ) of the MNHGs and their corresponding DOX-loaded nanosystems were also investigated. The DOX-loaded MNHGs showed the highest drug release values at condition of 41 °C and pH 5.3. The drug-loaded MNHGs at physiological condition (pH 7.4 and 37 °C) exhibited negligible drug release values. In vitro cytotoxic effects of the DOX-loaded MNHGs were extensively evaluated through the assessing survival rate of HeLa cells using the MTT assay, and there in vitro cellular uptake into the mentioned cell line were examined using fluorescent microscopy and fluorescence-activated cell sorting (FACS) flow cytometry analyses. As the results, the DOX-loaded MNHG1 exhibited higher anticancer drug delivery performance in the terms of cytotoxic effect and in vitro cellular uptake. Thus, the developed MNHG1 can be considered as a promising de novo drug delivery system, in part due to its pH and thermal responsive drug release behavior as well as proper magnetite character toward targeted drug delivery.

  7. PEGylated Silk Nanoparticles for Anticancer Drug Delivery

    DEFF Research Database (Denmark)

    Wongpinyochit, Thidarat; Uhlmann, Petra; Urquhart, Andrew

    2015-01-01

    Silk has a robust clinical track record and is emerging as a promising biopolymer for drug delivery, including its use as nanomedicine. However, silk-based nanomedicines still require further refinements for full exploitation of their potential; the application of “stealth” design principals...... is especially necessary to support their evolution. The aim of this study was to develop and examine the potential of PEGylated silk nanoparticles as an anticancer drug delivery system. We first generated B. mori derived silk nanoparticles by driving β-sheet assembly (size 104 ± 1.7 nm, zeta potential −56 ± 5.......6 mV) using nanoprecipitation. We then surface grafted polyethylene glycol (PEG) to the fabricated silk nanoparticles and verified the aqueous stability and morphology of the resulting PEGylated silk nanoparticles. We assessed the drug loading and release behavior of these nanoparticles using...

  8. The Effects of Pretreatment with Various Doses of L-Arginine on Cisplatin-Induced Nephropathy of Male Rats

    Directory of Open Access Journals (Sweden)

    B Rasoulian

    2016-09-01

    Full Text Available Introduction: Cisplatin is a widely used anti-cancer drug, which its application is limited by nephrotoxicity. In this study, the effect of pretreatment with different l-arginine doses on Cisplatin-induced renal functional injury was investigated. Methods: 63 male rats were divided into 7 groups: In groups 3, 4, 5 and 6, 60 min before the Cisplatin injection (5mg/kg; L-Arginine with doses of 50,100,200 or 400mg/kg was injected, respectively. In group7, normal saline was injected before Cisplatin administration. In groups 1 and 2, normal saline was injected instead of Cisplatin. In group 2, 60min before normal saline injection, 400mg/kg L-Arginine was administered and in group1, instead of L-arginine, normal saline was injected too. Injections were intraperitoneal. 72h after Cisplatin injection, blood sampling and plasma separation were done. Urine sample was collected 24 hours before blood sampling by metabolic cage. The mean of plasma urea and creatinine levels and creatinine clearance (ml/day.kg and fractional excretion of Na (FENa, % were compared among different groups as renal functional parameters. Results: In comparison to group 7, L-arginine injection in a dose of 400mg/kg led to significant amelioration of all parameters. 200 mg/kg L-arginine administration led to significant decrease in plasma urea level and FENa. 100mg/kg L-arginine caused significant improvement in fractional excretion of sodium. L-arginine injection with 50mg/kg dose, significantly ameliorate all renal function tests instead of creatinine clearance. Conclusion: Pretreatment with L-arginine administration with 400 or 50 mg/kg doses, respectively, had the highest effect on reducing Cisplatin-induced nephropathy. L-arginine injection with intermediate doses i.e. 200 or 100 mg/kg had less effect in reducing Cisplatin-induced nephropathy and it needs more investigations.

  9. Oleuropein potentiates anti-tumor activity of cisplatin against HepG2 through affecting proNGF/NGF balance.

    Science.gov (United States)

    Sherif, Iman O; Al-Gayyar, Mohammed M H

    2018-04-01

    Oleuropein is considered as a new chemotherapeutic agent in human hepatocellular carcinoma (HCC) while, its exact underlying molecular mechanism still not yet explored. In addition, cisplatin is a standard anticancer drug against solid tumors with toxic side effects. Therefore, we conducted this study to assess antitumor activity of oleuropein either alone or in combination with cisplatin against HepG2, human HCC cell lines, via targeting pro-NGF/NGF signaling pathway. HepG2 cells were treated with cisplatin (20, 50, 100 μM) and oleuropein (100, 200, 300 and 400 μM) as well as some of the cells were treated with 50 μM cisplatin and different concentrations of oleuropein. Gene expressions of nerve growth factor (NGF), matrix metalloproteinase-7 (MMP-7) and caspase-3 were evaluated by real time-PCR. In addition, protein levels of NGF and pro-form of NGF (pro-NGF) were measured by ELISA while, nitric oxide (NO) content was determined colorimetrically. Cisplatin treatment showed a significant elevation of NO content and pro-NGF protein level with a marked reduction of NGF protein level in addition to the upregulation of caspase-3 along with downregulation of MMP-7 gene expressions in a dose-dependent manner. However, the combination of 50 μM cisplatin and 200 μM oleuropein showed the most potent effect on the molecular level when compared with oleuropein or cisplatin alone. Our results showed for the first time that the anti-tumor activity of oleuropein against HCC could be attributed to influencing the pro-NGF/NGF balance via affecting MMP-7 activity without affecting the gene expression of NGF. Concurrent treatment with both oleuropein and cisplatin could lead to more effective chemotherapeutic combination against HCC. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. MiR-30c regulates cisplatin-induced apoptosis of renal tubular epithelial cells by targeting Bnip3L and Hspa5.

    Science.gov (United States)

    Du, Bin; Dai, Xiao-Meng; Li, Shuang; Qi, Guo-Long; Cao, Guang-Xu; Zhong, Ying; Yin, Pei-di; Yang, Xue-Song

    2017-08-10

    As a common anticancer drug, cisplatin has been widely used for treating tumors in the clinic. However, its side effects, especially its nephrotoxicity, noticeably restrict the application of cisplatin. Therefore, it is imperative to investigate the mechanism of renal injury and explore the corresponding remedies. In this study, we showed the phenotypes of the renal tubules and epithelial cell death as well as elevated cleaved-caspase3- and TUNEL-positive cells in rats intraperitoneally injected with cisplatin. Similar cisplatin-induced cell apoptosis was found in HK-2 and NRK-52E cells exposed to cisplatin as well. In both models of cisplatin-induced apoptosis in vivo and in vitro, quantitative PCR data displayed reductions in miR-30a-e expression levels, indicating that miR-30 might be involved in regulating cisplatin-induced cell apoptosis. This was further confirmed when the effects of cisplatin-induced cell apoptosis were found to be closely correlated with alterations in miR-30c expression, which were manipulated by transfection of either the miR-30c mimic or miR-30c inhibitor in HK-2 and NRK-52E cells. Using bioinformatics tools, including TargetScan and a gene expression database (Gene Expression Omnibus), Adrb1, Bnip3L, Hspa5 and MAP3K12 were predicted to be putative target genes of miR-30c in cisplatin-induced apoptosis. Subsequently, Bnip3L and Hspa5 were confirmed to be the target genes after determining the expression of these putative genes following manipulation of miR-30c expression levels in HK-2 cells. Taken together, our current experiments reveal that miR-30c is certainly involved in regulating the renal tubular cell apoptosis induced by cisplatin, which might supply a new strategy to minimize cisplatin-induced nephrotoxicity.

  11. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    International Nuclear Information System (INIS)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng; Xia, Qiang

    2012-01-01

    Highlights: ► miR-199a-5p levels were significantly decreased after cisplatin treatment. ► Cisplatin treatment induced autophagy activation. ► Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  12. Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning; Zhang, Jianjun; Shen, Conghuan; Luo, Yi; Xia, Lei; Xue, Feng [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China); Xia, Qiang, E-mail: xiaqiang1@yahoo.com.cn [Department of Transplantation and Hepatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, 1630 Dongfang Road, Shanghai 200127, People' s Republic of China (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer miR-199a-5p levels were significantly decreased after cisplatin treatment. Black-Right-Pointing-Pointer Cisplatin treatment induced autophagy activation. Black-Right-Pointing-Pointer Cisplatin-induced downregulation of miR-199a-5p increases drug resistance by activating autophagy in HCC cell. -- Abstract: Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide. Systemic chemotherapy plays an important role in the treatment of patients with advanced liver cancer. However, chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic, and the underlying mechanism of such resistance is not fully understood. In the study, we found that miR-199a-5p levels were significantly reduced in HCC patients treated with cisplatin-based chemotherapy. Cisplatin treatment also resulted in decreased miR-199a-5p levels in human HCC cell lines. Forced expression of miR-199a-5p promoted cisplatin-induced inhibition of cell proliferation. Cisplatin treatment activated autophagy in Huh7 and HepG2 cells, which increased cell proliferation. We further demonstrated that downregulated miR-199a-5p enhanced autophagy activation by targeting autophagy-associated gene 7 (ATG7). More important, autophagy inhibition abrogated miR-199a-5p downregulation-induced cell proliferation. These data demonstrated that miR-199a-5p/autophagy signaling represents a novel pathway regulating chemoresistance, thus offering a new target for chemotherapy of HCC.

  13. Hierarchical pulmonary target nanoparticles via inhaled administration for anticancer drug delivery.

    Science.gov (United States)

    Chen, Rui; Xu, Liu; Fan, Qin; Li, Man; Wang, Jingjing; Wu, Li; Li, Weidong; Duan, Jinao; Chen, Zhipeng

    2017-11-01

    Inhalation administration, compared with intravenous administration, significantly enhances chemotherapeutic drug exposure to the lung tissue and may increase the therapeutic effect for pulmonary anticancer. However, further identification of cancer cells after lung deposition of inhaled drugs is necessary to avoid side effects on normal lung tissue and to maximize drug efficacy. Moreover, as the action site of the major drug was intracellular organelles, drug target to the specific organelle is the final key for accurate drug delivery. Here, we designed a novel multifunctional nanoparticles (MNPs) for pulmonary antitumor and the material was well-designed for hierarchical target involved lung tissue target, cancer cell target, and mitochondrial target. The biodistribution in vivo determined by UHPLC-MS/MS method was employed to verify the drug concentration overwhelmingly increasing in lung tissue through inhaled administration compared with intravenous administration. Cellular uptake assay using A549 cells proved the efficient receptor-mediated cell endocytosis. Confocal laser scanning microscopy observation showed the location of MNPs in cells was mitochondria. All results confirmed the intelligent material can progressively play hierarchical target functions, which could induce more cell apoptosis related to mitochondrial damage. It provides a smart and efficient nanocarrier platform for hierarchical targeting of pulmonary anticancer drug. So far, this kind of material for pulmonary mitochondrial-target has not been seen in other reports.

  14. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    International Nuclear Information System (INIS)

    El-Naga, Reem N.

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  15. Pre-treatment with cardamonin protects against cisplatin-induced nephrotoxicity in rats: Impact on NOX-1, inflammation and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    El-Naga, Reem N., E-mail: reemelnaga@hotmail.com

    2014-01-01

    Cisplatin is an effective anti-cancer drug; however, its clinical use is usually associated with nephrotoxicity as a dose-limiting side effect. Several molecular mechanisms have been found to be involved in this nephrotoxicity such as oxidative stress, inflammation and apoptosis. The aim of this study was to explore the potential nephroprotective effect of cardamonin, a flavone found in Alpinia plant, in a rat model of cisplatin-induced nephrotoxicity. The possible mechanisms underlying this nephroprotective effect were investigated. Cardamonin was given at two different doses; 10 and 30 mg/kg orally for two weeks, starting one week before giving a single nephrotoxic dose of cisplatin (7 mg/kg). Acute nephrtoxicity was evident by significantly increased blood urea nitrogen and serum creatinine levels. Also, cisplatin increased lipid peroxidation and depleted reduced glutathione level and superoxide dismutase. Additionally, cisplatin showed a marked pro-inflammatory response as evidenced by significant increase in tissue levels of IL-1β, TNF-α, NF-kB, iNOS, ICAM-1 and MCP-1. Pre-treatment with cardamonin significantly attenuated the nephrotoxic effects, oxidative stress and inflammation induced by cisplatin, in a dose-dependent manner. Also, cardamonin decreased caspase-3 expression and Bax/Bcl-2 ratio as compared to cisplatin group. Besides, cradamonin reversed cisplatin-induced decrease in EGF. Furthermore, up-regulation of NOX-1 was found to be involved in cisplatin-induced nephrotoxicity and its expression was significantly reduced by cardamonin. Histopathological examination further confirmed the nephroprotective effect of cardamonin. Moreover, pre-treatment with subtoxic concentration of cardamonin has significantly enhanced cisplatin cytotoxic activity in four different human cancer cell lines; hela, hepG2, PC3 and HCT116 cancer cell lines. In conclusion, these findings suggest that cardamonin improves therapeutic index of cisplatin and that NOX-1 is

  16. Voluntary exercise prevents cisplatin-induced muscle wasting during chemotherapy in mice

    DEFF Research Database (Denmark)

    Hojman, Pernille; Fjelbye, Jonas; Zerahn, Bo

    2014-01-01

    Loss of muscle mass related to anti-cancer therapy is a major concern in cancer patients, being associated with important clinical endpoints including survival, treatment toxicity and patient-related outcomes. We investigated effects of voluntary exercise during cisplatin treatment on body weight......% (PExercise training may...

  17. Characterization of Taurine Transporting Systems During Acquirement of Resistance to Platinum(II)-based, Chemotherapeutic Drugs

    DEFF Research Database (Denmark)

    Sørensen, Belinda Halling

    Although, cisplatin is one of the most effective broad-spectrum anticancer drugs, prolonged cisplatin treatment often results in development of chemoresistance and subsequent therapeutic failure. Dysregulation of the taurine transporting systems i.e., the taurine transporter (TauT) and volume....... Cisplatin resistance correlates with a reduction in the volume regulated anion current and taurine release mediated by VRACs, as well as an improved cellular accumulation of taurine through TauT. In human ovarian A2780 cancer cells, for instance, cisplatin resistance is associated with an absent swelling......-induced taurine release and inability to volume regulate. The dismissed taurine release was due to an almost absent leucin-rich-repeat containing 8A (LRRC8A) total protein expression. LRRC8A is an important component of VRACs. Cellular taurine contributes to the intracellular pool of organic osmolytes. Moreover...

  18. Designing multi-targeted agents: An emerging anticancer drug discovery paradigm.

    Science.gov (United States)

    Fu, Rong-Geng; Sun, Yuan; Sheng, Wen-Bing; Liao, Duan-Fang

    2017-08-18

    The dominant paradigm in drug discovery is to design ligands with maximum selectivity to act on individual drug targets. With the target-based approach, many new chemical entities have been discovered, developed, and further approved as drugs. However, there are a large number of complex diseases such as cancer that cannot be effectively treated or cured only with one medicine to modulate the biological function of a single target. As simultaneous intervention of two (or multiple) cancer progression relevant targets has shown improved therapeutic efficacy, the innovation of multi-targeted drugs has become a promising and prevailing research topic and numerous multi-targeted anticancer agents are currently at various developmental stages. However, most multi-pharmacophore scaffolds are usually discovered by serendipity or screening, while rational design by combining existing pharmacophore scaffolds remains an enormous challenge. In this review, four types of multi-pharmacophore modes are discussed, and the examples from literature will be used to introduce attractive lead compounds with the capability of simultaneously interfering with different enzyme or signaling pathway of cancer progression, which will reveal the trends and insights to help the design of the next generation multi-targeted anticancer agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. [50th anniversary of cisplatin].

    Science.gov (United States)

    Rancoule, Chloé; Guy, Jean-Baptiste; Vallard, Alexis; Ben Mrad, Majed; Rehailia, Amel; Magné, Nicolas

    2017-02-01

    We have just celebrated the 50th anniversary of cisplatin cytotoxic potential discovery. It is time to take stock… and it seems mainly positive. This drug, that revolutionized the treatment of many cancer types, continues to be the most widely prescribed chemotherapy. Despite significant toxicities, resistance mechanisms associated with treatment failures, and unresolved questions about its mechanism of action, the use of this cytotoxic agent remains unwavering. The interest concerning this "old" invincible drug has not yet abated. Indeed many research axes are in the news. New platinum salts agents are tested, new cisplatin formulations are developed to target tumor cells more efficiently, and new combinations are established to increase the cytotoxic potency of cisplatin or overcome the resistance mechanisms. Copyright © 2016 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  20. Protective mechanism of Korean Red Ginseng in cisplatin-induced ototoxicity through attenuation of nuclear factor-κB and caspase-1 activation.

    Science.gov (United States)

    Kim, Su-Jin; Kwak, Hyun Jeong; Kim, Dae-Seung; Choi, Hyun-Myung; Sim, Jung-Eun; Kim, Sung-Hoon; Um, Jae-Young; Hong, Seung-Heon

    2015-07-01

    Cisplatin is an effective anti-cancer drug; however, one of its side effects is irreversible sensorineural hearing damage. Korean Red Ginseng (KRG) has been used clinically for the treatment of various diseases; however, the underlying mechanism of KRG treatment of ototoxicity has not been studied extensively. The present study aimed to further investigate the mechanism of KRG on cisplatin-induced toxicity in auditory HEI-OC1 cells in vitro, as well as in vivo. The pharmacological effects of KRG on cisplatin-induced changes in the hearing threshold of mice were determined, as well as the effect on the impairment of hair cell arrays. In addition, in order to elucidate the protective mechanisms of KRG, the regulatory effects of KRG on cisplatin-induced apoptosis-associated gene levels and nuclear factor-κB (NF-κB) activation were investigated in auditory cells. The results revealed that KRG prevented cisplatin-induced alterations in the hearing threshold of mice as well as the destruction of hair cell arrays in rat organ of Corti primary explants. In addition, KRG inhibited cisplatin-mediated cell toxicity, reactive oxygen species generation, interleukin-6 production, cytochrome c release and activation of caspases-3 in the HEI-OC1 auditory cell line. Furthermore, the results demonstrated that KRG inhibited the activation of NF-κB and caspase-1. In conclusion, these results provided a model for the pharmacological mechanism of KRG and provided evidence for potential therapies against ototoxicity.

  1. [Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver and cisplatin].

    Science.gov (United States)

    Skvortsov, A N; Zatulovskiĭ, E A; Puchkova, L V

    2012-01-01

    It was shown recently, that high affinity Cu(I) importer eukaryotic protein CTR1 can also transport in vitro abiogenic Ag(I) ions and anticancer drug cisplatin. At present there is no rational explanation how CTR1 can transfer platinum group, which is different by coordination properties from highly similar Cu(I) and Ag(I). To understand this phenomenon we analyzed 25 sequences of chordate CTR1 proteins, and found out conserved patterns of organization of N-terminal extracellular part of CTR1 which correspond to initial metal binding. Extracellular copper-binding motifs were qualified by their coordination properties. It was shown that relative position of Met- and His-rich copper-binding motifs in CTR1 predisposes the extracellular CTR1 part to binding of copper, silver and cisplatin. Relation between tissue-specific expression of CTR1 gene, steady-state copper concentration, and silver and platinum accumulation in organs of mice in vivo was analyzed. Significant positive but incomplete correlation exists between these variables. Basing on structural and functional peculiarities of N-terminal part of CTR1 a hypothesis of coupled transport of copper and cisplatin has been suggested, which avoids the disagreement between CTR1-mediated cisplatin transport in vitro, and irreversible binding of platinum to Met-rich peptides.

  2. Steady Increase In Prices For Oral Anticancer Drugs After Market Launch Suggests A Lack Of Competitive Pressure.

    Science.gov (United States)

    Bennette, Caroline S; Richards, Catherine; Sullivan, Sean D; Ramsey, Scott D

    2016-05-01

    The cost of treating cancer has risen to unprecedented heights, putting tremendous financial pressure on patients, payers, and society. Previous studies have documented the rising prices of cancer drugs at launch, but less critical attention has been paid to the cost of these drugs after launch. We used pharmacy claims for commercially insured individuals to examine trends in postlaunch prices over time for orally administered anticancer drugs recently approved by the Food and Drug Administration (FDA). In the period 2007-13, inflation-adjusted per patient monthly drug prices increased 5 percent each year. Certain market changes also played a role, with prices rising an additional 10 percent with each supplemental indication approved by the FDA and declining 2 percent with the FDA's approval of a competitor drug. Our findings suggest that there is currently little competitive pressure in the oral anticancer drug market. Policy makers who wish to reduce the costs of anticancer drugs should consider implementing policies that affect prices not only at launch but also later. Project HOPE—The People-to-People Health Foundation, Inc.

  3. Fluorescence optical imaging in anticancer drug delivery.

    Science.gov (United States)

    Etrych, Tomáš; Lucas, Henrike; Janoušková, Olga; Chytil, Petr; Mueller, Thomas; Mäder, Karsten

    2016-03-28

    In the past several decades, nanosized drug delivery systems with various targeting functions and controlled drug release capabilities inside targeted tissues or cells have been intensively studied. Understanding their pharmacokinetic properties is crucial for the successful transition of this research into clinical practice. Among others, fluorescence imaging has become one of the most commonly used imaging tools in pre-clinical research. The development of increasing numbers of suitable fluorescent dyes excitable in the visible to near-infrared wavelengths of the spectrum has significantly expanded the applicability of fluorescence imaging. This paper focuses on the potential applications and limitations of non-invasive imaging techniques in the field of drug delivery, especially in anticancer therapy. Fluorescent imaging at both the cellular and systemic levels is discussed in detail. Additionally, we explore the possibility for simultaneous treatment and imaging using theranostics and combinations of different imaging techniques, e.g., fluorescence imaging with computed tomography. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Neng [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Yin, Huabing, E-mail: huabing.yin@glasgow.ac.uk [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Ji, Bozhi; Klauke, Norbert; Glidle, Andrew [Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow, G12 8LT (United Kingdom); Zhang, Yongkui; Song, Hang [Department of Bio-pharmaceutical Engineering, School of Chemical Engineering, Sichuan University, Chengdu ,610065 (China); Cai, Lulu; Ma, Liang; Wang, Guangcheng [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Chen, Lijuan, E-mail: lijuan17@hotmail.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China); Wang, Wenwen [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu 610041 (China)

    2012-12-01

    Biogenic calcium carbonate has come to the attention of many researchers as a promising drug delivery system due to its safety, pH sensitivity and the large volume of information already in existence on its medical use. In this study, we employed bovine serum albumin (BSA) as an additive to synthesize a series of porous calcium carbonate microspheres (CCMS). These spheres, identified as vaterite, are stable both in aqueous solutions and organic solvents. Camptothecin, an effective anticancer agent, was loaded into the CCMS by simple diffusion and adsorption. The camptothecin loaded CCMS showed sustained cell growth inhibitory activity and a pH dependent release of camptothecin. With a few hours, the release is negligible under physiological conditions (pH = 7.4) but almost complete at pH 4 to 6 (i.e. pHs found in lysosomes and solid tumor tissue respectively). These findings suggest that porous, biogenic calcium carbonate microspheres could be promising carriers for the safe and efficient delivery of anticancer drugs of low aqueous solubility. - Highlights: Black-Right-Pointing-Pointer BSA-doped calcium carbonate microspheres with porous structure were prepared. Black-Right-Pointing-Pointer Camptothecin was encapsulated in the spherical microparticles with encapsulation efficiency up to 11%. Black-Right-Pointing-Pointer The release of encapsulated camptothecin is pH dependent Black-Right-Pointing-Pointer In vitro studies showed an effective anticancer activity of the camptothecin- microspheres.

  5. MicroRNA signature of cis-platin resistant vs. cis-platin sensitive ovarian cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kumar Smriti

    2011-09-01

    Full Text Available Abstract Background Ovarian cancer is the leading cause of death from gynecologic cancer in women worldwide. According to the National Cancer Institute, ovarian cancer has the highest mortality rate among all the reproductive cancers in women. Advanced stage diagnosis and chemo/radio-resistance is a major obstacle in treating advanced ovarian cancer. The most commonly employed chemotherapeutic drug for ovarian cancer treatment is cis-platin. As with most chemotherapeutic drugs, many patients eventually become resistant to cis-platin and therefore, diminishing its effect. The efficacy of current treatments may be improved by increasing the sensitivity of cancer cells to chemo/radiation therapies. Methods The present study is focused on identifying the differential expression of regulatory microRNAs (miRNAs between cis-platin sensitive (A2780, and cis-platin resistant (A2780/CP70 cell lines. Cell proliferation assays were conducted to test the sensitivity of the two cell lines to cis-platin. Differential expression patterns of miRNA between cis-platin sensitive and cis-platin resistant cell lines were analyzed using novel LNA technology. Results Our results revealed changes in expression of 11 miRNAs out of 1,500 miRNAs analyzed. Out of the 11 miRNAs identified, 5 were up-regulated in the A2780/CP70 cell line and 6 were down regulated as compared to cis-platin sensitive A2780 cells. Our microRNA data was further validated by quantitative real-time PCR for these selected miRNAs. Ingenuity Pathway Analysis (IPA and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis was performed for the selected miRNAs and their putative targets to identify the potential pathways and networks involved in cis-platin resistance. Conclusions Our data clearly showed the differential expression of 11 miRNAs in cis-platin resistant cells, which could potentially target many important pathways including MAPK, TGF-β signaling, actin cytoskeleton, ubiquitin mediated

  6. Novel Platinum (Pt)-Vandetanib Hybrid Compounds: Design, Synthesis and Investigation of Anti-cancer Activity and Mechanism of Action

    Science.gov (United States)

    Fei, Rong

    Purpose: Lung cancer is one of the most common cancers and non-small cell lung cancer (NSCLC) accounts for 80-85% of lung cancers. 70% of individuals with NSCLC harboring somatic mutations in exons of the epidermal growth factor receptor (EGFR) gene that encode tyrosine kinase domain. EGFR tyrosine kinase inhibitors (TKIs) are promising molecular targeted therapy for NSCLC with sensitizing EGFR mutations. However, secondary mutation of EGFR after treatment of TKIs develops resistance. Vandetanib is introduced to overcome erlotinib resistance as a multi-targeted TKI. However, its anticancer effect is still compromised by EGFR T790M mutation. Therefore, new molecular anticancer strategies are necessarily needed. In this study, vandetanib is incorporated with Pt-based anticancer agents as hybrid compounds, aiming to circumvent TKI resistance. Furthermore, hybrid compounds are investigated in cisplatin resistant problem to expect to overcome resistance by introduction of vandetanib. Methods: Three novel Pt-vandetanib hybrid compounds were synthesized and its physicochemical properties were characterized. Anticancer activity and cytotoxicity were evaluated by sulforhodamine B assay and lactate dehydrogenase release. Docking simulation was performed to investigate the interaction of compounds with EGFR harboring different mutations. Inhibition efficacy of hybrids to kinases was evaluated by kinase inhibition profiling service and cell-free kinase inhibition assay. Mechanistic studies on cytotoxicity activity of the hybrid compounds were carried out. DNA damage response of hybrid compounds was further investigated in KB cells. The cytotoxicity of hybrids was tested in cisplatin resistant KB CP20 cells. Mechanistic of anticancer activity was studied to test inhibition on oncoprotein CIP2Aand DNA damage. Results: Platinum-vandetanib hybrid compounds were synthesized and test to be stable under extracellular condition. Hybrids reacted with 5'-GMP2- and glutathione, and both

  7. Efficient delivery of anticancer drug MTX through MTX-LDH nanohybrid system

    Science.gov (United States)

    Oh, Jae-Min; Park, Man; Kim, Sang-Tae; Jung, Jin-Young; Kang, Yong-Gu; Choy, Jin-Ho

    2006-05-01

    We have been successful to intercalate anticancer drug, methotrexate (MTX), into layered double hydroxides (LDHs), Mg2Al(OH)6(NO3)·0.1H2O, through conventional co-precipitation method. Layered double hydroxides (LDHs) are endowed with great potential for delivery vector, since their cationic layers lead to safe reservation of biofunctional molecules such as drug molecules or genes. And their ion exchangeability and solubility in acidic media (pHosteosarcoma cell culture lines (Saos-2 and MG-63) and the normal one (human fibroblast) were used for in vitro test. The anticancer efficacy of MTX intercalated LDHs (MTX-LDH nanohybrids) was also estimated in vitro by the bioassay such as MTT and BrdU (5-bromo-2-deoxyuridine) with the bone cancer cell culture lines (Saos-2 and MG-63). According to the toxicity test results, LDHs do not harm to both the normal and cancer cells upto the concentration of 500 ug/mL. The anticancer efficacy test for the MTX-LDH nanohybrids turn out to be much more effective in cell suppression compared to the MTX itself. According to the cell-line tests, the MTX-LDH shows same drug efficacy to the MTX itself in spite of the low concentration by ˜5000 times. Such a high cancer suppression effect of MTX-LDH hybrid is surely due to the excellent delivery efficiency of inorganic delivery vector, LDHs.

  8. An Insight into the Anticancer Activities of Ru(II-Based Metallocompounds Using Docking Methods

    Directory of Open Access Journals (Sweden)

    Peter A. Ajibade

    2013-09-01

    Full Text Available Unlike organic molecules, reports on docking of metal complexes are very few; mainly due to the inadequacy of force fields in docking packages to appropriately characterize the metal atoms that consequentially hinder the rational design of metal-based drug complexes. In this study we have made used Molegro and Autodock to predict the anticancer activities of selected Ru(II complexes against twelve anticancer targets. We observed that introducing the quantum calculated atomic charges of the optimized geometries significantly improved the docking predictions of these anticancer metallocompounds. Despite several limitations in the docking of metal-based complexes, we obtained results that are highly correlated with the available experimental results. Most of our newly proposed metallocompounds are found theoretically to be better anticancer metallocompounds than all the experimentally proposed RAPTA complexes. An interesting features of a strong interactions of new modeled of metallocompounds against the two base edges of DNA strands suggest similar mechanisms of anticancer activities similar to that of cisplatin. There is possibility of covalent bonding between the metal center of the metallocompounds and the residues of the receptors DNA-1, DNA-2, HDAC7, HIS and RNR. However, the general results suggest the possibility of metals positioning the coordinated ligands in the right position for optimal receptor interactions and synergistic effects, rather than forming covalent bonds.

  9. Radiation Interaction with Therapeutic Drugs and Cell Membranes

    International Nuclear Information System (INIS)

    Martin, Diana I.; Manaila, Elena N.; Matei, Constantin I.; Iacob, Nicusor I.; Ighigeanu, Daniel I.; Craciun, Gabriela D.; Moisescu, Mihaela I.; Savopol, Tudor D.; Kovacs, Eugenia A.; Cinca, Sabin A.; Margaritescu, Irina D.

    2007-01-01

    This transient permeabilized state of the cell membrane, named the 'cell electroporation' (CE) can be used to increase cells uptake of drugs that do not readily pass cell membrane, thus enabling their cytotoxicity. The anticancer drugs, such as bleomycin (BL) and cisplatin, are the most candidates for the combined use with ionizing and non-ionizing radiation fields. The methods and installations for the cell electroporation by electron beam (EB) and microwave (MW) irradiation are presented. The viability tests of the human leukocytes under EB and MW exposure with/without the BL in the cell cultures are discussed

  10. Involvement of caspase-dependent and -independent apoptotic pathways in cisplatin-induced apoptosis

    Science.gov (United States)

    Liu, Lei; Zhang, Yingjie; Wang, Xianwang

    2009-02-01

    Cisplatin, an efficient anticancer agent, can trigger multiple apoptotic pathways in cancer cells. However, the signal transduction pathways in response to cisplatin-based chemotherapy are complicated, and the mechanism is not fully understood. In current study, we showed that, during cisplatin-induced apoptosis of human lung adenocarcinoma cells, both the caspase-dependent and -independent pathways were activated. Herein, we reported that after cisplatin treatment, the activities of caspase-9/-3 were sharply increased; pre-treatment with Z-LEHD-fmk (inhibitor of caspase-9), Z-DEVD-fmk (inhibitor of caspase-3), and Z-VAD-fmk (a pan-caspase inhibitor) increased cell viability and decreased apoptosis, suggesting that caspase-mediated apoptotic pathway was activated following cisplatin treatment. Confocal imaging of the cells transfected with AIF-GFP demonstrated that AIF release occurred about 9 h after cisplatin treatment. The event proceeded progressively over time, coinciding with a nuclear translocation and lasting for more than 2 hours. Down-regulation of AIF by siRNA also significantly increased cell viability and decreased apoptosis, these results suggested that AIF-mediated caspase-independent apoptotic pathway was involved in cispatin-induced apoptosis. In conclusion, the current study demonstrated that both caspase-dependent and -independent apoptotic pathways were involved in cisplatin-induced apoptosis in human lung adenocarcinoma cells.

  11. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects.

    Science.gov (United States)

    Krukiewicz, Katarzyna; Zak, Jerzy K

    2016-05-01

    Since the majority of anticancer pharmacological agents affect not only cancer tissue but also normal cells, chemotherapy is usually accompanied with severe side effects. Regional chemotherapy, as the alternative version of conventional treatment, leads to the enhancement of the therapeutic efficiency of anticancer drugs and, simultaneously, reduction of toxic effects to healthy tissues. This paper provides an insight into different approaches of local delivery of chemotherapeutics, such as the injection of anticancer agents directly into tumor tissue, the use of injectable in situ forming drug carriers or injectable platforms in a form of implants. The wide range of biomaterials used as reservoirs of anticancer drugs is described, i.e. poly(ethylene glycol) and its copolymers, polyurethanes, poly(lactic acid) and its copolymers, poly(ɛ-caprolactone), polyanhydrides, chitosan, cellulose, cyclodextrins, silk, conducting polymers, modified titanium surfaces, calcium phosphate based biomaterials, silicone and silica implants, as well as carbon nanotubes and graphene. To emphasize the applicability of regional chemotherapy in cancer treatment, the commercially available products approved by the relevant health agencies are presented. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Efficacy of piroxicam plus cisplatin-loaded PLGA nanoparticles in inducing apoptosis in mesothelioma cells.

    Science.gov (United States)

    Menale, Ciro; Piccolo, Maria Teresa; Favicchia, Ilaria; Aruta, Maria Grazia; Baldi, Alfonso; Nicolucci, Carla; Barba, Vincenzo; Mita, Damiano Gustavo; Crispi, Stefania; Diano, Nadia

    2015-02-01

    Combined treatment based on cisplatin-loaded Poly(D,L-lactic-co-glicolic)acid (PLGA) nanoparticles (NP-C) plus the NSAID piroxicam was used as novel treatment for mesothelioma to reduce side effects related to cisplatin toxicity. PLGA nanoparticles were prepared by double emulsion solvent evaporation method. Particle size, drug release profile and in vitro cellular uptake were characterized by TEM, DLS, LC/MS and fluorescence microscopy. MSTO-211H cell line was used to analyse NP-C biological efficacy by FACS and protein analysis. Cisplatin was encapsulated in 197 nm PLGA nanoparticles with 8.2% drug loading efficiency and 47% encapsulation efficiency. Cisplatin delivery from nanoparticles reaches 80% of total encapsulated drug in 14 days following a triphasic trend. PLGA nanoparticles in MSTO-211H cells were localized in the perinuclear space NP-C in combination with piroxicam induced apoptosis using a final cisplatin concentration 1.75 fold less than free drug. Delivered cisplatin cooperated with piroxicam in modulating cell cycle regulators as caspase-3, p53 and p21. Cisplatin loaded PLGA nanoparticles plus piroxicam showed a good efficacy in exerting cytotoxic activity and inducing the same molecular apoptotic effects of the free drugs. Sustained cisplatin release allowed to use less amount of drug, decreasing toxic side effects. This novel approach could represent a new strategy for mesothelioma treatment.

  13. Polylactide-based magnetic spheres as efficient carriers for anticancer drug delivery

    CSIR Research Space (South Africa)

    Mhlanga, N

    2015-09-01

    Full Text Available To improve traditional cancer therapies, we synthesized polylactide (PLA) spheres coencapsulating magnetic nanoparticles (MNPs, Fe(sub3)O(sub4)) and an anticancer drug (doxorubicin, DOX). The synthesis process involves the preparation of Fe(sub3)O...

  14. Combining automatic table classification and relationship extraction in extracting anticancer drug-side effect pairs from full-text articles.

    Science.gov (United States)

    Xu, Rong; Wang, QuanQiu

    2015-02-01

    Anticancer drug-associated side effect knowledge often exists in multiple heterogeneous and complementary data sources. A comprehensive anticancer drug-side effect (drug-SE) relationship knowledge base is important for computation-based drug target discovery, drug toxicity predication and drug repositioning. In this study, we present a two-step approach by combining table classification and relationship extraction to extract drug-SE pairs from a large number of high-profile oncological full-text articles. The data consists of 31,255 tables downloaded from the Journal of Oncology (JCO). We first trained a statistical classifier to classify tables into SE-related and -unrelated categories. We then extracted drug-SE pairs from SE-related tables. We compared drug side effect knowledge extracted from JCO tables to that derived from FDA drug labels. Finally, we systematically analyzed relationships between anti-cancer drug-associated side effects and drug-associated gene targets, metabolism genes, and disease indications. The statistical table classifier is effective in classifying tables into SE-related and -unrelated (precision: 0.711; recall: 0.941; F1: 0.810). We extracted a total of 26,918 drug-SE pairs from SE-related tables with a precision of 0.605, a recall of 0.460, and a F1 of 0.520. Drug-SE pairs extracted from JCO tables is largely complementary to those derived from FDA drug labels; as many as 84.7% of the pairs extracted from JCO tables have not been included a side effect database constructed from FDA drug labels. Side effects associated with anticancer drugs positively correlate with drug target genes, drug metabolism genes, and disease indications. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Nano-Engineered Mesenchymal Stem Cells Increase Therapeutic Efficacy of Anticancer Drug Through True Active Tumor Targeting.

    Science.gov (United States)

    Layek, Buddhadev; Sadhukha, Tanmoy; Panyam, Jayanth; Prabha, Swayam

    2018-06-01

    Tumor-targeted drug delivery has the potential to improve therapeutic efficacy and mitigate non-specific toxicity of anticancer drugs. However, current drug delivery approaches rely on inefficient passive accumulation of the drug carrier in the tumor. We have developed a unique, truly active tumor-targeting strategy that relies on engineering mesenchymal stem cells (MSC) with drug-loaded nanoparticles. Our studies using the A549 orthotopic lung tumor model show that nano-engineered MSCs carrying the anticancer drug paclitaxel (PTX) home to tumors and create cellular drug depots that release the drug payload over several days. Despite significantly lower doses of PTX, nano-engineered MSCs resulted in significant inhibition of tumor growth and superior survival. Anticancer efficacy of nano-engineered MSCs was confirmed in immunocompetent C57BL/6 albino female mice bearing orthotopic Lewis Lung Carcinoma (LL/2-luc) tumors. Furthermore, at doses that resulted in equivalent therapeutic efficacy, nano-engineered MSCs had no effect on white blood cell count, whereas PTX solution and PTX nanoparticle treatments caused leukopenia. Biodistribution studies showed that nano-engineered MSCs resulted in greater than 9-fold higher AUC lung of PTX (1.5 μg.day/g) than PTX solution and nanoparticles (0.2 and 0.1 μg.day/g tissue, respectively) in the target lung tumors. Furthermore, the lung-to-liver and the lung-to-spleen ratios of PTX were several folds higher for nano-engineered MSCs relative to those for PTX solution and nanoparticle groups, suggesting that nano-engineered MSCs demonstrate significantly less off-target deposition. In summary, our results demonstrate that nano-engineered MSCs can serve as an efficient carrier for tumor-specific drug delivery and significantly improved anti-cancer efficacy of conventional chemotherapeutic drugs. Mol Cancer Ther; 17(6); 1196-206. ©2018 AACR . ©2018 American Association for Cancer Research.

  16. Mathematical modeling analysis of intratumoral disposition of anticancer agents and drug delivery systems.

    Science.gov (United States)

    Popilski, Hen; Stepensky, David

    2015-05-01

    Solid tumors are characterized by complex morphology. Numerous factors relating to the composition of the cells and tumor stroma, vascularization and drainage of fluids affect the local microenvironment within a specific location inside the tumor. As a result, the intratumoral drug/drug delivery system (DDS) disposition following systemic or local administration is non-homogeneous and its complexity reflects the differences in the local microenvironment. Mathematical models can be used to analyze the intratumoral drug/DDS disposition and pharmacological effects and to assist in choice of optimal anticancer treatment strategies. The mathematical models that have been applied by different research groups to describe the intratumoral disposition of anticancer drugs/DDSs are summarized in this article. The properties of these models and of their suitability for prediction of the drug/DDS intratumoral disposition and pharmacological effects are reviewed. Currently available mathematical models appear to neglect some of the major factors that govern the drug/DDS intratumoral disposition, and apparently possess limited prediction capabilities. More sophisticated and detailed mathematical models and their extensive validation are needed for reliable prediction of different treatment scenarios and for optimization of drug treatment in the individual cancer patients.

  17. Co-encapsulation of magnetic nanoparticles and cisplatin within biocompatible polymers as multifunctional nanoplatforms: synthesis, characterization, and in vitro assays

    Science.gov (United States)

    Ibarra, Jaime; Encinas, David; Blanco, Mateo; Barbosa, Silvia; Taboada, Pablo; Juárez, Josué; Valdez, Miguel A.

    2018-01-01

    In this work, we report the synthesis, characterization and biological evaluation of a multifunctional hybrid biocompatible nanoplatform consisting of a biodegradable poly(lactic-co-glycolic acid) (PLGA) matrix functionalized with a polyvinyl alcohol/chitosan mixed surface layer, and co-loaded with superparamagnetic iron oxide nanoparticles (SPIONs) and the anticancer drug cisplatin. In this manner, problems associated with cisplatin low aqueous solubility are precluded as well as a sustained controlled release of the drug is obtained. The hybrid nanoplatforms displayed slightly positive charges and spherical shapes, with an average diameter of ca 100 nm and very low polydispersity. This size range makes these particles suitable a priori to avoid extensive macrophage recognition whilst ensures exploitation of passive targeting in tumoral cells by the enhanced permeation and retention effect and successful interaction with cell surfaces. SPIONs and drug loading extents were determined by inductively coupled plasma mass spectrometry and UV-vis absorption spectroscopy, respectively. The presence of the magnetic nanoparticle in the hybrid platform should enable their intended use as T2 imaging contrast agents as denoted from magnetic imaging measurements in vitro. Furthermore, in vitro release profiles of cisplatin from nanoplatform showed an initial burst release of about 16% in the first 6 h, followed by a sustained release over 10 days ensuring a slow delivery of the drug in the site of action to enhance chemotherapeutic activity. This was confirmed by in vitro cytotoxicity assays denoting that the chemotherapeutic effect of cisplatin on both cervical HeLa and breast MDA-MB-231 cancer cell lines is largely improved when encapsulated in the nanoplatform. Thus, the present characterization and in vitro biological evaluation data indicate that this nanoplatform can be considered as a promising theragnostic nanoplatform for combined imaging and therapy of several tumors

  18. Fatal adverse drug reactions of anticancer drugs detected by all-case post-marketing surveillance in Japan.

    Science.gov (United States)

    Mori, Jinichi; Tanimoto, Tetsuya; Miura, Yuji; Kami, Masahiro

    2015-06-01

    All-case post-marketing surveillance of newly approved anticancer drugs is usually conducted on all patients in Japan. The present study investigates whether all-case post-marketing surveillance identifies fatal adverse drug reactions undetected before market entry. We examined fatal adverse drug reactions identified via all-case post-marketing surveillance by reviewing the disclosed post-marketing surveillance results, and determined the time points in which the fatal adverse drug reactions were initially reported by reviewing drug labels. We additionally scanned emergency alerts on the Japanese regulatory authority website to assess the relationship between all-case post-marketing surveillance and regulatory action. Twenty-five all-case post-marketing surveillances were performed between January 1999 and December 2009. Eight all-case post-marketing surveillances with final results included information on all fatal cases. Of these, the median number of patients was 1287 (range: 106-4998), the median number of fatal adverse drug reactions was 14.5 (range: 4-23). Of the 111 fatal adverse drug reactions detected in the eight post-marketing surveillances, only 28 (25.0%) and 22 (19.6%) were described on the initial global and the initial Japanese drug label, respectively, and 58 (52.3%) fatal adverse drug reactions were first described in the all-case post-marketing surveillance reports. Despite this, the regulatory authority issued only four warning letters, and two of these were prompted by case reports from the all-case post-marketing surveillance. All-case post-marketing surveillance of newly approved anticancer drugs in Japan was useful for the rigorous compilation of non-specific adverse drug reactions, but it rarely detected clinically significant fatal adverse drug reactions. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Anticancer peptides from bacteria

    Directory of Open Access Journals (Sweden)

    Tomasz M. Karpiński

    2013-08-01

    Full Text Available Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data regarding the properties, action and anticancer activity of listed peptides.

  20. ActRII blockade protects mice from cancer cachexia and prolongs survival in the presence of anti-cancer treatments.

    Science.gov (United States)

    Hatakeyama, Shinji; Summermatter, Serge; Jourdain, Marie; Melly, Stefan; Minetti, Giulia C; Lach-Trifilieff, Estelle

    2016-01-01

    Cachexia affects the majority of patients with advanced cancer and is associated with reduced treatment tolerance, response to therapy, quality of life, and life expectancy. Cachectic patients with advanced cancer often receive anti-cancer therapies against their specific cancer type as a standard of care, and whether specific ActRII inhibition is efficacious when combined with anti-cancer agents has not been elucidated yet. In this study, we evaluated interactions between ActRII blockade and anti-cancer agents in CT-26 mouse colon cancer-induced cachexia model. CDD866 (murinized version of bimagrumab) is a neutralizing antibody against the activin receptor type II (ActRII) preventing binding of ligands such as myostatin and activin A, which are involved in cancer cachexia. CDD866 was evaluated in association with cisplatin as a standard cytotoxic agent or with everolimus, a molecular-targeted agent against mammalian target of rapamycin (mTOR). In the early studies, the treatment effect on cachexia was investigated, and in the additional studies, the treatment effect on progression of cancer and the associated cachexia was evaluated using body weight loss or tumor volume as interruption criteria. Cisplatin accelerated body weight loss and tended to exacerbate skeletal muscle loss in cachectic animals, likely due to some toxicity of this anti-cancer agent. Administration of CDD866 alone or in combination with cisplatin protected from skeletal muscle weight loss compared to animals receiving only cisplatin, corroborating that ActRII inhibition remains fully efficacious under cisplatin treatment. In contrast, everolimus treatment alone significantly protected the tumor-bearing mice against skeletal muscle weight loss caused by CT-26 tumor. CDD866 not only remains efficacious in the presence of everolimus but also showed a non-significant trend for an additive effect on reversing skeletal muscle weight loss. Importantly, both combination therapies slowed down time

  1. Large-scale automatic extraction of side effects associated with targeted anticancer drugs from full-text oncological articles.

    Science.gov (United States)

    Xu, Rong; Wang, QuanQiu

    2015-06-01

    Targeted anticancer drugs such as imatinib, trastuzumab and erlotinib dramatically improved treatment outcomes in cancer patients, however, these innovative agents are often associated with unexpected side effects. The pathophysiological mechanisms underlying these side effects are not well understood. The availability of a comprehensive knowledge base of side effects associated with targeted anticancer drugs has the potential to illuminate complex pathways underlying toxicities induced by these innovative drugs. While side effect association knowledge for targeted drugs exists in multiple heterogeneous data sources, published full-text oncological articles represent an important source of pivotal, investigational, and even failed trials in a variety of patient populations. In this study, we present an automatic process to extract targeted anticancer drug-associated side effects (drug-SE pairs) from a large number of high profile full-text oncological articles. We downloaded 13,855 full-text articles from the Journal of Oncology (JCO) published between 1983 and 2013. We developed text classification, relationship extraction, signaling filtering, and signal prioritization algorithms to extract drug-SE pairs from downloaded articles. We extracted a total of 26,264 drug-SE pairs with an average precision of 0.405, a recall of 0.899, and an F1 score of 0.465. We show that side effect knowledge from JCO articles is largely complementary to that from the US Food and Drug Administration (FDA) drug labels. Through integrative correlation analysis, we show that targeted drug-associated side effects positively correlate with their gene targets and disease indications. In conclusion, this unique database that we built from a large number of high-profile oncological articles could facilitate the development of computational models to understand toxic effects associated with targeted anticancer drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Peptide-based proteasome inhibitors in anticancer drug design.

