WorldWideScience

Sample records for antibody-based surface plasmon

  1. Monoclonal antibody-based Surface Plasmon Resonance sensors for pathogen detection

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2007-01-01

    A biosensor is an analytical device, which incorporates a biological sensing element integrated within a physicochemical transducer. The aim of a biosensor is to produce an electronic signal, which is proportional to the interaction of analytes with the sensing element. This means that the sensor...... agriculture is to have real-time, robust and low-cost sensors, for both soil and air, which can be operated by personnel with limited or no training in plant pathology. In the present thesis focus is put on the development of immunological sensors for detection of two model plant pathogens, Puccinia...... Puccinia species. The subtractive inhibition assay was further developed for label-free detection using a Surface Plasmon Resonance sensor. The polyclonal anti-mouse IgM was immobilised on a sensor surface and used for capture and quantification of mAb8. Optimal regeneration conditions were identified and...

  2. Surface Plasmon Nanophotonics

    CERN Document Server

    Brongersma, Mark L

    2007-01-01

    The development of advanced dielectric photonic structures has enabled tremendous control over the propagation and manipulation of light. Structures such as waveguides, splitters, mixers, and resonators now play a central role in the telecommunications industry. This book will discuss an exciting new class of photonic devices, known as surface plasmon nanophotonic structures. Surface plasmons are easily accessible excitations in metals and semiconductors and involve a collective motion of the conduction electrons. These excitations can be exploited to manipulate electromagnetic waves at optical frequencies ("light") in new ways that are unthinkable in conventional dielectric structures. The field of plasmon nanophotonics is rapidly developing and impacting a wide range of areas including: electronics, photonics, chemistry, biology, and medicine. The book will highlight several exciting new discoveries that have been made, while providing a clear discussion of the underlying physics, the nanofabrication issues...

  3. Gap Surface Plasmon Waveguide Analysis

    DEFF Research Database (Denmark)

    Nielsen, Michael Grøndahl; Bozhevolnyi, Sergey I.

    2014-01-01

    Plasmonic waveguides supporting gap surface plasmons (GSPs) localized in a dielectric spacer between metal films are investigated numerically and the waveguiding properties at telecommunication wavelengths are presented. Especially, we emphasize that the mode confinement can advantageously be...

  4. Surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    MALDEN: WILEY-BLACKWELL, 2009. Roč. 276, Suppl. 1 (2009), s. 63-63. ISSN 1742-464X. [Congress of the Federation-of-European-Biochemical-Societies /34.00/. 04.07.2009-09.07.2009, Praha] R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Protein detection Subject RIV: JB - Sensors, Measurment, Regulation

  5. Surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Piliarik, Marek; Kvasnička, Pavel

    Bellingham: SPIE - The International Society for Optical Engineering, 2007 - (Cutolo, A.; Culshaw, B.; Lopéz-Higuera, J.), s. 661909.1-661909.6. (Proceedings of SPIE. Vol. 6619). ISBN 978-0-8194-6761-4. ISSN 0277-786X. [EWOFS 2007 - European Workshop on Optical Fibre Sensors /3./. Napoli (IT), 04.07.2007-06.07.2007] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  6. Surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Praha: Agentura Action M, 2006. 3--. [Czech-Polish-Slovak Optical Conference Wave and Quantum Aspects of Contemporary Optics /15./. 11.09.2006-15.09.2006, Liberec] R&D Projects: GA ČR(CZ) GA202/05/0628; GA AV ČR(CZ) IAA400500507 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical sensors * biosensors * surface plasmon resonance Subject RIV: BO - Biophysics

  7. Surface plasmon enhanced LED

    OpenAIRE

    Vučković, Jelena; Lončar, Marko; Painter, Oskar; Scherer, Axel

    2000-01-01

    Summary form only given. We designed and fabricated an LED based on a thin semiconductor membrane (λ/2) with silver mirrors. A large spontaneous emission enhancement and a high modulation speed are obtainable due to the strong localization of the electromagnetic field in the microcavity. The coupling to surface plasmon modes which are subsequently scattered out by means of a grating is used to improve the extraction efficiency of the LED. The bottom mirror is thick and unpatterned. The top mi...

  8. Waveguiding with surface plasmon polaritons

    DEFF Research Database (Denmark)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    Surface plasmon polaritons (SPPs) are electromagnetic modes propagating along metal-dielectric interfaces. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating electromagnetic fields beyond...

  9. Electrically driven surface plasmon nanosources

    Science.gov (United States)

    Boer-Duchemin, Elizabeth; Wang, Tao; Le Moal, Eric; Dujardin, Gérald

    2015-03-01

    Electrical nanosources of surface plasmons will be an integral part of any future plasmonic circuits. Three different types of such nanosources (based on inelastic electron tunneling, high energy electron bombardment, and the electrical injection of a semiconductor device) are briefly described here. An example of a fundamental experiment using an electrical nanosource consisting of the tunnel junction formed between a scanning tunneling microscope (STM) and a metallic sample is given. In this experiment, the temporal coherence of the broadband STM-plasmon source is probed using a variant of Young's double slit experiment, and the coherence time of the broadband source is estimated to be about 5-10 fs.

  10. Ultrafast Surface Plasmonic Switch in Non-Plasmonic Metals

    OpenAIRE

    Bévillon, E.; Colombier, J. P.; Recoules, V.; Zhang, H.; Li, C.; Stoian, R

    2015-01-01

    We demonstrate that ultrafast carrier excitation can drastically affect electronic structures and induce brief surface plasmonic response in non-plasmonic metals, potentially creating a plasmonic switch. Using first-principles molecular dynamics and Kubo-Greenwood formalism for laser-excited tungsten we show that carrier heating mobilizes d electrons into collective inter and intraband transitions leading to a sign flip in the imaginary optical conductivity, activating plasmonic properties fo...

  11. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.;

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a...

  12. Electromagnetic theory of surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Berlin : Springer, 2006 - (Wolfbeis, O.; Homola, J.), s. 3-44 ISBN 3-540-33918-3. - (Springer Ser.on Chemical Sensors and Biosensors. 4) Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * optical waveguide Subject RIV: JB - Sensors , Measurment, Regulation

  13. Ultrafast Surface Plasmonic Switch in Non-Plasmonic Metals

    CERN Document Server

    Bévillon, E; Recoules, V; Zhang, H; Li, C; Stoian, R

    2015-01-01

    We demonstrate that ultrafast carrier excitation can drastically affect electronic structures and induce brief surface plasmonic response in non-plasmonic metals, potentially creating a plasmonic switch. Using first-principles molecular dynamics and Kubo-Greenwood formalism for laser-excited tungsten we show that carrier heating mobilizes d electrons into collective inter and intraband transitions leading to a sign flip in the imaginary optical conductivity, activating plasmonic properties for the initial non-plasmonic phase. The drive for the optical evolution can be visualized as an increasingly damped quasi-resonance at visible frequencies for pumping carriers across a chemical potential located in a d-band pseudo-gap with energy-dependent degree of occupation. The subsequent evolution of optical indices for the excited material is confirmed by time-resolved ultrafast ellipsometry. The large optical tunability extends the existence spectral domain of surface plasmons in ranges typically claimed in laser se...

  14. Surface Plasmon-Assisted Solar Energy Conversion.

    Science.gov (United States)

    Dodekatos, Georgios; Schünemann, Stefan; Tüysüz, Harun

    2016-01-01

    The utilization of localized surface plasmon resonance (LSPR) from plasmonic noble metals in combination with semiconductors promises great improvements for visible light-driven photocatalysis, in particular for energy conversion. This review summarizes the basic principles of plasmonic photocatalysis, giving a comprehensive overview about the proposed mechanisms for enhancing the performance of photocatalytically active semiconductors with plasmonic devices and their applications for surface plasmon-assisted solar energy conversion. The main focus is on gold and, to a lesser extent, silver nanoparticles in combination with titania as semiconductor and their usage as active plasmonic photocatalysts. Recent advances in water splitting, hydrogen generation with sacrificial organic compounds, and CO2 reduction to hydrocarbons for solar fuel production are highlighted. Finally, further improvements for plasmonic photocatalysts, regarding performance, stability, and economic feasibility, are discussed for surface plasmon-assisted solar energy conversion. PMID:26092694

  15. Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides

    DEFF Research Database (Denmark)

    Leißner, Till; Lemke, Christoph; Jauernik, Stephan;

    2013-01-01

    Plasmonic wave packet propagation is monitored in dielectric-loaded surface plasmon polariton waveguides realized from para-hexaphenylene nanofibers deposited onto a 60 nm thick gold film. Using interferometric time resolved two-photon photoemission electron microscopy we are able to determine...

  16. Surface plasmons in terahertz metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-tong [Los Alamos National Laboratory; Taylor, Antoinette J [Los Alamos National Laboratory

    2008-01-01

    We characterize terahertz metamaterials by applying apertureless near-field microscopy with a bandwidth that covers the entire spectral response of the structures. The observations agree with the interpretation of the fundamental mode of the metamaterial. But the high frequency resonance shows properties that deviate from the common interpretation. We show that the high frequency response is governed by surface Plasmon excitations, which have a comparable oscillator strength as the fundamental mode.

  17. Surface plasmon-coupled emission on plasmonic Bragg gratings

    Czech Academy of Sciences Publication Activity Database

    Toma, M.; Toma, K.; Adam, Pavel; Homola, Jiří; Knoll, W.; Dostálek, J.

    2012-01-01

    Roč. 20, - (2012), s. 14042-14053. ISSN 1094-4087 Institutional support: RVO:67985882 Keywords : Surface plasmons * Fluorescence * Diffraction gratings Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.546, year: 2012

  18. Liquid plasmonics: manipulating surface plasmon polaritons via phase transitions.

    Science.gov (United States)

    Vivekchand, S R C; Engel, Clifford J; Lubin, Steven M; Blaber, Martin G; Zhou, Wei; Suh, Jae Yong; Schatz, George C; Odom, Teri W

    2012-08-01

    This paper reports the manipulation of surface plasmon polaritons (SPPs) in a liquid plasmonic metal by changing its physical phase. Dynamic properties were controlled by solid-to-liquid phase transitions in 1D Ga gratings that were fabricated using a simple molding process. Solid and liquid phases were found to exhibit different plasmonic properties, where light coupled to SPPs more efficiently in the liquid phase. We exploited the supercooling characteristics of Ga to access plasmonic properties associated with the liquid phase over a wider temperature range (up to 30 °C below the melting point of bulk Ga). Ab initio density functional theory-molecular dynamic calculations showed that the broadening of the solid-state electronic band structure was responsible for the superior plasmonic properties of the liquid metal. PMID:22823536

  19. Huygens-Fresnel principle for surface plasmons

    OpenAIRE

    Teperik, Tatiana; Archambault, Alexandre; Marquier, François; Greffet, Jean-Jacques

    2009-01-01

    We present an explicit form of the surface plasmon propagator. Its form has the structure of a vectorial Huygens-Fresnel principle. The propagator appears to be a powerful tool to deal with diffraction, interference and focusing of surface plasmons. In contrast with the scalar approximation used so far, the vectorial propagator accounts for near-field and polarization effects. We illustrate the potential of the propagator by studying diffraction of surface plasmons by a slit and focusing of s...

  20. Plasmonic coupled-cavity system for enhancement of surface plasmon localization in plasmonic detectors

    Science.gov (United States)

    Ooi, K. J. A.; Bai, P.; Gu, M. X.; Ang, L. K.

    2012-07-01

    A plasmonic coupled-cavity system, which consists of a quarter-wave coupler cavity, a resonant Fabry-Pérot detector nanocavity, and an off-resonant reflector cavity, is used to enhance the localization of surface plasmons in a plasmonic detector. The coupler cavity is designed based on transmission line theory and wavelength scaling rules in the optical regime, while the reflector cavity is derived from off-resonant resonator structures to attenuate transmission of plasmonic waves. We observed strong coupling of the cavities in simulation results, with an 86% improvement of surface plasmon localization achieved. The plasmonic coupled-cavity system may find useful applications in areas of nanoscale photodetectors, sensors, and an assortment of plasmonic-circuit devices.

  1. Terahertz Optoelectronics with Surface Plasmon Polariton Diode

    OpenAIRE

    Vinnakota, Raj K.; Genov, Dentcho A

    2014-01-01

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceeding...

  2. Surface plasmon polaritons mode conversion via a coupled plasmonic system

    International Nuclear Information System (INIS)

    A coupled plasmonic system for effective mode conversion between single interface surface plasmon polaritons (SPP) in a metal-dielectric waveguide and gap SPP in a metal-dielectric-metal waveguide is proposed. With the modal analysis, it is shown that the interference of the two plasmonic modes in a metal-dielectric–metal-dielectric coupled structure plays the key role in the mode conversion. With typical parameters, the conversion efficiency is as high as 61% (equivalent to 87% of the output total energy flow) at 1μm wavelength, and 1 dB bandwidth is as broad as 300 nm. The proposed structure can be used to implement an SPP mode convertor, router and beam splitter, which enables the interconnection between two important waveguides in plasmonics. The method presented here is fully-analytical, and is tested against fully-vectorial numerical results. (paper)

  3. Surface plasmon polaritons mode conversion via a coupled plasmonic system

    Science.gov (United States)

    Yang, Fan; Tian, Hao

    2016-05-01

    A coupled plasmonic system for effective mode conversion between single interface surface plasmon polaritons (SPP) in a metal-dielectric waveguide and gap SPP in a metal-dielectric-metal waveguide is proposed. With the modal analysis, it is shown that the interference of the two plasmonic modes in a metal-dielectric-metal-dielectric coupled structure plays the key role in the mode conversion. With typical parameters, the conversion efficiency is as high as 61% (equivalent to 87% of the output total energy flow) at 1μm wavelength, and 1 dB bandwidth is as broad as 300 nm. The proposed structure can be used to implement an SPP mode convertor, router and beam splitter, which enables the interconnection between two important waveguides in plasmonics. The method presented here is fully-analytical, and is tested against fully-vectorial numerical results.

  4. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    CERN Document Server

    Wang, Weihua; Mortensen, N Asger; Christensen, Johan

    2015-01-01

    Localized surface plasmons are confined collective oscillations of electrons in metallic nanoparticles. When driven by light, the optical response is dictated by geometrical parameters and the dielectric environment and plasmons are therefore extremely important for sensing applications. Plasmons in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters, such as molecules, for future nanophotonic devices.

  5. Directional excitation of graphene surface plasmons

    OpenAIRE

    Liu, Fangli; Qian, Cheng; Y. D. Chong

    2014-01-01

    We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electric...

  6. Frequency comb transferred by surface plasmon resonance

    Science.gov (United States)

    Geng, Xiao Tao; Chun, Byung Jae; Seo, Ji Hoon; Seo, Kwanyong; Yoon, Hana; Kim, Dong-Eon; Kim, Young-Jin; Kim, Seungchul

    2016-01-01

    Frequency combs, millions of narrow-linewidth optical modes referenced to an atomic clock, have shown remarkable potential in time/frequency metrology, atomic/molecular spectroscopy and precision LIDARs. Applications have extended to coherent nonlinear Raman spectroscopy of molecules and quantum metrology for entangled atomic qubits. Frequency combs will create novel possibilities in nano-photonics and plasmonics; however, its interrelation with surface plasmons is unexplored despite the important role that plasmonics plays in nonlinear spectroscopy and quantum optics through the manipulation of light on a subwavelength scale. Here, we demonstrate that a frequency comb can be transformed to a plasmonic comb in plasmonic nanostructures and reverted to the original frequency comb without noticeable degradation of quantum metrology and subwavelength photonic circuits. PMID:26898307

  7. Characterization of plasmonic surfaces for sensing applications

    OpenAIRE

    Perino, Mauro

    2015-01-01

    My research activity during the Ph. D. period has been focused on the simulation and the experimental characterization of Surface Plasmon Polaritons (SPP). Surface Plasmon Polaritons are evanescent electromagnetic waves that propagate along a metal/dielectric interface. Since their excitation momentum is higher than that of the photons inside the dielectric medium, they cannot be excited just by lighting the interface, but they need some particular coupling configurations. Among all the po...

  8. Nanometrology using localized surface plasmon resonance spectroscopy

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Lindstedt, Daniel N.; Laurberg, Asger V.; Kristensen, Anders; Mortensen, N. Asger

    2013-01-01

    A novel optical characterization technique called localized surface plasmon resonance (LSPR) spectroscopy is presented. LSPR spectroscopy exploits light excited surface plasmons, which are collective coherent electron oscillations at a metal/dielectric interface. The LSPR can be observed in a tra...... dense device layers where the vacant space for test structures is limited.In this work, LSPR spectroscopy is used to evaluate a fabrication process including imprinting, etching and metallisation of gammadion test structures distributed on a 4” wafer....

  9. Surface plasmon polariton assisted optical pulling force

    CERN Document Server

    Petrov, M I; Bogdanov, A A; Shalin, A S; Dogariu, A

    2016-01-01

    We demonstrate both analytically and numerically the existence of optical pulling forces acting on particles located near plasmonic interfaces. Two main factors contribute to the appearance of this negative reaction force. The interference between the incident and reflected waves induces a rotating dipole with an asymmetric scattering pattern while the directional excitation of surface plasmon polaritons (SPP) enhances the linear momentum of scattered light. The strongly asymmetric SPP excitation is determined by spin-orbit coupling of the rotating dipole and surface plasmon polariton. As a result of the total momentum conservation, the force acting on the particle points in a direction opposite to the incident wave propagation. We derive analytical expressions for the force acting on a dipolar particles placed in the proximity of plasmonic surfaces. Analytical expressions for this pulling force are derived within the dipole approximation and are in excellent agreement with results of electromagnetic numerica...

  10. Surface plasmons in doped topological insulators

    Science.gov (United States)

    Schütky, Robert; Ertler, Christian; Trügler, Andreas; Hohenester, Ulrich

    2013-11-01

    We investigate surface plasmons at a planar interface between a normal dielectric and a topological insulator, where the Fermi energy lies inside the bulk gap of the topological insulator and gives rise to a two-dimensional charge distribution of free Dirac electrons. We develop the methodology for the calculation of plasmon dispersions using the framework of classical electrodynamics, with modified constituent equations due to Hall currents in the topological insulator, together with a Lindhard-type description for the two-dimensional charge distribution of free Dirac electrons. For a system representative for Bi2X3 binary compounds, we find in agreement with recent related work that the modified constituent equations have practically no impact on the surface plasmon dispersion but lead to a rotation of the magnetic polarization of surface plasmons out of the interface plane.

  11. Localized Surface Plasmons in Vibrating Graphene Nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Li, Bo-Hong; Stassen, Erik;

    2016-01-01

    in graphene disks have the additional benefit to be highly tunable via electrical stimulation. Mechanical vibrations create structural deformations in ways where the excitation of localized surface plasmons can be strongly modulated. We show that the spectral shift in such a scenario is determined...... by a complex interplay between the symmetry and shape of the modal vibrations and the plasmonic mode pattern. Tuning confined modes of light in graphene via acoustic excitations, paves new avenues in shaping the sensitivity of plasmonic detectors, and in the enhancement of the interaction with optical emitters...

  12. Directional excitation of graphene surface plasmons

    CERN Document Server

    Liu, Fangli; Chong, Y D

    2014-01-01

    We propose a scheme to directionally couple light into graphene plasmons by placing a graphene sheet on a magneto-optical substrate. When a magnetic field is applied parallel to the surface, the graphene plasmon dispersion relation becomes asymmetric in the forward and backward directions. It is possible to achieve unidirectional excitation of graphene plasmons with normally incident illumination by applying a grating to the substrate. The directionality can be actively controlled by electrically gating the graphene, or by varying the magnetic bias. This scheme may have applications in graphene-based opto-electronics and sensing.

  13. Detection of Salmonella by Surface Plasmon Resonance

    OpenAIRE

    Michael Keusgen; Peter Kämpfer; Olga Lezrich; Saikat Datta Mazumdar; Benjamin Barlen

    2007-01-01

    This study explores the possibility of simultaneous and specific detection ofSalmonella serovars by surface plasmon resonance (SPR). The Plasmonic® SPR device wasused to develop this rapid assay. The sandwich immunoassay involves the use of apolyclonal anti-Salmonella antibody to simultaneous capture multiple Salmonella serovarspresent in a sample. This is followed by specific detection of the captured serovars usingO-specific anti-Salmonella antibodies. Milk spiked with Salmonella Typhimu...

  14. Surface plasmon polaritons in topological Weyl semimetals

    Science.gov (United States)

    Hofmann, Johannes; Das Sarma, Sankar

    2016-06-01

    We consider theoretically surface plasmon polaritons in Weyl semimetals. These materials contain pairs of band touching points—Weyl nodes—with a chiral topological charge, which induces an optical anisotropy and anomalous transport through the chiral anomaly. We show that these effects, which are not present in ordinary metals, have a direct fundamental manifestation in the surface plasmon dispersion. The retarded Weyl surface plasmon dispersion depends on the separation of the Weyl nodes in energy and momentum space. For Weyl semimetals with broken time-reversal symmetry, the distance between the nodes acts as an effective applied magnetic field in momentum space, and the Weyl surface plasmon polariton dispersion is strikingly similar to magnetoplasmons in ordinary metals. In particular, this implies the existence of nonreciprocal surface modes. In addition, we obtain the nonretarded Weyl magnetoplasmon modes, which acquire an additional longitudinal magnetic field dependence. These predicted surface plasmon results are observable manifestations of the chiral anomaly in Weyl semimetals and might have technological applications.

  15. Harnessing surface plasmons for solar energy conversion

    Science.gov (United States)

    Anderson, L. M.

    1983-01-01

    NASA research on the feasibility of solar-energy conversion using surface plasmons is reviewed, with a focus on inelastic-tunnel-diode techniques for power extraction. The need for more efficient solar converters for planned space missions is indicated, and it is shown that a device with 50-percent efficiency could cost up to 40 times as much per sq cm as current Si cells and still be competitive. The parallel-processing approach using broadband carriers and tunable diodes is explained, and the physics of surface plasmons on metal surfaces is outlined. Technical problems being addressed include phase-matching sunlight to surface plasmons, minimizing ohmic losses and reradiation in energy transport, coupling into the tunnels by mode conversion, and gaining an understanding of the tunnel-diode energy-conversion process. Diagrams illustrating the design concepts are provided.

  16. Multipole surface plasmons in metallic nanohole arrays

    CERN Document Server

    Nishida, Munehiro; Kadoya, Yutaka

    2015-01-01

    The quasi-bound electromagnetic modes for the arrays of nanoholes perforated in thin gold film are analyzed both numerically by the rigorous coupled wave analysis (RCWA) method and semi-analytically by the coupled mode method. It is shown that when the size of the nanohole occupies large portion of the unit cell, the surface plasmon polaritons (SPPs) at both sides of the film are combined by the higher order waveguide modes of the holes to produce multipole surface plasmons: coupled surface plasmon modes with multipole texture on the electric field distributions. Further, it is revealed that the multipole texture either enhances or suppresses the couplings between SPPs depending on their diffraction orders and also causes band inversion and reconstruction in the coupled SPP band structure. Due to the multipole nature of the quasi-bound modes, multiple dark modes coexist to produce variety of Fano resonance structures on the transmission and reflection spectra.

  17. Direct mapping of the UV surface plasmons.

    Science.gov (United States)

    Gan, Qiaoqiang; Zhou, Liangcheng; Dierolf, Volkmar; Bartoli, Filbert J

    2009-05-01

    Researchers employed various well-developed concepts from conventional optics in designing novel plasmonic devices, which allow us to construct a framework to describe the propagation, diffraction, and interference of surface plasmon polaritons (SPPs) on a chip. Here we present what we believe to be the first direct mapping of the UV SPPs on an Al2O3/Al surface using a UV-compatible near-field scanning optical microscope system. UV SPP modes launched by one-dimensional slits or two-dimensional groove arrays and corresponding interference phenomenon were both observed, which may enrich the studies on subwavelength optics on a chip. PMID:19412260

  18. Distributed optical fiber surface plasmon resonance sensors

    Institute of Scientific and Technical Information of China (English)

    Zhenxin Cao; Lenan Wu; Dayong Li

    2006-01-01

    @@ The relationships of the resonant wavelength of optical fiber surface plasmon resonance (SPR) sensors to the modulation layer refractive index, thickness and the refractive index of the bulk medium are obtained by using theoretical calculation model of optical fiber SPR sensors under certain conditions, which indicates that resonant wavelength of the sensors is approximately linear with modulation layer thickness. Based on the linear relationship, multiple SPR sensors with different resonant wavelengths can be fabricated in a single optical fiber named as distributed optical fiber surface plasmon resonance sensors (DOFSPRSs).Experimental results are presented, showing that it is practical to fabricate more than one SPR sensors in a single optical fiber.

  19. Measurement of surface plasmon autocorrelation functions

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin;

    2013-01-01

    In this paper we demonstrate the realization of an autocorrelator for the characterization of ultrashort surface plasmon polariton (SPP) pulses. A wedge shaped structure is used to continuously increase the time delay between two interfering SPPs. The autocorrelation signal is monitored by non-li......-linear two-photon photoemission electron microscopy. The presented approach is applicable to other SPP sensitive detection schemes that provide only moderate spatial resolution and may therefore be of general interest in the field of ultrafast plasmonics.......In this paper we demonstrate the realization of an autocorrelator for the characterization of ultrashort surface plasmon polariton (SPP) pulses. A wedge shaped structure is used to continuously increase the time delay between two interfering SPPs. The autocorrelation signal is monitored by non...

  20. Surface plasmon propagation in an elliptical corral

    CERN Document Server

    Drezet, A; Ditlbacher, H; Hohenau, A; Steinberger, B; Aussenegg, F R; Leitner, A; Krenn, J R; 10.1063/1.1870107

    2010-01-01

    We report the experimental realization of an elliptical Bragg reflector acting as an interferometer for propagating surface plasmon sSPd waves. We investigate SP interferometry in this device using a leakage radiation microscope and we compare our observations with a theoretical model for SP propagation. Strong SP focalization as a function of laser polarization orientation is observed and justified.

  1. Silver superlens using antisymmetric surface plasmon modes.

    Science.gov (United States)

    Lee, Wook-Jae; Kim, Jae-Eun; Park, Hae Yong; Lee, Myung-Hyun

    2010-03-15

    Silver lenses having super-resolution are analyzed in terms of antisymmetric modes of surface plasmon which have the ability to amplify evanescent waves in UV region. Antisymmetric surface plasmon modes excited by subwavelength grating enhances the resolution and contrast of silver superlens. By using a 20 nm-thick silver superlens, the half-pitch resolution of approximately lambda(0)/8 can be achieved with good contrast at a free space wavelength of 435 nm. The resolution of silver superlens can also be improved using shorter illumination wavelength. We show that the thinner the lens, the better the imaging ability of the silver superlens due to the excitation of antisymmetric surface plasmon modes of higher propagation wave vectors. The thickness of lens is varied from 20 to 40 nm in a three layer system, SiO(2)-Ag-SiO(2). Obtained results illustrate that practical application for patterning periodic structures with good contrast and penetration depth can be achieved by using antisymmetric surface plasmon modes. PMID:20389562

  2. Surface plasmon interferometry and leakage radiation microscopy

    International Nuclear Information System (INIS)

    Full text: We demonstrate experimentally that leakage radiation microscopy (LRM) is an efficient way to analyze quantitatively surface plasmon polaritons (SPPs) propagation and interference fringes on a metal film. We describe briefly the principle of the LRM method and present different applications with 3 SPPs interferometers. In all cases a good agreement with theory is observed. (author)

  3. Refracting surface plasmon polaritons with nanoparticle arrays

    DEFF Research Database (Denmark)

    Radko, I.P.; Evlyukhin, A.B.; Boltasseva, Alexandra;

    2008-01-01

    Refraction of surface plasmon polaritons (SPPs) by various structures formed by a 100-nm-period square lattice of gold nanoparticles on top of a gold film is studied by leakage radiation microscopy. SPP refraction by a triangular-shaped nanoparticle array indicates that the SPP effective refractive...... design nanoparticle arrays for specific applications requiring in-plane SPP manipulation....

  4. Surface plasmon resonance biosensors for food safety

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Ottawa: [NATO], 2004, nestránkováno. [NATO Advanced Research Workshop "Fontiers in Planar Lightwave Circuit Technology: Design, Simulation and Fabrication".. Ottawa (CA), 21.09.2004-25.09.2004] Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * biosensors * surface plasmon resonance Subject RIV: JB - Sensors, Measurment, Regulation

  5. Surface plasmon resonance biosensors for food safety

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    New York: Springer, 2003 - (Wolfbeis, O.; Narayanaswamy, R.), s. 145-172. (Springer Series on Chemical Sensors and Biosensors. 1). ISBN 3-540-40886-X Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  6. On-a-chip surface plasmon tweezers

    Science.gov (United States)

    Wong, H. M. K.; Righini, M.; Gates, J. C.; Smith, P. G. R.; Pruneri, V.; Quidant, R.

    2011-08-01

    We report on an integrated optical trapping platform operated by simple fiber coupling. The system consists of a dielectric channel optical waveguide decorated with an array of gold micro-pads. Through a suitable engineering of the waveguide mode, we achieve light coupling to the surface plasmon resonance of the gold pads that act as individual plasmonic traps. We demonstrate parallel trapping of both micrometer size polystyrene beads and yeast cells at predetermined locations on the chip with only 20 mW total incident laser power.

  7. Ultra-long range surface plasmon modes

    Science.gov (United States)

    Durfee, Charles G.; Collins, Reuben T.; Furtak, Thomas E.; Hollingsworth, Russell E.

    2007-03-01

    It is well known that the propagation length of surface plasmon waves can be extended by exciting the appropriate mode of an isolated noble metal layer. The losses, however, increase substantially as the refractive index of the surrounding medium increases. Using a transfer matrix calculation, we have discovered that a thin, low-index dielectric adjacent to the metal layer can increase the intrinsic propagation length arbitrarily as the bound mode approaches cutoff. This geometry can be implemented in structures that combine metal-oxide-semiconductor (MOS) fabrication with plasmonic waveguides.

  8. Surface Plasmon Resonance Biosensors: Advances and Applications

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Vol. 7503. Bellingham, Washington: SPIE, 2009 - (Jones, J.; Culshaw, B.; Ecke, W.; López-Higuera, J.; Willsch, R.), 75030P-1-75030P-4 ISBN 9780819478146. ISSN 0277-786X. [20th International Conference on Optical Fibre Sensors. Edinburgh (GB), 05.10.2009-09.10.2009] R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : Plasmonics * Biosensor * Surface plasmon resonance Subject RIV: JB - Sensors, Measurment, Regulation

  9. Generation and near-field imaging of Airy surface plasmons

    CERN Document Server

    Minovich, Alexander; Janunts, Norik; Pertsch, Thomas; Neshev, Dragomir N; Kivshar, Yuri S

    2011-01-01

    We demonstrate experimentally the generation and near-field imaging of nondiffracting surface waves - plasmonic Airy beams, propagating on the surface of a gold metal film. The Airy plasmons are excited by an engineered nanoscale phase grating, and demonstrate significant beam bending over their propagation. We show that the observed Airy plasmons exhibit self-healing properties, suggesting novel applications in plasmonic circuitry and surface optical manipulation.

  10. Terahertz optoelectronics with surface plasmon polariton diode.

    Science.gov (United States)

    Vinnakota, Raj K; Genov, Dentcho A

    2014-01-01

    The field of plasmonics has experience a renaissance in recent years by providing a large variety of new physical effects and applications. Surface plasmon polaritons, i.e. the collective electron oscillations at the interface of a metal/semiconductor and a dielectric, may bridge the gap between electronic and photonic devices, provided a fast switching mechanism is identified. Here, we demonstrate a surface plasmon-polariton diode (SPPD) an optoelectronic switch that can operate at exceedingly large signal modulation rates. The SPPD uses heavily doped p-n junction where surface plasmon polaritons propagate at the interface between n and p-type GaAs and can be switched by an external voltage. The devices can operate at transmission modulation higher than 98% and depending on the doping and applied voltage can achieve switching rates of up to 1 THz. The proposed switch is compatible with the current semiconductor fabrication techniques and could lead to nanoscale semiconductor-based optoelectronics. PMID:24811083

  11. Imaging of surfaces by surface plasmon resonance and surface plasmon resonance-enhanced fluorescence

    Science.gov (United States)

    Thariani, Rahber A.

    An instrument system capable of concurrent imaging of surfaces by surface plasmon resonance microscopy (SPRM) and surface plasmon resonance-enhanced fluorescence (SPRF) is presented. A conventional laser pointer is adopted as a light source, and a reflective diffuser coupled to an acoustic transducer is used to remove speckle artifacts due to coherent beam interference. Both SPRM and SPRF systems are characterized, and a careful choice of widely available, inexpensive, off-the-shelf components allows the entire system to be constructed at low cost. A model streptavidin-biotin system is explored utilizing the different modalities of the instrument. Applications of the system include mobile, cost-effective point-of-care diagnostics system and research laboratories in resource-limited settings where cost efficacy is a prime concern.

  12. Influence of surface roughness on localized surface plasmons

    International Nuclear Information System (INIS)

    Full text: Plasmonics is one of the major parts of nano-optics. When light hits a gold nanoparticle which is smaller than the wavelength, it can resonantly excite coherent electron oscillations (localized surface plasmons) with a strong optical near field enhancement. This effect is promising for several applications in sensor technology. The spectral position and strength of localized surface plasmons depends on the shape and the roughness of the nano-particle. We investigate the influence of nanometric surface roughness of gold nano-particles on the optical near fields with the aim to optimize them. We modify the surface roughness by varying the production parameters and by following annealing. Our investigation methods include AFM, SEM and spectrometry. Our results indicate sharper resonance peaks in the absorbance spectrum for smoother surfaces. (author)

  13. Monoclonal antibody-based Surface Plasmon Resonance sensors for pathogen detection

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand

    2007-01-01

    striiformis f.sp. tritici, the cause of wheat yellow rust and Phytophthora infestans, the cause of late blight disease in potato. As no antibody existed against urediniospores from P. striiformis, mouse monoclonal antibodies (mAbs) were produced and characterised. IgM-isotype mAbs from nine hybridoma cell...

  14. Experimental characterization of magnetic surface plasmons on

    Science.gov (United States)

    Gollub, Jonah; Vier, David; Mock, Jack

    2005-03-01

    We examine the surface plasmons (SPs) that exist at the interface between air and a metamaterial constructed of split ring resonators(SRRs). The SRR metamaterial possesses a frequency band in the microwave regime (12.5 - 14 GHz) over which the permeability is negative. We apply an attenuated total reflection technique in the Otto configuration (OATR) to excite and probe the surface plasmons. A beam of microwaves is reflected from a higher dielectric (Polycarbonate) prism. Resulting evanescent microwave fields on the transmission side of the prism couple to SPs on the metamaterial and are indicated by a dip in the reflected power. The experimental data is compared with analytic solutions in which the metamaterial slab is approximated as an infinite half-space. The frequency-dependent permeability (and permittivity) of the SRRs is derived from finite-element simulations on an SRR structure with the same parameters as that measured.

  15. On Surface Plasmon Damping in Metallic Nanoparticles

    OpenAIRE

    Melikyan, Armen; Minassian, Hayk

    2003-01-01

    Two possible mechanisms of surface plasmon (SP) oscillations damping in metallic nanoparticles (MNPs), not connected with electron-phonon interaction are investigated theoretically: a) the radiation damping of SP, b) resonant coupling of SP oscillations with electronic transitions in matrix. It is shown that the radiation damping rate is proportional to the number of electrons in MNP and therefore this channel of energy outflow from MNP becomes essential for relatively large particles. The in...

  16. Electrical Excitation of Surface Plasmon Polaritons

    OpenAIRE

    Loon, R.V.A. van

    2009-01-01

    A surface plasmon polariton (SPP) is an electromagnetic wave propagating at the interface between a metal and a dielectric material. The two-dimensional confinement of SPPs and the tunability of their dispersion enable optical functionality that cannot be achieved with regular dielectrics. Several novel concepts for sensing and opto-electronic integration based on SPPs have been proposed. In nearly all applications, as well as experiments based on SPPs, far-field excitation of SPPs is used, l...