    Science.gov (United States)

    Micale, Nicola; Scarbaci, Kety; Troiano, Valeria; Ettari, Roberta; Grasso, Silvana; Zappalà, Maria

    2014-09-01

    The identification of the key role of the eukaryotic 26S proteasome in regulated intracellular proteolysis and its importance as a target in many pathological conditions wherein the proteasomal activity is defective (e.g., malignancies, autoimmune diseases, neurodegenerative diseases, etc.) prompted several research groups to the development of specific inhibitors of this multicatalytic complex with the aim of obtaining valid drug candidates. In regard to the anticancer therapy, the peptide boronate bortezomib (Velcade®) represents the first molecule approved by FDA for the treatment of multiple myeloma in 2003 and mantle cell lymphoma in 2006. Since then, a plethora of molecules targeting the proteasome have been identified as potential anticancer agents and a few of them reached clinical trials or are already in the market (i.e., carfilzomib; Kyprolis®). In most cases, the design of new proteasome inhibitors (PIs) takes into account a proven peptide or pseudopeptide motif as a base structure and places other chemical entities throughout the peptide skeleton in such a way to create an efficacious network of interactions within the catalytic sites. The purpose of this review is to provide an in-depth look at the current state of the research in the field of peptide-based PIs, specifically those ones that might find an application as anticancer agents. © 2014 Wiley Periodicals, Inc.

  3. Optimizing anticancer drug treatment in pregnant cancer patients : pharmacokinetic analysis of gestation-induced changes for doxorubicin, epirubicin, docetaxel and paclitaxel

    NARCIS (Netherlands)

    van Hasselt, J G C; van Calsteren, K; Heyns, L; Han, S; Mhallem Gziri, M; Schellens, J H M; Beijnen, J H; Huitema, A D R; Amant, F

    2014-01-01

    BACKGROUND: Pregnant patients with cancer are increasingly treated with anticancer drugs, although the specific impact of pregnancy-induced physiological changes on the pharmacokinetics (PK) of anticancer drugs and associated implications for optimal dose regimens remains unclear. Our objectives

  4. Thiazolidinone motif in anticancer drug discovery. Experience of DH LNMU medicinal chemistry scientific group

    Directory of Open Access Journals (Sweden)

    Subtel’na I. Yu.

    2011-04-01

    Full Text Available The aim was analysis of 4-thiazolidinones and related heterocyclic systems anticancer activity data and formation of some rational design directions of potential anticancer agents. Synthetic research carried out in Danylo Halytsky Lviv National Medical University (DH LNMU allowed us to propose a whole number of new molecular design directions of biological active 4-thiazolidinones and related heterocyclic systems, as well as obtain directed library that numbers over 5000 of novel compounds. At the present time in vitro anticancer activity screening was carried out for more than 1000 compounds (US NCI protocol (Developmental Therapeutic Program, among them 167 compounds showed high antitumor activity level. For the purpose of optimization and rational design of highly active molecules with optimal «drug-like» characteristics and discovering of possible mechanism of action SAR, QSAR analysis and molecular docking were carried out. The ultimate aim of the project is creating of innovative synthetic drug with special mechanism of action and sufficient pharmacological and toxicological features. Some aspects of structure–activity relationships were determined and structure design directions were proposed. The series of active compounds with high anticancer activity and/or selectivity levels were selected.

  5. Preparation of slow release anticancer drug by means of radiation technique and IT's therapeutic effect on sold tumor of mice

    International Nuclear Information System (INIS)

    Li Ximing; Shen Weiming; Liu Chengjie; Hu Xu

    1991-01-01

    In order to minimize the toxic effect of chemotherapy of malignant tumors, the authors use a method of radiation induced cast polymerization of hydrophilic monomer at low temperature for immobilization the anticancer drug, 5-Fluorouracil, into the polymer matrix. The anticancer drug-polymer composite called slow release anticancer drug was used for treatment the transplantable squamous cell carcinoma in mice 615 and the transplantable sarcoma (S180) in Kunming mice. There were marked difference between the treated group and the control group. That is the higher inhibition ratio and lower toxic effect were reported

  6. Nanoformulation for anticancer drug delivery: Enhanced pharmacokinetics and circulation

    Science.gov (United States)

    Parekh, Gaurav

    In this study, we have explored the application of the Layer-by-Layer (LbL) assembly technique for improving injectable drug delivery systems of low soluble anticancer drugs (e.g. Camptothecin (CPT), Paclitaxel (PTX) or Doxorubicin (DOX)). For this study, a polyelectrolyte shell encapsulates different types of drug nanocores (e.g. soft core, nanomicelle or solid lipid nanocores).The low soluble drugs tend to crystallize and precipitate in an aqueous medium. This is the reason they cannot be injected and may have low concentrations and low circulation time in the blood. Even though these drugs when present in the cancer microenvironment have high anti-tumor inhibition, the delivery to the tumor site after intravenous administration is a challenge. We have used FDA-approved biopolymers for the process and elaborated formation of 60-90 nm diameter initial cores, which was stabilized by multilayer LbL shells for controlled release and longer circulation. A washless LbL assembly process was applied as an essential advancement in nano-assembly technology using low density nanocore (lipids) and preventing aggregation. This advancement reduced the number of process steps, enhanced drug loading capacity, and prevented the loss of expensive polyelectrolytes. Finally, we elaborated a general nano-encapsulation process, which allowed these three important anticancer drug core-shell nanocapsules with diameters of ca. 100-130 nm (this small size is a record for LbL encapsulation technique) to be stable in the serum and the blood for at least one week, efficient for cancer cell culture studies, injectable to mice with circulation for 4 hrs, and effective in suppressing tumors. This work is divided into three studies. The first study (CHAPTER 4) explores the application of LbL assembly for encapsulating a soft core of albumin protein and CPT anticancer drug. In order to preserve the activity of drug in the core, a unique technique of pH reversal is employed where the first few

  7. Hedgehog Signals Mediate Anti-Cancer Drug Resistance in Three-Dimensional Primary Colorectal Cancer Organoid Culture

    Directory of Open Access Journals (Sweden)

    Tatsuya Usui

    2018-04-01

    Full Text Available Colorectal cancer is one of the most common causes of cancer death worldwide. In patients with metastatic colorectal cancer, combination treatment with several anti-cancer drugs is employed and improves overall survival in some patients. Nevertheless, most patients with metastatic disease are not cured owing to the drug resistance. Cancer stem cells are known to regulate resistance to chemotherapy. In the previous study, we established a novel three-dimensional organoid culture model from tumor colorectal tissues of human patients using an air–liquid interface (ALI method, which contained numerous cancer stem cells and showed resistance to 5-fluorouracil (5-FU and Irinotecan. Here, we investigate which inhibitor for stem cell-related signal improves the sensitivity for anti-cancer drug treatment in tumor ALI organoids. Treatment with Hedgehog signal inhibitors (AY9944, GANT61 decreases the cell viability of organoids compared with Notch (YO-01027, DAPT and Wnt (WAV939, Wnt-C59 signal inhibitors. Combination treatment of AY9944 or GANT61 with 5-FU, Irinotecan or Oxaliplatin decreases the cell viability of tumor organoids compared with each anti-cancer drug alone treatment. Treatment with AY9944 or GANT61 inhibits expression of stem cell markers c-Myc, CD44 and Nanog, likely through the decrease of their transcription factor, GLI-1 expression. Combination treatment of AY9944 or GANT61 with 5-FU or Irinotecan also prevents colony formation of colorectal cancer cell lines HCT116 and SW480. These findings suggest that Hedgehog signals mediate anti-cancer drug resistance in colorectal tumor patient-derived ALI organoids and that the inhibitors are useful as a combinational therapeutic strategy against colorectal cancer.

  8. The synthesis, structure-toxicity relationship of cisplatin derivatives for the mechanism research of cisplatin-induced nephrotoxicity.

    Science.gov (United States)

    Hu, Jing; Wu, Tian-Ming; Li, Hong-Ze; Zuo, Ze-Ping; Zhao, Ying-Lan; Yang, Li

    2017-08-01

    Cisplatin is a widely used antineoplastic drug, while its nephrotoxicity limits the clinical application. Although several mechanisms contributing to nephrotoxicity have been reported, the direct protein targets are unclear. Herein we reported the synthesis of 29 cisplatin derivatives and the structure-toxicity relationship (STR) of these compounds with MTT assay in human renal proximal tubule cells (HK-2) and pig kidney epithelial cells (LLC-PK1). To the best of our knowledge, this study represented the first report regarding the structure-toxicity relationship (STR) of cisplatin derivatives. The potency of biotin-pyridine conjugated derivative 3 met the requirement for target identification, and the preliminary chemical proteomics results suggested that it is a promising tool for further target identification of cisplatin-induced nephrotoxicity. Copyright © 2017. Published by Elsevier Ltd.

  9. Anticancer peptides from bacteria

    OpenAIRE

    Tomasz M. Karpiński; Anna K. Szkaradkiewicz

    2013-01-01

    Cancer is a leading cause of death in the world. The rapid development of medicine and pharmacology allows to create new and effective anticancer drugs. Among modern anticancer drugs are bacterial proteins. Until now has been shown anticancer activity among others azurin and exotoxin A from Pseudomonas aeruginosa, Pep27anal2 from Streptococcus pneumoniae, diphtheria toxin from Corynebacterium diphtheriae, and recently discovered Entap from Enterococcus sp. The study presents the current data ...

  10. Drug Repositioning of Proton Pump Inhibitors for Enhanced Efficacy and Safety of Cancer Chemotherapy

    Directory of Open Access Journals (Sweden)

    Kenji Ikemura

    2017-12-01

    Full Text Available Proton pump inhibitors (PPIs, H+/K+-ATPase inhibitors, are the most commonly prescribed drugs for the treatment of gastroesophageal reflux and peptic ulcer diseases; they are highly safe and tolerable. Since PPIs are frequently used in cancer patients, studies investigating interactions between PPIs and anticancer agents are of particular importance to achieving effective and safe cancer chemotherapy. Several studies have revealed that PPIs inhibit not only the H+/K+-ATPase in gastric parietal cells, but also the vacuolar H+-ATPase (V-ATPase overexpressed in tumor cells, as well as the renal basolateral organic cation transporter 2 (OCT2 associated with pharmacokinetics and/or renal accumulation of various drugs, including anticancer agents. In this mini-review, we summarize the current knowledge regarding the impact of PPIs on the efficacy and safety of cancer chemotherapeutics via inhibition of targets other than the H+/K+-ATPase. Co-administration of clinical doses of PPIs protected kidney function in patients receiving cisplatin and fluorouracil, presumably by decreasing accumulation of cisplatin in the kidney via OCT2 inhibition. In addition, co-administration or pretreatment with PPIs could inhibit H+ transport via the V-ATPase in tumor cells, resulting in lower extracellular acidification and intracellular acidic vesicles to enhance the sensitivity of the tumor cells to the anticancer agents. In the present mini-review, we suggest that PPIs enhance the efficacy and safety of anticancer agents via off-target inhibition (e.g., of OCT2 and V-ATPase, rather than on-target inhibition of the H+/K+-ATPase. The present findings should provide important information to establish novel supportive therapy with PPIs during cancer chemotherapy.

  11. A pH-Sensitive Injectable Nanoparticle Composite Hydrogel for Anticancer Drug Delivery

    Directory of Open Access Journals (Sweden)

    Yuanfeng Ye

    2016-01-01

    Full Text Available According to previous reports, low pH-triggered nanoparticles were considered to be excellent carriers for anticancer drug delivery, for the reason that they could trigger encapsulated drug release at mild acid environment of tumor. Herein, an acid-sensitive β-cyclodextrin derivative, namely, acetalated-β-cyclodextrin (Ac-β-CD, was synthesized by acetonation and fabricated to nanoparticles through single oil-in-water (o/w emulsion technique. At the same time, camptothecin (CPT, a hydrophobic anticancer drug, was encapsulated into Ac-β-CD nanoparticles in the process of nanoparticle fabrication. Formed nanoparticles exhibited nearly spherical structure with diameter of 209±40 nm. The drug release behavior of nanoparticles displayed pH dependent changes due to hydrolysis of Ac-β-CD. In order to overcome the disadvantages of nanoparticle and broaden its application, injectable hydrogels with Ac-β-CD nanoparticles were designed and prepared by simple mixture of nanoparticles solution and graphene oxide (GO solution in this work. The injectable property was confirmed by short gelation time and good mobility of two precursors. Hydrogels were characterized by dynamic mechanical test and SEM, which also reflected some structural features. Moreover, all hydrogels underwent a reversible sol-gel transition in alkaline environment. Finally, the results of in vitro drug release profile indicated that hydrogel could control drug release or bind drug inside depending on the pH value of released medium.

  12. Benefit and harms of new anti-cancer drugs.

    Science.gov (United States)

    Vera-Badillo, Francisco E; Al-Mubarak, Mustafa; Templeton, Arnoud J; Amir, Eitan

    2013-06-01

    Phase III randomized controlled trials (RCTs) assess clinically important differences in endpoints that reflect benefit to and harm of patients. Defining benefit of cancer drugs can be difficult. Overall survival and quality of life are the most relevant primary endpoints, but difficulty in measuring these mean that other endpoints are often used, although their surrogacy or clinical relevance has not always been established. In general, advances in drug development have led to numerous new drugs to enter the market. Pivotal RCT of several new drugs have shown that benefit appeared greater for targeted anticancer agents than for chemotherapeutic agents. This effect seems particularly evident with targeted agents evaluated in biomarker-driven studies. Unfortunately, new therapies have also shown an increase in toxicity. Such toxicity is not always evident in the initial reports of RCTs. This may be a result of a statistical inability to detect differences between arms of RCTs, or occasionally due to biased reporting. There are several examples where reports of new toxicities could only be found in drug labels. In some cases, the small improvement in survival has come at a cost of substantial excess toxicity, leading some to consider such therapy as having equipoise.

  13. Development and characterization of magnetic iron oxide nanoparticles with a cisplatin-bearing polymer coating for targeted drug delivery

    Directory of Open Access Journals (Sweden)

    Unterweger H

    2014-08-01

    Full Text Available Harald Unterweger,1 Rainer Tietze,1 Christina Janko,1 Jan Zaloga,1 Stefan Lyer,1 Stephan Dürr,1 Nicola Taccardi,2 Ourania-Menti Goudouri,3 Alexander Hoppe,3 Dietmar Eberbeck,4 Dirk W Schubert,5 Aldo R Boccaccini,3 Christoph Alexiou1 1ENT Department, Section of Experimental Oncology and Nanomedicine (SEON, Else Kroener-Fresenius-Stiftung-Professorship, University Hospital Erlangen, 2Chair of Chemical Engineering I (Reaction Engineering, 3Institute of Biomaterials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, 4Physikalisch-Technische Bundesanstalt, Berlin, 5Institute of Polymer Materials, Department of Materials Science and Engineering, University Erlangen-Nuremberg, Erlangen, Germany Abstract: A highly selective and efficient cancer therapy can be achieved using magnetically directed superparamagnetic iron oxide nanoparticles (SPIONs bearing a sufficient amount of the therapeutic agent. In this project, SPIONs with a dextran and cisplatin-bearing hyaluronic acid coating were successfully synthesized as a novel cisplatin drug delivery system. Transmission electron microscopy images as well as X-ray diffraction analysis showed that the individual magnetite particles were around 4.5 nm in size and monocrystalline. The small crystallite sizes led to the superparamagnetic behavior of the particles, which was exemplified in their magnetization curves, acquired using superconducting quantum interference device measurements. Hyaluronic acid was bound to the initially dextran-coated SPIONs by esterification. The resulting amide bond linkage was verified using Fourier transform infrared spectroscopy. The additional polymer layer increased the vehicle size from 22 nm to 56 nm, with a hyaluronic acid to dextran to magnetite weight ratio of 51:29:20. A maximum payload of 330 µg cisplatin/mL nanoparticle suspension was achieved, thus the particle size was further increased to around 77 nm with a zeta

  14. [Influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin].

    Science.gov (United States)

    Shen, Congxiang; Liu, Yanhui; Wen, Zhong; Yang, Keke; Li, Guanxue; Zhang, Shenhua; Zhang, Xinyu

    2015-06-23

    To explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. Transfected nasopharyngeal carcinoma 5-8F cell lines with pCDH-CMV-PinX1-copGFP vector constructed by lentivirus to generate Lenti-PinX1-5-8F cells containing PinX1 gene, using Lenti-Ctrl-5-8F cell (blank vector without PinX1 gene was used to transfect 5-8F cell lines) and 5-8F cell as controls. Expression of PinX1 gene, telomerase activity, the inhibition of cancer cells proliferation, combined anticancer effect with Cisplatin and the expression of lung resistance protein (LRP) and Bcl-2 were detected with fluorescent quantitation polymerase chain reaction (PCR), flow cytometry, thiazolyl blue (MTT) method, areole test, Western blot and drug sensitivity test, respectively, in four groups (Lenti-PinX1-5-8F cell + Cisplatin, Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell) so as to explore the influence and mechanism of PinX1 gene on the chemotherapy sensitivity of nasopharyngeal carcinoma cells in response to Cisplatin. The telomerase activity in Lenti-PinX1-5-8F cell (0.146 ± 0.004) was lower than those in the other two control cells (Lenti-Ctrl-5-8F cell: 0.967 ± 0.016, 5-8F cell: 1.000 ± 0.034, both P Cisplatin after lower level telomerase activity induced by PinX1 gene. Proliferation index (PI) (%) in Lenti-PinX1-5-8F cell + Cisplatin (14.39 ± 3.66) was also less than the other groups (Lenti-PinX1-5-8F cell, Cisplatin and 5-8F cell groups, 32.97 ± 3.00, 31.18 ± 4.24 and 47.19 ± 4.19, all P Cisplatin, which may be mediated by the down-regulation of telomerase activity and the inhibition of LRP and Bcl-2 gene in nasopharyngeal carcinoma cells.

  15. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C

    International Nuclear Information System (INIS)

    Kim, Kyu Kwang; Lange, Thilo S; Singh, Rakesh K; Brard, Laurent; Moore, Richard G

    2012-01-01

    Our recent study showed that tetrathiomolybdate (TM), a drug to treat copper overload disorders, can sensitize drug-resistant endometrial cancer cells to reactive oxygen species (ROS)-generating anticancer drug doxorubicin. To expand these findings in the present study we explore TM efficacy in combination with a spectrum of ROS-generating anticancer drugs including mitomycin C, fenretinide, 5-fluorouracil and doxorubicin in ovarian cancer cells as a model system. The effects of TM alone or in combination with doxorubicin, mitomycin C, fenretinide, or 5-fluorouracil were evaluated using a sulforhodamine B assay. Flow cytometry was used to detect the induction of apoptosis and ROS generation. Immunoblot analysis was carried out to investigate changes in signaling pathways. TM potentiated doxorubicin-induced cytotoxicity and modulated key regulators of apoptosis (PARP, caspases, JNK and p38 MAPK) in SKOV-3 and A2780 ovarian cancer cell lines. These effects were linked to the increased production of ROS, as shown in SKOV-3 cells. ROS scavenging by ascorbic acid blocked the sensitization of cells by TM. TM also sensitized SKOV-3 to mitomycin C, fenretinide, and 5-fluorouracil. The increased cytotoxicity of these drugs in combination with TM was correlated with the activity of ROS, loss of a pro-survival factor (e.g. XIAP) and the appearance of a pro-apoptotic marker (e.g. PARP cleavage). Our data show that TM increases the efficacy of various anticancer drugs in ovarian cancer cells in a ROS-dependent manner

  16. Collateral methotrexate resistance in cisplatin-selected murine leukemia cells

    Directory of Open Access Journals (Sweden)

    Bhushan A.

    1999-01-01

    Full Text Available Resistance to anticancer drugs is a major cause of failure of many therapeutic protocols. A variety of mechanisms have been proposed to explain this phenomenon. The exact mechanism depends upon the drug of interest as well as the tumor type treated. While studying a cell line selected for its resistance to cisplatin we noted that the cells expressed a >25,000-fold collateral resistance to methotrexate. Given the magnitude of this resistance we elected to investigate this intriguing collateral resistance. From a series of investigations we have identified an alteration in a membrane protein of the resistant cell as compared to the sensitive cells that could be the primary mechanism of resistance. Our studies reviewed here indicate decreased tyrosine phosphorylation of a protein (molecular mass = 66 in the resistant cells, which results in little or no transfer of methotrexate from the medium into the cell. Since this is a relatively novel function for tyrosine phosphorylation, this information may provide insight into possible pharmacological approaches to modify therapeutic regimens by analyzing the status of this protein in tumor samples for a better survival of the cancer patients.

  17. Analysis of damaged DNA / proteins interactions: Methodological optimizations and applications to DNA lesions induced by platinum anticancer drugs

    International Nuclear Information System (INIS)

    Bounaix Morand du Puch, Ch

    2010-10-01

    DNA lesions contribute to the alteration of DNA structure, thereby inhibiting essential cellular processes. Such alterations may be beneficial for chemotherapies, for example in the case of platinum anticancer agents. They generate bulky adducts that, if not repaired, ultimately cause apoptosis. A better understanding of the biological response to such molecules can be obtained through the study of proteins that directly interact with the damages. These proteins constitute the DNA lesions interactome. This thesis presents the development of tools aiming at increasing the list of platinum adduct-associated proteins. Firstly, we designed a ligand fishing system made of damaged plasmids immobilized onto magnetic beads. Three platinum drugs were selected for our study: cisplatin, oxali-platin and satra-platin. Following exposure of the trap to nuclear extracts from HeLa cancer cells and identification of retained proteins by proteomics, we obtained already known candidates (HMGB1, hUBF, FACT complex) but also 29 new members of the platinated-DNA interactome. Among them, we noted the presence of PNUTS, TOX4 and WDR82, which associate to form the recently-discovered PTW/PP complex. Their capture was then confirmed with a second model, namely breast cancer cell line MDA MB 231, and the biological consequences of such an interaction now need to be elucidated. Secondly, we adapted a SPRi bio-chip to the study of platinum-damaged DNA/proteins interactions. Affinity of HMGB1 and newly characterized TOX4 for adducts generated by our three platinum drugs could be validated thanks to the bio-chip. Finally, we used our tools, as well as analytical chemistry and biochemistry methods, to evaluate the role of DDB2 (a factor involved in the recognition of UV-induced lesions) in the repair of cisplatin adducts. Our experiments using MDA MB 231 cells differentially expressing DDB2 showed that this protein is not responsible for the repair of platinum damages. Instead, it appears to act

  18. Interaction of celecoxib with different anti-cancer drugs is antagonistic in breast but not in other cancer cells

    International Nuclear Information System (INIS)

    El-Awady, Raafat A.; Saleh, Ekram M.; Ezz, Marwa; Elsayed, Abeer M.

    2011-01-01

    Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide ± celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 following all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: → Celecoxib may enhance effects of anticancer drugs. → Its combination with four drugs was tested in five cancer cell

  19. When ubiquitin meets NF-κB: a trove for anti-cancer drug development.

    Science.gov (United States)

    Wu, Zhao-Hui; Shi, Yuling

    2013-01-01

    During the last two decades, the studies on ubiquitination in regulating transcription factor NF-κB activation have elucidated the expanding role of ubiquitination in modulating cellular events by non-proteolytic mechanisms, as well as by proteasomal degradation. The significance of ubiquitination has also been recognized in regulating gene transcription, epigenetic modifications, kinase activation, DNA repair and subcellular translocation. This progress has been translated into novel strategies for developing anti-cancer therapeutics, exemplified by the success of the first FDA-approved proteasome inhibitor drug Bortezomib. Here we discuss the current understanding of the ubiquitin-proteasome system and how it is involved in regulating NF-κB signaling pathways in response to a variety of stimuli. We also focus on the recent progress of anti-cancer drug development targeting various steps of ubiquitination process, and the potential of these drugs in cancer treatment as related to their impact on NF-κB activation.

  20. Distribution and clearance of PEG-single-walled carbon nanotube cancer drug delivery vehicles in mice.

    Science.gov (United States)

    Bhirde, Ashwin A; Patel, Sachin; Sousa, Alioscka A; Patel, Vyomesh; Molinolo, Alfredo A; Ji, Youngmi; Leapman, Richard D; Gutkind, J Silvio; Rusling, James F

    2010-12-01

    To study the distribution and clearance of polyethylene glycol (PEG)-ylated single-walled carbon nanotube (SWCNTs) as drug delivery vehicles for the anticancer drug cisplatin in mice. PEG layers were attached to SWCNTs and dispersed in aqueous media and characterized using dynamic light scattering, scanning transmission electron microscopy and Raman spectroscopy. Cytotoxicity was assessed in vitro using Annexin-V assay, and the distribution and clearance pathways in mice were studied by histological staining and Raman spectroscopy. Efficacy of PEG-SWCNT-cisplatin for tumor growth inhibition was studied in mice. PEG-SWCNTs were efficiently dispersed in aqueous media compared with controls, and did not induce apoptosis in vitro. Hematoxylin and eosin staining, and Raman bands for SWCNTs in tissues from several vital organs from mice injected intravenously with nanotube bioconjugates revealed that control SWCNTs were lodged in lung tissue as large aggregates compared with the PEG-SWCNTs, which showed little or no accumulation. Characteristic SWCNT Raman bands in feces revealed the presence of bilary or renal excretion routes. Attachment of cisplatin on bioconjugates was visualized with Z-contrast scanning transmission electron microscopy. PEG-SWCNT-cisplatin with the attached targeting ligand EGF successfully inhibited growth of head and neck tumor xenografts in mice. PEG-SWCNTs, as opposed to control SWCNTs, form more highly dispersed delivery vehicles that, when loaded with both cisplatin and EGF, inhibit growth of squamous cell tumors.

  1. X-ray analysis of the effect of the 5-HT3 receptor antagonist granisetron on gastrointestinal motility in rats repeatedly treated with the antitumoral drug cisplatin.

    Science.gov (United States)

    Vera, Gema; López-Pérez, Ana Esther; Martínez-Villaluenga, María; Cabezos, Pablo Antonio; Abalo, Raquel

    2014-08-01

    Cancer chemotherapy is associated with the development of numerous adverse effects, including nausea, emesis and other alterations in gastrointestinal (GI) motility. The administration of 5-HT3 receptor antagonists has provided a clinical advance in the treatment of chemotherapy-induced vomiting but these drugs lose efficacy throughout chronic treatment. The effects of these drugs in experimental animals under chronic administration are not well known. Our aim was to study, using radiographic methods, the effect of the 5-HT3 receptor antagonist granisetron on GI dysmotility induced in the rat by repeated cisplatin administration. First, invasive methods were used to select a dose of granisetron capable of reducing increased stomach weight due to acute cisplatin administration (6 mg/kg, ip). Second, rats received two intraperitoneal (ip) injections once a week for 4 weeks: granisetron (1 mg/kg, ip) or saline and, thirty min later, saline or cisplatin (2 mg/kg, ip). Body weight gain was measured throughout treatment. Radiological techniques were used to determine the acute (after first dose) and chronic (after last dose) effects of cisplatin and/or granisetron on GI motility. Repeated cisplatin-induced weight loss which granisetron did not prevent. Gastric emptying was delayed after the first cisplatin administration. Granisetron completely prevented this effect. After weekly administration, cisplatin-induced gastric dysmotility was enhanced and granisetron was not capable of completely preventing this effect. Granisetron prevents gastric emptying alterations, but its efficacy decreases throughout antineoplastic treatment. This might be due to the enhanced effect of cisplatin.

  2. Proteomic and metallomic strategies for understanding the mode of action of anticancer metallodrugs.

    Science.gov (United States)

    Gabbiani, Chiara; Magherini, Francesca; Modesti, Alessandra; Messori, Luigi

    2010-05-01

    Since the discovery of cisplatin and its introduction in the clinics, metal compounds have been intensely investigated in view of their possible application in cancer therapy. In this frame, a deeper understanding of their mode of action, still rather obscure, might turn crucial for the design and the obtainment of new and better anticancer agents. Due to the extreme complexity of the biological systems, it is now widely accepted that innovative and information-rich methods are absolutely needed to afford such a goal. Recently, both proteomic and metallomic strategies were successfully implemented for the elucidation of specific mechanistic features of anticancer metallodrugs within an innovative "Systems Biology" perspective. Particular attention was paid to the following issues: i) proteomic studies of the molecular basis of platinum resistance; ii) proteomic analysis of cellular responses to cytotoxic metallodrugs; iii) metallomic studies of the transformation and fate of metallodrugs in cellular systems. Notably, those pioneering studies, that are reviewed here, allowed a significant progress in the understanding of the molecular mechanisms of metal based drugs at the cellular level. A further extension of those studies and a closer integration of proteomic and metallomic strategies and technologies might realistically lead to rapid and significant advancements in the mechanistic knowledge of anticancer metallodrugs.

  3. Management of cisplatin toxicity and chromosomal aberration by vitamin E in male rats

    International Nuclear Information System (INIS)

    Ali, S.E.; Mohamed, N.E.; Salama, M.A.

    2007-01-01

    Cisplatin is one of the most active antineoplastic drugs showing a broad therapeutic activity spectrum against different types of human neoplasms. To elvaute the subacute toxicity of the drug and to test the probable preventive effect of vitamin E in rats, forty-eight male albino rats were used in this study. Animals were classified into four groups, control, vitamin E, cisplatin and vitamin E with cisplatin. Vitamin E was administered orally at a dose of 2 mg/rat for two weeks prior to cisplatin intraperitoneal injection (5 mg/kg as a single dose) and then administration of vitamin E which was continued for two another weeks (end of experiment). The changes in body weight, counts of RBC and WBC, lipid peroxide, Na + , K + , chromosomal aberration and aldosterone hormone were recorded. Cisplatin administration caused 57.4% and 60% mortality at 3 and 5 weeks intervals. Regular intake of vitamin E induced significant role against the physiological disorders and chromosomal alterations occurred after cisplatin drug administration. The present study is directed to demonstrate the toxic effect of cisplatin on mortality, body weight, blood cells, aldosterone hormone, lipid peroxidation, Na + , K + , urea, creatinia as well as on chromosomal pattern and the efficacy of vitamin E in modulating cisplatin toxicity

  4. Phytantriol based liquid crystal provide sustained release of anticancer drug as a novel embolic agent.

    Science.gov (United States)

    Qin, Lingzhen; Mei, Liling; Shan, Ziyun; Huang, Ying; Pan, Xin; Li, Ge; Gu, Yukun; Wu, Chuanbin

    2016-01-01

    Phytantriol has received increasing amount of attention in drug delivery system, however, the ability of the phytantriol based liquid crystal as a novel embolic agent to provide a sustained release delivery system is yet to be comprehensively demonstrated. The purpose of this study was to prepare a phytantriol-based cubic phase precursor solution loaded with anticancer drug hydroxycamptothecine (HCPT) and evaluate its embolization properties, in vitro drug release and cytotoxicity. Phase behavior of the phytantriol-solvent-water system was investigated by visual inspection and polarized light microscopy, and no phase transition was observed in the presence of HCPT within the studied dose range. Water uptake by the phytantriol matrices was determined gravimetrically, suggesting that the swelling complied with the second order kinetics. In vitro evaluation of embolic efficacy indicated that the isotropic solution displayed a satisfactory embolization effect. In vitro drug release results showed a sustained-release up to 30 days and the release behavior was affected by the initial composition and drug loading. Moreover, the in vitro cytotoxicity and anticancer activity were evaluated by MTT assay. No appreciable mortality was observed for NIH 3T3 cells after 48 h exposure to blank formulations, and the anticancer activity of HCPT-loaded formulations to HepG2 and SMMC7721 cells was strongly dependent on the drug loading and treatment time. Taken together, these results indicate that phytantriol-based cubic phase embolic gelling solution is a promising potential carrier for HCPT delivery to achieve a sustained drug release by vascular embolization, and this technology may be potential for clinical applications.

  5. Suramin protects from cisplatin-induced acute kidney injury

    Science.gov (United States)

    Dupre, Tess V.; Doll, Mark A.; Shah, Parag P.; Sharp, Cierra N.; Kiefer, Alex; Scherzer, Michael T.; Saurabh, Kumar; Saforo, Doug; Siow, Deanna; Casson, Lavona; Arteel, Gavin E.; Jenson, Alfred Bennett; Megyesi, Judit; Schnellmann, Rick G.; Beverly, Levi J.

    2015-01-01

    Cisplatin, a commonly used cancer chemotherapeutic, has a dose-limiting side effect of nephrotoxicity. Approximately 30% of patients administered cisplatin suffer from kidney injury, and there are limited treatment options for the treatment of cisplatin-induced kidney injury. Suramin, which is Federal Drug Administration-approved for the treatment of trypanosomiasis, improves kidney function after various forms of kidney injury in rodent models. We hypothesized that suramin would attenuate cisplatin-induced kidney injury. Suramin treatment before cisplatin administration reduced cisplatin-induced decreases in kidney function and injury. Furthermore, suramin attenuated cisplatin-induced expression of inflammatory cytokines and chemokines, endoplasmic reticulum stress, and apoptosis in the kidney cortex. Treatment of mice with suramin 24 h after cisplatin also improved kidney function, suggesting that the mechanism of protection is not by inhibition of tubular cisplatin uptake or its metabolism to nephrotoxic species. If suramin is to be used in the context of cancer, then it cannot prevent cisplatin-induced cytotoxicity of cancer cells. Suramin did not alter the dose-response curve of cisplatin in lung adenocarcinoma cells in vitro. In addition, suramin pretreatment of mice harboring lung adenocarcinomas did not alter the initial cytotoxic effects of cisplatin (DNA damage and apoptosis) on tumor cells. These results provide evidence that suramin has potential as a renoprotective agent for the treatment/prevention of cisplatin-induced acute kidney injury and justify future long-term preclinical studies using cotreatment of suramin and cisplatin in mouse models of cancer. PMID:26661653

  6. Impedimetric toxicity assay in microfluidics using free and liposome-encapsulated anticancer drugs

    DEFF Research Database (Denmark)

    Caviglia, Claudia; Zor, Kinga; Montini, Lucia

    2015-01-01

    In this work, we have developed a microfluidic cytotoxicity assay for a cell culture and detection platform, which enables both fluid handling and electrochemical/optical detection. The cytotoxic effect of anticancer drugs doxorubicin (DOX), oxaliplatin (OX) as well as OX-loaded liposomes, develo...

  7. PRESCRIPTION PATTERN OF ANTICANCER DRUGS IN A TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Mary Rohini

    2015-05-01

    Full Text Available Carcinoma is one of the most common cause of morbidity and mortality all over the world . Chemotherapy is main stay of treatment with other modalities in the management. Present study had been conducted to evaluate prescribing pattern of anticancer drugs. An observational, retrospective study was conducted in the oncology department of ESI hos pital over a period of one year. Data of patients greater than 19 years and diagnosed as carcinoma were included in the study. Out of 197 enrolled patients, majority were female (134, 68% and in the age group of 41 - 60 years (147, 74.61% patients. Carcino ma of breast (58, 29.44% was most commonly reported followed by carcinoma head and neck (46, 23.35%, and carcinoma cervix (34, 17.25%. Chemotherapy was commonly used as combination regimens (160, 81.21%. 5 - Fluoro Uracil (5 - FU and platinum based combin ation were most frequently prescribed (60, 30.45% especially in head and neck carcinoma (46, 23.35%. Platinum based combinations were also used in management of lung carcinoma. Dexamethasone, Ranitidine, Ondansetron, were used as palliative therapy eithe r to prevent or manage adverse reactions of anticancer drugs

  8. Biodegradable polymers for targeted delivery of anti-cancer drugs.

    Science.gov (United States)

    Doppalapudi, Sindhu; Jain, Anjali; Domb, Abraham J; Khan, Wahid

    2016-06-01

    Biodegradable polymers have been used for more than three decades in cancer treatment and have received increased interest in recent years. A range of biodegradable polymeric drug delivery systems designed for localized and systemic administration of therapeutic agents as well as tumor-targeting macromolecules has entered into the clinical phase of development, indicating the significance of biodegradable polymers in cancer therapy. This review elaborates upon applications of biodegradable polymers in the delivery and targeting of anti-cancer agents. Design of various drug delivery systems based on biodegradable polymers has been described. Moreover, the indication of polymers in the targeted delivery of chemotherapeutic drugs via passive, active targeting, and localized drug delivery are also covered. Biodegradable polymer-based drug delivery systems have the potential to deliver the payload to the target and can enhance drug availability at desired sites. Systemic toxicity and serious side effects observed with conventional cancer therapeutics can be significantly reduced with targeted polymeric systems. Still, there are many challenges that need to be met with respect to the degradation kinetics of the system, diffusion of drug payload within solid tumors, targeting tumoral tissue and tumor heterogeneity.

  9. Evaluation of the cytotoxicity of the Bithionol - cisplatin combination in a panel of human ovarian cancer cell lines.

    Science.gov (United States)

    Ayyagari, Vijayalakshmi N; Hsieh, Tsung-Han Jeff; Diaz-Sylvester, Paula L; Brard, Laurent

    2017-01-13

    Combination drug therapy appears a promising approach to overcome drug resistance and reduce drug-related toxicities in ovarian cancer treatments. In this in vitro study, we evaluated the antitumor efficacy of cisplatin in combination with Bithionol (BT) against a panel of ovarian cancer cell lines with special focus on cisplatin-sensitive and cisplatin-resistant cell lines. The primary objectives of this study are to determine the nature of the interactions between BT and cisplatin and to understand the mechanism(s) of action of BT-cisplatin combination. The cytotoxic effects of drugs either alone or in combination were evaluated using presto-blue assay. Cellular reactive oxygen species were measured by flow cytometry. Immunoblot analysis was carried out to investigate changes in levels of cleaved PARP, XIAP, bcl-2, bcl-xL, p21 and p27. Luminescent and colorimetric assays were used to test caspases 3/7 and ATX activity. The efficacy of the BT-cisplatin combination depends upon the cell type and concentrations of cisplatin and BT. In cisplatin-sensitive cell lines, BT and cisplatin were mostly antagonistic except when used at low concentrations, where synergy was observed. In contrast, in cisplatin-resistant cells, BT-cisplatin combination treatment displayed synergistic effects at most of the drug ratios/concentrations. Our results further revealed that the synergistic interaction was linked to increased reactive oxygen species generation and apoptosis. Enhanced apoptosis was correlated with loss of pro-survival factors (XIAP, bcl-2, bcl-xL), expression of pro-apoptotic markers (caspases 3/7, PARP cleavage) and enhanced cell cycle regulators p21 and p27. In cisplatin-resistant cell lines, BT potentiated cisplatin-induced cytotoxicity at most drug ratios via enhanced ROS generation and modulation of key regulators of apoptosis. Low doses of BT and cisplatin enhanced efficiency of cisplatin treatment in all the ovarian cancer cell lines tested. Our results suggest

  10. Development of special medical foods and botanical drugs using HemoHIM for cancer patients during radiation therapy

    International Nuclear Information System (INIS)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran

    2010-02-01

    In vivo evaluation on the reductive effects of HemoHIM on the side-effects of radiation and anticancer drug treatment. - Evaluation on the promoting effects of HemoHIM on the tumor growth inhibitory activities of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of the reductive effects of HemoHIM on the immune suppressive side-effects of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of reductive effects of HemoHIM on the self-renewal tissue(intestine) damage of radiation and anticancer drug(5-FU) in mice. · Assessment of toxicological safety of HemoHIM (GLP) and establishment of analytical methods for active/index components of HemoHIM - Assurance of toxicological safety in single-dose and 3 month repeat-dose toxicity test in rats - Establishment of analytical methods for active/index compounds and content analysis result in various production lots. · Production of Special Medical Food pilot products for cancer patients and development of dosage forms for the natural new drugs. - Establishment of optimal formulations including HemoHIM for the Special Medical Food - Production of Special Medical Food pilot products for clinical test, analysis of nutrients, and official declaration of food production - Establishment of production process of HemoHIM for natural drug and production of pilot products for toxicity tests - Development of drug dosage forms of HemoHIM (tablet, granule, capsule) · Clinical evaluation of HemoHIM on reduction of side-effects of radiation and chemotherapy in cancer patients - Subjects: breast cancer patients who completed surgical operation and chemotherapy, HemoHIM administration during and after the radiation therapy (HemoHIM group: 15, placebo group 13) - Administration period: 3 months from few days before RT commencement - Results - Improvement of immunological biomarkers (immune cell subpopulations, cytokine production) - Reduction of and enhanced recovery from radiation skin

  11. Development of special medical foods and botanical drugs using HemoHIM for cancer patients during radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sung Kee; Jung, U Hee; Park, Hae Ran

    2010-02-15

    In vivo evaluation on the reductive effects of HemoHIM on the side-effects of radiation and anticancer drug treatment. - Evaluation on the promoting effects of HemoHIM on the tumor growth inhibitory activities of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of the reductive effects of HemoHIM on the immune suppressive side-effects of radiation and anticancer drug(cisplatin) in tumor-bearing mice. - Evaluation of reductive effects of HemoHIM on the self-renewal tissue(intestine) damage of radiation and anticancer drug(5-FU) in mice. {center_dot} Assessment of toxicological safety of HemoHIM (GLP) and establishment of analytical methods for active/index components of HemoHIM - Assurance of toxicological safety in single-dose and 3 month repeat-dose toxicity test in rats - Establishment of analytical methods for active/index compounds and content analysis result in various production lots. {center_dot} Production of Special Medical Food pilot products for cancer patients and development of dosage forms for the natural new drugs. - Establishment of optimal formulations including HemoHIM for the Special Medical Food - Production of Special Medical Food pilot products for clinical test, analysis of nutrients, and official declaration of food production - Establishment of production process of HemoHIM for natural drug and production of pilot products for toxicity tests - Development of drug dosage forms of HemoHIM (tablet, granule, capsule) {center_dot} Clinical evaluation of HemoHIM on reduction of side-effects of radiation and chemotherapy in cancer patients - Subjects: breast cancer patients who completed surgical operation and chemotherapy, HemoHIM administration during and after the radiation therapy (HemoHIM group: 15, placebo group 13) - Administration period: 3 months from few days before RT commencement - Results - Improvement of immunological biomarkers (immune cell subpopulations, cytokine production) - Reduction of and enhanced

  12. Theoretical investigation of inclusion complex formation of Gold (III – Dimethyldithiocarbamate anticancer agents with cucurbit[n = 5,6]urils

    Directory of Open Access Journals (Sweden)

    Zabiollah Mahdavifar

    2014-09-01

    Full Text Available Gold (III-N,N-dimethyldithiocarbamate [DMDT(AuX2] complexes have recently gained increasing attention as potential anticancer agents because of their strong tumor cell growth–inhibitory effects, generally achieved by exploiting non-cisplatin-like mechanisms of action. The goal of our research work is to encapsulate the gold(III dimethyldithiocarbamate complexes as anticancer with cucurbit[n]urils (CB[n = 5, 6] by accurate calculations, to predict the inclusion complex formation of gold(III species with cucurbiturils (CB[n = 5, 6]. The calculations were carried out just for the 1:1 stoichiometric complexes. Upon encapsulation, binding energy, thermodynamic parameters, structural parameters and electronic structures of complexes are investigated. The results of the thermodynamic calculations and the binding energy show that the inclusion process is exothermic and the CB[6]/[DMDT(AuBr2] complex is more stable than other complexes. The final geometry of CB[n]/drugs indicates that the drugs were expelled from the cavity of CB[n]. NBO calculations reveal that the hydrogen bonding between CB[n] and drugs and electrostatic interactions are the major factors contributing to the overall stabilities of the complexes.

  13. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  14. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A; Kim, Sungjoon; Wilson, Christopher J; Lehár, Joseph; Kryukov, Gregory V; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F; Monahan, John E; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H; Cheng, Jill; Yu, Guoying K; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P; Gabriel, Stacey B; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E; Weber, Barbara L; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L; Meyerson, Matthew; Golub, Todd R; Morrissey, Michael P; Sellers, William R; Schlegel, Robert; Garraway, Levi A

    2012-03-28

    The systematic translation of cancer genomic data into knowledge of tumour biology and therapeutic possibilities remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacological annotation is available. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacological profiles for 24 anticancer drugs across 479 of the cell lines, this collection allowed identification of genetic, lineage, and gene-expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Together, our results indicate that large, annotated cell-line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of 'personalized' therapeutic regimens.

  15. The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity

    Science.gov (United States)

    Barretina, Jordi; Caponigro, Giordano; Stransky, Nicolas; Venkatesan, Kavitha; Margolin, Adam A.; Kim, Sungjoon; Wilson, Christopher J.; Lehár, Joseph; Kryukov, Gregory V.; Sonkin, Dmitriy; Reddy, Anupama; Liu, Manway; Murray, Lauren; Berger, Michael F.; Monahan, John E.; Morais, Paula; Meltzer, Jodi; Korejwa, Adam; Jané-Valbuena, Judit; Mapa, Felipa A.; Thibault, Joseph; Bric-Furlong, Eva; Raman, Pichai; Shipway, Aaron; Engels, Ingo H.; Cheng, Jill; Yu, Guoying K.; Yu, Jianjun; Aspesi, Peter; de Silva, Melanie; Jagtap, Kalpana; Jones, Michael D.; Wang, Li; Hatton, Charles; Palescandolo, Emanuele; Gupta, Supriya; Mahan, Scott; Sougnez, Carrie; Onofrio, Robert C.; Liefeld, Ted; MacConaill, Laura; Winckler, Wendy; Reich, Michael; Li, Nanxin; Mesirov, Jill P.; Gabriel, Stacey B.; Getz, Gad; Ardlie, Kristin; Chan, Vivien; Myer, Vic E.; Weber, Barbara L.; Porter, Jeff; Warmuth, Markus; Finan, Peter; Harris, Jennifer L.; Meyerson, Matthew; Golub, Todd R.; Morrissey, Michael P.; Sellers, William R.; Schlegel, Robert; Garraway, Levi A.

    2012-01-01

    The systematic translation of cancer genomic data into knowledge of tumor biology and therapeutic avenues remains challenging. Such efforts should be greatly aided by robust preclinical model systems that reflect the genomic diversity of human cancers and for which detailed genetic and pharmacologic annotation is available1. Here we describe the Cancer Cell Line Encyclopedia (CCLE): a compilation of gene expression, chromosomal copy number, and massively parallel sequencing data from 947 human cancer cell lines. When coupled with pharmacologic profiles for 24 anticancer drugs across 479 of the lines, this collection allowed identification of genetic, lineage, and gene expression-based predictors of drug sensitivity. In addition to known predictors, we found that plasma cell lineage correlated with sensitivity to IGF1 receptor inhibitors; AHR expression was associated with MEK inhibitor efficacy in NRAS-mutant lines; and SLFN11 expression predicted sensitivity to topoisomerase inhibitors. Altogether, our results suggest that large, annotated cell line collections may help to enable preclinical stratification schemata for anticancer agents. The generation of genetic predictions of drug response in the preclinical setting and their incorporation into cancer clinical trial design could speed the emergence of “personalized” therapeutic regimens2. PMID:22460905

  16. Recent and future advances in anticancer drug delivery: an interview with Khaled Greish.

    Science.gov (United States)

    Greish, Khaled

    2018-05-01

    Khaled Greish speaks to Hannah Makin, Commissioning Editor: Khaled Greish is Associate Professor of Molecular Medicine, and head of the Nano-research unit, at Princes Al-Jawhara Center, Arabian Gulf University, Kingdom of Bahrain. His previous appointments included Senior lecturer of Pharmacology at the University of Otago, New Zealand, and Assistant Professor of Pharmaceutical Chemistry at University of Utah (UT, USA). He has published >70 peer reviewed papers, and ten book chapters in the field of targeted anticancer drug delivery. Controlled Release Society (CRS) awarded him the CRS Postdoctoral Achievement Award in 2008 and in 2010; he was elected as member of the CRS College of Fellows. In recognition of his research, University of Otago awarded him "Early Career Awards for Distinction in Research" in 2014. His research focuses on nanomedicine, tumor vascular biology and anticancer drug discovery/development.

  17. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    Science.gov (United States)

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  18. An integrated view of cisplatin-induced nephrotoxicity and ototoxicity

    Science.gov (United States)

    Karasawa, Takatoshi; Steyger, Peter S.