  17. Surface plasmon resonance biosensors: Today and Tomorrow

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Vol. 12. Brno: Masarykova univerzita, 2009, s. 21-21. [Optické vlastnosti pevných látek v základním výzkumu a aplikacích /12./. Brno (CZ), 22.06.2009-24.06.2009] R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Protein detection Subject RIV: JB - Sensors, Measurment, Regulation

  18. Surface Plasmon Resonance sensors. Fundamentals and Applications

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Madrid: ASCOS - Advanced Study Course on Optical Sensors, 2009, s. 45-50. [Advanced Study Course on Optical Sensors VII - Optical chemical sensors for environmental monitoring and food safety . Madrid (ES), 26.08.2009-03.09.2009] R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Detection of biomolecules Subject RIV: JB - Sensors, Measurment, Regulation

  19. Proximity Resonance and Localized Surface Plasmons

    Science.gov (United States)

    Liu, Bo; Heller, Eric

    2014-03-01

    The collective excitation of conduction electrons in subwavelength nanostructures is known as Localized Surface Plasmon(LSP)[1]. Such plasmon modes has been intensively studied using noble nanoparticles . More recently, the possibility of building terahertz metamaterials supporting such LSP modes has been explored in graphene microribbons and microdisks. Unlike Surface Plasmon Polaritons(SPPs) at metal-insulator interface, LSP can be directly excited by light illumination and holds promise for applications in ultrasensitive biosensing, nano-optical tweezers and improved photovoltaic devices. In this paper, we consider the interaction of two LSPs in the weak coupling regime and show how an effect similar to the proximity resonance in the quantum scattering theory) gives rise to an asymmetric(quadrupole) mode with increased damping rate. The existence of this asymmetric mode relies on a small phase retardation between the two LSPs. This phase retardation, though small, is key to both increased damping rate for the asymmetric mode and reduced damping rate for the symmetric mode. When this small phase retardation is removed by changing the polarization of the exciting light,we show that the asymmetric mode can not be excited and the symmetric mode shows increased damping.

  20. Phonon-Plasmon Interaction in Metal-Insulator-Metal Localized Surface Plasmon Systems

    CERN Document Server

    Mrabti, Abdelali; Nicolas, Rana; Maurer, Thomas; Adam, Pierre-Michel; Akjouj, Abdellatif; Pennec, Yan; Djafari-Rouhani, Bahram

    2016-01-01

    We investigate theoretically and numerically the coupling between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmon. First we present the plasmonic properties of the system though computer-simulated extinction spectra and field maps associated to the different optical modes. Next a simple analytical model is introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the last part of the paper, we present the full numerical simulations of the phononic properties of the system, and then compute the acousto-plasmon...

  1. Geodesic elements to control terahertz surface plasmons

    International Nuclear Information System (INIS)

    Geodesic elements (prisms, lenses, and beam splitters) are suggested to control (focus, deflect, and split) beams of terahertz (THz) surface plasmons (SPs). A geodesic deflector made in the form of conical trench crossing a SP beam can be effectively used not only for deflection of the beam but also for separation of surface and bulk electromagnetic waves. Formulae for calculating the angle of SP beam deflection with a geodesic prism as well as the angle of divergence of SP beams at the output of the geodesic splitter have been obtained. Schemes of THz SP absorption sensor and interferometer based on geodesic elements are discussed as well.

  2. Geodesic elements to control terahertz surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Bogomolov, G.D. [Institute for Physical Problems, RAS, 117973 Moscow (Russian Federation); Zhizhin, G.N. [Scientific and Technological Center for Unique Instrumentation, RAS, 117342 Moscow (Russian Federation); Nikitin, A.K. [Scientific and Technological Center for Unique Instrumentation, RAS, 117342 Moscow (Russian Federation)], E-mail: alnikitin@mail.ru; Knyazev, B.A. [Budker Institute of Nuclear Physics, SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2009-05-11

    Geodesic elements (prisms, lenses, and beam splitters) are suggested to control (focus, deflect, and split) beams of terahertz (THz) surface plasmons (SPs). A geodesic deflector made in the form of conical trench crossing a SP beam can be effectively used not only for deflection of the beam but also for separation of surface and bulk electromagnetic waves. Formulae for calculating the angle of SP beam deflection with a geodesic prism as well as the angle of divergence of SP beams at the output of the geodesic splitter have been obtained. Schemes of THz SP absorption sensor and interferometer based on geodesic elements are discussed as well.

  3. Kinetic theory of surface plasmon polariton in semiconductor nanowires

    OpenAIRE

    Y. Yin; Wu, M. W.

    2012-01-01

    Based on the semiclassical model Hamiltonian of the surface plasmon polariton and the nonequilibrium Green-function approach, we present a microscopic kinetic theory to study the influence of the electron scattering on the dynamics of the surface plasmon polariton in semiconductor nanowires. The damping of the surface plasmon polariton originates from the resonant absorption by the electrons (Landau damping), and the corresponding damping exhibits size-dependent oscillations and distinct temp...

  4. All-optical generation of surface plasmons in graphene

    Science.gov (United States)

    Constant, T. J.; Hornett, S. M.; Chang, D. E.; Hendry, E.

    2016-02-01

    Surface plasmons in graphene offer a compelling route to many useful photonic technologies. As a plasmonic material, graphene offers several intriguing properties, such as excellent electro-optic tunability, crystalline stability, large optical nonlinearities and extremely high electromagnetic field concentration. As such, recent demonstrations of surface plasmon excitation in graphene using near-field scattering of infrared light have received intense interest. Here we present an all-optical plasmon coupling scheme which takes advantage of the intrinsic nonlinear optical response of graphene. Free-space, visible light pulses are used to generate surface plasmons in a planar graphene sheet using difference frequency wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching 10-5.

  5. Interface matching method for solving surface plasmon modes with damping in plasmonic crystals.

    Science.gov (United States)

    Chern, Ruey-Lin

    2009-01-01

    The author proposes an interface matching method for solving surface plasmon modes with damping in plasmonic crystals. The damping constant is considered a crucial parameter instead of a small perturbation to the undamped system. The damping effect is manifest on the complex nature of the eigenfrequency as well as on the eigenfield. For periodic layered structures, the decay factors of the two fundamental modes asymptotically approach gamma/2 in the large-wave-number limit. For two-dimensional plasmonic crystals, the decay factors of surface plasmon modes are gathered around and bounded by gamma/2 . PMID:19257169

  6. Effects of screening on the propagation of graphene surface plasmons

    Science.gov (United States)

    Sasaki, Ken-Ichi; Kumada, Norio

    2015-03-01

    We investigated surface plasmons in epitaxial graphene, while paying particular attention to the effect of interface states and resistivity on the transport properties. The propagation velocity of the surface plasmons is much slower than the electron Fermi velocity when the screening effect provided by interface states is taken into account. Furthermore, slow-moving surface plasmons undergo a strong diffusion when the Fermi energy is near the Dirac point. This is shown by a numerical simulation of an RLC circuit model and its continuum approximation known as the telegrapher's equation. We could explain recent experimental results for the surface plasmons satisfactorily.

  7. Femtosecond tunneling response of surface plasmon polaritons

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, Taekjip; Jensen, Jacob Riis;

    1998-01-01

    We obtain femtosecond (200 fs) time resolution using a scanning tunneling microscope on surface plasmon polaritons (SPPs) generated by two 100 fs laser beams in total internal reflection geometry. The tunneling gap dependence of the signal clearly indicates the tunneling origin of the signal and...... suggests that nanometer spatial resolution can be obtained together with femtosecond temporal resolution. This fast response, in contrast to the picosecond decay time of SPPs revealed by differential reflectivity measurements, can be attributed to a coherent superposition of SPPs rectified at the tunneling...

  8. Digital resolution enhancement in surface plasmon microscopy

    CERN Document Server

    Smolyaninov, I I; Elliott, J; Wurtz, G; Zayats, A V

    2005-01-01

    The use of photonic crystal and negative refractive index materials is known to improve resolution of optical microscopy and lithography devices down to 80 nm level. Here we demonstrate that utilization of well-known digital image recovery techniques allows us to further improve resolution of optical microscope down to 30 nm level. Our microscope is based on a flat dielectric mirror deposited onto an array of nanoholes in thin gold film. This two-dimensional photonic crystal mirror may have either positive or negative effective refractive index as perceived by surface plasmon polartions in the visible frequency range. The optical images formed by the mirror are enhanced using simple digital filters.

  9. Multi-analyte surface plasmon resonance biosensing

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Vaisocherová, Hana; Dostálek, Jakub; Piliarik, Marek

    2005-01-01

    Roč. 37, č. 1 (2005), s. 26-36. ISSN 1046-2023 R&D Projects: GA ČR(CZ) GA303/03/0249; GA ČR(CZ) GA203/02/1326; GA ČR(CZ) GA102/03/0633 Grant ostatní: European Commision(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 3.591, year: 2005

  10. Surface plasmon resonance biosensors: present and future

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Brno: Mendelova univerzita, 2010 - (Trnková, L.), s. 13-14 ISBN 978-80-7375-396-2. [X. Workschop of Physical Chemists and Electrochemists & IV. Electrochemical Summer School. Brno (CZ), 23.06.2010-25.06.2010] R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058; GA ČR GA202/09/0193 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Protein detection Subject RIV: JB - Sensors, Measurment, Regulation

  11. Nanoantenna for Electrical Generation of Surface Plasmon Polaritons.

    Science.gov (United States)

    Bigourdan, Florian; Hugonin, Jean-Paul; Marquier, Francois; Sauvan, Christophe; Greffet, Jean-Jacques

    2016-03-11

    Light emission by inelastic tunneling has been known for many years. Recently, this technique has been used to generate surface plasmons using a scanning tunneling microscope tip. The emission process suffers from a very low efficiency lower than a photon in 10^{4} electrons. We introduce a resonant plasmonic nanoantenna that allows both enhancing the power conversion to surface plasmon polaritons by more than 2 orders of magnitude and narrowing the emission spectrum. The physics of the emission process is analyzed in terms of local density of states and the efficiency of the nanoantenna to radiate surface plasmon polaritons. PMID:27015503

  12. Nonlinear surface magneto-plasmonics in Kretschmann multilayers

    CERN Document Server

    Razdolski, Ilya; Rasing, Theo; Makarov, Denys; Schmidt, Oliver G; Temnov, Vasily V

    2015-01-01

    The nonlinear magneto-plasmonics aims to utilize plasmonic excitations to control the mechanisms and taylor the efficiencies of the non-linear light frequency conversion at the nanoscale. We investigate the mechanisms of magnetic second harmonic generation in hybrid gold-cobalt-silver multilayer structures, which support propagating surface plasmon polaritons at both fundamental and second harmonic frequencies. Using magneto-optical spectroscopy in Kretschmann geometry, we show that the huge magneto-optical modulation of the second harmonic intensity is dominated by the excitation of surface plasmon polaritons at the second harmonic frequency, as shown by tuning the optical wavelength over the spectral region of strong plasmonic dispersion. Our proof-of-principle experiment highlights bright prospects of nonlinear magneto-plasmonics and contributes to the general understanding of the nonlinear optics of magnetic surfaces and interfaces.

  13. Propagating and localized surface plasmons in Ag nanostructures

    Science.gov (United States)

    Dabrowski, Maciej; Dai, Yanan; Petek, Hrvoje

    Plasmonic excitations strongly depend on the size, geometry and dielectric environment of nanoscale metals. Here, we study an epitaxially grown Ag nanostructures on Si(001) and Si(111) surfaces by Low Energy Electron Microscopy/Photoemission Electron Microscopy (LEEM/PEEM). Using the combination of LEEM and broadly tunable femtosecond laser excited multiphoton PEEM we image how single crystalline metallic nanostructures form and how plasmon excitations depend on the particle structure and laser excitation parameters. For Ag pyramids with the dimensions of few hundreds nanometers, dipolar and quadrupolar localized surface plasmons are observed. For Ag wires with several micrometer lengths, both localized and propagating surface plasmons can be excited, depending on the polarization, particle orientation and energy of the excitation. Finally, in larger Ag islands, several micrometers in size, the interference patterns are created by plasmon waves excited at the island edges. In addition to plasmonic response, light diffraction patterns around the Ag nanostrutures are discussed.

  14. Focusing surface plasmon polaritons and detecting Stokes parameters utilizing nanoslits distributed plasmonic lenses.

    Science.gov (United States)

    Huang, Feng; Jiang, Xiangqian; Yuan, Haiming; Yang, Hanning; Li, Siren; Sun, Xiudong

    2016-04-01

    A method to detect the full Stokes parameters utilizing a double-ring and Archimedes-curves distributed nanoslits plasmonic lenses is proposed. We demonstrate theoretically and numerically that both of these two plasmonic lenses can focus surface plasmon polaritons to centrally symmetric fields with subwavelength-sized focal spots under linear, elliptical, and circular polarization incidence. The intensity at the focal spots is modulated by the polarization state of incident light. Utilizing this intensity polarization sensitivity, the full Stokes parameters of incident light are detected by recoding only four intensities at the focal spots of these two plasmonic lenses. PMID:27192318

  15. High-resolution biosensor based on localized surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Šípová, Hana; Kvasnička, Pavel; Galler, N.; Krenn, J. R.; Homola, Jiří

    2012-01-01

    Roč. 20, č. 1 (2012), s. 672-680. ISSN 1094-4087 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : optical biosenzor * surface plasmon resonance * localized surface plasmon Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.546, year: 2012

  16. Electrically driven surface plasmon light-emitting diodes

    DEFF Research Database (Denmark)

    Fadil, Ahmed; Ou, Yiyu; Iida, Daisuke; Kopylov, Oleksii; Ou, Haiyan

    We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement.......We investigate device performance of GaN light-emitting diodes (LEDs) with a 30-nm p-GaN layer. The metallization used to separate the p-contact from plasmonic metals, reveals limitations on current spreading which reduces surface plasmonic enhancement....

  17. Surface plasmons leaky radiation of the flat metal

    Science.gov (United States)

    Wang, Ping; Hu, Dejiao; Pang, Lin

    2015-08-01

    Surface plasmons have been widely investigated in many fields due to the unique property. ATR (attenuated totalreflection) is the common method to excite surface plasmons. We derive the Fano-type analysis to present the reflection spectrum of ATR configuration derived from the three-layer Fresnel reflection equation, which are asymmetric curves resulted from interference between direct reflectance and surface plasmons leaky radiation. In the fitting progress, we obtain the relationship between surface plasmons leaky radiation and metal thickness. When the metal thickness is greater than 25nm, surface plasmons leaky radiation rate is less than 0.07. We also compare the ATR and grating coupler excitement mechanism, which provide a reference to evaluate their application.

  18. Spoof plasmon radiation using sinusoidally modulated corrugated reactance surfaces.

    Science.gov (United States)

    Panaretos, Anastasios H; Werner, Douglas H

    2016-02-01

    In this paper we theoretically investigate the feasibility of creating leaky wave antennas capable of converting spoof plasmons to radiating modes. Spoof plasmons are surface waves excited along metallic corrugated surfaces and they are considered the microwave and THz equivalent of optical surface plasmon polaritons. Given that a corrugated surface is essentially a reactance surface, the proposed design methodology relies on engineering a corrugated surface so that it exhibits a sinusoidally modulated reactance profile. Through such non-uniform periodic reactance surfaces, guided surface waves can efficiently couple into free-space radiating modes. This requires the development of a realistic methodology that effectively maps the necessary sinusoidal reactance variation to a sinusoidal variation corresponding to the depth of the grooves. Both planar and cylindrical corrugated surfaces are examined and it is numerically demonstrated that the corresponding sinusoidally modulated leaky wave structures can very efficiently convert guided spoof plasmons to radiating modes. PMID:26906820

  19. Surface plasmon-enhanced optical trapping of quantum-dot-conjugated surface molecules on neurons cultured on a plasmonic chip

    Science.gov (United States)

    Miyauchi, Kohei; Tawa, Keiko; Kudoh, Suguru N.; Taguchi, Takahisa; Hosokawa, Chie

    2016-06-01

    Living neurons in a complex neuronal network communicate with each other through synaptic connections. The molecular dynamics of cell surface molecules localized at synaptic terminals is essential for functional connections via synaptic plasticity in the neuronal network. Here, we demonstrate surface-plasmon-resonance-based optical trapping using a plasmonic chip toward realizing effective manipulation of molecules on the surface of neurons. Surface-plasmon-enhanced optical trapping was evaluated by the fluorescence analysis of nanoparticles suspended in water and neural cell adhesion molecules (NCAMs) labeled with quantum dots (Q-dots) on rat hippocampal neurons. The motion of nanoparticles in water and the molecular dynamics of NCAMs on neuronal cells cultured on a plasmonic chip were constrained at the laser focus more effectively than those on a glass substrate because of the surface plasmon resonance effect.

  20. Surface plasmon resonance sensors for industrial applications

    Science.gov (United States)

    Masson, Jean-Francois; Banerji, Soame; Kim, Yoon-Chang; Booksh, Karl S.

    2004-12-01

    Surface Plasmon Resonance (SPR) spectroscopy offers many potential industrial applications. SPR sensors are suitable to monitor liquid and gas phase mixtures. The use of fiber-optic SPR sensors enables the possibility of remote sensing in real-time. The sensors can be made as small as 45mm long using 200um optical fibers. Measurement of organic vapors and salinity are demonstrated using the SPR sensors. The mixing dynamics are easily accessible using SPR sensors. The mixing of hexanes and isopropanol in static solution was monitored in real time. Another important application is the analysis of the excess dielectric properties for various binary mixtures using a SPR sensor. Binary mixtures with similar refractive index were measured. Strong deviations from ideality are seen using SPR to monitor the dielectric properties. SPR sensors can be integrated to production lines to monitor the extend of products or compounds inline.

  1. Luminescence engineering in plasmonic meta-surfaces

    CERN Document Server

    Roy, Tapashree; Zheludev, Nikolay I

    2016-01-01

    Photoluminescence is a phenomenon of significant interest due to its wide range of technological applications in plasmonics, nanolasers, spasers, lasing spasers, loss compensation and gain in metamaterials, and luminescent media. Nanostructured materials are known to have very different luminescence characteristics to bulk samples or planar films. Here we show that by engineering a nanostructured meta-surface, we can choose the position of photoluminescence absorption and emission lines of thin gold films. The nanostructuring also aids to strong enhancement of the emission from gold, by a factor of 76 in our experiments. This enhancement is determined by the relative position of the engineered absorption and emission lines to the exciting laser wavelength and the intrinsic properties of the constituent material. These luminescence-engineered materials combined with a resonant material, as in the lasing spaser, or with the power of reconfigurable metamaterials promise huge potential as tunable nanoscale light ...

  2. Long-Range Surface Plasmons on Highly Anisotropic Dielectric Substrates

    Science.gov (United States)

    Gumen, L.; Nagaraj; Neogi, A.; Krokhin, A.

    We calculate the propagation length of surface plasmons in metal-dielectric structures with anisotropic substrates. We show that the Joule losses can be minimized by appropriate orientation of the optical axis of a birefringent substrate and that the favorable orientation of the axis depends on ω. A simple Kronig-Penney model for anisotropic plasmonic crystal is also proposed.

  3. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  4. All-Optical Generation of Surface Plasmons in Graphene

    CERN Document Server

    Constant, Thomas J; Chang, Darrick E; Hendry, Euan

    2015-01-01

    Here we present an all-optical plasmon coupling scheme, utilising the intrinsic nonlinear optical response of graphene. We demonstrate coupling of free-space, visible light pulses to the surface plasmons in a planar, un-patterned graphene sheet by using nonlinear wave mixing to match both the wavevector and energy of the surface wave. By carefully controlling the phase-matching conditions, we show that one can excite surface plasmons with a defined wavevector and direction across a large frequency range, with an estimated photon efficiency in our experiments approaching $10^{-5}$.

  5. Trapping and guiding surface plasmons in curved graphene landscapes

    CERN Document Server

    Smirnova, Daria; Wang, Zheng; Kivshar, Yuri S; Khanikaev, Alexander B

    2015-01-01

    We demonstrate that graphene placed on top of structured substrates offers a novel approach for trapping and guiding surface plasmons. A monolayer graphene with a spatially varying curvature exhibits an effective trapping potential for graphene plasmons near curved areas such as bumps, humps and wells. We derive the governing equation for describing such localized channel plasmons guided by curved graphene and validate our theory by the first-principle numerical simulations. The proposed confinement mechanism enables plasmon guiding by the regions of maximal curvature, and it offers a versatile platform for manipulating light in planar landscapes. In addition, isolated deformations of graphene such as bumps are shown to support localized surface modes and resonances suggesting a new way to engineer plasmonic metasurfaces.

  6. Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites.

    Science.gov (United States)

    Jostmeier, Thorben; Mangold, Moritz; Zimmer, Johannes; Karl, Helmut; Krenner, Hubert J; Ruppert, Claudia; Betz, Markus

    2016-07-25

    We propose and implement a new concept for thermochromic plasmonic elements. It is based on vanadium dioxide (VO2) nanocrystals located in the near field of surface plasmon polaritons supported by an otherwise unstructured gold thin film. When the VO2 undergoes the metal-insulator phase transition, the coupling conditions for conversion of light into propagating surface plasmon polaritons change markedly. In particular, we realize thermochromic plasmonic grating couplers with substantial switching contrast as well as tunable plasmonic couplers in a Kretschmann configuration. The use of VO2 nanocrystals permits highly repetitive switching and room temperature operation. Simulations based on the actual dielectric function of our VO2 nanocrystals agree well with the experiment. PMID:27464181

  7. Radiation guiding with surface plasmon polaritons

    Science.gov (United States)

    Han, Zhanghua; Bozhevolnyi, Sergey I.

    2013-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic (EM) modes propagating along metal-dielectric interfaces, in which surface collective excitations of free electrons in the metal are coupled to evanescent EM fields in the dielectric. Various SPP modes can be supported by flat and curved, single and multiple surfaces, exhibiting remarkable properties, including the possibility of concentrating EM fields beyond the diffraction limit, i.e. on the nanoscale, while enhancing local field strengths by several orders of magnitude. This unique feature of SPP modes, along with the ever-increasing demands for miniaturization of photonic components and circuits, generates an exponentially growing interest in SPP-mediated radiation guiding and SPP-based waveguide components. Here we review the current status of this rapidly developing field, starting with a brief presentation of the main planar SPP modes along with the techniques employed for their excitation and manipulation by sets of nanoparticles. We then describe in detail various SPP-based waveguide configurations that ensure two-dimensional mode confinement in the plane perpendicular to the propagation direction and compare their characteristics. Excitation of SPP waveguide modes and recent progress in the development of SPP-based waveguide components are also discussed, concluding with our outlook on challenges and possible future developments in this field.

  8. Nanostructured surfaces for surface plasmon resonance spectroscopy and imaging

    Science.gov (United States)

    Petefish, Joseph W.

    Surface plasmon resonance (SPR) has achieved widespread recognition as a sensitive, label-free, and versatile optical method for monitoring changes in refractive index at a metal-dielectric interface. Refractive index deviations of 10-6 RIU are resolvable using SPR, and the method can be used in real-time or ex-situ. Instruments based on carboxymethyl dextran coated SPR chips have achieved commercial success in biological detection, while SPR sensors can also be found in other fields as varied as food safety and gas sensing. Chapter 1 provides a physical background of SPR sensing. A brief history of the technology is presented, and publication data are included that demonstrate the large and growing interest in surface plasmons. Numerous applications of SPR sensors are listed to illustrate the broad appeal of the method. Surface plasmons (SPs) and surface plasmon polaritions (SPPs) are formally defined, and important parameters governing their spatial behavior are derived from Maxwell's equations and appropriate boundary conditions. Physical requirements for exciting SPs with incident light are discussed, and SPR imaging is used to illustrate the operating principle of SPR-based detection. Angle-tunable surface enhanced infrared absorption (SEIRA) of polymer vibrational modes via grating-coupled SPR is demonstrated in Chapter 2. Over 10-fold enhancement of C-H stretching modes was found relative to the absorbance of the same film in the absence of plasmon excitation. Modeling results are used to support and explain experimental observations. Improvements to the grating coupler SEIRA platform in Chapter 2 are explored in Chapters 3 and 4. Chapter 3 displays data for two sets of multipitch gratings: one set with broadly distributed resonances with the potential for multiband IR enhancement and the other with finely spaced, overlapping resonances to form a broadband IR enhancement device. Diffraction gratings having multiple periods were fabricated using a Lloyd

  9. Plasmonic nanostructures for surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Jiang, Ruiqian

    In the last three decades, a large number of different plasmonic nanostructures have attracted much attention due to their unique optical properties. Those plasmonic nanostructures include nanoparticles, nanoholes and metal nanovoids. They have been widely utilized in optical devices and sensors. When the plasmonic nanostructures interact with the electromagnetic wave and their surface plasmon frequency match with the light frequency, the electrons in plasmonic nanostructures will resonate with the same oscillation as incident light. In this case, the plasmonic nanostructures can absorb light and enhance the light scattering. Therefore, the plasmonic nanostructures can be used as substrate for surface-enhanced Raman spectroscopy to enhance the Raman signal. Using plasmonic nanostructures can significantly enhance Raman scattering of molecules with very low concentrations. In this thesis, two different plasmonic nanostructures Ag dendrites and Au/Ag core-shell nanoparticles are investigated. Simple methods were used to produce these two plasmonic nanostructures. Then, their applications in surface enhanced Raman scattering have been explored. Ag dendrites were produced by galvanic replacement reaction, which was conducted using Ag nitrate aqueous solution and copper metal. Metal copper layer was deposited at the bottom side of anodic aluminum oxide (AAO) membrane. Silver wires formed inside AAO channels connected Ag nitrate on the top of AAO membrane and copper layer at the bottom side of AAO. Silver dendrites were formed on the top side of AAO. The second plasmonic nanostructure is Au/Ag core-shell nanoparticles. They were fabricated by electroless plating (galvanic replacement) reaction in a silver plating solution. First, electrochemically evolved hydrogen bubbles were used as template through electroless deposition to produce hollow Au nanoparticles. Then, the Au nanoparticles were coated with Cu shells in a Cu plating solution. In the following step, a Ag

  10. Phase singularity of surface plasmon polaritons generated by optical vortices.

    Science.gov (United States)

    Tan, P S; Yuan, G H; Wang, Q; Zhang, N; Zhang, D H; Yuan, X-C

    2011-08-15

    We demonstrate an experimental result that shows the phase singularity of surface plasmon waves generated by the direct transform of optical vortices at normal incidence focused on a structureless metal surface. The near-field two-dimensional intensity distribution near the focal plane is experimentally examined by using near-field scanning optical microscopy and shows a good agreement with the finite-difference time-domain simulation result. The experimental realization demonstrates a potential of the proposed excitation scheme to be reconfigured locally with advantages over structures milled into optically thick metallic films for plasmonics applications involving plasmonic vortices. PMID:21847236

  11. Surface plasmon polaritons scattering by subwavelength dielectric particles

    CERN Document Server

    Aporvari, Mehdi Shafiei

    2015-01-01

    Surface plasmon polaritons scattering from subwavelength dielectric particles is investigated using finite difference time domain method. It is shown that coupling an incident surface plasmon polariton to inter-cavity modes of the particle can dramatically changes transmitted fields and plasmon-induced forces. In particular, both transmission and optical forces are highly sensitive to the particle size that is related to the excitation of whispering gallery modes or standing-wave modes depending on the particle shape and size. This features might have potential sensing applications.

  12. Polarization dependent, surface plasmon induced photoconductance in gold nanorod arrays

    Science.gov (United States)

    Diefenbach, S.; Erhard, N.; Schopka, J.; Martin, A.; Karnetzky, C.; Iacopino, D.; Holleitner, A. W.

    2014-03-01

    We report on the photoconductance in two-dimensional arrays of gold nanorods which is strongly enhanced at the frequency of the longitudinal surface plasmon of the nanorods. The arrays are formed by a combination of droplet deposition and stamping of gold nanorod solutions on SiO2 substrates. We find that the plasmon induced photoconductance is sensitive to the linear polarization of the exciting photons. We interpret the occurrence of the photoconductance as a bolometric enhancement of the arrays' conductance upon excitation of the longitudinal surface plasmon resonance of the nanorods.

  13. Propagation of surface plasmons on highly anisotropic dielectric substrates

    Science.gov (United States)

    Nagaraj, Nagaraj; Krokhin, Arkadii

    2011-03-01

    We calculate the propagation length of surface plasmons in dielectric-metal-dielectric structures with anisotropic substrates. We show that the proper orientation of the optical axis of the crystal with respect to the metal surface minimizes Joule losses enhancing the propagation length of surface plasmons. The propagation length in a wide range of frequencies including the telecommunications region is analyzed. A simple Kronig-Penney model for anisotropic plasmonic crystal where the substrate is a periodic sequence of dielectric delta-peaks is also proposed. In this model the dispersion relation for surface plasmon has a band structure where the band width tends to zero when the frequency approaches the resonant frequency. This work was supported by the US Department of Energy through Grant No. DE-FG02-06ER46312.

  14. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, Ilya; Bozhevolnyi, Sergey I.; Boltasseva, Alexandra;

    2008-01-01

    We investigate experimentally and numerically the efficiency of surface plasmon polariton excitation by a focused laser beam using gold ridges. The dependence of the efficiency on geometrical parameters of ridges and wavelength dependence are examined. The experimental measurements accomplished...

  15. Surface plasmon resonance biosensors for detection of Alzheimer disease biomarkers

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Bocková, Markéta; Vaisocherová, Hana; Krištofíková, Z.; Řípová, D.; Homola, Jiří

    Dublin: Dublin City University, 2008. s. 179--. ISBN N. [EUROPTRODE /9./. 30.03.2008-02.04.2008, Dublin] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * diseases * biosensors Subject RIV: JB - Sensors, Measurment, Regulation

  16. Detection of pesticides using surface plasmon resonance method

    Czech Academy of Sciences Publication Activity Database

    Svobodová, L.; Šnejdárková, M.; Homola, Jiří; Polohová, V.; Hianik, Tibor

    Oxford: Elsevier, 2006. P278--. [Biosensors 2006 /9./. 10.05.2006-12.05.2006, Toronto] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  17. Surface Plasmon's Dispersion Properties of Porous Gold Films.

    Science.gov (United States)

    Stetsenko, M O; Maksimenko, L S; Rudenko, S P; Krishchenko, I M; Korchovyi, A A; Kryvyi, S B; Kaganovich, E B; Serdega, B K

    2016-12-01

    Nanostructure porous films with arrays of gold nanoparticles (Au NPs) have been produced by pulsed laser deposition. Dispersion properties of surface plasmons have been studied by the modulation-polarization spectroscopy technique. The dispersion relations for radiative modes and two types of non-radiative modes of localized and propagating surface plasmons were obtained. The branches of propagating modes were characterized by negative group velocity caused by spatial dispersion of dielectric function. The propagating modes are caused by dipole-dipole interactions between adjacent Au NPs. The frequencies and relaxation parameters of surface plasmon resonances and the plasma frequencies for Αu NPs were obtained. The relation between the surface plasmon's properties and formation conditions of films with arrays of Αu NPs is discussed. PMID:26925864

  18. Surface plasmon optics for biosensors with advanced sensitivity and throughput

    International Nuclear Information System (INIS)

    Plasmonic biosensors represent a rapidly advancing technology which enables rapid and sensitive analysis of target analytes. This thesis focuses on novel metallic and polymer structures for plasmonic biosensors based on surface plasmon resonance (SPR) and surface plasmon-enhanced fluorescence (SPF). It comprises four projects addressing key challenges concerning the enhancement of sensitivity and throughput. In the project 1, an advanced optical platform is developed which relies on reference-compensated angular spectroscopy of hydrogel-guided waves. The developed optical setup provides superior refractive index resolution of 1.2×10-7 RIU and offers an attractive platform for direct detection of small analytes which cannot be analyzed by regular SPR biosensors. The project 2 carries out theoretical study of SPR imaging with advanced lateral resolution by utilizing Bragg scattered surface plasmons (BSSPs) on sub-wavelength metallic gratings. The results reveal that the proposed concept provides better lateral resolution and fidelity of the images. This feature opens ways for high-throughput SPR biosensors with denser arrays of sensing spots. The project 3 investigates surface plasmon coupled-emission from fluorophores in the vicinity of plasmonic Bragg-gratings. The experimental results provide leads on advancing the collection efficiency of fluorescence light by controlling the directions of fluorescence emission. This functionality can directly improve the sensitivity of fluorescence-based assays. In the last project 4, a novel sensing scheme with actively tuneable plasmonic structures is developed by employing thermo-responsive hydrogel binding matrix. The hydrogel film simultaneously serves as a large capacity binding matrix and provides means for actuating of surface plasmons through reversible swelling and collapsing of the hydrogel. This characteristic is suitable for multiplexing of sensing channels in fluorescence-based biosensor scheme (author)

  19. Strong coupling between surface plasmon polaritons and emitters

    OpenAIRE

    Törmä, P.; Barnes, W.L.

    2014-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the ...

  20. Responsivity of the differential-intensity surface plasmon resonance instrument

    OpenAIRE

    Abayzeed, Sidahmed A.; Richard J. Smith; Webb, Kevin F.; Somekh, Michael G.; See, Chung W.

    2016-01-01

    Surface plasmon resonance is used for the sensitive measurement of minute concentrations of bio-analytes and probing of electrochemical processes. Typical refractive index sensitivity, for the intensity approach, is around 10−6 refractive index units (RIUs). A better sensitivity has been suggested by developing a differential-intensity detection method. This method relies on the excitation of surface plasmons using a weakly focused beam with the average angle of incidence equal to the resonan...

  1. Electrodynamics simulations of surface plasmon behavior in metallic nanostructures

    International Nuclear Information System (INIS)

    Realistic finite-difference time-domain simulations are carried to learn how to understand and control localized surface plasmons (LSP's) and traveling surface plasmon polaritons (SPP's) in metallic nanostructures. We show how to control the spatio-temporal behavior of LSP hot spots in cone-shaped metal nanoparticles. We discuss how to intensify and lengthen SPP's in thin metallic films. Finally, we discuss the relative roles of LSP's and SPP's in thin metal films with nanoscale holes and slits.

  2. Transduction of Entangled Images by Localized Surface Plasmons

    Science.gov (United States)

    Dowran, Mohammadjavad; Holtfrerich, Matthew; Lawrie, Benjamin; Davidson, Roderick; Pooser, Raphael; Marino, Alberto

    2016-05-01

    Quantum plasmonics has attracted broad interest in recent years, motivated by nano-imaging and sub-wavelength photonic circuits. The potential for nanoscale quantum information processing and quantum plasmonic sensing has led to the study of the interface between quantum optics and plasmonics. We study the interface between continuous variable entangled images and localized surface plasmons (LSPs). We generate entangled images with four-wave mixing in hot Rb atoms. The entangled images are sent through two spatially separated plasmonic structures, which consist of an array of triangular nanoholes in a silver metal film designed to excite LSPs. After transduction through the plasmonic structure, mediated by extraordinary optical transmission (EOT), the entanglement properties of the light are characterized. We show that both the entanglement and spatial properties of the light are preserved by the LSPs. This results show that the transfer of entanglement and quantum information from multi-spatial mode photons to LSPs and back to photons is a coherent process that preserves the spatial quantum information of the incident light. By addressing two spatially separated plasmonic structures, the entanglement is effectively transferred to the plasmons for a short period of time. Work supported by the W.M. Keck Foundation.

  3. Long-range surface plasmons for high-resolution surface plasmon resonance sensors

    Czech Academy of Sciences Publication Activity Database

    Nenninger, G. G.; Tobiška, Petr; Homola, Jiří; Yee, S. S.

    B74, 1/3 (2001), s. 145-151. ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549; GA ČR GA102/00/1536 Grant ostatní: Department of Defense(US) DAAD13-99-C-0032 Institutional research plan: CEZ:AV0Z2067918 Keywords : sensors * surface plasmons * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  4. Surface plasmon enhanced photoluminescence from copper nanoparticles: Influence of temperature

    International Nuclear Information System (INIS)

    Anomalous temperature dependence of surface plasmon enhanced photoluminescence from copper nanoparticles embedded in a silica host matrix has been observed. The quantum yield of photoluminescence increases as the temperature increases. The key role of such an effect is the interplay between the surface plasmon resonance and the interband transitions in the copper nanoparticles occurring at change of the temperature. Namely, the increase of temperature leads to the red shift of the resonance. The shift leads to increase of the spectral overlap of the resonance with photoluminescence band of copper as well as to the decrease of plasmon damping caused by interband transitions. Such mechanisms lead to the increase of surface plasmon enhancement factor and, consequently, to increase of the quantum yield of the photoluminescence

  5. Screening protein refolding using surface plasmon resonance.

    Science.gov (United States)

    Jones, Daniel B; Hutchinson, Matthew H; Middelberg, Anton P J

    2004-04-01

    Surface plasmon resonance (SPR) measurements were used to screen refolding conditions to identify a physicochemical environment which gives an acceptable refolding yield for samples of glutathione-S-transferase (GST) denatured in 6 M guanidine hydrochloride and 32 mM dithiothreitol. The SPR measurements were performed on carboxymethylcellulose coated chips that could accommodate two separate flow paths. One side of the chip was derivatized with immobilized glutathione and the other with goat anti-GST antibody. This created a dual-derivatized chip capable of showing both the presence of GST and providing a measure of enzyme activity. The dual-derivatized chip could be regenerated using a two-step washing procedure and reused to analyze multiple samples from a screening study of protein refolding conditions. SPR measurements have been shown to be suitable for screening protein refolding conditions due to the high sensitivity, ease of chip regeneration and the ability to incorporate a control in the experimental design. The combination of such advantages with the high-throughput automated SPR systems currently available may be a valuable approach to determine conditions suitable for protein refolding following insoluble expression in a bacterial host. PMID:15048982

  6. Second quantization model for surface plasmon polariton in metallic nano wires

    Science.gov (United States)

    Thi Phuong Lan, Nguyen; Thi Nga, Do; Viet, Nguyen Ai

    2016-06-01

    A model of effective Hamiltonian is proposed in second quantization representation for system of surface plasmons and photon (polariton) in metallic nano wires. The dispersion relation curves of surface plasmon polariton was calculated by mean of the Bogoliubov diagonalization method. The surface plasmon photon vertexes are considered. The conditions for excitation surface plasmon, existence plasmon radiate modes, and a possible application of metallic nano wires were also discussed.

  7. Experimental demonstration of surface and bulk plasmon polaritons in hypergratings

    Science.gov (United States)

    Sreekanth, Kandammathe Valiyaveedu; de Luca, Antonio; Strangi, Giuseppe

    2013-11-01

    Hyperbolic metamaterials (HMMs) represent a novel class of fascinating anisotropic plasmonic materials, supporting highly confined bulk plasmon polaritons in addition to the surface plasmon polaritons. However, it is very challenging to tailor and excite those modes at optical frequencies using prism coupling technique because of the intrinsic difficulties to engineer non-traditional optical properties using artificial nanostructures and the unavailability of high refractive index prisms for matching the momentum between the incident light and the guided modes. Here, we experimentally demonstrate the excitation of both surface and bulk plasmon polaritons in a HMM through a grating coupling technique of surface plasmon excitation that makes use a hypergrating, which is a combined structure of metallic diffraction grating and HMM. Initially, we propose an optical hyperbolic metamaterial based on Au/TiO2 multilayers and confirm the hyperbolic dispersion, and the presence of high-k modes in the fabricated HMM. Reflection measurements as a function of incident angle and excitation wavelength show the existence of both surface and bulk plasmon polaritons inside the hypergrating. The proposed configuration is expected to find potential applications in bio-chemical sensors, integrated optics and optical sub-wavelength imaging.

  8. Extremely confined gap surface-plasmon modes excited by electrons

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Pors, Anders Lambertus; Holmgaard, Tobias; Kadkhodazadeh, Shima; Wagner, Jakob Birkedal; Pedersen, Kjeld; Wubs, Martijn; Bozhevolnyi, Sergey I.; Mortensen, N. Asger

    2014-01-01

    High-spatial and energy resolution electron energy-loss spectroscopy (EELS) can be used for detailed characterization of localized and propagating surface-plasmon excitations in metal nanostructures, giving insight into fundamental physical phenomena and various plasmonic effects. Here, applying...... EELS to ultra-sharp convex grooves in gold, we directly probe extremely confined gap surface-plasmon (GSP) modes excited by swift electrons in nanometre-wide gaps. We reveal the resonance behaviour associated with the excitation of the antisymmetric GSP mode for extremely small gap widths, down to ~5...... mode exploited in plasmonic waveguides with extreme light confinement is a very important factor that should be taken into account in the design of nanoplasmonic circuits and devices....

  9. Surface plasmon-polaritons on ultrathin metal films

    Institute of Scientific and Technical Information of China (English)

    Quan Jun; Tian Ying; Zhang Jun; Shao Le-Xi

    2011-01-01

    We discuss the surface plasmon-polaritons used for ultrathin metal films with the aid of linear response theory and make comparisons with the known result given by Economou E N. In this paper we consider transverse electromagnetic fields and assume that the electromagnetic field in the linear response formula is the induced field due to the current of the electrons. It satisfies the Maxwell equation and thus we replace the current (charge)term in the Maxwell equation with the linear response expectation value.Finally, taking the external field to be zero, we obtain the dispersion relation of the surface plasmons from the eigenvalue equation. In addition, the charge-density and current-density in the z direction on the surface of ultrathin metal films are also calculated. The results may be helpful to the fundamental understanding of the complex phenomenon of surface plasmon-polaritons.

  10. Harmonics radiation of graphene surface plasmon polaritons in terahertz regime

    Science.gov (United States)

    Li, D.; Wang, Y.; Nakajima, M.; Hashida, M.; Wei, Y.; Miyamoto, S.

    2016-06-01

    This letter presents an approach to extract terahertz radiation from surface plasmon polaritons excited in the surface of a uniform graphene structure by an electron beam. A sidewall configuration is proposed to lift the surface plasmon mode to be close to the light line, so that some of its harmonics have chances to go above the light line and become radiative. The harmonics are considered to be excited by a train of periodic electron bunches. The physical mechanism in this scheme is analyzed with three-dimensional theory, and the harmonics excitation and radiation are demonstrated through numerical calculations. The results show that this technique could be an alternative to transform the surface plasmon polaritons into radiation.

  11. Surface plasmon structures with ferromagnetic thin films

    Czech Academy of Sciences Publication Activity Database

    Pištora, J.; Vlček, J.; Lesňák, M.; Otipka, P.; Sobota, Jaroslav

    Bellingham: SPIE, 2012, 86971W:1-8. ISBN 978-0-8194-9481-8. [CPS 2012. Czech-Polish-Slovak Optical Conference on Wave and Quantum Aspects of Contemporary Optics /18./. Ostravice (CZ), 03.09.2012-07.09.2012] Institutional support: RVO:68081731 Keywords : plasmon resonance * magneto -optics * sensors * responce factors Subject RIV: IN - Informatics, Computer Science

  12. Surface plasmon polariton Wannier-Stark ladder

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A. A.; Méndez, E.R.

    2014-01-01

    Roč. 39, č. 6 (2014), s. 1613-1616. ISSN 0146-9592 R&D Projects: GA MŠk LH12009 Institutional support: RVO:67985882 Keywords : Finite difference time domain method * Electromagnetic wave polarization * Plasmons Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.292, year: 2014

  13. Surface-plasmon-coupled emission microscopy with a polarization converter.

    Science.gov (United States)

    Chen, Yikai; Zhang, Douguo; Han, Lu; Rui, Guanghao; Wang, Xiangxian; Wang, Pei; Ming, Hai

    2013-03-01

    Although surface-plasmon-coupled emission-based fluorescence microscopy proves high sensitivity for surface imaging, its donut shape point spread function (PSF) leads to low optical resolution and inefficient signal collection. In this Letter, we experimentally demonstrate the feasibility of solving this problem by the use of a liquid-crystal plate, which could convert the polarization state of surface-plasmon-coupled fluorescence from radial to linear. After being focused by the collection lens, an Airy disk-like PSF of small size can be realized. Experimental results reveal that both the lateral resolution and the signal-to-noise ratio can be enhanced simultaneously. PMID:23455282

  14. Bulk and surface sensitivities of surface plasmon waveguides

    International Nuclear Information System (INIS)

    The potential of surface plasmon waveguides for bulk and surface (bio)chemical sensing was assessed theoretically, anticipating their use in an integrated optics sensor such as a Mach-Zehnder interferometer (MZI). The performance of a generic MZI implemented with attenuating waveguides was assessed initially, revealing that attenuating waveguides constrain the sensing length to an optimal length equal to the propagation length of the mode used. The MZI sensitivities for bulk and surface sensing were found to be proportional to the ratio of the waveguide sensitivity to its normalized attenuation: H=(∂neff/∂nc)/keff for bulk sensing and G=(∂neff/∂a)/keff for surface sensing. Maximizing H or G maximizes the corresponding MZI sensitivity and minimizes its detection limit, leading to preferred waveguide designs and operating wavelengths. The propagation constant, the sensitivities, and the H and G parameters were then determined for the surface plasmon in the single interface, the sb mode in the metal-insulator-metal (MIM) waveguide and the sb mode in three variants of the insulator-metal-insulator (IMI) waveguide, as a function of dimensions, for wavelengths spanning 600≤λ0≤1600 nm, assuming Au and H2O as the materials and adlayers representative of biochemical matter. The principal findings are: (i) the surface sensitivity in the thin MIM can be 100x larger than in the single interface, whereas that in the thin IMI is up to 5x smaller; (ii) the bulk sensitivity in the thin MIM can be 3x larger than in the single interface, whereas that in the IMI is slightly smaller; (iii) G in the thin MIM can be 3x larger than in the single interface, whereas G in the IMI is about 10x larger; and (iv) H in the thin MIM can be 10x smaller than in the single interface, whereas H in the thin IMI is about 10x larger. The IMI and the MIM both offer an improvement in sensitivity and detection limit for surface sensing over the single interface in an integrated MZI (or

  15. Determination of the Surface Plasmons Polaritons extraction efficiency from a self-assembled plasmonic crystal

    CERN Document Server

    Frederich, Hugo; Laverdant, Julien; de Marcillac, Willy Daney; Schwob, Catherine; Coolen, Laurent; Maître, Agnès

    2013-01-01

    We experimentally measure and analytically describe the fluorescence enhancement obtained by depositing CdSe/CdS nanocrystals onto a gold plasmonic crystal, a two-dimensional grating of macroscopic size obtained by gold deposition on a self-assembled opal. We show evidences of nanocrystals near-field coupling to the gold Surface Plasmons Polaritons (SPP) followed by grating-induced SPP re-emission to far-field. We develop a theoretical framework and an original method in order to evaluate, from photoluminescence experiments, the SPP extraction efficiency of a grating.

  16. Self-deflecting plasmonic lattice solitons and sur-face modes in chirped plasmonic arrays

    CERN Document Server

    Li, Chunyan; Ye, Fangwei; Kartashov, Yaroslav V; Torner, Lluis; Chen, Xianfeng

    2015-01-01

    We show that chirped metal-dielectric waveguide arrays with focusing cubic nonlinearity can support plasmonic lattice solitons that undergo self-deflection in the transverse plane. Such lattice solitons are deeply-subwavelength self-sustained excitations, although they cover several periods of the array. Upon propagation,the excitations accelerate in the transverse plane and follow trajectories curved in the direction in which the separation between neighboring metallic layers decreases, a phenomenon that yields considerable deflection angles. The deflection angle can be controlled by varying the array chirp. We also reveal the existence of surface modes at the boundary of truncated plasmonic chirped arraythat form even in the absence of nonlinearity.

  17. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    Science.gov (United States)

    Lei, Zeyu; Yang, Tian

    2016-04-01

    We report the design and experimental realization of a type of miniaturized device for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two-dimensional launching efficiency of about 51%, under the normal illumination of a 5-μm waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel, and Airy profiles are launched and imaged with leakage radiation microscopy.

  18. Gap plasmon resonator arrays for unidirectional launching and shaping of surface plasmon polaritons

    CERN Document Server

    Lei, Zeyu

    2015-01-01

    We report the design and experimental realization of a kind of miniaturized devices for efficient unidirectional launching and shaping of surface plasmon polaritons (SPPs). Each device consists of an array of evenly spaced gap plasmon resonators with varying dimensions. Particle swarm optimization is used to achieve a theoretical two dimensional launching efficiency of about 51%, under the normal illumination of a 5-{\\mu}m waist Gaussian beam at 780 nm. By modifying the wavefront of the SPPs, unidirectional SPPs with focused, Bessel and Airy profiles are launched and imaged with leakage radiation microscopy.

  19. Photonic bandgap structures for long-range surface plasmon polaritons

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Boltasseva, Alexandra; Søndergaard, Thomas;

    2005-01-01

    Propagation of long-range surface plasmon polaritons (LR-SPPs) along periodically thickness-modulated metal stripes embedded in dielectric is studied both theoretically and experimentally for light wavelengths in the telecom range. We demonstrate that symmetric (with respect to the film surface) ...

  20. Surface-plasmon voltammetry using a gold grating

    OpenAIRE

    Jory, M J; Cann, P S; J. R. Sambles

    2010-01-01

    Abstract Using a sensitive optical wavelength modulation technique the surface-plasmon excited on a gold grating surface immersed in sulphuric acid is studied at the same time as cyclic voltammetry is undertaken. Because of the optical sensitivity of the modulation technique significant optical effects are observed at potentials well below those at which any gross oxidation effects occur.

  1. Transverse Chiral Optical Forces by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    Recently the new concepts of transverse spin angular momentum and Belinfante spin momentum of evanescent waves have drawn considerable attention. Here, we investigate these novel physical properties of electromagnetic fields in the context of locally excited surface plasmon polaritons. We demonstrate, both analytically and numerically, that locally excited surface plasmon polaritons possess transverse spin angular momentum and Belinfante momentum with rich and non-trivial characteristics. We also show that the transverse spin angular momentum of locally excited surface plasmon polaritons leads to the emergence of transverse chiral forces in opposite directions for chiral objects of different handedness. The magnitude of such a transverse force is comparable to the optical gradient force and scattering forces. This finding may pave the way for realization of optical separation of chiral biomolecules.

  2. Surface plasmon enhanced ultraviolet light-emitting devices

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Qian [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Shan, Chong-Xin, E-mail: shancx@ciomp.ac.cn [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China); Zheng, Jian [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China); Graduate University of the Chinese Academy of Sciences, Beijing 100049 (China); Li, Bing-Hui; Zhang, Zhen-Zhong; Shen, De-Zhen [State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, No. 3888 Dongnanhu Road, Changchun 130033 (China)

    2013-02-15

    In this paper, n-ZnO/i-ZnO/MgO/p-GaN structured light-emitting devices have been designed and constructed, and Ag nanoparticles whose surface plasmon resonance absorption spectrum overlaps well with the electroluminescence (EL) of the structure were employed to improve the emission characteristics of the devices. A noticeable enhancement in the EL intensity has been obtained, and the enhancement can be attributed to the resonant coupling between the electron-hole pairs in the structure and the surface plasmons of the Ag nanoparticles. - Highlights: Black-Right-Pointing-Pointer ZnO-based LEDs with emission at around 400 nm have been constructed. Black-Right-Pointing-Pointer Ag nanoparticles were employed to improve the emission of the LEDs. Black-Right-Pointing-Pointer A noticeable enhancement in the EL intensity has been obtained. Black-Right-Pointing-Pointer The enhancement can be attributed to the coupling of the Ag surface plasmon modes.

  3. Hysteresis phenomena in electron tunneling, induced by surface plasmons

    CERN Document Server

    Kroo, Norbert; Racz, Peter

    2013-01-01

    A high spatial resolution surface plasmon near field scanning tunneling microscope (STM) has been used to study the properties of localized surface plasmons (SPO) in so-called hot spots on a gold surface, where the local electromagnetic field is extremely high. A CW semiconductor laser and a femtosecond Ti:Sa laser were used to excite the plasmons and the SPO excited tunnel current was used as the detector. When scanning the STM from negative to positive bias and reversed, hysteresis in the tunnel signal was found, excluding (or rather minimizing) the role of the presence of a Casimir effect in the process. It was found, however, that a multiple image charge induced double well potential may explain our experimental findings. The stepwise behaviour of the area of the observed hysteresis loops is a new, additional indication of the non-classical properties of the SPOs.

  4. Surface plasmon enhancement of spontaneous emission in graphene waveguides

    CERN Document Server

    Cuevas, Mauro

    2016-01-01

    This work analyzes the spontaneous emission of a single emitter placed near the graphene waveguide formed by two parallel graphene monolayers, with an insulator spacer layer. In this case, the eigenmodes supported by the structure, such as surface plasmon and wave guided modes, provide decay channels for the electric dipole placed close to the waveguide. We calculated the contribution to the decay rate of symmetric and antisymmetric eigenmodes as a function of frequency and the orientation of the emitter. Our results show that the modi?cation of the spontaneous emission due to excitation of guided modes is much lower than the corresponding decays through the excitation of symmetric and antisymmetric surface plasmons, for which, the spontaneous emission is dramatically enhanced. As a consequence of the high con?nement of surface plasmons in the graphene waveguide, we found that the decay rate of the emitter with vertical orientation (with respect to graphene sheets) is twice the corresponding decay of the same...

  5. Ultimate limit of field confinement by surface plasmon polaritons

    CERN Document Server

    Khurgin, Jacob B

    2014-01-01

    We show that electric field confinement in surface plasmon polaritons propagating at the metal/dielectric interfaces enhances the loss due to Landau damping and which effectively limits the degree of confinement itself. We prove that Landau damping and associated with it surface collision damping follow directly from Lindhard formula for the dielectric constant of free electron gas Furthermore, we demonstrate that even if all the conventional loss mechanisms, caused by phonons, electron-electron, and interface roughness scattering, were eliminated, the maximum attainable degree of confinement and the loss accompanying it would not change significantly compared to the best existing plasmonic materials, such as silver.

  6. Surface Plasmon Polariton Self-Focusing by Ponderomotive Forces

    CERN Document Server

    Ginzburg, Pavel; Feigenbaum, Eyal; Berkovitch, Nikolai; Orenstein, Meir

    2007-01-01

    Nonlinear properties of Surface Plasmon Polaritons stemming from the inherent electron plasma nonlinearity of the metal layers are investigated. A fluid-mechanics plasma model is used to describe the electron motion in metals. The nonlinear ponderomotive force repels the electrons from the high field intensity region, effectively reducing the local plasma frequency and the corresponding real part of the refractive index results in Kerr like self-focusing. The field confinement to the low carrier density region also assists also in reducing the propagation losses, which usually inhibit practical nanoplasmonic circuits. Surface plasmon self focusing and nonlinear spectrum modifications, predicted by our model, are demonstrated by preliminary experiments.

  7. Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; Hu, Dehong; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-05-13

    We record time-resolved nonlinear photoemission electron microscopy (tr-PEEM) images of propagating surface plasmons (PSPs) launched from a lithographically patterned rectangular trench on a flat gold surface. Our tr-PEEM scheme involves a pair of identical, spatially separated, and interferometrically-locked femtosecond laser pulses. Power dependent PEEM images provide experimental evidence for a sequential coherent nonlinear photoemission process, in which one laser source creates a PSP polarization state through a linear interaction, and the second subsequently probes the prepared state via two photon photoemission. The recorded time-resolved movies of a PSP allow us to directly measure various properties of the surface-bound wave packet, including its carrier wavelength (785 nm) and group velocity (0.95c). In addition, tr-PEEM in concert with finite-difference time domain simulations together allow us to set a lower limit of 75 μm for the decay length of the PSP on a 100 nm thick gold film.

  8. Tunable surface-plasmon-resonance wavelength of silver island films

    Institute of Scientific and Technical Information of China (English)

    Wang Ji-Fei; Li Hong-Jian; Zhou Zi-You; Li Xue-Yong; Liu Ju; Yang Hai-Yan

    2010-01-01

    This paper experimentally and theoretically investigates the effect of the underlayer medium on tuning of the surface plasmon resonance (SPR) wavelength of silver island films, and the effect of substrate temperature on the morphologies and optical properties of the films. From the absorption spectra of single Ag with various thickness and overcoated (Ag/TiO2>) films deposited on glass substrates at various substrate temperatures by RF magnetron sputtering, we demonstrate that the surface plasmon resonance wavelength can be made tunable by changing the underlayer medium, the thickness of metal layer and the substrate temperature. By varying substrate temperatures,the interparticle coupling effects on plasmon resonances of nanosilver particles enhance as the spacing between the particles reduces. When the substrate temperature is up to 500 ℃, the absorption peak decreases sharply and shifts to shorter wavelength side due to the severe coalescence between silver islands in the film.

  9. Spoof surface plasmon Fabry-Perot open resonators in a surface-wave photonic crystal

    CERN Document Server

    Gao, Zhen; Xu, Hongyi; Zhang, Youming; Zhang, Baile

    2016-01-01

    We report on the proposal and experimental realization of a spoof surface plasmon Fabry-Perot (FP) open resonator in a surface-wave photonic crystal. This surface-wave FP open resonator is formed by introducing a finite line defect in a surface-wave photonic crystal. The resonance frequencies of the surface-wave FP open resonator lie exactly within the forbidden band gap of the surface-wave photonic crystal and the FP open resonator uses this complete forbidden band gap to concentrate surface waves within a subwavelength cavity. Due to the complete forbidden band gap of the surface-wave photonic crystal, a new FP plasmonic resonance mode that exhibits monopolar features which is missing in traditional FP resonators and plasmonic resonators is demonstrated. Near-field response spectra and mode profiles are presented in the microwave regime to characterize properties of the proposed FP open resonator for spoof surface plasmons.

  10. High-resolution biosensor based on localized surface plasmons

    OpenAIRE

    Piliarik, M.; Šípová, H. (Hana); Kvasnička, P.; Galler, N.; Krenn, J. R.; Homola, J. (Jiří)

    2012-01-01

    We report on a new biosensor with localized surface plasmons (LSP) based on an array of gold nanorods and TIR imaging in polarization contrast. The sensitivity of the new biosensor is characterized and a model detection of DNA hybridization is carried out and results compared with a conventional SPR biosensor, showing the same performance while involving significantly lower surface densities of interacting molecules. Limit of detection was 100 pM and a surface density resolution only 35 fg×mm2.

  11. Contribution of surface plasmon decay to secondary electron emission from an Al surface

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Wolfgang S. M.; Salvat-Pujol, Francesc; Smekal, Werner; Khalid, Rahila; Aumayr, Friedrich; Stoeri, Herbert [Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, A 1040 Vienna (Austria); Ruocco, Alessandro; Stefani, Giovanni [Dipartimento di Fisica and Unita CNISM, Universita Roma Tre, via della Vasca Navale 84, I-00146 Rome (Italy)

    2011-10-31

    Spectra of secondary electrons (SE) emitted from a polycrystalline Al surface have been measured in coincidence with 500 eV-electrons for energy losses between 10 and 155 eV. The spectra for a given energy loss are qualitatively similar, consisting of surface and volume plasmon decay and a contribution attributable to direct electron-electron scattering. The similarity of the contribution of surface and volume plasmon decay in the SE spectra proves directly that electron multiple scattering is governed by a Markov-type process. The average value of the surface plasmon decay contribution to the SE spectrum amounts to {approx}25%.

  12. Directional couplers using long-range surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Bozhevolnyi, Sergey I.

    2006-01-01

    We present an experimental study of guiding and routing of electromagnetic radiation along the nanometer-thin and micrometer-wide gold stripes embedded in a polymer via excitation of long-range surface plasmon polaritons (LR-SPPs) in a very broad wavelength range from 1000 to 1650 mn. For straigh...

  13. Strong coupling between surface plasmon polaritons and emitters: a review

    Science.gov (United States)

    Törmä, P.; Barnes, W. L.

    2015-01-01

    In this review we look at the concepts and state-of-the-art concerning the strong coupling of surface plasmon-polariton modes to states associated with quantum emitters such as excitons in J-aggregates, dye molecules and quantum dots. We explore the phenomenon of strong coupling with reference to a number of examples involving electromagnetic fields and matter. We then provide a concise description of the relevant background physics of surface plasmon polaritons. An extensive overview of the historical background and a detailed discussion of more recent relevant experimental advances concerning strong coupling between surface plasmon polaritons and quantum emitters is then presented. Three conceptual frameworks are then discussed and compared in depth: classical, semi-classical and fully quantum mechanical; these theoretical frameworks will have relevance to strong coupling beyond that involving surface plasmon polaritons. We conclude our review with a perspective on the future of this rapidly emerging field, one we are sure will grow to encompass more intriguing physics and will develop in scope to be of relevance to other areas of science.

  14. No-labeled immunoassay by using surface plasmon resonance biosensor

    International Nuclear Information System (INIS)

    Surface plasmon resonance biosensor was used to develop fast no-labeled immunoassays for sulfamethazine and sulfadiazine. The immobilization conditions of the antigen were studied and the working concentration of antibody and the condition of regeneration were optimized. Standard curves were set up and the stability of the chip was studied. (authors)

  15. Ultrathin 90-degree sharp bends for spoof surface plasmon polaritons

    DEFF Research Database (Denmark)

    Yang, Yihao; Chen, Hongsheng; Xiao, Sanshui; Mortensen, N. Asger; Zhang, Jingjing

    2015-01-01

    surface plasmons around 90-degree sharp bends on ultrathin metallic films in the microwave regime. We demonstrate that by judiciously engineering the structure, the dispersion relation can be designed to reduce the scattering. Furthermore, the reflection can be suppressed by proper structural decoration...

  16. Surface plasmon resonance optical cavity enhanced refractive index sensing

    Czech Academy of Sciences Publication Activity Database

    Giorgini, A.; Avino, S.; Malara, P.; Gagliardi, G.; Casalino, M.; Coppola, G.; Iodice, M.; Adam, Pavel; Chadt, Karel; Homola, Jiří; De Natale, P.

    2013-01-01

    Roč. 38, č. 11 (2013), s. 1951-1953. ISSN 0146-9592 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : Resonators * Surface plasmon s * Optical sensing and sensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.179, year: 2013

  17. A Surface Plasmon Resonance Immunobiosensor for Detection of Phytophthora infestans

    DEFF Research Database (Denmark)

    Skottrup, Peter; Frøkiær, Hanne; Hejgaard, Jørn;

    In this study we focused on the development of a Surface Plasmon Resonance (SPR) immunosensor for Phytophthora infestans detection. The fungus-like organism is the cause of potato late blight and is a major problem in potato growing regions of the world. Efficient control is dependent on early...

  18. Portable surface plasmon resonance biosensor for detection of nucleic acids

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Piliarik, Marek; Vala, Milan; Chadt, Karel; Adam, Pavel; Bocková, Markéta; Hegnerová, Kateřina; Homola, Jiří

    Vol. 25. Amsterdam : Elsevier, 2011 - (Tsamis, C.; Kaltsas, G.), s. 148-151 ISBN 978-1-62748-581-4. ISSN 1877-7058. [25th Eurosensors Conference. Athens (GR), 04.09.2011-07.09.2011] Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Portable biosensor * Oligonucleotides Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  19. Formation of Gold Microparticles by Ablation with Surface Plasmons

    Directory of Open Access Journals (Sweden)

    Pal Molian

    2013-10-01

    Full Text Available The formation of gold microparticles on a silicon substrate through the use of energetic surface plasmons is reported. A laser-assisted plasmonics system was assembled and tested to synthesize gold particles from gold thin film by electrical field enhancement mechanism. A mask containing an array of 200 nm diameter holes with a periodicity of 400 nm was prepared and placed on a silicon substrate. The mask was composed of 60 µm thick porous alumina membrane sputter-coated with 100 nm thin gold film. A Nd:YAG laser with 1064 nm wavelength and 230 µs pulse width (free-running mode was then passed through the mask at an energy fluence of 0.35 J/cm2. The extraordinary transmission of laser light through alumina/gold micro-hole optical antenna created both extended and localized surface plasmons that caused the gold film at the bottom of the mask to fragment into microparticles and deposit on the silicon substrate that is in direct contact with the mask. The surface plasmon method is simpler, quicker, more energy efficient, and environmentally safer than existing physical and chemical methods, as well as being contamination-free, and can be extended to all types of materials that will in turn allow for new possibilities in the formation of structured surfaces.

  20. Integrated Optical Components Utilizing Long-Range Surface Plasmon Polaritons

    DEFF Research Database (Denmark)

    Boltasseva, Alexandra; Nikolajsen, Thomas; Leosson, Kristjan; Kjær, Kasper; Larsen, Morten S.; Bozhevolnyi, Sergey I.

    2005-01-01

    New optical waveguide technology for integrated optics, based on propagation of long-range surface plasmon polaritons (LR-SPPs) along metal stripes embedded in dielectric, is presented. Guiding and routing of electromagnetic radiation along nanometer-thin and micrometer-wide gold stripes embedded...

  1. Surface plasmon resonace (SPR) biosensor detection for food safety

    Czech Academy of Sciences Publication Activity Database

    Taylor, A.; Ladd, J.; Yu, Q.; Chen, S.; Homola, Jiří; Jiang, S.

    [New York]: [American Institute of Chemical Engineers], 2004. p. 36c. [2004 Annual Meeting of American Institute of Chemical Engineers - AIChE [0054010]. 07.11.02004-12.11.2004, Austin] Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation http://www.aiche.org/conferences/

  2. Surface plasmon resonance sensing of nucleic acids: A review

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Homola, Jiří

    -, č. 773 (2013), s. 9-23. ISSN 0003-2670 R&D Projects: GA MŠk(CZ) LH11102 Institutional support: RVO:67985882 Keywords : Surface plasmon resonance * Nucleic acid * Biosensor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 4.517, year: 2013

  3. Surface plasmon resonance /SPR/ biosensor detection for food safety

    Czech Academy of Sciences Publication Activity Database

    Taylor, A. D.; Yu, Q.; Chen, S.; Yang, F.; Darling, R. B.; Homola, Jiří; Jiang, S.

    [Madrid]: [Complutense University], 2004. s. 193. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /7./. 04.04.2004-07.04.2004, Madrid] Grant ostatní: US FDA(US) FD-U-002250 Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  4. Surface plasmon observed for carbon nanotubes

    International Nuclear Information System (INIS)

    This paper presents parallel electron energy loss spectra (PEELS) results, obtained for individual carbon nanotubes, using nanoprobe techniques (1-2 nm diameter electron beam), energy resolution 0.5 eV and collection times of 4-25 sec. The aim was to use a nanoprobe to compare PEELS spectra from different parts of a tube, in order to search for variations in sp2/sp3 bonding ratios as well as to look for orientation dependent plasmon and core-loss phenomena. It also seemed interesting to compare results for nanotubes with those for other varieties of graphitized carbons. The most interesting result so far was the appearance of a 15 eV plasmon peak, which appeared only for tubes containing ≤ about 12 graphite-like layers. This peak did not shift significantly with tube size. A low-loss peaks at 6 eV of variable relative intensity was also observed this peak was relatively very weak for amorphous tubes; it appears to be characteristic of graphite-like layers, as found for nanotubes and, of course, graphite itself. This paper is restricted to discussion of the low-loss results. The experimental techniques are first described, including some details of the methods which may be used to disperse and support sooty carbons for high-resolution transmission electron microscopy. The results are then presented, followed by an interpretation of all the low-loss PEELS results, including those of the other authors. 14 refs., 2 figs

  5. Dielectric tuned surface plasmon resonances on metallic gratings

    Science.gov (United States)

    Hauser, Adam; Flaherty, Bill; Law, Ka Ming; Mikheev, Evgeny; Kajdos, Adam; Stemmer, Susanne; Allen, S. James

    2015-03-01

    We explore the effect of substrate dielectric constant on the dispersion of infrared surface plasmons supported by micron scale metal gratings. Of particular interest are substrate dielectrics that can be tuned by electric fields and thereby make possible gated plasmonic devices. Angle resolved s and p polarized reflectivity is used to observe the plasmon dispersion for Pt gratings on various oxide dielectrics and heterostructures, LSAT, SrTiO3, Nb:SrTiO3 and LSAT/SrTiO3/GdTiO3. Most striking is the shift in the plasmon dispersion upon Nb doping of SrTiO3 caused by the free carrier contribution to the dielectric constant. We focus our attention on a metal-oxide-metal heterostructure, Pt/BaxSr1-xTiO3/Pt-grating that serves to confine the infrared field to the electric field modulated region enhancing the potential for a gated plasmonic structure. Supported by the ONR MURI ``Extreme electron density electronics'' N00014-12-0976.

  6. Ferroplasmons: Intense Localized Surface Plasmons in Metal-Ferromagnetic Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sachan, Ritesh [University of Tennessee, Knoxville (UTK); Malasi, Abhinav [ORNL; Ge, Jingxuan [Materials Science and Engineering Department, University of Tennessee, Knoxville, TN, USA; Yadavali, Sagar P [ORNL; Gangopadhyay, Anup [Washington University, St. Louis; Krishna, Dr. Hare [Washington University, St. Louis; Garcia, Hernando [Southern Illinois University; Duscher, Gerd J M [ORNL; Kalyanaraman, Ramki [University of Tennessee, Knoxville (UTK)

    2014-01-01

    Interaction of photons with matter at length scales far below their wavelengths has given rise to many novel phenomena, including localized surface plasmon resonance (LSPR). However, LSPR with narrow bandwidth (BW) is observed only in a select few noble metals, and ferromagnets are not among them. Here, we report the discovery of LSPR in ferromagnetic Co and CoFe alloy (8% Fe) in contact with Ag in the form of bimetallic nanoparticles prepared by pulsed laser dewetting. These plasmons in metal-erromagnetic nanostructures, or ferroplasmons (FP) for short, are in the visible spectrum with comparable intensity and BW to those of the LSPRs from the Ag regions. This finding was enabled by electron energy-loss mapping across individual nanoparticles in a monochromated scanning transmission electron microscope. The appearance of the FP is likely due to plasmonic interaction between the contacting Ag and Co nanoparticles. Since there is no previous evidence for materials that simultaneously show ferromagnetism and such intense LSPRs, this discovery may lead to the design of improved plasmonic materials and applications. It also demonstrates that materials with interesting plasmonic properties can be synthesized using bimetallic nanostructures in contact with each other.

  7. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    Science.gov (United States)

    Sobolewska, ElŻbieta K.; Leißner, Till; Jozefowski, Leszek; Brewer, Jonathan; Rubahn, Horst-Günter; Adam, Jost; Fiutowski, Jacek

    2016-04-01

    Recent research on hybrid plasmonic systems has shown the existence of a loss channel for energy transfer between organic materials and plasmonic/metallic structured substrates. This work focuses on the exciton-plasmon coupling between para-Hexaphenylene (p-6P) organic nanofibers (ONFs) and surface plasmon polaritons (SPPs) in organic/dielectric/metal systems. We have transferred the organic p-6P nanofibers onto a thin silver film covered with a dielectric (silicon dioxide) spacer layer with varying thicknesses. Coupling is investigated by two-photon fluorescence-lifetime imaging microscopy (FLIM) and leakage radiation spectroscopy (LRS). Two-photon excitation allows us to excite the ONFs with near-infrared light and simultaneously avoids direct SPP excitation on the metal layer. We observe a strong dependence of fluorescence lifetime on the type of underlying substrate and on the morphology of the fibers. The experimental findings are complemented via finite-difference time-domain (FDTD) modeling. The presented results lead to a better understanding and control of hybrid-mode systems, which are crucial elements in future low-loss energy transfer devices.

  8. Enhanced Electromagnetic Chirality by Locally Excited Surface Plasmon Polaritons

    CERN Document Server

    Alizadeh, M H

    2015-01-01

    The possibility to enhance chiral light-matter interactions through plasmonic nanostructures provides entirely new opportunities for greatly improving the detection limits of chiroptical spectroscopies down to the single molecule level. The most pronounced of these chiral interactions occur in the ultraviolet (UV) range of the electromagnetic spectrum, which is difficult to access with conventional localized plasmon resonance based sensors. Although Surface Plasmon Polaritons (SPPs) on noble metal films can sustain resonances in the desired spectral range, their transverse magnetic nature has been an obstacle for enhancing chiroptical effects. Here we demonstrate, both analytically and numerically, that SPPs excited by near-field sources can exhibit rich and non-trivial chiral characteristics. In particular, we show that the excitation of SPPs by a chiral source not only results in a locally enhanced optical chirality but also achieves manifold enhancement of net optical chirality. Our finding that SPPs facil...

  9. Single-electron induced surface plasmons on a topological nanoparticle

    Science.gov (United States)

    Siroki, G.; Lee, D. K. K.; Haynes, P. D.; Giannini, V.

    2016-08-01

    It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators--materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information.

  10. Enzyme detection by surface plasmon resonance using specially engineered spacers and plasmonic labelling

    Science.gov (United States)

    François, A.; Heng, S.; Kostecki, R.; Monro, T. M.