    2015-01-01

    Cisplatin is one of the most widely-used drugs to treat cancers. However, its nephrotoxic and ototoxic side-effects remain major clinical limitations. Recent studies have improved our understanding of the molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. While cisplatin binding to DNA is the major cytotoxic mechanism in proliferating (cancer) cells, nephrotoxicity and ototoxicity appear to result from toxic levels of reactive oxygen species and protein dysregulation within various cellular compartments. In this review, we discuss molecular mechanisms of cisplatin-induced nephrotoxicity and ototoxicity. We also discuss potential clinical strategies to prevent nephrotoxicity and ototoxicity and their current limitations. PMID:26101797

  19. 4-Aminobenzoic Acid-Coated Maghemite Nanoparticles as Potential Anticancer Drug Magnetic Carriers: A Case Study on Highly Cytotoxic Cisplatin-Like Complexes Involving 7-Azaindoles

    Directory of Open Access Journals (Sweden)

    Pavel Štarha

    2014-01-01

    Full Text Available This study describes a one-pot synthesis of superparamagnetic maghemite-based 4-aminobenzoic acid-coated spherical core-shell nanoparticles (PABA@FeNPs as suitable nanocomposites potentially usable as magnetic carriers for drug delivery. The PABA@FeNPs system was subsequently functionalized by the activated species (1* and 2* of highly in vitro cytotoxic cis-[PtCl2(3Claza2] (1; 3Claza stands for 3-chloro-7-azaindole or cis-[PtCl2(5Braza2] (2; 5Braza stands for 5-bromo-7-azaindole, which were prepared by a silver(I ion assisted dechlorination of the parent dichlorido complexes. The products 1*@PABA@FeNPs and 2*@PABA@FeNPs, as well as an intermediate PABA@FeNPs, were characterized by a combination of various techniques, such as Mössbauer, FTIR and EDS spectroscopy, thermal analysis, SEM and TEM. The results showed that the products consist of well-dispersed maghemite-based nanoparticles of 13 nm average size that represent an easily obtainable system for delivery of highly cytotoxic cisplatin-like complexes in oncological practice.

  20. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA

    International Nuclear Information System (INIS)

    Chu, G.; Chang, E.

    1990-01-01

    Cancer treatment with the drug cisplatin is often thwarted by the emergence of drug-resistant cells. To study this phenomenon, the authors identified two independent cellular factors that recognize cisplatin-damaged DNA. One of the two factors, designated XPE binding factor, is deficient in complementation group E of xeroderma pigmentosum, an inherited disease characterized by defective repair of DNA damaged by ultraviolet radiation, cisplatin, and other agents. Human tumor cell lines selected for resistance to cisplatin showed more efficient DNA repair and increased expression of XPE binding factor. These results suggest that XPE binding factor may be responsible, at least in part, for the development of cisplatin resistance in human tumors and that the mechanism may be increased DNA repair

  1. Distribution of the anticancer drugs doxorubicin, mitoxantrone and topotecan in tumors and normal tissues.

    Science.gov (United States)

    Patel, Krupa J; Trédan, Olivier; Tannock, Ian F

    2013-07-01

    Pharmacokinetic analyses estimate the mean concentration of drug within a given tissue as a function of time, but do not give information about the spatial distribution of drugs within that tissue. Here, we compare the time-dependent spatial distribution of three anticancer drugs within tumors, heart, kidney, liver and brain. Mice bearing various xenografts were treated with doxorubicin, mitoxantrone or topotecan. At various times after injection, tumors and samples of heart, kidney, liver and brain were excised. Within solid tumors, the distribution of doxorubicin, mitoxantrone and topotecan was limited to perivascular regions at 10 min after administration and the distance from blood vessels at which drug intensity fell to half was ~25-75 μm. Although drug distribution improved after 3 and 24 h, there remained a significant decrease in drug fluorescence with increasing distance from tumor blood vessels. Drug distribution was relatively uniform in the heart, kidney and liver with substantially greater perivascular drug uptake than in tumors. There was significantly higher total drug fluorescence in the liver than in tumors after 10 min, 3 and 24 h. Little to no drug fluorescence was observed in the brain. There are marked differences in the spatial distributions of three anticancer drugs within tumor tissue and normal tissues over time, with greater exposure to most normal tissues and limited drug distribution to many cells in tumors. Studies of the spatial distribution of drugs are required to complement pharmacokinetic data in order to better understand and predict drug effects and toxicities.

  2. Clopidogrel in a combined therapy with anticancer drugs-effect on tumor growth, metastasis, and treatment toxicity: Studies in animal models.

    Directory of Open Access Journals (Sweden)

    Agnieszka Denslow

    Full Text Available Clopidogrel, a thienopyridine derivative with antiplatelet activity, is widely prescribed for patients with cardiovascular diseases. In addition to antiplatelet activity, antiplatelet agents possess anticancer and antimetastatic properties. Contrary to this, results of some studies have suggested that the use of clopidogrel and other thienopyridines accelerates the progression of breast, colorectal, and prostate cancer. Therefore, in this study, we aimed to evaluate the efficacy of clopidogrel and various anticancer agents as a combined treatment using mouse models of breast, colorectal, and prostate cancer. Metastatic dissemination, selected parameters of platelet morphology and biochemistry, as well as angiogenesis were assessed. In addition, body weight, blood morphology, and biochemistry were evaluated to test toxicity of the studied compounds. According to the results, clopidogrel increased antitumor and/or antimetastatic activity of chemotherapeutics such as 5-fluorouracil, cyclophosphamide, and mitoxantrone, whereas it decreased the anticancer activity of doxorubicin, cisplatin, and tamoxifen. The mechanisms of such divergent activities may be based on the modulation of tumor vasculature via factors, such as transforming growth factor β1 released from platelets. Moreover, clopidogrel increased the toxicity of docetaxel and protected against mitoxantrone-induced toxicity, which may be due to the modulation of hepatic enzymes and protection of the vasculature, respectively. These results demonstrate that antiplatelet agents can be useful but also dangerous in anticancer treatment and therefore use of thienopyridines in patients undergoing chemotherapy should be carefully evaluated.

  3. Arctigenin enhances chemosensitivity of cancer cells to cisplatin through inhibition of the STAT3 signaling pathway.

    Science.gov (United States)

    Yao, Xiangyang; Zhu, Fenfen; Zhao, Zhihui; Liu, Chang; Luo, Lan; Yin, Zhimin

    2011-10-01

    Arctigenin is a dibenzylbutyrolactone lignan isolated from Bardanae fructus, Arctium lappa L, Saussureamedusa, Torreya nucifera, and Ipomea cairica. It has been reported to exhibit anti-inflammatory activities, which is mainly mediated through its inhibitory effect on nuclear transcription factor-kappaB (NF-κB). But the role of arctigenin in JAK-STAT3 signaling pathways is still unclear. In present study, we investigated the effect of arctigenin on signal transducer and activator of transcription 3 (STAT3) pathway and evaluated whether suppression of STAT3 activity by arctigenin could sensitize cancer cells to a chemotherapeutic drug cisplatin. Our results show that arctigenin significantly suppressed both constitutively activated and IL-6-induced STAT3 phosphorylation and subsequent nuclear translocation in cancer cells. Inhibition of STAT3 tyrosine phosphorylation was found to be achieved through suppression of Src, JAK1, and JAK2, while suppression of STAT3 serine phosphorylation was mediated by inhibition of ERK activation. Pervanadate reversed the arctigenin-induced downregulation of STAT3 activation, suggesting the involvement of a protein tyrosine phosphatase. Indeed, arctigenin can obviously induce the expression of the PTP SHP-2. Furthermore, the constitutive activation level of STAT3 was found to be correlated to the resistance of cancer cells to cisplatin-induced apoptosis. Arctigenin dramatically promoted cisplatin-induced cell death in cancer cells, indicating that arctigenin enhanced the sensitivity of cancer cells to cisplatin mainly via STAT3 suppression. These observations suggest a novel anticancer function of arctigenin and a potential therapeutic strategy of using arctigenin in combination with chemotherapeutic agents for cancer treatment. Copyright © 2011 Wiley-Liss, Inc.

  4. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors.

    Directory of Open Access Journals (Sweden)

    Winyoo Chowanadisai

    Full Text Available The majority of ovarian tumors eventually recur in a drug resistant form. Using cisplatin sensitive and resistant cell lines assembled into 3D spheroids we profiled gene expression and identified candidate mechanisms and biological pathways associated with cisplatin resistance. OVCAR-8 human ovarian carcinoma cells were exposed to sub-lethal concentrations of cisplatin to create a matched cisplatin-resistant cell line, OVCAR-8R. Genome-wide gene expression profiling of sensitive and resistant ovarian cancer spheroids identified 3,331 significantly differentially expressed probesets coding for 3,139 distinct protein-coding genes (Fc >2, FDR < 0.05 (S2 Table. Despite significant expression changes in some transporters including MDR1, cisplatin resistance was not associated with differences in intracellular cisplatin concentration. Cisplatin resistant cells were significantly enriched for a mesenchymal gene expression signature. OVCAR-8R resistance derived gene sets were significantly more biased to patients with shorter survival. From the most differentially expressed genes, we derived a 17-gene expression signature that identifies ovarian cancer patients with shorter overall survival in three independent datasets. We propose that the use of cisplatin resistant cell lines in 3D spheroid models is a viable approach to gain insight into resistance mechanisms relevant to ovarian tumors in patients. Our data support the emerging concept that ovarian cancers can acquire drug resistance through an epithelial-to-mesenchymal transition.

  5. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  6. Emodin enhances the chemosensitivity of endometrial cancer by inhibiting ROS-mediated Cisplatin-resistance.

    Science.gov (United States)

    Ding, Ning; Zhang, Hong; Su, Shan; Ding, Yumei; Yu, Xiaohui; Tang, Yujie; Wang, Qingfang; Liu, Peishu

    2017-12-18

    Background Endometrial cancer is a common cause of death in gynecological malignancies. Cisplatin is a clinically chemotherapeutic agent. However, drug-resistance is the primary cause of treatment failure. Objective Emodin is commonly used clinically to increase the sensitivity of chemotherapeutic agents, yet whether Emodin promotes the role of Cisplatin in the treatment of endometrial cancer has not been studied. Method CCK-8 kit was utilized to determine the growth of two endometrial cancer cell lines, Ishikawa and HEC-IB. The apoptosis level of Ishikawa and HEC-IB cells was detected by Annexin V / propidium iodide double-staining assay. ROS level was detected by DCFH-DA and NADPH oxidase expression. Expressions of drug-resistant genes were examined by real-time PCR and Western blotting. Results Emodin combined with Cisplatin reduced cell growth and increased the apoptosis of endometrial cancer cells. Co-treatment of Emodin and Cisplatin increased chemosensitivity by inhibiting the expression of drug-resistant genes through reducing the ROS levels in endometrial cancer cells. In an endometrial cancer xenograft murine model, the tumor size was reduced and animal survival time was increased by co-treatment of Emodin and Cisplatin. Conclusion This study demonstrates that Emodin enhances the chemosensitivity of Cisplatin on endometrial cancer by inhibiting ROS-mediated expression of drug-resistance genes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  7. Cisplatin Therapy Does Not Worsen Renal Function in Severe Antenatal Bartter Syndrome.

    Science.gov (United States)

    Welch, Thomas R; Shaffer, David R; Feldman, Darren R

    2017-01-01

    A 30-year-old man with severe antenatal Bartter syndrome, diagnosed and treated in infancy, developed testicular carcinoma. Despite the known renal complications of cisplatin, this drug was used for his chemotherapy because of its superior antineoplastic effect. Nonsteroidal anti-inflammatory drug administration was continued during cisplatin therapy. Despite an increase in his oral potassium requirement, renal function was maintained following completion of chemotherapy. In spite of its significant associated nephrotoxicity, cisplatin can be used in patients with severe antenatal Bartter syndrome if required for therapy of malignancy.

  8. Peptide-Mediated Liposomal Drug Delivery System Targeting Tumor Blood Vessels in Anticancer Therapy

    Directory of Open Access Journals (Sweden)

    Han-Chung Wu

    2010-01-01

    Full Text Available Solid tumors are known to recruit new blood vessels to support their growth. Therefore, unique molecules expressed on tumor endothelial cells can function as targets for the antiangiogenic therapy of cancer. Current efforts are focusing on developing therapeutic agents capable of specifically targeting cancer cells and tumor-associated microenvironments including tumor blood vessels. These therapies hold the promise of high efficacy and low toxicity. One recognized strategy for improving the therapeutic effectiveness of conventional chemotherapeutics is to encapsulate anticancer drugs into targeting liposomes that bind to the cell surface receptors expressed on tumor-associated endothelial cells. These anti-angiogenic drug delivery systems could be used to target both tumor blood vessels as well as the tumor cells, themselves. This article reviews the mechanisms and advantages of various present and potential methods using peptide-conjugated liposomes to specifically destroy tumor blood vessels in anticancer therapy.

  9. New extracellular resistance mechanism for cisplatin.

    Science.gov (United States)

    Centerwall, Corey R; Kerwood, Deborah J; Goodisman, Jerry; Toms, Bonnie B; Dabrowiak, James C

    2008-01-01

    The HSQC NMR spectrum of 15N-cisplatin in cell growth media shows resonances corresponding to the monocarbonato complex, cis-[Pt(NH3)2(CO3)Cl](-), 4, and the dicarbonato complex, cis-[Pt(NH3)2(CO3)2](-2), 5, in addition to cisplatin itself, cis-[Pt(NH3)2Cl2], 1. The presence of Jurkat cells reduces the amount of detectable carbonato species by (2.8+/-0.7) fmol per cell and has little effect on species 1. Jurkat cells made resistant to cisplatin reduce the amount of detectable carbonato species by (7.9+/-5.6) fmol per cell and also reduce the amount of 1 by (3.4+/-0.9) fmol per cell. The amount of detectable carbonato species is also reduced by addition of the drug to medium that has previously been in contact with normal Jurkat cells (cells removed); the reduction is greater when drug is added to medium previously in contact with resistant Jurkat cells (cells removed). This shows that the platinum species are modified by a cell-produced substance that is released to the medium. Since the modified species have been shown not to enter or bind to cells, and since resistant cells modify more than non-resistant cells, the modification constitutes a new extracellular mechanism for cisplatin resistance which merits further attention.

  10. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery.

    Science.gov (United States)

    Weng, Qunhong; Wang, Binju; Wang, Xuebin; Hanagata, Nobutaka; Li, Xia; Liu, Dequan; Wang, Xi; Jiang, Xiangfen; Bando, Yoshio; Golberg, Dmitri

    2014-06-24

    Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble, and stable in physiological solutions and could be easily functionalized for effective drug deliveries are still challenging. Here, we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g., doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNCaP cancer cells than free drugs.

  11. Discovery – Cisplatin and The Treatment of Testicular and Other Cancers

    Science.gov (United States)

    Prior to the discovery of cisplatin in 1965, men with testicular cancer had few medical options. Now, thanks to NCI research, cisplatin and similar chemotherapy drugs are known for curing testicular and other forms of cancer.

  12. Better Clinical Efficiency of TILs for Malignant Pleural Effusion and Ascites than Cisplatin Through Intrapleural and Intraperitoneal Infusion.

    Science.gov (United States)

    Chu, Hongjin; Du, Fengcai; Gong, Zhaohua; Lian, Peiwen; Wang, Zhixin; Li, Peng; Hu, Baohong; Chi, Cheng; Chen, Jian

    2017-08-01

    To evaluate the clinical efficiency of tumor-infiltrating lymphocytes (TILs) compared to cisplatin for malignant pleural effusion and ascites through intrapleural and intraperitoneal infusion. Thirteen patients with malignant pleural effusion and ascites were divided into a TIL-treated group and a cisplatin-treated group. Patients were given TILs or cisplatin, through intrapleural and intraperitoneal infusion respectively, after drainage of the malignant serous effusion by thoracentesis or abdominocentesis. The overall response rate and disease control rate of the TIL-treated group (33.33% and 83.33%) were higher than that of the cisplatin-treated group (28.57% and 71.43%). The progression-free survival for the TIL-treated group was significantly longer (p=0.002) and better than that of the cisplatin-treated group (66.67% vs. 28.57%). Quality of life apparently improved in the TIL-treated group and was clearly higher than that in the cisplatin-treated group. The use of TILs has a better clinical efficiency for malignant pleural effusion and ascites than cisplatin through intrapleural and intraperitoneal infusion without severe adverse effects. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  13. Age and Gender Related Renal Side Effects of Cisplatin in Animal Model

    Science.gov (United States)

    Pezeshki, Zahra; Maleki, Maryam; Talebi, Ardeshir; Nematbakhsh, Mehdi

    2017-06-25

    Backgrounds: Cisplatin (CDDP) is a choice of anti-cancer drug for cancer chemotherapy with serious side effects such as nephrotoxicity. It seems that age is an important factor influencing the side effects of CDDP. This study was designed to determine the role of age and gender simultaneously in CDDP induced renal toxicity. Methods: 40 Wistar male and female rats were assigned as 6 groups in 3 different age categories (10, 16, and 20 weeks old). The single dose of CDDP (7.5 mg/kg, ip) was administrated, and a week later measurements were performed. Results: Body weight changes in male (not in female) animals aged 16 and 20 weeks were more than 10 weeks old animals (PGender difference in serum level of Cr, BUN and nitrite, and Cr-clearance were observed in animals aged10 weeks (Pgender depended, and may be different at various ages. Creative Commons Attribution License

  14. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong, E-mail: pharmsong@henu.edu.cn [Henan University, Institute of Pharmacy (China)

    2016-11-15

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  15. Backbone-hydrazone-containing biodegradable copolymeric micelles for anticancer drug delivery

    International Nuclear Information System (INIS)

    Xu, Jing; Luan, Shujuan; Qin, Benkai; Wang, Yingying; Wang, Kai; Qi, Peilan; Song, Shiyong

    2016-01-01

    Well-defined biodegradable, pH-sensitive amphiphilic block polymers, poly(ethylene glycol)-Hyd-poly(lactic acid) (mPEG-Hyd-PLA) which have acid-cleavable linkages in their backbones, were synthesized via ring-opening polymerization initiated from hydrazone-containing macroinitiators. Introducing a hydrazone bond onto the backbone of an amphiphilic copolymer will find a broad-spectrum encapsulation of hydrophobic drugs. Dynamic light scattering (DLS) and transmission electron microscopy showed that the diblock copolymers self-assembled into stable micelles with average diameters of 100 nm. The mean diameters and size distribution of the hydrazone-containing micelles changed obviously in mildly acidic pH (multiple peaks from 1 to 202 nm appeared under a pH 4.0 condition) than in neutral, while there were no changes in the case of non-sensitive ones. Doxorubicin (DOX) and paclitaxel (PTX) were loaded with drug loading content ranging from 2.4 to 3.5 %, respectively. Interestingly, the anticancer drugs released from mPEG-Hyd-PLA micelles could also be promoted by the increased acidity. An in vitro cytotoxicity study showed that the DOX-loaded mPEG-Hyd-PLA micelles have significantly enhanced cytotoxicity against HepG2 cells compared with the non-sensitive poly(ethylene glycol)-block-poly(lactic acid) (mPEG-PLA) micelles. Confocal microscopy observation indicated that more DOX were delivered into the nuclei of cells following 6 or 12 h incubation with DOX-loaded mPEG-Hyd-PLA micelles. In vivo studies on H22-bearing Swiss mice demonstrated the superior anticancer activity of DOX-loaded mPEG-Hyd-PLA micelles over free DOX and DOX-loaded mPEG-PLA micelles. These hydrazone-containing pH-responsive degradable micelles provide a useful strategy for antitumor drug delivery.

  16. Curcumin as a clinically-promising anti-cancer agent: pharmacokinetics and drug interactions.

    Science.gov (United States)

    Adiwidjaja, Jeffry; McLachlan, Andrew J; Boddy, Alan V

    2017-09-01

    Curcumin has been extensively studied for its anti-cancer properties. While a diverse array of in vitro and preclinical research support the prospect of curcumin use as an anti-cancer therapeutic, most human studies have failed to meet the intended clinical expectation. Poor systemic availability of orally-administered curcumin may account for this disparity. Areas covered: This descriptive review aims to concisely summarise available clinical studies investigating curcumin pharmacokinetics when administered in different formulations. A critical analysis of pharmacokinetic- and pharmacodynamic-based interactions of curcumin with concomitantly administered drugs is also provided. Expert opinion: The encouraging clinical results of curcumin administration are currently limited to people with colorectal cancer, given that sufficient curcumin concentrations persist in colonic mucosa. Higher parent curcumin systemic exposure, which can be achieved by several newer formulations, has important implications for optimal treatment of cancers other than those in gastrointestinal tract. Curcumin-drug pharmacokinetic interactions are also almost exclusively in the enterocytes, owing to extensive first pass metabolism and poor curcumin bioavailability. Greater scope of these interactions, i.e. modulation of the systemic elimination of co-administered drugs, may be expected from more-bioavailable curcumin formulations. Further studies are still warranted, especially with newer formulations to support the inclusion of curcumin in cancer therapy regimens.

  17. Reconsidering Japan's underperformance in pharmaceuticals: evidence from Japan's anticancer drug sector.

    Science.gov (United States)

    Umemura, Maki

    2010-01-01

    Unlike its automobile or electronics industries, Japan's pharmaceutical industry did not become a global leader. Japan remains a net importer of pharmaceuticals and has introduced few global blockbuster drugs. Alfred Chandler argued that Japan's pharmaceutical firms remained relatively weak because Western firms enjoyed an insurmountable first first-mover advantage. However, this case study of the anticancer drug sector illustrates that Chandler's explanation is incomplete. Japanese medical culture, government policy, and research environment also played a substantial role in shaping the industry. In the 1970s and 1980s, these factors encouraged firms to develop little few effective drugs with low side effects, and profit from Japan's domestic market. But, these drugs were unsuitable to foreign markets with more demanding efficacy standards. As a result, Japan not only lost more than a decade in developing ineffective drugs, but also neglected to create the infrastructure necessary to develop innovative drugs and build a stronger pharmaceutical industry.

  18. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingyun, E-mail: wangjingyun67@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Cui, Shuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Bao, Yongming, E-mail: biosci@dlut.edu.cn [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Xing, Jishuang [School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024 (China); Hao, Wenbo [Department of Physics and Chemistry, Heihe University, Heihe 164300 (China)

    2014-10-01

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  19. Tocopheryl pullulan-based self assembling nanomicelles for anti-cancer drug delivery

    International Nuclear Information System (INIS)

    Wang, Jingyun; Cui, Shuang; Bao, Yongming; Xing, Jishuang; Hao, Wenbo

    2014-01-01

    Amphiphilic α-tocopherol pullulan polymers (PUTC1, PUTC2, and PUTC3) with different degrees of substitution were synthesized as new carriers for anticancer drugs. The polymers easily self-assembled into nanomicelles through dialysis method. The critical micelle concentrations (CMCs) were 38.0, 8.0, and 4.3 mg/L for PUTC1, PUTC2, and PUTC3, respectively. 10-Hydroxycamptothecin (HCPT) used as a model drug was successfully loaded into the PUTC nanomicelles. Transmission electron microscopy images demonstrated that HCPT-loaded PUTC nanomicelles were almost spherical and had sizes ranging within 171.5–257.8 nm that increased with increased HCPT-loading content, as determined by dynamic laser scattering. The highest encapsulation efficiency of HCPT in PUTC nanomicelles reached 98.3%. The in vitro release of HCPT from PUTC micelles demonstrated sustained release for over 80 h. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assays showed that blank PUTC micelles were nontoxic to normal cells and that the HCPT-loaded PUTC2 nanomicelles showed higher cytotoxicity than the free drug, which was attributed to the enhanced cellular uptake of drug-loaded nanomicelles. Biodistribution experiments showed that PUTC micelles provided an excellent approach to rapid drug transport into cell nuclei. Moreover, the cellular uptake of micelles was found to be an energy-dependent and actin polymerization-associated endocytic process by endocytosis inhibition experiments. These results suggested that PUTC nanomicelles had considerable potential as a drug carrier for drug intracellular delivery in cancer therapy. - Highlights: • Tocopheryl pullulan-based (PUTC) self-assembling nanomicelles were fabricated. • These micelles showed low CMC and dispersed uniformly with regular spherical shape. • High entrapment efficiency and in vitro sustained release of HCPT in PUTC micelles • HCPT–PUTC micelles accumulated in cell nuclei and showed higher anticancer activity.

  20. Population-based differences in treatment outcome following anticancer drug therapies.

    Science.gov (United States)

    Ma, Brigette By; Hui, Edwin P; Mok, Tony Sk

    2010-01-01

    Population-based differences in toxicity and clinical outcome following treatment with anticancer drugs have an important effect on oncology practice and drug development. These differences arise from complex interactions between biological and environmental factors, which include genetic diversity affecting drug metabolism and the expression of drug targets, variations in tumour biology and host physiology, socioeconomic disparities, and regional preferences in treatment standards. Some well-known examples include the high prevalence of activating epidermal growth factor receptor (EGFR) mutations in pulmonary adenocarcinoma among northeast (China, Japan, Korea) and parts of southeast Asia (excluding India) non-smokers, which predict sensitivity to EGFR kinase inhibitors, and the sharp contrast between Japan and the west in the management and survival outcome of gastric cancer. This review is a critical overview of population-based differences in the four most prevalent cancers in the world: lung, breast, colorectal, and stomach cancer. Particular attention is given to the clinical relevance of such knowledge in terms of the individualisation of drug therapy and in the design of clinical trials. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  1. Cisplatin-Associated Ototoxicity: A Review for the Health Professional.

    Science.gov (United States)

    Paken, Jessica; Govender, Cyril D; Pillay, Mershen; Sewram, Vikash

    2016-01-01

    Cisplatin is an effective drug used in the treatment of many cancers, yet its ototoxic potential places cancer patients, exposed to this drug, at risk of hearing loss, thus negatively impacting further on a patient's quality of life. It is paramount for health care practitioners managing such patients to be aware of cisplatin's ototoxic properties and the clinical signs to identify patients at risk of developing hearing loss. English peer-reviewed articles from January 1975 to July 2015 were assessed from PubMed, Science Direct, and Ebscohost. Seventy-nine articles and two books were identified for this review, using MeSH terms and keywords such as "ototoxicity", "cisplatin", "hearing loss", and "ototoxicity monitoring". This review provides an up-to-date overview of cisplatin-associated ototoxicity, namely, its clinical features, incidence rates, and molecular and cellular mechanisms and risk factors, to health care practitioners managing the patient with cancer, and highlights the need for a team-based approach to complement an audiological monitoring programme to mitigate any further loss in the quality of life of affected patients, as there is currently no otoprotective agent recommended routinely for the prevention of cisplatin-associated ototoxicity. It also sets the platform for effective dialogue towards policy formulation and strengthening of health systems in developing countries.

  2. Thermodynamical study of interaction of histone H1 chromosomal protein and mitoxantrone anticancer drug

    International Nuclear Information System (INIS)

    Jafargholizadeh, Naser; Zargar, Seyed Jalal; Safarian, Shahrokh; Habibi-Rezaei, Mehran

    2012-01-01

    Highlights: ► For the first time, our results show mitoxantrone anticancer drug binds to histone H1, via hydrophobic, hydrogen, van der Waals and electrostatic interactions. ► Binding of mitoxantrone molecules to histone H1 is positive cooperative. ► Histone H1 may be considered as a new target for mitoxantrone at the chromatin level. - Using ultraviolet spectroscopy technique, we have investigated the interaction of anticancer drug, mitoxantrone with calf thymus histone H1 chromosomal protein in 100 mM phosphate buffer, pH 7.0, at temperatures 300 and 310 K. UV spectroscopy results show interactions between mitoxantrone and histone H1 with a positive cooperative binding process which was confirmed by Scatchard plot. According to the obtained results, it is concluded that histone H1 can be considered as a target for mitoxantrone binding at the chromatin level.

  3. A smart magnetic nanoplatform for synergistic anticancer therapy: manoeuvring mussel-inspired functional magnetic nanoparticles for pH responsive anticancer drug delivery and hyperthermia

    Science.gov (United States)

    Sasikala, Arathyram Ramachandra Kurup; Ghavaminejad, Amin; Unnithan, Afeesh Rajan; Thomas, Reju George; Moon, Myeongju; Jeong, Yong Yeon; Park, Chan Hee; Kim, Cheol Sang

    2015-10-01

    We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic anticancer treatment. The unique multiple anchoring groups can be used to substantially improve the affinity of the ligands to the surfaces of the nanoparticles to form ultrastable iron oxide nanoparticles with control over their hydrodynamic diameter and interfacial chemistry. Thus the BTZ-incorporated-bio-inspired-smart magnetic nanoplatform will act as a hyperthermic agent that delivers heat when an alternating magnetic field is applied while the BTZ-bound catechol moieties act as chemotherapeutic agents in a cancer environment by providing pH-dependent drug release for the synergistic thermo-chemotherapy application. The anticancer efficacy of these bio-inspired multifunctional smart magnetic nanoparticles was tested both in vitro and in vivo and found that these unique magnetic nanoplatforms can be established to endow for the next generation of nanomedicine for efficient and safe cancer therapy.We report the versatile design of a smart nanoplatform for thermo-chemotherapy treatment of cancer. For the first time in the literature, our design takes advantage of the outstanding properties of mussel-inspired multiple catecholic groups - presenting a unique copolymer poly(2-hydroxyethyl methacrylate-co-dopamine methacrylamide) p(HEMA-co-DMA) to surface functionalize the superparamagnetic iron oxide nanoparticles as well as to conjugate borate containing anticancer drug bortezomib (BTZ) in a pH-dependent manner for the synergistic

  4. Elevated pressure, a novel cancer therapeutic tool for sensitizing cisplatin-mediated apoptosis in A549

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Sangnam [Cellular and Developmental Biology, Division of Biomedical Science, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Yanghee [Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kim, Joonhee [Cellular and Developmental Biology, Division of Biomedical Science, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Kwon, Daeho [Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Lee, Eunil, E-mail: eunil@korea.ac.kr [Cellular and Developmental Biology, Division of Biomedical Science, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of); Department of Preventive Medicine and Medical Research Center for Environmental Toxico-Genomics and Proteomics, College of Medicine, Korea University, Seoul 136-705 (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} Sensitized apoptosis in cancer cells stimulated by EP precondition with p53 dependence. {yields} EP attenuates several CDDP-resistance mechanisms. {yields} No harmful effect of EP on normal fibroblasts. -- Abstract: Intensive cancer therapy strategies have thus far focused on sensitizing cancer cells to anticancer drug-mediated apoptosis to overcome drug resistance, and this strategy has led to more effective cancer therapeutics. Cisplatin (cis-diamminedichloroplatinum(II), CDDP) is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLC), and can be used in combination with various chemicals to enhance cancer cell apoptosis. Here, we introduce the use of elevated pressure (EP) in combination with CDDP for cancer treatment and explore the effects of EP on CDDP-mediated apoptosis in NSCLC cells. Our findings demonstrate that preconditioning NSCLC cells with EP sensitizes cells for CDDP-induced apoptosis. Enhanced apoptosis was dependent on p53 and HO-1 expression, and was associated with increased DNA damage and down-regulation of genes involved in nucleotide excision repair. The transcriptional levels of transporter proteins indicated that the mechanism by which EP-induced CDDP sensitization was intracellular drug accumulation. The protein levels of some antioxidants, such as hemeoxygenase-1 (HO-1), glutathione (GSH) and glutathione peroxidase (Gpx), were decreased in A549 cells exposed to EP via the down-regulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Furthermore, normal human fibroblasts were resistant to EP treatment, with no elevated DNA damage or apoptosis. Collectively, these data show that administration of EP is a potential adjuvant tool for CDDP-based chemosensitivity of lung cancer cells that may reduce drug resistance.

  5. Elevated pressure, a novel cancer therapeutic tool for sensitizing cisplatin-mediated apoptosis in A549

    International Nuclear Information System (INIS)

    Oh, Sangnam; Kim, Yanghee; Kim, Joonhee; Kwon, Daeho; Lee, Eunil

    2010-01-01

    Research highlights: → Sensitized apoptosis in cancer cells stimulated by EP precondition with p53 dependence. → EP attenuates several CDDP-resistance mechanisms. → No harmful effect of EP on normal fibroblasts. -- Abstract: Intensive cancer therapy strategies have thus far focused on sensitizing cancer cells to anticancer drug-mediated apoptosis to overcome drug resistance, and this strategy has led to more effective cancer therapeutics. Cisplatin (cis-diamminedichloroplatinum(II), CDDP) is an effective anticancer drug used to treat many types of cancer, including non-small cell lung carcinoma (NSCLC), and can be used in combination with various chemicals to enhance cancer cell apoptosis. Here, we introduce the use of elevated pressure (EP) in combination with CDDP for cancer treatment and explore the effects of EP on CDDP-mediated apoptosis in NSCLC cells. Our findings demonstrate that preconditioning NSCLC cells with EP sensitizes cells for CDDP-induced apoptosis. Enhanced apoptosis was dependent on p53 and HO-1 expression, and was associated with increased DNA damage and down-regulation of genes involved in nucleotide excision repair. The transcriptional levels of transporter proteins indicated that the mechanism by which EP-induced CDDP sensitization was intracellular drug accumulation. The protein levels of some antioxidants, such as hemeoxygenase-1 (HO-1), glutathione (GSH) and glutathione peroxidase (Gpx), were decreased in A549 cells exposed to EP via the down-regulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf-2). Furthermore, normal human fibroblasts were resistant to EP treatment, with no elevated DNA damage or apoptosis. Collectively, these data show that administration of EP is a potential adjuvant tool for CDDP-based chemosensitivity of lung cancer cells that may reduce drug resistance.

  6. The influence of ebselen on the toxicity of cisplatin in LLC-PK1 cells

    NARCIS (Netherlands)

    Baldew, G S; Boymans, A P; Mol, J G; Vermeulen, N P

    1992-01-01

    LLC-PK1 cells have been used as an in vitro model to study the nephrotoxicity of the antitumor drug cisplatin. A concentration-dependent cytotoxicity of cisplatin, measured as lactate dehydrogenase leakage and amount of protein remaining attached to the culture plate, was observed. At a cisplatin

  7. Mitochondrial DNA is a direct target of anti-cancer anthracycline drugs

    International Nuclear Information System (INIS)

    Ashley, Neil; Poulton, Joanna

    2009-01-01

    The anthracyclines, such as doxorubicin (DXR), are potent anti-cancer drugs but they are limited by their clinical toxicity. The mechanisms involved remain poorly understood partly because of the difficulty in determining sub-cellular drug localisation. Using a novel method utilising the fluorescent DNA dye PicoGreen, we found that anthracyclines intercalated not only into nuclear DNA but also mitochondrial DNA (mtDNA). Intercalation of mtDNA by anthracyclines may thus contribute to the marked mitochondrial toxicity associated with these drugs. By contrast, ethidium bromide intercalated exclusively into mtDNA, without interacting with nuclear DNA, thereby explaining why mtDNA is the main target for ethidium. By exploiting PicoGreen quenching we also developed a novel assay for quantification of mtDNA levels by flow-cytometry, an approach which should be useful for studies of mitochondrial dysfunction. In summary our PicoGreen assay should be useful to study drug/DNA interactions within live cells, and facilitate therapeutic drug monitoring and kinetic studies in cancer patients.

  8. MECHANOMAGNETIC REACTOR FOR ACTIVATION OF ANTICANCER DRUGS

    Directory of Open Access Journals (Sweden)

    Orel V. E.

    2014-02-01

    Full Text Available Mechanomagnetochemical activation can increase the concentration of paramagnetic centers (free radicals in the anticancer drug, for example, doxorubicin that enables to influence its magnetic properties under external electromagnetic field and improve its magnetic sensitivity and antitumor activity. The principles of design and operation of mechanomagnetic reactor for implementation of this technology which includes mechanomagnetochemical activation and electromagnetic radiation of the drug are described in the paper. The methods of vibration magnetometry, electron paramagnetic resonance spectroscopy and high-performance liquid chromatography were used for studying of doxorubicin mechanomagnetic activation effects. The studies have shown that a generator of sinusoidal electromagnetic wave, working chambers from caprolactam, fluoroplastic or organic materials with metal inserts and working bodies made from steel or agate depending on the required doxorubicin magnetic properties are expedient to use in the designed mechanomagnic reactor. Under influence of mechanomagnetochemical activation doxorubicin, which is diamagnetic, acquires the properties of paramagnetic without changing g-factors in the spectra of electron paramagnetic resonance. Mechanomagnetochemical activation of doxorubicin satisfies pharmacopoeia condi tions according to the results of liquid chromatography that points on perspective of this method using in technology of tumor therapy with nanosized structures and external electromagnetic radiation.

  9. Fluoropyrimidines plus cisplatin versus gemcitabine/gemcitabine plus cisplatin in locally advanced and metastatic biliary tract carcinoma - a retrospective study.

    Science.gov (United States)

    Croitoru, Adina; Gramaticu, Iulia; Dinu, Ioana; Gheorghe, Liana; Alexandrescu, Sorin; Buica, Florina; Luca, Ioana; Becheanu, Gabriel; Herlea, Vlad; Simionov, Iulia; Hrehoret, Doina; Lupescu, Ioana; Popescu, Irinel; Diculescu, Mircea

    2012-09-01

    This is a retrospective study of patients with advanced biliary tract carcinoma (BTC), who were treated with different regimens of chemotherapy. We studied patients with advanced BTC registered at the Department of Oncology at the Fundeni Clinical Institute between 2004 and 2008. The following data were analyzed: rate of response, progression free survival (PFS) to first and second line of chemotherapy, overall survival (OS) and drug toxicity. Ninety-six patients were eligible having either advanced intra or extrahepatic cholangiocarcinoma, or gallbladder cancer with no prior chemotherapy. Out of 96 patients, 57 (59.4%) received fluoropyrimidines (FP)+cisplatin and 39 (40.6%) gemcitabine (Gem)+/-cisplatin. The median PFS for FP+cisplatin was 5.9 months (95%CI 5-6.9) and for Gem+/-cisplatin 6.3 months (95%CI 5.4-7.1), p=0.661. Median OS for FP+cisplatin was 10.3 months (95%CI 7.5-13.1) and for Gem+/-cisplatin 9.1 months (95%CI 7.0-11.2), p=0.098. On disease progression, 46 patients received second line CT (Gem or FP+/-platinum compounds). Median OS for patients with FP based first line and Gem+/-cisplatin in second line was 19 months (95%CI 8.9-29) higher than for the reverse sequence: 13.2 months (95%CI 12-14.4), but not statistically significant (p=0.830). All patients were evaluated for toxicities. Most patients (75.5%) reported at least one adverse event. Our results through direct comparison of FP+cisplatin with Gem+/-cisplatin as first line treatment did not show any statistical differences in terms of rate of response, PFS and OS. However, our study showed that FP+cisplatin as first line and Gem based second line therapy gave a better OS rate.

  10. Encapsulation of anticancer drug and magnetic particles in biodegradable polymer nanospheres

    Energy Technology Data Exchange (ETDEWEB)

    Koneracka, M; Zavisova, V; Tomasovicova, N; Kopcansky, P; Timko, M; JurIkova, A; Csach, K; Kavecansky, V; Lancz, G [Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, Kosice (Slovakia); Muckova, M [Hameln rds a.s., Horna 36, Modra (Slovakia)], E-mail: konerack@saske.sk

    2008-05-21

    In this study, we have prepared PLGA (poly-D,L-lactide-co-glycolide) nanospheres loaded with biocompatible magnetic fluid and anticancer drug taxol by a modified nanoprecipitation technique and investigated their magnetic properties. A magnetic fluid, MF-PEG, with a biocompatible layer of polyethylene glycol (PEG), was chosen as a magnetic carrier. The PLGA, whose copolymer ratio of D,L-lactide to glycolide is 85:15, was utilized as a capsulation material. Taxol, as an important anticancer drug, was chosen for its significant role against a wide range of tumours. The morphology and particle size distributions of the prepared nanospheres were investigated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM) and showed a spherical shape of prepared nanospheres with size 250 nm. Infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TGA) analysis confirmed incorporation of magnetic particles and taxol into the PLGA polymer. The results showed good encapsulation with magnetite content 21.5 wt% and taxol 0.5 wt%. Magnetic properties of magnetic fluids and taxol within the PLGA polymer matrix were investigated by SQUID magnetometry from 4.2 to 300 K. The SQUID measurements showed superparamagnetism of prepared nanospheres with a blocking temperature of 160 K and saturation magnetization 1.4 mT.

  11. Surface modification of graphene oxide nanosheets by protamine sulfate/sodium alginate for anti-cancer drug delivery application

    Science.gov (United States)

    Xie, Meng; Zhang, Feng; Liu, Lijiao; Zhang, Yanan; Li, Yeping; Li, Huaming; Xie, Jimin

    2018-05-01

    In order to improve the efficiency of anticancer drug delivery, a graphene oxide (GO) based drug delivery system modificated by natural peptide protamine sulfate (PRM) and sodium alginate (SA) was established via electrostatic attraction at each step of adsorption based on layer-by-layer self-assembly. The nanocomposites were then loaded with anticancer drug doxorubicin hydrochloride (DOX) to estimate the feasibility as drug carriers. The nanocomposites loaded with DOX revealed a remarkable pH-sensitive drug release property. The modification with protamine sulfate and sodium alginate could not only impart the nanocomposites an improved dispersibility and stability under physiological pH, but also suppress the protein adhesion. Due to the high water dispersibility and the small particle size, GO-PRM/SA nanocomposites were able to be uptaken by MCF-7 cells. It was found that GO-PRM/SA nanocomposites exhibited no obvious cytotoxicity towards MCF-7 cells, while GO-PRM/SA-DOX exhibited better cytotoxicity than GO-DOX. Therefore, the GO-PRM/SA nanocomposites were feasible as drug delivery vehicles.

  12. Inhaled Micro/Nanoparticulate Anticancer Drug Formulations: An Emerging Targeted Drug Delivery Strategy for Lung Cancers.

    Science.gov (United States)

    Islam, Nazrul; Richard, Derek

    2018-05-24

    Local delivery of drug to the target organ via inhalation offers enormous benefits in the management of many diseases. Lung cancer is the most common of all cancers and it is the leading cause of death worldwide. Currently available treatment systems (intravenous or oral drug delivery) are not efficient in accumulating the delivered drug into the target tumor cells and are usually associated with various systemic and dose-related adverse effects. The pulmonary drug delivery technology would enable preferential accumulation of drug within the cancer cell and thus be superior to intravenous and oral delivery in reducing cancer cell proliferation and minimising the systemic adverse effects. Site-specific drug delivery via inhalation for the treatment of lung cancer is both feasible and efficient. The inhaled drug delivery system is non-invasive, produces high bioavailability at low dose and avoids first pass metabolism of the delivered drug. Various anticancer drugs including chemotherapeutics, proteins and genes have been investigated for inhalation in lung cancers with significant outcomes. Pulmonary delivery of drugs from dry powder inhaler (DPI) formulation is stable and has high patient compliance. Herein, we report the potential of pulmonary drug delivery from dry powder inhaler (DPI) formulations inhibiting lung cancer cell proliferation at very low dose with reduced unwanted adverse effects. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Interaction of platinum drugs with clinically relevant x-ray doses in mammalian cells: A comparison of cisplatin, carboplatin, iproplatin, and tetraplatin

    International Nuclear Information System (INIS)

    Skov, K.; MacPhail, S.

    1991-01-01

    Whereas the interaction between radiation and platinum complexes has never been pronounced in radiobiological experiments (to 30 Gy in mammalian cells), there have been reports of interest in this combination in the clinic, where fractionated doses of approximately 2 Gy are used. Our studies on the marked interaction in hypoxia at the 80% survival level (1-2.5 Gy) with cisplatin have been extended to second generation platinum drugs of clinical interest. The studies in the lower radiation dose region have been facilitated by the use of the cell analyzer DMIPS to identify individual cells and follow them microscopically to assess for clonogenic ability. Chinese hamster V79 cells were used, which were exposed to drug for 1 hr prior to irradiation in hypoxia (or air). None of the drugs give an enhancement ratio (ER) greater than 1.3 in the high radiation dose region, whereas all can produce ER80% (ER calculated at iso-survival of 80%) of 2 or higher at low doses in hypoxic cells. The enhancement of radiation kill in oxic V79 cells (ER's to 1.1 at 1-2% S) disappears at low doses (ER80% = 1.0) except for tetraplatin, where a moderate ER80% (to 1.64) was measured. Comparison of the hypoxic interaction on a concentration basis suggests that cisplatin is the best drug at low x-ray doses and low concentrations, but the interaction reaches a plateau at ER80% approximately 2.0. Tetraplatin continues to give better interaction with increasing concentration (up to ER80% = 3.7 at 25 microM). Interaction of radiation with the less toxic drugs, iproplatin and carboplatin, used at around 100 microM can be improved by longer exposure times prior to irradiation. Comparison on the basis of toxicity, for which the plating efficiency was used, suggests that cisplatin gives a better interaction than the three newer drugs for a given level of toxicity in hypoxic V79 cells

  14. Inhibition of Src by microRNA-23b increases the cisplatin sensitivity of chondrosarcoma cells.

    Science.gov (United States)

    Huang, Kai; Chen, Jun; Yang, Mo-Song; Tang, Yu-Jun; Pan, Feng

    2017-01-01

    Chondrosarcomas are malignant cartilage-forming tumors from low-grade to high-grade aggressive tumors characterized by metastasis. Cisplatin is an effective DNA-damaging anti-tumor agent for the treatment against a wide variety of solid tumors. However, chondrosarcomas are notorious for their resistance to conventional chemo- and radio- therapies. In this study, we report miR-23b acts as a tumor suppressor in chondrosarcoma. The expressions of miR-23b are down-regulated in chondrosarcoma patient samples and cell lines compared with adjacent normal tissues and human primary chondrocytes. In addition, overexpression of miR-23b suppresses chondrosarcoma cell proliferation. By comparison of the cisplatin resistant chondrosarcoma cells and parental cells, we observed miR-23b was significantly down regulated in cisplatin resistant cells. Moreover, we demonstrate here Src kinase is a direct target of miR-23b in chondrosarcoma cells. Overexpression of miR-23b suppresses Src-Akt pathway, leading to the sensitization of cisplatin resistant chondrosarcoma cells to cisplatin. This chemo-sensitivity effect by the miR-23b-mediated inhibition of Src-Akt pathway is verified with the restoration of Src kinase in miR-23b-overespressing chondrosarcoma cells, resulting in the acquirement of resistance to cisplatin. In summary, our study reveals a novel role of miR-23b in cisplatin resistance in chondrosarcoma and will contribute to the development of the microRNA-targeted anti-cancer therapeutics.

  15. A Case of Posterior Reversible Encephalopathy Syndrome Induced by Cisplatin/Pemetrexed Chemotherapy for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Masashi Ishihara

    2017-03-01

    Full Text Available This report presents the case of a 60-year-old woman who was diagnosed with stage IV lung adenocarcinoma with asymptomatic brain metastases and commenced chemotherapy with cisplatin/pemetrexed (CDDP/Pem. She experienced tonic-clonic convulsions on day 9 of the first cycle, which were accompanied by increased blood pressure (173/69 mm Hg and headache. Therefore, brain MRI was performed to check for stroke or progression of brain metastatic foci. T2-weighted, FLAIR, and ADC map images showed high-intensity areas in the subcortical region of the bilateral parieto-occipital lobes, leading to a diagnosis of posterior reversible encephalopathy syndrome (PRES. The symptoms improved after treatment with antihypertensive and antiepileptic drugs. Clinicians should keep it in mind that central nervous system symptoms during anticancer therapy containing Pem may indicate possible PRES.

  16. FOXO3a mediates the cytotoxic effects of cisplatin in colon cancer cells

    OpenAIRE

    de Mattos, Silvia Fernández; Villalonga, Priam; Clardy, Jon; Lam, Eric W-F

    2008-01-01

    Cisplatin is a conventional chemotherapeutic agent that binds covalently to purine DNA bases and mediates cellular apoptosis. A better understanding of the downstream cellular targets of cisplatin will provide information on its mechanism of action and help to understand the mechanism of drug resistance. In this study, we have investigated the effects of cisplatin in a panel of colon carcinoma cell lines and the involvement of the PI3K/FOXO pathway in cisplatin action and resistance. Cisplati...