    2011-05-01

    Surface Plasmon Resonance (SPR) is a powerful label free optical biosensing technology that relies on the measurement of the refractive index or change of mass in close vicinity of the sensor surface. Therefore, there is an experimental limitation in the molecular weight of the molecule that can be detected and consequently small molecules are intrinsically more difficult to detect using SPR. One approach to overcoming this limitation is to first adsorb smaller molecules onto the sensor surface, and to follow this by using their higher molecular weight antibodies counterparts which ensure the specificity (and are easier to detect via SPR due to their higher weight). Although this has been demonstrated with some success, it is not applicable in every case and some biomolecules such as enzyme are still difficult to detect due to their specific reactivity (enzymatic reaction). In this paper, we present a powerful new method that utilises specifically engineered spacers attached on one end to the sensor surface and on the other end to a nanoparticle that behaves as a plasmonic label. These spacers are design to specifically react with the biomolecule to be detected and release the (relatively large) plasmonic label, which in turn results in a measurable SPR shift (which is much larger than the shift that would have been associated with the binding of the relatively small biomolecule). As a proof of concept, this approach was used within a recently developed new form of SPR optical fibre sensor which relies on the measurement of the re-emitted light by surface scattering of the plasmonic wave rather than transmission through the fibre was used to detect an enzyme. Here trypsin (25kDa) was successfully sensed. This molecule is involved in both intestinal and pancreatic diseases.

  11. Plasmon-polar-phonon coupling at semiconductor surfaces

    Science.gov (United States)

    Takeshi, Inaoka

    1991-11-01

    We investigate the plasmon-polar-phonon coupling at semiconductor surfaces by means of decomposing the induced charge density distribution into three components, namely, the component due to carrier density fluctuation, that originating from longitudinal optical phonon polarisation and that which arises right on the surface owing to termination of the phonon and background polarisation at the surface. We are concerned with n-type degenerate polar semiconductors. Carrier electrons are described as a semi-infinite degenerate electron gas, which is treated within the infinite barrier model and the random-phase approximation. The optical phonon polarisation is described by the Lorentzian oscillator model. Analysing the phase relation and the amplitude ratio of the above three components of the induced charge density distribution and evaluating each contribution of these three components to the energy loss intensity elucidate the character in plasmon-polar-phonon coupling at the surface. Each of the three distinct coupled surface modes has its own characteristic mode structure. In parallel with this analysis of coupling at the surface, we also explore the plasmon-polar-phonon coupling in the bulk on the basis of the same decomposing scheme for the induced charge density distribution. Each of the three distinct surface modes has the same character as the bulk modes on the corresponding one of the three bulk dispersion branches. This confirms the result of our previous work, namely, that each of the three distinct surface modes originates from one of the three bulk dispersion branches.

  12. High resolution surface plasmon microscopy for cell imaging

    Science.gov (United States)

    Argoul, F.; Monier, K.; Roland, T.; Elezgaray, J.; Berguiga, L.

    2010-04-01

    We introduce a new non-labeling high resolution microscopy method for cellular imaging. This method called SSPM (Scanning Surface Plasmon Microscopy) pushes down the resolution limit of surface plasmon resonance imaging (SPRi) to sub-micronic scales. High resolution SPRi is obtained by the surface plasmon lauching with a high numerical aperture objective lens. The advantages of SPPM compared to other high resolution SPRi's rely on three aspects; (i) the interferometric detection of the back reflected light after plasmon excitation, (ii) the twodimensional scanning of the sample for image reconstruction, (iii) the radial polarization of light, enhancing both resolution and sensitivity. This microscope can afford a lateral resolution of - 150 nm in liquid environment and - 200 nm in air. We present in this paper images of IMR90 fibroblasts obtained with SSPM in dried environment. Internal compartments such as nucleus, nucleolus, mitochondria, cellular and nuclear membrane can be recognized without labelling. We propose an interpretation of the ability of SSPM to reveal high index contrast zones by a local decomposition of the V (Z) function describing the response of the SSPM.

  13. Surface Plasmons in Coaxial Metamaterial Cables

    Science.gov (United States)

    Kushwaha, Manvir S.; Djafari-Rouhani, Bahram

    2013-07-01

    Thanks to Victor Veselago for his hypothesis of negative index of refraction, meta-materials — engineered composites — can be designed to have properties difficult or impossible to find in nature: they can have both electrical permittivity (ɛ) and magnetic permeability (μ) simultaneously negative. The metamaterials — henceforth negative-index materials (NIMs) — owe their properties to subwavelength structure rather than to their chemical composition. The tailored electromagnetic response of the NIMs has had a dramatic impact on classical optics: they are becoming known to have changed many basic notions related with electromagnetism. The present article is focused on gathering and reviewing fundamental characteristics of plasmon propagation in coaxial cables fabricated of the right-handed medium (RHM) (with ɛ > 0, μ > 0) and the left-handed medium (LHM) (with ɛ leaving the fiber environment, with precise control over the polarization rotation and pulse broadening. This review also covers briefly the nomenclature, classification, potential applications, and the limitations (related, for example, to the inherent losses) of the NIMs and their impact on classical electrodynamics in general, and in designing the cloaking devices in particular. A recent surge in efforts on invisibility and the cloaking devices seems to have spoiled the researchers worldwide: proposals include not only a way to hide an object without having to wrap the cloak around it, but also to replace a given object with another, thus adding to the deception even further! All this is attributed as much to the fundamental as to the practical advances made in the fabrication and characterization of NIMs. The article concludes briefly addressing the anticipated implications of plasmon observation in the multicoaxial cables and suggesting future dimensions worth adding to the problem. The background provided is believed to make less formidable the task of future writers of reviews in this

  14. Bend loss in surface plasmon polariton band-gap structures

    DEFF Research Database (Denmark)

    Bozhevolnyi, S.I.; Volkov, V.S.; Leosson, Kristjan;

    2001-01-01

    Using near-field optical microscopy, we investigate propagation of surface plasmon polaritons (SPPs) excited in the wavelength range of 720-830 nm at a corrugated gold-film surface with areas of 200-nm-wide and 45-nm-high scatterers arranged in a 410-nm-period triangular lattice containing line...... the bend angle. We also demonstrate splitting and combining of two SPP line-defect modes in a 20-mum-long Y junction....

  15. Ultrafast switching of surface plasmonic conditions in nonplasmonic metals

    Science.gov (United States)

    Bévillon, E.; Colombier, J. P.; Recoules, V.; Zhang, H.; Li, C.; Stoian, R.

    2016-04-01

    We demonstrate that ultrafast carrier excitation can drastically affect electronic structures in nonplasmonic metals and determine a transient, brief surface plasmonic state, potentially creating the conditions for a plasmonic switch. The initial state can be related to d -band partial filling and splitting, with a pseudo-band-gap accommodating the chemical potential. This determines a quasi-resonant-like spectral behavior of the optical constants for pumping carriers across the d -band pseudogap, i.e., visible frequencies. The relation between real and imaginary parts of the refractive index does not fulfill surface plasmonic conditions in the visible photon range. Using first-principles molecular dynamics and Kubo-Greenwood formalism for laser-excited tungsten we show that carrier heating mobilizes d electrons into collective inter- and intraband transitions leading to a sign flip in the imaginary optical conductivity, activating plasmonic properties for the initial nonplasmonic phase. The drive for the laser-induced optical evolution in this case does not rely on a variation of the free electron number but can be visualized as an increasingly damped character of the quasiresonance at visible frequencies. Here laser heating determines an energy-dependent degree of occupation with broadening profiles. The subsequent evolution of optical indices for the excited material is confirmed by time-resolved ultrafast ellipsometry. The large optical tunability extends the existence spectral domain of surface plasmons in ranges typically claimed in laser self-organized nanostructuring. Nonequilibrium heating is thus a strong factor for engineering optical control of evanescent excitation waves, particularly important in laser nanostructuring strategies.

  16. Localized surface plasmons in metal nanostructures: interaction with fluorophors

    International Nuclear Information System (INIS)

    Full text: Metal nanostructures show shape-dependent localized surface plasmon resonances which cause strong optical absorption and an enhanced optical near field close to their surface. For dye molecules in that near field zone this field enhancement modifies the local density of states, leading to modified optical behaviour of the molecule. Concerning the electronic de-excitation process, the corresponding radiative and non-radiative de-excitation rates can be enhanced by orders of magnitude, in contrast to molecules interacting with flat metal surfaces where only the non-radiative rate is essentially affected. In the case of a well overlapping plasmon resonance with the molecule's fluorescence emission frequency the interacting molecules show a dramatically shortened fluorescence lifetime and an enhanced signal amplitude. (author)

  17. Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation

    International Nuclear Information System (INIS)

    Analyzing the polarization of a circularly polarized light is a critical issue. We have fabricated a spiral nano-structure on the Au film by using focused ion beam etching technique. The fabricated structure can be used as a plasmonic circular polarization analyzer. By designing the relative orientation of two nano-apertures in the spiral structural unit, the propagation direction of the surface plasmon polaritons excited by circularly polarized light of opposite handedness can be controlled. Therefore, the spiral structure could be used to accurately determine the helicity of the excited circularly polarized light. Based on the results of scanning near-field optical microscopy, the obtained circular polarization extinction ratio of this structure was above 500. This structure can be used for a flexible detecting size and a very wide spectrum

  18. Advanced Methods of Observing Surface Plasmon Polaritons and Magnons

    Science.gov (United States)

    Moghaddam, Abolghasem Mobaraki

    Available from UMI in association with The British Library. Requires signed TDF. The primary objectives of this thesis are the investigation of the theoretical and experimental aspects of the design and construction of advanced techniques for the excitation of surface plasmon-polaritons, surface magneto -plasmon-polaritons and surface magnons. They involve on -line observation of these phenomena and to accomplish these goals, analytical studies of the characteristic behaviour of these phenomena have been undertaken. For excitations of surface plasmon- and surface magneto-plasmon-polaritons the most robust and conventional configuration, namely Prism-Medium-Air, coupled to a novel angle scan (prism spinning) method was employed. The system to be described here can automatically measure the reflectivity of a multilayer system over a range of angles that includes the resonance angle in an Attenuated Total Reflection (ATR) experiment. The computer procedure that controls the system is quite versatile so that it allows any right-angle prism of different angle or refractive index to be utilised. It also provided probes to check for optical alignment within the system. Moreover, it performs the angular scan many times and then averages the results in order to reduce the environmental and other possible sources of noise within the system. The mechanical side of the system is unique and could eventually be adopted as a marketable piece of equipment. It consists of a turntable for holding the prism-sample assembly and a drive motor in conjunction with a servo-potentiometer whose output not only operates the turntable but also sends a signal to a computer to measure accurately its position. The interface unit enables a computer to control automatically an angular scan ATR experiment for measuring the resonance reflectivity spectrum of a multilayer system. The interface unit uses an H-bridge switch formed by four bipolar power transistor and two small signal MOSFETs to convert

  19. Asymmetric transmission of surface plasmon polaritons on planar gratings

    CERN Document Server

    Kuzmiak, Vladimir

    2016-01-01

    We describe a surface structure consisting of a metal-air interface where the metallic part consists of two metallic segments with a periodic modulation of the interface between them. Such a structure possesses a different transmissivity for a surface plasmon polariton incident on it from one side of it than it has for a surface plasmon polariton incident on it from the opposite side. This asymmetric transmission of a surface plasmon polariton is based on the suppression of the zero-order Bragg beam which, for a certain value of the modulation depth, is not transmitted through the structure, while the diffraction efficiencies of the +1 and -1 Bragg beams can be modified by varying the period of grating and/or the angle of incidence. For a certain range of the incidence angle one can observe asymmetry in transmittance for the -1 mode while the +1 mode is completely suppressed. By varying the material and geometrical parameters of the diffractive structure one can control the contrast transmission that characte...

  20. Surface plasmon resonance under conditions of electromagnetically induced transparency

    CERN Document Server

    Du, Chunguang

    2011-01-01

    A scheme for a surface plasmon resonance system under conditions of electromagnetically induced transparency (EIT) is proposed. The system is composed of three layers: a prism, a thin metal film, and a hybrid dielectric consisting of EIT atoms and a background substance. A probe and a coupling laser beam are input. Corresponding analytical formulas are derived for the cases when one or both of the laser beams excite surface plasmon polaritons at the metal/dielectric interface. Under resonance conditions, an extremely sharp dip appears in the reflectivity-frequency spectrum of the probe field, revealing new properties of two-dimensional EIT. The reflectivity is extremely sensitive to shifts in the laser frequencies and atomic levels, and to variations of permittivity of the substrate. This EIT-SPR system may to be used for novel magnetometers and biosensors.

  1. 248 nm imaging photolithography assisted by surface plasmon polariton interference

    Science.gov (United States)

    Tian, Man-man; Mi, Jia-jia; Shi, Jian-ping; Wei, Nan-nan; Zhan, Ling-li; Huang, Wan-xia; Zuo, Ze-wen; Wang, Chang-tao; Luo, Xian-gang

    2014-01-01

    A new photolithography technique for 248 nm based on the interference of surface plasmon waves is proposed and demonstrated by using computer simulations. The basic structure consists of surface plasmon polariton (SPP) interference mask and multi-layer film superlens. Using the amplification effect of superlens on evanescent wave, the near field SPP interference pattern is imaged to the far field, and then is exposed on photo resist (PR). The simulation results based on finite difference time domain (FDTD) method show that the full width at half maximum (FWHM) of the interference pattern is about 19 nm when the p-polarization light from 248 nm source is vertically incident to the structure. Meanwhile, the focal depth is 150 nm for negative PR and 60 nm for positive PR, which is much greater than that in usual SPP photolithography.

  2. Detection of Penicillin via Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; MU Ying; JIN Wei; YANG Meng-chao; ZHANG Ti-qiang; ZHOU Chao; XIE Fei; SONG Qi; REN Hao; JIN Qin-han

    2012-01-01

    A method of using Au colloid to capture the decomposed product of penicillin,penicillamine,on a surface plasmon resonance(SPR) biosensor for the quantitative determination of penicillin was developed.Based on the decomposition of penicillin to generate penicillamine and penilloaldehyde,a high seositive biosensor for detecting penicillin was also developed.In our experiment,it was penicillamine rather than penicillin that has been measured.This is because penicillamine contains a functional group that makes it self-assembling on Au colloid to increase the molecular weight so as to improve the surface plasmon resonance signal.On a UV-Vis spectrophotometer,a high concentration of penicilliamine-Au complex was determined,indicating that penicillamine was already well combined with Au colloid.The method,using the combination of Au colloid with penicillamine,proved to detect penicillin.

  3. Efficiency of local surface plasmon polariton excitation on ridges

    DEFF Research Database (Denmark)

    Radko, I.P.; Bozhevolnyi, S.I.; Brucoli, G.;

    2008-01-01

    The issue of efficient local coupling of light into surface plasmon polariton (SPP) modes is an important concern in miniaturization of plasmonic components. Here we present experimental and numerical investigations of efficiency of local SPP excitation on gold ridges of rectangular profile...... positioned on a gold film. The excitation is accomplished by illuminating the metal surface normally with a focused laser beam. Wavelength dependence and dependence of the efficiency on geometrical parameters of ridges are examined. Using leakage radiation microscopy, the efficiency of ˜20% is demonstrated...... experimentally. Numerical simulations based on Green’s tensor approach are in good agreement with the experiment and allow suggesting an optimization of parameters for improving the efficiency of SPP excitation....

  4. Simultaneous surface plasmon resonance and x-ray absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Serrano, A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Rodriguez de la Fuente, O. [Departamento de Fisica de Materiales, Universidad Complutense de Madrid, 28040 Madrid (Spain); Collado, V.; Rubio-Zuazo, J.; Castro, G. R. [SpLine, Spanish CRG Beamline at the ESRF, F-38043 Grenoble, Cedex 09, France and Instituto de Ciencia de Materiales de Madrid, (ICMM-CSIC), Cantoblanco, 28049 Madrid (Spain); Monton, C. [Department of Physics and Center for Advanced Nanoscience, University of California San Diego, La Jolla, California 92093 (United States); Garcia, M. A. [Instituto de Ceramica y Vidrio (ICV-CSIC), Cantoblanco, 28049 Madrid (Spain); IMDEA Nanociencia, Cantoblanco, 28049 Madrid (Spain)

    2012-08-15

    We present an experimental setup for the simultaneous measurement of surface plasmon resonance (SPR) and x-ray absorption spectroscopy (XAS) on metallic thin films at a synchrotron beamline. The system allows measuring in situ and in real time the effect of x-ray irradiation on the SPR curves to explore the interaction of x-rays with matter. It is also possible to record XAS spectra while exciting SPR in order to study changes in the films induced by the excitation of surface plasmons. Combined experiments recording simultaneously SPR and XAS curves while scanning different parameters can be also carried out. The relative variations in the SPR and XAS spectra that can be detected with this setup range from 10{sup -3} to 10{sup -5}, depending on the particular experiment.

  5. An electrochemical surface plasmon resonance imaging system targeting cell analysis

    Science.gov (United States)

    Zhang, L. L.; Chen, X.; Wei, H. T.; Li, H.; Sun, J. H.; Cai, H. Y.; Chen, J. L.; Cui, D. F.

    2013-08-01

    This paper presents an electrochemical-surface plasmon resonance imaging (EC-SPRI) system, enabling the characterization of optical and electrical properties of cells, simultaneously. The developed surface plasmon resonance (SPR) imaging system was capable of imaging micro cavities with a dimension of 10 μm × 10 μm and differentiated glycerol solutions with a group of refractive indices (RIs). Furthermore, the EC-SPRI system was used to image A549 cells, suggesting corresponding RI and morphology changes during the cell death process. In the end, electrochemical and SPR methods were used in combination, recording oxidation peaks of A549 cells in the cyclic voltage curves and SPR response unit increase, simultaneously.

  6. Research of photolithography technology based on surface plasmon

    Institute of Scientific and Technical Information of China (English)

    Li Hai-Hua; Chen Jian; Wang Qing-Kang

    2010-01-01

    This paper demonstrates a new process of the photolithography technology,used to fabricate simply fine patterns,by employing surface plasmon character.The sub-wavelength periodic silica structures with uniform silver film are used as the exposure mask.According to the traditional semiconductor process,the grating structures are fabricated at exposing wavelength of 436 nm.At the same time,it provides additional and quantitative support of this technique based on the finite-difference time-domain method.The results of the research show that surface plasmon characteristics of metals can be used to increase the optical field energy distribution differences through the silica structures with silver film,which directly impact on the exposure of following photosensitive layer in different regions.

  7. High Resolution Quantitative Angle-Scanning Widefield Surface Plasmon Microscopy

    Science.gov (United States)

    Tan, Han-Min; Pechprasarn, Suejit; Zhang, Jing; Pitter, Mark C.; Somekh, Michael G.

    2016-02-01

    We describe the construction of a prismless widefield surface plasmon microscope; this has been applied to imaging of the interactions of protein and antibodies in aqueous media. The illumination angle of spatially incoherent diffuse laser illumination was controlled with an amplitude spatial light modulator placed in a conjugate back focal plane to allow dynamic control of the illumination angle. Quantitative surface plasmon microscopy images with high spatial resolution were acquired by post-processing a series of images obtained as a function of illumination angle. Experimental results are presented showing spatially and temporally resolved binding of a protein to a ligand. We also show theoretical results calculated by vector diffraction theory that accurately predict the response of the microscope on a spatially varying sample thus allowing proper quantification and interpretation of the experimental results.

  8. Surface Plasmon Waves on noble metals at Optical Wavelengths

    Directory of Open Access Journals (Sweden)

    Niladri Pratap Maity

    2011-05-01

    Full Text Available In this paper the variation of the propagation constant, the attenuation coefficient, penetration depth inside the metal and the dielectric has been evaluated. The propagation characteristics of Surface Plasmon Waves (SPWs which exists on noble metals like gold (Au, silver (Ag and aluminium (Al due to the formation of Surface Plasmon Polaritons (SPPs, have been evaluated theoretically and simulated. It has been found that highly conducting metals Au and Ag provide a strong confinement to the SPWs than Al at optical frequencies. The comparative study reveals that metal having higher conductivity can support a more confined SPW, having a lower penetration depth than metals of lower conductivity at terahertz frequencies when its dielectric constant assumes a negative value.

  9. Surface plasmon resonance sensors based on multi-diffraction gratings

    Czech Academy of Sciences Publication Activity Database

    Adam, Pavel; Dostálek, Jakub; Telezhniková, Olga; Homola, Jiří

    Bellingham: SPIE - The International Society for Optical Engineering , 2007. s. 6585.75--. [SPIE Europe's International Congress on Optics and Optoelectronics - ICOO 2007. 16.04.2007-19.04.2007, Prague] R&D Projects: GA AV ČR(CZ) IAA400500507 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmons * spectroscopy * biosensors * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  10. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Krasová, B.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    B74, 1/3 (2001), s. 100-105. ISSN 0925-4005. [European Conference on Optical Chemical Sensors and Biosensors EUROPT(R)ODE /5./. Lyon-Villeurbanne, 16.04.2000-19.04.2000] R&D Projects: GA ČR GA102/99/0549 Institutional research plan: CEZ:AV0Z2067918 Keywords : optical sensors * surface plasmon resonance * biosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  11. Detection of foodborne pathogens using surface plasmon resonance biosensors

    Czech Academy of Sciences Publication Activity Database

    Koubová, Vendula; Brynda, Eduard; Karasová, L.; Škvor, J.; Homola, Jiří; Dostálek, Jakub; Tobiška, Petr; Rošický, Jiří

    2001-01-01

    Roč. 74, 1/3 (2001), s. 100-105. ISSN 0925-4005 R&D Projects: GA ČR GA102/99/0549; GA AV ČR KSK2055603 Institutional research plan: CEZ:AV0Z4050913 Keywords : optical sensors * surface plasmon resonance * immunosensors Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 1.440, year: 2001

  12. Surface plasmon polariton modulator with optimized active layer

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Lavrinenko, Andrei

    2012-01-01

    A multilayered waveguide, which supports surface plasmon polaritons, is considered as an absorption modulator. The waveguide core consists of a silicon nitride layer and ultrathin layer with the varied carrier density embedded between two silver plates, which also serve as electrodes. Under apply...... from the pattern size and filling factor of the active material are analyzed for tuned permittivity of the ITO layer. Direct simulation of the device functionality validates optimization design....

  13. Fragment Based Drug Discovery with Surface Plasmon Resonance Technology

    OpenAIRE

    Nordström, Helena

    2013-01-01

    Fragment based drug discovery (FBDD) has been applied to two protease drug targets, MMP-12 and HIV-1 protease. The primary screening and characterization of hit fragments were performed with surface plasmon resonance -technology. Further evaluation of the interaction was done by inhibition studies and in one case with X-ray crystallography. The focus of the two projects was different. Many MMP inhibitors contain a strong zinc chelating group, hydroxamate, interacting with the catalytic zinc a...

  14. Monitoring RAYT activity by surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Bocková, Markéta; Špringer, Tomáš; Nečasová, Iva; Nunvář, Jaroslav; Schneider, Bohdan; Homola, Jiří

    2015-01-01

    Roč. 407, č. 14 (2015), s. 3985-3993. ISSN 1618-2642 R&D Projects: GA ČR GAP305/12/1801 Grant ostatní: GA MŠk(CZ) CZ.1.05/1.1.00/02.0109 Institutional support: RVO:67985882 ; RVO:86652036 Keywords : Surface plasmon resonance * Biosensor * REP-associated tyrosine transposase Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering; EB - Genetics ; Molecular Biology (BTO-N)

  15. Surface plasmon resonance imaging for parallelized detection of protein biomarkers

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Párová, Lucie; Vaisocherová, Hana; Homola, Jiří

    Vol. 7356. Bellingham, Washington : SPIE, 2009 - (Baldini, F.; Homola, J.; Lieberman, R.), 73560D1-73560D8 ISBN 9780819476302. ISSN 0277-786X. - (Proceedings of SPIE. 7356). [Optical Sensors 2009. Praha (CZ), 20.04.2009-22.04.2009] R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance imaging * Biosensor * Protein detection Subject RIV: JB - Sensors, Measurment, Regulation

  16. Design of Matched Absorbing Layers for Surface Plasmon-Polaritons

    Directory of Open Access Journals (Sweden)

    Sergio de la Cruz

    2012-01-01

    Full Text Available We describe a procedure for designing metal-metal boundaries for the strong attenuation of surface plasmon-polaritons without the introduction of reflections or scattering effects. Solutions associated with different sets of matching materials are found. To illustrate the results and the consequences of adopting different solutions, we present calculations based on an integral equation formulation for the scattering problem and the use of a nonlocal impedance boundary condition.

  17. Portable surface plasmon resonance biosensor to detect micrornas

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Zhang, S. J.; Galas, D.; Wang, K.; Homola, Jiří

    Vol. XConference on Optical Chemical Sensors and Biosensors. Praha : Institute of Photonics and Electronics AS CR, v.v.i, 2010 - (Homola, J.). s. 208-208 ISBN 978-80-86269-20-7. [EUROPT(R)ODE X – X.Conference on Optical Chemical Sensors and Biosensors. 28.03.2010-31.3.2010, Praha] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * microRNA * cancer diagnostics Subject RIV: JB - Sensors, Measurment, Regulation

  18. A Microring Temperature Sensor Based on the Surface Plasmon Wave

    Directory of Open Access Journals (Sweden)

    Wenchao Li

    2015-01-01

    Full Text Available A structure of microring sensor suitable for temperature measurement based on the surface plasmon wave is put forward in this paper. The sensor uses surface plasmon multilayer waveguiding structure in the vertical direction and U-shaped microring structure in the horizontal direction and utilizes SOI as the thermal material. The transfer function derivation of the structure of surface plasmon microring sensor is according to the transfer matrix method. While the change of refractive index of Si is caused by the change of ambient temperature, the effective refractive index of the multilayer waveguiding structure is changed, resulting in the drifting of the sensor output spectrum. This paper focuses on the transmission characteristics of multilayer waveguide structure and the impact on the output spectrum caused by refractive index changes in temperature parts. According to the calculation and simulation, the transmission performance of the structure is stable and the sensitivity is good. The resonance wavelength shift can reach 0.007 μm when the temperature is increased by 100 k and FSR can reach about 60 nm. This structure achieves a high sensitivity in the temperature sense taking into account a wide range of filter frequency selections, providing a theoretical basis for the preparation of microoptics.

  19. Surface plasmon polariton analogue to Young's double-slit experiment.

    Science.gov (United States)

    Zia, Rashid; Brongersma, Mark L

    2007-07-01

    When a light wave strikes a metal film it can, under appropriate conditions, excite a surface plasmon polariton (SPP)--a surface electromagnetic wave that is coupled to the free electrons in the metal. Such SPPs are involved in a wide range of phenomena, including nanoscale optical waveguiding, perfect lensing, extraordinary optical transmission, subwavelength lithography and ultrahigh-sensitivity biosensing. However, before the full potential of technology based on SPPs (termed 'plasmonics') can be realized, many fundamental questions regarding the interaction between light and matter at the nanoscale need to be answered. For over 200 years, Young's double-slit experiment has been a valuable pedagogical tool for demonstrating the wave nature of light. Here, we perform a double-slit experiment with SPPs to reveal the strong analogy between SPP propagation along the surface of metallic structures and light propagation in conventional dielectric components (such as glass waveguides). This allows us to construct a general framework to describe the propagation, diffraction and interference of SPPs. It also suggests that there is an effective diffraction limit for the lateral confinement of SPPs on metal stripe waveguides, and justifies the use of well-developed concepts from conventional optics and photonics in the design of new plasmonic devices. PMID:18654327

  20. Tetrodotoxin Detection by a Surface Plasmon Resonance Sensor in Pufferfish Matrices and Urine

    Directory of Open Access Journals (Sweden)

    Allen D. Taylor

    2011-01-01

    Full Text Available Tetrodotoxin (TTX poisoning is most commonly associated with consumption of pufferfish. TTX is a low molecular weight (~319 Da neurotoxin that selectively blocks voltage-sensitive Na+-gated ion channels. The standard method accepted worldwide for monitoring TTX toxicity in food matrices is the mouse bioassay. Ethical concerns from live animal testing, low sample throughput, and analytical inaccuracies have led to the need for an alternative method. We have previously established that surface plasmon resonance (SPR sensors can quantify TTX in aqueous buffer samples by an antibody-based inhibition assay. In this paper, we report the extension of the assay for the detection of TTX in both clinical- and food-relevant matrices. The assay was optimized for application to three relevant complex matrices: pufferfish liver extract, pufferfish muscle extract, and human urine. Matrix effects are discussed and calibration curves are presented. Naturally contaminated pufferfish liver and muscle extracts were analyzed by the SPR method, and the data is compared to liquid-chromatography electrospray-ionization multiple reactions monitoring mass spectrometry (LC/ESI/MRM/MS data. Ten samples, including three from a poisoning incident, two control monkfish samples, and five toxic pufferfish samples, were analyzed using this method, and the data is compared to LC/ESI/MRM/MS analysis of the samples.

  1. Optimization of a nanotip on a surface for the ultrafast probing of propagating surface plasmons.

    Science.gov (United States)

    Ahn, B; Schötz, J; Okell, W A; Süßmann, F; Förg, B; Kim, S C; Kling, M F; Kim, D

    2016-01-11

    We theoretically analyze a method for characterizing propagating surface plasmon polaritons (SPPs) on a thin gold film. The SPPs are excited by few-cycle near-infrared pulses using Kretschmann coupling, and a nanotip is used as a local field sensor. This geometry removes the influence of the incident excitation laser from the near fields, and enhances the plasmon electric field strength. Using finite-difference-time-domain studies we show that the geometry can be used to measure SPP waveforms as a function of propagation distance. The effects of the nanotip shape and material on the field enhancement and plasmonic response are discussed. PMID:26832240

  2. Nano-Scale Electrical Transducers of Surface Plasmons for Integrated Biosensing

    OpenAIRE

    Neutens, Pieter; De Vlaminck, Iwijn; Lozenko, Sergii; Lagae, Liesbet; Van Dorpe, Pol

    2012-01-01

    Recent developments in fabrication, characterization, and understanding of local surface plasmon resonances and surface plasmon waveguides have fuelled the development of a new generation of surface plasmon based biosensors, mainly based on local refractive index sensing and surface enhanced Raman scattering [1, 2]. Although the actual sensor has scaled to the nanoscale, the system still requires bulky optical components, such as light sources, lenses, objectives, and detectors. Integrating s...

  3. Theory of surface plasmon generation at nanoslit apertures

    CERN Document Server

    Lalanne, P; Rodier, J C

    2005-01-01

    In this letter, we study the scattering of light by a single subwavelength slit in a metal screen. In contrast to previous theoretical works, we provide a microscopic description of the scattering process by emphasizing the generation of surface plasmons at the slit apertures. The analysis is supported by a rigorous formalism based on a normal-mode-decomposition technique and by a semi-analytical model which provides accurate formulae for the plasmonic generation strengths. The generation is shown to be fairly efficient for metals with a low conductivity, like gold in the visible regime. Verification of the theory is also shown by comparison with recent experimental data [H.F. Schouten et al., Phys. Rev. Lett. 94, 053901 (2005)].

  4. Asymmetric excitation of surface plasmons by dark mode coupling.

    Science.gov (United States)

    Zhang, Xueqian; Xu, Quan; Li, Quan; Xu, Yuehong; Gu, Jianqiang; Tian, Zhen; Ouyang, Chunmei; Liu, Yongmin; Zhang, Shuang; Zhang, Xixiang; Han, Jiaguang; Zhang, Weili

    2016-02-01

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities. PMID:26989777

  5. Inelastic electron holography: First results with surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Roeder; Hannes, Lichte [Triebenberg Labor, Institute for Structure Physics, TU Dresden, 01062 Dresden (Germany)

    2011-07-01

    Inelastic interaction and wave optics seem to be incompatible in that inelastic processes destroy coherence, which is the fundamental requirement for holography. In special experiments it is shown that energy transfer larger than some undoubtedly destroys coherence of the inelastic electron with the elastic remainder. Consequently, the usual inelastic processes, such as phonon-, plasmon- or inner shell-excitations with energy transfer of several out to several, certainly produce incoherence with the elastic ones. However, it turned out that within the inelastic wave, *newborn* by the inelastic process, there is a sufficiently wide area of coherence for generating *inelastic holograms*. This is exploited to create holograms with electrons scattered at surface-plasmons, which opens up quantum mechanical investigation of these inelastic processes.

  6. Asymmetric excitation of surface plasmons by dark mode coupling

    KAUST Repository

    Zhang, X.

    2016-02-19

    Control over surface plasmons (SPs) is essential in a variety of cutting-edge applications, such as highly integrated photonic signal processing systems, deep-subwavelength lasing, high-resolution imaging, and ultrasensitive biomedical detection. Recently, asymmetric excitation of SPs has attracted enormous interest. In free space, the analog of electromagnetically induced transparency (EIT) in metamaterials has been widely investigated to uniquely manipulate the electromagnetic waves. In the near field, we show that the dark mode coupling mechanism of the classical EIT effect enables an exotic and straightforward excitation of SPs in a metasurface system. This leads to not only resonant excitation of asymmetric SPs but also controllable exotic SP focusing by the use of the Huygens-Fresnel principle. Our experimental findings manifest the potential of developing plasmonic metadevices with unique functionalities.

  7. The localized surface plasmon resonances based on a Bragg reflector

    Science.gov (United States)

    Wang, Jie; Liu, Yumin; Yu, Zhongyuan; Ye, Chunwei; Lv, Hongbo; Shu, Changgan

    2014-09-01

    In this paper, we present the theoretical analysis on how the wavelength of the localized surface plasmon resonances of gold nanoparticle can lead shift for the resonance wavelength. In our results, we calculate the scattering cross-section, the absorption cross-section and the field enhancement due to the nanoparticle. Numerical simulation were done using the finite element method (FEM). The work that we do here is different from the previous work because we use the Bragg reflector as a substrate. The Bragg reflector has a property of high reflectivity in some certain frequency bandwidth because of its periodic structure. The coherence interference of the Bragg reflector contributes to the plasmon resonances and results in some special character for a wide variety application, from sensing to photovoltaic. The periodic number of the Bragg reflector substrate and shapes of the nanoparticles are also discussed that result in a shift of the resonance wavelength.

  8. Efficient coupling of light to graphene plasmons by compressing surface polaritons with tapered bulk materials.

    Science.gov (United States)

    Nikitin, A Yu; Alonso-González, P; Hillenbrand, R

    2014-05-14

    Graphene plasmons promise exciting nanophotonic and optoelectronic applications. Owing to their extremely short wavelengths, however, the efficient coupling of photons to propagating graphene plasmons-critical for the development of future devices-can be challenging. Here, we propose and numerically demonstrate coupling between infrared photons and graphene plasmons by the compression of surface polaritons on tapered bulk slabs of both polar and doped semiconductor materials. Propagation of surface phonon polaritons (in SiC) and surface plasmon polaritons (in n-GaAs) along the tapered slabs compresses the polariton wavelengths from several micrometers to around 200 nm, which perfectly matches the wavelengths of graphene plasmons. The proposed coupling device allows for a 25% conversion of the incident energy into graphene plasmons and, therefore, could become an efficient route toward graphene plasmon circuitry. PMID:24773123

  9. Magnetic activity of surface plasmon resonance using dielectric magnetic materials fabricated on quartz glass substrate

    Science.gov (United States)

    Narushima, Kazuki; Ashizawa, Yoshito; Brachwitz, Kerstin; Hochmuth, Holger; Lorenz, Michael; Grundmann, Marius; Nakagawa, Katsuji

    2016-07-01

    The magnetic activity of surface plasmons in Au/MFe2O4 (M = Ni, Co, and Zn) polycrystalline bilayer films fabricated on a quartz glass substrate was studied for future magnetic sensor applications using surface plasmon resonance. The excitation of surface plasmons and their magnetic activity were observed in all investigated Au/MFe2O4 films. The magnetic activity of surface plasmons of the polycrystalline Au/NiFe2O4 film was larger than those of the other polycrystalline Au/MFe2O4 films, the epitaxial NiFe2O4 film, and metallic films. The large magnetic activity of surface plasmons of the polycrystalline film is controlled by manipulating surface plasmon excitation conditions and magnetic properties.

  10. Plasmonics

    DEFF Research Database (Denmark)

    Szoplik, Tomasz; Lavrinenko, Andrei

    2013-01-01

    This topical issue of Photonics Letters of Poland is devoted to Plasmonics. A series of 12 papers deals both with technology, as well as pure and applied physics. The other three papers are regular contributions.......This topical issue of Photonics Letters of Poland is devoted to Plasmonics. A series of 12 papers deals both with technology, as well as pure and applied physics. The other three papers are regular contributions....

  11. Exciting Graphene Surface Plasmon Polaritons through Light and Sound Interplay

    KAUST Repository

    Farhat, Mohamed

    2013-12-05

    We propose a concept that allows for efficient excitation of surface plasmon spolaritons (SPPs) on a thin graphene sheet located on a substrate by an incident electromagnetic field. Elastic vibrations of the sheet, which are generated by a flexural wave, act as a grating that enables the electromagnetic field to couple to propagating graphene SPPs. This scheme permits fast on-off switching of the SPPs and dynamic tuning of their excitation frequency by adjusting the vibration frequency (grating period). Potential applications include single molecule detection and enhanced control of SPP trajectories via surface wave patterning of graphene metasurfaces. Analytical calculations and numerical experiments demonstrate the practical applicability of the proposed concept.

  12. Coherent control of surface plasmon polariton mediated optical transmission

    International Nuclear Information System (INIS)

    We demonstrate the coherent control of the surface plasmon polariton mediated optical transmission through arrays of nano-holes in a gold film on a garnet substrate by a standing surface acoustic wave (SAW) induced by a sequence of ultrashort laser pulses. The transmission of the pump pulse through the holes results in a periodic pattern of shock-waves leading, via interference, to a standing SAW. The resulting modulation frequency is determined by the periodicity of the arrays. The polarization of the transmitted light is modulated as well via a strain-induced linear dichroism

  13. Coherent control of surface plasmon polariton mediated optical transmission

    Energy Technology Data Exchange (ETDEWEB)

    Guyader, L Le; Kirilyuk, A; Rasing, Th [IMM, Radboud University Nijmegen, Toernooiveld 1, 6525ED Nijmegen (Netherlands); Wurtz, G A; Zayats, A V [Centre for Nanostructured Media, IRCEP, The Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom); Alkemade, P F A [Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft (Netherlands); Smolyaninov, I I [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD (United States)], E-mail: l.leguyader@science.ru.nl

    2008-10-07

    We demonstrate the coherent control of the surface plasmon polariton mediated optical transmission through arrays of nano-holes in a gold film on a garnet substrate by a standing surface acoustic wave (SAW) induced by a sequence of ultrashort laser pulses. The transmission of the pump pulse through the holes results in a periodic pattern of shock-waves leading, via interference, to a standing SAW. The resulting modulation frequency is determined by the periodicity of the arrays. The polarization of the transmitted light is modulated as well via a strain-induced linear dichroism.

  14. Application of surface plasmons to biological and chemical sensors

    International Nuclear Information System (INIS)

    Surface plasmons (SPs) are a collective normal mode of electrons localized at a metallic surface. It has been used for biological sensors since 1990s. This is because it has the following specific characters: (a) The resonance condition is sensitive to the surrounding dielectric constants (refractive indexes) and (b) Highly enhanced optical-electric-fields are produced adjacent to SPs. A brief introduction is given on the principle of the biological and chemical sensors based on SPs for the readers working in the fields other than SPs, followed by a review on the recent developments of the biological and chemical sensors. (author)

  15. Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays

    OpenAIRE

    Papaioannou, E. Th.; Kapaklis, Vassilios; Melander, Emil; Hjörvarsson, Björgvin; Pappas, Spiridon D.; Patoka, Piotr; Giersig, Michael; Fumagalli, Paul; García-Martín, Antonio; Ctistis, Georgios

    2011-01-01

    The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence o...

  16. A multi-spectral and polarization-selective surface-plasmon resonant mid-infrared detector

    OpenAIRE

    Rosenberg, Jessie; Shenoi, Rajeev V.; Vandervelde, Thomas E.; Krishna, Sanjay; Painter, Oskar

    2009-01-01

    We demonstrate a multi-spectral polarization sensitive mid-infrared dots-in-a-well (DWELL) photodetector utilizing surface-plasmonic resonant elements, with tailorable frequency response and polarization selectivity. The resonant responsivity of the surface-plasmon detector shows an enhancement of up to 5 times that of an unpatterned control detector. As the plasmonic resonator involves only surface patterning of the top metal contact, this method is independent of light-absorbing material an...

  17. A multispectral and polarization-selective surface-plasmon resonant midinfrared detector

    OpenAIRE

    Rosenberg, Jessie; Shenoi, Rajeev V.; Vandervelde, Thomas E.; Krishna, Sanjay; Painter, Oskar

    2009-01-01

    We demonstrate a multispectral polarization sensitive midinfrared dots-in-a-well photodetector utilizing surface-plasmonic resonant elements, with tailorable frequency response and polarization selectivity. The resonant responsivity of the surface-plasmon detector shows an enhancement of up to five times that of an unpatterned control detector. As the plasmonic resonator involves only surface patterning of the top metal contact, this method is independent of light-absorbing material and can e...

  18. Subwavelength propagation and localization of light using surface plasmons: A brief perspective

    Indian Academy of Sciences (India)

    G V Pavan Kumar; Danveer Singh; Partha Pratim Patra; Arindam Dasgupta

    2014-01-01

    Surface plasmons at the metal–dielectric interface have emerged as an important candidate to propagate and localize light at subwavelength scales. By tailoring the geometry and arrangement of metallic nanoarchitectures, propagating and localized surface plasmons can be obtained. In this brief perspective, we discuss: (1) how surface plasmon polaritons (SPPs) and localized surface plasmons (LSPs) can be optically excited in metallic nanoarchitectures by employing a variety of optical microscopy methods; (2) how SPPs and LSPs in plasmonic nanowires can be utilized for subwavelength polarization optics and single-molecule surface-enhanced Raman scattering (SERS) on a photonic chip; and (3) how individual plasmonic nanowire can be optically manipulated using optical trapping methods.

  19. Surface plasmon resonance effect in helical core fibers

    Science.gov (United States)

    Napiorkowski, Maciej; Urbanczyk, Waclaw

    2016-08-01

    Using a rigorous modeling method based on transformation optics formalism, we have studied, for the first time to our knowledge, the surface plasmon resonance (SPR) effect in helical core fibers with a cladding covered by a gold layer. The obtained results prove that by twisting the fiber one can tune several parameters of the SPR resonance which may be of importance in sensing applications. In particular, we have shown that circularly polarized fundamental modes propagating in the helical core fiber exhibit almost the same SPR loss. Moreover, the SPR loss can be amplified with a twist rate by more than two orders of magnitude due to twist-induced displacement of the core modes towards a metal layer. The fiber twist modifies the coupling conditions between the fundamental modes and plasmons, which results in the redshift and split of the resonance wavelengths for circularly polarized modes of opposite handedness. Analytical formulas were derived for the SPR peak loss, redshift and split, which are valid for small twist rates, in which the fundamental modes couple only with plasmons. For higher twist rates we observed the coupling between fundamental and cladding modes, which results in significant broadening of the SPR resonance peaks and emergence of additional maxima in the SPR loss curves.

  20. Single-electron induced surface plasmons on a topological nanoparticle.

    Science.gov (United States)

    Siroki, G; Lee, D K K; Haynes, P D; Giannini, V

    2016-01-01

    It is rarely the case that a single electron affects the behaviour of several hundred thousands of atoms. Here we demonstrate a phenomenon where this happens. The key role is played by topological insulators-materials that have surface states protected by time-reversal symmetry. Such states are delocalized over the surface and are immune to its imperfections in contrast to ordinary insulators. For topological insulators, the effects of these surface states will be more strongly pronounced in the case of nanoparticles. Here we show that under the influence of light a single electron in a topologically protected surface state creates a surface charge density similar to a plasmon in a metallic nanoparticle. Such an electron can act as a screening layer, which suppresses absorption inside the particle. In addition, it can couple phonons and light, giving rise to a previously unreported topological particle polariton mode. These effects may be useful in the areas of plasmonics, cavity electrodynamics and quantum information. PMID:27491515

  1. Multiple surface plasmon waves in [prism/Ag/SiO2 helical thin film] Kretschmann configuration

    International Nuclear Information System (INIS)

    Two surface plasmon resonance dips in reflectance angular spectrum for a p-polarized incident beam of a [prism/Ag/SiO2 helical thin film] Kretschmann configuration are measured and compared with simulations. The simulation also shows that the angular positions of resonances due to surface plasmon waves in reflectance spectrum are sensitive to the variation of principal refractive indices of helical films. It indicates that multiple surface plasmon waves at the [Ag/SiO2 helical thin film] interface is more attractive than the traditional method of producing only one surface plasmon wave for chemical- and bio-sensing applications.

  2. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    Science.gov (United States)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-03-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  3. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    OpenAIRE

    Vladimirov, S V; Ishihara, O.

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnet...

  4. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Teng, Y. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Ueno, K. [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012 (Japan); Shi, X.; Aoyo, D.; Misawa, H. [Research Institute for Electronic Science, Hokkaido University, Sapporo 001-0021 (Japan); Qiu, J. [State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027 (China); State Key Laboratory of Luminescent Materials and Devices, and Institute of Optical Communication Materials, South China University of Technology, Guangzhou 510640 (China)

    2012-11-15

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al{sub 2}O{sub 3} films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al{sub 2}O{sub 3} film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al{sub 2}O{sub 3} film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Surface plasmon-enhanced molecular fluorescence induced by gold nanostructures

    International Nuclear Information System (INIS)

    The authors report on surface plasmon-enhanced fluorescence of Eosin Y molecules induced by gold nanostructures. Al2O3 films deposited by atomic layer deposition with sub-nanometer resolution were used as the spacer layer to control the distance between molecules and the gold surface. As the thickness of the Al2O3 film increased, the fluorescence intensity first increased and then decreased. The highest enhancement factor is achieved with a 1 nm Al2O3 film. However, the trend for the fluorescence lifetime is the opposite. It first decreased and then increased. The changes in the fluorescence quantum yield were also calculated. The yield shows a similar trend to the fluorescence intensity. The competition between the surface plasmon-induced increase in the radiative decay rate and the gold-induced fluorescence quenching is responsible for the observed phenomenon. In addition, this competition strongly depends on the thickness of the spacer layer between Eosin Y molecules and the gold surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Biosensing based on surface plasmon resonance and living cells.

    Science.gov (United States)

    Chabot, Vincent; Cuerrier, Charles M; Escher, Emanuel; Aimez, Vincent; Grandbois, Michel; Charette, Paul G

    2009-02-15

    We propose the combination of surface plasmon resonance (SPR) with living cells as a biosensing method. Our detection scheme is based on the premise that cellular activity induced by external agents is often associated with changes in cellular morphology, which in turn should lead to a variation of the effective refractive index at the interface between the cell membrane and the metal layer. We monitored surface plasmon resonance signals originating from a gold surface coated with cells on a custom apparatus after injection of various agents known to influence cellular activity and morphology. Specifically, we evaluated three types of stimulation: response to an endotoxin (lipopolysaccharides), a chemical toxin (sodium azide) and a physiological agonist (thrombin). A comparison with phase contrast microscopy reveals that SPR signal variations are associated with the induction of cell death for lipopolysaccharides treatment and a contraction of the cell body for sodium azide. Thrombin-induced cellular response shows a rapid decrease of the measured laser reflectance over 5min followed by a return to the original value. For this treatment, phase contrast micrographs relate the first phase of the SPR variation to cell contraction and increase of the intercellular gaps, whereas the recovery phase can be associated with a spreading of the cell on the sensing surface. Hence, the SPR signal is very consistent with the cellular response normally observed for these treatments. This confirms the validity of the biosensing method, which could be applied to a large variety of cellular responses involving shape remodeling induced by external agents. PMID:18845432

  7. Surface-Plasmon-Polariton (SPP)-Like Acoustic Surface Waves on Elastic Metamaterials

    OpenAIRE

    Deng, Ke; He, Zhaojian; Ding, Yiqun; Zhao, Heping; Liu, Zhengyou

    2014-01-01

    We investigate the dispersion properties of the acoustic surface waves on surface of elastic metamaterials. With an analytical approach, we show that unconventional acoustic surface waves, with dispersion behaviors very similar to the electromagnetic surface plasmon polaritons (SPPs) on metal surfaces, can exist on the elastic metamaterials around the frequency at which the elastic Lam\\'e's constants satisfy lambda+mu=0. Two typical elastic metamaterials are exemplified to demonstrate such pe...

  8. Localized surface plasmon resonance in the IR regime.

    Science.gov (United States)

    Sardana, Neha; Talalaev, Vadim; Heyroth, Frank; Schmidt, Georg; Bohley, Christian; Sprafke, Alexander; Schilling, Joerg

    2016-01-11

    Arrays of differently sized disk shaped gold nanoantennas are prepared on glass, which show localized surface plasmon resonance and Rayleigh anomalies in the near infrared and telecom range between 1000 and 1500 nm wavelength. The spectral position of these grating resonances depends critically on the period of the array and the size of the nanoantennas. When PbS quantum dots embedded in PMMA surround the nanoantennas, an up to four fold enhancement of the photoluminescence is observed at the grating resonances due to the constructive diffractive feedback among neighboring antennas. In accordance with the grating resonances a shift of the emission towards smaller wavelengths with decreasing disk diameter is demonstrated. PMID:26832256

  9. Surface plasmons in metallic nanoparticles: fundamentals and applications

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, M A, E-mail: magarcia@icv.csic.es [Department of Electroceramics, Institute for Ceramic and Glass, CSIC, C/Kelsen 5, 28049 Madrid (Spain) and IMDEA Nanociencia, Madrid 28049 (Spain)

    2011-07-20

    The excitation of surface plasmons (SPs) in metallic nanoparticles (NPs) induces optical properties hardly achievable in other optical materials, yielding a wide range of applications in many fields. This review presents an overview of SPs in metallic NPs. The concept of SPs in NPs is qualitatively described using a comparison with simple linear oscillators. The mathematical models to carry on calculations on SPs are presented as well as the most common approximations. The different parameters governing the features of SPs and their effect on the optical properties of the materials are reviewed. Finally, applications of SPs in different fields such as biomedicine, energy, environment protection and information technology are revised. (topical review)

  10. Temperature Effects on Prism-Based Surface Plasmon Resonance Sensor

    Institute of Scientific and Technical Information of China (English)

    LIN Kai-Qun; WEI Lai-Ming; ZHANG Dou-Guo; ZHENG Rong-sheng; WANG Pei; LU Yong-Hua; MING Hai

    2007-01-01

    We theoretically analyse the temperature effects on a surface plasmon resonance (SPR) sensor in Kretschmann configuration. The temperature effects include the thermo-optic effect and the dispersion of thermal-optic coefficient in the dielectric along with the thermal expansion effect, phonon-electron scattering and electron-electron scattering in the metal layer. We simulate the temperature dependence of the resonance position and the sensitivity of the SPR sensor under wavelength-interrogation and angular-interrogation mode of operation and the differences are pointed out in the two modes.

  11. Optical multilayers for LED-based surface plasmon resonance sensors

    Czech Academy of Sciences Publication Activity Database

    Slavík, Radan; Homola, Jiří

    2006-01-01

    Roč. 45, č. 16 (2006), s. 3752-3759. ISSN 0003-6935 R&D Projects: GA ČR(CZ) GP202/04/P141; GA ČR(CZ) GA303/03/0249; GA ČR(CZ) GA203/02/1326; GA ČR(CZ) GA102/03/0633 Grant ostatní: European Commission(XE) QLK4-CT-2002-02323 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.717, year: 2006

  12. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    OpenAIRE

    Yun Liu; Qiang Liu; Shimeng Chen; Fang Cheng; Hanqi Wang; Wei Peng

    2015-01-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the ph...

  13. Electron-induced limitation of surface plasmon propagation in silver nanowires

    OpenAIRE

    Song, M; Thete, A.; Berthelot, J.; Fu, Q; Zhang, D.; Colas des Francs, G.; Dujardin, E.; Bouhelier, A.

    2015-01-01

    Plasmonic circuitry is considered as a promising solution-effective technology for miniaturizing and integrating the next generation of optical nano-devices. A key element is the shared metal network between electrical and optical information enabling an efficient hetero-integration of an electronic control layer and a plasmonic data link. Here, we investigate to what extend surface plasmons and current-carrying electrons interfere in such a shared circuitry. By synchronously recording surfac...

  14. Design of terahertz beam splitter based on surface plasmon resonance transition

    Science.gov (United States)

    Xiang, Liu; Dong-Xiao, Yang

    2016-04-01

    According to the resonance transition between propagating surface plasmon and localized surface plasmon, we demonstrate a design of beam splitter that can split terahertz wave beams in a relatively broad frequency range. The transmission properties of the beam splitter are analyzed utilizing the finite element method. The resonance transition between two kinds of plasmons can be explained by a model of coherent electron cloud displacement.

  15. Label-free surface plasmon sensing towards cancer diagnostics

    Science.gov (United States)

    Sankaranarayanan, Goutham

    The main objective of this thesis is to develop a conventional, home-built SPR bio-sensor to demonstrate bio-sensing applications. This emphasizes the understanding of basic concepts of Surface Plasmon Resonance and various interrogation techniques. Intensity Modulation was opted to perform the label-free SPR bio-sensing experiments due to its cost-efficient and compact setup. Later, label-free surface plasmon sensing was carried out to study and understand the bio-molecular interactions between (1). BSA and Anti BSA molecules and (2). Exosome/Liposome on thin metal (Au) films. Exosomes are cell-derived vesicles present in bodily fluids like blood, saliva, urine, epididymal fluid containing miRNAs, RNA, proteins, etc., at stable quantities during normal health conditions. The exosomes comprise varied constituents based on their cell origin from where they are secreted and is specific to that particular origin. However an exacerbated release is observed during tumor or cancer conditions. This increased level of exosomes present in the sample, can be detected using the SPR bio-sensor demonstrated in this thesis and effective thickness of adsorption on Au surface can be estimated. Also, chemically synthesized liposome particles were studied to determine if they can generate an equivalent sensor response to that of exosomes to consider them as an alternate. Finally a 10ppb Mercury (Hg) sensing was performed as part of Environment Monitoring application and results have been tabulated and compared.

  16. Detecting Phase Shifts in Surface Plasmon Resonance: A Review

    Directory of Open Access Journals (Sweden)

    Y. H. Huang

    2012-01-01

    Full Text Available Under certain conditions, a surface plasmon wave along a metal-dielectric interface can be excited by an optical beam. The reflected optical beam will then undergo changes in both intensity and phase. As the level of intensity or phase change is quite sensitive to the coupling conditions such as the molecule concentration on the metal surface, this phenomenon has been utilized for label-free detection of biological species and characterization of molecular interactions during the last two decades. Currently, most of the commercial surface plasmon resonance (SPR sensors rely on the detection of absorption dip in angular or wavelength spectrum. However, recent researches have shown that phase detection has the potential to achieve lower limit of detection (LoD and higher throughput. This paper, thus, intends to review various schemes and configurations for SPR phase detection. The performance advantages and disadvantages of various schemes will be emphasized. It is hoped that this paper will provide some insights to researchers interested in SPR sensing and help them to develop SPR sensors with better sensitivity and higher throughput.

  17. Graphene surface plasmons at the near-infrared optical regime

    Science.gov (United States)

    Zhang, Qiming; Li, Xiangping; Hossain, Md Muntasir; Xue, Yunzhou; Zhang, Jie; Song, Jingchao; Liu, Jingying; Turner, Mark D.; Fan, Shanhui; Bao, Qiaoliang; Gu, Min

    2014-01-01

    Graphene has been identified as an emerging horizon for a nanoscale photonic platform because the Fermi level of intrinsic graphene can be engineered to support surface plasmons (SPs). The current solid back electrical gating and chemical doping methods cannot facilitate the demonstration of graphene SPs at the near-infrared (NIR) window because of the limited shift of the Fermi level. Here, we present the evidence for the existence of graphene SPs on a tapered graphene-silicon waveguide tip at a NIR wavelength, employing a surface carrier transfer method with molybdenum trioxides. The coupling between the graphene surface plasmons and the guiding mode in silicon waveguides allows for the observation of the concentrated field of the SPs in the tip by near-field scanning optical microscopy. Thus the hot spot from the concentrated SPs in the graphene layer can be used as a key experimental signature of graphene SPs. The NIR graphene SPs opens a new perspective for optical communications, optical sensing and imaging, and optical data storage with extreme spatial confinement, broad bandwidth and high tunability. PMID:25297570

  18. Discontinuous Tapered Surface Plasmon Polariton Waveguides with Gap.

    Science.gov (United States)

    Lee, Dong Hun; Lee, Myung-Hyun

    2016-06-01

    We investigate characteristics of discontinuous tapered surface plasmon polariton waveguides with a gap (DTG-SPPWs) to control a guided surface plasmon polariton (SPP) at a telecommunication wavelength of 1.55 μm. The DTG-SPPWs are composed of an input 2 μm-wide and 10 μm-long reverse tapered IMI-W (RT-IMI-W) and a 10 μm-long tapered and output 2 μm-wide IMI-W (T-IMI-W) with the 8 μm-long gap. The width and length of the tapered regions in the RT-IMI-W and the T-IMI-W were varied from 2 to 10 μm and 1 to 8 μm, respectively. Gold is used as the metal in the insulator-metal-insulator waveguides (IMI-Ws). The thickness of the gold strips is fixed with 20 nm. A low-loss polymer is used for the 30 μm-thick upper and lower cladding layers. The coupling losses of the DTG-SPPWs are less than 0.055 dB with an 8 μm-long gap and various taper widths up to 10 μm. The normalized transmissions (NTs) of the DTG-SPPWs are less than about -0.060 dB with various taper widths up to 10 μm. The NTs of the DTG-SPPWs are less than about -0.069 dB with various taper lengths up to 8 μm. The maximum NT of about -0.042 dB was obtained using the 6 μm-wide taper width and the 3 μm-long taper length in the DTG-SPPW. The DTG-SPPWs have potential as a new plasmonic modulation device via control of the guided SPP through interaction with an applied force in the gap. PMID:27427702

  19. The effects of the substrate surface roughness on graphene plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Lyon, Keenan A.; Miskovic, Zoran L. [Department of Applied Mathematics, University of Waterloo, 200 University Ave W, N2L 3G1, Waterloo, Ontario (Canada)

    2014-03-31

    We investigate the effects of variation in the gap size between mono-layer graphene and a substrate with a randomly rough surface on the linear response of graphene’s π electron bands within the approximation of Dirac fermions. We adopt the electrostatic Green’s function developed by Rahman and Maradudin [Phys. Rev. B 21, 2137–2143 (1980)] for the surface of a dielectric medium, which exhibits a Gaussian distributed height profile and combine it with the polarization function of graphene described as a zero-thickness planar layer at a fixed distance from the mean position of the substrate surface. We specifically consider the effects of a random gap size on the two-dimensional sheet plasmon mode in heavily doped graphene, both on its dispersion relation in the long-wavelength limit and its broadening due to Landau damping in the continuum of inter-band electron-hole excitations at shorter wavelengths.

  20. Directional excitation of surface plasmons by dielectric resonators

    Science.gov (United States)

    Zou, Chengjun; Withayachumnankul, Withawat; Shadrivov, Ilya V.; Kivshar, Yuri S.; Fumeaux, Christophe

    2015-02-01

    An important aim of current research on plasmonics is to develop compact components to manipulate surface plasmon polaritons (SPPs) and specifically to develop efficient SPP couplers. The commonly used metallic resonators are inefficient to couple free-space waves to SPPs and metallic gratings require oblique incidence for achieving unidirectional propagation. In this article, we propose to use nanoscale nonuniform arrays of dielectric resonator antennas (DRAs) to realize unidirectional launching of SPPs. DRAs are made of low-loss high-permittivity nanostructures operating on a metal surface. The applications of metallodielectric nanostructures can produce resonances mainly in the low-loss dielectric parts and hence the power dissipated through oscillating current in metal can be reduced. Similar to metallic resonators, DRAs operating near resonance can provide phase control when coupling incident waves into SPPs, adding degrees of freedom in controlling propagation direction. The theoretical analysis in this article, with numerical validation, shows efficient SPPs launching by nonuniform array of cylindrical DRAs into a predesigned direction. Furthermore, with proper patterning, optimal launching can be achieved by avoiding power leakage via deflection into free space. The SPP launching condition and the influence of propagation loss are also mathematically analyzed from the viewpoint of antenna array theory. The SPPs launchers based on DRAs have a potential for applications in highly efficient integrated optics and optical waveguides.

  1. Tunable surface plasmon instability leading to emission of radiation

    Energy Technology Data Exchange (ETDEWEB)

    Gumbs, Godfrey [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Donostia International Physics Center (DIPC), P de Manuel Lardizabal, 4, 20018 San Sebastian, Basque Country (Spain); Iurov, Andrii, E-mail: aiurov@chtm.unm.edu [Department of Physics and Astronomy, Hunter College of the City University of New York, 695 Park Avenue, New York, New York 10065 (United States); Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Huang, Danhong [Air Force Research Laboratory, Space Vehicles Directorate, Kirtland Air Force Base, New Mexico 87117 (United States); Pan, Wei [Sandia National Laboratory, Albuquerque, New Mexico 87185 (United States)

    2015-08-07

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector q{sub c}. This finite q{sub c} gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength.

  2. Surface plasmon resonance phenomenon of the insulating state polyaniline

    Energy Technology Data Exchange (ETDEWEB)

    Umiati, Ngurah Ayu Ketut, E-mail: ngurahayuketutumiati@gmail.com [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia); Jurusan Fisika FMIPA Universitas Diponegoro, Jalan Prof. Soedarto, SH Tembalang Semarang 50275 (Indonesia); Triyana, Kuwat; Kamsul [Jurusan Fisika FMIPA UGM, Sekip Utara Yogyakarta, 55281 (Indonesia)

    2015-04-16

    Surface Plasmon Resonance (SPR) phenomenon of the insulating polyaniline (PANI) is has been observed. Surface Plasmon (SP) is the traveled electromagnetic wave that passes through the interface of dielectric metal and excited by attenuated total reflection (ATR) method in Kretschmannn configuration (Au-PANI prism). The resonance condition is observed through the angle of SPR in such condition that SP wave is coupled by the evanescent constant of laser beam. In this research, the laser beam was generated by He–Ne and its wavelength (λ) was 632,8 nm. SPR curve is obtained through observation of incidence angles of the laser beam in prism. SPR phenomenon at the boundary between Au – PANI layer has showed by reflection dip when the laser beam passes through the prism. In this early study, the observation was carried out through simulation Winspall 3.02 software and preliminary compared with some experimental data reported in other referred literatures. The results shows that the optimum layer of Au and polyaniline are 50 and 1,5 nm thick respectively. Our own near future experimental work would be further performed and reported elsewhere.

  3. Tunable surface plasmon instability leading to emission of radiation

    International Nuclear Information System (INIS)

    We propose a new approach for energy conversion from a dc electric field to tunable terahertz emission based on hybrid semiconductors by combining two-dimensional (2D) crystalline layers and a thick conducting material with possible applications for chemical analysis, security scanning, medical (single-molecule) imaging, and telecommunications. The hybrid nano-structure may consist of a single or pair of sheets of graphene, silicene, or a 2D electron gas. When an electric current is passed through a 2D layer, we discover that two low-energy plasmon branches exhibit a characteristic loop in their dispersion before they merge into an unstable region beyond a critical wave vector qc. This finite qc gives rise to a wavenumber cutoff in the emission dispersion of the surface plasmon induced instability and emission of radiation (spiler). However, there is no instability for a single driven layer far from the conductor, and the instability of an isolated pair of 2D layers occurs without a wavenumber cutoff. The wavenumber cutoff is found to depend on the conductor electron density, layer separation, distances of layers from the conductor surface, and the driving-current strength

  4. Theory of intraband plasmons in doped carbon nanotubes: Rolled surface-plasmons of graphene

    Science.gov (United States)

    Sasaki, Ken-ichi; Murakami, Shuichi; Yamamoto, Hideki

    2016-04-01

    A single-wall carbon nanotube possesses two different types of plasmons specified by the wavenumbers in the azimuthal and axial directions. The azimuthal plasmon that is caused by interband transitions has been studied, while the effect of charge doping is unknown. In this paper, we show that when nanotubes are heavily doped, intraband transitions cause the azimuthal plasmons to appear as a plasmon resonance in the near-infrared region of the absorption spectra, which is absent for light doping due to the screening effect. The axial plasmons that are inherent in the cylindrical waveguide structures of nanotubes account for the absorption peak of the metallic nanotube observed in the terahertz region. The excitation of axial (azimuthal) plasmons requires a linearly polarized light parallel (perpendicular) to the tube's axis.

  5. Ultrafast Surface-Plasmon Enhancement of Exciton and Defect Luminescence in ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available Femtosecond pump-probe and photoluminescence measurements in transmission and reflection show that ultraviolet band-edge and visible defect luminescence in ZnO films can be selectively enhanced by coupling to Ag surface-plasmon polaritons or localized surface plasmon resonances.

  6. Imaging of surface plasmon polariton interference using phase-sensitive photon scanning tunneling microscope

    OpenAIRE

    Jose, J.; Segerink, F.B.; Korterik, J.P.; Herek, J. L.; Offerhaus, H.L.

    2011-01-01

    We report the surface plasmon polariton interference, generated via a ‘buried’ gold grating, and imaged using a phase-sensitive Photon Scanning Tunneling Microscope (PSTM). The phase-resolved PSTM measurement unravels the complex surface plasmon polariton interference fields at the gold-air interface

  7. Scaling of the Surface Plasmon Resonance in Gold and Silver Dimers Probed by EELS

    DEFF Research Database (Denmark)

    Kadkhodazadeh, Shima; de Lasson, Jakob Rosenkrantz; Beleggia, Marco;

    2014-01-01

    The dependence of surface plasmon coupling on the distance between two nanoparticles (dimer) is the basis of nanometrology tools such as plasmon rulers. Application of these nanometric rulers requires an accurate description of the scaling of the surface plasmon resonance (SPR) wavelength...... with distance. Here, we have applied electron energy-loss spectroscopy (EELS) and scanning transmission electron microscopy (STEM) imaging to investigate the relationship between the SPR wavelength of gold and silver nanosphere dimers (radius R) and interparticle distance (d) in the range 0.1R ... silver dimers to be more sensitive plasmon rulers than their gold counterparts....

  8. Graphene transverse electric surface plasmon detection using nonreciprocity modal discrimination

    Science.gov (United States)

    Chamanara, Nima; Caloz, Christophe

    2016-08-01

    We present a magnetically biased graphene-ferrite structure discriminating the transverse electric (TE) and transverse magnetic (TM) plasmonic modes of graphene. In this structure, the graphene TM plasmons interact reciprocally with the structure. In contrast, the graphene TE plasmons exhibit nonreciprocity. This nonreciprocity is manifested in unidirectional TE propagation in a frequency band close to the interband threshold frequency. The proposed structure provides a unique platform for the experimental demonstration of the unusual existence of the TE plasmonic mode in graphene.

  9. Monolithic nanoporous gold disks with large surface area and high-density plasmonic hot-spots

    Science.gov (United States)

    Zhao, Fusheng; Zeng, Jianbo; Arnob, Md Masud Parvez; Santos, Greggy M.; Shih, Wei-Chuan

    2015-03-01

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to enhancement of the local electric field by light-excited surface plasmons, the collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3- dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks (NPGDs) not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interaction as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of NPGD can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. The coupling between external and internal nanoarchitecture provides a potential design dimension for plasmonic engineering. The synergy of large specific surface area, high-density hot spots, and tunable plasmonics would profoundly impact applications where plasmonic nanoparticles and non-plasmonic mesoporous nanoparticles are currently employed, e.g., in in-vitro and in-vivo biosensing, molecular imaging, photothermal contrast agents, and molecular cargos.

  10. Plasmon-mediated chemical surface functionalization at the nanoscale

    Science.gov (United States)

    Nguyen, Mai; Lamouri, Aazdine; Salameh, Chrystelle; Lévi, Georges; Grand, Johan; Boubekeur-Lecaque, Leïla; Mangeney, Claire; Félidj, Nordin

    2016-04-01

    Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing or nanooptics.Controlling the surface grafting of species at the nanoscale remains a major challenge, likely to generate many opportunities in materials science. In this work, we propose an original strategy for chemical surface functionalization at the nanoscale, taking advantage of localized surface plasmon (LSP) excitation. The surface functionalization is demonstrated through aryl film grafting (derived from a diazonium salt), covalently bonded at the surface of gold lithographic nanostripes. The aryl film is specifically grafted in areas of maximum near field enhancement, as confirmed by numerical calculation based on the discrete dipole approximation method. The energy of the incident light and the LSP wavelength are shown to be crucial parameters to monitor the aryl film thickness of up to ~30 nm. This robust and versatile strategy opens up exciting prospects for the nanoscale confinement of functional layers on surfaces, which should be particularly interesting for molecular sensing

  11. Long-range surface plasmons in dielectric-metal-dielectric structure with highly anisotropic substrates

    Science.gov (United States)

    Nagaraj; Krokhin, A. A.

    2010-02-01

    We present a theoretical study of long-range surface plasmons propagating in a thin metallic film clad between two identical uniaxial anisotropic dielectric crystals. We show that the proper orientation of the optical axis of the crystal with respect to the metal surface enhances the propagation length of surface plasmons. Since the proper orientation depends on surface plasmon frequency, we give the results for the propagation length in a wide range of frequencies, including the telecommunication region. To increase the role of anisotropy, we consider artificial substrates from photonic crystals, which possess an order of magnitude stronger anisotropy than the natural optical crystals. We propose Kronig-Penney model for plasmonic crystal where the substrate is a periodic sequence of dielectric delta peaks. In this model the dispersion relation for surface plasmon has a band structure where the band width tends to zero when the frequency approaches the resonant frequency.

  12. Hyperbolic Metamaterials and Coupled Surface Plasmon Polaritons: comparative analysis

    CERN Document Server

    Li, Tengfei

    2016-01-01

    We investigate the optical properties of sub-wavelength layered metal/dielectric structures, also known as hyperbolic metamaterials (HMMs), using exact analytical Kronig Penney (KP) model. We show that hyperbolic isofrequency surfaces exist for all combinations of layer permittivities and thicknesses, and the largest Purcell enhancements (PE) of spontaneous radiation are achieved away from the nominally hyperbolic region. Detailed comparison of field distributions, dispersion curves, and Purcell factors (PF) between the HMMs and Surface Plasmon Polaritons (SPPs) guided modes in metal/dielectric waveguides demonstrates that HMMs are nothing but weakly coupled gap or slab SPPs modes. Broadband PE is not specific to the HMMs and can be easily attained in single thin metallic layers. Furthermore, large wavevectors and PE are always combined with high loss, short propagation distances and large impedances; hence PE in HMMs is essentially a direct coupling of the energy into the free electron motion in the metal, o...

  13. Surface Plasmon Resonance for Cell-Based Clinical Diagnosis

    Directory of Open Access Journals (Sweden)

    Yuhki Yanase

    2014-03-01

    Full Text Available Non-invasive real-time observations and the evaluation of living cell conditions and functions are increasingly demanded in life sciences. Surface plasmon resonance (SPR sensors detect the refractive index (RI changes on the surface of sensor chips in label-free and on a real-time basis. Using SPR sensors, we and other groups have developed techniques to evaluate living cells’ reactions in response to stimuli without any labeling in a real-time manner. The SPR imaging (SPRI system for living cells may visualize single cell reactions and has the potential to expand application of SPR cell sensing for clinical diagnosis, such as multi-array cell diagnostic systems and detection of malignant cells among normal cells in combination with rapid cell isolation techniques.

  14. [Detection of antiadenoviral antibodies by surface plasmon resonance].

    Science.gov (United States)

    Nosach, L M; Boltovets', P M; Zahorodnia, S D; Povnytsia, O Iu; Holovan', A V; Netreba, N I; Dobrochyns'ka, L I

    2009-01-01

    A possibility to detect antiadenoviral antibodies by surface plasmon resonance (SPR) was demonstrated. Immobilization on the surface of a sensor of the hexone or degraded purified adenovirus of one of the types (Ad 2) allows finding antibodies to the hexone antigenic determinants of wide specificity common for human adenoviruses of different types. Optimum conditions for immobilization of the antigen and formation of the complex antigen-antibody are determined. The comparative assays of the levels of antibodies in rabbit antisera obtained to the hexone and adenoviruses of different types (1, 2 and 6) by SPR and ELISA was analyzed. The biosensor was used to detect antiadenoviral antibodies in the blood sera of children with aggravation of chronic nonspecific broncho-pulmonary diseases. The sensitivity of SPR in comparison with ELISA was 86.9%, in comparison with the method of fluorescing antibodies (MFA)--89.5%. PMID:20387633

  15. Conventional and acoustic surface plasmons on noble metal surfaces: a time-dependent density functional theory study

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten W.; Thygesen, Kristian S.

    2012-01-01

    First-principles calculations of the conventional and acoustic surface plasmons (CSPs and ASPs) on the (111) surfaces of Cu, Ag, and Au are presented. The effect of s-d interband transitions on both types of plasmons is investigated by comparing results from the local density approximation and an...