  17. Hydroxycamptothecin-loaded nanoparticles enhance target drug delivery and anticancer effect

    Directory of Open Access Journals (Sweden)

    Li Su

    2008-05-01

    Full Text Available Abstract Background Hydroxycamptothecin (HCPT has been shown to have activity against a broad spectrum of cancers. In order to enhance its tissue-specific delivery and anticancer activity, we prepared HCPT-loaded nanoparticles made from poly(ethylene glycol-poly(γ-benzyl-L-glutamate (PEG-PBLG, and then studied their release characteristics, pharmacokinetic characteristics, and anticancer effects. PEG-PBLG nanoparticles incorporating HCPT were prepared by a dialysis method. Scanning electron microscopy (SEM was used to observe the shape and diameter of the nanoparticles. The HCPT release characteristics in vitro were evaluated by ultraviolet spectrophotometry. A high-performance liquid chromatography (HPLC detection method for determining HCPT in rabbit plasma was established. The pharmacokinetic parameters of HCPT/PEG-PBLG nanoparticles were compared with those of HCPT. Results The HCPT-loaded nanoparticles had a core-shell spherical structure, with a core diameter of 200 nm and a shell thickness of 30 nm. Drug-loading capacity and drug encapsulation were 7.5 and 56.8%, respectively. The HCPT release profile was biphasic, with an initial abrupt release, followed by sustained release. The terminal elimination half-lives (t 1/2 β of HCPT and HCPT-loaded nanoparticles were 4.5 and 10.1 h, respectively. Peak concentrations (Cmax of HCPT and HCPT-loaded nanoparticles were 2627.8 and 1513.5 μg/L, respectively. The apparent volumes of distribution of the HCPT and HCPT-loaded nanoparticles were 7.3 and 20.0 L, respectively. Compared with a blank control group, Lovo cell xenografts or Tca8113 cell xenografts in HCPT or HCPT-loaded nanoparticle treated groups grew more slowly and the tumor doubling times were increased. The tumor inhibition effect in the HCPT-loaded nanosphere-treated group was significantly higher than that of the HCPT-treated group (p 0.05. Conclusion Compared to the HCPT- and control-treated groups, the HCPT-loaded nanoparticle

  18. Membrane Transporters as Mediators of Cisplatin Effects and Side Effects

    Directory of Open Access Journals (Sweden)

    Giuliano Ciarimboli

    2012-01-01

    Full Text Available Transporters are important mediators of specific cellular uptake and thus, not only for effects, but also for side effects, metabolism, and excretion of many drugs such as cisplatin. Cisplatin is a potent cytostatic drug, whose use is limited by its severe acute and chronic nephro-, oto-, and peripheral neurotoxicity. For this reason, other platinum derivatives, such as carboplatin and oxaliplatin, with less toxicity but still with antitumoral action have been developed. Several transporters, which are expressed on the cell membranes, have been associated with cisplatin transport across the plasma membrane and across the cell: the copper transporter 1 (Ctr1, the copper transporter 2 (Ctr2, the P-type copper-transporting ATPases ATP7A and ATP7B, the organic cation transporter 2 (OCT2, and the multidrug extrusion transporter 1 (MATE1. Some of these transporters are also able to accept other platinum derivatives as substrate. Since membrane transporters display a specific tissue distribution, they can be important molecules that mediate the entry of platinum derivatives in target and also nontarget cells possibly mediating specific effects and side effects of the chemotherapeutic drug. This paper summarizes the literature on toxicities of cisplatin compared to that of carboplatin and oxaliplatin and the interaction of these platinum derivatives with membrane transporters.

  19. Liquid chromatography coupled with tandem mass spectrometry for the quantitative analysis of anticancer drugs in biological matrices

    NARCIS (Netherlands)

    Stokvis, Ellen

    2004-01-01

    In this thesis, the development and validation of liquid chromatography tandem mass spectrometric (LC-MS/MS) methods for the quantitative bioanalysis of anticancer drugs are described. The monitoring of these drugs in biological fluids and tissues is important during both pre-clinical and clinical

  20. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA.

    Science.gov (United States)

    Geng, Jiafeng; Aioub, Mena; El-Sayed, Mostafa A; Barry, Bridgette A

    2017-09-28

    Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm -1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10 -5 and 6.5 × 10 -6 s -1 ) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.

  1. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  2. Mechanism of hyperthermic potentiation of cisplatin action in cisplatin-sensitive and -resistant tumour cells

    NARCIS (Netherlands)

    Hettinga, JVE; Lemstra, W; Meijer, C; Dam, WA; Uges, DRA; Konings, AWT; DeVries, EGE; Kampinga, HH

    1997-01-01

    In this study, the mechanism(s) by which heat increases cis-diamminedichloroplatinum (cisplatin, cDDP) sensitivity in cDDP-sensitive and -resistant cell lines of murine as well as human origin were investigated. Heating cells at 43 degrees C during cDDP exposure was found to increase drug

  3. Inhibition of cisplatin-induced vomiting by selective 5-hydroxytryptamine M-receptor antagonism.

    OpenAIRE

    Miner, W. D.; Sanger, G. J.

    1986-01-01

    MDL 72222, the selective 5-hydroxytryptamine (5-HT) M-receptor antagonist, prevented or reduced cisplatin-induced emesis in ferrets. It is suggested that cisplatin-induced, and possibly other cytotoxic drug-induced vomiting may involve a 5-HT M-receptor mechanism.

  4. An in vivo C. elegans model system for screening EGFR-inhibiting anti-cancer drugs.

    Directory of Open Access Journals (Sweden)

    Young-Ki Bae

    Full Text Available The epidermal growth factor receptor (EGFR is a well-established target for cancer treatment. EGFR tyrosine kinase (TK inhibitors, such as gefinitib and erlotinib, have been developed as anti-cancer drugs. Although non-small cell lung carcinoma with an activating EGFR mutation, L858R, responds well to gefinitib and erlotinib, tumors with a doubly mutated EGFR, T790M-L858R, acquire resistance to these drugs. The C. elegans EGFR homolog LET-23 and its downstream signaling pathway have been studied extensively to provide insight into regulatory mechanisms conserved from C. elegans to humans. To develop an in vivo screening system for potential cancer drugs targeting specific EGFR mutants, we expressed three LET-23 chimeras in which the TK domain was replaced with either the human wild-type TK domain (LET-23::hEGFR-TK, a TK domain with the L858R mutation (LET-23::hEGFR-TK[L858R], or a TK domain with the T790M-L858R mutations (LET-23::hEGFR-TK[T790M-L858R] in C. elegans vulval cells using the let-23 promoter. The wild-type hEGFR-TK chimeric protein rescued the let-23 mutant phenotype, and the activating mutant hEGFR-TK chimeras induced a multivulva (Muv phenotype in a wild-type C. elegans background. The anti-cancer drugs gefitinib and erlotinib suppressed the Muv phenotype in LET-23::hEGFR-TK[L858R]-expressing transgenic animals, but not in LET-23::hEGFR-TK[T790M-L858R] transgenic animals. As a pilot screen, 8,960 small chemicals were tested for Muv suppression, and AG1478 (an EGFR-TK inhibitor and U0126 (a MEK inhibitor were identified as potential inhibitors of EGFR-mediated biological function. In conclusion, transgenic C. elegans expressing chimeric LET-23::hEGFR-TK proteins are a model system that can be used in mutation-specific screens for new anti-cancer drugs.

  5. Structure-directing star-shaped block copolymers: supramolecular vesicles for the delivery of anticancer drugs.

    Science.gov (United States)

    Yang, Chuan; Liu, Shao Qiong; Venkataraman, Shrinivas; Gao, Shu Jun; Ke, Xiyu; Chia, Xin Tian; Hedrick, James L; Yang, Yi Yan

    2015-06-28

    Amphiphilic polycarbonate/PEG copolymer with a star-like architecture was designed to facilitate a unique supramolecular transformation of micelles to vesicles in aqueous solution for the efficient delivery of anticancer drugs. The star-shaped amphipilic block copolymer was synthesized by initiating the ring-opening polymerization of trimethylene carbonate (TMC) from methyl cholate through a combination of metal-free organo-catalytic living ring-opening polymerization and post-polymerization chain-end derivatization strategies. Subsequently, the self-assembly of the star-like polymer in aqueous solution into nanosized vesicles for anti-cancer drug delivery was studied. DOX was physically encapsulated into vesicles by dialysis and drug loading level was significant (22.5% in weight) for DOX. Importantly, DOX-loaded nanoparticles self-assembled from the star-like copolymer exhibited greater kinetic stability and higher DOX loading capacity than micelles prepared from cholesterol-initiated diblock analogue. The advantageous disparity is believed to be due to the transformation of micelles (diblock copolymer) to vesicles (star-like block copolymer) that possess greater core space for drug loading as well as the ability of such supramolecular structures to encapsulate DOX. DOX-loaded vesicles effectively inhibited the proliferation of 4T1, MDA-MB-231 and BT-474 cells, with IC50 values of 10, 1.5 and 1.0mg/L, respectively. DOX-loaded vesicles injected into 4T1 tumor-bearing mice exhibited enhanced accumulation in tumor tissue due to the enhanced permeation and retention (EPR) effect. Importantly, DOX-loaded vesicles demonstrated greater tumor growth inhibition than free DOX without causing significant body weight loss or cardiotoxicity. The unique ability of the star-like copolymer emanating from the methyl cholate core provided the requisite modification in the block copolymer interfacial curvature to generate vesicles of high loading capacity for DOX with significant

  6. Elimination of mouse tumor cells from neonate spermatogonial cells utilizing cisplatin-entrapped folic acid-conjugated poly(lactic-co-glycolic acid) nanoparticles in vitro.

    Science.gov (United States)

    Shabani, Ronak; Ashjari, Mohsen; Ashtari, Khadijeh; Izadyar, Fariborz; Behnam, Babak; Khoei, Samideh; Asghari-Jafarabadi, Mohamad; Koruji, Morteza

    2018-01-01

    Some male survivors of childhood cancer are suffering from azoospermia. In addition, spermatogonial stem cells (SSCs) are necessary for the improvement of spermatogenesis subsequent to exposure to cytotoxic agents such as cisplatin. The aim of this study was to evaluate the anticancer activity of cisplatin-loaded folic acid-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) on mouse malignant cell line (EL4) and SSCs in vitro. SSCs were co-cultured with mouse malignant cell line (EL4) cells and divided into four culture groups: 1) control (cells were co-cultured in the culture medium), 2) co-cultured cells were treated with cisplatin (10 μg/mL), 3) co-cultured cells were treated with cisplatin-loaded folic acid-conjugated PLGA NPs, and 4) co-cultures were treated with folic acid-conjugated PLGA for 48 hours. The NPs were prepared, characterized, and targeted with folate. In vitro release characteristics, loading efficiency, and scanning electron microscopy and transmission electron microscopy images were studied. Cancer cells were assayed after treatment using flow cytometry and TUNEL assay. The co-cultures of SSCs and EL4 cells were injected into seminiferous tubules of the testes after treating with cis-diaminedichloroplatinum/PLGA NPs. The mean diameter of PLGA NPs ranged between 150 and 250 nm. The number of TUNEL-positive cells increased, and the expression of Bax and caspase-3 were upregulated in EL4 cells in Group 4 compared with Group 2. There was no pathological tumor in testes after transplantation with treated co-cultured cells. The PLGA NPs appeared to act as a promising carrier for cisplatin administration, which was consistent with a higher activation of apoptosis than free drug.

  7. 1-[2-(2-Methoxyphenylaminoethylamino]-3-(naphthalene-1- yloxypropan-2-ol May Be a Promising Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Tomoyuki Nishizaki

    2014-12-01

    Full Text Available We have originally synthesized the naftopidil analogue 1-[2-(2-methoxyphenylaminoethylamino]-3-(naphthalene-1-yloxypropan-2-ol (HUHS 1015 as a new anticancer drug. HUHS1015 induces cell death in a wide variety of human cancer cell lines originated from malignant pleural mesothelioma, lung cancer, hepatoma, gastric cancer, colorectal cancer, bladder cancer, prostate cancer, and renal cancer. HUHS1015-induced cell death includes necrosis (necroptosis and apoptosis, and the underlying mechanism differs depending upon cancer cell types. HUHS1015 effectively suppresses tumor growth in mice inoculated with NCI-H2052, MKN45, or CW2 cells, with a potential similar to or higher than that of currently used anticancer drugs. Here we show how HUHS1015 might offer brilliant hope for cancer therapy.

  8. Molecular chess? Hallmarks of anti-cancer drug resistance.

    Science.gov (United States)

    Cree, Ian A; Charlton, Peter

    2017-01-05

    The development of resistance is a problem shared by both classical chemotherapy and targeted therapy. Patients may respond well at first, but relapse is inevitable for many cancer patients, despite many improvements in drugs and their use over the last 40 years. Resistance to anti-cancer drugs can be acquired by several mechanisms within neoplastic cells, defined as (1) alteration of drug targets, (2) expression of drug pumps, (3) expression of detoxification mechanisms, (4) reduced susceptibility to apoptosis, (5) increased ability to repair DNA damage, and (6) altered proliferation. It is clear, however, that changes in stroma and tumour microenvironment, and local immunity can also contribute to the development of resistance. Cancer cells can and do use several of these mechanisms at one time, and there is considerable heterogeneity between tumours, necessitating an individualised approach to cancer treatment. As tumours are heterogeneous, positive selection of a drug-resistant population could help drive resistance, although acquired resistance cannot simply be viewed as overgrowth of a resistant cancer cell population. The development of such resistance mechanisms can be predicted from pre-existing genomic and proteomic profiles, and there are increasingly sophisticated methods to measure and then tackle these mechanisms in patients. The oncologist is now required to be at least one step ahead of the cancer, a process that can be likened to 'molecular chess'. Thus, as well as an increasing role for predictive biomarkers to clinically stratify patients, it is becoming clear that personalised strategies are required to obtain best results.

  9. Antitumor Activity of Artemisinin and Its Derivatives: From a Well-Known Antimalarial Agent to a Potential Anticancer Drug

    Directory of Open Access Journals (Sweden)

    Maria P. Crespo-Ortiz

    2012-01-01

    Full Text Available Improvement of quality of life and survival of cancer patients will be greatly enhanced by the development of highly effective drugs to selectively kill malignant cells. Artemisinin and its analogs are naturally occurring antimalarials which have shown potent anticancer activity. In primary cancer cultures and cell lines, their antitumor actions were by inhibiting cancer proliferation, metastasis, and angiogenesis. In xenograft models, exposure to artemisinins substantially reduces tumor volume and progression. However, the rationale for the use of artemisinins in anticancer therapy must be addressed by a greater understanding of the underlying mechanisms involved in their cytotoxic effects. The primary targets for artemisinin and the chemical base for its preferential effects on heterologous tumor cells need yet to be elucidated. The aim of this paper is to provide an overview of the recent advances and new development of this class of drugs as potential anticancer agents.

  10. Boron nitride nanotubes for delivery of 5-fluorouracil as anticancer drug: a theoretical study

    Science.gov (United States)

    Shayan, Kolsoom; Nowroozi, Alireza

    2018-01-01

    The electronic structure and properties of the armchair boron nitride nanotubes (BNNTs) interacted with the 5-FU drug, as an anticancer drug, are studied at the B3LYP/6-31G(d,p) level of theory. D3-Corrections were carried out for the treatment of intermolecular interactions in the hybrid complexes and encapsulated nanotubes, exactly. Results have shown that the encapsulation and adsorption of 5-FU molecule on the studied BNNTs surface are favorable processes, with a few exceptions. Also, it is found that the encapsulated nanotubes are stable than the hybrid complexes. Furthermore, we estimated the strengths of the intermolecular bonds of the benchmark systems by energetic, geometric, topological and molecular orbital descriptors. Some analyses have been made to explore any changes in the binding characteristics of the drug molecule after its attachment to the nanotubes. According to the NBO results, the charge transfer phenomenon is observed from the bonding or nonbonding orbitals of drug to the antibonding orbitals of BNNTs. Moreover, HOMO-LUMO analysis indicated that, after the adsorption process, the HOMO value slightly increased, while the LUMO value in these systems significantly reduced in the both of Drug@BNNTs groups. So, the energy gaps between HOMO and LUMO (Eg) are reduced, which emphasis on the greater intermolecular bond strength. Finally, the stability and reactivity of the Drug@BNNTs complexes have been examined from the magnitudes of the chemical reactivity descriptors such as chemical potential, global hardness, and electrophilicity index. As a consequence, BNNTs can be considered as a drug delivery vehicle for the transportation of 5-FU as anticancer drug within the biological systems.

  11. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    Science.gov (United States)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  12. Failure of Elevating Calcium Induces Oxidative Stress Tolerance and Imparts Cisplatin Resistance in Ovarian Cancer Cells

    OpenAIRE

    Ma, Liwei; Wang, Hongjun; Wang, Chunyan; Su, Jing; Xie, Qi; Xu, Lu; Yu, Yang; Liu, Shibing; Li, Songyan; Xu, Ye; Li, Zhixin

    2016-01-01

    Cisplatin is a commonly used chemotherapeutic drug, used for the treatment of malignant ovarian cancer, but acquired resistance limits its application. There is therefore an overwhelming need to understand the mechanism of cisplatin resistance in ovarian cancer, that is, ovarian cancer cells are insensitive to cisplatin treatment. Here, we show that failure of elevating calcium and oxidative stress tolerance play key roles in cisplatin resistance in ovarian cancer cell lines. Cisplatin induce...

  13. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat, E-mail: sarwat786@rediffmail.com

    2012-02-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  14. Chrysin protects against cisplatin-induced colon. toxicity via amelioration of oxidative stress and apoptosis: Probable role of p38MAPK and p53

    International Nuclear Information System (INIS)

    Khan, Rehan; Khan, Abdul Quaiyoom; Qamar, Wajhul; Lateef, Abdul; Tahir, Mir; Rehman, Muneeb U; Ali, Farrah; Sultana, Sarwat

    2012-01-01

    Cisplatin, an antineoplastic drug, is widely used as a foremost therapy against numerous forms of cancer but it has pronounced adverse effects viz., nephrotoxicity, ototoxicity etc. CDDP-induced emesis and diarrhea are also marked toxicities that may be due to intestinal injury. Chrysin (5,7-dihydroxyflavone), a natural flavone commonly found in many plants possesses multiple biological activities, such as antioxidant, anti-inflammatory and anti-cancer effects. In the present study, we investigated the protective effect of chrysin against CDDP-induced colon toxicity. The plausible mechanism of CDDP-induced colon toxicity and damage includes oxidative stress, activation of p38MAPK and p53, and colonic epithelial cell apoptosis via upregulating the expression of Bak and cleaved caspase-3. Chrysin was administered to Wistar rats once daily for 14 consecutive days at the doses of 25 and 50 mg/kg body weight orally in corn oil. On day 14, a single intraperitoneal injection of cisplatin was given at the dose of 7.5 mg/kg body weight and animals were euthanized after 24 h of cisplatin injection. Chrysin ameliorated CDDP-induced lipid peroxidation, xanthine oxidase activity, glutathione depletion, decrease in antioxidant (catalase, glutathione reductase, glutathione peroxidase and glucose-6 phosphate dehydrogenase) and phase-II detoxifying (glutathione-S-transferase and quinone reductase) enzyme activities. Chrysin also attenuated goblet cell disintegration, expression of phospho-p38MAPK and p53, and apoptotic tissue damage which were induced by CDDP. Histological findings further supported the protective effects of chrysin against CDDP-induced colonic damage. The results of the present study suggest that the protective effect of chrysin against CDDP-induced colon toxicity was related with attenuation of oxidative stress, activation of p38MAPK and p53, and apoptotic tissue damage. Highlights: ► Cisplatin-induced colon toxicity is associated with oxidative stress and

  15. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-15

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017.

  16. Commercialization strategy of the herbal composition HemoHIM as a complementary drug for anti-cancer therapies

    International Nuclear Information System (INIS)

    Jo, Sungkee; Jung, Uhee; Park, Haeran

    2013-01-01

    Ο Purpose - Establishment of strategy for the development of HemoHIM as a complementary drug for cancer therapies including non-clinical data preparation, obtainment of a research project grant, base of manufacturing process and raw material standardization Ο Research Results - Examination and confirmation of the essential requirements to develop the complementary drug for anticancer therapies by consulting with Korea FDA, and clinical CRO, and medical experts (animal efficacy study, toxicological safety test, standard analytical method, raw material standardization) - Obtainment of a governmental research project for 3 years from Ministry of Health and Welfare to develop HemoHIM as an complementary herbal drug for anti-cancer therapies - Acquisition of fundamental data on the manufacturing process and the raw material standardization for the optimal efficacy of HemoHIM Ο Expected benefit - Planning to get the approval of IND from Korea FDA by 2015 after completing the non-clinical study through the on-going project from Ministry of Health and Welfare - Planning to commercialize the product by 2017

  17. A comparative study on the changes of serum fibrosis indicators after TACE with use of low-dose versus conventional-dose of anticancer drugs in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Lu Wei; Li Yanhao; He Xiaofeng; Chen Yong

    2004-01-01

    Objective: To study the changes of serum fibrosis indicators after transcatheter arterial chemo-embolization (TACE) with the use of low-dose vs conventional-dose of anticancer drugs in hepatocellular carcinoma (HCC). Methods: Forty patients with HCC were divided into two groups to receive superselective TACE. Patients in group A(n=20) received low-dose anticancer drug(s): 2-4 mg mitomycin C (MMC) with the tumor mass less than 5 cm in size; while MMC 4-6 mg and epirubicin (EPI) 10 mg were given with tumor size of 5-8 cm in diameter, and MMC 6-8 mg, EPI 10 mg, CBP 100 mg with tumors larger than 8 cm. Patients in group B (n=20) were given conventional-dose of anticancer drugs (MMC 10 mg, EPI 40 mg and CBP 300 mg). Lipiodol-anticancer drugs emulsion was injected into the feeding arteries of tumors and followed by gelatin sponge or PVA particles embolization participation. Four serum fibrosis indicators, including hyaluronate acid (HA), human procollagen type-III (hPC-III), laminin (LN), collagen type-IV (IV-C) were assessed before and 7 days after TACE. Results: There was no significant difference between the two groups concerning the four indicators before TACE, but the concentrations of the four serum indicators were increased significantly in group B (P 0.05). Conclusions: The formation of liver fibrosis after TACE in HCC is related to the dosage of anticancer drugs employed for chemoembolization. Therefore, low-dose anticancer drugs should be advocated. (authors)

  18. DNA modifications by antitumor platinum and ruthenium compounds: Their recognition and repair

    Czech Academy of Sciences Publication Activity Database

    Brabec, Viktor

    2002-01-01

    Roč. 71, - (2002), s. 1-68 ISSN 0079-6603 R&D Projects: GA AV ČR IAA5004101 Institutional research plan: CEZ:AV0Z5004920 Keywords : interstrand cross-link * cisplatin -demaged DNA * anticancer drug cisplatin Subject RIV: BO - Biophysics Impact factor: 4.839, year: 2002

  19. Honey feeding protects kidney against cisplatin nephrotoxicity through suppression of inflammation.

    Science.gov (United States)

    Hamad, Rania; Jayakumar, Calpurnia; Ranganathan, Punithavathi; Mohamed, Riyaz; El-Hamamy, Mahmoud M I; Dessouki, Amina A; Ibrahim, Abdelazim; Ramesh, Ganesan

    2015-08-01

    Cisplatin is a highly effective chemotherapeutic drug used to treat a wide variety of solid tumors. However, its use was limited due its dose-limiting toxicity to the kidney. Currently, there are no therapies available to treat or prevent cisplatin nephrotoxicity. Honey is a naturally occurring complex liquid and widely used in traditional Ayurvedic medicine to treat many illnesses. However, its effect on cisplatin nephrotoxicity is unknown. To determine the role of honey in cisplatin nephrotoxicity, animals were pretreated orally for a week and then cisplatin was administered. Honey feeding was continued for another 3 days. Our results show that animals with cisplatin-induced kidney dysfunction, as determined by increased serum creatinine, which received honey feeding had less kidney dysfunction. Improved kidney function was associated with better preservation of kidney morphology in honey-treated group as compared to the cisplatin alone-treated group. Interestingly, honey feeding significantly reduced cisplatin-induced tubular epithelial cell death, immune infiltration into the kidney as well as cytokine and chemokine expression and excretion as compared to cisplatin treated animals. Western blot analysis shows that cisplatin-induced increase in phosphorylation of NFkB was completely suppressed with honey feeding. In conclusion, honey feeding protects the kidney against cisplatin nephrotoxicity through suppression of inflammation and NFkB activation. © 2015 Wiley Publishing Asia Pty Ltd.

  20. Interaction of anthraquinone anti-cancer drugs with DNA:Experimental and computational quantum chemical study

    Science.gov (United States)

    Al-Otaibi, Jamelah S.; Teesdale Spittle, Paul; El Gogary, Tarek M.

    2017-01-01

    Anthraquinones form the basis of several anticancer drugs. Anthraquinones anticancer drugs carry out their cytotoxic activities through their interaction with DNA, and inhibition of topoisomerase II activity. Anthraquinones (AQ4 and AQ4H) were synthesized and studied along with 1,4-DAAQ by computational and experimental tools. The purpose of this study is to shade more light on mechanism of interaction between anthraquinone DNA affinic agents and different types of DNA. This study will lead to gain of information useful for drug design and development. Molecular structures were optimized using DFT B3LYP/6-31 + G(d). Depending on intramolecular hydrogen bonding interactions two conformers of AQ4 were detected and computed as 25.667 kcal/mol apart. Molecular reactivity of the anthraquinone compounds was explored using global and condensed descriptors (electrophilicity and Fukui functions). Molecular docking studies for the inhibition of CDK2 and DNA binding were carried out to explore the anti cancer potency of these drugs. NMR and UV-VIS electronic absorption spectra of anthraquinones/DNA were investigated at the physiological pH. The interaction of the three anthraquinones (AQ4, AQ4H and 1,4-DAAQ) were studied with three DNA (calf thymus DNA, (Poly[dA].Poly[dT]) and (Poly[dG].Poly[dC]). NMR study shows a qualitative pattern of drug/DNA interaction in terms of band shift and broadening. UV-VIS electronic absorption spectra were employed to measure the affinity constants of drug/DNA binding using Scatchard analysis.

  1. Striking balance between expedited review and expecting efficacious anticancer drug and biologics: An ongoing challenge

    Directory of Open Access Journals (Sweden)

    Krishnan Vengadaragava Chary

    2017-01-01

    Full Text Available Objective: The objective of this study is to assess the postmarketing status: Efficacy and safety drugs and biologics related with cancer approved under expedited review. Methods: This observational, analytical study was carried between January and April 2016 by the Department of Pharmacology and Medical Oncology, Saveetha Medical College. Drugs approved under expedited review, fast-track status and its association with anti-cancer effects, postmarketing efficacy and safety, propensity to induce the second tumor was noted. Drug approval status and average time of review process were obtained from the United States-Food and Drug Administration (FDA, Center for Drugs and Biologics Center (Center for Drug Evaluation and Research and Center for Biologics Evaluation and Research. Postmarketing adverse events and safety issues were collected FDA adverse effects reporting system. Further, evidence efficacy and safety of drugs were taken from various meta-analysis, reports on BioMed journals, and Cochrane systematic reviews. Results: In the last 5 years, 166 products were approved by expedited review. Out of 166, 48 (28.9% drugs/biologics are anticancer drugs and drugs used in precancerous conditions. The average time of review varies from19 months to 8.2 months. Out of these 48 molecules, 37 (77% molecules received serious adverse event alert. Positive correlation is seen between average time of review and number of adverse events reported. Seven (14.5% drugs were proven to induce second tumor among receivers. Conclusion: Although expedited review facilitates faster approval of drugs; selection and assessment criteria should be stringent to prevent clinical failure, serious adverse effects of such drugs exposed to many individuals. Focus should be given developing chemosensitizing molecule and evaluation of metronomic regimen which is being more optimistic in current cancer therapeutics.

  2. A new in vitro screening system for anticancer drugs for the treatment of non-small cell lung cancer

    International Nuclear Information System (INIS)

    Hanauske, U.; Hanauske, A.R.; Clark, G.M.; Tsen, D.; Buchok, J.; Hoff, D.D. von

    1989-01-01

    We have evaluated a semiautomated radiometric assay (BACTEC 460 system) for screening of activity of anticancer drugs against human non-small cell lung cancer cell lines. Cells from seven cell lines were exposed to standard antineoplastic agents at four different concentrations using a 1-h incubation. Alpha 2-interferon was tested using a continuous incubation. In vitro drug activity was analyzed as a function of the clinically achievable serum concentration. Our results indicate that two cell lines (CALU-3, SK-MES-1) exhibit in vitro drug sensitivity patterns closest to those observed in clinical studies. These two cell lines might therefore be most useful for screening new anticancer compounds for activity against non-small cell lung cancer. The radiometric assay is a semiautomated system which has advantages over other, more time-consuming screening systems

  3. Factors influencing the drug sensitization of human tumor cells for in situ lipofection.

    Science.gov (United States)

    Son, K; Huang, L

    1996-07-01

    The cisplatin induced enhancement of in situ lipofection was optimized by considering the factors that can increase the degree of sensitization. Two other anticancer drugs, mechlorethamine (nitrogen mustard) and taxol, enhanced CAT gene expression but the degree of sensitization was not as great as cisplatin. Besides human 2008 ovarian cancer cells we also found that human lung (A549) and head and neck cancer cells (SCC 25) were transiently sensitized by cisplatin. The transfectability of the two commercially available cationic liposomes, Lipofectin and LipofectAmine, was either weak or not consistent among tumors tested. In vivo transfection efficiency of 2008 cells was the highest at 1 microgram DNA per nmol or microgram liposome with all three cationic liposomes. In vitro transfection efficiency of 2008 cells at 1:1 (microgram of DNA:nmole of DC-chol/DOPE liposome) increased in a dose-dependent manner while at 1:10, an optimal ratio for in vitro lipofection, rapidly decreased with an increase in dose. This result indicated that there was a correlation between in vivo and in vitro lipofection at 1:1 ratio for delivering liposomal DNA. Most of the DNA injected into the tumor was concentrated in the tumor and in the skin above the tumor whether cisplatin was preinjected or liposomes were used as carriers.

  4. An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery

    Science.gov (United States)

    Najer, Adrian; Wu, Dalin; Nussbaumer, Martin G.; Schwertz, Geoffrey; Schwab, Anatol; Witschel, Matthias C.; Schäfer, Anja; Diederich, François; Rottmann, Matthias; Palivan, Cornelia G.; Beck, Hans-Peter; Meier, Wolfgang

    2016-08-01

    Medical applications of anticancer and antimalarial drugs often suffer from low aqueous solubility, high systemic toxicity, and metabolic instability. Smart nanocarrier-based drug delivery systems provide means of solving these problems at once. Herein, we present such a smart nanoparticle platform based on self-assembled, reduction-responsive amphiphilic graft copolymers, which were successfully synthesized through thiol-disulfide exchange reaction between thiolated hydrophilic block and pyridyl disulfide functionalized hydrophobic block. These amphiphilic graft copolymers self-assembled into nanoparticles with mean diameters of about 30-50 nm and readily incorporated hydrophobic guest molecules. Fluorescence correlation spectroscopy (FCS) was used to study nanoparticle stability and triggered release of a model compound in detail. Long-term colloidal stability and model compound retention within the nanoparticles was found when analyzed in cell media at body temperature. In contrast, rapid, complete reduction-triggered disassembly and model compound release was achieved within a physiological reducing environment. The synthesized copolymers revealed no intrinsic cellular toxicity up to 1 mg mL-1. Drug-loaded reduction-sensitive nanoparticles delivered a hydrophobic model anticancer drug (doxorubicin, DOX) to cancer cells (HeLa cells) and an experimental, metabolically unstable antimalarial drug (the serine hydroxymethyltransferase (SHMT) inhibitor (+/-)-1) to Plasmodium falciparum-infected red blood cells (iRBCs), with higher efficacy compared to similar, non-sensitive drug-loaded nanoparticles. These responsive copolymer-based nanoparticles represent a promising candidate as smart nanocarrier platform for various drugs to be applied to different diseases, due to the biocompatibility and biodegradability of the hydrophobic block, and the protein-repellent hydrophilic block.Medical applications of anticancer and antimalarial drugs often suffer from low aqueous

  5. Genetic Interactions of STAT3 and Anticancer Drug Development

    International Nuclear Information System (INIS)

    Fang, Bingliang

    2014-01-01

    Signal transducer and activator of transcription 3 (STAT3) plays critical roles in tumorigenesis and malignant evolution and has been intensively studied as a therapeutic target for cancer. A number of STAT3 inhibitors have been evaluated for their antitumor activity in vitro and in vivo in experimental tumor models and several approved therapeutic agents have been reported to function as STAT3 inhibitors. Nevertheless, most STAT3 inhibitors have yet to be translated to clinical evaluation for cancer treatment, presumably because of pharmacokinetic, efficacy, and safety issues. In fact, a major cause of failure of anticancer drug development is lack of efficacy. Genetic interactions among various cancer-related pathways often provide redundant input from parallel and/or cooperative pathways that drives and maintains survival environments for cancer cells, leading to low efficacy of single-target agents. Exploiting genetic interactions of STAT3 with other cancer-related pathways may provide molecular insight into mechanisms of cancer resistance to pathway-targeted therapies and strategies for development of more effective anticancer agents and treatment regimens. This review focuses on functional regulation of STAT3 activity; possible interactions of the STAT3, RAS, epidermal growth factor receptor, and reduction-oxidation pathways; and molecular mechanisms that modulate therapeutic efficacies of STAT3 inhibitors

  6. Reversible p53 inhibition prevents cisplatin ototoxicity without blocking chemotherapeutic efficacy.

    Science.gov (United States)

    Benkafadar, Nesrine; Menardo, Julien; Bourien, Jérôme; Nouvian, Régis; François, Florence; Decaudin, Didier; Maiorano, Domenico; Puel, Jean-Luc; Wang, Jing

    2017-01-01

    Cisplatin is a widely used chemotherapy drug, despite its significant ototoxic side effects. To date, the mechanism of cisplatin-induced ototoxicity remains unclear, and hearing preservation during cisplatin-based chemotherapy in patients is lacking. We found activation of the ATM-Chk2-p53 pathway to be a major determinant of cisplatin ototoxicity. However, prevention of cisplatin-induced ototoxicity is hampered by opposite effects of ATM activation upon sensory hair cells: promoting both outer hair cell death and inner hair cell survival. Encouragingly, however, genetic or pharmacological ablation of p53 substantially attenuated cochlear cell apoptosis, thus preserving hearing. Importantly, systemic administration of a p53 inhibitor in mice bearing patient-derived triple-negative breast cancer protected auditory function, without compromising the anti-tumor efficacy of cisplatin. Altogether, these findings highlight a novel and effective strategy for hearing protection in cisplatin-based chemotherapy. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.

  7. Suppression of heat shock protein 70 by siRNA enhances the antitumor effects of cisplatin in cultured human osteosarcoma cells.

    Science.gov (United States)

    Mori, Yuki; Terauchi, Ryu; Shirai, Toshiharu; Tsuchida, Shinji; Mizoshiri, Naoki; Arai, Yuji; Kishida, Tsunao; Fujiwara, Hiroyoshi; Mazda, Osam; Kubo, Toshikazu

    2017-09-01

    Although advances in chemotherapy have improved the prognosis for osteosarcoma, some patients do not respond sufficiently to treatment. Heat shock protein 70 (Hsp70) is expressed at high levels in cancer cells and attenuates the therapeutic efficacy of anticancer agents, resulting in a poorer prognosis. This study investigated whether small interfering RNA (siRNA)-mediated inhibition of Hsp70 expression in an osteosarcoma cell line would enhance sensitivity to cisplatin. The expression of Hsp70 with cisplatin treatment was observed by using Western blotting and real-time reverse transcription polymerase chain reaction (RT-PCR). Changes in the IC 50 of cisplatin when Hsp70 was inhibited by siRNA were evaluated. Cisplatin's effectiveness in inducing apoptosis was assessed by assay of terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), caspase-3 activity, and mitochondrial membrane potential. Up-regulation of Hsp70 expression was dependent on the concentration of cisplatin. Inhibition of Hsp70 expression significantly reduced the IC 50 of cisplatin. When cisplatin was added to osteosarcoma cells with Hsp70 expression inhibited, a significant increase in apoptosis was demonstrated in TUNEL, caspase-3, and mitochondrial membrane potential assays. Inhibition of Hsp70 expression induced apoptosis in cultured osteosarcoma cells, indicating that Hsp70 inhibition enhanced sensitivity to cisplatin. Inhibition of Hsp70 expression may provide a new adjuvant therapy for osteosarcoma.

  8. Engineering bioceramic microstructure for customized drug delivery

    Science.gov (United States)

    Pacheco Gomez, Hernando Jose

    One of the most efficient approaches to treat cancer and infection is to use biomaterials as a drug delivery system (DDS). The goal is for the material to provide a sustained release of therapeutic drug dose locally to target the ill tissue without affecting other organs. Silica Calcium Phosphate nano composite (SCPC) is a drug delivery platform that successfully demonstrated the ability to bind and release several therapeutics including antibiotics, anticancer drugs, and growth factors. The aim of the present work is to analyze the role of SCPC microstructure on drug binding and release kinetics. The main crystalline phases of SCPC are alpha-cristobalite (SiO2, Cris) and beta-rhenanite (NaCaPO4, Rhe); therefore, these two phases were prepared and characterized separately. Structural and compositional features of Cris, Rhe and SCPC bioceramics demonstrated a significant influence on the loading capacity and release kinetics profile of Vancomycin (Vanc) and Cisplatin (Cis). Fourier Transform Infrared (FTIR) spectroscopy analyses demonstrated that the P-O functional group in Rhe and SCPC has high affinity to the (C=O and N-H) of Vanc and (N-H and O-H) of Cis. By contrast, a weak chemical interaction between the Si-O functional group in Cris and SCPC and the two drugs was observed. Vanc loading per unit surface area increased in the order 8.00 microg Vanc/m2 for Rhe > 4.49 microg Vanc /m2 for SCPC>3.01 microg Vanc /m2 for Cris (pproducts and the released drug did not cause measurable negative effects on the bioactivity of the tested drugs. The therapeutic effects of the SCPC-Cis hybrid were evaluated using a rat model of hepatocellular carcinoma (HCC). Animals were treated by either systemic cisplatin injection (sCis), or with SCPC-Cis hybrid placed adjacent (ADJ) to, or within (IT), the tumor. Five days after implantation 50-55% of the total cisplatin loaded was released from the SCPC-Cis hybrids resulting in an approximately 50% decrease in tumor volume compared to

  9. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Directory of Open Access Journals (Sweden)

    Irene Veneziani

    2018-01-01

    Full Text Available Neuroblastoma (NB, the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR, triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted.

  10. Neuroblastoma Cell Lines Are Refractory to Genotoxic Drug-Mediated Induction of Ligands for NK Cell-Activating Receptors

    Science.gov (United States)

    Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito

    2018-01-01

    Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983

  11. External influences and priority-setting for anti-cancer agents: a case study of media coverage in adjuvant trastuzumab for breast cancer

    Directory of Open Access Journals (Sweden)

    Fralick John

    2007-06-01

    Full Text Available Abstract Background Setting priorities for the funding of new anti-cancer agents is becoming increasingly complex. The funding of adjuvant trastuzumab for breast cancer has brought this dilemma to the fore. In this paper we review external factors that may influence decision-making bodies and present a case study of media response in Ontario, Canada to adjuvant trastuzumab for breast cancer. Methods A comprehensive search of the databases of Canadian national and local newspapers and television was performed. Articles pertaining to trastuzumab in adjuvant breast cancer as well as 17 other anti-cancer drugs and indications were retrieved. The search period was from the date when individual trial results were announced to the date funding was made available in Ontario. Results During the 2.6 months between the release of the trastuzumab results to funding approval in Ontario, we identified 51 episodes of media coverage. For the 17 other drugs/indications (7 breast and 10 non-breast, the median time to funding approval was 31 months (range 14–46. Other recent major advances in oncology such as adjuvant vinorelbine/cisplatin for resected NSCLC and docetaxel for advanced prostate cancer received considerably less media attention (17 media reports for each than trastuzumab. The median number of media reports for breast cancer drugs was 4.5 compared to 2.5 for non-breast cancer drugs (p = 0.56. Conclusion Priority-setting for novel anti-cancer agents is a complex process that tries to ensure fair use of constrained resources to fund therapies with the best evidence of clinical benefit. However, this process is subject to external factors including the influence of media, patient advocates, politicians, and industry. The data in this case study serve to illustrate the significant involvement one (or all of these external factors may play in the debate over priority-setting.

  12. Eco-friendly biosynthesis, anticancer drug loading and cytotoxic effect of capped Ag-nanoparticles against breast cancer

    Science.gov (United States)

    Naz, M.; Nasiri, N.; Ikram, M.; Nafees, M.; Qureshi, M. Z.; Ali, S.; Tricoli, A.

    2017-11-01

    The work aimed to prepare silver nanoparticles (Ag-NPs) from silver nitrate and various concentrations of the seed extract ( Setaria verticillata) by a green synthetic route. The chemical and physical properties of the resulting Ag-NPs were investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectrometry and ultraviolet-visible (UV-Vis) spectrophotometry. Anticancer activity of Ag-NPs (5-20 nm) had dose-dependent cytotoxic effect against breast cancer (MCF7-FLV) cells. The in vitro toxicity was studied on adult earthworms (Lumbricina) resulting in statistically significant ( P < 0.05) inhibition. The prepared NPs were loaded with hydrophilic anticancer drugs (ACD), doxorubicin (DOX) and daunorubicin (DNR), for developing a novel drug delivery carrier having significant adsorption capacity and efficiency to remove the side effects of the medicines effective for leukemia chemotherapy.

  13. [Evolution of reimbursement of high-cost anticancer drugs: Financial impact within a university hospital].

    Science.gov (United States)

    Baudouin, Amandine; Fargier, Emilie; Cerruti, Ariane; Dubromel, Amélie; Vantard, Nicolas; Ranchon, Florence; Schwiertz, Vérane; Salles, Gilles; Souquet, Pierre-Jean; Thomas, Luc; Bérard, Frédéric; Nancey, Stéphane; Freyer, Gilles; Trillet-Lenoir, Véronique; Rioufol, Catherine

    2017-06-01

    In the context of health expenses control, reimbursement of high-cost medicines with a 'minor' or 'nonexistent' improvement in actual health benefit evaluated by the Haute Autorité de santé is revised by the decree of March 24, 2016 related to the procedure and terms of registration of high-cost pharmaceutical drugs. This study aims to set up the economic impact of this measure. A six months retrospective study was conducted within a French university hospital from July 1, 2015 to December 31, 2015. For each injectable high-cost anticancer drug prescribed to a patient with cancer, the therapeutic indication, its status in relation to the marketing authorization and the associated improvement in actual health benefit were examined. The total costs of these treatments, the cost per type of indication and, in the case of marketing authorization indications, the cost per improvement in actual health benefit were evaluated considering that all drugs affected by the decree would be struck off. Over six months, 4416 high-cost injectable anticancer drugs were prescribed for a total cost of 4.2 million euros. The costs of drugs with a minor or nonexistent improvement in actual benefit and which comparator is not onerous amount 557,564 euros. The reform of modalities of inscription on the list of onerous drugs represents a significant additional cost for health institutions (1.1 million euros for our hospital) and raises the question of the accessibility to these treatments for cancer patients. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  14. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Isao [Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo (Japan); Harada, Yasuo [Fujii Memorial Research Institute, Otsuka Pharmaceutical Co., Ltd., Shiga (Japan); Kasahara, Tadashi, E-mail: isao-ishii@umin.ac.jp [Department of Biochemistry, Keio University Graduate School of Pharmaceutical Sciences, Tokyo (Japan)

    2012-10-02

    Pyrvinium pamoate (PP) is an FDA-approved classical anthelmintic, but is now attracting particular attention as an anti-cancer drug after recent findings of its potent cytotoxicity against various cancer cell lines only during glucose starvation, as well as its anti-tumor activity against hypovascular pancreatic cancer cells transplanted in mice. The molecular mechanisms by which PP promotes such preferential toxicity against cancer cells are currently under extensive investigation. PP suppressed the NADH-fumarate reductase system that mediates a reverse reaction of the mitochondrial electron-transport chain complex II in anaerobic organisms such as parasitic helminthes or mammalian cells under tumor microenvironment-mimicking hypoglycemic/hypoxic conditions, thereby inhibiting efficient ATP production. PP also inhibited the unfolded protein response induced by glucose starvation, thereby inhibiting the proliferation of pancreatic cancer cells. Even under normoglycemic/normoxic conditions, PP suppressed the mitochondrial electron-transport chain complex I and thereby STAT3, inhibiting the proliferation of myeloma/erythroleukemia cells. Here, we review accumulating knowledge on its working mechanisms and evaluate PP as a novel anti-cancer drug that targets mitochondrial respiration.

  15. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration.

    Directory of Open Access Journals (Sweden)

    Isao eIshii

    2012-10-01

    Full Text Available Pyrvinium pamoate (PP is an FDA-approved classical anthelmintic, but is now attracting particular attention as an anti-cancer drug after recent findings of its potent cytotoxicity against various cancer cell lines only during glucose starvation, as well as its anti-tumor activity against hypovascular pancreatic cancer cells transplanted in mice. The molecular mechanisms by which PP promotes such preferential toxicity against cancer cells are currently under extensive investigation. PP suppressed the NADH-fumarate reductase system that mediates a reverse reaction of the mitochondrial electron-transport chain complex II in anaerobic organisms such as parasitic helminthes or mammalian cells under tumor microenvironment-mimicking hypoglycemic/hypoxic conditions, thereby inhibiting efficient ATP production. PP also inhibited the unfolded protein response induced by glucose starvation, thereby inhibiting the proliferation of pancreatic cancer cells. Even under normoglycemic/normoxic conditions, PP suppressed the mitochondrial electron-transport chain complex I and thereby STAT3, inhibiting the proliferation of myeloma/erythroleukemia cells. Here, we review accumulating knowledge on its working mechanisms and evaluate PP as a novel anti-cancer drug that targets mitochondrial respiration.

  16. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration

    International Nuclear Information System (INIS)

    Ishii, Isao; Harada, Yasuo; Kasahara, Tadashi

    2012-01-01

    Pyrvinium pamoate (PP) is an FDA-approved classical anthelmintic, but is now attracting particular attention as an anti-cancer drug after recent findings of its potent cytotoxicity against various cancer cell lines only during glucose starvation, as well as its anti-tumor activity against hypovascular pancreatic cancer cells transplanted in mice. The molecular mechanisms by which PP promotes such preferential toxicity against cancer cells are currently under extensive investigation. PP suppressed the NADH-fumarate reductase system that mediates a reverse reaction of the mitochondrial electron-transport chain complex II in anaerobic organisms such as parasitic helminthes or mammalian cells under tumor microenvironment-mimicking hypoglycemic/hypoxic conditions, thereby inhibiting efficient ATP production. PP also inhibited the unfolded protein response induced by glucose starvation, thereby inhibiting the proliferation of pancreatic cancer cells. Even under normoglycemic/normoxic conditions, PP suppressed the mitochondrial electron-transport chain complex I and thereby STAT3, inhibiting the proliferation of myeloma/erythroleukemia cells. Here, we review accumulating knowledge on its working mechanisms and evaluate PP as a novel anti-cancer drug that targets mitochondrial respiration.

  17. The response of hypoxic cells in SCCVII murine tumors to treatment with cisplatin and x rays

    International Nuclear Information System (INIS)

    Yan, R.D.; Durand, R.E.

    1991-01-01

    Possible mechanisms of enhancement of radiation effects by cisplatin, including radiosensitization of hypoxic cells, drug-induced tumor reoxygenation, and inhibition of repair of sublethal radiation damage, were examined in the murine SCCVII model. Combination radiation/drug treatments were most effective when drug exposure preceded irradiation of animals breathing a reduced oxygen atmosphere, indicating that the primary interaction between the modalities was a cisplatin-induced increase in the oxygenation status of the acutely hypoxic cells in those tumors. Delivering cisplatin prior to or immediately after the first of two 5 Gy fractions was more effective than combinations with a single x-ray exposure, suggesting that proper sequences of the combined modalities may augment natural reoxygenation processes

  18. Influence of anticancer drugs on interactions of tumor suppressor protein p53 with DNA

    Czech Academy of Sciences Publication Activity Database

    Pivoňková, Hana; Němcová, Kateřina; Brázdová, Marie; Kašpárková, Jana; Brabec, Viktor; Fojta, Miroslav

    2005-01-01

    Roč. 272, Suppl. 1 (2005), s. 562 ISSN 1474-3833. [FEBS Congress /30./ and IUBMB Conference /9./. 02.07.2005-07.07.2005, Budapest] R&D Projects: GA MZd(CZ) NC7574 Institutional research plan: CEZ:AV0Z50040507 Keywords : tumour suppressor protein p53 * anticancer drugs * interaction with DNA Subject RIV: BO - Biophysics

  19. Synthesis, characterization and biological evaluation of bile acid-aromatic/heteroaromatic amides linked via amino acids as anti-cancer agents.