  16. Modulation of a surface plasmon-polariton resonance by sub-terahertz diffracted coherent phonons

    OpenAIRE

    Brüggemann, Christian; Akimov, Andrey V.; Glavin, Boris A.; Belotelov, Vladimir I.; Akimov, Ilya A.; Jäger, Jasmin; Kasture, Sachin; Gopal, Achanta Venu; Vengurlekar, Arvind S.; Yakovlev, Dmitri R.; Kent, Anthony J.; Bayer, Manfred

    2012-01-01

    Coherent sub-THz phonons incident on a gold grating that is deposited on a dielectric substrate undergo diffraction and thereby induce an alteration of the surface plasmon-polariton resonance. This results in efficient high-frequency modulation (up to 110 GHz) of the structure's reflectivity for visible light in the vicinity of the plasmon-polariton resonance. High modulation efficiency is achieved by designing a periodic nanostructure which provides both plasmon-polariton and phonon resonanc...

  17. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    DEFF Research Database (Denmark)

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis;

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences...... the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the tunneling junction...

  18. Time-resolved detection of surface plasmon polaritons with a scanning tunneling microscope

    OpenAIRE

    Keil, Ulrich Dieter Felix; Ha, T.; Jensen, Jacob Riis; Hvam, Jørn Märcher

    1998-01-01

    We present the time-resolved detection of surface plasmon polaritons with an STM. The results indicate that the time resolved signal is due to rectification of coherently superimposed plasmon voltages. The comparison with differential reflectivity measurements shows that the tip itself influences the decay of the plasmon-field coherence. Generation of the measured signal at the tunneling junction offers the possibility to observe ultrafast effects with a spatial resolution determined by the t...

  19. Enhancing single nanoparticle surface chemistry by plasmonic overheating in an optical trap

    OpenAIRE

    Weihai Ni; Haojin Ba; Lutich, A.A.; F. J\\xe4ckel; Feldmann, J.

    2012-01-01

    Surface-chemistry of individual, optically trapped plasmonic nanoparticles is modified and accelerated by plasmonic overheating. Depending on the optical trapping power, gold nanorods can exhibit red-shifts of their plasmon resonance (i.e. increasing aspect ratio) under oxidative conditions. In contrast, in bulk exclusively blue shifts (decreasing aspect ratios) are observed. Supported by calculations, we explain this finding by local temperatures in the trap exceeding the boiling point of th...

  20. Enhancing single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap.

    Science.gov (United States)

    Ni, Weihai; Ba, Haojin; Lutich, Andrey A; Jäckel, Frank; Feldmann, Jochen

    2012-09-12

    Surface-chemistry of individual, optically trapped plasmonic nanoparticles is modified and accelerated by plasmonic overheating. Depending on the optical trapping power, gold nanorods can exhibit red shifts of their plasmon resonance (i.e., increasing aspect ratio) under oxidative conditions. In contrast, in bulk exclusively blue shifts (decreasing aspect ratios) are observed. Supported by calculations, we explain this finding by local temperatures in the trap exceeding the boiling point of the solvent that cannot be achieved in bulk. PMID:22924589

  1. Plasmon-assisted photoluminescence enhancement of single-walled carbon nanotubes on metal surfaces

    OpenAIRE

    Sakashita, Takerou; Miyauchi, Yuhei; Matsuda, Kazunari; Kanemitsu, Yoshihiko

    2010-01-01

    We demonstrated photoluminescence (PL) enhancement in single carbon nanotubes using localized surface plasmons. Single nanotube spectroscopy revealed triple the PL intensity enhancement for carbon nanotubes on rough Au surfaces as on fused silica surfaces. The PL enhancement depends on the excitation wavelength and distance between the carbon nanotubes and the Au surface. The degree of PL enhancement is determined by the electric field enhancement from the localized surface plasmon and the en...

  2. Surface Integral Formulations for the Design of Plasmonic Nanostructures

    Science.gov (United States)

    Forestiere, Carlo; Iadarola, Giovanni; Rubinacci, Guglielmo; Tamburrino, Antonello; Dal Negro, Luca; Miano, Giovanni; Boston University Team; Universita'degli Studi di Napoli Federico Team, II; Universita'di Cassino e del Lazio Meridionale Team

    2013-03-01

    Numerical formulations based on surface integral equations (SIEs) provide an accurate and efficient framework for the solution of the electromagnetic scattering problem by three-dimensional plasmonic nanostructures in the frequency domain. In this work, we present a unified description of SIE formulations with both singular and nonsingular kernel and we study their accuracy in solving the scattering problem by metallic nanoparticles with spherical and nonspherical shape. In fact, the accuracy of the numerical solution, especially in the near zone, is of great importance in the analysis and design of plasmonic nanostructures, whose operation critically depends on the manipulation of electromagnetic hot spots. Four formulation types are considered: the N-combined region integral equations, the T-combined region integral equations, the combined field integral equations and the null field integral equations. A detailed comparison between their numerical solutions obtained for several nanoparticle shapes is performed by examining convergence rate and accuracy in both the far and near zone of the scatterer as a function of the number of degrees of freedom. A rigorous analysis of SIE formulations can have a high impact on the engineering of numerous nano-scale optical devices.

  3. Development and Application of Surface Plasmon Polaritons on Optical Amplification

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available Propagation of surface plasmon polaritons (SPPs along the interface between a metal and a dielectric has attracted significant attention due to its unique optical properties, which has inspired a plethora of fascinating applications in photonics and optoelectronics. However, SPPs suffer from large attenuation because of the ohmic losses in the metal layer. It has become the main bottom-neck problem for the development of high performance plasmonic devices. This limitation can be overcome by providing the material adjacent to the metal with optical gain. In this paper, a review of gain compensation to SPPs is presented. We focus on the spontaneous radiation amplification and simulated radiation amplification. The ohmic loss of metal was greatly improved by introducing optical gain. Then we introduce several gain mediums of dye doped, quantum dots, erbium ion, and semiconductor to compensate optical loss of SPPs. Using gain medium mentioned above can compensate losses and achieve many potential applications, for example, laser, amplifier, and LRSPP discussed.

  4. Monitoring oligonucleotide hybridization at subnanomolar level by surface plasmon resonance biosensor: Optimization of surface chemistry

    Czech Academy of Sciences Publication Activity Database

    Vaisocherová, Hana; Zítová, Alice; Lachmanová, Markéta; Tobiška, Petr; Homola, Jiří

    Oxford: Elsevier, 2006. P400---. [Biosensors 2006 /9./. 10.05.2006-12.05.2006, Toronto] R&D Projects: GA ČR(CZ) GA202/05/0628 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * DNA Subject RIV: JB - Sensor s, Measurment, Regulation

  5. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-08-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices.

  6. Integrated plasmonic circuitry on a vertical-cavity surface-emitting semiconductor laser platform

    Science.gov (United States)

    McPolin, Cillian P. T.; Bouillard, Jean-Sebastien; Vilain, Sebastien; Krasavin, Alexey V.; Dickson, Wayne; O'Connor, Daniel; Wurtz, Gregory A.; Justice, John; Corbett, Brian; Zayats, Anatoly V.

    2016-01-01

    Integrated plasmonic sources and detectors are imperative in the practical development of plasmonic circuitry for bio- and chemical sensing, nanoscale optical information processing, as well as transducers for high-density optical data storage. Here we show that vertical-cavity surface-emitting lasers (VCSELs) can be employed as an on-chip, electrically pumped source or detector of plasmonic signals, when operated in forward or reverse bias, respectively. To this end, we experimentally demonstrate surface plasmon polariton excitation, waveguiding, frequency conversion and detection on a VCSEL-based plasmonic platform. The coupling efficiency of the VCSEL emission to waveguided surface plasmon polariton modes has been optimized using asymmetric plasmonic nanostructures. The plasmonic VCSEL platform validated here is a viable solution for practical realizations of plasmonic functionalities for various applications, such as those requiring sub-wavelength field confinement, refractive index sensitivity or optical near-field transduction with electrically driven sources, thus enabling the realization of on-chip optical communication and lab-on-a-chip devices. PMID:27491686

  7. Anomalous microwave reflection from a metal surface induced by spoof surface plasmon

    Institute of Scientific and Technical Information of China (English)

    Wang Liang; Cao Jin-Xiang; Lü You; Liu Lei; Du Yin-Chang; Wang Jian

    2012-01-01

    The reflection of X-band microwaves (8-12 GHz) from a metallic aluminum (Al) surface with groove grating corrugations was investigated experimentally.It was shown that the reflection of p-polarization is much less than the microwave reflected from the corresponding area of an unruled Al surface,with selective wavelength.The experimental results demonstrated that the anomalous microwave reflection is strongly associated with the excitation of spoof surface plasmons at the Al-air interface by the surface grating coupler. This near-total absence of reflected microwaves is similar to the famous Wood's anomaly in the optical regime and is of fundamental importance to the applications of spoof surface plasmons in the microwave regime.

  8. Surface plasmon resonance for detecting clenbuterol: Influence of monolayer structure

    Science.gov (United States)

    Suherman; Morita, Kinichi; Kawaguchi, Toshikazu

    2015-03-01

    Surface plasmon resonance sensor equipped with a fabricated immunosensor chip is used for detecting clenbuterol in this study. Since clenbuterol is a small analyte, indirect competitive inhibition immunoassay is employed. For fabricating the immunosurface, the Au-chip was functionalized by succinimidyl-terminated alkanethiol, and the terminal N-hydroxysuccinimide group of the self-assembled monolayer was either replaced with clenbuterol or blocked with ethanolamine. Scanning tunneling microscope experiments and electrochemical measurements depicted the domain structures of the succinimide group of succinimidyl-terminated propanethiol monolayer. The surface concentration and the orientation of succinimide group was significantly dependent on the concentration of dithiobis(succinimidyl) propionate (DSP) used in fabricating the monolayer. Furthermore, the structure of monolayer significantly influenced both the surface concentration and the orientation of clenbuterol on the sensor surface. Consequently, high coverage and standing-up configuration of clenbuterol showed high affinity for clenbuterol antibody. However, high affinity constant exhibited by the sensor surface was coupled with a low sensitivity. By contrast, lowest concentration of DSP solution (0.1 mM) used in fabricating the immunosurface showed a detection sensitivity of 3 ppt - the highest reported sensitivity for clenbuterol. For regeneration the immunosurface, 0.1 M NaOH was used and the same sensor surface could be reused for performing >100 rapid immunoreaction.

  9. Microcontact imprinted surface plasmon resonance sensor for myoglobin detection

    Energy Technology Data Exchange (ETDEWEB)

    Osman, Bilgen [Uludag University, Department of Chemistry, Bursa (Turkey); Uzun, Lokman [Hacettepe University, Department of Chemistry, Ankara (Turkey); Beşirli, Necati [Uludag University, Department of Chemistry, Bursa (Turkey); Denizli, Adil, E-mail: denizli@hacettepe.edu.tr [Hacettepe University, Department of Chemistry, Ankara (Turkey)

    2013-10-15

    In this study, we prepared surface plasmon resonance (SPR) sensor using the molecular imprinting technique for myoglobin detection in human serum. For this purpose, we synthesized myoglobin imprinted poly(hydroxyethyl methacrylate-N-methacryloyl-L-tryptophan methyl ester) [poly(HEMA-MATrp)] nanofilm on the surface of SPR sensor. We also synthesized non-imprinted poly(HEMA-MATrp) nanofilm without myoglobin for the control experiments. The SPR sensor was characterized with contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, and ellipsometry. We investigated the effectiveness of the sensor using the SPR system. We evaluated the ability of SPR sensor to sense myoglobin with myoglobin solutions (pH 7.4, phosphate buffer) in different concentration range and in the serum taken from a patient with acute myocardial infarction. We found that the Langmuir adsorption model was the most suitable for the sensor system. The detection limit was 87.6 ng/mL. In order to show the selectivity of the SPR sensor, we investigated the competitive detection of myoglobin, lysozyme, cytochrome c and bovine serum albumin. The results showed that the SPR sensor has high selectivity and sensitivity for myoglobin. - Highlights: • Micro-contact imprinted surface plasmon resonance sensor. • Real-time myoglobin detection in the serum taken from a patient with acute myocardial infarction • Reproducible results for consecutive myoglobin solution supplement • LOD and LOQ values of the SPR sensor were determined to be 26.3 and 87.6 ng/mL. • The SPR sensor has potential for myoglobin sensing during acute MI cases.

  10. Quantum emitters coupled to surface plasmons of a nano-wire: A Green function approach

    CERN Document Server

    Dzsotjan, D; Fleischhauer, M

    2010-01-01

    We investigate a system consisting of a single, as well as two emitters strongly coupled to surface plasmon modes of a nano-wire using a Green function approach. Explicit expressions are derived for the spontaneous decay rate into the plasmon modes and for the atom-plasmon coupling as well as a plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke sub- and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling.

  11. Electrical detection of surface plasmon resonance phenomena by a photoelectronic device integrated with gold nanoparticle plasmon antenna

    Science.gov (United States)

    Hashimoto, Tatsuya; Fukunishi, Yurie; Zheng, Bin; Uraoka, Yukiharu; Hosoi, Takuji; Shimura, Takayoshi; Watanabe, Heiji

    2013-02-01

    We have proposed a concept of a photoelectronic hybrid device utilizing gold nanoparticles (GNPs), which are supposed to function not only as the plasmon antenna but also as the sensing part. The photocurrent in the fabricated device, consisting of a transparent Nb-doped TiO2 channel and Au electrodes, was enhanced more than eight times at a specific wavelength with GNP arrays located between the electrodes, indicating that surface plasmon resonance was electrically detected with the hybrid device. This result will open new doors for ultra-small biosensor chips integrated with multi-functional solid-state devices.

  12. Surface Plasmon Polaritons of Two-Dimensional Three-Order Dendritic Structures

    Institute of Scientific and Technical Information of China (English)

    王敏凤; 周鲁卫

    2011-01-01

    We study surface plasmon polaritons excited on two-dimensional three-order dendritic structures. Previous studies show that split ring resonators (SRRs) can be used to obtain magnetic resonance, thus sustairdng surface waves behaving like surface plasmon polaritons (SPPs). In this paper, we obtain detailed results on surface plasmon polaritons of several different grating structures and theoretically prove that this kind of structures can sustain SPPs. Besides, since dendritic structures can be fabricated by double template-assisted electrochemical deposition, it is worth noting that fabrication of SPP-based materials might be much easier.

  13. Surface plasmon polaritons on soft-boundary graphene nanoribbons and their application as voltage controlled plasmonic switches and frequency demultiplexers

    CERN Document Server

    Forati, Ebrahim

    2013-01-01

    A graphene sheet gated with a ridged ground plane, creating a soft-boundary (SB) graphene nanoribbon, is considered. By adjusting the ridge parameters and bias voltage a channel can be created on the graphene which can guide TM surface plasmon polaritons (SPP). Two types of modes are found; fundemental and higher-order modes with no apparent cutoff frequency and with energy distributed over the created channel, and edge modes with energy concen-trated at the soft-boundary edge. Dispersion curves, electric near-field patterns, and current distributions of these modes are determined. Since the location where energy is concentrated in the edge modes can be easily controlled electronically by the bias voltage and frequency, the edge-mode phenomena is used to propose a novel voltage controlled plasmonic switch and a plasmonic frequency demultiplexer.

  14. Surface Plasmon Enhanced Phosphorescent Organic Light Emitting Diodes

    International Nuclear Information System (INIS)

    The objective of the proposed work was to develop the fundamental understanding and practical techniques for enhancement of Phosphorescent Organic Light Emitting Diodes (PhOLEDs) performance by utilizing radiative decay control technology. Briefly, the main technical goal is the acceleration of radiative recombination rate in organometallic triplet emitters by using the interaction with surface plasmon resonances in noble metal nanostructures. Increased photonic output will enable one to eliminate constraints imposed on PhOLED efficiency by triplet-triplet annihilation, triplet-polaron annihilation, and saturation of chromophores with long radiative decay times. Surface plasmon enhanced (SPE) PhOLEDs will operate more efficiently at high injection current densities and will be less prone to degradation mechanisms. Additionally, introduction of metal nanostructures into PhOLEDs may improve their performance due to the improvement of the charge transport through organic layers via multiple possible mechanisms ('electrical bridging' effects, doping-like phenomena, etc.). SPE PhOLED technology is particularly beneficial for solution-fabricated electrophosphorescent devices. Small transition moment of triplet emitters allows achieving a significant enhancement of the emission rate while keeping undesirable quenching processes introduced by the metal nanostructures at a reasonably low level. Plasmonic structures can be introduced easily into solution-fabricated PhOLEDs by blending and spin coating techniques and can be used for enhancement of performance in existing device architectures. This constitutes a significant benefit for a large scale fabrication of PhOLEDs, e.g. by roll-to-roll fabrication techniques. Besides multieexciton annihilation, the power efficacy of PhOLEDs is often limited by high operational bias voltages required for overcoming built-in potential barriers to injection and transport of electrical charges through a device. This problem is especially

  15. Nonlocal effect in surface plasmon polariton of ultrathin metal films

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Hong-jie; Yu, Yabin, E-mail: apybyu@hnu.edu.cn; Wu, Reng-lai; Yu, Yan-qin; Wang, Ya-xin

    2015-09-01

    Using the nonlocal conductivity based on quantum response theory, we study the optical properties of p-polarized wave in quartz–metal–film–air structures, especially the influence of nonlocal effect on the surface plasmon polaritons (SPPs) resonance. In absorption spectrum, the resonant peak of SPP is found, and the dependence of the resonant peak on film thickness shows that nonlocal effect in the SPP resonance is enhanced significantly with the decrease of film-thickness, especially in the less than 20 nm metal film. We calculate the surface charge density as a function of frequency, and find that the frequencies at the charge and absorption peaks are the same. This clearly confirms that the absorption peak stems from SPP resonance excitation, and SPPs absorb the energy of the electromagnetic wave via charge oscillations. In the case of SPP resonance, the charge and electric field on the down-surface of thin film are always greater than that on the up-surface; however, the situation is just opposite in the case of no SPP resonance. This implies that the SPP resonance occurs near the down-surface of the film. Moreover, due to the nonlocal response of electric current to the electric field, the energy flow and electric current show anomalous oscillations, and with the increase of film thickness the anomalous oscillations exhibit obvious attenuation.

  16. Omnidirectional optical attractor in structured gap-surface plasmon waveguide

    Science.gov (United States)

    Sheng, Chong; Liu, Hui; Zhu, Shining; Genov, Dentcho A.

    2016-03-01

    An optical attractor based on a simple and easy to fabricate structured metal-dielectric-metal (SMDM) waveguide is proposed. The structured waveguide has a variable thickness in the vicinity of an embedded microsphere and allow for adiabatic nano-focusing of gap-surface plasmon polaritons (GSPPs). We show that the proposed system acts as an omnidirectional absorber across a broad spectral range. The geometrical optics approximation is used to provide a description of the ray trajectories in the system and identify the singularity of the deflection angle at the photon sphere. The analytical theory is validated by full-wave numerical simulations demonstrating adiabatic, deep sub-wavelength focusing of GSPPs and high local field enhancement. The proposed structured waveguide is an ideal candidate for the demonstration of reflection free omnidirectional absorption of GSPP in the optical and infrared frequency ranges.

  17. Surface plasmon wave propagation along single metal wire

    International Nuclear Information System (INIS)

    Recently, the single metal wire (SW) has become attractive for its potential applications in the terahertz and higher frequency range. However, as the most simple and typical surface plasmon polariton (SPP) transmission line, its study seems far from enough. Many important transmission behaviours have not been explained satisfactorily from the viewpoint of physics. In this paper, making use of the modified Drude model (MDM) based on the Sommerfeld theory, the transmission behaviours of SPPs along SW are systemically investigated theoretically. Some important physical phenomena such as the mode transformation, the lifetime of the radiative mode and the resonance frequency are revealed, and their mechanisms are explored. The results obtained in the paper will facilitate a general understanding of the features and the physical essence of the SPP transmission, not only for SW itself but also for other SPP transmission lines

  18. Excitation of surface plasmons at the boundary of overdense plasma

    Institute of Scientific and Technical Information of China (English)

    Wang Liang; Cao Jin-Xiang; Wang Yan; Niu Tian-Ye; Liu Lei; Lü You

    2008-01-01

    The excitation of surface plasmons (SPs) with a strip grating at the boundary of an unmagnetized overdense plasma has been investigated theoretically and experimentally. An incident electromagnetic radiation was p-polarized at the frequency of 5 GHz. Experiments showed that when the plasma density was four times higher than the critical density with the grating present, and the SPs could be excited at the boundary of the overdense plasma. Contribution of the glass layer in the formation of the SP dispersion relation was examined. When the incident electromagnetic radiation was coupled into SPs the coupling order with the effective permittivity was simulated qualitatively. We find that the existence of SPs at the boundary of overdense plasma indicates that the reflection coefficient of the incident electromagnetic radiation reaches its minimum and even becomes total absorption. In this work the plasma density was diagnosed by a Langmuir double probe.

  19. Femtosecond nonlinear ultrasonics in gold probed with ultrashort surface plasmons

    CERN Document Server

    Temnov, Vasily V; Nelson, Keith A; Thomay, Tim; Knittel, Vanessa; Leitenstorfer, Alfred; Makarov, Denys; Albrecht, Manfred; Bratschitsch, Rudolf

    2013-01-01

    Fundamental interactions induced by lattice vibrations on ultrafast time scales become increasingly important for modern nanoscience and technology. Experimental access to the physical properties of acoustic phonons in the THz frequency range and over the entire Brillouin zone is crucial for understanding electric and thermal transport in solids and their compounds. Here, we report on the generation and nonlinear propagation of giant (1 percent) acoustic strain pulses in hybrid gold/cobalt bilayer structures probed with ultrafast surface plasmon interferometry. This new technique allows for unambiguous characterization of arbitrary ultrafast acoustic transients. The giant acoustic pulses experience substantial nonlinear reshaping already after a propagation distance of 100 nm in a crystalline gold layer. Excellent agreement with the Korteveg-de Vries model points to future quantitative nonlinear femtosecond THz-ultrasonics at the nano-scale in metals at room temperature.

  20. Toward Virus-Like Surface Plasmon Strain Sensors.

    Science.gov (United States)

    Zahedian, Maryam; Huang, Xinlei; Tsvetkova, Irina B; Rotello, Vincent M; Schaich, William L; Dragnea, Bogdan

    2016-07-01

    The strong configuration dependence of collective surface plasmon resonances in an array of metal nanoparticles provides an opportunity to develop a bioinspired tool for sensing mechanical deformations in soft matter at the nanoscale. We study the feasibility of a strain sensor based on an icosahedral array of nanoparticles encapsulated by a virus capsid. When the system undergoes deformation, the optical scattering cross-section spectra as well as the induced electric field profile change. By numerical simulations, we examine how these changes depend on the symmetry and extent of the deformation and on both the propagation direction and polarization of the incident radiation. Such a sensor could prove useful in studies of the mechanisms of nanoparticle or virus translocation in the confines of a host cell. PMID:27123824

  1. Surface plasmon coupled chemiluminescence during adsorption of oxygen on magnesium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Ulrich [Interdisciplinary Center for the Analytics on the Nanoscale (ICAN) and Center for Nanointegration Duisburg-Essen (CENIDE), Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nienhaus, Hermann, E-mail: hermann.nienhaus@uni-due.de [Faculty of Physics, University of Duisburg-Essen and Center for Nanointegration Duisburg-Essen (CENIDE), Lotharstr. 1, 47048 Duisburg (Germany)

    2015-12-28

    The dissociative adsorption of oxygen molecules on magnesium surfaces represents a non-adiabatic reaction exhibiting exoelectron emission, chemicurrent generation, and weak chemiluminescence. Using thin film Mg/Ag/p-Si(111) Schottky diodes with 1 nm Mg on a 10-60 nm thick Ag layer as 2π-photodetectors, the chemiluminescence is internally detected with a much larger efficiency than external methods. The chemically induced photoyield shows a maximum for a Ag film thickness of 45 nm. The enhancement is explained by surface plasmon coupled chemiluminescence, i.e., surface plasmon polaritons are effectively excited in the Ag layer by the oxidation reaction and decay radiatively leading to the observed photocurrent. Model calculations of the maximum absorption in attenuated total reflection geometry support the interpretation. The study demonstrates the extreme sensitivity and the practical usage of internal detection schemes for investigating surface chemiluminescence.

  2. Routing of surface plasmons in silver nanowire networks controlled by polarization and coating

    Science.gov (United States)

    Wei, Hong; Pan, Deng; Xu, Hongxing

    2015-11-01

    Controllable propagation of electromagnetic energy in plasmonic nanowaveguides is of great importance for building nanophotonic circuits. Here, we studied the routing of surface plasmons in silver nanowire structures by combining experiments and electromagnetic simulations. The superposition of different plasmon modes results in the tunable near field patterns of surface plasmons on the nanowire. Using the quantum dot fluorescence imaging technique, we experimentally demonstrate that the near field distribution on the nanowire controls the surface plasmon transmission in the nanowire networks. By controlling the polarization of the input light or by controlling the dielectric coating on the nanowire to modulate the plasmon field distribution and guarantee the strong local field intensity at the connecting junction, the surface plasmons can be efficiently routed to the connected nanowires. Depositing a thin layer of Al2O3 film onto the nanowires can reverse the polarization dependence of the output intensity at the nanowire terminals. These results are instructive for designing functional plasmonic nanowire networks and metal-nanowire-based nanophotonic devices.

  3. Routing of surface plasmons in silver nanowire networks controlled by polarization and coating.

    Science.gov (United States)

    Wei, Hong; Pan, Deng; Xu, Hongxing

    2015-12-01

    Controllable propagation of electromagnetic energy in plasmonic nanowaveguides is of great importance for building nanophotonic circuits. Here, we studied the routing of surface plasmons in silver nanowire structures by combining experiments and electromagnetic simulations. The superposition of different plasmon modes results in the tunable near field patterns of surface plasmons on the nanowire. Using the quantum dot fluorescence imaging technique, we experimentally demonstrate that the near field distribution on the nanowire controls the surface plasmon transmission in the nanowire networks. By controlling the polarization of the input light or by controlling the dielectric coating on the nanowire to modulate the plasmon field distribution and guarantee the strong local field intensity at the connecting junction, the surface plasmons can be efficiently routed to the connected nanowires. Depositing a thin layer of Al2O3 film onto the nanowires can reverse the polarization dependence of the output intensity at the nanowire terminals. These results are instructive for designing functional plasmonic nanowire networks and metal-nanowire-based nanophotonic devices. PMID:26514593

  4. Large Optical Nonlinearity of Surface Plasmon Modes on Thin Gold Films

    DEFF Research Database (Denmark)

    Huck, Alexander; Witthaut, Dirk; Kumar, Shailesh; Sorensen, Anders S.; Andersen, Ulrik Lund

    2013-01-01

    We investigate the optical nonlinear effects of a long-range surface plasmon polariton mode propagating on a thin gold film. These effects may play a key role in the design of future nanophotonic circuits as they allow for the realization of active plasmonic elements. We demonstrate a significant...

  5. Quantum emitters coupled to surface plasmons of an nanowire

    DEFF Research Database (Denmark)

    Dzsotjan, David; Sørensen, Anders Søndberg; Fleischhauer, Michael

    2010-01-01

    plasmon-mediated atom-atom coupling. Phenomena due to the presence of losses in the metal are discussed. In case of two atoms, we observe Dicke subradiance and superradiance resulting from their plasmon-mediated interaction. Based on this phenomenon, we propose a scheme for a deterministic two......-qubit quantum gate. We also discuss a possible realization of interesting many-body Hamiltonians, such as the spin-boson model, using strong emitter-plasmon coupling. Udgivelsesdato: 27 August...

  6. Silicon as a virtual plasmonic material: Acquisition of its transient optical constants and the ultrafast surface plasmon-polariton excitation

    Energy Technology Data Exchange (ETDEWEB)

    Danilov, P. A.; Ionin, A. A.; Kudryashov, S. I., E-mail: sikudr@sci.lebedev.ru; Makarov, S. V.; Rudenko, A. A. [Lebedev Physical Institute (Russian Federation); Saltuganov, P. N. [Moscow Institute of Physics and Technology (State University) (Russian Federation); Seleznev, L. V.; Yurovskikh, V. I.; Zayarny, D. A. [Lebedev Physical Institute (Russian Federation); Apostolova, T. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energetics (Bulgaria)

    2015-06-15

    Ultrafast intense photoexcitation of a silicon surface is complementarily studied experimentally and theoretically, with its prompt optical dielectric function obtained by means of time-resolved optical reflection microscopy and the underlying electron-hole plasma dynamics modeled numerically, using a quantum kinetic approach. The corresponding transient surface plasmon-polariton (SPP) dispersion curves of the photo-excited material were simulated as a function of the electron-hole plasma density, using the derived optical dielectric function model, and directly mapped at several laser photon energies, measuring spatial periods of the corresponding SPP-mediated surface relief nanogratings. The unusual spectral dynamics of the surface plasmon resonance, initially increasing with the increase in the electron-hole plasma density but damped at high interband absorption losses induced by the high-density electron-hole plasma through instantaneous bandgap renormalization, was envisioned through the multi-color mapping.

  7. Gas detection by means of surface plasmon resonance enhanced ellipsometry

    Energy Technology Data Exchange (ETDEWEB)

    Nooke, Alida

    2012-11-01

    This thesis investigated gas sensing by means of surface plasmon resonance enhanced ellipsometry. Surface plasmons were excited in a 40 - 50 nm gold layer by a He-Ne-laser using the Kretschmann configuration, which was arranged on a self-made copper measuring cell. A fixed angle of incidence and the ellipsometric parameter {Delta} as the measured value were used to monitor changes in the gas phase. Different types of gases were investigated: flammable (hydrocarbons and hydrogen), oxidising (oxygen and ozone), toxic (carbon monoxide) and inert (helium and nitrogen). The gas types can be distinguished by their refractive indices, whereas the sensor responds instantly relative to the reference gas with an increase or a decrease in {Delta}. Diluting the analyte gas with a reference gas (nitrogen or air) allowed the detection limits to be determined, these lay in the low % range. The sensor stability was also enhanced as well as the sensitivity by modifying the gold layers with a 3-10 nm additional layer. These additional layers consisted of the inorganic materials TiO{sub 2}, ZrO{sub 2}, MgF{sub 2} and Fe: SnO{sub 2} which were deposited by different coating processes. Surface investigations were made of every utilised layer: scanning electron microscope and atomic force microscope measurements for surface topology and spectroscopic ellipsometry mapping to determine the optical constants and the layer thicknesses. All applied materials protected the gold layer from contaminations and thus prolonged the life span of the sensor. Furthermore, the detection limits were reduced significantly, to the low ppm range. The material Fe: SnO{sub 2} demonstrates a special behaviour in reaction with the toxic gas carbon monoxide: Due to the iron doping, the response to carbon monoxide is extraordinary and concentrations below 1 ppm were detected. In order to approach a future application in industry, the sensor system was adapted to a stainless steel tube. With this measuring

  8. Ultrafast optical control of terahertz surface plasmons in subwavelength hole-arrays at room temperature

    Science.gov (United States)

    Azad, Abul K.; Chen, Hou-Tong; Taylor, Antoinette J.; Zhang, Weili; O'Hara, John F.

    2011-02-01

    Extraordinary optical transmission through subwavelength metallic hole-arrays has been an active research area since its first demonstration. The frequency selective resonance properties of subwavelength metallic hole arrays, generally known as surface plasmon polaritons, have potential use in functional plasmonic devices such as filters, modulators, switches, etc. Such plasmonic devices are also very promising for future terahertz applications. Ultrafast switching or modulation of the resonant behavior of the 2-D metallic arrays in terahertz frequencies is of particular interest for high speed communication and sensing applications. In this paper, we demonstrate ultrafast optical control of surface plasmon enhanced resonant terahertz transmission in two-dimensional subwavelength metallic hole arrays fabricated on gallium arsenide based substrates. Optically pumping the arrays creates a thin conductive layer in the substrate reducing the terahertz transmission amplitude of both the resonant mode and the direct transmission. Under low optical fluence, the terahertz transmission is more greatly affected by resonance damping than by propagation loss in the substrate. An ErAs:GaAs nanoisland superlattice substrate is shown to allow ultrafast control with a switching recovery time of ~10 ps. We also present resonant terahertz transmission in a hybrid plasmonic film comprised of an integrated array of subwavelength metallic islands and semiconductor hole arrays. Optically pumping the semiconductor hole arrays favors excitation of surface plasmon resonance. A large dynamic transition between a dipolar localized surface plasmon mode and a surface plasmon resonance near 0.8 THz is observed under near infrared optical excitation. The reversal in transmission amplitude from a stop-band to a pass-band and up to π/ 2 phase shift achieved in the hybrid plasmonic film make it promising in large dynamic phase modulation, optical changeover switching, and active terahertz

  9. Features of electromagnetic waves in a complex plasma due to surface plasmon resonances on macroparticles

    CERN Document Server

    Vladimirov, S V

    2015-01-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations significantly modifies plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The results are discussed in the context of dusty plasma experiments.

  10. Graphene Based Surface Plasmon Polariton Modulator Controlled by Ferroelectric Domains in Lithium Niobate

    OpenAIRE

    Hao Wang; Hua Zhao; Guangwei Hu; Siren Li; Hang Su; Jingwen Zhang

    2015-01-01

    We proposed a ferroelectric domain controlled graphene based surface plasmon polariton modulator. Ferroelectricity-induced electronic and optical property tuning of graphene by domain in lithium niobate was theoretically investigated considering both interband and intraband contributions of surface conductivity. With the corrected Sellmeier equation of lithium niobate, the propagation of transverse magnetic mode surface plasmon polaritons in an air/graphene/lithium niobate structure was studi...

  11. Supramolecular interfacial architectures for optical biosensing with surface plasmons

    Science.gov (United States)

    Knoll, Wolfgang; Park, Hyeyoung; Sinner, Eva-Kathrin; Yao, Danfeng; Yu, Fang

    2004-10-01

    We describe several approaches to design, synthesize and assemble supramolecular (bio-)functional interfacial architectures for applications in optical biosensing using, in particular, surface plasmon field-enhanced fluorescence spectroscopy (SPFS). Firstly, we discuss the build-up of an interfacial catcher probe layer for surface-hybridization studies with PCR amplicons. The well-established biotin-streptavidin coupling scheme is used to assemble a peptide nucleic acid (PNA) probe matrix. SPFS allows then for a very detailed and quantitative evaluation of the kinetics and affinities of the association and dissociation reactions between these catcher oligonucleotide strands and chromophore-labeled PCR (125 bp) strands from solution. The second example concerns the study of protein binding using an ELISA-analogue sandwich approach: a primary antibody against the prostate-specific antigen (PSA) used in these examples is coupled to a dextran binding matrix at the sensor surface via EDC/NHS-coupling. The detection limits for PSA are then evaluated using a 2-step- or 1-step-antigen/secondary antibody strategy by monitoring the fluorescence intensity emitted from chromophore-labels covalently bound to the secondary antibody. The final system that we describe involves a novel model membrane system, i.e., a tethered bimolecular lipid membrane (tBLM). Reconstitution of integrin receptors then allows for a quantitative study of the binding of fluorophore-labeled collagen fragments to the membrane-based integrin receptors.

  12. Gallium arsenide based surface plasmon resonance for glucose monitoring

    Science.gov (United States)

    Patil, Harshada; Sane, Vani; Sriram, G.; Indumathi, T. S; Sharan, Preeta

    2015-07-01

    The recent trends in the semiconductor and microwave industries has enabled the development of scalable microfabrication technology which produces a superior set of performance as against its counterparts. Surface Plasmon Resonance (SPR) based biosensors are a special class of optical sensors that become affected by electromagnetic waves. It is found that bio-molecular recognition element immobilized on the SPR sensor surface layer reveals a characteristic interaction with various sample solutions during the passage of light. The present work revolves around developing painless glucose monitoring systems using fluids containing glucose like saliva, urine, sweat or tears instead of blood samples. Non-invasive glucose monitoring has long been simulated using label free detection mechanisms and the same concept is adapted. In label-free detection, target molecules are not labeled or altered, and are detected in their natural forms. Label-free detection mechanisms involves the measurement of refractive index (RI) change induced by molecular interactions. These interactions relates the sample concentration or surface density, instead of total sample mass. After simulation it has been observed that the result obtained is highly accurate and sensitive. The structure used here is SPR sensor based on channel waveguide. The tools used for simulation are RSOFT FULLWAVE, MEEP and MATLAB etc.

  13. Detection of Carcinoembryonic Antigens Using a Surface Plasmon Resonance Biosensor

    Directory of Open Access Journals (Sweden)

    Shin-Ichiro Nishimura

    2008-07-01

    Full Text Available Carcinoembryonic antigen (CEA is an oncofoetal cell-surface glycoprotein that serves as an important tumor marker for colorectal and some other carcinomas. In this work, a CEA immunoassay using a surface plasmon resonance (SPR biosensor has been developed. SPR could provide label-free, real-time detection with high sensitivity, though its ability to detect CEA in human serum was highly dependent on the analytical conditions employed. We investigated the influences of various analytical conditions including immobilization methods for anti-CEA antibody and composition of sensor surface on the selective and sensitive detection of CEA. The results show that anti-CEA antibody immobilized via Protein A or Protein G caused a large increase in the resonance signal upon injection of human serum due to the interactions with IgGs in serum, while direct covalent immobilization of anti-CEA antibody could substantially reduce it. An optimized protocol based on further kinetic analysis and the use of 2nd and 3rd antibodies for the sandwich assay allowed detecting spiked CEA in human serum as low as 25 ng/mL. Furthermore, a self-assembled monolayer of mixed ethylene-glycol terminated alkanethiols on gold was found to have a comparable ability in detecting CEA as CM5 with thick dextran matrix and C1 with short flat layer on gold.

  14. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures.

    Science.gov (United States)

    Abid, I; Bohloul, A; Najmaei, S; Avendano, C; Liu, H-L; Péchou, R; Mlayah, A; Lou, J

    2016-04-14

    In this work we investigate the interaction between plasmonic and excitonic resonances in hybrid MoSe2@Au nanostructures. The latter were fabricated by combining chemical vapor deposition of MoSe2 atomic layers, Au disk processing by nanosphere lithography and a soft lift-off/transfer technique. The samples were characterized by scanning electron and atomic force microscopy. Their optical properties were investigated experimentally using optical absorption, Raman scattering and photoluminescence spectroscopy. The work is focused on a resonant situation where the surface plasmon resonance is tuned to the excitonic transition. In that case, the near-field interaction between the surface plasmons and the confined excitons leads to interference between the plasmonic and excitonic resonances that manifests in the optical spectra as a transparency dip. The plasmonic-excitonic interaction regime is determined using quantitative analysis of the optical extinction spectra based on an analytical model supported by numerical simulations. We found that the plasmonic-excitonic resonances do interfere thus leading to a typical Fano lineshape of the optical extinction. The near-field nature of the plasmonic-excitonic interaction is pointed out experimentally from the dependence of the optical absorption on the number of monolayer stacks on the Au nanodisks. The results presented in this work contribute to the development of new concepts in the field of hybrid plasmonics. PMID:27029770

  15. Quantitative blood group typing using surface plasmon resonance.

    Science.gov (United States)

    Then, Whui Lyn; Aguilar, Marie-Isabel; Garnier, Gil

    2015-11-15

    The accurate and reliable typing of blood groups is essential prior to blood transfusion. While current blood typing methods are well established, results are subjective and heavily reliant on analysis by trained personnel. Techniques for quantifying blood group antibody-antigen interactions are also very limited. Many biosensing systems rely on surface plasmon resonance (SPR) detection to quantify biomolecular interactions. While SPR has been widely used for characterizing antibody-antigen interactions, measuring antibody interactions with whole cells is significantly less common. Previous studies utilized SPR for blood group antigen detection, however, showed poor regeneration causing loss of functionality after a single use. In this study, a fully regenerable, multi-functional platform for quantitative blood group typing via SPR detection is achieved by immobilizing anti-human IgG antibody to the sensor surface, which binds to the Fc region of human IgG antibodies. The surface becomes an interchangeable platform capable of quantifying the blood group interactions between red blood cells (RBCs) and IgG antibodies. As with indirect antiglobulin tests (IAT), which use IgG antibodies for detection, IgG antibodies are initially incubated with RBCs. This facilitates binding to the immobilized monolayer and allows for quantitative blood group detection. Using the D-antigen as an example, a clear distinction between positive (>500 RU) and negative (anti-D IgG. Complete regeneration of the anti-human IgG surface is also successful, showing negligible degradation of the surface after more than 100 regenerations. This novel approach is validated with human-sourced whole blood samples to demonstrate an interesting alternative for quantitative blood grouping using SPR analysis. PMID:26047997

  16. Dose-response characteristics of a monoclonal antibody based two-si immunoradiometric assay for hepatitis B surface antigen (HBsAg)

    International Nuclear Information System (INIS)

    Since the correlation between HBV infectivity and circulating HBsAG was established, increasingly sensitive tests for HBsAg have been developed. Of these, two-site immunoradiometric assays (2S-IRMA) employing polyclonal antibodies of diverse animal origins have proven to be the most sensitive. A number of 2S-IRMA based on mouse monoclonal antibodies have been developed and in 1983 one was released commercially by NML(R). The present study has compared the performance of this assay with that of the polyclonal antibody based HBsAg-assay, AUSRIA(R) II-125, and has looked particularly at dose responsiveness, sensitivity and specificity. The NML(R) monoclonal antibody based assay was found to have the capacity to detect HBsAg at concentrations of 0.31 ng/mL ad and 0.22 ng/mL ay respectively, whereas the polyclonal-based assay (AUSRIA(R) II-125) detected HBsAg as low as 0.09 ng/mL ad and 0.17 ng/mL ay. These findings are contrary to the expectations raised by the claim of significantly improved assay sensitivity with research prototype of the NML(R) assay published by the workers who developed the anti-HBs producing mouse hybridomas

  17. Colorimetric sensors using nano-patch surface plasmon resonators

    International Nuclear Information System (INIS)

    A two-dimensional array of gold nano-patches on a highly reflective mirror is proposed for refractive index sensing based on changes in the reflected colors. The grating on the mirror creates localized surface plasmon resonances resulting in a minimum in the visible reflectance spectra. The wavelength of the resonance can be tuned by changing the width of the nano-patches and is also dependent on the refractive index of the surrounding medium. The color variation due to change in the refractive index is measured and used to realize a simple low-cost sensor with a refractive index resolution better than 10−5 just using image processing. The efficacy of the proposed sensor is also demonstrated for surface sensing by depositing thin layers of silicon dioxide. The color difference due to the addition of a 3 nm thick layer of silicon dioxide is detectable by the naked eye and deposition thickness of 2 Å can be resolved using image processing. (paper)

  18. Efficient coupling and transport of a surface plasmon at 780 nm in a gold nanostructure

    Science.gov (United States)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-01

    We study plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We design an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  19. Efficient Coupling and Transport of a Surface Plasmon at 780 nm in a Gold Nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Yu; Joly, Alan G.; El-Khoury, Patrick Z.; Hess, Wayne P.

    2015-08-28

    We studied plasmonic nanostructures in single-crystal gold with scanning electron and femtosecond photoemission electron microscopies. We designed an integrated laser coupling and nanowire waveguide structure by focused ion beam lithography in single-crystal gold flakes. The photoemission results show that the laser field is efficiently coupled into a propagating surface plasmon by a simple hole structure and propagates efficiently in an adjacent nano-bar waveguide. A strong local field is created by the propagating surface plasmon at the nano-bar tip. A similar structure, with a decreased waveguide width and thickness, displayed significantly more intense photoemission indicating enhanced local electric field at the sharper tip.

  20. Surface plasmon propelled high-performance CdSe nanoribbons photodetector.

    Science.gov (United States)

    Luo, Lin-Bao; Xie, Wei-Jie; Zou, Yi-Feng; Yu, Yong-Qiang; Liang, Feng-Xia; Huang, Zi-Jun; Zhou, Ke-Ya

    2015-05-18

    In this work, we present a plasmonic photodetector (PPD) with high sensitivity to red light illumination. The ultrasensitive PPD was composed of high-crystalline CdSe nanoribbons (NRs) decorated with plasmonic hollow gold nanoparticles (HGNs) on the surface, which were capable of coupling the incident light due to localized surface plasmon resonance (LSPR). Device analysis reveals that after modification of HGNs, both responsivity and detectivity were considerably improved. Further device performance analysis and theoretical simulation based on finite element method (FEM) find that the optimized performance is due to HGNs induced localized field enhancement and direct electron transfer. PMID:26074550

  1. A system suitable for observing surface plasmon in a semi-infinite semiconductor superlattice

    International Nuclear Information System (INIS)

    A model of semi-infinite semiconductor superlattice topped with a metal-insulator(M-I-SL) is suggested. A modified Giuliani-Quinn surface plasmon is found. It is interesting to note that the frequency and critical wavelength can be arbitrarily chosen by varying thickness of the insulator. In particular, a new type of surface plasmon with null critical wave vector exists only below the bulk plasmon continuum, and the frequency is directly related to the ratio of thickness of the insulator d to the superlattice spacing a. (author). 9 refs, 3 figs

  2. Overview of the Characteristics of Micro- and Nano-Structured Surface Plasmon Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Byoungho Lee

    2011-01-01

    Full Text Available The performance of bio-chemical sensing devices has been greatly improved by the development of surface plasmon resonance (SPR based sensors. Advancements in micro- and nano-fabrication technologies have led to a variety of structures in SPR sensing systems being proposed. In this review, SPR sensors (from typical Kretschmann prism configurations to fiber sensor schemes with micro- or nano-structures for local light field enhancement, extraordinary optical transmission, interference of surface plasmon waves, plasmonic cavities, etc. are discussed. We summarize and compare their performances and present guidelines for the design of SPR sensors.

  3. Near-field mapping of three-dimensional surface charge poles for hybridized plasmon modes

    Directory of Open Access Journals (Sweden)

    Yu Huang

    2015-10-01

    Full Text Available We describe a new computational approach to mapping three-dimensional (3D surface charge poles and thus to determine complicated and hybridized plasmon modes in metallic nanostructures via finite element method (FEM calculations. 3D surface charge distributions at the near-field resonance energies are calculated directly using Gauss’ law. For a nanosphere dimer, we demonstrate that higher-order hybridized plasmon modes can be addressed clearly. As an improvement to conventional mapping approaches, this new approach provides a better understanding of comprehensive physical image of plasmonic systems necessary for fundamental studies and spectroscopy applications.

  4. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min, E-mail: sjhanmin@nju.edu.cn

    2014-07-18

    Hybrid Pd–Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination. - Highlights: • We study photo-enhanced electron conductance of a hybrid Pd–Ag nanoparticle array. • The light-induced conductance enhancement is as high as 20 folds at 10 K. • The enhancement is correlate with the surface plasmon resonance of Ag nanoparticles. • Coulomb blockades is overcome with the surface plasmon enhanced local field.

  5. Anisotropy-assisted non-scattering coherent absorption of surface plasmon-polaritons

    CERN Document Server

    Ignatov, Anton I; Baranov, Denis G

    2016-01-01

    The ability to control propagation of electromagnetic guided modes lies at the heart of integrated nanophotonics. Surface plasmon-polaritons are a class of guided modes which can be employed in integrated optical systems. Here, we present a theoretical design of a coherent surface plasmon absorber which can perfectly harvest energy of coherently incident surface plasmons without parasitic scattering into free space modes. Excitation of free space modes which usually accompanies scattering of a surface plasmon by an interface boundary is avoided due to specially tailored anisotropy of the absorber. The concept of coherent SPP absorber is analyzed numerically for spatially non-uniform and finite-size structures. We believe that our results will be important for the development of integrated nanoplasmonic systems.

  6. Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection.

    Science.gov (United States)

    Tu, Nina; Wang, Leyu

    2013-07-18

    We present a novel report on a surface plasmon resonance enhanced upconversion luminescence strategy in aqueous media for highly sensitive and selective detection of 2,4,6-trinitrotoluene (TNT). PMID:23739225

  7. Generation of Bessel Surface Plasmon Polaritons in a Finite-Thickness Metal Film

    Directory of Open Access Journals (Sweden)

    S. N. Kurilkina

    2013-01-01

    Full Text Available A theory of generation of low- and high-index Bessel surface plasmon polaritons and their superposition in a metal film of a finite thickness is developed. Correct analytical expressions are obtained for the field of two families of Bessel surface plasmon polariton modes formed inside and outside the metal layer. The intensity distribution near the boundary of the layer has been calculated and analyzed. A scheme for the experimental realization of a superposition of Bessel surface plasmon polaritons is suggested. Our study demonstrates that it is feasible to use the superposition of Bessel surface plasmon polaritons as a virtual tip for near-field optical microscopy with a nanoscale resolution.

  8. Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures.

    Science.gov (United States)

    Brar, Victor W; Jang, Min Seok; Sherrott, Michelle; Kim, Seyoon; Lopez, Josue J; Kim, Laura B; Choi, Mansoo; Atwater, Harry

    2014-07-01

    Infrared transmission measurements reveal the hybridization of graphene plasmons and the phonons in a monolayer hexagonal boron nitride (h-BN) sheet. Frequency-wavevector dispersion relations of the electromagnetically coupled graphene plasmon/h-BN phonon modes are derived from measurement of nanoresonators with widths varying from 30 to 300 nm. It is shown that the graphene plasmon mode is split into two distinct optical modes that display an anticrossing behavior near the energy of the h-BN optical phonon at 1370 cm(-1). We explain this behavior as a classical electromagnetic strong-coupling with the highly confined near fields of the graphene plasmons allowing for hybridization with the phonons of the atomically thin h-BN layer to create two clearly separated new surface-phonon-plasmon-polariton (SPPP) modes. PMID:24874205

  9. Surface-plasmon mode hybridization in sub-wavelength microdisk lasers

    OpenAIRE

    Perahia, R.; Alegre, T. P. Mayer; Safavi-Naeini, A.; Painter, O.

    2009-01-01

    Hybridization of surface-plasmon and dielectric waveguide whispering-gallery modes are demonstrated in a semiconductor microdisk laser cavity of sub-wavelength proportions. A metal layer is deposited on top of the semiconductor microdisk, the radius of which is systematically varied to enable mode hybridization between surface-plasmon and dielectric modes. The anti-crossing behavior of the two cavity mode types is experimentally observed via photoluminescence spectroscopy and optically pumped...

  10. Methodology to study polymers interaction by surface plasmon resonance imaging ☆

    OpenAIRE

    N. Vollmer; Trombini, F.; M. Hely; Bellon, S.; Mercier, K.; Cazeneuve, C

    2014-01-01

    The surface plasmon resonance (SPR) technique has been primarily used in the field of biology, in particular for the study of antibody-antigen interactions. Recently, polymers were introduced to form inclusion complexes. We describe here, a methodology based on surface plasmon resonance imaging to study water-resistant and reversible inclusion complexes using systems which are compatible with a cosmetic use. The purpose of this study is to follow in real time the interaction between two po...

  11. Coupling of self-assembled InAs quantum dots to surface plasmon polaritons

    DEFF Research Database (Denmark)

    Andersen, Mads Lykke; Stobbe, Søren; Johansen, Jeppe;

    2008-01-01

    InAs quantum dots have been placed at different distances to a silver mirror. We extract the coupling of quantum dots to surface plasmon polaritons as a function of the distance by time-resolved spontaneous emission measurements.......InAs quantum dots have been placed at different distances to a silver mirror. We extract the coupling of quantum dots to surface plasmon polaritons as a function of the distance by time-resolved spontaneous emission measurements....

  12. Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Mortensen, Asger

    2011-01-01

    We report surface-plasmon-polariton-induced suppressed transmission through two-dimensional arrays of isolated metal disks with a thickness comparable to optical skin depth of the metal. A transmittance dip of −17:5 dB is achieved at the resonant wavelength of 1524 nm, compared to −12 dB for closed...... film. Coupling the light into the surface-plasmon polariton results in enhanced absorption, which is potentially interesting in solar cell applications....

  13. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods

    OpenAIRE

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-01-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident l...

  14. Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers

    OpenAIRE

    Schuessler, Hans A.; Kolomenskii, Alexander A.; Mershin, Andreas; Nanopoulos, D. V.

    2003-01-01

    Biosensors based on the principle of surface plasmon resonance (SPR) detection were used to measure biomolecular interactions in sarcomeres and changes of the dielectric constant of tubulin samples with varying concentration. At SPR, photons of laser light efficiently excite surface plasmons propagating along a metal (gold) film. This resonance manifests itself as a sharp minimum in the reflection of the incident laser light and occurs at a characteristic angle. The dependence of the SPR angl...

  15. Enhancement and tunability of near-field radiative heat transfer mediated by surface plasmon polaritons in thin plasmonic films

    CERN Document Server

    Boriskina, Svetlana V; Huang, Yi; Zhou, Jiawei; Chiloyan, Vazrik; Chen, Gang

    2016-01-01

    The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs) on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (...

  16. High-Energy Surface and Volume Plasmons in Nanopatterned Sub-10 nm Aluminum Nanostructures.

    Science.gov (United States)

    Hobbs, Richard G; Manfrinato, Vitor R; Yang, Yujia; Goodman, Sarah A; Zhang, Lihua; Stach, Eric A; Berggren, Karl K

    2016-07-13

    In this work, we use electron energy-loss spectroscopy to map the complete plasmonic spectrum of aluminum nanodisks with diameters ranging from 3 to 120 nm fabricated by high-resolution electron-beam lithography. Our nanopatterning approach allows us to produce localized surface plasmon resonances across a wide spectral range spanning 2-8 eV. Electromagnetic simulations using the finite element method support the existence of dipolar, quadrupolar, and hexapolar surface plasmon modes as well as centrosymmetric breathing modes depending on the location of the electron-beam excitation. In addition, we have developed an approach using nanolithography that is capable of meV control over the energy and attosecond control over the lifetime of volume plasmons in these nanodisks. The precise measurement of volume plasmon lifetime may also provide an opportunity to probe and control the DC electrical conductivity of highly confined metallic nanostructures. Lastly, we show the strong influence of the nanodisk boundary in determining both the energy and lifetime of surface plasmons and volume plasmons locally across individual aluminum nanodisks, and we have compared these observations to similar effects produced by scaling the nanodisk diameter. PMID:27295061

  17. Elastoplasmonic interaction in metal-insulator-metal localized surface plasmon systems

    Science.gov (United States)

    Mrabti, Abdelali; Lévêque, Gaëtan; Akjouj, Abdellatif; Pennec, Yan; Djafari-Rouhani, Bahram; Nicolas, Rana; Maurer, Thomas; Adam, Pierre-Michel

    2016-08-01

    We investigate theoretically and numerically the coupling between elastic and localized surface plasmon modes in a system of gold nanocylinders separated from a thin gold film by a dielectric spacer of few nanometers thickness. That system supports plasmon modes confined in between the bottom of the nanocylinder and the top of the gold film, which arise from the formation of interference patterns by short-wavelength metal-insulator-metal propagating plasmon. First, we present the plasmonic properties of the system though computer-simulated extinction spectra and field maps associated to the different optical modes. Next, a simple analytical model is introduced, which allows to correctly reproduce the shape and wavelengths of the plasmon modes. This model is used to investigate the efficiency of the coupling between an elastic deformation and the plasmonic modes. In the last part of the paper, we present the full numerical simulations of the elastic properties of the system, and then compute the acousto-plasmonic coupling between the different plasmon modes and five acoustic modes of very different shape. The efficiency of the coupling is assessed first by evaluating the modulation of the resonance wavelength, which allows comparison with the analytical model, and finally in term of time-modulation of the transmission spectra on the full visible range, computed for realistic values of the deformation of the nanoparticle.

  18. Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays.

    Science.gov (United States)

    Papaioannou, Evangelos Th; Kapaklis, Vassilios; Melander, Emil; Hjörvarsson, Björgvin; Pappas, Spiridon D; Patoka, Piotr; Giersig, Michael; Fumagalli, Paul; Garcia-Martin, Antonio; Ctistis, Georgios

    2011-11-21

    The influence of surface plasmons on the magneto-optic activity in a two-dimensional hexagonal array is addressed. The experiments were performed using hexagonal array of circular holes in a ferromagnetic Ni film. Well pronounced troughs are observed in the optical reflectivity, resulting from the presence of surface plasmons. The surface plasmons are found to strongly enhance the magneto-optic response (Kerr rotation), as compared to a continuous film of the same composition. The influence of the hexagonal symmetry of the pattern on the coupling between the plasmonic excitations is demonstrated, using optical diffraction measurements and theoretical calculations of the magneto-optic and of the angular dependence of the optical activity. PMID:22109411

  19. Towards On-site Pathogen Detection Using Antibody-based Sensors

    DEFF Research Database (Denmark)

    Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2008-01-01

    In this paper the recent progress within biosensors for plant pathogen detection will be reviewed. Bio-recognition layers on sensors can be designed in various ways, however the most popular approach is to immobilise antibodies for specific capture of analytes. Focus will be put on antibody surface......-immobilisation strategies as well as the use of antibodies in the widely used sensors, quartz crystal microbalance, surface plasmon resonance and cantilevers. We will describe the available data on antibody-based plant pathogen detection and furthermore use examples from detection of the pathogens Salmonella, Listeria...... monocytogenes, Streptococcus mutans, Bacillus cereus, Bacillus anthracis, Campylobacter and Escherichia coli. We will touch upon optimal assay design and further discuss the strengths and limitations of current sensor technologies for detection of viruses, bacteria and fungi....

  20. Towards on-site pathogen detection using antibody-based sensors.

    Science.gov (United States)

    Skottrup, Peter Durand; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2008-11-15

    In this paper, the recent progress within biosensors for plant pathogen detection will be reviewed. Bio-recognition layers on sensors can be designed in various ways, however the most popular approach is to immobilise antibodies for specific capture of analytes. Focus will be put on antibody surface-immobilisation strategies as well as the use of antibodies in the widely used sensors, quartz crystal microbalance, surface plasmon resonance and cantilevers. We will describe the available data on antibody-based plant pathogen detection and furthermore use examples from detection of the pathogens Salmonella, Listeria monocytogenes, Streptococcus mutans, Bacillus cereus, Bacillus anthracis, Campylobacter and Escherichia coli. We will touch upon optimal assay design and further discuss the strengths and limitations of current sensor technologies for detection of viruses, bacteria and fungi. PMID:18675543

  1. Surface plasmon resonance based fiber optic glucose biosensor

    Science.gov (United States)

    Srivastava, Sachin K.; Verma, Roli; Gupta, Banshi D.

    2012-02-01

    A surface plasmon resonance (SPR) based fiber optic biosensor has been fabricated and characterized for the detection of blood glucose. Optical fiber sensor was fabricated by first coating a 50 nm thick gold film on the bare core of optical fiber and then immobilizing glucose oxidase (GOx) over it. Aqueous glucose solutions of different concentrations were prepared. To mimic the blood glucose levels, the concentration of glucose solutions were kept equal to that in human blood. The refractive indices of these sample solutions were equal to that of water up to third decimal place. SPR spectra for the sensor were recorded for these glucose solutions. When the glucose comes in contact to glucose oxidase, chemical reactions take place and as a result, the refractive index of the immobilized GOx film changes, giving rise to a shift in the resonance wavelength. Unlike electrochemical sensors, the present sensor is based on optics and can be miniaturized because of optical fiber. The present study provides a different approach for blood glucose sensing and may be commercialized after optimization of certain parameters.

  2. La force de Casimir et les plasmons de surface

    Science.gov (United States)

    Intravaia, F.; Lambrecht, A.; Reynaud, S.

    2004-11-01

    La présence de fluctuations irréductibles de champ dans le vide est une prédiction importante de la théorie quantique. Ces fluctuations ont de nombreux effets bien connus, dont l'archétype est la force de Casimir apparaîssant entre deux miroirs placés dans le vide par suite de la pression de radiation du vide. Elle a été récemment mesurée avec une précision de l'ordre du %. De nombreux travaux sont consacrés à l'évaluation théorique de cette force en visant une précision du même ordre. Ici nous étudions la force de Casimir dans la configuration de deux miroirs métalliques plans parallèles à température nulle. En supposant les miroirs décrits par un modèle plasma nous interprétons la force de Casimir comme le résultat de l'interaction entre les plasmons de surface des deux miroirs.

  3. Explosives detection and identification using surface plasmon-coupled emission

    Science.gov (United States)

    Ja, Shiou-Jyh

    2012-06-01

    To fight against the explosives-related threats in defense and homeland security applications, a smarter sensing device that not only detects but differentiates multiple true threats from false positives caused by environmental interferents is essential. A new optical detection system is proposed to address these issues by using the temporal and spectroscopic information generated by the surface plasmon coupling emission (SPCE) effect. Innovative SPCE optics have been designed using Zemax software to project the fluorescence signal into clear "rainbow rings" on a CCD with subnanometer wavelength resolution. The spectroscopic change of the fluorescence signal and the time history of such changes due to the presence of a certain explosive analyte are unique and can be used to identify explosives. Thanks to high optical efficiency, reporter depositions as small as 160-μm in diameter can generate a sufficient signal, allowing a dense array of different reporters to be interrogated with wavelength multiplexing and detect a wide range of explosives. We have demonstrated detection and classification of explosives, such as TNT, NT, NM, RDX, PETN, and AN, with two sensing materials in a prototype.

  4. High performance surface plasmon sensors: Simulations and measurements

    Science.gov (United States)

    Tiwari, Kunal; Sharma, Suresh C.; Hozhabri, Nader

    2015-09-01

    Through computer simulations and surface plasmon resonance (SPR) measurements, we establish optimum parameters for the design and fabrication of SPR sensors of high sensitivity, resolution, stability, and long decay-length evanescent fields. We present simulations and experimental SPR data for variety of sensors fabricated by using bimetal (Ag/Au) and multilayer waveguide-coupled Ag/Si3N4/Au structures. The simulations were carried out by using the transfer matrix method in MATLAB environment. Results are presented as functions of the thickness of the metal (Ag or Au) and the waveguide dielectric used in Ag/Si3N4/Au structures. Excellent agreement is observed between the simulations and experiments. For optimized thickness of the Si3N4 waveguide (150 nm), the sensor exhibits very high sensitivity to changes in the refractive index of analytes, Sn≈52°/R I U , extremely high resolution (F W H M ≤0.28° ) , and long penetration depth of evanescent fields (δ≥305 n m ) .

  5. Multiplexed polymer surface plasmon sensor with integrated optical coupler

    Science.gov (United States)

    Pyo, Hyeon-Bong; Park, Se Ho; Chung, Kwang Hyo; Choi, Chang Auck

    2005-11-01

    In this paper, we describe a novel multiplexed surface plasmon resonance (SPR) sensor which is made of cyclic olefin copolymers (COCs, TOPAS TM). This material has excellent chemical resistance, low water uptake (multiplexed detection of DNA single nucleotide polymorphism (SNP). To evaluate the sensitivity of COC-SPR sensor, we first patterned MgF II on gold-coated COC-SPR sensor and observed the shift of minimum reflectivity (SPR dip) in pixel address. As incident light source we used an expanded, collimated, rectangular shaped He-Ne laser, with a diffuser for beam homogenization. With expanded laser beam we varied incident angle so that the angular shift is expressed as the darkest pixel shift on CCD. For optimized SPR characteristics and sensor configuration, analytical calculations (Fresnel equation) were performed, and the best SPR conditions were found to be d Au~48 nm at wavelength λ=633 nm with respected resonance angle at θ SPR =44.2° for COC-SPR sensor.

  6. Broadband circulator based on spoof surface plasmon polaritons

    Science.gov (United States)

    Qiu, Tianshuo; Wang, Jiafu; Li, Yongfeng; Wang, Jun; Qu, Shaobo

    2016-09-01

    In this paper, we proposed a method to design broadband circulators with a compact size. We show that spoof surface plasmon polaritons (SSPPs), which are mediated by metallic blade structures, can be used for the design. The SSPPs wave on metallic blade structures and the transverse electromagnetic (TEM) wave on strip lines are combined to realize wideband circulation performance. A broadband characteristic, which is different from a traditional one, with a compact size can be achieved by combining the SSPPs wave and the TEM wave, which propagates simultaneously in the circulator. The simulation results indicate that from 4.5 GHz to 14 GHz, the return loss and isolation degree basically reaches up to 12 dB and 15 dB, respectively. The mechanism of the broadband transmission characteristic is analyzed using field distributions obtained in simulation. Moreover, the insertion loss is less than 1 dB. This method is helpful to reduce the size of the device and the bulk of ferrite.

  7. Surface Plasmon Resonance Biosensor Based on Smart Phone Platforms

    Science.gov (United States)

    Liu, Yun; Liu, Qiang; Chen, Shimeng; Cheng, Fang; Wang, Hanqi; Peng, Wei

    2015-08-01

    We demonstrate a fiber optic surface plasmon resonance (SPR) biosensor based on smart phone platforms. The light-weight optical components and sensing element are connected by optical fibers on a phone case. This SPR adaptor can be conveniently installed or removed from smart phones. The measurement, control and reference channels are illuminated by the light entering the lead-in fibers from the phone’s LED flash, while the light from the end faces of the lead-out fibers is detected by the phone’s camera. The SPR-sensing element is fabricated by a light-guiding silica capillary that is stripped off its cladding and coated with 50-nm gold film. Utilizing a smart application to extract the light intensity information from the camera images, the light intensities of each channel are recorded every 0.5 s with refractive index (RI) changes. The performance of the smart phone-based SPR platform for accurate and repeatable measurements was evaluated by detecting different concentrations of antibody binding to a functionalized sensing element, and the experiment results were validated through contrast experiments with a commercial SPR instrument. This cost-effective and portable SPR biosensor based on smart phones has many applications, such as medicine, health and environmental monitoring.

  8. Clenbuterol Assay by Spectral Imaging Surface Plasmon Resonance Biosensor System.

    Science.gov (United States)

    Wu, Yichuan; Yao, Manwen; Fang, Xiangyi; Yang, Yucong; Cheng, Xiaoli

    2015-11-01

    To prevent illegal use of clenbuterol and for quality control in the food industry, more efficient and reliable methods for clenbuterol detection are needed. In this study, clenbuterol was detected using a spectral imaging surface plasmon resonance sensor system via two inhibition methods: (1) the target site compensation method, in which anti-clenbuterol antibody was immobilized on the sensor chip as a bioprobe and (2) the solution competition method in which a clenbuterol-BSA conjugate was immobilized on the sensor chip as the bioprobe. The detectable clenbuterol concentration ranged between 6.25 and 100 μg/mL for both methods. The clenbuterol limit of detection for the target site compensation method and solution competition method are estimated to be 6.7 and 4.5 μg/mL, respectively. The proposed methods were successfully applied to the detection of clenbuterol molecules and were found to have high specificity and high-throughput and were label free and operationally convenient. PMID:26319570

  9. Dihedron dielectric loaded surface plasmon athermal polarization converter.

    Science.gov (United States)

    Hassan, K; Leroy, F; Colas-des-Francs, G; Weeber, J-C

    2014-02-01

    We investigate numerically a novel plasmonic polarization converter relying on the excitation of a so-called dihedron dielectric loaded plasmon polariton. The dihedron dielectric loaded waveguide consists of a dielectric ridge implemented at the inner corner of a metal-coated dielectric step. For a dielectric ridge with a square cross section, the plasmon polariton modes supported by each side of the metallized step hybridize to create supermodes with crossed polarizations. We show that the two supermodes can be operated in a dual-mode interferometer configuration to perform an efficient (24 dB) TE-TM/TM-TE polarization conversion over typical distances below 30 μm at telecommunications wavelengths. In addition, on the basis of the thermo-optical properties of our device, we find that the dihedron plasmonic polarization converter is temperature insensitive. PMID:24487902

  10. Hydrogen Doped Metal Oxide Semiconductors with Exceptional and Tunable Localized Surface Plasmon Resonances.

    Science.gov (United States)

    Cheng, Hefeng; Wen, Meicheng; Ma, Xiangchao; Kuwahara, Yasutaka; Mori, Kohsuke; Dai, Ying; Huang, Baibiao; Yamashita, Hiromi

    2016-07-27

    Heavily doped semiconductors have recently emerged as a remarkable class of plasmonic alternative to conventional noble metals; however, controlled manipulation of their surface plasmon bands toward short wavelengths, especially in the visible light spectrum, still remains a challenge. Here we demonstrate that hydrogen doped given MoO3 and WO3 via a facile H-spillover approach, namely, hydrogen bronzes, exhibit strong localized surface plasmon resonances in the visible light region. Through variation of their stoichiometric compositions, tunable plasmon resonances could be observed in a wide range, which hinge upon the reduction temperatures, metal species, the nature and the size of metal oxide supports in the synthetic H2 reduction process as well as oxidation treatment in the postsynthetic process. Density functional theory calculations unravel that the intercalation of hydrogen atoms into the given host structures yields appreciable delocalized electrons, enabling their plasmonic properties. The plasmonic hybrids show potentials in heterogeneous catalysis, in which visible light irradiation enhanced catalytic performance toward p-nitrophenol reduction relative to dark condition. Our findings provide direct evidence for achieving plasmon resonances in hydrogen doped metal oxide semiconductors, and may allow large-scale applications with low-price and earth-abundant elements. PMID:27384437

  11. Coupling Solar Energy into Reactions: Materials Design for Surface Plasmon-Mediated Catalysis.

    Science.gov (United States)

    Long, Ran; Li, Yu; Song, Li; Xiong, Yujie

    2015-08-26

    Enabled by surface plasmons, noble metal nanostructures can interact with and harvest incident light. As such, they may serve as unique media to generate heat, supply energetic electrons, and provide strong local electromagnetic fields for chemical reactions through different mechanisms. This solar-to-chemical pathway provides a new approach to solar energy utilization, alternative to conventional semiconductor-based photocatalysis. To provide readers with a clear picture of this newly recognized process, this review presents coupling solar energy into chemical reactions through plasmonic nanostructures. It starts with a brief introduction of surface plasmons in metallic nanostructures, followed by a demonstration of tuning plasmonic features by tailoring their physical parameters. Owing to their tunable plasmonic properties, metallic materials offer a platform to trigger and drive chemical reactions at the nanoscale, as systematically overviewed in this article. The design rules for plasmonic materials for catalytic applications are further outlined based on existing examples. At the end of this article, the challenges and opportunities for further development of plasmonic-mediated catalysis toward energy and environmental applications are discussed. PMID:26097101

  12. Graphene surface plasmon polaritons with opposite in-plane electron oscillations along its two surfaces

    International Nuclear Information System (INIS)

    We predict the existence of a surface plasmon polariton (SPP) mode that can be guided by a graphene monolayer, regardless of the sign of the imaginary part of its conductivity. In this mode, in-plane electron oscillations along two surfaces of graphene are of opposite directions, which is very different from conventional SPPs on graphene. Significantly, coating graphene with dielectric films yields a way to guide the SPPs with both sub-wavelength mode widths and ultra-long propagation distances. In particular, the mode characteristics are very sensitive to the chemical potential of graphene, so the graphene-based waveguide can find applications in many optoelectronic devices

  13. A simple method for generating unidirectional surface plasmon polariton beams with arbitrary profiles.

    Science.gov (United States)

    You, Oubo; Bai, Benfeng; Wu, Xiaoyu; Zhu, Zhendong; Wang, Qixia

    2015-12-01

    The efficient steering of surface plasmon polariton (SPP) fields is a vital issue in various plasmonic applications, such as plasmonic circuitry. We present a straightforward and efficient method for generating unidirectionally propagating SPP beams with arbitrary amplitude and phase profiles by manipulating Δ-shaped nanoantennas. As an example, a second-order Hermite-Gauss SPP beam is generated with this method. The near-field distribution of the generated SPP beam is experimentally characterized to validate the effectiveness of the method. PMID:26625032

  14. The Casimir effect for thin plasma sheets and the role of the surface plasmons

    International Nuclear Information System (INIS)

    We consider the Casimir force between two dielectric bodies described by the plasma model and between two infinitely thin plasma sheets. In both cases in addition to the photon modes, surface plasmons are present in the spectrum of the electromagnetic field. We investigate the contribution of both types of modes to the Casimir force and confirm resp. find in both models large compensations between the plasmon modes themselves and between them and the photon modes especially at large distances. Our conclusion is that the separation of the vacuum energy into plasmon and photon contributions must be handled with care except for the case of small separations

  15. Compact surface plasmon amplifier in nonlinear hybrid waveguide

    Science.gov (United States)

    Shu-shu, Wang; Dan-qing, Wang; Xiao-peng, Hu; Tao, Li; Shi-ning, Zhu

    2016-07-01

    Surface plasmon polariton (SPP), a sub-wavelength surface wave promising for photonic integration, always suffers from the large metallic loss that seriously restricts its practical application. Here, we propose a compact SPP amplifier based on a nonlinear hybrid waveguide (a combination of silver, LiNbO3, and SiO2), where a couple of Bragg gratings are introduced in the waveguide to construct a cavity. This special waveguide is demonstrated to support a highly localized SPP-like hybrid mode and a low loss waveguide-like hybrid mode. To provide a large nonlinear gain, a pumping wave input from the LiNbO3 waveguide is designed to resonate inside the cavity and satisfy the cavity phase matching to fulfill the optical parametric amplification (OPA) of the SPP signal. Proper periods of gratings and the cavity length are chosen to satisfy the impedance matching condition to ensure the high input efficiency of the pump wave from the outside into the cavity. In theoretical calculations, this device demonstrates a high performance in a very compact scheme (∼ 3.32 μm) and a much lower pumping power for OPA compared with single-pass pumping. To obtain a comprehensive insight into this cavity OPA, the influences of the pumping power, cavity length, and the initial phase are discussed in detail. Project supported by the National Basic Research Program of China (Grant No. 2012CB921501), the National Natural Science Foundation of China (Grant Nos. 11322439, 11274165, 11321063, and 91321312), the Dengfeng Project B of Nanjing University, China, and the PAPD of Jiangsu Higher Education Institutions, China.