    Science.gov (United States)

    Agarwal, Devesh S; Anantaraju, Hasitha Shilpa; Sriram, Dharmarajan; Yogeeswari, Perumal; Nanjegowda, Shankara H; Mallu, P; Sakhuja, Rajeev

    2016-03-01

    A series of bile acid (Cholic acid and Deoxycholic acid) aryl/heteroaryl amides linked via α-amino acid were synthesized and tested against 3 human cancer cell-lines (HT29, MDAMB231, U87MG) and 1 human normal cell line (HEK293T). Some of the conjugates showed promising results to be new anticancer agents with good in vitro results. More specifically, Cholic acid derivatives 6a (1.35 μM), 6c (1.41 μM) and 6m (4.52 μM) possessing phenyl, benzothiazole and 4-methylphenyl groups showed fairly good activity against the breast cancer cell line with respect to Cisplatin (7.21 μM) and comparable with respect to Doxorubicin (1 μM), while 6e (2.49μM), 6i (2.46 μM) and 6m (1.62 μM) showed better activity against glioblastoma cancer cell line with respect to both Cisplatin (2.60 μM) and Doxorubicin (3.78 μM) drugs used as standards. Greater than 65% of the compounds were found to be safer on human normal cell line. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Anticancer activity of drug conjugates in head and neck cancer cells.

    Science.gov (United States)

    Majumdar, Debatosh; Rahman, Mohammad Aminur; Chen, Zhuo Georgia; Shin, Dong M

    2016-06-01

    Sexually transmitted oral cancer/head and neck cancer is increasing rapidly. Human papilloma virus (HPV) is playing a role in the pathogenesis of a subset of squamous cell carcinoma of head and neck (SCCHN). Paclitaxel is a widely used anticancer drug for breast, ovarian, testicular, cervical, non-small cell lung, head and neck cancer. However, it is water insoluble and orally inactive. We report the synthesis of water soluble nanosize conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide by employing native chemical ligation. We performed a native chemical ligation between the N-hydroxy succinimide (NHS) ester of paclitaxel succinate and cysteine at pH 6.5 to give the cysteine-conjugated paclitaxel derivative. The thiol functionality of cysteine was activated and subsequently conjugated to multiarm thiol-PEG to obtain the paclitaxel branched PEG conjugate. Finally, we conjugated an EGFR-targeting peptide to obtain conjugates of paclitaxel, branched PEG, and EGFR-targeting peptide. These conjugates show anticancer activity against squamous cell carcinoma of head and neck cells (SCCHN, Tu212).

  1. Combination effect of cisplatin and radiation in murine solid tumors

    International Nuclear Information System (INIS)

    Egawa, Shin; Lee, Kan-ei; Ishibashi, Akira; Komiyama, Hiroki; Umezawa, Iwao.

    1986-01-01

    The combination effect of cisplatin and radiation was studied using the two different murine systems of sarcoma 180 and Ehrlich solid tumors. In sarcoma 180 solid tumor the minimal effective doses (MED) of cisplatin and radiation were 19.5 mg/kg and 10375 rad respectively whereas these doses did not show any effective antitumor activity practically. Administration of cisplatin with a doses of 9 mg/kg given 24 hours before radiation (1000 rad), however, showed synergistic antitumor activity. In Ehrlich solid tumor the MED of cisplatin and radiation were 13.8 mg/kg and 2892 rad respectively. Treatment with cisplatin, 3, 6 or 9 mg/kg, given 24 hours before radiation (1000 rad) showed also synergistic antitumor activity also. Sodium thiosulfate (STS) rescue was effective in reducing toxicity of cisplatin on combined use of the drug with radiation. Cell kinetics of sarcoma 180 solid tumor in vivo after the combined treatment was analyzed by computer aided flowcytometry. Accumulation of cells in the radiosensitive G 2 + M phase was observed 18 to 42 hours after a single intraperitoneal administration of 9 mg/kg of cisplatin. It is strongly suggested that this synchronization is one of the mechanisms of the synergism in the combination therapy. (author)

  2. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drug

    Directory of Open Access Journals (Sweden)

    Feng S

    2016-09-01

    Full Text Available Shini Feng,1 Huijie Zhang,1 Ting Yan,1 Dandi Huang,1 Chunyi Zhi,2 Hideki Nakanishi,1 Xiao-Dong Gao1 1Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, People’s Republic of China; 2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, People’s Republic of China Abstract: With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS with receptor-mediated targeting. Folic acid (FA was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 µg/mL. Then, doxorubicin hydrochloride (DOX, a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. Keywords: boron nitride nanospheres, folic acid, doxorubicin, targeted delivery, cancer therapy

  3. COAST (Cisplatin ototoxicity attenuated by aspirin trial): A phase II double-blind, randomised controlled trial to establish if aspirin reduces cisplatin induced hearing-loss.

    Science.gov (United States)

    Crabb, Simon J; Martin, Karen; Abab, Julia; Ratcliffe, Ian; Thornton, Roger; Lineton, Ben; Ellis, Mary; Moody, Ronald; Stanton, Louise; Galanopoulou, Angeliki; Maishman, Tom; Geldart, Thomas; Bayne, Mike; Davies, Joe; Lamb, Carolynn; Popat, Sanjay; Joffe, Johnathan K; Nutting, Chris; Chester, John; Hartley, Andrew; Thomas, Gareth; Ottensmeier, Christian; Huddart, Robert; King, Emma

    2017-12-01

    Cisplatin is one of the most ototoxic chemotherapy drugs, resulting in a permanent and irreversible hearing loss in up to 50% of patients. Cisplatin and gentamicin are thought to damage hearing through a common mechanism, involving reactive oxygen species in the inner ear. Aspirin has been shown to minimise gentamicin-induced ototoxicity. We, therefore, tested the hypothesis that aspirin could also reduce ototoxicity from cisplatin-based chemotherapy. A total of 94 patients receiving cisplatin-based chemotherapy for multiple cancer types were recruited into a phase II, double-blind, placebo-controlled trial and randomised in a ratio of 1:1 to receive aspirin 975 mg tid and omeprazole 20 mg od, or matched placebos from the day before, to 2 days after, their cisplatin dose(s), for each treatment cycle. Patients underwent pure tone audiometry before and at 7 and 90 days after their final cisplatin dose. The primary end-point was combined hearing loss (cHL), the summed hearing loss at 6 kHz and 8 kHz, in both ears. Although aspirin was well tolerated, it did not protect hearing in patients receiving cisplatin (p-value = 0.233, 20% one-sided level of significance). In the aspirin arm, patients demonstrated mean cHL of 49 dB (standard deviation [SD] 61.41) following cisplatin compared with placebo patients who demonstrated mean cHL of 36 dB (SD 50.85). Women had greater average hearing loss than men, and patients treated for head and neck malignancy experienced the greatest cHL. Aspirin did not protect from cisplatin-related ototoxicity. Cisplatin and gentamicin may therefore have distinct ototoxic mechanisms, or cisplatin-induced ototoxicity may be refractory to the aspirin regimen used here. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Increased sensitivity of Hep G2 cells toward the cytotoxicity of cisplatin by the treatment of piper betel leaf extract.

    Science.gov (United States)

    Young, Shun-Chieh; Wang, Chau-Jong; Hsu, Jeng-Dong; Hsu, Jui-Ling; Chou, Fen-Pi

    2006-06-01

    Piper betel leaves (PBL) are used in Chinese folk medicine for the treatment of various disorders. PBL has the biological capabilities of de-toxication, anti-oxidation and anti-mutation. In this study we first examined the effect of PBL extract on the activity of Glutathione S-transferase (GST) isoforms, and found that it inhibited total GST and the alpha class of GST (GSTA), but not the pi class of GST (GSTP), and the mu class of GST (GSTM), activity in Hep G2 cells. RT-PCR results verified a reduction in the expression of GSTA1. Next, we examined whether PBL extract could increase the sensitivity of Hep G2 cells to anti-cancer drugs. The data showed that the cytotoxicity of cisplatin was significantly enhanced by the presence of PBL extract, accompanied by a reduction in the expression of multidrug resistance protein 2 (MRP2). These effects of PBL extract were compared to its major constitute, eugenol. Although eugenol decreased MRP2 level more effectively than PBL extract, it exhibited less sensitizing effect. In conclusion, we demonstrated that PBL extract was able to increase the sensitivity of Hep G2 cells to cisplatin via at least two mechanisms, reducing the expression of MRP2 and inhibiting the activity of total GST and the expression of GSTA. The data of this study support an application of PBL as an additive to reduce drug resistance.

  5. Tunable Signal-Off and Signal-On Electrochemical Cisplatin Sensor.

    Science.gov (United States)

    Wu, Yao; Lai, Rebecca Y

    2017-09-19

    We report the first electrochemical cisplatin sensor fabricated with a thiolated and methylene blue (MB)-modified oligo-adenine (A)-guanine (G) DNA probe. Depending on the probe coverage, the sensor can behave as a signal-off or signal-on sensor. For the high-coverage sensor, formation of intrastrand Pt(II)-AG adducts rigidifies the oligo-AG probe, resulting in a concentration-dependent decrease in the MB signal. For the low-coverage sensor, the increase in probe-to-probe spacing enables binding of cisplatin via the intrastrand GNG motif (N = A), generating a bend in the probe which results in an increase in the MB current. Although both high-coverage signal-off and low-coverage signal-on sensors are capable of detecting cisplatin, the signal-on sensing mechanism is better suited for real time analysis of cisplatin. The low-coverage sensor has a lower limit of detection, wider optimal AC frequency range, and faster response time. It has high specificity for cisplatin and potentially other Pt(II) drugs and does not cross-react with satraplatin, a Pt(IV) prodrug. It is also selective enough to be employed directly in 50% saliva and 50% urine. This detection strategy may offer a new approach for sensitive and real time analysis of cisplatin in clinical samples.

  6. Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure

    NARCIS (Netherlands)

    Tanley, S.W.M.; Schreurs, A.M.M.; Kroon-Batenburg, L.M.J.; Helliwell, J.R.

    2012-01-01

    The anticancer complexes cisplatin and carboplatin are known to bind to both the N and the N" atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO

  7. Electrospray ionization mass spectrometry for the hydrolysis complexes of cisplatin : Implications for the hydrolysis process of platinum complexes

    NARCIS (Netherlands)

    Xie, Feifan; Colin, Pieter; Van Bocxlaer, Jan

    Non-enzyme-dependent hydrolysis of the drug cisplatin is important for its mode of action and toxicity. However, up until today, the hydrolysis process of cisplatin is still not completely understood. In the present study, the hydrolysis of cisplatin in an aqueous solution was systematically

  8. Xc- inhibitor sulfasalazine sensitizes colorectal cancer to cisplatin by a GSH-dependent mechanism.

    Science.gov (United States)

    Ma, Ming-zhe; Chen, Gang; Wang, Peng; Lu, Wen-hua; Zhu, Chao-feng; Song, Ming; Yang, Jing; Wen, Shijun; Xu, Rui-hua; Hu, Yumin; Huang, Peng

    2015-11-01

    Sulfasalazine (SSZ) is an anti-inflammatory drug that has been demonstrated to induce apoptosis and tumor regression through inhibition of plasma membrane cystine transporter xc(-). Cysteine is a rate-limiting precursor for intracellular glutathione (GSH) synthesis, which is vital for compound detoxification and maintaining redox balance. Platinum-based chemotherapy is an important regimen used in clinics for various cancers including colorectal cancer (CRC). We hypothesized that targeting xc(-) transporter by SSZ may annihilate cellular detoxification through interruption of GSH synthesis and may enhance the anti-cancer activity of cisplatin (CDDP) by increasing drug transport. In the present study, we revealed that xCT, the active subunit of xc(-), is highly expressed in CRC cell lines and human colorectal carcinoma tissues compared with their normal counterparts. SSZ effectively depleted cellular GSH, leading to significant accumulation of reactive oxygen species and growth inhibition in CRC cells. In contrast, the normal epithelial cells of colon origin were less sensitive to SSZ, showing a moderate ROS elevation. Importantly, SSZ effectively enhanced the intracellular platinum level and cytotoxicity of CDDP in CRC cells. The synergistic effect of SSZ and CDDP was reversed by antioxidant N-acetyl-L-cysteine (NAC). Together, these results suggest that SSZ, a relatively non-toxic drug that targets cystine transporter, may, in combination with CDDP, have effective therapy for colorectal cancer. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  9. Scheduling cisplatin and radiotherapy in the treatment of squamous cell carcinomas of the head and neck: a modelling approach

    International Nuclear Information System (INIS)

    Marcu, L; Bezak, E; Olver, I

    2006-01-01

    The aim of the present work was to implement the kinetics of cisplatin into a previously developed tumour growth model and to simulate the combined cisplatin-radiotherapy treatment with the emphasis on time sequencing and scheduling of drug and radiation. An investigation into whether the effect of cisplatin-radiation is determined by independent cell kill or by cisplatin-produced radiosensitization was also undertaken. It was shown that cisplatin administered before radiation conferred similar tumour control to the post-radiation sequencing of the drug. The killing effect of the combined modality treatment on tumour increased with the increase in cell recruitment. Furthermore, the individual cell kill produced by the two cytotoxins led to an additive only tumour response when the treatments were given concurrently, suggesting that for a synergistic effect, cisplatin must potentiate the effect of radiation, through the radiosensitizing mechanisms addressed in the literature. It was concluded that the optimal timing of cisplatin should be close to radiation. The model showed that daily administration of cisplatin led to a 35% improvement of tumour control as compared to radiation alone, while weekly cisplatin has improved radiotherapy by only 6%

  10. Cisplatin resistance in non-small cell lung cancer cells is associated with an abrogation of cisplatin-induced G2/M cell cycle arrest.

    Directory of Open Access Journals (Sweden)

    Navin Sarin

    Full Text Available The efficacy of cisplatin-based chemotherapy in cancer is limited by the occurrence of innate and acquired drug resistance. In order to better understand the mechanisms underlying acquired cisplatin resistance, we have compared the adenocarcinoma-derived non-small cell lung cancer (NSCLC cell line A549 and its cisplatin-resistant sub-line A549rCDDP2000 with regard to cisplatin resistance mechanisms including cellular platinum accumulation, DNA-adduct formation, cell cycle alterations, apoptosis induction and activation of key players of DNA damage response. In A549rCDDP2000 cells, a cisplatin-induced G2/M cell cycle arrest was lacking and apoptosis was reduced compared to A549 cells, although equitoxic cisplatin concentrations resulted in comparable platinum-DNA adduct levels. These differences were accompanied by changes in the expression of proteins involved in DNA damage response. In A549 cells, cisplatin exposure led to a significantly higher expression of genes coding for proteins mediating G2/M arrest and apoptosis (mouse double minute 2 homolog (MDM2, xeroderma pigmentosum complementation group C (XPC, stress inducible protein (SIP and p21 compared to resistant cells. This was underlined by significantly higher protein levels of phosphorylated Ataxia telangiectasia mutated (pAtm and p53 in A549 cells compared to their respective untreated control. The results were compiled in a preliminary model of resistance-associated signaling alterations. In conclusion, these findings suggest that acquired resistance of NSCLC cells against cisplatin is the consequence of altered signaling leading to reduced G2/M cell cycle arrest and apoptosis.

  11. Cisplatin Loaded Hyaluronic Acid Modified TiO2 Nanoparticles for Neoadjuvant Chemotherapy of Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Enling Liu

    2015-01-01

    Full Text Available Novel tumor-targeting titanium dioxide (TiO2 nanoparticles modified with hyaluronic acid (HA were developed to explore the feasibility of exploiting the pH-responsive drug release property of TiO2 and the tumor-targeting ability of HA to construct a tumor-targeting cisplatin (CDDP delivery system (HA-TiO2 for potential neoadjuvant chemotherapy of ovarian cancer. The experimental results indicated that CDDP release from the HA-TiO2 nanoparticles was significantly accelerated by decreasing pH from 7.4 to 5.0, which is of particular benefit to cancer therapy. CDDP-loaded HA-TiO2 nanoparticles increased the accumulation of CDDP in A2780 ovarian cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity in vitro. In vivo real-time imaging assay revealed that HA-TiO2 nanoparticles possessed preferable tumor-targeting ability which might potentially minimize the toxic side effects of CDDP in clinical application.

  12. In silico identification of anti-cancer compounds and plants from traditional Chinese medicine database

    Science.gov (United States)

    Dai, Shao-Xing; Li, Wen-Xing; Han, Fei-Fei; Guo, Yi-Cheng; Zheng, Jun-Juan; Liu, Jia-Qian; Wang, Qian; Gao, Yue-Dong; Li, Gong-Hua; Huang, Jing-Fei

    2016-05-01

    There is a constant demand to develop new, effective, and affordable anti-cancer drugs. The traditional Chinese medicine (TCM) is a valuable and alternative resource for identifying novel anti-cancer agents. In this study, we aim to identify the anti-cancer compounds and plants from the TCM database by using cheminformatics. We first predicted 5278 anti-cancer compounds from TCM database. The top 346 compounds were highly potent active in the 60 cell lines test. Similarity analysis revealed that 75% of the 5278 compounds are highly similar to the approved anti-cancer drugs. Based on the predicted anti-cancer compounds, we identified 57 anti-cancer plants by activity enrichment. The identified plants are widely distributed in 46 genera and 28 families, which broadens the scope of the anti-cancer drug screening. Finally, we constructed a network of predicted anti-cancer plants and approved drugs based on the above results. The network highlighted the supportive role of the predicted plant in the development of anti-cancer drug and suggested different molecular anti-cancer mechanisms of the plants. Our study suggests that the predicted compounds and plants from TCM database offer an attractive starting point and a broader scope to mine for potential anti-cancer agents.

  13. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    International Nuclear Information System (INIS)

    Li, Qing; Guo, Dong; Dong, Zhongqi; Zhang, Wei; Zhang, Lei; Huang, Shiew-Mei; Polli, James E.; Shu, Yan

    2013-01-01

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT 3 ) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic cisplatin

  14. Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs)

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Guo, Dong [Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Dong, Zhongqi [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Zhang, Wei [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Institute of Clinical Pharmacology, Central South University, Hunan 410078 (China); Zhang, Lei; Huang, Shiew-Mei [Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD (United States); Polli, James E. [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States); Shu, Yan, E-mail: yshu@rx.umaryland.edu [Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland at Baltimore, MD (United States)

    2013-11-15

    The nephrotoxicity limits the clinical application of cisplatin. Human organic cation transporter 2 (OCT2) and multidrug and toxin extrusion proteins (MATEs) work in concert in the elimination of cationic drugs such as cisplatin from the kidney. We hypothesized that co-administration of ondansetron would have an effect on cisplatin nephrotoxicity by altering the function of cisplatin transporters. The inhibitory potencies of ondansetron on metformin accumulation mediated by OCT2 and MATEs were determined in the stable HEK-293 cells expressing these transporters. The effects of ondansetron on drug disposition in vivo were examined by conducting the pharmacokinetics of metformin, a classical substrate for OCTs and MATEs, in wild-type and Mate1−/− mice. The nephrotoxicity was assessed in the wild-type and Mate1−/− mice received cisplatin with and without ondansetron. Both MATEs, including human MATE1, human MATE2-K, and mouse Mate1, and OCT2 (human and mouse) were subject to ondansetron inhibition, with much greater potencies by ondansetron on MATEs. Ondansetron significantly increased tissue accumulation and pharmacokinetic exposure of metformin in wild-type but not in Mate1−/− mice. Moreover, ondansetron treatment significantly enhanced renal accumulation of cisplatin and cisplatin-induced nephrotoxicity which were indicated by increased levels of biochemical and molecular biomarkers and more severe pathohistological changes in mice. Similar increases in nephrotoxicity were caused by genetic deficiency of MATE function in mice. Therefore, the potent inhibition of MATEs by ondansetron enhances the nephrotoxicity associated with cisplatin treatment in mice. Potential nephrotoxic effects of combining the chemotherapeutic cisplatin and the antiemetic 5-hydroxytryptamine-3 (5-HT{sub 3}) receptor antagonists, such as ondansetron, should be investigated in patients. - Highlights: • Nephrotoxicity significantly limits clinical use of the chemotherapeutic

  15. Cisplatin-induced injury of the renal distal convoluted tubule is associated with hypomagnesaemia in mice

    NARCIS (Netherlands)

    Angelen, A.A. van; Glaudemans, B.; Kemp, A. van der; Hoenderop, J.G.J.; Bindels, R.J.M.

    2013-01-01

    Background Cisplatin is an effective anti-neoplastic drug, but its clinical use is limited due to dose-dependent nephrotoxicity. The majority of cisplatin-treated patients develop hypomagnesaemia, often associated with a reduced glomerular filtration rate (GFR), polyuria and other electrolyte

  16. Modulation of Tumor Cell Metabolism by Laser Photochemotherapy with Cisplatin or Zoledronic Acid In Vitro.

    Science.gov (United States)

    Heymann, Paul Günther Baptist; Henkenius, Katharina Sabine Elisabeth; Ziebart, Thomas; Braun, Andreas; Hirthammer, Klara; Halling, Frank; Neff, Andreas; Mandic, Robert

    2018-03-01

    Laser photochemotherapy is a new approach in cancer treatment using low-level laser therapy (LLLT) to enhance the effect of chemotherapy. In order to evaluate the effect of LLLT on tumor cells, HeLa cells were treated with cisplatin or zoledronic acid (ZA) followed by LLLT. Cell viability was evaluated with 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide assay. Oxidative phosphorylation and glycolysis were measured using extracellular flux analysis. Immunocytochemistry of heat-shock protein 70 (HSP70) and western blot analysis were performed. LLLT alone increased viability and was associated with lower oxidative phosphorylation but higher glycolysis rates. Cisplatin and ZA alone lowered cell viability, glycolysis and oxidative phosphorylation. This effect was significantly enhanced in conjunction with LLLT and was accompanied by reduced oxidative phosphorylation and collapse of glycolysis. Our observations indicate that LLLT may raise the cytotoxicity of cisplatin and ZA by modulating cellular metabolism, pointing to a possible application in cancer treatment. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  17. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues.

    Science.gov (United States)

    Kim, Munju; Gillies, Robert J; Rejniak, Katarzyna A

    2013-11-18

    Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellular uptake, is a complex process involving various biochemical, mechanical, and biophysical factors. Mathematical modeling provides a means through which to understand this complexity better, as well as to examine interactions between contributing components in a systematic way via computational simulations and quantitative analyses. In this review, we present the current state of mathematical modeling approaches that address phenomena related to drug delivery. We describe how various types of models were used to predict spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss how integration of mathematical modeling with experimental or clinical data can provide better tools to understand the drug delivery process, in particular to examine the specific tissue- or compound-related factors that limit drug penetration through tumors. Such tools will be important in designing new chemotherapy targets and optimal treatment strategies, as well as in developing non-invasive diagnosis to monitor treatment response and detect tumor recurrence.

  18. In vitro oxygen-dependent survival of two human cell lines after combined radiations tirapazamin and cisplatin

    International Nuclear Information System (INIS)

    Lartigau, E.; Stern, S.; Guichard, M.

    2000-01-01

    Recent data have shown that the in vitro and in vivo cytotoxicity of bioreductive drugs could be significantly cytotoxicity of bioreductive drugs could be significantly increased by combination with ionising radiation or chemotherapy. Various parameters such as oxygen tension and timing of administration of the drugs could play a crucial role in the efficacy of combined treatment modalities. The aim of this study was to define the oxygen dependency of cell survival after in vitro irradiation and incubation with tirapazamin, a bioreductive drug, and cisplatin given alone or simultaneously. Two human cell lines were studied: one cell line sensitive to tirapazamin, Na11+, a pigmented melanoma with a high percentage of hypoxic cells, and a less sensitive cell line to tirapazamin, HRT18, a rectal adenocarcinoma. Gas changes were made to study cell survival at four different oxygen concentrations (pO 2 ): air (20.9 % O 2 ), 10.2 and 0.2 %. Cells were incubated with tirapazamin and cisplatin alone or combined for one hour at 37 deg C, then irradiated and cultured. For Na11+, cell survival after irradiation was comparable in air and at 10 % oxygen with the two drugs given alone or combined. At 2 and 0.2 % oxygen, cell killing was largely increased by tirapazamin and was not modified by the addition of cisplatin. For HRT18, cell survival was not modified when cisplatin was added to radiation, whatever the oxygen partial pressure. At low pO 2 (2 and 0.2 %) the cytotoxic effect of tirapazamin was not significantly decreased by the addition of cisplatin. When cytotoxic and bioreductive drugs are combined to radiation, the magnitude of the observed effect is highly dependent on the partial oxygen pressure and on the sensitivity of the cell line to the individual drugs. This has very important implications for clinical strategies based on combined chemo-radiotherapy. (authors)

  19. Time- and sequence-dependent responses to cisplatin and radiation in the rat kidney

    International Nuclear Information System (INIS)

    Rongen, Eric van; Kuijpers, W.C.; Baten-Wittwer, Andrea

    1991-01-01

    The influence of time interval and sequence between administration of cisplatin and a radiation dose was studied in the rat kidney. Changes in glomerular function were only detected after 30 weeks following the higher drug dose (6.0 mg/kg). X-rays alone caused measurable alterations in both glomerular and tubular function after 16 weeks. In the combined treatment the influence of time and sequence was significant. If cisplatin was given at 7 to 1 days before X-rays the effect of time was minimal. Administration of cisplatin 12 h to 15 min before irradiation resulted in an increase of radiation damage with decreasing time interval. Total damage sharply decreased when both modalities were given at the same time, and decreased further with increasing time between irradiation and drug administration. (author)

  20. Stepwise encapsulation and controlled two-stage release system for cis-Diamminediiodoplatinum.

    Science.gov (United States)

    Chen, Yun; Li, Qian; Wu, Qingsheng

    2014-01-01

    cis-Diamminediiodoplatinum (cis-DIDP) is a cisplatin-like anticancer drug with higher anticancer activity, but lower stability and price than cisplatin. In this study, a cis-DIDP carrier system based on micro-sized stearic acid was prepared by an emulsion solvent evaporation method. The maximum drug loading capacity of cis-DIDP-loaded solid lipid nanoparticles was 22.03%, and their encapsulation efficiency was 97.24%. In vitro drug release in phosphate-buffered saline (pH =7.4) at 37.5°C exhibited a unique two-stage process, which could prove beneficial for patients with tumors and malignancies. MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide) assay results showed that cis-DIDP released from cis-DIDP-loaded solid lipid nanoparticles had better inhibition activity than cis-DIDP that had not been loaded.

  1. Stanniocalcin 2 promotes cell proliferation and cisplatin resistance in cervical cancer

    International Nuclear Information System (INIS)

    Wang, Yuxia; Gao, Ying; Cheng, Hairong; Yang, Guichun; Tan, Wenhua

    2015-01-01

    Cervical cancer is one of the most common carcinomas in the female reproductive system. Treatment of cervical cancer involves surgical removal and chemotherapy. Resistance to platinum-based chemotherapy drugs including cisplatin has increasingly become an important problem in the treatment of cervical cancer patients. We found in this study that stanniocalcin 2 (STC2) expression was upregulated in both cervical cancer tissues and cell lines. The levels of STC2 expression in cervical cancer cell lines were positively correlated with the rate of cell proliferation. Furthermore, in cisplatin resistant cervical cancer cells, the levels of STC2 expression were significantly elevated. Modulation of STC2 expression by siRNA or overexpression in cisplatin resistant cells resulted in altered cell survival, apoptosis, and cisplatin resistance. Finally, we found that there was significant difference in the activity of the MAPK signaling pathway between cisplatin sensitive and resistant cervical cancer cells, and that STC2 could regulate the activity of the MAPK signaling pathway. - Highlights: • STC2 was upregulated in cervical cancer and promoted cervical cancer cell proliferation. • Cisplatin resistant cells had elevated STC2 levels and enhanced proliferation. • STC2 regulated cisplatin chemosensitivity in cervical cancer cells. • STC2 regulated the activity of the MAPK signaling pathway.

  2. Two drugs are better than one. A short history of combined therapy of ovarian cancer.

    Science.gov (United States)

    Bukowska, Barbara; Gajek, Arkadiusz; Marczak, Agnieszka

    2015-01-01

    Combined therapy of ovarian cancer has a long history. It has been applied for many years. The first drug which was commonly combined with other chemotherapeutics was cisplatin. It turned out to be effective given together with alkylating agents as well as with taxanes. Another drug which is often the basis of first-line therapy is doxorubicin. The use of traditional chemotherapy is often limited due to side effects. This is why new drugs, targeted specifically at cancer cells (e.g. monoclonal antibodies or epidermal growth factor receptor inhibitors), offer a welcome addition when used in combination with conventional anticancer agents. Drugs applied in combination should be synergistic or at least additive. To evaluate the type of interaction between drugs in a plausible sequence, isobolographic analysis is used. This method allows one to assess whether the two agents could make an efficient combination, which might improve the therapy of ovarian cancer.

  3. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    Science.gov (United States)

    Stoika, R.; Boiko, N.; Senkiv, Y.; Shlyakhtina, Y.; Panchuk, R.; Finiuk, N.; Filyak, Y.; Bilyy, R.; Kit, Y.; Skorohyd, N.; Klyuchivska, O.; Zaichenko, A.; Mitina, N.; Ryabceva, A.

    2013-04-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  4. Enhanced cytotoxicity of anticancer drug delivered by novel nanoscale polymeric carrier

    International Nuclear Information System (INIS)

    Stoika, R; Boiko, N; Panchuk, R; Filyak, Y; Senkiv, Y; Finiuk, N; Shlyakhtina, Y; Bilyy, R; Kit, Y; Skorohyd, N; Klyuchivska, O; Zaichenko, A; Mitina, N; Ryabceva, A

    2013-01-01

    We compared in vitro action of highly toxic anticancer drug doxorubicin under its delivery to the mammalian tumor cells in free form and after encapsulation in novel bio-functionalized nanoscale polymeric carrier. Such encapsulation was found to enhance significantly drug uptake by the targeted cells, as well as its cytotoxic action. 10 times higher cytotoxicity of the carrier-immobilized doxorubicin comparing to its free form was demonstrated by direct cell counting, and 5 times higher cytotoxicity of encapsulated doxorubicin was shown by FACS analysis. The polymeric carrier itself did not possess significant toxicity in vitro or in vivo (laboratory mice). The carrier protected against negative side effects of doxorubicin in mice with experimental NK/Ly lymphoma. The life duration of tumor-bearing animals treated with doxorubicin-carrier complex was significantly longer than life duration in animals treated with free doxorubicin. Besides, the effective treatment dose of the carrier-delivered doxorubicin in tumor-bearing mice was 10 times lower than such dose of free doxorubicin. Thus, novel nanoscale polymers possess high potential as drug carrier.

  5. F-Box Protein FBXO22 Mediates Polyubiquitination and Degradation of CD147 to Reverse Cisplatin Resistance of Tumor Cells.

    Science.gov (United States)

    Wu, Bo; Liu, Zhen-Yu; Cui, Jian; Yang, Xiang-Min; Jing, Lin; Zhou, Yang; Chen, Zhi-Nan; Jiang, Jian-Li

    2017-01-20

    Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD) prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells.

  6. F-Box Protein FBXO22 Mediates Polyubiquitination and Degradation of CD147 to Reverse Cisplatin Resistance of Tumor Cells

    Directory of Open Access Journals (Sweden)

    Bo Wu

    2017-01-01

    Full Text Available Drug resistance remains a major clinical obstacle to successful treatment of cancer. As posttranslational modification is becoming widely recognized to affect the function of oncoproteins, targeting specific posttranslational protein modification provides an attractive strategy for anticancer drug development. CD147 is a transmembrane glycoprotein contributing to chemo-resistance of cancer cells in a variety of human malignancies. Ubiquitination is an important posttranslational modification mediating protein degradation. Degradation of oncoproteins, CD147 included, emerges as an attractive alternative for tumor inhibition. However, the ubiquitination of CD147 remains elusive. Here in this study, we found that deletion of the CD147 intracellular domain (CD147-ICD prolonged the half-life of CD147 in HEK293T cells, and we identified that CD147-ICD interacts with FBXO22 using mass spectrometry and Western blot. Then, we demonstrated that FBXO22 mediates the polyubiquitination and degradation of CD147 by recognizing CD147-ICD. While knocking down of FBXO22 prolonged the half-life of CD147 in HEK293T cells, we found that FBXO22 regulates CD147 protein turnover in SMMC-7721, Huh-7 and A549 cells. Moreover, we found that the low level of FBXO22 contributes to the accumulation of CD147 and thereafter the cisplatin resistance of A549/DDP cells. To conclude, our study demonstrated that FBXO22 mediated the polyubiquitination and degradation of CD147 by interacting with CD147-ICD, and CD147 polyubiquitination by FBXO22 reversed cisplatin resistance of tumor cells.

  7. Galectin-1-Induced Autophagy Facilitates Cisplatin Resistance of Hepatocellular Carcinoma.

    Directory of Open Access Journals (Sweden)

    Yu-Chi Su

    Full Text Available Hepatocellular carcinoma (HCC is one of the most common cancers in Taiwan. Although chemotherapy is the primary treatment for HCC patients, drug resistance often leads to clinical failure. Galectin-1 is a beta-galactoside binding lectin which is up-regulated in HCC patients and promotes tumor growth by mediating cancer cell adhesion, migration and proliferation, but its role in chemoresistance of HCC is poorly understood. In this study we found that galectin-1 is able to lead to chemoresistance against cisplatin treatment, and subsequent inhibition has reversed the effect of cell death in HCC cells. Moreover, galectin-1 was found to induce autophagic flux in HCC cells. Inhibition of autophagy by inhibitors or knockdown of Atg5 cancels galectin-1-induced cisplatin resistance in HCC cells. Increase of mitophagy triggered by galectin-1 was found to reduce the mitochondrial potential loss and apoptosis induced by cisplatin treatment. Finally, using an in situ hepatoma mouse model, we clearly demonstrated that inhibition of galectin-1 by thiodigalactoside could significantly augment the anti-HCC effect of cisplatin. Taken together, our findings offer a new insight into the chemoresistance galectin-1 causes against cisplatin treatment, and points to a potential approach to improve the efficacy of cisplatin in the treatment of HCC patients.

  8. Organic-inorganic hybrid nanoparticles controlled delivery system for anticancer drugs.

    Science.gov (United States)

    Di Martino, Antonio; Guselnikova, Olga A; Trusova, Marina E; Postnikov, Pavel S; Sedlarik, Vladimir

    2017-06-30

    The use of organic-inorganic hybrid nanocarriers for controlled release of anticancer drugs has been gained a great interest, in particular, to improve the selectivity and efficacy of the drugs. In this study, iron oxide nanoparticles were prepared then surface modified via diazonium chemistry and coated with chitosan, and its derivative chitosan-grafted polylactic acid. The purpose was to increase the stability of the nanoparticles in physiological solution, heighten drug-loading capacity, prolong the release, reduce the initial burst effect and improve in vitro cytotoxicity of the model drug doxorubicin. The materials were characterized by DLS, ζ-potential, SEM, TGA, magnetization curves and release kinetics studies. Results confirmed the spherical shape, the presence of the coat and the advantages of using chitosan, particularly its amphiphilic derivative, as a coating agent, thereby surpassing the qualities of simple iron oxide nanoparticles. The coated nanoparticles exhibited great stability and high encapsulation efficiency for doxorubicin, at over 500μg per mg of carrier. Moreover, the intensity of the initial burst was clearly diminished after coating, hence represents an advantage of using the hybrid system over simple iron oxide nanoparticles. Cytotoxicity studies demonstrate the increase in cytotoxicity of doxorubicin when loaded in nanoparticles, indirectly proving the role played by the carrier and its surface properties in cell uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Hydrolysis of cisplatin—a first-principles metadynamics study

    NARCIS (Netherlands)

    Lau, J.K.C.; Ensing, B.

    2010-01-01

    Cisplatin, or cis-[Pt(NH3)2Cl2], was the first member of a new revolutionary class of anticancer drugs that is still used today for the treatment of a wide variety of cancers. The mode of action of cisplatin starts inside the cell with the hydrolysis of Pt-Cl bonds to form a Pt-aqua complex. The

  10. Kinetics and mechanism for the substitution reactions of ...

    Indian Academy of Sciences (India)

    to the clinically used drugs cisplatin and carboplatin. The similarity between the ... ing of anticancer palladium drugs as protecting agents to reduce the toxicity. ... piperazine rings are capable of resting in the minor groove of GC base pairs.19 ...

  11. Prevention of cisplatin nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Hayati Fatemeh

    2016-01-01

    Full Text Available Cisplatin has a well-established role in the treatment of broad spectrum of malignancies; however its use is limited because of cisplatin-induced nephrotoxicity (CIN which can be progressive in more than 50% of cases. The most important risk factors for CIN include higher doses of cisplatin, previous cisplatin chemotherapy, underlying kidney damage and concurrent treatment with other potential nephrotoxin agents, such as aminoglycosides, nonsteroidal anti-inflammatory agents, or iodinated contrast media. Different strategies have been offered to diminish or prevent nephrotoxicity of cisplatin. The standard approach for prevention of CIN is the administration of lower doses of cisplatin in combination with full intravenous hydration prior and after cisplatin administration. Cisplatin-induced oxidative stress in the kidney may be prevented by natural antioxidant compounds. The results of this review show that many strategies for prevention of CIN exist, however, attention to the administration of these agent for CIN is necessary.

  12. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    Science.gov (United States)

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  13. Tyrosine kinase, aurora kinase and leucine aminopeptidase as attractive drug targets in anticancer therapy - characterisation of their inhibitors.

    Science.gov (United States)

    Ziemska, Joanna; Solecka, Jolanta

    Cancers are the leading cause of deaths all over the world. Available anticancer agents used in clinics exhibit low therapeutic index and usually high toxicity. Wide spreading drug resistance of cancer cells induce a demanding need to search for new drug targets. Currently, many on-going studies on novel compounds with potent anticancer activity, high selectivity as well as new modes of action are conducted. In this work, we describe in details three enzyme groups, which are at present of extensive interest to medical researchers and pharmaceutical companies. These include receptor tyrosine kinases (e.g. EGFR enzymes) and non-receptor tyrosine kinases (Src enzymes), type A, B and C Aurora kinases and aminopeptidases, especially leucine aminopeptidase. We discuss classification of these enzymes, biochemistry as well as their role in the cell cycle under normal conditions and during cancerogenesis. Further on, the work describes enzyme inhibitors that are under in vitro, preclinical, clinical studies as well as drugs available on the market. Both, chemical structures of discovered inhibitors and the role of chemical moieties in novel drug design are discussed. Described enzymes play essential role in cell cycle, especially in mitosis (Aurora kinases), cell differentiation, growth and apoptosis (tyrosine kinases) as well as G1/S transition (leucine aminopeptidase). In cancer cells, they are overexpressed and only their inhibition may stop tumor progression. This review presents the clinical outcomes of selected inhibitors and argues the safety of drug usage in human volunteers. Clinical studies of EGFR and Src kinase inhibitors in different tumors clearly show the need for molecular selection of patients (to those with mutations in genes coding EGFR and Src) to achieve positive clinical response. Current data indicates the great necessity for new anticancer treatment and actions to limit off-target activity.

  14. Treatment with docetaxel and cisplatin in advanced adrenocortical carcinoma, a phase II study

    DEFF Research Database (Denmark)

    Urup, Thomas; Pawlak, W Z; Petersen, P M

    2013-01-01

    Adrenocortical carcinoma (ACC) is a rare disease with a poor response to chemotherapy. Cisplatin is the most widely investigated drug in the treatment of ACC and in vitro studies have indicated activity of taxanes. The objectives of this study were to evaluate the efficacy and toxicity of cisplatin...... combined with docetaxel as first-line treatment of advanced ACC....

  15. Inhibition of PKCδ reduces cisplatin-induced nephrotoxicity without blocking chemotherapeutic efficacy in mouse models of cancer

    Science.gov (United States)

    Pabla, Navjotsingh; Dong, Guie; Jiang, Man; Huang, Shuang; Kumar, M. Vijay; Messing, Robert O.; Dong, Zheng

    2011-01-01

    Cisplatin is a widely used cancer therapy drug that unfortunately has major side effects in normal tissues, notably nephrotoxicity in kidneys. Despite intensive research, the mechanism of cisplatin-induced nephrotoxicity remains unclear, and renoprotective approaches during cisplatin-based chemotherapy are lacking. Here we have identified PKCδ as a critical regulator of cisplatin nephrotoxicity, which can be effectively targeted for renoprotection during chemotherapy. We showed that early during cisplatin nephrotoxicity, Src interacted with, phosphorylated, and activated PKCδ in mouse kidney lysates. After activation, PKCδ regulated MAPKs, but not p53, to induce renal cell apoptosis. Thus, inhibition of PKCδ pharmacologically or genetically attenuated kidney cell apoptosis and tissue damage, preserving renal function during cisplatin treatment. Conversely, inhibition of PKCδ enhanced cisplatin-induced cell death in multiple cancer cell lines and, remarkably, enhanced the chemotherapeutic effects of cisplatin in several xenograft and syngeneic mouse tumor models while protecting kidneys from nephrotoxicity. Together these results demonstrate a role of PKCδ in cisplatin nephrotoxicity and support targeting PKCδ as an effective strategy for renoprotection during cisplatin-based cancer therapy. PMID:21633170

  16. A Smart Europium-Ruthenium Complex as Anticancer Prodrug: Controllable Drug Release and Real-Time Monitoring under Different Light Excitations.

    Science.gov (United States)

    Li, Hongguang; Xie, Chen; Lan, Rongfeng; Zha, Shuai; Chan, Chi-Fai; Wong, Wing-Yan; Ho, Ka-Lok; Chan, Brandon Dow; Luo, Yuxia; Zhang, Jing-Xiang; Law, Ga-Lai; Tai, William C S; Bünzli, Jean-Claude G; Wong, Ka-Leung

    2017-11-09

    A unique, dual-function, photoactivatable anticancer prodrug, RuEuL, has been tailored that features a ruthenium(II) complex linked to a cyclen-europium chelate via a π-conjugated bridge. Under irradiation at 488 nm, the dark-inactive prodrug undergoes photodissociation, releasing the DNA-damaging ruthenium species. Under evaluation-window irradiation (λ irr = one-photon 350 nm or two-photon 700 nm), the drug delivery process can be quantitatively monitored in real-time because of the long-lived red europium emission. Linear relationships between released drug concentration and ESI-MS or luminescence responses are established. Finally, the efficiency of the new prodrug is demonstrated both in vitro RuEuL anticancer prodrug over some existing ones and open the way for decisive improvements in multipurpose prodrugs.

  17. Protective Activity of Dendropanax Morbifera Against Cisplatin-Induced Acute Kidney Injury

    Directory of Open Access Journals (Sweden)

    Eun-Sun Kim

    2015-01-01

    Full Text Available Background/Aims: Drug-induced acute kidney injury (AKI has been a severe threat to hospitalized patients, raising the urgent needs to develop strategies to reduce AKI. We investigated the protective activity of Dendropanax morbifera (DP, a medicinal plant which has been widely used to treat infectious and pain diseases, on acute kidney injury (AKI using cisplatin-induced nephropathic models. Methods: Both in vitro renal tubular cells (NRK-52E and in vivo rat models were used to demonstrate the nephroprotective effect of DP. Results: Methanolic extract from DP significantly reduced cisplatin-induced toxicity in renal tubular cells. Through successive liquid extraction, the extract of DP was separated into n-hexane, CHCl3, EtOAc, n-BuOH, and H2O fractions. Among these, the CHCl3 fraction (DPCF was found to be most potent. The protective activity of DPCF was found to be mediated through anti-oxidant, mitochondrial protective, and anti-apoptotic activities. In in vivo rat models of AKI, treatment with DPCF significantly reversed the cisplatin-induced increase in blood urea nitrogen and serum creatinine and histopathologic damage, recovered the level of anti-oxidant enzymes, and inhibited renal apoptosis. Conclusion: We demonstrated that DP extracts decreased cisplatin-induced renal toxicity, indicating its potential to ameliorate drug-associated acute kidney damage.

  18. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    International Nuclear Information System (INIS)

    Sun Yunguang; Zheng Siyuan; Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J.; Carbone, David P.; Zhao Zhongming; Lu Bo

    2012-01-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non–small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  19. Role of Insulin-Like Growth Factor-1 Signaling Pathway in Cisplatin-Resistant Lung Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun Yunguang [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zheng Siyuan [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Torossian, Artour; Speirs, Christina K.; Schleicher, Stephen; Giacalone, Nicholas J. [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Carbone, David P. [Department of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN (United States); Zhao Zhongming, E-mail: zhongming.zhao@vanderbilt.edu [Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN (United States); Lu Bo, E-mail: bo.lu@vanderbilt.edu [Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN (United States)

    2012-03-01

    Purpose: The development of drug-resistant phenotypes has been a major obstacle to cisplatin use in non-small-cell lung cancer. We aimed to identify some of the molecular mechanisms that underlie cisplatin resistance using microarray expression analysis. Methods and Materials: H460 cells were treated with cisplatin. The differences between cisplatin-resistant lung cancer cells and parental H460 cells were studied using Western blot, MTS, and clonogenic assays, in vivo tumor implantation, and microarray analysis. The cisplatin-R cells were treated with human recombinant insulin-like growth factor (IGF) binding protein-3 and siRNA targeting IGF-1 receptor. Results: Cisplatin-R cells illustrated greater expression of the markers CD133 and aldehyde dehydrogenase, more rapid in vivo tumor growth, more resistance to cisplatin- and etoposide-induced apoptosis, and greater survival after treatment with cisplatin or radiation than the parental H460 cells. Also, cisplatin-R demonstrated decreased expression of insulin-like growth factor binding protein-3 and increased activation of IGF-1 receptor signaling compared with parental H460 cells in the presence of IGF-1. Human recombinant IGF binding protein-3 reversed cisplatin resistance in cisplatin-R cells and targeting of IGF-1 receptor using siRNA resulted in sensitization of cisplatin-R-cells to cisplatin and radiation. Conclusions: The IGF-1 signaling pathway contributes to cisplatin-R to cisplatin and radiation. Thus, this pathway represents a potential target for improved lung cancer response to treatment.

  20. Ecdysteroids Sensitize MDR and Non-MDR Cancer Cell Lines to Doxorubicin, Paclitaxel, and Vincristine but Tend to Protect Them from Cisplatin

    Directory of Open Access Journals (Sweden)

    Ana Martins

    2015-01-01

    Full Text Available Ecdysteroids, analogs of the insect molting hormone, are known for their various mild, nonhormonal bioactivities in mammals. Previously, we reported that less-polar ecdysteroids can modulate the doxorubicin resistance of a multidrug resistant (MDR mouse lymphoma cell line expressing the human ABCB1 transporter. Here, we describe the ability of 20-hydroxyecdysone (1 and its mono- (2 and diacetonide (3 derivatives to sensitize various MDR and non-MDR cancer cell lines towards doxorubicin, paclitaxel, vincristine, or cisplatin. Drug IC50 values with or without ecdysteroid were determined by MTT assay. Compound 3 significantly sensitized all cell lines to each chemotherapeutic except for cisplatin, whose activity was decreased. In order to overcome solubility and stability issues for the future in vivo administration of compound 3, liposomal formulations were developed. By means of their combination index values obtained via checkerboard microplate method, a formulation showed superior activity to that of compound 3 alone. Because ecdysteroids act also on non-ABCB1 expressing (sensitive cell lines, our results demonstrate that they do not or not exclusively exert their adjuvant anticancer activity as ABCB1 inhibitors, but other mechanisms must be involved, and they opened the way towards their in vivo bioactivity testing against various cancer xenografts.

  1. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian-Zheng, E-mail: wppzheng@126.com [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Zhu, Yu-Xia [Laboratory of Biomedical Material Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang [Affiliated General Hospital, Tianguan Group Co., Ltd, Nanyang 473000 (China); Testing Center of Henan Tianguan Group Co., Ltd, Nanyang 473000 (China); Meng, Yue-Zhong [State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China)

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  2. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening

    International Nuclear Information System (INIS)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-01-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose–lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. - Highlights: • Chitosan/collagen/alginate (CCA) scaffolds were fabricated by spray-spinning. • MCF-7 cells presented a multi-cellular tumor spheroid model (MCTS) in CCA scaffold. • MCTS in CCA possessed a more conservative phenotype of tumor than monolayer cells. • Anticancer drug screening in MCTS-CCA system is superior to 2D culture system.

  3. Concurrent administration of anticancer chemotherapy drug and herbal medicine on the perspective of pharmacokinetics

    OpenAIRE

    Yung-Yi Cheng; Chen-Hsi Hsieh; Tung-Hu Tsai

    2018-01-01

    With an increasing number of cancer patients seeking an improved quality of life, complementary and alternative therapies are becoming more common ways to achieve such improvements. The potential risks of concurrent administration are serious and must be addressed. However, comprehensive evidence for the risks and benefits of combining anticancer drugs with traditional herbs is rare. Pharmacokinetic investigations are an efficient way to understand the influence of concomitant remedies. There...

  4. Data of a fluorescent imaging-based analysis of anti-cancer drug effects on three-dimensional cultures of breast cancer cells

    Directory of Open Access Journals (Sweden)

    Junji Itou

    2015-12-01

    Full Text Available Three-dimensional (3D cell culture is a powerful tool to study cell growth under 3D condition. To perform a simple test for anti-cancer drugs in 3D culture, visualization of non-proliferated cells is required. We propose a fluorescent imaging-based assay to analyze cancer cell proliferation in 3D culture. We used a pulse-labeling technique with a photoconvertible fluorescent protein Kaede to identify non-proliferated cells. This assay allows us to observe change in cell proliferation in 3D culture by simple imaging. Using this assay, we obtained the data of the effects of anti-cancer drugs, 5-fluorouracil and PD0332991 in a breast cancer cell line, MCF-7.

  5. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery

    International Nuclear Information System (INIS)

    Banerjee, Shashwat S; Chen, D.-H.

    2008-01-01

    A novel magnetic nanocarrier (CD-GAMNPs) was fabricated for targeted anticancer drug delivery by grafting cyclodextrin (CD) onto gum arabic modified magnetic nanoparticles (GAMNPs) using hexamethylene diisocyanate (HMDI) as a linker. Analyses by transmission electron microscopy (TEM) and dynamic light scattering (DLS) revealed that the product had a mean diameter of 17.1 nm and a mean hydrodynamic diameter of 44.1 nm. The CD grafting was confirmed by Fourier transform infrared (FTIR) spectroscopy, and thermogravimetric analysis (TGA) indicated that the amount of CD grafted on the GAMNPs was 16.8 mg g -1 . The study on the loading of anticancer drug all-trans-retinoic acid (retinoic acid) revealed that the newly fabricated magnetic nanocarrier possessed a considerably higher adsorption capability as compared to GAMNPs due to the special hydrophobic cavity structure of CD, which could act as a host-guest complex with retinoic acid. Furthermore, it was found that the complexation of CD-GAMNPs with retinoic acid was exothermic and the presence of a surfactant (sodium dodecyl sulfate) led to the decrease in the inclusion of retinoic acid because the linear structure of sodium dodecyl sulfate made it easier to enter the cavity of CD as compared to less linear retinoic acid. In addition, the in vitro release profile of retinoic acid from CD-GAMNPs was characterized by an initial fast release followed by a delayed release phase

  6. Cross-resistance to radiation in human squamous cell carcinoma cells with induced cisplatin resistance

    International Nuclear Information System (INIS)

    Komori, Keiichi

    1998-01-01

    Accumulated evidence indicates that drug resistance is induced in tumor cells treated with a variety of anti-cancer drugs and that there is a possibility of cross-resistance to ionizing radiation associated with induced drug resistance. Most in vitro studies have shown inconsistent results on cross-resistance probably because of different cell lines used and protocols for drug induction. In this study, TE3 human squamous cell carcinoma cell line was treated with a 4-day cycle of cisplatin (cis-diamminedichloroplatinum (II); CDDP) at a concentration yielding 10% cell survival. The treatment was repeated up to 3 cycles. After treatment, cells were tested for CDDP and X-ray sensitivity. One cycle of CDDP treatment induced CDDP resistance with a factor of 1.41 and 2 cycles of the treatment with a factor of 1.86. The resistance factor reached a plateau at 3 cycles of treatment. For analyzing the correlation of CDDP and X-ray resistance, 30 clones from both untreated and 3-cycle treated cells were isolated and analyzed for CDDP and X-ray sensitivity. The sensitivity was expressed as the concentration of drug or dose of X-ray required to reduce the cell survival to x% (Dx). The correlation coefficient of clones with 3-cycle treatment between CDDP and X-ray sensitivity increased gradually by increasing the end point of Dx from D 10 to D 90 , resulting in significant correlation at D 90 . The result suggested that there is a certain common repair-related mechanism affecting both CDDP and X-ray resistance in CDDP-treated cells. (author)

  7. Model-based global sensitivity analysis as applied to identification of anti-cancer drug targets and biomarkers of drug resistance in the ErbB2/3 network

    Science.gov (United States)

    Lebedeva, Galina; Sorokin, Anatoly; Faratian, Dana; Mullen, Peter; Goltsov, Alexey; Langdon, Simon P.; Harrison, David J.; Goryanin, Igor

    2012-01-01

    High levels of variability in cancer-related cellular signalling networks and a lack of parameter identifiability in large-scale network models hamper translation of the results of modelling studies into the process of anti-cancer drug development. Recently global sensitivity analysis (GSA) has been recognised as a useful technique, capable of addressing the uncertainty of the model parameters and generating valid predictions on parametric sensitivities. Here we propose a novel implementation of model-based GSA specially designed to explore how multi-parametric network perturbations affect signal propagation through cancer-related networks. We use area-under-the-curve for time course of changes in phosphorylation of proteins as a characteristic for sensitivity analysis and rank network parameters with regard to their impact on the level of key cancer-related outputs, separating strong inhibitory from stimulatory effects. This allows interpretation of the results in terms which can incorporate the effects of potential anti-cancer drugs on targets and the associated biological markers of cancer. To illustrate the method we applied it to an ErbB signalling network model and explored the sensitivity profile of its key model readout, phosphorylated Akt, in the absence and presence of the ErbB2 inhibitor pertuzumab. The method successfully identified the parameters associated with elevation or suppression of Akt phosphorylation in the ErbB2/3 network. From analysis and comparison of the sensitivity profiles of pAkt in the absence and presence of targeted drugs we derived predictions of drug targets, cancer-related biomarkers and generated hypotheses for combinatorial therapy. Several key predictions have been confirmed in experiments using human ovarian carcinoma cell lines. We also compared GSA-derived predictions with the results of local sensitivity analysis and discuss the applicability of both methods. We propose that the developed GSA procedure can serve as a

  8. Synthesis, characterization and anticancer activity of gold(I) complexes that contain tri-tert-butylphosphine and dialkyl dithiocarbamate ligands

    KAUST Repository

    Altaf, Muhammad

    2015-03-10

    Two new gold(I) complexes that contain tri-ter-butylphosphine and dialkyl dithiocarbamate ligands were synthesized and characterized by FTIR, NMR spectroscopy, Cyclic voltammetry, elemental analysis and X-ray diffraction. The in vitro cytotoxicity of both complexes was examined against A549 (lung cancer), MCF7 (breast cancer), and HeLa (cervical cancer) human cancer cell lines. Both complexes exhibit very strong in vitro cytotoxic effects against A549, MCF7 and HeLa cell lines. The screening of the cytotoxic activity based on IC50 data against the A549, MCF7, and HeLa lines shows that the synthesized gold(I) complexes are highly effective, particularly against HeLa cancer cell line. Based on IC50 data, the cytotoxic activity of both complexes is better than well-known commercial anticancer drug cisplatin against all the three cancer lines tested.

  9. An evaluation of the toxicity and bioaccumulation of cisplatin in the marine environment using the macroalga, Ulva lactuca

    International Nuclear Information System (INIS)

    Easton, Cecilia; Turner, Andrew; Sewell, Graham

    2011-01-01

    The cytotoxic drug, cisplatin (cis-PtCl 2 (NH 3 ) 2 ), has been added to cultures of the marine macroalga, Ulva lactuca, under various experimental conditions. Both accumulation and internalisation over a 48 h period was greater when cisplatin was added to coastal sea water (salinity = 33) from a distilled water solution than when added to either sea water or estuarine water (salinity = 16.5) from a saline solution. This effect is attributed to the greater abundance of the more reactive monoaqua complex (cis-PtCl(OH 2 )(NH 3 ) 2 + ) in the distilled water solution and kinetic constraints on its conversion back to cis-PtCl 2 (NH 3 ) 2 in sea water. Despite its mode of action at the cellular level, cisplatin added up to concentrations of 150 nM did not incur a measurable reduction in the efficiency of photochemical energy conversion under any of experimental conditions tested. - Highlights: → This study is the first to examine the biogeochemistry and toxicity of a cytotoxic drug in the marine environment. → Cisplatin is accumulated and internalised by the marine macroalga, Ulva lactuca. → Accumulation is greater when the drug is administered from a distilled water solution than from a saline solution. → Results are consistent with the greater abundance of the more reactive aquated complexes in pure water. → Cisplatin is not phytotoxic to the alga over the concentration range (<150 nM) studied. - The cytotoxic drug, cisplatin, is accumulated and internalised by the marine macroalga, Ulva lactuca, but is not phytotoxic up to concentrations of 150 nM

  10. High cytotoxicity of cisplatin nanocapsules in ovarian carcinoma cells depends on uptake by caveolae-mediated endocytosis

    NARCIS (Netherlands)

    Hamelers, I.H.L.; Staffhorst, R.W.H.M.; Voortman, J.; de Kruijff, B.; Reedijk, J.; van Bergen en Henegouwen, P.M.P.; de Kroon, A.I.P.M.

    2009-01-01

    Purpose: Cisplatin nanocapsules, nanoprecipitates of cisplatin encapsulated in phospholipid bilayers, exhibit increased in vitro toxicity compared with the free drug toward a panel of human ovarian carcinoma cell lines. To elucidate the mechanism of cell killing by nanocapsules and to understand the

  11. Combined therapeutic effect and molecular mechanisms of metformin and cisplatin in human lung cancer xenografts in nude mice

    Directory of Open Access Journals (Sweden)

    Yu-Qin Chen

    2015-01-01

    Full Text Available Objective: This work was aimed at studying the inhibitory activity of metformin combined with the commonly used chemotherapy drug cisplatin in human lung cancer xenografts in nude mice. We also examined the combined effects of these drugs on the molecular expression of survivin, matrix metalloproteinase-2 (MMP-2, vascular endothelial growth factor-C (VEGF-C, and vascular endothelial growth factorreceptor-3 (VEGFR-3 to determine the mechanism of action and to explore the potential applications of the new effective drug therapy in lung cancer. Materials and Methods: The nude mice model of lung cancer xenografts was established, and mice were randomly divided into the metformin group, the cisplatin group, the metformin + cisplatin group, and the control group. The animals were killed 42 days after drug administration, and the tumor tissues were then sampled to detect the messenger ribonucleic acid (mRNA and protein expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 by immunohistochemistry and reverse transcription polymerase chain reaction (RT-PCR. Results: The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the cisplatin group and the combined treatment group were lower than that in the control group (P < 0.05. In the metformin group, the expression of MMP-2 protein and mRNA was lower than that in the control group (P < 0.05. The protein and mRNA expression levels of survivin, MMP-2, VEGF-C, and VEGFR-3 in the combined treatment group were lower than that in the cisplatin group and the metformin group (P < 0.05. Conclusions: Metformin inhibited the expression of MMP-2, cisplatin and the combined treatment inhibited the expression of survivin, MMP-2, VEGF-C, and VEGFR-3, and the combined treatment of metformin with cisplatin resulted in enhanced anti-tumor efficacy.

  12. Potential Combinational Anti-Cancer Therapy in Non-Small Cell Lung Cancer with Traditional Chinese Medicine Sun-Bai-Pi Extract and Cisplatin

    Science.gov (United States)

    Wang, Jhih-Syuan; Chung, Meng-Chi; Chang, Jing-Fen; Chao, Ming-Wei

    2016-01-01

    Traditional lung cancer treatments involve chemical or radiation therapies after surgical tumor removal; however, these procedures often kill normal cells as well. Recent studies indicate that chemotherapies, when combined with Traditional Chinese Medicines, may offer a new way to treat cancer. In vitro tests measuring the induction of autophagy and/or apoptosis were used to examine the cytotoxicity of SBPE, commonly used for lung inflammation on A549 cell line. The results indicated that intercellular levels of p62 and Atg12 were increased, LC3-I was cleaved into LC3-II, and autophagy was induced with SBPE only. After 24 hours, the apoptotic mechanism was induced. If the Cisplatin was added after cells reached the autophagy state, we observed synergistic effects of the two could achieve sufficient death of lung cancer cells. Therefore, the Cisplatin dosage used to induce apoptosis could be reduced by half, and the amount of time needed to achieve the inhibitory concentration of 50% was also half that of the original. In addition to inducing autophagy within a shortened period of time, the SBPE and chemotherapy drug combination therapy was able to achieve the objective of rapid low-dosage cancer cell elimination. Besides, SBPE was applied with Gemcitabine or Paclitaxel, and found that the combination treatment indeed achieve improved lung cancer cell killing effects. However, SBPE may also be less toxic to normal cells. PMID:27171432

  13. Xeroderma Pigmentosum Group A Promotes Autophagy to Facilitate Cisplatin Resistance in Melanoma Cells through the Activation of PARP1.

    Science.gov (United States)

    Ge, Rui; Liu, Lin; Dai, Wei; Zhang, Weigang; Yang, Yuqi; Wang, Huina; Shi, Qiong; Guo, Sen; Yi, Xiuli; Wang, Gang; Gao, Tianwen; Luan, Qi; Li, Chunying

    2016-06-01

    Xeroderma pigmentosum group A (XPA), a key protein in the nucleotide excision repair pathway, has been shown to promote the resistance of tumor cells to chemotherapeutic drugs by facilitating the DNA repair process. However, the role of XPA in the resistance of melanoma to platinum-based drugs like cisplatin is largely unknown. In this study, we initially found that XPA was expressed at higher levels in cisplatin-resistant melanoma cells than in cisplatin-sensitive ones. Furthermore, the knockdown of XPA not only increased cellular apoptosis but also inhibited cisplatin-induced autophagy, which rendered the melanoma cells more sensitive to cisplatin. Moreover, we discovered that the increased XPA in resistant melanoma cells promoted poly(adenosine diphosphate-ribose) polymerase 1 (PARP1) activation and that the inhibition of PARP1 could attenuate the cisplatin-induced autophagy. Finally, we proved that the inhibition of PARP1 and the autophagy process made resistant melanoma cells more susceptible to cisplatin treatment. Our study shows that XPA can promote cell-protective autophagy in a DNA repair-independent manner by enhancing the activation of PARP1 in melanoma cells resistant to cisplatin and that the XPA-PARP1-mediated autophagy process can be targeted to overcome cisplatin resistance in melanoma chemotherapy. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Design of interior-functionalized fully acetylated dendrimers for anticancer drug delivery.

    Science.gov (United States)

    Hu, Jingjing; Su, Yunzhang; Zhang, Hongfeng; Xu, Tongwen; Cheng, Yiyun

    2011-12-01

    In this study, dendrimers was synthesized by introducing functional groups into the interior pockets of fully acetylated dendrimers. NMR techniques including COSY and 2D-NOESY revealed the molecular structures of the synthesized dendrimers and the encapsulation of guest molecule such as methotrexate within their interior pockets. The synthesized polymeric nanocarriers showed much lower cytotoxicity on two cell lines than cationic dendrimers, and exhibited better performance than fully acetylated dendrimers in the sustained release of methotrexate. The results provided a new strategy in the design of non-toxic dendrimers with high performance in the delivery of anti-cancer drugs for clinical applications. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Differential impact of diverse anticancer chemotherapeutics on the Cdc25A-degradation checkpoint pathway

    International Nuclear Information System (INIS)

    Agner, Jeppe; Falck, Jacob; Lukas, Jiri; Bartek, Jiri

    2005-01-01

    When exposed to DNA-damaging insults such as ionizing radiation (IR) or ultraviolet light (UV), mammalian cells activate checkpoint pathways to halt cell cycle progression or induce cell death. Here we examined the ability of five commonly used anticancer drugs with different mechanisms of action to activate the Chk1/Chk2-Cdc25A-CDK2/cyclin E cell cycle checkpoint pathway, previously shown to be induced by IR or UV. Whereas exposure of human cells to topoisomerase inhibitors camptothecin, etoposide, or adriamycin resulted in rapid (within 1 h) activation of the pathway including degradation of the Cdc25A phosphatase and inhibition of cyclin E/CDK2 kinase activity, taxol failed to activate this checkpoint even after a prolonged treatment. Unexpectedly, although the alkylating agent cisplatin also induced degradation of Cdc25A (albeit delayed, after 8-12 h), cyclin E/CDK2 activity was elevated and DNA synthesis continued, a phenomena that correlated with increased E2F1 protein levels and consequently enhanced expression of cyclin E. These results reveal a differential impact of various classes of anticancer chemotherapeutics on the Cdc25A-degradation pathway, and indicate that the kinetics of checkpoint induction, and the relative balance of key components within the DNA damage response network may dictate whether the treated cells arrest their cell cycle progression

  16. Anticancer Activity of Metal Complexes: Involvement of Redox Processes

    Science.gov (United States)

    Jungwirth, Ute; Kowol, Christian R.; Keppler, Bernhard K.; Hartinger, Christian G.; Berger, Walter; Heffeter, Petra

    2012-01-01

    Cells require tight regulation of the intracellular redox balance and consequently of reactive oxygen species for proper redox signaling and maintenance of metal (e.g., of iron and copper) homeostasis. In several diseases, including cancer, this balance is disturbed. Therefore, anticancer drugs targeting the redox systems, for example, glutathione and thioredoxin, have entered focus of interest. Anticancer metal complexes (platinum, gold, arsenic, ruthenium, rhodium, copper, vanadium, cobalt, manganese, gadolinium, and molybdenum) have been shown to strongly interact with or even disturb cellular redox homeostasis. In this context, especially the hypothesis of “activation by reduction” as well as the “hard and soft acids and bases” theory with respect to coordination of metal ions to cellular ligands represent important concepts to understand the molecular modes of action of anticancer metal drugs. The aim of this review is to highlight specific interactions of metal-based anticancer drugs with the cellular redox homeostasis and to explain this behavior by considering chemical properties of the respective anticancer metal complexes currently either in (pre)clinical development or in daily clinical routine in oncology. PMID:21275772

  17. Organometallic Gold(III) Complexes Similar to Tetrahydroisoquinoline Induce ER-Stress-Mediated Apoptosis and Pro-Death Autophagy in A549 Cancer Cells.

    Science.gov (United States)

    Huang, Ke-Bin; Wang, Feng-Yang; Tang, Xiao-Ming; Feng, Hai-Wen; Chen, Zhen-Feng; Liu, Yan-Cheng; Liu, You-Nian; Liang, Hong

    2018-04-26

    Agents inducing both apoptosis and autophagic death can be effective chemotherapeutic drugs. In our present work, we synthesized two organometallic gold(III) complexes harboring C^N ligands that structurally resemble tetrahydroisoquinoline (THIQ): Cyc-Au-1 (AuL 1 Cl 2 , L 1 = 3,4-dimethoxyphenethylamine) and Cyc-Au-2 (AuL 2 Cl 2 , L 2 = methylenedioxyphenethylamine). In screening their in vitro activity, we found both gold complexes exhibited lower toxicity, lower resistance factors, and better anticancer activity than those of cisplatin. The organometallic gold(III) complexes accumulate in mitochondria and induce elevated ROS and an ER stress response through mitochondrial dysfunction. These effects ultimately result in simultaneous apoptosis and autophagy. Importantly, compared to cisplatin, Cyc-Au-2 exhibits lower toxicity and better anticancer activity in a murine tumor model. To the best of our knowledge, Cyc-Au-2 is the first organometallic Au(III) compound that induces apoptosis and autophagic death. On the basis of our results, we believe Cyc-Au-2 to be a promising anticancer agent or lead compound for further anticancer drug development.

  18. A screen to identify drug resistant variants to target-directed anti-cancer agents

    Directory of Open Access Journals (Sweden)

    Azam Mohammad

    2003-01-01

    Full Text Available The discovery of oncogenes and signal transduction pathways important for mitogenesis has triggered the development of target-specific small molecule anti-cancer compounds. As exemplified by imatinib (Gleevec, a specific inhibitor of the Chronic Myeloid Leukemia (CML-associated Bcr-Abl kinase, these agents promise impressive activity in clinical trials, with low levels of clinical toxicity. However, such therapy is susceptible to the emergence of drug resistance due to amino acid substitutions in the target protein. Defining the spectrum of such mutations is important for patient monitoring and the design of next-generation inhibitors. Using imatinib and BCR/ABL as a paradigm for a drug-target pair, we recently reported a retroviral vector-based screening strategy to identify the spectrum of resistance-conferring mutations. Here we provide a detailed methodology for the screen, which can be generally applied to any drug-target pair.

  19. Interactions of cisplatin analogues with lysozyme: a comparative analysis.

    Science.gov (United States)

    Ferraro, Giarita; De Benedictis, Ilaria; Malfitano, Annamaria; Morelli, Giancarlo; Novellino, Ettore; Marasco, Daniela

    2017-10-01

    The biophysical characterization of drug binding to proteins plays a key role in structural biology and in the discovery and optimization of drug discovery processes. The search for optimal combinations of biophysical techniques that can correctly and efficiently identify and quantify binding of metal-based drugs to their final target is challenging, due to the physicochemical properties of these agents. Different cisplatin derivatives have shown different citotoxicities in most common cancer lines, suggesting that they exert their biological activity via different mechanisms of action. Here we carried out a comparative analysis, by studying the behaviours of three Pt-compounds under the same experimental conditions and binding assays to properly deepen the determinants of the different MAOs. Indeed we compared the results obtained using surface plasmon resonance, isothermal titration calorimetry, fluorescence spectroscopy and thermal shift assays based on circular dichroism experiments in the characterization of the formation of adducts obtained upon reaction of cisplatin, carboplatin and iodinated analogue of cisplatin, cis-Pt (NH 3 ) 2 I 2 , with the model protein hen egg white lysozyme, both at neutral and acid pHs. Further we reasoned on the applicability of employed techniques for the study the thermodynamics and kinetics of the reaction of a metallodrug with a protein and to reveal which information can be obtained using a combination of these analyses. Data were discussed on the light of the existing structural data collected on the platinated protein.

  20. Activation of store – operated Ca(2+ entry in cisplatin resistant leukemic cells after treatment with photoexcited fullerene C(60 and cisplatin

    Directory of Open Access Journals (Sweden)

    D. V. Franskevych

    2018-04-01

    Full Text Available Ca2+-regulating system in cancer cells is suggested to be remodulated particularly by reduced store-operated Ca2+ entry (SOCE through plasma membrane in order to maintain moderately reduced cytosolic Ca2+ concentration and to avoid apoptosis. The endoplasmic reticulum (ER Ca2+ pool content and the size of SOCE in leukemic wild type (L1210 and resistant to cisplatin (L1210R cells in control, after treatment with either cisplatin (1 µg/ml or photoexcited fulleren C60 (10-5 M alone, or their combination were estimated with the use of Indo-1 AM. The SOCE in resistant to cisplatin L1210R cells was found to be lower than in the wild-type cells. After treatment with cisplatin the decrease of thapsigargin (TG-sensitive ER Ca2+ pool with no significant increase of SOCE was observed in L1210 cells, while no changes were detected in L1210R cells. Photoexcitation of intracellular accumulated fullerene C60 in the visible range of spectrum (410-700 nm was accompanied by increase of SOCE not only in sensitive, but in resistant cells as well. In resistant L1210R cells treated with photoexcited C60 essential effect of cisplatin on Ca2+ homeostasis became obvious: the size of SOCE proved to be higher than after treatment with photoexcited C60 alone. The data obtained allow suggesting­ the influence of photoexcited C60 not only on Ca2+-regulating system, but on those involved in controlling cisplatin entry into drug resistant cancer cells.

  1. [Pt(O,O'-acac)(γ-acac)(DMS)] versus cisplatin: apoptotic effects in B50 neuroblastoma cells.

    Science.gov (United States)

    Grimaldi, Maddalena; Santin, Giada; Insolia, Violetta; Dal Bo, Veronica; Piccolini, Valeria Maria; Veneroni, Paola; Barni, Sergio; Verri, Manuela; De Pascali, Sandra Angelica; Fanizzi, Francesco Paolo; Bernocchi, Graziella; Bottone, Maria Grazia

    2016-05-01

    Cisplatin is one of the most active chemotherapeutic agents used in the treatment of childhood and adult malignancies. Cisplatin induces cell death through different pathways. Despite its effectiveness, the continued clinical use of cisplatin is limited by onset of severe side effects (nephrotoxicity, ototoxicity and neurotoxicity) and drug resistance. Therefore, one of the main experimental oncology purpose is related to the search for new platinum-based drugs to create different types of adducts or more specific and effective subcellular targets. Thus, [Pt(O,O'-acac)(γ-acac)(DMS)], which reacts preferentially with protein thiols or thioether, was synthesized. In our research, different approaches were used to compare cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] effects in B50 rat neuroblastoma cells. Our results, using immunocytochemical, cytometric and morphological techniques, showed that these compounds exert a cytostatic action and activate apoptosis with different pathways. Long-term effects demonstrated that [Pt(O,O'-acac)(γ-acac)(DMS)] exerts cytotoxic effects in neuronal B50 cell line not inducing drug resistance. Analysis was performed both to compare the ability of these platinum compounds to induce cell death and to investigate the intracellular mechanisms at the basis of their cytotoxicity.

  2. Anticancer and antibacterial secondary metabolites from the endophytic fungus Penicillium sp. CAM64 against multi-drug resistant Gram-negative bacteria.

    Science.gov (United States)

    Jouda, Jean-Bosco; Tamokou, Jean-de-Dieu; Mbazoa, Céline Djama; Sarkar, Prodipta; Bag, Prasanta Kumar; Wandji, Jean

    2016-09-01

    The emergence of multiple-drug resistance bacteria has become a major threat and thus calls for an urgent need to search for new effective and safe anti-bacterial agents. This study aims to evaluate the anticancer and antibacterial activities of secondary metabolites from Penicillium sp., an endophytic fungus associated with leaves of Garcinia nobilis. The culture filtrate from the fermentation of Penicillium sp. was extracted and analyzed by liquid chromatography-mass spectrometry, and the major metabolites were isolated and identified by spectroscopic analyses and by comparison with published data. The antibacterial activity of the compounds was assessed by broth microdilution method while the anticancer activity was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The fractionation of the crude extract afforded penialidin A-C (1-3), citromycetin (4), p-hydroxyphenylglyoxalaldoxime (5) and brefelfin A (6). All of the compounds tested here showed antibacterial activity (MIC = 0.50 - 128 µg/mL) against Gramnegative multi-drug resistance bacteria, Vibrio cholerae (causative agent of dreadful disease cholera) and Shigella flexneri (causative agent of shigellosis), as well as the significant anticancer activity (LC 50 = 0.88 - 9.21 µg/mL) against HeLa cells. The results obtained indicate that compounds 1-6 showed good antibacterial and anticancer activities with no toxicity to human red blood cells and normal Vero cells.

  3. Cytoplasmic RAP1 mediates cisplatin resistance of non-small cell lung cancer.

    Science.gov (United States)

    Xiao, Lu; Lan, Xiaoying; Shi, Xianping; Zhao, Kai; Wang, Dongrui; Wang, Xuejun; Li, Faqian; Huang, Hongbiao; Liu, Jinbao

    2017-05-18

    Cytotoxic chemotherapy agents (e.g., cisplatin) are the first-line drugs to treat non-small cell lung cancer (NSCLC) but NSCLC develops resistance to the agent, limiting therapeutic efficacy. Despite many approaches to identifying the underlying mechanism for cisplatin resistance, there remains a lack of effective targets in the population that resist cisplatin treatment. In this study, we sought to investigate the role of cytoplasmic RAP1, a previously identified positive regulator of NF-κB signaling, in the development of cisplatin resistance in NSCLC cells. We found that the expression of cytoplasmic RAP1 was significantly higher in high-grade NSCLC tissues than in low-grade NSCLC; compared with a normal pulmonary epithelial cell line, the A549 NSCLC cells exhibited more cytoplasmic RAP1 expression as well as increased NF-κB activity; cisplatin treatment resulted in a further increase of cytoplasmic RAP1 in A549 cells; overexpression of RAP1 desensitized the A549 cells to cisplatin, and conversely, RAP1 depletion in the NSCLC cells reduced their proliferation and increased their sensitivity to cisplatin, indicating that RAP1 is required for cell growth and has a key mediating role in the development of cisplatin resistance in NSCLC cells. The RAP1-mediated cisplatin resistance was associated with the activation of NF-κB signaling and the upregulation of the antiapoptosis factor BCL-2. Intriguingly, in the small portion of RAP1-depleted cells that survived cisplatin treatment, no induction of NF-κB activity and BCL-2 expression was observed. Furthermore, in established cisplatin-resistant A549 cells, RAP1 depletion caused BCL2 depletion, caspase activation and dramatic lethality to the cells. Hence, our results demonstrate that the cytoplasmic RAP1-NF-κB-BCL2 axis represents a key pathway to cisplatin resistance in NSCLC cells, identifying RAP1 as a marker and a potential therapeutic target for cisplatin resistance of NSCLC.

  4. Improved efficacy of cisplatin in combination with a nano-formulation of pentacyclic triterpenediol

    Energy Technology Data Exchange (ETDEWEB)

    Alam, Noor [Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Qayum, Arem; Kumar, Ashok [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Khare, Vaibhav [Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Sharma, Parduman Raj [Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Andotra, Samar Singh [Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Singh, Shashank K. [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Koul, Surinder, E-mail: skoul@iiim.ac.in [Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India); Gupta, Prem N., E-mail: pngupta10@gmail.com [Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, 2 Rafi Marg, New Delhi 110001 (India); Formulation & Drug Delivery Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001 (India)

    2016-11-01

    Cisplatin is widely used for the treatment of various cancers including cervical, ovarian, lung and head and neck, however, its clinical success is limited owing to the dose-dependent adverse effects, mainly nephrotoxicity and neurotoxicity. In order to address this limitation, the present study was undertaken to investigate growth inhibitory effect of cisplatin in combination with a triterpenediol (3a, 24-dihydroxyurs-12-ene and 3a, 24-dihydroxyolean-12-ene, TPD) on human ovarian cancer cell line. Poly(dl-lactic-co-glycolic) acid nanoparticles loaded with TPD (TPD-PLGA-NPs) were successfully developed by emulsion solvent evaporation method. The TPD-PLGA-NPs were characterized for size distribution and zeta potential which was in order of 152.56 ± 3.01 nm and − 17.36 ± 0.37 mV respectively. The morphological evaluation was carried out by transmission electron microscopy and the formulation was also characterized using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The drug loading of the optimized formulation was 51.03 ± 1.52 μg/mg and the formulation exhibited sustained drug release profile. The in vitro cellular uptake study of coumarin-6 loaded PLGA nanoparticles in OVCAR-5 cells demonstrated a time dependent increase in uptake efficiency. Further, growth inhibitory effect of cisplatin was investigated in combination with TPD-PLGA-NPs. The combination index (CI) was < 1, indicating a synergistic interaction. Further, at 75% of cell growth inhibition (ED{sub 75}) the dose of cisplatin was reduced to 3.8 folds using this combination. The results indicated the potential of cisplatin and TPD-PLGA-NPs combination in order to reduce to dose limiting toxicities of the former. - Highlights: • TPD nanoparticles showed a time dependent increase in cellular uptake efficiency. • TPD nanoparticles showed synergistic interaction between cisplatin. • The dose of cisplatin was reduced to 3.8 folds using this combination

  5. CD10-/ALDH- cells are the sole cisplatin-resistant component of a novel ovarian cancer stem cell hierarchy.

    Science.gov (United States)

    Ffrench, Brendan; Gasch, Claudia; Hokamp, Karsten; Spillane, Cathy; Blackshields, Gordon; Mahgoub, Thamir Mahmoud; Bates, Mark; Kehoe, Louise; Mooney, Aoibhinn; Doyle, Ronan; Doyle, Brendan; O'Donnell, Dearbhaile; Gleeson, Noreen; Hennessy, Bryan T; Stordal, Britta; O'Riain, Ciaran; Lambkin, Helen; O'Toole, Sharon; O'Leary, John J; Gallagher, Michael F

    2017-10-19

    It is long established that tumour-initiating cancer stem cells (CSCs) possess chemoresistant properties. However, little is known of the mechanisms involved, particularly with respect to the organisation of CSCs as stem-progenitor-differentiated cell hierarchies. Here we aimed to elucidate the relationship between CSC hierarchies and chemoresistance in an ovarian cancer model. Using a single cell-based approach to CSC discovery and validation, we report a novel, four-component CSC hierarchy based around the markers cluster of differentiation 10 (CD10) and aldehyde dehydrogenase (ALDH). In a change to our understanding of CSC biology, resistance to chemotherapy drug cisplatin was found to be the sole property of CD10 - /ALDH - CSCs, while all four CSC types were sensitive to chemotherapy drug paclitaxel. Cisplatin treatment quickly altered the hierarchy, resulting in a three-component hierarchy dominated by the cisplatin-resistant CD10 - /ALDH - CSC. This organisation was found to be hard-wired in a long-term cisplatin-adapted model, where again CD10 - /ALDH - CSCs were the sole cisplatin-resistant component, and all CSC types remained paclitaxel-sensitive. Molecular analysis indicated that cisplatin resistance is associated with inherent- and adaptive-specific drug efflux and DNA-damage repair mechanisms. Clinically, low CD10 expression was consistent with a specific set of ovarian cancer patient samples. Collectively, these data advance our understanding of the relationship between CSC hierarchies and chemoresistance, which was shown to be CSC- and drug-type specific, and facilitated by specific and synergistic inherent and adaptive mechanisms. Furthermore, our data indicate that primary stage targeting of CD10 - /ALDH - CSCs in specific ovarian cancer patients in future may facilitate targeting of recurrent disease, before it ever develops.

  6. An evaluation of the toxicity and bioaccumulation of cisplatin in the marine environment using the macroalga, Ulva lactuca

    Energy Technology Data Exchange (ETDEWEB)

    Easton, Cecilia [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Turner, Andrew, E-mail: aturner@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Sewell, Graham [School of Health Professions, University of Plymouth, Peninsula Allied Health Centre, Plymouth PL6 8BH (United Kingdom)

    2011-12-15

    The cytotoxic drug, cisplatin (cis-PtCl{sub 2}(NH{sub 3}){sub 2}), has been added to cultures of the marine macroalga, Ulva lactuca, under various experimental conditions. Both accumulation and internalisation over a 48 h period was greater when cisplatin was added to coastal sea water (salinity = 33) from a distilled water solution than when added to either sea water or estuarine water (salinity = 16.5) from a saline solution. This effect is attributed to the greater abundance of the more reactive monoaqua complex (cis-PtCl(OH{sub 2})(NH{sub 3}){sub 2}{sup +}) in the distilled water solution and kinetic constraints on its conversion back to cis-PtCl{sub 2}(NH{sub 3}){sub 2} in sea water. Despite its mode of action at the cellular level, cisplatin added up to concentrations of 150 nM did not incur a measurable reduction in the efficiency of photochemical energy conversion under any of experimental conditions tested. - Highlights: > This study is the first to examine the biogeochemistry and toxicity of a cytotoxic drug in the marine environment. > Cisplatin is accumulated and internalised by the marine macroalga, Ulva lactuca. > Accumulation is greater when the drug is administered from a distilled water solution than from a saline solution. > Results are consistent with the greater abundance of the more reactive aquated complexes in pure water. > Cisplatin is not phytotoxic to the alga over the concentration range (<150 nM) studied. - The cytotoxic drug, cisplatin, is accumulated and internalised by the marine macroalga, Ulva lactuca, but is not phytotoxic up to concentrations of 150 nM

  7. Increased sensitivity of p53-deficient cells to anticancer agents due to loss of Pms2

    Science.gov (United States)

    Fedier, A; Ruefenacht, U B; Schwarz, V A; Haller, U; Fink, D

    2002-01-01

    A large fraction of human tumours carries mutations in the p53 gene. p53 plays a central role in controlling cell cycle checkpoint regulation, DNA repair, transcription, and apoptosis upon genotoxic stress. Lack of p53 function impairs these cellular processes, and this may be the basis of resistance to chemotherapeutic regimens. By virtue of the involvement of DNA mismatch repair in modulating cytotoxic pathways in response to DNA damaging agents, we investigated the effects of loss of Pms2 on the sensitivity to a panel of widely used anticancer agents in E1A/Ha-Ras-transformed p53-null mouse fibroblasts either proficient or deficient in Pms2. We report that lack of the Pms2 gene is associated with an increased sensitivity, ranging from 2–6-fold, to some types of anticancer agents including the topoisomerase II poisons doxorubicin, etoposide and mitoxantrone, the platinum compounds cisplatin and oxaliplatin, the taxanes docetaxel and paclitaxel, and the antimetabolite gemcitabine. In contrast, no change in sensitivity was found after treatment with 5-fluorouracil. Cell cycle analysis revealed that both, Pms2-deficient and -proficient cells, retain the ability to arrest at the G2/M upon cisplatin treatment. The data indicate that the concomitant loss of Pms2 function chemosensitises p53-deficient cells to some types of anticancer agents, that Pms2 positively modulates cell survival by mechanisms independent of p53, and that increased cytotoxicity is paralleled by increased apoptosis. Tumour-targeted functional inhibition of Pms2 may be a valuable strategy for increasing the efficacy of anticancer agents in the treatment of p53-mutant cancers. British Journal of Cancer (2002) 87, 1027–1033. doi:10.1038/sj.bjc.6600599 www.bjcancer.com © 2002 Cancer Research UK PMID:12434296

  8. New Molecular Targets of Anticancer Therapy - Current Status and Perspectives.

    Science.gov (United States)

    Zajac, Marianna; Muszalska, Izabela; Jelinska, Anna

    2016-01-01

    Molecularly targeted anticancer therapy involves the use of drugs or other substances affecting specific molecular targets that play a part in the development, progression and spread of a given neoplasm. By contrast, the majority of classical chemotherapeutics act on all rapidly proliferating cells, both healthy and cancerous ones. Target anticancer drugs are designed to achieve a particular aim and they usually act cytostatically, not cytotoxically like classical chemotherapeutics. At present, more than 300 biological molecular targets have been identified. The proteins involved in cellular metabolism include (among others) receptor proteins, signal transduction proteins, mRNA thread matrix synthesis proteins participating in neoplastic transformation, cell cycle control proteins, functional and structural proteins. The receptor proteins that are targeted by currently used anticancer drugs comprise the epithelial growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR) and vascular endothelial growth factor receptor(VEGFR). Target anticancer drugs may affect extracellular receptor domains (antibodies) or intracellular receptor domains (tyrosine kinase inhibitors). The blocking of the mRNA thread containing information about the structure of oncogenes (signal transduction proteins) is another molecular target of anticancer drugs. That type of treatment, referred to as antisense therapy, is in clinical trials. When the synthesis of genetic material is disturbed, in most cases the passage to the next cycle phase is blocked. The key proteins responsible for the blockage are cyclines and cycline- dependent kinases (CDK). Clinical trials are focused on natural and synthetic substances capable of blocking various CDKs. The paper discusses the molecular targets and chemical structure of target anticancer drugs that have been approved for and currently applied in antineoplastic therapy together with indications and contraindications for their

  9. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    International Nuclear Information System (INIS)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-01-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 10"8 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer. (paper)

  10. Optimization of anti-cancer drugs and a targeting molecule on multifunctional gold nanoparticles

    Science.gov (United States)

    Rizk, Nahla; Christoforou, Nicolas; Lee, Sungmun

    2016-05-01

    Breast cancer is the most common and deadly cancer among women worldwide. Currently, nanotechnology-based drug delivery systems are useful for cancer treatment; however, strategic planning is critical in order to enhance the anti-cancer properties and reduce the side effects of cancer therapy. Here, we designed multifunctional gold nanoparticles (AuNPs) conjugated with two anti-cancer drugs, TGF-β1 antibody and methotrexate, and a cancer-targeting molecule, folic acid. First, optimum size and shape of AuNPs was selected by the highest uptake of AuNPs by MDA-MB-231, a metastatic human breast cancer cell line. It was 100 nm spherical AuNPs (S-AuNPs) that were used for further studies. A fixed amount (900 μl) of S-AuNP (3.8 × 108 particles/ml) was conjugated with folic acid-BSA or methotrexate-BSA. Methotrexate on S-AuNP induced cellular toxicity and the optimum amount of methotrexate-BSA (2.83 mM) was 500 μl. Uptake of S-AuNPs was enhanced by folate conjugation that binds to folate receptors overexpressed by MDA-MB-231 and the optimum uptake was at 500 μl of folic acid-BSA (2.83 mM). TGF-β1 antibody on S-AuNP reduced extracellular TGF-β1 of cancer cells by 30%. Due to their efficacy and tunable properties, we anticipate numerous clinical applications of multifunctional gold nanospheres in treating breast cancer.

  11. Label free quantitative proteomics analysis on the cisplatin resistance in ovarian cancer cells.

    Science.gov (United States)

    Wang, F; Zhu, Y; Fang, S; Li, S; Liu, S

    2017-05-20

    Quantitative proteomics has been made great progress in recent years. Label free quantitative proteomics analysis based on the mass spectrometry is widely used. Using this technique, we determined the differentially expressed proteins in the cisplatin-sensitive ovarian cancer cells COC1 and cisplatin-resistant cells COC1/DDP before and after the application of cisplatin. Using the GO analysis, we classified those proteins into different subgroups bases on their cellular component, biological process, and molecular function. We also used KEGG pathway analysis to determine the key signal pathways that those proteins were involved in. There are 710 differential proteins between COC1 and COC1/DDP cells, 783 between COC1 and COC1/DDP cells treated with cisplatin, 917 between the COC1/DDP cells and COC1/DDP cells treated with LaCl3, 775 between COC1/DDP cells treated with cisplatin and COC1/DDP cells treated with cisplatin and LaCl3. Among the same 411 differentially expressed proteins in cisplatin-sensitive COC1 cells and cisplain-resistant COC1/DDP cells before and after cisplatin treatment, 14% of them were localized on the cell membrane. According to the KEGG results, differentially expressed proteins were classified into 21 groups. The most abundant proteins were involved in spliceosome. This study lays a foundation for deciphering the mechanism for drug resistance in ovarian tumor.

  12. [Synergism inhibition of curcumin combined with cisplatin on T24 bladder carcinoma cells and its related mechanism].

    Science.gov (United States)

    Zhang, Shao-nan; Yong, Qun; Wu, Xin-li; Liu, Xiao-ping

    2014-11-01

    To investigate the synergism inhibition of curcumin combined with cisplatin on T24 bladder carcinoma cells and the down-regulating effect of curcumin on the Keapl-Nrf2 pathway, a well recognized anti-drug pathway in almost drugged tumor cells. T24 cells were cultured and treated with increasing concentrations of curcumin(5 ,10 and 20 µmol/mL) combined with cisplatin(30 µg/mL) for 24 hours. The inhibitory effects on T24 cells were tested with MTI colorimetric assay. Nuclear Nrf2 and Keapl , cytoplasmic Keapl and two typical phase II enzymes (GSTP1 and NQOl) were checked with Western blotting. The proliferation of T24 cells was significantly inhibited by different concentrations of curcumin combined with cisplatin. After the treatment with different concentrations of curcumin, Nuclear Nrf2 was decreased but Keapl was increased, and GSTP1 and NQO1 were decreased. Synergism inhibition of curcumin combined with cisplatin on T24 bladder carcinoma cells is observed in this research. The Keapl-Nrf2 pathway in T24 cells is down-regulated by curcumin. The expression of typical phase I enzymes (GSTP1 and NQO1) mediated by Nrf2 are decreased by curcumin. The sensitivity of tumor cells to chemotherapeutic drugs is then enhanced. These may be the mechanism of synergism effect of curcumin combined with cisplatin.

  13. Au/TiO2 nanobelt heterostructures for the detection of cancer cells and anticancer drug activity by potential sensing

    International Nuclear Information System (INIS)

    Cui, Jingjie; Xu, Ping; Li, Hong; Chen, Jing; Chen, Shaowei; Gao, Li

    2016-01-01

    Cancer is a cell dysfunction disease. The detection of cancer cells is extremely important for early diagnosis and clinical treatments. At present, the pretreatment for the detection of cancer cells is costly, complicated and time-consuming. As different species of the analytes may give rise to specific voltammetric signals at distinctly different potentials, simple potential sensing has the specificity to detect different cellular species. By taking advantage of the different electrochemical characteristics of normal cells, cancer cells and biointeractions between anticancer drugs and cancer cells, we develop a specific, sensitive, direct, cost-effective and rapid method for the detection of cancer cells by electrochemical potential sensing based on Au/TiO 2 nanobelt heterostructure electrodes that will be of significance in early cancer diagnosis, in vitro screening of anticancer drugs  and molecular biology research. (paper)

  14. [Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells].

    Science.gov (United States)

    Yasutake, H; Tsuchiya, H; Sugihara, M; Tomita, K; Ueda, Y; Tanaka, M; Sasaki, T

    1989-05-01

    Combined effect of cisplatin and caffeine on murine B16-BL6 melanoma cells was studied. Synergistic inhibition of the cell growth was observed when caffeine (2 mM) was added continuously after one hour exposure of cisplatin. On the other hand, when caffeine was added before one hour exposure of cisplatin or one hour simultaneous exposure with cisplatin, synergistic effect was not shown. In the analysis of DNA histogram obtained from flow cytometry, S and G2/M accumulation was observed by the treatment of cisplatin and that accumulation was reduced by the combination of cisplatin and caffeine. From this findings, it was suggested that caffeine would inhibit DNA repair process. Furthermore, according to morphological studies with hematoxylin-eosin stain and Fontana-Masson stain, the addition of caffeine alone resulted in mild swelling of melanoma cells and the decrease of nuclear-cytoplasmic ratio. The combination of cisplatin and caffeine caused marked swelling of melanoma cells and remarkable increase of dendrite-like processes. Melanogenesis was also enhanced by the addition of these two drugs. Many matured melanosomes, increases of mitochondria, Golgi's apparatus and endoplasmic reticula were observed by the use of electron microscope. These findings implied that the combination of cisplatin and caffeine induced a differentiation of murine melanoma cells.

  15. [Intraoperative intraperitoneal chemoperfusion treatment with cisplatin and dioxadet on a model of peritoneal carcinomatosis in ovarian cancer: safety and efficacy evaluation].

    Science.gov (United States)

    Bespalov, V G; Kireeva, G S; Belyaeva, O A; Senchik, K Yu; Stukov, A N; Gafton, G I; Soloviev, L A; Vasilchenko, M V; Guseinov, K D; Alexeev, V V; Belyaev, A M

    2015-01-01

    A comparative study of safety and efficacy of normothermic and hyperthermic intraperitoneal chemoperfusion (IPEC and HIPEC) with cisplatin and dioxadet was carried out in 143 female Wistar rats. Ovarian cancer was inoculated intraperitoneally (i.p.). In 48 hours after ovarian cancer inoculation the drugs were administered i.p. or IPEC and HIPEC with the drugs were performed using maximum tolerated doses (MTD). Content of cisplatin was determined in the perfusate and blood plasma during HIPEC with the drug. The leukocyte count was measured using veterinary hematologic analyzer in peripheral blood of rats at different time points after HIPEC with dioxadet. Efficacy of the treatment was estimated in increase in median survival time (MST). During HIPEC cisplatin was accumulated in the abdominal cavity in a considerable amount with minimal systemic absorption. HIPEC with dioxadet didn't significantly affect the leukocyte count in peripheral blood while i.p. administration of dioxadet suppressed leukopoiesis. MST of rats after IPEC with cisplatin was 37.5 days which was significantly higher compared to MST after i.p. administration of cisplatin (19.5 days, p = 0.037). HIPEC with dioxadet was the most effective regimen of treatment with MST of rats reaching 49 days which was significantly higher compared to MST after HIPEC with cisplatin (25.5 days, p = 0.002).

  16. AJUBA increases the cisplatin resistance through hippo pathway in cervical cancer.

    Science.gov (United States)

    Bi, Lihong; Ma, Feng; Tian, Rui; Zhou, Yanli; Lan, Weiguang; Song, Quanmao; Cheng, Xiankui

    2018-02-20

    Though LIM-domain protein AJUBA was identified as a putative oncogene, the function and underlying mechanisms of AJUBA in cervical cancer remain largely unknown. Firstly, AJUBA expression was detected via real-time quantitative PCR in patients' samples. Furthermore, Hela and Siha cells were transfected with AJUBA-overexpressing plasmids, and then exposed to cisplatin, the apoptosis was measured by cytometry assay. In addition, the expression of YAP and TAZ was disclosed through western blot assay. Our results revealed that AJUBA expression was significantly higher in the cervical cancer patients resistant to cisplatin treatment compared with cervical cancer patients sensitive to cisplatin treatment. In addition, overall survival time was significantly shorter in the cervical cancer patients with high AJUBA expression compare with those with low AJUBA expression using kaplan-meier analysis. Hela and Siha cells transfected with AJUBA-expressing plasmids exposed to cisplatin treatment had higher survival rate compared with the cells transfected with empty vector control. Mechanistic studies revealed the AJUBA upregulated the downstream targets YAP and TAZ. These results suggest that high AJUBA level enhances cervical cancer cells drug resistance to cisplatin, also associates with decreased patient survival times. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Chemical dissection of the cell cycle: probes for cell biology and anti-cancer drug development.

    Science.gov (United States)

    Senese, S; Lo, Y C; Huang, D; Zangle, T A; Gholkar, A A; Robert, L; Homet, B; Ribas, A; Summers, M K; Teitell, M A; Damoiseaux, R; Torres, J Z

    2014-10-16

    Cancer cell proliferation relies on the ability of cancer cells to grow, transition through the cell cycle, and divide. To identify novel chemical probes for dissecting the mechanisms governing cell cycle progression and cell division, and for developing new anti-cancer therapeutics, we developed and performed a novel cancer cell-based high-throughput chemical screen for cell cycle modulators. This approach identified novel G1, S, G2, and M-phase specific inhibitors with drug-like properties and diverse chemotypes likely targeting a broad array of processes. We further characterized the M-phase inhibitors and highlight the most potent M-phase inhibitor MI-181, which targets tubulin, inhibits tubulin polymerization, activates the spindle assembly checkpoint, arrests cells in mitosis, and triggers a fast apoptotic cell death. Importantly, MI-181 has broad anti-cancer activity, especially against BRAF(V600E) melanomas.

  18. X-ray microimaging of cisplatin distribution in ovarian cancer cells

    International Nuclear Information System (INIS)

    Kiyozuka, Yasuhiko; Tsubura, Airo; Takemoto, Kuniko; Kihara, Hiroshi; Yamamoto, Akitsugu; Guttmann, Peter

    2000-01-01

    X-ray microscopy has the possibility to be in use for elemental analysis of tissue and cells especially under physiological conditions with high lateral resolution. In X-ray microimaging cisdiamminedichloroplatinum II (cisplatin: CDDP), an anticancer agent, which has a platinum atom at its functional center gives sufficient contrast against organic material at sub-cellular level. We analyzed the enhance effect and intracellular distribution of CDDP in human ovarian cancer cells with the transmission X-ray microscope at BESSY, Berlin. Two human ovarian cancer cell lines (MN-1 and EC) were treated with 1 and 10 μg/ml of CDDP for 4 hours and compared with untreated cells X-ray images of CDDP-treated samples show clearly labeled nucleoli, periphery of the nucleus and mitochondria, in a concentration-dependent manner. CDDP binds to DNA molecules via the formation of intra- or-inter-strand cross-links. Higher contrasts at the periphery of nucleus and nucleoli suggest the distribution of tightly packed heterochromatin. In addition, results show the possibility that CDDP binds to mitochondrial DNA. Biological function of cisplatin is not only the inhibition of DNA replication but is suggested to disturb mitochondrial function and RNA synthesis in the nucleolus

  19. Screening the Drug Sensitivity Genes Related to GEM and CDDP in the Lung Cancer Cell-lines

    Directory of Open Access Journals (Sweden)

    Chunyu YANG

    2009-10-01

    Full Text Available Background and objective Screening of small-cell lung cancer (SCLC and non-small cell lung cancer (NSCLC cell lines with gemcitabine hydrochloride (GEM and cisplatin (CDDP related to drug sensitivity gene might clarify the action mechanism of anti-cancer drugs and provide a new clue for overcoming drug resistance and the development of new anti-cancer drugs, and also provide theoretical basis for the clinical treatment of individual. Methods The drug sensitivity of CDDP and GEM in 4 SCLC cell lines and 6 NSCLC cell lines was determined using MTT colorimetric assay, while the cDNA macroarray was applied to detect the gene expression state related to drug sensitivity of 10 lung cancer cell line in 1 291, and the correlation between the two was analysized. Results There were 6 genes showing significant positive correlation (r≥0.632, P < 0.05 with GEM sensitivity; 45 genes positively related to CDDP; another 41 genes related to both GEM and CDDP (r≥± 0.4. Lung cancer with GEM and CDDP sensitivity of two types of drugs significantly related genes were Metallothinein (Signal transduction molecules, Cathepsin B (Organization protease B and TIMP1 (Growth factor; the GEM, CDDP sensitivity associated genes of lung cancer cell lines mainly distributed in Metallothinein, Cathepsin B, growth factor TIMP1 categories. Conclusion There existed drug-related sensitive genes of GEM, CDDP in SCLC and NSCLC cell lines; of these genes, Metallothinein, Cathepsin B and TIMP1 genes presented a significant positive correlation with GEM drug sensitivity, a significant negative correlation with CDDP drug sensitivity.

  20. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Zhang, Ping; Zhang, Zhiyuan; Zhou, Xiaojian; Qiu, Weiliu; Chen, Fangan; Chen, Wantao

    2006-01-01

    Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis and further intervention in cisplatin resistance

  1. Identification of genes associated with cisplatin resistance in human oral squamous cell carcinoma cell line

    Directory of Open Access Journals (Sweden)

    Zhang Ping

    2006-09-01

    Full Text Available Abstract Background Cisplatin is widely used for chemotherapy of head and neck squamous cell carcinoma. However, details of the molecular mechanism responsible for cisplatin resistance are still unclear. The aim of this study was to identify the expression of genes related to cisplatin resistance in oral squamous cell carcinoma cells. Methods A cisplatin-resistant cell line, Tca/cisplatin, was established from a cisplatin-sensitive cell line, Tca8113, which was derived from moderately-differentiated tongue squamous cell carcinoma. Global gene expression in this resistant cell line and its sensitive parent cell line was analyzed using Affymetrix HG-U95Av2 microarrays. Candidate genes involved in DNA repair, the MAP pathway and cell cycle regulation were chosen to validate the microarray analysis results. Cell cycle distribution and apoptosis following cisplatin exposure were also investigated. Results Cisplatin resistance in Tca/cisplatin cells was stable for two years in cisplatin-free culture medium. The IC50 for cisplatin in Tca/cisplatin was 6.5-fold higher than that in Tca8113. Microarray analysis identified 38 genes that were up-regulated and 25 that were down-regulated in this cell line. Some were novel candidates, while others are involved in well-characterized mechanisms that could be relevant to cisplatin resistance, such as RECQL for DNA repair and MAP2K6 in the MAP pathway; all the genes were further validated by Real-time PCR. The cell cycle-regulated genes CCND1 and CCND3 were involved in cisplatin resistance; 24-hour exposure to 10 μM cisplatin induced a marked S phase block in Tca/cisplatin cells but not in Tca8113 cells. Conclusion The Tca8113 cell line and its stable drug-resistant variant Tca/cisplatin provided a useful model for identifying candidate genes responsible for the mechanism of cisplatin resistance in oral squamous cell carcinoma. Our data provide a useful basis for screening candidate targets for early diagnosis

  2. Comparative thermal and thermodynamic study of DNA chemically modified with antitumor drug cisplatin and its inactive analog transplatin.

    Science.gov (United States)

    Lando, Dmitri Y; Chang, Chun-Ling; Fridman, Alexander S; Grigoryan, Inessa E; Galyuk, Elena N; Hsueh, Ya-Wei; Hu, Chin-Kun

    2014-08-01

    Antitumor activity of cisplatin is exerted by covalent binding to DNA. For comparison, studies of cisplatin-DNA complexes often employ the very similar but inactive transplatin. In this work, thermal and thermodynamic properties of DNA complexes with these compounds were studied using differential scanning calorimetry (DSC) and computer modeling. DSC demonstrates that cisplatin decreases thermal stability (melting temperature, Tm) of long DNA, and transplatin increases it. At the same time, both compounds decrease the enthalpy and entropy of the helix-coil transition, and the impact of transplatin is much higher. From Pt/nucleotide molar ratio rb=0.001, both compounds destroy the fine structure of DSC profile and increase the temperature melting range (ΔT). For cisplatin and transplatin, the dependences δTm vs rb differ in sign, while δΔT vs rb are positive for both compounds. The change in the parameter δΔT vs rb demonstrates the GC specificity in the location of DNA distortions. Our experimental results and calculations show that 1) in contrast to [Pt(dien)Cl]Cl, monofunctional adducts formed by transplatin decrease the thermal stability of long DNA at [Na(+)]>30mM; 2) interstrand crosslinks of cisplatin and transplatin only slightly increase Tm; 3) the difference in thermal stability of DNA complexes with cisplatin vs DNA complexes with transplatin mainly arises from the different thermodynamic properties of their intrastrand crosslinks. This type of crosslink appears to be responsible for the antitumor activity of cisplatin. At any [Na(+)] from interval 10-210mM, cisplatin and transplatin intrastrand crosslinks give rise to destabilization and stabilization, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Impact of the healthcare payment system on patient access to oral anticancer drugs: an illustration from the French and United States contexts

    Science.gov (United States)

    2014-01-01

    Background Oral anticancer drugs (OADs) allow treating a growing range of cancers. Despite their convenience, their acceptance by healthcare professionals and patients may be affected by medical, economical and organizational factors. The way the healthcare payment system (HPS) reimburses OADs or finances hospital activities may impact patients’ access to such drugs. We discuss how the HPS in France and USA may generate disincentives to the use of OADs in certain circumstances. Discussion French public and private hospitals are financed by National Health Insurance (NHI) according to the nature and volume of medical services provided annually. Patients receiving intravenous anticancer drugs (IADs) in a hospital setting generate services, while those receiving OADs shift a part of service provision from the hospital to the community. In 2013, two million outpatient IADs sessions were performed, representing a cost of €815 million to the NHI, but positive contribution margin of €86 million to hospitals. Substitution of IADs by OADs mechanically induces a shortfall in hospital income related to hospitalizations. Such economic constraints may partially contribute to making physicians reluctant to prescribe OADs. In the US healthcare system, coverage for OADs is less favorable than coverage for injectable anticancer drugs. In 2006, a Cancer Drug Coverage Parity Act was adopted by several states in order to provide patients with better coverage for OADs. Nonetheless, the complexity of reimbursement systems and multiple reimbursement channels from private insurance represent real economic barriers which may prevent patients with low income being treated with OADs. From an organizational perspective, in both countries the use of OADs generates additional activities related to physician consultations, therapeutic education and healthcare coordination between hospitals and community settings, which are not considered in the funding of hospitals activities so far

  4. Modulatory effect of Althaea officinalis L root extract on cisplatin ...

    African Journals Online (AJOL)

    Abstract. Purpose: To explore the modulatory effect of an Althaea officinalis root extract (AORE) on cisplatin- induced ... the drug of choice for several in vitro research applications. .... and reproduction in any medium, provided the original work ...

  5. Fresh Water Cyanobacteria Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as an Anticancer Drug Resource.

    Directory of Open Access Journals (Sweden)

    Akanksha Srivastava

    Full Text Available An increasing number of cancer patients worldwide, especially in third world countries, have raised concern to explore natural drug resources, such as the less explored fresh water filamentous cyanobacteria. Six strains of cyanobacteria (Phormidium sp. CCC727, Geitlerinema sp. CCC728, Arthrospira sp. CCC729, Phormidium sp. CCC731, Phormidium sp. CCC730, and Leptolyngbya sp. CCC732 were isolated (paddy fields and ponds in the Banaras Hindu University, campus and five strains screened for anticancer potential using human colon adenocarcinoma (HT29 and human kidney adenocarcinoma (A498 cancer cell lines. Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 were the most potent as determined by examination of morphological features and by inhibition of growth by graded concentrations of crude extracts and thin-layer chromatography (TLC eluates. Cell cycle analysis and multiplex assays using cancer biomarkers also confirmed Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as cancer drug resources. Apoptotic studies in the cells of A498 (cancer and MCF-10A (normal human epithelial exposed to crude extracts and TLC fractions revealed no significant impact on MCF-10A cells emphasizing its importance in the development of anticancer drug. Identification of biomolecules from these extracts are in progress.

  6. Fresh Water Cyanobacteria Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as an Anticancer Drug Resource.

    Science.gov (United States)

    Srivastava, Akanksha; Tiwari, Ratnakar; Srivastava, Vikas; Singh, Tej Bali; Asthana, Ravi Kumar

    2015-01-01

    An increasing number of cancer patients worldwide, especially in third world countries, have raised concern to explore natural drug resources, such as the less explored fresh water filamentous cyanobacteria. Six strains of cyanobacteria (Phormidium sp. CCC727, Geitlerinema sp. CCC728, Arthrospira sp. CCC729, Phormidium sp. CCC731, Phormidium sp. CCC730, and Leptolyngbya sp. CCC732) were isolated (paddy fields and ponds in the Banaras Hindu University, campus) and five strains screened for anticancer potential using human colon adenocarcinoma (HT29) and human kidney adenocarcinoma (A498) cancer cell lines. Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 were the most potent as determined by examination of morphological features and by inhibition of growth by graded concentrations of crude extracts and thin-layer chromatography (TLC) eluates. Cell cycle analysis and multiplex assays using cancer biomarkers also confirmed Geitlerinema sp. CCC728 and Arthrospira sp. CCC729 as cancer drug resources. Apoptotic studies in the cells of A498 (cancer) and MCF-10A (normal human epithelial) exposed to crude extracts and TLC fractions revealed no significant impact on MCF-10A cells emphasizing its importance in the development of anticancer drug. Identification of biomolecules from these extracts are in progress.

  7. Cisplatin Induced Nephrotoxicity

    Directory of Open Access Journals (Sweden)

    Seyed Seifollah Beladi Mousavi

    2014-02-01

    The standard approach to prevent cisplatin-induced nephrotoxicity is the administration of lower doses of cisplatin in combination with the administration of full intravenous isotonic saline before and after cisplatin administration. Although a number of pharmacologic agents including sodium thiosulfate, N-acetylcysteine, theophylline and glycine have been evaluated for prevention of nephrotoxicity, none have proved to have an established role, thus, additional clinical studies will be required to confirm their probable effects.

  8. Design, synthesis and anticancer activity of diam(m)ine platinum(II) complexes bearing a small-molecular cell apoptosis inducer dichloroacetate.

    Science.gov (United States)

    Liu, Weiping; Jiang, Jing; Xu, Yongping; Hou, Shuqian; Sun, Liping; Ye, Qingsong; Lou, Liguang

    2015-05-01

    Four new diam(m)ine platinum complexes containing the dichloroacetate moiety in 3-dichoroacetoxylcyclobutane-1,1-dicarboxylate as the leaving group were synthesized, characterized by elemental analysis as well as by ESI(+)-MS (electrospray ionization mass spectrometry in positive mode), FT-IR, (1)H- and (13)C-NMR, and evaluated for their in vitro anticancer activity against human lung cancer cell line (A549) and ovarian cancer cell lines (SK-OV-3, SK-OV-3/DDP). Diam(m)ines used in the present study belong to the carriers of six clinically approved platinum drugs. Among the complexes synthesized, complex 2, cis-[Pt(II)(1R,2R-diaminocyclohexane)·(3-dichoroacetoxylcyclobutane-1,1-dicarboxylate)] is the most promising in terms of water solubility and potential of being totally devoid of cross-drug resistance with cisplatin. Therefore, complex 2 was selected for the dichloroacetate release test. The test shows dichloroacetate can be efficiently released from complex 2 under physiological conditions via the hydrolysis of an ester bond bridging the dichloroacetate moiety and platinum pharmacophores together. Our study supports the further evaluation of this complex as a drug candidate. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    Science.gov (United States)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-09-01

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH2 and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was 11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC50 values in ovarian cancer cells when compared with carboxylate surface dendrimers ( p cisplatin complexes resulted in a 7.0-fold increase ( p cisplatin chemotherapy of ovarian cancer.

  10. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  11. Concurrent cetuximab, cisplatin, and radiation for squamous cell carcinoma of the head and neck in vitro

    International Nuclear Information System (INIS)

    Zhang Na; Erjala, Kaisa; Kulmala, Jarmo; Qiu Xueshan; Sundvall, Maria; Elenius, Klaus; Grenman, Reidar

    2009-01-01

    Background and purpose: For locoregionally advanced HNSCC, chemoradiotherapy with cisplatin or another platinum compound is considered as one of the standard treatment regimes. Cisplatin has improved the loco-regional control, but also increased especially the acute side effects. Cetuximab blocks ligand binding and receptor activation by binding to the extracellular domain of the EGFR. The blockade of EGFR signaling in combination with cytotoxic drugs or with radiotherapy could be a novel effective management with a relatively favourable toxicity for HNSCC. In the present study we have examined in vitro a potentially novel effective management for HNSCC, cetuximab combined with cisplatin and radiotherapy. Materials and methods: Seven head and neck SCC cell lines were studied. Cetuximab concentrations of 0.22-8.20 nM and cisplatin concentrations of 0.038-0.220 μg/ml were used. In order to test the concurrent use of cetuximab, cisplatin and radiation, the cells were treated with the desired drug concentrations immediately after irradiation, plated into 96-well culture plates, and incubated for 4 weeks. The number of positive wells was counted. The PE was calculated and fraction survival data were fitted to the LQ model. AUC value was obtained with numerical integration. The types of interaction were analyzed. Results: Cetuximab and cisplatin constantly induced an additive or supra-additive effect when combined with irradiation in the seven HNSCC cell lines tested. Conclusions: We evaluated concurrent cetuximab, cisplatin, and radiation for HNSCC cell lines. Preliminary efficacy results are encouraging, and further development of this targeted combined modality paradigm is warranted.

  12. Protective effect of gallic acid against cisplatin-induced ototoxicity in rats.

    Science.gov (United States)

    Kilic, Korhan; Sakat, Muhammed Sedat; Akdemir, Fazile Nur Ekinci; Yildirim, Serkan; Saglam, Yavuz Selim; Askin, Seda

    2018-04-07

    Cisplatin is an antineoplastic agent widely used in the treatment of a variety of cancers. Ototoxicity is one of the main side-effects restricting the use of cisplatin. The purpose of this study was to investigate the protective efficacy of gallic acid, in biochemical, functional and histopathological terms, against ototoxicity induced by cisplatin. Twenty-eight female Sprague Dawley rats were included. Rats were randomly assigned into four groups of seven animals each. Cisplatin group received a single intraperitoneal dose of 15mg/kg cisplatin. Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days. Cisplatin+Gallic acid group received intraperitoneal gallic acid at 100mg/kg for five consecutive days and a single intraperitoneal dose of 15mg/kg cisplatin at 3rd day. A control group received 1mL intraperitoneal saline solution for five consecutive days. Prior to drug administration, all rats were exposed to the distortion product otoacoustic emissions test. The test was repeated on the 6th day of the study. All rats were then sacrificed; the cochleas were removed and set aside for biochemical and histopathological analyses. In Cisplatin group, Day 6 signal noise ratio values were significantly lower than those of the other groups. Also, malondialdehyde levels in cochlear tissues were significantly higher, superoxide dismutase and glutathione peroxidase activities were significantly lower compared to the control group. Histopathologic evaluation revealed erosion in the stria vascularis, degeneration and edema in the connective tissue layer in endothelial cells, impairment of outer hair cells and a decrease in the number of these calls. In the Cisplatin+Gallic acid group, this biochemical, histopathological and functional changes were reversed. In the light of our findings, we think that gallic acid may have played a protective role against cisplatin-induced ototoxicity in rats, as indicated by the distortion product otoacoustic

  13. Hyponatremia with cisplatin administration in head and neck cancer patients

    International Nuclear Information System (INIS)

    Yajima, Yoko; Tokumaru, Yutaka; Habu, Noboru; Fujii, Masato

    2010-01-01

    Hyponatremia is one of the most common electrolyte disorders encountered in clinical practice of medical anticancer treatment. Cisplatin (CDDP) is a well-known chemotherapeutic agent that associates with hyponatremia. We retrospectively studied clinical features of hyponatremia CDDP administration. The incidence of hyponatremia at the first administration was 64.1%. The significant risk factors of hyponatremia are body weight less than 60 kg, creatinin clearance less than 60 mL/min, and sodium depletion and intake loss due to treatment-induced anorexia, nausea, vomiting and diarrhea. The mechanism of hyponatremia induced by CDDP is thought to be mainly renal salt wasting, and sometimes the syndrome of inappropriate secretion of antidiuretic hormone (SIADH). (author)

  14. Antimicrobial and anticancer activities of extracts from Urginea ...

    African Journals Online (AJOL)

    Background: Increasing antibiotic resistance among human pathogenic microorganisms and the failure of conventional cancer therapies attracting great attention among scientists in the field of herbal medicine to develop natural antimicrobial and anticancer drugs. Thus, the antimicrobial and anticancer activities from fruits ...

  15. Anticancer Effect of AntiMalarial Artemisinin Compounds | Das ...

    African Journals Online (AJOL)

    A PubMed search of about 127 papers on anti‑cancer effects of antimalarials has revealed that this class of drug, including other antimalarials, have several biological characteristics that include anticancer properties. ... Keywords: Anticancer agents, Antimalarials, Antitumor activity, Artemisinins, Novel chemotherapy ...

  16. Individualization of anticancer therapy; molecular targets of novel drugs in oncology

    Directory of Open Access Journals (Sweden)

    Katarzyna Regulska

    2012-11-01

    Full Text Available Deregulation of cellular signal transduction, caused by gene mutations, has been recognized as a basic factor of cancer initiation, promotion and progression. Thus, the ability to control the activity of overstimulated signal molecules by the use of appropriate inhibitors became the idea of targeted cancer therapy, which has provided an effective tool to normalize the molecular disorders in malignant cells and to treat certain types of cancer. The molecularly targeted drugs are divided into two major pharmaceutical classes: monoclonal antibodies and small-molecule kinase inhibitors. This review presents a summary of their characteristics, analyzing their chemical structures, specified molecular targets, mechanisms of action and indications for use. Also the molecules subjected to preclinical trials or phase I, II and III clinical trials evaluating their efficiency and safety are presented. Moreover, the article discusses further perspectives for development of targeted therapies focusing on three major directions: systematic searching and discovery of new targets that are oncogenic drivers, improving the pharmacological properties of currently known drugs, and developing strategies to overcome drug resistance. Finally, the role of proper pharmacodiagnostics as a key to rational anticancer therapy has been emphasized since the verification of reliable predictive biomarkers is a basis of individualized medicine in oncology. 

  17. Plasmonic nanocarrier grid-enhanced Raman sensor for studies of anticancer drug delivery.

    Science.gov (United States)

    Kurzątkowska, Katarzyna; Santiago, Ty; Hepel, Maria

    2017-05-15

    Targeted drug delivery systems using nanoparticle nanocarriers offer remarkable promise for cancer therapy by discriminating against devastating cytotoxicity of chemotherapeutic drugs to healthy cells. To aid in the development of new drug nanocarriers, we propose a novel plasmonic nanocarrier grid-enhanced Raman sensor which can be applied for studies and testing of drug loading onto the nanocarriers, attachment of targeting ligands, dynamics of drug release, assessment of nanocarrier stability in biological environment, and general capabilities of the nanocarrier. The plasmonic nanogrid sensor offers strong Raman enhancement due to the overlapping plasmonic fields emanating from the nearest-neighbor gold nanoparticle nanocarriers and creating the enhancement "hot spots". The sensor has been tested for immobilization of an anticancer drug gemcitabine (2',2'-difluoro-2'-deoxycytidine, GEM) which is used in treatment of pancreatic tumors. The drawbacks of currently applied treatment include high systemic toxicity, rapid drug decay, and low efficacy (ca. 20%). Therefore, the development of a targeted GEM delivery system is highly desired. We have demonstrated that the proposed nanocarrier SERS sensor can be utilized to investigate attachment of targeting ligands to nanocarriers (attachment of folic acid ligand recognized by folate receptors of cancer cells is described). Further testing of the nanocarrier SERS sensor involved drug release induced by lowering pH and increasing GSH levels, both occurring in cancer cells. The proposed sensor can be utilized for a variety of drugs and targeting ligands, including those which are Raman inactive, since the linkers can act as the Raman markers, as illustrated with mercaptobenzoic acid and para-aminothiophenol. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Determination of trace level of palladium and platinum content in anticancer drug Imatinib base by ICP-MS

    International Nuclear Information System (INIS)

    Yadav, Ravi; Salunke-Gawali, Sunita

    2013-01-01

    Metal impurities in Pharmaceutical drug substance is of great concern not only because of the intrinsic toxicity of certain contaminants but also due to the opposite effect that the contaminants which may have on drug stability and shelf life. Therefore it is necessary to monitor the organic as well as inorganic impurities throughout the process of manufacturing process at every stage from raw material, intermediate and finished products. An Inductively Coupled Plasma - Mass Spectrometry (ICP-MS) method has been developed for Palladium and Platinum content in the anticancer drug, Imatinib mesylate. Rhodium (Rh) was used as internal standard for determination of Palladium and Platinum content on in Imatinib mesylate. (author)

  19. Genetic tests for predicting the toxicity and efficacy of anticancer chemotherapy.

    Science.gov (United States)

    Mladosievicova, B; Carter, A; Kristova, V

    2007-01-01

    The standard anticancer therapy based "on one size fits all" modality has been determined to be ineffective or to be the cause of adverse drug reactions in many oncologic patients. Most pharmacogenetic and pharmacogenomic studies so far have been focused on toxicity of anticancer drugs such as 6-mercaptopurine, thioguanine, irinotecan, methotrexate, 5-fluorouracil (5-FU). Variation in genes are known to influence not only toxicity, but also efficacy of chemotherapeutics such as platinum analogues, 5-FU and irinotecan. The majority of current pharmacogenetic studies focus on single enzyme deficiencies as predictors of drug effects; however effects of most anticancer drugs are determined by the interplay of several gene products. These effects are polygenic in nature. This review briefly describes genetic variations that may impact efficacy and toxicity of drugs used in cancer chemotherapy.

  20. Theoretical, clinical and pharmacokinetic aspects of cancer chemotherapy administered by continuous infusion

    International Nuclear Information System (INIS)

    Sikic, B.I.

    1986-01-01

    This chapter reviews some of the theoretical and empirical aspects of the administration of anti-cancer drugs by continuous intravenous infusion in conjunction with radiation therapy. The variables contributing to schedule dependence of anti-cancer drugs are discussed. A table shows the improved therapeutic index of Bleomycin by continuous infusion in mice. The use of Cytarabine, a pyrimidine anti-metabolite which kills cells during S-phase or DNA synthesis, is examined. Fluorouracil and Doxorubicin are examined and several other drugs including vincristine, vinblastine, etoposide, and cisplatin are discussed

  1. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

    Science.gov (United States)

    Khurshed, Mohammed; Aarnoudse, Niels; Hulsbos, Renske; Hira, Vashendriya V V; van Laarhoven, Hanneke W M; Wilmink, Johanna W; Molenaar, Remco J; van Noorden, Cornelis J F

    2018-06-07

    Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1 MUT ) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely-used anticancer agent cisplatin in IDH1 MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1 MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1 MUT cancer cells, as compared with IDH1 wild-type ( IDH1 WT ) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1 MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1 MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1 MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutated cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

  2. Chemical conversion of cisplatin and carboplatin with histidine in a model protein crystallized under sodium iodide conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M.; Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)

    2014-08-29

    Crystals of HEWL with cisplatin and HEWL with carboplatin grown in sodium iodide conditions both show a partial chemical transformation of cisplatin or carboplatin to a transiodoplatin (PtI{sub 2}X{sub 2}) form. The binding is only at the N{sup δ} atom of His15. A further Pt species (PtI{sub 3}X) is also seen, in both cases bound in a crevice between symmetry-related protein molecules. Cisplatin and carboplatin are platinum anticancer agents that are used to treat a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine in hen egg-white lysozyme (HEWL) showed a partial chemical conversion of carboplatin to cisplatin owing to the high sodium chloride concentration used in the crystallization conditions. Also, the co-crystallization of HEWL with carboplatin in sodium bromide conditions resulted in the partial conversion of carboplatin to the transbromoplatin form, with a portion of the cyclobutanedicarboxylate (CBDC) moiety still present. The results of the co-crystallization of HEWL with cisplatin or carboplatin in sodium iodide conditions are now reported in order to determine whether the cisplatin and carboplatin converted to the iodo form, and whether this took place in a similar way to the partial conversion of carboplatin to cisplatin in NaCl conditions or to transbromoplatin in NaBr conditions as seen previously. It is reported here that a partial chemical transformation has taken place to a transplatin form for both ligands. The NaI-grown crystals belonged to the monoclinic space group P2{sub 1} with two molecules in the asymmetric unit. The chemically transformed cisplatin and carboplatin bind to both His15 residues, i.e. in each asymmetric unit. The binding is only at the N{sup δ} atom of His15. A third platinum species is also seen in both conditions bound in a crevice between symmetry-related molecules. Here, the platinum is bound to three I atoms identified based on their anomalous difference electron densities

  3. Pharmacological inhibition of NADPH oxidase protects against cisplatin induced nephrotoxicity in mice by two step mechanism.

    Science.gov (United States)

    Wang, Yimin; Luo, Xiao; Pan, Hao; Huang, Wei; Wang, Xueping; Wen, Huali; Shen, Kezhen; Jin, Baiye

    2015-09-01

    Cisplatin induced nephrotoxicity is primarily caused by ROS (Reactive Oxygen Species) induced proximal tubular cell death. NADPH oxidase is major source of ROS production by cisplatin. Here, we reported that pharmacological inhibition of NADPH oxidase by acetovanillone (obtained from medicinal herb Picrorhiza kurroa) led to reduced cisplatin nephrotoxicity in mice. In this study we used various molecular biology and biochemistry methods a clinically relevant model of nephropathy, induced by an important chemotherapeutic drug cisplatin. Cisplatin-induced nephrotoxicity was evident by histological damage from loss of the tubular structure. The damage was also marked by the increase in blood urea nitrogen, creatinine, protein nitration as well as cell death markers such as caspase 3/7 activity and DNA fragmentation. Tubular cell death by cisplatin led to pro-inflammatory response by production of TNFα and IL1β followed by leukocyte/neutrophil infiltration which resulted in new wave of ROS involving more NADPH oxidases. Cisplatin-induced markers of kidney damage such as oxidative stress, cell death, inflammatory cytokine production and nephrotoxicity were attenuated by acetovanillone. In addition to that, acetovanillone enhanced cancer cell killing efficacy of cisplatin. Thus, pharmacological inhibition of NADPH oxidase can be protective for cisplatin-induced nephrotoxicity in mice. Copyright © 2015. Published by Elsevier Ltd.

  4. Cisplatin-Associated Ototoxicity: A Review for the Health Professional

    Directory of Open Access Journals (Sweden)

    Jessica Paken

    2016-01-01

    Full Text Available Cisplatin is an effective drug used in the treatment of many cancers, yet its ototoxic potential places cancer patients, exposed to this drug, at risk of hearing loss, thus negatively impacting further on a patient’s quality of life. It is paramount for health care practitioners managing such patients to be aware of cisplatin’s ototoxic properties and the clinical signs to identify patients at risk of developing hearing loss. English peer-reviewed articles from January 1975 to July 2015 were assessed from PubMed, Science Direct, and Ebscohost. Seventy-nine articles and two books were identified for this review, using MeSH terms and keywords such as “ototoxicity”, “cisplatin”, “hearing loss”, and “ototoxicity monitoring”. This review provides an up-to-date overview of cisplatin-associated ototoxicity, namely, its clinical features, incidence rates, and molecular and cellular mechanisms and risk factors, to health care practitioners managing the patient with cancer, and highlights the need for a team-based approach to complement an audiological monitoring programme to mitigate any further loss in the quality of life of affected patients, as there is currently no otoprotective agent recommended routinely for the prevention of cisplatin-associated ototoxicity. It also sets the platform for effective dialogue towards policy formulation and strengthening of health systems in developing countries.

  5. Randomized phase III study comparing paclitaxel/cisplatin/gemcitabine and gemcitabine/cisplatin in patients with locally advanced or metastatic urothelial cancer without prior systemic therapy

    DEFF Research Database (Denmark)

    Bellmunt, Joaquim; von der Maase, Hans; Mead, Graham M

    2012-01-01

    The combination of gemcitabine plus cisplatin (GC) is a standard regimen in patients with locally advanced or metastatic urothelial cancer. A phase I/II study suggested that a three-drug regimen that included paclitaxel had greater antitumor activity and might improve survival....

  6. A prodrug strategy based on chitosan for efficient intracellular anticancer drug delivery

    International Nuclear Information System (INIS)

    Chen, Cheng; Zhou, Jiang-Ling; Han, Xue; Song, Fei; Wang, Xiu-Li; Wang, Yu-Zhong

    2014-01-01

    Doxorubicin (DOX), one of the most widely used anticancer drugs, is restricted in clinical application due to its severe side effects and inefficient cellular uptake. To overcome the drawbacks, herein, an endosomal pH-activated prodrug was designed and fabricated by conjugating DOX with chitosan via an acid-cleavable hydrazone bond. The resulting DOX conjugates can self-assemble into nano-sized particles, which were very stable and presented no burst release of DOX at a neutral pH condition. Notably, the nanoparticles exhibited excellent cell uptake properties and a remarkable drug accumulation in tumor cells. Once internalized into the cells, moreover, DOX can be fast released from the nanoparticles, and the release mechanism changed from the anomalous transport at pH 7.4 to the combination pattern of diffusion- and erosion-controlled release at pH 6.0 or 5.0. The prodrugs showed obvious cytotoxicity for HeLa cells with fairly low IC 50 values, offering a new platform for targeted cancer therapy. (papers)

  7. C-Jun N-terminal kinase signalling pathway in response to cisplatin.

    Science.gov (United States)

    Yan, Dong; An, GuangYu; Kuo, Macus Tien

    2016-11-01

    Cisplatin (cis diamminedichloroplatinum II, cDDP) is one of the most effective cancer chemotherapeutic agents and is used in the treatment of many types of human malignancies. However, inherent tumour resistance is a major barrier to effective cisplatin therapy. So far, the mechanism of cDDP resistance has not been well defined. In general, cisplatin is considered to be a cytotoxic drug, for damaging DNA and inhibiting DNA synthesis, resulting in apoptosis via the mitochondrial death pathway or plasma membrane disruption. cDDP-induced DNA damage triggers signalling pathways that will eventually decide between cell life and death. As a member of the mitogen-activated protein kinases family, c-Jun N-terminal kinase (JNK) is a signalling pathway in response to extracellular stimuli, especially drug treatment, to modify the activity of numerous proteins locating in the mitochondria or the nucleus. Recent studies suggest that JNK signalling pathway plays a major role in deciding the fate of the cell and inducing resistance to cDDP-induced apoptosis in human tumours. c-Jun N-terminal kinase regulates several important cellular functions including cell proliferation, differentiation, survival and apoptosis while activating and inhibiting substrates for phosphorylation transcription factors (c-Jun, ATF2: Activating transcription factor 2, p53 and so on), which subsequently induce pro-apoptosis and pro-survival factors expression. Therefore, it is suggested that JNK signal pathway is a double-edged sword in cDDP treatment, simultaneously being a significant pro-apoptosis factor but also being associated with increased resistance to cisplatin-based chemotherapy. This review focuses on current knowledge concerning the role of JNK in cell response to cDDP, as well as their role in cisplatin resistance. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  8. Ceramic core with polymer corona hybrid nanocarrier for the treatment of osteosarcoma with co-delivery of protein and anti-cancer drug

    Science.gov (United States)

    Ram Prasad, S.; Sampath Kumar, T. S.; Jayakrishnan, A.

    2018-01-01

    For the treatment of metastatic bone cancer, local delivery of therapeutic agents is preferred compared to systemic administration. Delivery of an anti-cancer drug and a protein that helps in bone regeneration simultaneously is a challenging approach. In this study, a nanoparticulate carrier which delivers a protein and an anti-cancer drug is reported. Bovine serum albumin (BSA) as a model protein was loaded into hydroxyapatite (HA) nanoparticles (NPs) and methotrexate (MTX) conjugated to poly(vinyl alcohol) was coated onto BSA-loaded HA NPs. Coating efficiency was in the range of 10-17 wt%. In vitro drug release showed that there was a steady increase in the release of both BSA and MTX with 76% of BSA and 88% of MTX being released in 13 days. Cytotoxicity studies of the NPs performed using human osteosarcoma (OMG-63) cell line showed the NPs were highly biocompatible and exhibited anti-proliferative activity in a concentration-dependent manner.

  9. The impact of quality-of-life data in relative effectiveness assessments of new anti-cancer drugs in European countries

    NARCIS (Netherlands)

    Kleijnen, Sarah; Meneses Leonardo Alves, Teresa; Meijboom, Kim; Lipska, Iga; De Boer, Anthonius; Leufkens, Hubertus G; Goettsch, Wim G

    PURPOSE: The aim of this study is to investigate the role of health-related quality-of-life (QoL) data in relative effectiveness assessments (REAs) of new anti-cancer drugs across European jurisdictions, during health technology assessment procedures. METHODS: Comparative analysis of guidelines and

  10. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Di [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Wang, Chuangyuan [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Duan, Yingjie [General hospital of Fuxin mining (Group) Co., Ltd (China); Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China); Liu, Kexin, E-mail: kexinliu@dlmedu.edu.cn [Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian (China); Provincial Key Laboratory for Pharmacokinetics and Transport, Dalian, Liaoning (China)

    2017-07-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  11. Targeting Oct2 and P53: Formononetin prevents cisplatin-induced acute kidney injury

    International Nuclear Information System (INIS)

    Huang, Di; Wang, Chuangyuan; Duan, Yingjie; Meng, Qiang; Liu, Zhihao; Huo, Xiaokui; Sun, Huijun; Ma, Xiaodong; Liu, Kexin

    2017-01-01

    Nephrotoxicity is one of major side effects of cisplatin in chemotherapy. Therefore, there is an urgent medical need to develop drugs that may protect kidney from toxicity. In previous study, we found that it showed the protective effects of formononetin against apoptosis by upregulating Nrf2. In this study, we investigated the renoprotective effect of formononetin against cisplatin-induced AKI and tried to elucidate the possible mechanisms. The amelioration of renal function, histopathological changes, and apoptosis in tubular cells was observed after formononetin treatment. Formononetin decreased expression of organic cation transporter 2 (Oct2) and increased the expressions of multidrug resistance-associated proteins (Mrps), which might result in a decrease accumulation of cisplatin in tubular cells after AKI. 5-Bromo-2-deoxyuridine (BrdU) and Ki-67 staining assay indicated that formononetin could promote the renal tubular cells proliferation after cisplatin nephrotoxicity. Moreover, formononetin regulated cyclins and pro-apoptotic proteins to involve the regulation of cell cycle. Furthermore, formononetin decreased p53 expression via promoting the overexpression of murine double minute 2 (MDM2) and MDMX. Taken together, formononetin provided protective effects by promoting proliferation of surviving renal tubular cells and inhibiting apoptosis after cisplatin-induced AKI. - Highlights: • Formononetin ameliorated the cisplatin-induced AKI. • Oct2 were reduced by formononetin. • Protective effect of formononetin was closely related to the reduction of cisplatin.

  12. Metal complexes in cancer therapy – an update from drug design perspective

    Directory of Open Access Journals (Sweden)

    Ndagi U

    2017-03-01

    Full Text Available Umar Ndagi, Ndumiso Mhlongo, Mahmoud E Soliman Molecular Modelling and Drug Design Research Group, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa Abstract: In the past, metal-based compounds were widely used in the treatment of disease conditions, but the lack of clear distinction between the therapeutic and toxic doses was a major challenge. With the discovery of cisplatin by Barnett Rosenberg in 1960, a milestone in the history of metal-based compounds used in the treatment of cancers was witnessed. This forms the foundation for the modern era of the metal-based anticancer drugs. Platinum drugs, such as cisplatin, carboplatin and oxaliplatin, are the mainstay of the metal-based compounds in the treatment of cancer, but the delay in the therapeutic accomplishment of other metal-based compounds hampered the progress of research in this field. Recently, however, there has been an upsurge of activities relying on the structural information, aimed at improving and developing other forms of metal-based compounds and nonclassical platinum complexes whose mechanism of action is distinct from known drugs such as cisplatin. In line with this, many more metal-based compounds have been synthesized by redesigning the existing chemical structure through ligand substitution or building the entire new compound with enhanced safety and cytotoxic profile. However, because of increased emphasis on the clinical relevance of metal-based complexes, a few of these drugs are currently on clinical trial and many more are awaiting ethical approval to join the trial. In this review, we seek to give an overview of previous reviews on the cytotoxic effect of metal-based complexes while focusing more on newly designed metal-based complexes and their cytotoxic effect on the cancer cell lines, as well as on new approach to metal-based drug design and molecular target in cancer therapy. We are optimistic that the concept of selective

  13. Hydroxypropyl-β-cyclodextrin–graphene oxide conjugates: Carriers for anti-cancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jingting; Meng, Na; Fan, Yunting; Su, Yutian; Zhang, Ming [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Xiao, Yinghong, E-mail: yhxiao@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Zhou, Ninglin, E-mail: zhouninglin@njnu.edu.cn [Jiangsu Collaborative Innovation Center for Biological Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023 (China); National and Local Joint Engineering Research Center of Biomedical Functional Materials, Nanjing 210023 (China); Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Engineering Research Center for Biomedical Function Materials, Nanjing 210023 (China); Nanjing Zhou Ninglin Advanced Materials Technology Company Limited, Nanjing 211505 (China)

    2016-04-01

    A novel drug carrier based on hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed to incorporate anti-cancer drug paclitaxel (PTX). The formulated nanomedicines were characterized by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Results showed that PTX can be incorporated into GO-COO-HP-β-CD nanospheres successfully, with an average diameter of about 100 nm. The solubility and stability of PTX-loaded GO-COO-HP-β-CD nanospheres in aqueous media were greatly enhanced compared with the untreated PTX. The results of hemolysis test demonstrated that the drug-loaded nanospheres were qualified with good blood compatibility for intravenous use. In vitro anti-tumor activity was measured and results demonstrated that the incorporation of PTX into the newly developed GO-COO-HP-β-CD carrier could confer significantly improved cytotoxicity to the nanosystem against tumor cells than single application of PTX. GO-COO-HP-β-CD nanospheres may represent a promising formulation platform for a broad range of therapeutic agent, especially those with poor solubility. - Highlights: • Hydroxypropyl-β-cyclodextrin (HP-β-CD) modified carboxylated graphene oxide (GO-COOH) was designed as a drug carrier. • The prepared PTX-loaded nanospheres can be dispersed in aqueous medium stably. • The GO-COO-HP-β-CD nanospheres are safe for blood-contact applications. • This newly developed PTX-delivery system could confer significantly improved cytotoxicity against tumor cells.

  14. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs

    Science.gov (United States)

    Fatemian, Tahereh; Chowdhury, Ezharul Hoque

    2018-01-01

    Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA) nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel. PMID:29401738

  15. Cytotoxicity Enhancement in Breast Cancer Cells with Carbonate Apatite-Facilitated Intracellular Delivery of Anti-Cancer Drugs

    Directory of Open Access Journals (Sweden)

    Tahereh Fatemian

    2018-02-01

    Full Text Available Pharmacotherapy as the mainstay in the management of breast cancer has demonstrated various drawbacks, including non-targeted bio distribution and narrow therapeutic and safety windows. Thus, enhancements in pharmacodynamic and pharmacokinetic profiles of the classical anti-cancer drugs could lead to improved efficacy against cancer cells. Therefore, inorganic pH-dependent carbonate apatite (CA nanoparticles were utilized to efficiently deliver various drugs into cancer cells. Following characterization and various modifications in the structure of CA complexes with different drugs, lifted outcomes were achieved. Markedly, complexing paclitaxel with CA resulted in 20.71 ± 4.34% loading efficiency together with 24.14 ± 2.21% enhancement in cytotoxicity on MCF-7 cells plus superior in vivo anti-tumour efficacy compared to free paclitaxel.

  16. Antitumour and antiangiogenic activities of [Pt(O,O'-acac)(γ-acac)(DMS)] in a xenograft model of human renal cell carcinoma.

    Science.gov (United States)

    Muscella, A; Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-09-01

    It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O'-acac)(γ-acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non-genomic targets, on human renal carcinoma and compared them with those of the well-established anticancer drug, cisplatin. Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki-1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Treatment of the Caki-1 cells with cisplatin or [Pt(DMS)] resulted in a dose-dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. © 2016 The British Pharmacological Society.

  17. Antitumour and antiangiogenic activities of [Pt(O,O′‐acac)(γ‐acac)(DMS)] in a xenograft model of human renal cell carcinoma

    Science.gov (United States)

    Vetrugno, C; Biagioni, F; Calabriso, N; Calierno, M T; Fornai, F; De Pascali, S A; Marsigliante, S; Fanizzi, F P

    2016-01-01

    Background and Purpose It is thought that the mechanism of action of anticancer chemotherapeutic agents is mainly due to a direct inhibition of tumour cell proliferation. In tumour specimens, the endothelial cell proliferation rate increases, suggesting that the therapeutic effects of anticancer agents could also be attributed to inhibition of tumour angiogenesis. Hence, we investigated the potential effects of [Pt(O,O′‐acac)(γ‐acac)(DMS)] ([Pt(DMS)]), a new platinum drug for non‐genomic targets, on human renal carcinoma and compared them with those of the well‐established anticancer drug, cisplatin. Experimental Approach Tumour growth, tumour cell proliferation and microvessel density were investigated in a xenograft model of renal cell carcinoma, developed by injecting Caki‐1 cells into BALB/c nude mice. The antiangiogenic potential of compounds was also investigated using HUVECs. Key Results Treatment of the Caki‐1 cells with cisplatin or [Pt(DMS)] resulted in a dose‐dependent inhibition of cell survival, but the cytotoxicity of [Pt(DMS)] was approximately fivefold greater than that of cisplatin. [Pt(DMS)] was much more effective than cisplatin at inhibiting tumour growth, proliferation and angiogenesis in vivo, as well as migration, tube formation and MMP1, MMP2 and MMP9 secretion of endothelial cells in vitro. Whereas, cisplatin exerted a greater cytotoxic effect on HUVECs, but did not affect tube formation or the migration of endothelial cells. In addition, treatment of the xenograft mice with [Pt(DMS)] decreased VEGF, MMP1 and MMP2 expressions in tumours. Conclusions and Implications The antiangiogenic and antitumour activities of [Pt(DMS)] provide a solid starting point for its validation as a suitable candidate for further pharmacological testing. PMID:27351124

  18. Prediction of anticancer activity of aliphatic nitrosoureas using ...

    African Journals Online (AJOL)

    Design and development of new anticancer drugs with low toxicity is a very challenging task and computer aided methods are being increasingly used to solve this problem. In this study, we investigated the anticancer activity of aliphatic nitrosoureas using quantum chemical quantitative structure activity relation (QSAR) ...

  19. Oral administration of Nigella sativa oil ameliorates the effect of cisplatin on membrane enzymes, carbohydrate metabolism and oxidative damage in rat liver

    Directory of Open Access Journals (Sweden)

    Zeba Farooqui

    Full Text Available Cisplatin (CP is a potent anti-cancer drug widely used against solid tumors. However, it exhibits pronounced adverse effects including hepatotoxicity. Several strategies were attempted to prevent CP hepatotoxicity but were not found suitable for therapeutic application. Nigella sativa has been shown to prevent/reduce the progression of certain type of cardiovascular, kidney and liver diseases. Present study investigates whether N. sativa oil (NSO can prevent CP induced hepatotoxic effects. Rats were divided into four groups viz. control, CP, NSO and CPNSO. Animals in CPNSO and NSO group were administered NSO (2 ml/kg bwt, orally with or without single hepatotoxic dose of CP (6 mg/kg bwt, i.p. respectively. CP hepatotoxicity was recorded by increased serum ALT and AST activities. CP treatment caused oxidant/antioxidant imbalances as reflected by increased lipid peroxidation and decreased enzymatic and non-enzymatic antioxidants. Furthermore, the activities of various carbohydrate metabolism and membrane enzymes were altered by CP treatment. In contrast, NSO administration to CP treated rats, markedly ameliorated the CP elicited deleterious alterations in liver. Histopathological observations showed extensive liver damage in CP treated animals while greatly reduced tissue injury in CPNSO group. In conclusion, NSO appears to protect CP induced hepatotoxicity by improving energy metabolism and strengthening antioxidant defense mechanism. Keywords: Cisplatin, Nigella sativa oil, Carbohydrate metabolism, Antioxidant

  20. Meclofenamic Acid Reduces Reactive Oxygen Species Accumulation and Apoptosis, Inhibits Excessive Autophagy, and Protects Hair Cell-Like HEI-OC1 Cells From Cisplatin-Induced Damage

    Directory of Open Access Journals (Sweden)

    He Li

    2018-05-01

    Full Text Available Hearing loss is the most common sensory disorder in humans, and a significant number of cases is due to the ototoxicity of drugs such as cisplatin that cause hair cell (HC damage. Thus, there is great interest in finding agents and mechanisms that protect HCs from ototoxic drug damage. It has been proposed that epigenetic modifications are related to inner ear development and play a significant role in HC protection and HC regeneration; however, whether the m6A modification and the ethyl ester form of meclofenamic acid (MA2, which is a highly selective inhibitor of FTO (fatmass and obesity-associated enzyme, one of the primary human demethylases, can affect the process of HC apoptosis induced by ototoxic drugs remains largely unexplored. In this study, we took advantage of the HEI-OC1 cell line, which is a cochlear HC-like cell line, to investigate the role of epigenetic modifications in cisplatin-induced cell death. We found that cisplatin injury caused reactive oxygen species accumulation and increased apoptosis in HEI-OC1 cells, and the cisplatin injury was reduced by co-treatment with MA2 compared to the cisplatin-only group. Further investigation showed that MA2 attenuated cisplatin-induced oxidative stress and apoptosis in HEI-OC1 cells. We next found that the cisplatin-induced upregulation of autophagy was significantly inhibited after MA2 treatment, indicating that MA2 inhibited the cisplatin-induced excessive autophagy. Our findings show that MA2 has a protective effect and improves the viability of HEI-OC1 cells after cisplatin treatment, and they provide new insights into potential therapeutic targets for the amelioration of cisplatin-induced ototoxicity.

  1. Amphiphilic polymeric micelles as the nanocarrier for peroral delivery of poorly soluble anticancer drugs.

    Science.gov (United States)

    Tian, Ye; Mao, Shirui

    2012-06-01

    Many amphiphilic copolymers have recently been synthesized as novel promising micellar carriers for the delivery of poorly water-soluble anticancer drugs. Studies on the formulation and oral delivery of such micelles have demonstrated their efficacy in enhancing drug uptake and absorption, and exhibit prolonged circulation time in vitro and in vivo. In this review, literature on hydrophobic modifications of several hydrophilic polymers, including polyethylene glycol, chitosan, hyaluronic acid, pluronic and tocopheryl polyethylene glycol succinate, is summarized. Parameters influencing the properties of polymeric micelles for oral chemotherapy are discussed and strategies to overcome main barriers for polymeric micelles peroral absorption are proposed. During the design of polymeric micelles for peroral chemotherapy, selecting or synthesizing copolymers with good compatibility with the drug is an effective strategy to increase drug loading and encapsulation efficiency. Stability of the micelles can be improved in different ways. It is recommended to take permeability, mucoadhesion, sustained release, and P-glycoprotein inhibition into consideration during copolymer preparation or to consider adding some excipients in the formulation. Furthermore, both the copolymer structure and drug loading methods should be controlled in order to get micelles with appropriate particle size for better absorption.

  2. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  3. Pharmacologically directed strategies in academic anticancer drug discovery based on the European NCI compounds initiative.

    Science.gov (United States)

    Hendriks, Hans R; Govaerts, Anne-Sophie; Fichtner, Iduna; Burtles, Sally; Westwell, Andrew D; Peters, Godefridus J

    2017-07-11

    The European NCI compounds programme, a joint initiative of the EORTC Research Branch, Cancer Research Campaign and the US National Cancer Institute, was initiated in 1993. The objective was to help the NCI in reducing the backlog of in vivo testing of potential anticancer compounds, synthesised in Europe that emerged from the NCI in vitro 60-cell screen. Over a period of more than twenty years the EORTC-Cancer Research Campaign panel reviewed ∼2000 compounds of which 95 were selected for further evaluation. Selected compounds were stepwise developed with clear go/no go decision points using a pharmacologically directed programme. This approach eliminated quickly compounds with unsuitable pharmacological properties. A few compounds went into Phase I clinical evaluation. The lessons learned and many of the principles outlined in the paper can easily be applied to current and future drug discovery and development programmes. Changes in the review panel, restrictions regarding numbers and types of compounds tested in the NCI in vitro screen and the appearance of targeted agents led to the discontinuation of the European NCI programme in 2017 and its transformation into an academic platform of excellence for anticancer drug discovery and development within the EORTC-PAMM group. This group remains open for advice and collaboration with interested parties in the field of cancer pharmacology.

  4. Controlled release of non-steroidal antiinflammatory and anticancer drugs from hybrid materials

    International Nuclear Information System (INIS)

    Caravieri, Beatriz Bernardes; Molina, Eduardo Ferreira

    2016-01-01

    Full text: Chronic inflammation is a well known risk factor for the development of human cancer, and at least one third of all human cancers have been associated with inflammation. This can lead to cellular proliferation, a process which per se increases the risk of abnormal cell formation and ultimately the development of cancer. For treating clinical conditions such as inflammation and cancer, the most common methods (e.g., oral administration, injection) can cause unwanted side effects due to drug delivery to non-target sites and the introduction of high doses of the drug to reach the desired location. An alternative to these problems is the preparation of materials that can release drugs with different activities. Thinking about it, the aim of this study was to use a class of hybrid materials based on siloxane-polyether known as ureasil for controlled release of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP), and anticancer, such as 5-fluorouracil (5- FU). These drugs have been incorporated in the matrix in different proportions and thereafter, were characterized by different techniques such as XRD, FTIR, DSC and SAXS. In addition, it has been evaluated the release kinetics of these species with different chemical structures. The results have shown that the drug molecules were homogeneously distributed in the xerogel hybrids, which contributed to the drug’s release profile fine-tuning. The chemical environment of the polyether chains was amended by incorporating the drugs. The analysis from XRD, FTIR, SAXS and DSC confirm the good solubility of the substances within hybrid matrix. This hybrid material based on polymers and inorganic compounds may have potential applications in human health. (author)

  5. Controlled release of non-steroidal antiinflammatory and anticancer drugs from hybrid materials

    Energy Technology Data Exchange (ETDEWEB)

    Caravieri, Beatriz Bernardes; Molina, Eduardo Ferreira, E-mail: bia_ms_@hotmail.com [Universidade de Franca, SP (Brazil)

    2016-07-01

    Full text: Chronic inflammation is a well known risk factor for the development of human cancer, and at least one third of all human cancers have been associated with inflammation. This can lead to cellular proliferation, a process which per se increases the risk of abnormal cell formation and ultimately the development of cancer. For treating clinical conditions such as inflammation and cancer, the most common methods (e.g., oral administration, injection) can cause unwanted side effects due to drug delivery to non-target sites and the introduction of high doses of the drug to reach the desired location. An alternative to these problems is the preparation of materials that can release drugs with different activities. Thinking about it, the aim of this study was to use a class of hybrid materials based on siloxane-polyether known as ureasil for controlled release of non-steroidal anti-inflammatory drugs (NSAIDs) such as ibuprofen (IBU) and naproxen (NAP), and anticancer, such as 5-fluorouracil (5- FU). These drugs have been incorporated in the matrix in different proportions and thereafter, were characterized by different techniques such as XRD, FTIR, DSC and SAXS. In addition, it has been evaluated the release kinetics of these species with different chemical structures. The results have shown that the drug molecules were homogeneously distributed in the xerogel hybrids, which contributed to the drug’s release profile fine-tuning. The chemical environment of the polyether chains was amended by incorporating the drugs. The analysis from XRD, FTIR, SAXS and DSC confirm the good solubility of the substances within hybrid matrix. This hybrid material based on polymers and inorganic compounds may have potential applications in human health. (author)

  6. Effect of Honey and Royal Jelly against Cisplatin-Induced Nephrotoxicity in Patients with Cancer.

    Science.gov (United States)

    Osama, Hasnaa; Abdullah, Aya; Gamal, Bassma; Emad, Dina; Sayed, Doha; Hussein, Eman; Mahfouz, Eman; Tharwat, Joy; Sayed, Sally; Medhat, Shrouk; Bahaa, Treza; Abdelrahim, Mohamed E A

    2017-07-01

    Cisplatin constitutes one of the most potent antineoplastic drugs; however, nephrotoxicity limited its eligibility for optimal clinical use. This study was designed to evaluate the role of honey and royal jelly with antioxidant properties in the protection of cisplatin-induced acute kidney injury in patients with cancer. Patients with cancer assigned for cisplatin chemotherapy were randomly divided into bee honey and royal jelly groups pretreated before the initiation and during cisplatin chemotherapeutic regimen and control group on cisplatin only. Serum creatinine and urea levels were measured before and after the chemotherapeutic cycle and over 2 cycles. Patients on crude bee honey and royal jelly capsules showed lower serum levels of renal injury products (creatinine and urea) compared to those in the control group. The changes in kidney parameters were significantly (p honey group before and after cisplatin treatment. Royal jelly was found to be effective; however, the difference in creatinine and urea levels before and after chemotherapy was not statistically significant. The use of bee honey and royal jelly as natural compounds is effective in reducing cisplatin nephrotoxicity and may offer a promising chance for clinically meaningful prevention. This study has potentially important implications for the treatment of cisplatin kidney side effects and is considered to be the first to investigate this effect of honey and royal jelly in human subjects. However, due to its small sample size, we recommend further investigation using a larger sample size.

  7. Evaluation of nanoparticle delivered cisplatin in beagles

    Science.gov (United States)

    Feldhaeusser, Brittany; Platt, Simon R.; Marrache, Sean; Kolishetti, Nagesh; Pathak, Rakesh K.; Montgomery, David J.; Reno, Lisa R.; Howerth, Elizabeth; Dhar, Shanta

    2015-08-01

    Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg

  8. Boosting Natural Killer Cell-Based Immunotherapy with Anticancer Drugs: a Perspective.

    Science.gov (United States)

    Cifaldi, Loredana; Locatelli, Franco; Marasco, Emiliano; Moretta, Lorenzo; Pistoia, Vito

    2017-12-01

    Natural killer (NK) cells efficiently recognize and kill tumor cells through several mechanisms including the expression of ligands for NK cell-activating receptors on target cells. Different clinical trials indicate that NK cell-based immunotherapy represents a promising antitumor treatment. However, tumors develop immune-evasion strategies, including downregulation of ligands for NK cell-activating receptors, that can negatively affect antitumor activity of NK cells, which either reside endogenously, or are adoptively transferred. Thus, restoration of the expression of NK cell-activating ligands on tumor cells represents a strategic therapeutic goal. As discussed here, various anticancer drugs can fulfill this task via different mechanisms. We envision that the combination of selected chemotherapeutic agents with NK cell adoptive transfer may represent a novel strategy for cancer immunotherapy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Cisplatin toxicity reduced in human cultured renal tubular cells by oxygen pretreatment.

    Science.gov (United States)

    Kaeidi, Ayat; Rasoulian, Bahram; Hajializadeh, Zahra; Pourkhodadad, Soheila; Rezaei, Maryam

    2013-01-01

    Cisplatin is an effective and widely used chemotherapy agent and its side effects, particularly nephrotoxicity, limit its usage and related platinum-based drugs. Cisplatin nephrotoxicity is mainly due to extremely increase in reactive oxygen species (ROS) generation leading to kidney tubular cell death. Preconditioning with oxidative stress has been demonstrated to stimulate the cellular adaptation to subsequent severe oxidative stress. Short term oxygen pre-exposure as a mild oxidative stress may enhance some endogenous defense mechanisms, so its effect on Cisplatin induced cell death was investigated in present research. We studied the effects of hyperoxic environment pre-exposure on Cisplatin toxicity in an in-vitro model of cultured human embryonic tubular epithelial cells (AD293). Viability of AD293 cells, as evaluated by MTT-assay, was affected by Cisplatin in a time (1-4 h) dependent model. Biochemical markers of cell apoptosis were evaluated using immunoblotting. Pretreatment with nearly pure oxygen (≥90%) for 2 h significantly reduced the level of cell damage. Activated caspase 3 and Bax/Bcl-2 ratio were significantly increased in Cisplatin-treated cells. Oxygen pretreatment inhibited caspase 3 activation and decreased Bax/Bcl-2 ratio. Oxygen pre-treatment itself not showed any cytotoxicity in exposure times up to 3 h. Our data indicate that hyperoxic preconditioning reduces Cisplatin toxicity in cultured human tubular epithelial cells. The exact mechanism of protection is unclear, though enhancement of some endogenous defense mechanisms and subsequently scavenging of free oxygen radicals may play an important role.

  10. Concurrent chemoradiotherapy with gemcitabine and cisplatin for pancreatic cancer: from the laboratory to the clinic

    International Nuclear Information System (INIS)

    Symon, Zvi; Davis, Mary; McGinn, Cornelius J.; Zalupski, Mark M.; Lawrence, Theodore S.

    2002-01-01

    Purpose: We have reported that gemcitabine and concurrent radiation is a promising therapy for patients with pancreatic cancer. We investigated whether the addition of cisplatin, which may increase the systemic efficacy of gemcitabine, would be synergistic with gemcitabine and/or radiation in human pancreatic cancer cell lines. Methods and Materials: BxPc3 and Panc-1 human pancreatic cancer cells were treated with three different schedules before radiation: (A) a sequential incubation of gemcitabine for 2 h followed by cisplatin for 2 h, (B) gemcitabine for 2 h, followed by washout of drug, replenishment of media for a 24-h incubation, followed by cisplatin for 2 h, and (C) gemcitabine for 24 h with a concurrent incubation of cisplatin for the last 2 h. Cells were assessed for clonogenic survival using a standard assay. Synergism was evaluated by the median effect analysis. Results: The schedule shown to be maximally synergistic for both cell lines was the consecutive 2-h gemcitabine, 2-h cisplatin exposure, particularly at surviving fractions of <0.5. Cisplatin did not produce radiosensitization nor did it affect gemcitabine-mediated radiosensitization. Conclusion: Cisplatin produces synergistic cytotoxicity with gemcitabine without compromising gemcitabine-mediated radiosensitization. On the basis of these laboratory and previous clinical observations, we have initiated a Phase I trial of cisplatin plus gemcitabine and radiotherapy in patients with unresectable pancreatic cancer

  11. Albumin nanoparticles for glutathione-responsive release of cisplatin: New opportunities for medulloblastoma.

    Science.gov (United States)

    Catanzaro, Giuseppina; Curcio, Manuela; Cirillo, Giuseppe; Spizzirri, Umile Gianfranco; Besharat, Zein Mersini; Abballe, Luana; Vacca, Alessandra; Iemma, Francesca; Picci, Nevio; Ferretti, Elisabetta

    2017-01-30

    Redox-responsive nanoparticles were synthesized by desolvation of bovine serum albumin followed by disulfide-bond crosslinking with N, N'-Bis (acryloyl) cystamine. Dynamic light scattering and transmission electron microscopy studies revealed spherical nanoparticles (mean diameter: 83nm, polydispersity index: 0.3) that were glutathione-responsive. Confocal microscopy revealed rapid, efficient internalization of the nanoparticles by Daoy medulloblastoma cells and healthy controls (HaCaT keratinocytes). Cisplatin-loaded nanoparticles with drug:carrier ratios of 5%, 10%, and 20% were tested in both cell lines. The formulation with the highest drug:carrier ratio reduced Daoy and HaCaT cell viability with IC 50 values of 6.19 and 11.17μgmL -1 , respectively. The differential cytotoxicity reflects the cancer cells' higher glutathione content, which triggers more extensive disruption of the disulfide bond-mediated intra-particle cross-links, decreasing particle stability and increasing their cisplatin release. These findings support continuing efforts to improve the safety and efficacy of antineoplastic drug therapy for pediatric brain tumors using selective nanoparticle-based drug delivery systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Development, Characterization and Evaluation of Solid Lipid Nanoparticles as a potential Anticancer Drug Delivery System

    Science.gov (United States)

    Patel, Meghavi

    Solid lipid nanoparticles (SLNs) consist of spherical solid lipid particles in the nanometer size range, which are dispersed in water or in an aqueous surfactant solution. SLN technology represents a promising new approach to deliver hydrophilic as well as lipophilic drugs. The commercialization of SLN technology remains limited despite numerous efforts from researchers. The purpose of this research was to advance SLN preparation methodology by investigating the feasibility of preparing glyceryl monostearate (GMS) nanoparticles by using three preparation methods namely microemulsion technique, magnetic stirring technique and temperature modulated solidification technique of which the latter two were developed in our laboratory. An anticancer drug 5-fluorouracil was incorporated in the SLNs prepared via the temperature modulated solidification process. Optimization of the magnetic stirring process was performed to evaluate how the physicochemical properties of the SLN was influenced by systematically varying process parameters including concentration of the lipid, concentration of the surfactant, type of surfactant, time of stirring and temperature of storage. The results demonstrated 1:2 GMS to tween 80 ratio, 150 ml dispersion medium and 45 min stirring at 4000 RPM speed provided an optimum formulation via the temperature modulated solidification process. SLN dispersions were lyophilized to stabilize the solid lipid nanoparticles and the lyophilizates exhibited good redispersibility. The SLNs were characterized by particle size analysis via dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), differential scanning calorimetry (DSC), drug encapsulation efficiency and in vitro drug release studies. Particle size of SLN dispersion prepared via the three preparation techniques was approximately 66 nm and that of redispersed lyophilizates was below 500 nm. TEM images showed spherical to oval particles that were less dense in the core

  13. Enzyme-responsive doxorubicin release from dendrimer nanoparticles for anticancer drug delivery

    Directory of Open Access Journals (Sweden)

    Lee SJ

    2015-08-01

    Full Text Available Sang Joon Lee,1,* Young-Il Jeong,2,* Hyung-Kyu Park,3 Dae Hwan Kang,2,4 Jong-Suk Oh,3 Sam-Gyu Lee,5 Hyun Chul Lee31Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, 2Biomedical Research Institute, Pusan National University Hospital, Busan, 3Department of Microbiology, Chonnam National University Medical School, Gwangju, 4Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Gyeongnam, 5Department of Physical and Rehabilitation Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea*These authors contributed equally to this workBackground: Since cancer cells are normally over-expressed cathepsin B, we synthesized dendrimer-methoxy poly(ethylene glycol (MPEG-doxorubicin (DOX conjugates using a cathepsin B-cleavable peptide for anticancer drug targeting.Methods: Gly-Phe-Leu-Gly peptide was conjugated with the carboxylic acid end groups of a dendrimer, which was then conjugated with MPEG amine and doxorubicin by aid of carbodiimide chemistry (abbreviated as DendGDP. Dendrimer-MPEG-DOX conjugates without Gly-Phe-Leu-Gly peptide linkage was also synthesized for comparison (DendDP. Nanoparticles were then prepared using a dialysis procedure.Results: The synthesized DendGDP was confirmed with 1H nuclear magnetic resonance spectroscopy. The DendDP and DendGDP nanoparticles had a small particle size of less than 200 nm and had a spherical morphology. DendGDP had cathepsin B-sensitive drug release properties while DendDP did not show cathepsin B sensitivity. Further, DendGDP had improved anticancer activity when compared with doxorubicin or DendDP in an in vivo CT26 tumor xenograft model, ie, the volume of the CT26 tumor xenograft was significantly inhibited when compared with xenografts treated with doxorubicin or DendDP nanoparticles. The DendGDP nanoparticles were found to be relatively concentrated in the tumor tissue and

  14. DNA-cisplatin binding mechanism peculiarities studied with single molecule stretching experiments

    Science.gov (United States)

    Crisafuli, F. A. P.; Cesconetto, E. C.; Ramos, E. B.; Rocha, M. S.

    2012-02-01

    We propose a method to determine the DNA-cisplatin binding mechanism peculiarities by monitoring the mechanical properties of these complexes. To accomplish this task, we have performed single molecule stretching experiments by using optical tweezers, from which the persistence and contour lengths of the complexes can be promptly measured. The persistence length of the complexes as a function of the drug total concentration in the sample was used to deduce the binding data, from which we show that cisplatin binds cooperatively to the DNA molecule, a point which so far has not been stressed in binding equilibrium studies of this ligand.

  15. Autophagy inhibitor chloroquine increases sensitivity to cisplatin in QBC939 cholangiocarcinoma cells by mitochondrial ROS.

    Directory of Open Access Journals (Sweden)

    Xianzhi Qu

    Full Text Available The tumor cells have some metabolic characteristics of the original tissues, and the metabolism of the tumor cells is closely related to autophagy. However, the mechanism of autophagy and metabolism in chemotherapeutic drug resistance is still poorly understood. In this study, we investigated the role and mechanism of autophagy and glucose metabolism in chemotherapeutic drug resistance by using cholangiocarcinoma QBC939 cells with primary cisplatin resistance and hepatocellular carcinoma HepG2 cells. We found that QBC939 cells with cisplatin resistance had a higher capacity for glucose uptake, consumption, and lactic acid generation, and higher activity of the pentose phosphate pathway compared with HepG2 cells, and the activity of PPP was further increased after cisplatin treatment in QBC939 cells. It is suggested that there are some differences in the metabolism of glucose in hepatocellular carcinoma and cholangiocarcinoma cells, and the activation of PPP pathway may be related to the drug resistance. Through the detection of autophagy substrates p62 and LC3, found that QBC939 cells have a higher flow of autophagy, autophagy inhibitor chloroquine can significantly increase the sensitivity of cisplatin in cholangiocarcinoma cells compared with hepatocellular carcinoma HepG2 cells. The mechanism may be related to the inhibition of QBC939 cells with higher activity of the PPP, the key enzyme G6PDH, which reduces the antioxidant capacity of cells and increases intracellular ROS, especially mitochondrial ROS. Therefore, we hypothesized that autophagy and the oxidative stress resistance mediated by glucose metabolism may be one of the causes of cisplatin resistance in cholangiocarcinoma cells. It is suggested that according to the metabolism characteristics of tumor cells, inhibition of autophagy lysosome pathway with chloroquine may be a new route for therapeutic agents against cholangiocarcinoma.

  16. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    Science.gov (United States)

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Metallomics in drug development

    DEFF Research Database (Denmark)

    Nguyen, Trinh Thi Nhu Tam; Ostergaard, Jesper; Stürup, Stefan

    2013-01-01

    in plasma. A detection limit of 41 ng/mL of platinum and a precision of 2.1 % (for 10 µg/mL of cisplatin standard) were obtained. Simultaneous measurements of phosphorous and platinum allows the simultaneous monitoring of the liposomes, liposome-encapsulated cisplatin, free cisplatin and cisplatin bound...... to plasma constituents in plasma samples. It was demonstrated that this approach is suitable for studies of the stability of liposome formulations as leakage of active drug from the liposomes and subsequent binding to biomolecules in plasma can be monitored. This methodology has not been reported before...

  18. Room-temperature X-ray diffraction studies of cisplatin and carboplatin binding to His15 of HEWL after prolonged chemical exposure

    International Nuclear Information System (INIS)

    Tanley, Simon W. M.; Schreurs, Antoine M. M.; Kroon-Batenburg, Loes M. J.; Helliwell, John R.

    2012-01-01

    Binding of cisplatin to His15 in hen egg-white lysozyme in aqueous media is observed after prolonged chemical exposure for 15 months, in contrast to the lack of binding that was observed after 4 d in a previous study. Binding of carboplatin is seen in greater detail in the case of room-temperature data collection compared with cryo data collection. The anticancer complexes cisplatin and carboplatin are known to bind to both the N δ and the N ∊ atoms of His15 of hen egg-white lysozyme (HEWL) in the presence of dimethyl sulfoxide (DMSO). However, neither binds in aqueous media after 4 d of crystallization and crystal growth, suggesting that DMSO facilitates cisplatin/carboplatin binding to the N atoms of His15 by an unknown mechanism. Crystals of HEWL cocrystallized with cisplatin in both aqueous and DMSO media, of HEWL cocrystallized with carboplatin in DMSO medium and of HEWL cocrystallized with cisplatin and N-acetylglucosamine (NAG) in DMSO medium were stored for between seven and 15 months. X-ray diffraction studies of these crystals were carried out on a Bruker APEX II home-source diffractometer at room temperature. Room-temperature X-ray diffraction data collection removed the need for cryoprotectants to be used, ruling out any effect that the cryoprotectants might have had on binding to the protein. Both cisplatin and carboplatin still bind to both the N δ and N ∊ atoms of His15 in DMSO media as expected, but more detail for the cyclobutanedicarboxylate (CBDC) moiety of carboplatin was observed at the N ∊ binding site. However, two molecules of cisplatin were now observed to be bound to His15 in aqueous conditions. The platinum peak positions were identified using anomalous difference electron-density maps as a cross-check with F o − F c OMIT electron-density maps. The occupancies of each binding site were calculated using SHELXTL. These results show that over time cisplatin binds to both N atoms of His15 of HEWL in aqueous media, whereas this

  19. Cisplatin-induced Casepase-3 activation in different tumor cells

    Science.gov (United States)

    Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai

    2008-12-01

    Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.

  20. Multiple polysaccharide-drug complex-loaded liposomes: A unique strategy in drug loading and cancer targeting.

    Science.gov (United States)

    Ruttala, Hima Bindu; Ramasamy, Thiruganesh; Gupta, Biki; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2017-10-01

    In the present study, a unique strategy was developed to develop nanocarriers containing multiple therapeutics with controlled release characteristics. In this study, we demonstrated the synthesis of dextran sulfate-doxorubicin (DS-DOX) and alginate-cisplatin (AL-CIS) polymer-drug complexes to produce a transferrin ligand-conjugated liposome. The targeted nanoparticles (TL-DDAC) were nano-sized and spherical. The targeted liposome exhibited a specific receptor-mediated endocytic uptake in cancer cells. The enhanced cellular uptake of TL-DDAC resulted in a significantly better anticancer effect in resistant and sensitive breast cancer cells compared to that of the free drugs. Specifically, DOX and CIS at a molar ratio of 1:1 exhibited better therapeutic performance compared to that of other combinations. The combination of an anthracycline-based topoisomerase II inhibitor (DOX) and a platinum compound (CIS) resulted in significantly higher cell apoptosis (early and late) in both types of cancer cells. In conclusion, treatment with DS-DOX and AL-CIS based combination liposomes modified with transferrin (TL-DDAC) was an effective cancer treatment strategy. Further investigation in clinically relevant animal models is warranted to prove the therapeutic efficacy of this unique strategy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Macrophage inflammatory protein-3α influences growth of K562 leukemia cells in co-culture with anticancer drug-pretreated HS-5 stromal cells

    International Nuclear Information System (INIS)

    Lee, Y.C.; Chiou, T.-J.; Tzeng, W.-F.; Chu, S.T.

    2008-01-01

    Stromal cell monolayers have been an important means of studying the regulation of hematopoiesis, because they produce cytokines. Cytosine arabinoside, vincristine, daunorubicin, and doxorubicin are common drugs for hematological cancer therapy, and they may have some effects on bone marrow stroma during chemotherapy. The aim of this study was to elucidate interactions between the bone marrow stromal microenvironment and leukemic cells after drug treatment. We tested the hypothesis that human HS-5 stromal cells, pretreated with anticancer drugs, affected the growth of leukemic K562 cells by changing the cytokines in the culture microenvironment. Thereafter, proliferation of K562 cells increased nearly 2.5-fold compared the co-cultivation with drugs-pretreated HS-5 stromal cells and drugs-untreated HS-5 stromal cells. The results indicated that co-cultivation with HS-5 stromal cells pretreated with drugs caused significant K562 cell proliferation. Cytokines in the microenvironment were detected via the RayBio Human Cytokine Antibody Array Membrane. The levels of the cytokines CKβ, IL-12, IL-13, IGFBP-2, MCP-1, MCP-3, MCP-4, MDC, MIP-1β and MIP-1δ were decreased, with a particularly marked decrease in MIP-3α. In co-culture medium, there was a 20-fold decrease in MIP-3α in daunorubicin-pretreated HS-5 cells and at least a 3-fold decrease in Ara-C-pretreated cells. This indicated a significant effect of anticancer drugs on the stromal cell line. Using phosphorylated Erk and pRb proteins as cell proliferation markers, we found that phosphorylation of these markers in K562 cells was inhibited during co-cultivation with drug-pretreated stromal cells in MIP-3α-supplemented medium and restored by MIP-3α antibody supplement. In conclusion, anticancer drug pretreatment suppresses the negative control exerted by HS-5 cells on leukemic cell proliferation, via modulation of cytokines in the microenvironment, especially at the level of MIP-3α

  2. Identification of cisplatin-binding sites on the large cytoplasmic loop of the Na+/K+-ATPase.

    Science.gov (United States)

    Šeflová, Jaroslava; Čechová, Petra; Štenclová, Tereza; Šebela, Marek; Kubala, Martin

    2018-12-01

    Cisplatin is the most widely used chemotherapeutic drug for the treatment of various types of cancer; however, its administration brings also numerous side effects. It was demonstrated that cisplatin can inhibit the Na + /K + -ATPase (NKA), which can explain a large part of the adverse effects. In this study, we have identified five cysteinyl residues (C452, C456, C457, C577, and C656) as the cisplatin binding sites on the cytoplasmic loop connecting transmembrane helices 4 and 5 (C45), using site-directed mutagenesis and mass spectrometry experiments. The identified residues are known to be susceptible to glutathionylation indicating their involvement in a common regulatory mechanism.

  3. Anticancer Activity of Bacterial Proteins and Peptides.

    Science.gov (United States)

    Karpiński, Tomasz M; Adamczak, Artur

    2018-04-30

    Despite much progress in the diagnosis and treatment of cancer, tumour diseases constitute one of the main reasons of deaths worldwide. The side effects of chemotherapy and drug resistance of some cancer types belong to the significant current therapeutic problems. Hence, searching for new anticancer substances and medicines are very important. Among them, bacterial proteins and peptides are a promising group of bioactive compounds and potential anticancer drugs. Some of them, including anticancer antibiotics (actinomycin D, bleomycin, doxorubicin, mitomycin C) and diphtheria toxin, are already used in the cancer treatment, while other substances are in clinical trials (e.g., p28, arginine deiminase ADI) or tested in in vitro research. This review shows the current literature data regarding the anticancer activity of proteins and peptides originated from bacteria: antibiotics, bacteriocins, enzymes, nonribosomal peptides (NRPs), toxins and others such as azurin, p28, Entap and Pep27anal2. The special attention was paid to the still poorly understood active substances obtained from the marine sediment bacteria. In total, 37 chemical compounds or groups of compounds with antitumor properties have been described in the present article.

  4. Elevated p21-Activated Kinase 2 Activity Results in Anchorage-Independent Growth and Resistance to Anticancer Drug–Induced Cell Death

    Directory of Open Access Journals (Sweden)

    Jerry W. Marlin

    2009-03-01

    Full Text Available p21-Activated kinase 2 (PAK-2 seems to be a regulatory switch between cell survival and cell death signaling. We have shown previously that activation of full-length PAK-2 by Rac or Cdc42 stimulates cell survival, whereas caspase activation of PAK-2 to the proapoptotic PAK-2p34 fragment is involved in the cell death response. In this study, we present a role of elevated activity of full-length PAK-2 in anchorage-independent growth and resistance to anticancer drug–induced apoptosis of cancer cells. Hs578T human breast cancer cells that have low levels of PAK-2 activity were more sensitive to anticancer drug–induced apoptosis and showed higher levels of caspase activation of PAK-2 than MDA-MB435 and MCF-7 human breast cancer cells that have high levels of PAK-2 activity. To examine the role of elevated PAK-2 activity in breast cancer, we have introduced a conditionally active PAK-2 into Hs578T human breast cells. Conditional activation of PAK-2 causes loss of contact inhibition and anchorage-independent growth of Hs578T cells. Furthermore, conditional activation of PAK-2 suppresses activation of caspase 3, caspase activation of PAK-2, and apoptosis of Hs578T cells in response to the anticancer drug cisplatin. Our data suggest a novel mechanism by which full-length PAK-2 activity controls the apoptotic response by regulating levels of activated caspase 3 and thereby its own cleavage to the proapoptotic PAK-2p34 fragment. As a result, elevated PAK-2 activity interrupts the apoptotic response and thereby causes anchorage-independent survival and growth and resistance to anticancer drug–induced apoptosis.

  5. Transient Receptor Potential Vanilloid 1 is essential for cisplatin-induced heat hyperalgesia in mice

    Directory of Open Access Journals (Sweden)

    Carlton Susan M

    2010-03-01

    Full Text Available Abstract Background Cisplatin is primarily used for treatment of ovarian and testicular cancer. Oxaliplatin is the only effective treatment for metastatic colorectal cancer. Both are known to cause dose related, cumulative toxic effects on the peripheral nervous system and thirty to forty percent of cancer patients receiving these agents experience painful peripheral neuropathy. The mechanisms underlying painful platinum-induced neuropathy remain poorly understood. Previous studies have demonstrated important roles for TRPV1, TRPM8, and TRPA1 in inflammation and nerve injury induced pain. Results In this study, using real-time, reverse transcriptase, polymerase chain reaction (RT-PCR, we analyzed the expression of TRPV1, TRPM8, and TRPA1 induced by cisplatin or oxaliplatin in vitro and in vivo. For in vitro studies, cultured E15 rat dorsal root ganglion (DRG neurons were treated for up to 48 hours with cisplatin or oxaliplatin. For in vivo studies, trigeminal ganglia (TG were isolated from mice treated with platinum drugs for three weeks. We show that cisplatin and oxaliplatin-treated DRG neurons had significantly increased in TRPV1, TRPA1, and TRPM8 mRNA expression. TG neurons from cisplatin treated mice had significant increases in TRPV1 and TRPA1 mRNA expression while oxaliplatin strongly induced only TRPA1. Furthermore, compared to the cisplatin-treated wild-type mice, cisplatin-treated TRPV1-null mice developed mechanical allodynia but did not exhibit enhancement of noxious heat- evoked pain responses. Immunohistochemistry studies showed that cisplatin-treated mice had no change in the proportion of the TRPV1 immunopositive TG neurons. Conclusion These results indicate that TRPV1 and TRPA1 could contribute to the development of thermal hyperalgesia and mechanical allodynia following cisplatin-induced painful neuropathy but that TRPV1 has a crucial role in cisplatin-induced thermal hyperalgesia in vivo.

  6. Poly(amido)amine (PAMAM) dendrimer–cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    International Nuclear Information System (INIS)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath

    2013-01-01

    Dendrimer–cisplatin complexes were prepared using PAMAM dendrimers with terminal –NH 2 and –COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer–cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was ∼11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC 50 values in ovarian cancer cells when compared with carboxylate surface dendrimers (p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum–DNA adduct formation. Treatment with dendrimer–cisplatin complexes resulted in a 7.0-fold increase (p < 0.05) in expression of apoptotic genes (Bcl2, Bax, p53) and 13.2- to 27.1-fold increase (p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer

  7. Poly(amido)amine (PAMAM) dendrimer-cisplatin complexes for chemotherapy of cisplatin-resistant ovarian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Yellepeddi, Venkata Kashyap; Vangara, Kiran Kumar; Palakurthi, Srinath, E-mail: palakurthi@tamhsc.edu [Texas A and M Health Science Center, Irma Lerma Rangel College of Pharmacy (United States)

    2013-09-15

    Dendrimer-cisplatin complexes were prepared using PAMAM dendrimers with terminal -NH{sub 2} and -COOH groups as well as biotin-conjugated dendrimers. Preformulation parameters of dendrimer-cisplatin complexes were studied using differential scanning calorimetry (DSC) and inductively coupled plasma-mass spectrometry (ICP-MS). Cytotoxicity and mechanism of cytotoxicity of dendrimer-cisplatin complexes was investigated in OVCAR-3, SKOV, A2780 and cisplatin-resistant CP70 human ovarian cancer cell lines. The loading of cisplatin in dendrimers was {approx}11 % (w/w). PAMAM G4 dendrimers with amine surface groups (biotinylated and native) have shown 2.5- to 3.0-fold reduction in IC{sub 50} values in ovarian cancer cells when compared with carboxylate surface dendrimers (p < 0.05). A correlation was observed among cytotoxicity of the complexes, cellular uptake, and platinum-DNA adduct formation. Treatment with dendrimer-cisplatin complexes resulted in a 7.0-fold increase (p < 0.05) in expression of apoptotic genes (Bcl2, Bax, p53) and 13.2- to 27.1-fold increase (p < 0.05) in the activity of caspases 3, 8, and 9 in vitro. Results suggest that PAMAM dendrimers can be used as potential carrier for cisplatin chemotherapy of ovarian cancer.

  8. Pharmacokinetic-Pharmacodynamic Modelling & Simulation for Anticancer Drugs with Complex Absorption Characteristics

    NARCIS (Netherlands)

    Yu, Huixin

    2016-01-01

    Cancer is still one of the leading causes of death in the world. In recent years, targeted anticancer agents have shown to be a major breakthrough in the battle against cancer. These targeted anticancer agents, mostly administered orally, specifically target molecular defects of tumour cells

  9. Compound list: cisplatin [Open TG-GATEs

    Lifescience Database Archive (English)

    Full Text Available cisplatin CSP 00132 ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_v...itro/cisplatin.Rat.in_vitro.Liver.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Liv...er/Single/cisplatin.Rat.in_vivo.Liver.Single.zip ftp://ftp.biosciencedbc.jp/archive/open-tggates/LATEST/Rat/...in_vivo/Liver/Repeat/cisplatin.Rat.in_vivo.Liver.Repeat.zip ftp://ftp.bioscienced...bc.jp/archive/open-tggates/LATEST/Rat/in_vivo/Kidney/Single/cisplatin.Rat.in_vivo.Kidney.Single.zip ftp://ft

  10. High prevalence of cisplatin-induced ototoxicity in Cape Town ...

    African Journals Online (AJOL)

    Background. Cisplatin is administered as the first-line treatment of soft-tissue cancers. It has a reported cure rate of up to 85%, but is associated with a high incidence of ototoxicity, characterised by irreversible bilateral hearing loss and affecting 23 - 50% of adults who receive the drug. Objectives. To determine the incidence ...

  11. Synthesis, characterization and in vitro cytotoxicity analysis of a novel cellulose based drug carrier for the controlled delivery of 5-fluorouracil, an anticancer drug

    Science.gov (United States)

    Anirudhan, Thayyath S.; Nima, Jayachandran; Divya, Peethambaran L.

    2015-11-01

    The present investigation concerns the development and evaluation of a novel drug delivery system, aminated-glycidylmethacrylate grafted cellulose-grafted polymethacrylic acid-succinyl cyclodextrin (Cell-g-(GMA/en)-PMA-SCD) for the controlled release of 5-Fluorouracil, an anticancer drug. The prepared drug carrier was characterized by FT-IR, XRD and SEM techniques. Binding kinetics and isotherm studies of 5-FU onto Cell-g-(GMA/en)-PMA-SCD were found to follow pseudo-second-order and Langmuir model respectively. Maximum binding capacity of drug carrier was found to be 149.09 mg g-1 at 37 °C. Swelling studies, in vitro release kinetics, drug loading efficiency and encapsulation efficiency of Cell-g-(GMA/en)-PMA-SCD were studied. The release kinetics was analyzed using Ritger-Peppas equation at pH 7.4. Cytotoxicity analysis on MCF-7 (human breast carcinoma) cells indicated that the drug carrier shows sustained and controlled release of drug to the target site. Hence, it is evident from this investigation that Cell-g-(GMA/en)-PMA-SCD could be a promising carrier for 5-FU.

  12. How strong is the edge effect in the adsorption of anticancer drugs on a graphene cluster?

    Science.gov (United States)

    Rungnim, Chompoonut; Chanajaree, Rungroj; Rungrotmongkol, Thanyada; Hannongbua, Supot; Kungwan, Nawee; Wolschann, Peter; Karpfen, Alfred; Parasuk, Vudhichai

    2016-04-01

    The adsorption of nucleobase-analog anticancer drugs (fluorouracil, thioguanine, and mercaptopurine) on a graphene flake (C54H18) was investigated by shifting the site at which adsorption occurs from one end of the sheet to the other end. The counterpoise-corrected M06-2X/cc-pVDZ binding energies revealed that the binding stability decreases in the sequence thioguanine > mercaptopurine > fluorouracil. We found that adsorption near the middle of the sheet is more favorable than adsorption near the edge due to the edge effect. This edge effect is stronger for the adsorption of thioguanine or mercaptopurine than for fluorouracil adsorption. However, the edge effect reduces the binding energy of the drug to the flake by only a small amount, <5 kcal/mol, depending on the adsorption site and the alignment of the drug at this site.

  13. Morphological analysis of human umbilical vein endothelial cells co-cultured with ovarian cancer cells in 3D: An oncogenic angiogenesis assay.

    Directory of Open Access Journals (Sweden)

    Xiao Wan

    Full Text Available Antiangiogenic therapy for cancer is a strategy targeted at tumour vasculature, often in combination with conventional cytotoxicity treatments. Animal testing is still the most common method used for evaluating the efficacy of new drugs but tissue-engineered in vitro models are becoming more acceptable for replacing and reducing the use of animals in anti-cancer drug screening. In this study, a 3D co-culture model of human endothelial cells and ovarian cancer cells was developed. This model has the potential to mimic the interactions between endothelial cells and ovarian cancer cells. The feasibility of applying this model in drug testing was explored here. The complex morphology of the co-culture system, which features development of both endothelial tubule-like structures and tumour structures, was analysed quantitatively by an image analysis method. The co-culture morphology integrity was maintained for 10 days and the potential of the model for anti-cancer drug testing was evaluated using Paclitaxel and Cisplatin, two common anti-tumour drugs with different mechanisms of action. Both traditional cell viability assays and quantitative morphological analyses were applied in the drug testing. Cisplatin proved a good example showing the advantages of morphological analysis of the co-culture model when compared with mono-culture of endothelial cells, which did not reveal an inhibitory effect of Cisplatin on the tubule-like endothelial structures. Thus, the tubule areas of the co-culture reflected the anti-angiogenesis potential of Cisplatin. In summary, in vitro cancer models can be developed using a tissue engineering approach to more closely mimic the characteristics of tumours in vivo. Combined with the image analysis technique, this developed 3D co-culture angiogenesis model will provide more reproducible and reliably quantified results and reveal further information of the drug's effects on both tumour cell growth and tumour angiogenesis.

  14. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-08-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  15. Unblocking Blockbusters: Using Boolean Text-Mining to Optimise Clinical Trial Design and Timeline for Novel Anticancer Drugs

    Directory of Open Access Journals (Sweden)

    Richard J. Epstein

    2009-01-01

    Full Text Available Two problems now threaten the future of anticancer drug development: (i the information explosion has made research into new target-specific drugs more duplication-prone, and hence less cost-efficient; and (ii high-throughput genomic technologies have failed to deliver the anticipated early windfall of novel first-in-class drugs. Here it is argued that the resulting crisis of blockbuster drug development may be remedied in part by innovative exploitation of informatic power. Using scenarios relating to oncology, it is shown that rapid data-mining of the scientific literature can refine therapeutic hypotheses and thus reduce empirical reliance on preclinical model development and early-phase clinical trials. Moreover, as personalised medicine evolves, this approach may inform biomarker-guided phase III trial strategies for noncytotoxic (antimetastatic drugs that prolong patient survival without necessarily inducing tumor shrinkage. Though not replacing conventional gold standards, these findings suggest that this computational research approach could reduce costly ‘blue skies’ R&D investment and time to market for new biological drugs, thereby helping to reverse unsustainable drug price inflation.

  16. Cisplatin and radiation in the treatment of tumors of the central nervous system: Pharmacological considerations and results of early studies

    International Nuclear Information System (INIS)

    Stewart, D.J.; Molepo, J.M.; Eapen, L.; Montpetit, V.A.J.; Goel, R.; Wong, P.T.T.; Popovic, P.; Taylor, K.D.; Raaphorst, G.P.

    1994-01-01

    The purpose of this study was to review the human central nervous system pharmacology of cisplatin, factors that affect cisplatin uptake in tumors, and use alone and with radiation for the treatment of primary brain tumors. The authors review their own prior published and unpublished experience and data published by other groups on the above issues. Cisplatin is one of the most active chemotherapy drugs available for the treatment of solid tumors. It is synergistic with several other agents, including radiation. While it attains only low concentrations in the normal central nervous system, concentrations and plasma-tissue transfer constants for human intracerebral tumors are comparable to those in extracerebral tumors. Tumor type appears to be a more important determinant of platinum concentration than is tumor location, and gliomas do achieve lower concentrations than do other intracerebral or extracerebral tumors. Several other factors have also been identified that correlate with concentrations of cisplatin achieved in human tumors. While cisplatin alone and in combination with other drugs does have some degree of efficacy against primary brain tumors, combining it with cranial irradiation has generally not resulted in any substantial improvement in outcome to date, although some individual studies have been somewhat encouraging. New approaches are currently under investigation. Human pharmacology studies provide a rationale for use of cisplatin in the treatment of human brain tumors, and human and in vitro studies suggest some manipulations that might potentially further augment tumor platinum concentrations. While clinical studies suggest that cisplatin combinations may be of some value vs. human primary brain tumors and brain metastases, and while in vitro studies suggest that cisplatin potentiates radiation efficacy, no combination of cisplatin plus radiation yet tested has appeared to be superior to radiation alone. 123 refs., 5 tabs

  17. a survey on drug related problems in cervical cancer patients

    African Journals Online (AJOL)

    userpc

    Cisplatin/5FU/paclitaxel. 6. 9.23. 6. Seizure. Cisplatin. 2. 3.08. 7. Loss of hair. Cisplatin/5FU/Paclitaxel. 3. 4.62. 8. Nephrotoxicity. Cisplatin. 3. 4.62. 9. Hypotension. Paclitaxel. 3. 4.62. TOTAL. 65. 100. Table 3: Relationship between cervical cancer patients' factors and DRPs. Patients Factor. Drug Related Problems (DRPs).

  18. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    Energy Technology Data Exchange (ETDEWEB)

    Evstratova, Ekaterina S.; Petin, Vladislav G. [Medical Radiological Research Center, Obninsk (Russian Federation); Kim, Jin Kyu; KIm, Jin Hong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-12-15

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  19. Influence of chemical inhibitors on cell recovery after exposure to different LET radiation

    International Nuclear Information System (INIS)

    Evstratova, Ekaterina S.; Petin, Vladislav G.; Kim, Jin Kyu; KIm, Jin Hong

    2016-01-01

    Chemical radiosensitizers are often used to increase cell radiosensitivity. It is known that the ability of chemical drugs to increase cell radiosensitivity is related with inhibition of cell recovery from damage induced by ionizing radiation. However, there are little comparative investigations of cell sensitivity modification after exposure to radiation with high linear energy transfer (LET). Therefore, we studied the anticancer drugs cisplatin and endoxan and their impact on the ability of yeast cells to recover after cell exposure to radiations with different LET. The ability of cell recovery from radiation damage was less effective after exposure to high-LET radiation, when cells were irradiated without drug, with the increase in cisplatin concentration resulting in the disappearance of this difference. The increase of cisplatin concentration results in progressive increase in the fraction of irreversible damage independently of radiation quality.

  20. In the search for new anticancer drugs XII. Synthesis and biological evaluation of spin labeled nitrosoureas.

    Science.gov (United States)

    Sosnovsky, G; Li, S W

    1985-04-15

    The spin labeled nitrosourea 1-(2-chloroethyl)-3-(1-oxyl-2,2,6,6- tetramethyl-piperidinyl)-1-nitrosourea (SLCNU, 4) and its analogues 5-7 were synthesized either by a regio-selective method or by a conventional route via the nitrosation of the spin labeled intermediates (11a-e). Nitrosation of the ureas 11a-e with dinitrogen tetraoxide resulted in better yields than those obtained with sodium nitrite. The nitrosoureas 4-8 were tested for their anticancer activity against the lymphocytic leukemia P388 in mice. Thus, either at the equal molar dose or at the dose of equal toxicity level, the SLCNU (4) was found to be more active than the clinically used CCNU (1). Unlike CCNU (1) whose LD50 is 56 mg/kg, the SLCNU (4) possesses a low toxicity (LD50 123 mg/kg). Therefore, SLCNU (4) is a promising new entry into the nitrosourea class of anticancer drugs.