  16. Gold and aluminum based surface plasmon resonance biosensors: sensitivity enhancement

    Science.gov (United States)

    Biednov, Mykola; Lebyedyeva, Tetyana; Shpylovyy, Pavlo

    2015-05-01

    In this work we considered Gold and Aluminum thin films coated with additional dielectric layers as sensing platforms. Operation of these sensors is based on measuring shift in the position of the reflectivity dip in angular reflectivity spectrum of the sample. Shift can be caused by changes in the refraction index of either liquid that interacts with sensors surface (refractometric measurements) or thin adjacent biolayer on top of the sensor due to immobilization of the target molecules (biosensing). Calculations based on Fresnel equations and transfer matrix formalism allowed us to make comprehensive analysis of the angular sensitivity, shape of the reflectivity dip and dynamic range of the sensors with different dielectric coatings. Calculations were performed for both cases of bio and refractometric sensing. Results showed different dependence of the sensitivity of Au an Al based sensors upon refraction index of the dielectric coating. For Au-based surface Plasmon resonance sensor up to two times increased sensitivity can be achieved using dielectric coating with high refraction index 2.3 of proper thickness. For sensors based on aluminum we were able to achieve 50% increased angular sensitivity. At the same time width of the reflectivity dip increased proportionally to the optical thickness of the dielectric coating. For estimating sensors quality we analyzed ratio of the angular sensitivity to the width of the reflectivity dip. This ratio decreased with increase in optical thickness of the dielectric, however angular sensitivity of the sensor increased significantly. Deposition of the additional dielectric layer with high refraction index such as Niobium Oxide can also improve chemical and mechanical stability of the sensor.

  17. Enhancement of the evanescent field pressure on a dielectric film by coupling with surface plasmons

    CERN Document Server

    Han, B M; Lee, S S

    1999-01-01

    We investigate theoretically the optical pressure acting on a dielectric film in a surface-plasmon-coupled evanescent wave which is produced near the surface of a thin metal-coated prism illuminated by a p-polarized plane electromagnetic wave. We show that the pressure arising from the surface-plasmon-coupled evanescent waves in a metal-coated multilayer system is about ten times as large as that on the surface of a bare dielectric prism. The evanescent field pressure has a potential application in manipulating or sorting a planar-type particle near the surface of a thin metal.

  18. Nonlinear Surface-Plasmon Whispering-Gallery Modes in Metallic Nanowire Cavities

    CERN Document Server

    Biris, Claudiu G

    2013-01-01

    We demonstrate that the surface second-harmonic generation can lead to the formation of nonlinear plasmonic whispering-gallery modes (WGMs) in microcavities made of metallic nanowires. Since these WGMs are excited by induced surface nonlinear dipoles, they can be generated even when they are not coupled to the radiation continuum. Consequently, the quality factor of these nonlinear modes can be as large as the theoretical limit imposed by the optical losses in the metal. Remarkably, our theoretical analysis shows that nonlinear plasmonic WGMs are characterized by fractional azimuthal modal numbers. This suggests that the plasmonic cavities investigated here can be used to generate multi-color optical fields with fractional angular momentum. Applications to plasmonic sensors are also discussed.

  19. Coupling of photoluminescent centers in ZnO to localized and propagating surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Haglund, Richard F., E-mail: richard.haglund@vanderbilt.ed [Vanderbilt University, Department of Physics and Astronomy and Institute for Nanoscale Science and Engineering, 6301 Stevenson Center, Nashville, TN 37235-1807 (United States); Lawrie, Benjamin J. [Vanderbilt University, Department of Physics and Astronomy and Institute for Nanoscale Science and Engineering, 6301 Stevenson Center, Nashville, TN 37235-1807 (United States); Mu, Richard [Fisk University, Department of Physics, Dubois Hall, Nashville, TN (United States)

    2010-06-01

    The interaction of excitons and other photoluminescent centers in semiconductors with plasmons represents the coupling of the fundamental one-particle, electron-hole excitation with the fundamental many-particle excitation in metals. We describe recent photoluminescence and pump-probe experiments that illustrate both the energetics and the dynamics of this interaction, in a model material incorporating ZnO films separated from a nanostructured plasmonic metal substrate by a variable-thickness spacer layer. We find evidence for different coupling mechanisms for the band-edge exciton and donor-acceptor pair defect luminescence, and discuss the competing roles of localized surface-plasmon resonances and propagating surface-plasmon polaritons. We also present first femtosecond pump-probe lifetime measurements for the band-edge exciton with and without the presence of nearby metal nanostructures.

  20. Coupling of photoluminescent centers in ZnO to localized and propagating surface plasmons

    International Nuclear Information System (INIS)

    The interaction of excitons and other photoluminescent centers in semiconductors with plasmons represents the coupling of the fundamental one-particle, electron-hole excitation with the fundamental many-particle excitation in metals. We describe recent photoluminescence and pump-probe experiments that illustrate both the energetics and the dynamics of this interaction, in a model material incorporating ZnO films separated from a nanostructured plasmonic metal substrate by a variable-thickness spacer layer. We find evidence for different coupling mechanisms for the band-edge exciton and donor-acceptor pair defect luminescence, and discuss the competing roles of localized surface-plasmon resonances and propagating surface-plasmon polaritons. We also present first femtosecond pump-probe lifetime measurements for the band-edge exciton with and without the presence of nearby metal nanostructures.

  1. Terahertz surface plasmon polaritons on a conductive right circular cone: Analytical description and experimental verification

    International Nuclear Information System (INIS)

    We report on an analytical solution of Maxwell's equations for the propagation of surface plasmon polaritons on a right circular cone. The problem was solved for THz frequencies in real metals and was therefore derived using the Leontovich approximation, which is valid for media with small surface impedances. The solution also accounts for both surface plasmon polaritons that are axisymmetric and those that have an angular structure in a plane normal to the cone's axis. This was an important consideration since it is crucial for describing surface phenomena such as surface-enhanced absorption, fluorescence, and Raman scattering. Our findings predict a total reflection of surface plasmon polaritons at the cone's apex, which was experimentally verified by an absence of light emitted from a heated cone's tip into the far-field region.

  2. Influence of an Electron Beam Exposure on the Surface Plasmon Resonance of Gold Nanoparticles

    OpenAIRE

    Song, M; des Francs, G. Colas; Bouhelier, A.

    2014-01-01

    Electron beam imaging is a common technique used for characterizing the morphology of plasmonic nanostructures. During the imaging process, the electron beam interacts with traces of organic material in the chamber and produces a well-know layer of amorphous carbon over the specimen under investigation. In this paper, we investigate the effect of this carbon adsorbate on the spectral position of the surface plasmon in individual gold nanoparticles as a function of electron exposure dose. We f...

  3. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Science.gov (United States)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus

    2015-12-01

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  4. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    Energy Technology Data Exchange (ETDEWEB)

    Schröder, Benjamin; Sivis, Murat; Bormann, Reiner; Schäfer, Sascha; Ropers, Claus, E-mail: cropers@gwdg.de [4th Physical Institute - Solids and Nanostructures, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen (Germany)

    2015-12-07

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction.

  5. Novel instrument for surface plasmon polariton tracking in space and time

    Science.gov (United States)

    Sandtke, M.; Engelen, R. J. P.; Schoenmaker, H.; Attema, I.; Dekker, H.; Cerjak, I.; Korterik, J. P.; Segerink, F. B.; Kuipers, L.

    2008-01-01

    We describe the realization of a phase-sensitive and ultrafast near-field microscope, optimized for investigation of surface plasmon polariton propagation. The apparatus consists of a homebuilt near-field microscope that is incorporated in Mach-Zehnder-type interferometer which enables heterodyne detection. We show that this microscope is able to measure dynamical properties of both photonic and plasmonic systems with phase sensitivity.

  6. An ultrafast nanotip electron gun triggered by grating-coupled surface plasmons

    International Nuclear Information System (INIS)

    We demonstrate multiphoton photoelectron emission from gold nanotips induced by nanofocusing surface plasmons, resonantly excited on the tip shaft by a grating coupler. The tip is integrated into an electron gun assembly, which facilitates control over the spatial emission sites and allows us to disentangle direct grating emission from plasmon-triggered apex emission. The nanoscale source size of this electron gun concept enables highly coherent electron pulses with applications in ultrafast electron imaging and diffraction

  7. Development and characterization of grating-coupled surface plasmon resonance sensors for medical and biological applications

    OpenAIRE

    Pasqualotto, Elisabetta

    2014-01-01

    The core of my research activity during the Ph.D. period has been the study and the development of Surface Plasmon Resonance (SPR) based sensors for the detection of molecules of biological and medical interest. In particular, between the different configurations allowing plasmon excitation, I have focused my research on the study of nanostructured gratings, which allow to achieve a higher sensitivity than the prism coupled sensors and to miniaturize the measurement system. First my act...

  8. Internal photoemission from plasmonic nanoparticles: comparison between surface and volume photoelectric effects

    DEFF Research Database (Denmark)

    Uskov, Alexander; Protsenko, Igor E.; Ikhsanov, Renat S.; Babicheva, Viktoriia; Zhukovsky, Sergei; Lavrinenko, Andrei; O'Reilly, Eoin P.; Xu, Hongxing

    2014-01-01

    We study the emission of photoelectrons from plasmonic nanoparticles into a surrounding matrix. We consider two mechanisms of electron emission from the nanoparticles - surface and volume ones and use models for these two mechanisms which allow us to obtain analytical results for the photoelectro...... take both mechanisms into account in the development of devices based on the photoelectric effect and when considering hot electron emission from a plasmonic nanoantenna....

  9. Near-field surface plasmon effects on Au-double-slit diffraction for polychromatic light

    OpenAIRE

    Han, Pin

    2014-01-01

    The surface plasmon effects on near-field diffraction for polychromatic light are studied. An Au-double-slit is used as the model and Fresnel integral is employed to perform the theoretic analysis. The results are illustrated with numerical examples and they show that, compared with the normal double-slit, the plasmon effect changes the spectral shift from redshift to blueshift and also enhances the intensity peak. This effect can be used in optical data transmission or specific spectral sele...

  10. In-plane remote photoluminescence excitation of carbon nanotube by propagating surface plasmon

    OpenAIRE

    Rai, Padmnabh; Hartmann, Nicolai; Berthelot, Johann; Colas-des-Francs, Gérard; Hartschuh, Achim; Bouhelier, Alexandre

    2012-01-01

    In this work, we demonstrate propagating surface plasmon polariton (SPP) coupled photoluminescence (PL) excitation of single-walled carbon nanotube (SWNT). SPPs were launched at a few micrometers from individually marked SWNT, and plasmon-coupled PL was recorded to determine the efficiency of this remote in-plane addressing scheme. The efficiency depends upon the following factors: (i) longitudinal and transverse distances between the SPP launching site and the location of the SWNT and (ii) o...

  11. Optical control of azo-polymer film loaded surface plasmon- polariton wave

    CERN Document Server

    Zhang, D G; Yuan, G H; Moh, K J; Bu, J; Wang, P; Du, L P; Lin, J; Ming, H

    2009-01-01

    An active control method of azo-polymer loaded surface plasmon-polaritons (SPPs) wave with tightly focused 532nm laser is proposed and demonstrated in this paper. Theoretical analysis and experimental results are consistent, which confirm the validity of this method. The optically active control method has the advantage of simple samples preparation, high spatial resolution and selectively control of the SPPs wave. This optical control of SPPs wave method has potential applications in integrated plasmonics.

  12. Particle-Film Plasmons on Periodic Silver Film over Nanosphere (AgFON): A Hybrid Plasmonic Nanoarchitecture for Surface-Enhanced Raman Spectroscopy.

    Science.gov (United States)

    Lee, Jiwon; Zhang, Qianpeng; Park, Seungyoung; Choe, Ayoung; Fan, Zhiyong; Ko, Hyunhyub

    2016-01-13

    Plasmonic systems based on particle-film plasmonic couplings have recently attracted great attention because of the significantly enhanced electric field at the particle-film gaps. Here, we introduce a hybrid plasmonic architecture utilizing combined plasmonic effects of particle-film gap plasmons and silver film over nanosphere (AgFON) substrates. When gold nanoparticles (AuNPs) are assembled on AgFON substrates with controllable particle-film gap distances, the AuNP-AgFON system supports multiple plasmonic couplings from interparticle, particle-film, and crevice gaps, resulting in a huge surface-enhanced Raman spectroscopy (SERS) effect. We show that the periodicity of AgFON substrates and the particle-film gaps greatly affects the surface plasmon resonances, and thus, the SERS effects due to the interplay between multiple plasmonic couplings. The optimally designed AuNP-AgFON substrate shows a SERS enhancement of 233 times compared to the bare AgFON substrate. The ultrasensitive SERS sensing capability is also demonstrated by detecting glutathione, a neurochemical molecule that is an important antioxidant, down to the 10 pM level. PMID:26684078

  13. Gold/Silica biochips: applications to Surface Plasmon Resonance and fluorescence quenching

    CERN Document Server

    Mangeat, Thomas; Elie-Caille, Céline; Perrin, Maud; Boireau, Wilfrid; Pieralli, Christian; Wacogne, Bruno; 10.1134/S1054660X09020170

    2010-01-01

    We report Gold/Silica biochips for low cost biosensor devices. Firstly, the study of biochemical interactions on silica by means of Surface Plasmon Resonance (SPR) is presented. Secondly, Gold/Silica biochips are employed to reduce the strong quenching that occurs when a fluorophore is close to the gold surface. Furthermore, the control of the Silica-like thickness allows optimizing the distance between the metallic surface and the fluorophore in order to enhance the fluorescent signal. These results represent the first steps towards highly sensitive, specific and low cost biosensors based, for example, on Surface Plasmon Coupled Emission (SPCE) techniques.

  14. Advances and Challenges in Optical Molecular Spectroscopy Including Surface Plasmon Resonance-Based Methods for Bioanalysis

    Czech Academy of Sciences Publication Activity Database

    Matějka, P.; Vlčková, B.; Bednárová, Lucie; Maloň, Petr

    Hoboken : Wiley, 2014 - (Havlíček, V.; Spížek, J.), s. 163-238 ISBN 978-1-118-46661-2 Institutional support: RVO:61388963 Keywords : electronic circular dichroism * optical molecular spectroscopy * surface plasmon resonance * surface-enhanced infrared absorption * surface-enhanced Raman scattering * ultraviolet * vibrational circular dichroism Subject RIV: CB - Analytical Chemistry, Separation

  15. Abnormal thermal effects on the surface plasmon resonance of Ag nanoparticles on the surface of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Han; Ding, Ruiqiang [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Li, Meicheng, E-mail: mcli@ncepu.edu.cn [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China); Suzhou Institute, North China Electric Power University, Suzhou 215123 (China); Li, Yingfeng; Yang, Ganghai; Song, Dandan; Yu, Yue; Trevor, Mwenya [State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, School of Renewable Energy, North China Electric Power University, Beijing 102206 (China)

    2015-06-01

    The thermal effects on the surface plasmon resonance (SPR) of Ag nanoparticles on the silicon surface have been studied. It is found that unusual blue shifts and narrowing of the SPR troughs occur as the temperature increases from 323 K to 363 K. At low temperature range (from 273 K to 323 K), the SPR troughs have the normal red shifts and broadening as in previous studies. The change of SPR is attributed to the thermal induced electron transport between particles and substrate, and is analyzed using samples with different particle sizes. This work reveals the mechanism of thermal effects on the plasmonic properties of Ag nanoparticles on the surface of silicon and offers useful information for designing of SPR devices. - Highlights: • Unusual blue shift of the SPR troughs is observed at 343 K. • Red shift of the SPR troughs is observed at 323 K. • The mechanism relies on the thermal induced surface electron transport. • Particle sizes play an important role in the change of the SPR troughs.

  16. Abnormal thermal effects on the surface plasmon resonance of Ag nanoparticles on the surface of silicon

    International Nuclear Information System (INIS)

    The thermal effects on the surface plasmon resonance (SPR) of Ag nanoparticles on the silicon surface have been studied. It is found that unusual blue shifts and narrowing of the SPR troughs occur as the temperature increases from 323 K to 363 K. At low temperature range (from 273 K to 323 K), the SPR troughs have the normal red shifts and broadening as in previous studies. The change of SPR is attributed to the thermal induced electron transport between particles and substrate, and is analyzed using samples with different particle sizes. This work reveals the mechanism of thermal effects on the plasmonic properties of Ag nanoparticles on the surface of silicon and offers useful information for designing of SPR devices. - Highlights: • Unusual blue shift of the SPR troughs is observed at 343 K. • Red shift of the SPR troughs is observed at 323 K. • The mechanism relies on the thermal induced surface electron transport. • Particle sizes play an important role in the change of the SPR troughs

  17. A method for reduction of propagation loss of surface plasmons. Experimental demonstration of the loss reduction for Fe/MgO/AlGaAs plasmonic structure integrated with AlGaAs/GaAs optical waveguide

    CERN Document Server

    Zayets, V; Ando, K; Yuasa, S

    2015-01-01

    A method for the substantial reduction of propagation loss of surface plasmons was proposed and experimentally demonstrated. The method is based on the fact that the propagation loss of the surface plasmons depends significantly on the optical confinement of the plasmon. A plasmonic structure, which contains a metal and two dielectric layers of different refractive indexes, is proposed in order to optimize optical confinement and to reduce propagation loss of the surface plasmons. A low propagation loss of 0.17 dB/um for a surface plasmon in a Fe/MgO/AlGaAs plasmonic structure was achieved. A good coupling efficiency of 2.2 dB/facet between a surface plasmon in Fe/MgO/AlGaAs and a waveguide mode in AlGaAs/GaAs optical waveguide was demonstrated.

  18. Compact surface structures for the efficient excitation of surface plasmon-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    De la Cruz, S.; Mendez, E.R. [Division de Fisica Applicada, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No. 3918, Ensenada 22860, BC (Mexico); Macias, D.; Salas-Montiel, R.; Adam, P.M. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Universite de Technologie de Troyes, 12 rue Marie Curie, BP-2060, 10010 Troyes Cedex (France)

    2012-06-15

    We present calculations of the efficiency of excitation of surface plasmon-polaritons (SPPs) with surface structures illuminated by focussed beams. First, it is shown that the low reflectivity observed with broad highly directional beams and periodic gratings does not necessarily imply an efficient coupling to SPPs. We then consider the coupling through surface features like steps, grooves and angled steps, and calculate efficiency maps for these structures as functions of the parameters that define them. Finally, we explore the possibilities of improving the coupling efficiency using periodic structures consisting of a small number of rectangular grooves. We find that a surface section with a length of about four wavelengths can couple as much as 45% of the incident light into a directional SPP. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Resonant surface plasmon-exciton interaction in hybrid MoSe2@Au nanostructures

    Science.gov (United States)

    Abid, I.; Bohloul, A.; Najmaei, S.; Avendano, C.; Liu, H.-L.; Péchou, R.; Mlayah, A.; Lou, J.

    2016-04-01

    In this work we investigate the interaction between plasmonic and excitonic resonances in hybrid MoSe2@Au nanostructures. The latter were fabricated by combining chemical vapor deposition of MoSe2 atomic layers, Au disk processing by nanosphere lithography and a soft lift-off/transfer technique. The samples were characterized by scanning electron and atomic force microscopy. Their optical properties were investigated experimentally using optical absorption, Raman scattering and photoluminescence spectroscopy. The work is focused on a resonant situation where the surface plasmon resonance is tuned to the excitonic transition. In that case, the near-field interaction between the surface plasmons and the confined excitons leads to interference between the plasmonic and excitonic resonances that manifests in the optical spectra as a transparency dip. The plasmonic-excitonic interaction regime is determined using quantitative analysis of the optical extinction spectra based on an analytical model supported by numerical simulations. We found that the plasmonic-excitonic resonances do interfere thus leading to a typical Fano lineshape of the optical extinction. The near-field nature of the plasmonic-excitonic interaction is pointed out experimentally from the dependence of the optical absorption on the number of monolayer stacks on the Au nanodisks. The results presented in this work contribute to the development of new concepts in the field of hybrid plasmonics.In this work we investigate the interaction between plasmonic and excitonic resonances in hybrid MoSe2@Au nanostructures. The latter were fabricated by combining chemical vapor deposition of MoSe2 atomic layers, Au disk processing by nanosphere lithography and a soft lift-off/transfer technique. The samples were characterized by scanning electron and atomic force microscopy. Their optical properties were investigated experimentally using optical absorption, Raman scattering and photoluminescence spectroscopy. The

  20. Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    CERN Document Server

    Zijlstra, Peter; Orrit, Michel

    2012-01-01

    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in ...

  1. Influence of nanoparticle–graphene separation on the localized surface plasmon resonances of metal nanoparticles

    International Nuclear Information System (INIS)

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4-nm-radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene

  2. Influence of nanoparticle-graphene separation on the localized surface plasmon resonances of metal nanoparticles

    CERN Document Server

    Saadabad, Reza Masoudian; Shirdel-Havar, Amir Hushang; Havar, Majid Shirdel

    2015-01-01

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4 nm radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  3. Influence of nanoparticle–graphene separation on the localized surface plasmon resonances of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Masoudian Saadabad, Reza, E-mail: masoudian-reza@yahoo.com, E-mail: rms@mail.usb.ac.ir; Aporvari, Ahmad Shafiei [University of Sistan and Baluchestan, Department of Physics (Iran, Islamic Republic of); Shirdel-Havar, Amir Hushang [Golestan University, Department of Physics (Iran, Islamic Republic of); Havar, Majid Shirdel [University of Kashan, Department of Physics (Iran, Islamic Republic of)

    2016-01-15

    We develop a theory to model the interaction of graphene substrate with localized plasmon resonances in metallic nanoparticles. The influence of a graphene substrate on the surface plasmon resonances is described using an effective background permittivity that is derived from a pseudoparticle concept using the electrostatic method. For this purpose, the interaction of metal nanoparticle with graphene sheet is studied to obtain the optical spectrum of gold nanoparticles deposited on a graphene substrate. Then, we introduce a factor based on dipole approximation to predict the influence of the separation of nanoparticles and graphene on the spectral position of the localized plasmon resonance of the nanoparticles. We applied the theory for a 4-nm-radius gold nanosphere placed near 1.5 nm graphene layer. It is shown that a blue shift is emerged in the position of plasmon resonance when the nanoparticle moves away from graphene.

  4. Excitation of surface and volume plasmons in a metal nanosphere by fast electrons

    Science.gov (United States)

    Gildenburg, V. B.; Kostin, V. A.; Pavlichenko, I. A.

    2016-03-01

    Collective multipole oscillations (surface and volume plasmons) excited in a metal nanosphere by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk (dielectric) losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons (at small or large cluster radii, respectively) and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed; the first of them is found to be in good enough agreement with the data of scanning transmission electron microscopy experiments. It is shown that, in the general case, a pronounced contribution to the formation of the loss spectrum is given by the both surface and volume plasmons with low and high multipole indices. In particular, at long electron passage time, the integral (averaged over the impact parameter) loss spectrum which is calculated for the free-electron cluster model contains two main peaks: a broad peak from merging of many high-order multipole resonances of the surface plasmons and a narrower peak of nearly the same height from merged volume plasmons excited by the electrons that travel through the central region of the cluster. Comparatively complex dependences of the calculated excitation coefficients and damping constants of various plasmons on the order of the excited multipole result in wide diversity of possible types of the loss spectrum even for the same cluster material and should be taken into account in interpretation of corresponding

  5. Metal-oxide-semiconductor-compatible ultra-long-range surface plasmon modes

    Science.gov (United States)

    Durfee, C. G.; Furtak, T. E.; Collins, R. T.; Hollingsworth, R. E.

    2008-06-01

    Long-range surface plasmons traveling on thin metal films have demonstrated promising potential in subwavelength waveguide applications. In work toward device applications that can leverage existing silicon microelectronics technology, it is of interest to explore the propagation of surface plasmons in a metal-oxide-semiconductor geometry. In such a structure, there is a high refractive index contrast between the semiconductor (n ≈3.5 for silicon) and the insulating oxide (typically n ≈1.5-2.5). However, the introduction of dielectrics with disparate refractive indices is known to strongly affect the guiding properties of surface plasmons. In this paper, we analyze the implications of high index contrast in 1D layered surface plasmon structures. We show that it is possible to introduce a thin dielectric layer with a low refractive index positioned next to the metal without adversely affecting the guiding quality. In fact, such a configuration can dramatically increase the propagation length of the conventional long-range mode. While this study is directed at silicon-compatible waveguides working at telecommunications wavelengths, this configuration has general implications for surface plasmon structure design using other materials and operating at alternative wavelengths.

  6. Experimental verification of surface plasmon amplification on a metallic transmission grating

    International Nuclear Information System (INIS)

    We report on a near-field amplification in a transmission metallic grating, whereby the spatially and spectrally resolved near-field intensity reaches ∼20 times the incident intensity at the surface plasmon polariton resonance. The amplified value is maintained up to ∼2 μm away from the surface. Our experiments show that the near-field amplification in the transmission grating, which is strongly implied in a recent superlens design, indeed occurs at the surface plasmon polariton resonance. Theoretical calculation shows good agreement with experiment and also reveals that the horizontal magnetic field is predominantly amplified. Our results suggest that a grating-assisted superlens should have its optimal functional wavelength right around the surface plasmon resonance

  7. Long-range surface magnetoplasmon on thin plasmon films in the Voigt configuration.

    Science.gov (United States)

    Lan, Yung-Chiang; Chen, Chih-Min

    2010-06-01

    This study elucidates the characteristics of a long-range surface magnetoplasmon (LRSMP) that propagates on a plasmon film with the Voigt configuration. Particle-in-cell (PIC) simulations and theoretical analyses are performed. Simulation results indicate that LRSMP has non-symmetrical fields. The proposed scheme also verifies the non-reciprocal properties of LRSMP as the direction of an applied external magnetic field is reversed. When surface waves propagate on a plasmon film across an interface on one side of which long-range surface plasmon (LRSP) is allowed while on the other side of which LRSMP is allowed, the interface behaves similar to a defect and transforms the surface waves into radiation modes owing to the mismatch between the field patterns of LRSP and LRSMP. Furthermore, PIC simulation results confirm the presence of a new high-frequency LRSMP whose frequency exceeds the plasma frequency and lacks a LRSP counterpart. PMID:20588373

  8. Nonponderomotive electron acceleration in ultrashort surface-plasmon fields

    International Nuclear Information System (INIS)

    We investigate the nonponderomotive nature of ultrafast plasmonic electron acceleration in strongly decaying electromagnetic fields generated by few-cycle and single-cycle femtosecond laser pulses. We clearly identify the conditions contributing to nonponderomotive acceleration and establish fundamental scaling laws and carrier-envelope phase effects. These all-optically accelerated compact, femtosecond electron sources can be utilized in contemporary ultrafast methods.

  9. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma

    Science.gov (United States)

    Vladimirov, S. V.; Ishihara, O.

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed.

  10. Multiple surface plasmons in an unbounded quantum plasma half-space

    Science.gov (United States)

    Palade, D. I.

    2016-07-01

    The propagation of surface plasmons on a quantum plasma half-space in the absence of any external confinement is investigated. By means of the Quantum Hydrodynamic Model in the electrostatic limit, it is found that the equilibrium density profile is a smooth continuous function which, in the linear regime, supports multiple non-normal surface modes. Defining a spectrum function and using a cutting condition, the dispersion relations of these modes and their relevance for realistic dynamics are computed. It is found that the multiple surface plasmons present a significant red-shift with respect to the case of fully bounded quantum plasmas.

  11. Modification of Photoluminescence Properties of ZnO Island Films by Localized Surface Plasmons

    Science.gov (United States)

    Zhang, Yang; Li, Xue-Hong; Peng, Cheng-Xiao

    2012-10-01

    The modification of localised surface plasmons of photoluminescence properties of ZnO is studied. It is found that the ultraviolet emission is drastically enhanced, and the visible emission related to the defects is almost completely suppressed, after an Au layer of nanoparticles is deposited on the surface of ZnO island films. This pronounced change in PL spectra is attributed to the efficient electron transfer via the coupling of localised surface plasmons at the interface between the Au nanoparticle layer and ZnO films.

  12. All-Optical Modulation with a Surface Plasmon Mach-Zehnder Interferometer

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-Fei; ZHANG Jia-Sen; LI Zhi; LIU Ying-Liang; GONG Qi-Huang

    2009-01-01

    We use two parallel nano-slits in a silver film to form a surface plasmon Mach-Zehnder interferometer (MZI),based on the interference of two surface plasmon waves propagating along the two surfaces of the silver film.Coating the silver film with a photoinduced birefringence polymer film, we achieve optical modulation of the MZI output by changing the refractive index of the polymer film with a pump beam. An on/off ratio of 2. 7 is obtained for a probe wavelength of 865 nm.

  13. Electromagnetic wave band structure due to surface plasmon resonances in a complex plasma.

    Science.gov (United States)

    Vladimirov, S V; Ishihara, O

    2016-07-01

    The dielectric properties of complex plasma containing either metal or dielectric spherical inclusions (macroparticles, dust) are investigated. We focus on surface plasmon resonances on the macroparticle surfaces and their effect on electromagnetic wave propagation. It is demonstrated that the presence of surface plasmon oscillations can significantly modify plasma electromagnetic properties by resonances and cutoffs in the effective permittivity. This leads to related branches of electromagnetic waves and to the wave band gaps. The conditions necessary to observe the band-gap structure in laboratory dusty plasma and/or space (cosmic) dusty plasmas are discussed. PMID:27575225

  14. Multiple surface plasmons on an unbounded quantum plasma half-space

    CERN Document Server

    Palade, D I

    2016-01-01

    The propagation of surface plasmons on a quantum plasma half-space in the absence of any external confinement is investigated. By means of Quantum Hydrodynamic Model in the electrostatic limit it is found that the equilibrium density profile is a smooth continuous function which, in the linear regime, supports multiple non-normal surface modes. Defining a spectrum function and using a cutting condition, the dispersion relations of these modes and their relevance for realistic dynamics are computed. It is found that the multiple surface plasmons present a significant red-shift with respect to the case of fully bounded quantum plasmas.

  15. Strong coupling in the far-infrared between graphene plasmons and the surface optical phonons of silicon dioxide

    OpenAIRE

    Luxmoore, Isaac J.; Gan, Choon How; Liu, Peter Q.; Valmorra, Federico; Li, Penglei; Faist, Jerome; Nash, Geoffrey R.

    2014-01-01

    We study plasmonic resonances in electrostatically gated graphene nanoribbons on silicon dioxide substrates. Absorption spectra are measured in the mid-far infrared and reveal multiple peaks, with width-dependent resonant frequencies. We calculate the dielectric function within the random phase approximation and show that the observed spectra can be explained by surface-plasmon-phonon-polariton modes, which arise from coupling of the graphene plasmon to three surface optical phonon modes in t...

  16. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek;

    2016-01-01

    plasmon polaritons (SPPs) in organic/dielectric/metal systems. We have transferred the organic p-6P nanofibers onto a thin silver film covered with a dielectric (silicon dioxide) spacer layer with varying thicknesses. Coupling is investigated by two-photon fluorescence-lifetime imaging microscopy (FLIM......) and leakage radiation spectroscopy (LRS). Two-photon excitation allows us to excite the ONFs with near-infrared light and simultaneously avoids direct SPP excitation on the metal layer. We observe a strong dependence of fluorescence lifetime on the type of underlying substrate and on the morphology of...

  17. Surface plasmons excited by the photoluminescence of organic nanofibers in hybrid plasmonic systems

    DEFF Research Database (Denmark)

    Sobolewska, Elzbieta; Leißner, Till; Jozefowski, Leszek;

    plasmon polaritons (SPPs) in organic/dielectric/metal systems. We have transferred the organic p-6P nanofibers onto a thin silver film covered with a dielectric (silicon dioxide) spacer layer with varying thicknesses. Coupling is investigated by two-photon fluorescence-lifetime imaging microscopy (FLIM......) and leakage radiation spectroscopy (LRS). Two-photon excitation allows us to excite the ONFs with near-infrared light and simultaneously avoids direct SPP excitation on the metal layer. We observe a strong dependence of fluorescence lifetime on the type of underlying substrate and on the morphology of...

  18. Ultrafast Hot Carrier Scattering and Generation from Surface Plasmons in Noble Metals

    Science.gov (United States)

    Bernardi, Marco; Mustafa, Jamal; Neaton, Jeffrey B.; Louie, Steven G.

    2015-03-01

    Non-equilibrium ``hot''carriers in materials are challenging to study experimentally as they thermalize at subpicosecond time and nanometer length scale. Recent experiments employed hot carriers generated by light absorption or surface plasmon annihilation in noble metals (e.g., Au and Ag) for catalysis and solar cells. The energy distribution and transport of the generated hot carriers play a key role in these experiments. We present ab initio calculations of the energy distribution of hot carriers generated by surface plasmons in noble metals, and the relaxation time and mean free path of the hot carriers along different crystal directions within 5 eV of the Fermi energy. Our calculations show the interplay of the noble metal s and d bands in determining the damping rate of the plasmon and the mean free path of the hot carriers. The trends we find as a function of surface plasmon momentum and frequency allow us to define optimal experimental conditions for hot carrier generation and extraction. Our approach combines density functional theory, GW, and electron-phonon calculations. Our work provides microscopic insight into hot carriers in noble metals, and their ultrafast dynamics in the presence of surface plasmons.

  19. Numerical analysis of surface plasmons excited on a thin metal grating

    Institute of Scientific and Technical Information of China (English)

    OKUNO Yoichi; SUYAMA Taikei

    2006-01-01

    The authors numerically investigated the characteristics of surface plasmons excited on a thin metal grating placed in planer or conical mounting. After formulating the problem, the solution method, Yasuura's method (a modal expansion approach with least-squares boundary matching) was described. Although the grating is periodic in one direction, coupling between TE and TM waves occurs because arbitrary incidence is assumed. This requires the employment of both TE and TM vector modal functions in the analysis. Numerical computations showed: (1) the excitation of surface plasmons with total or partial absorption of incident light; (2) the resonance character of the coefficient of an evanescent order that couples the plasmon surface wave; (3) the field profile and Poynting's vector. The plasmons excited on the surfaces of a thin metal grating are classified into three types:SISP, SRSP, and LRSP, different from each other in the feature of field profile and energy flow. In addition, the eigenvalue of a plasmon mode was obtained by solving a sequence of diffraction problems with complex-valued angles of incidence and using thequasi-Newton algorithm to predict the real angle of incidence at which the absorption occurs.

  20. Opening stop-gaps in plasmonic crystals by tuning the radiative coupling of surface plasmons to diffracted orders

    CERN Document Server

    Rodriguez, S R K; Abass, A; Maes, B; Vecchi, G; Rivas, J Gomez

    2011-01-01

    By tuning the radiative coupling of localized surface plasmons to diffracted orders, we demonstrate how stop-gaps in plasmonic crystals of nanorods may be opened and tuned. The stop-gap arises from the mutual coupling of surface lattice resonances (SLRs), which are collective resonances associated with counter-propagating surface polaritons. We present experimental results for three different nanorod arrays, where we show how the dispersion of SLRs can be controlled by modifying the size of the rods. Combining experiments with numerical simulations, we show how the properties of the stop-gap can be tailored by tuning a single structural factor. We find that the central frequency of the stop-gap falls quadratically, the frequency width of the stop-gap rises linearly, and the in-plane momentum width of the standing waves rises quadratically, as the width of the nanorods increases. These relationships hold for a broad range of nanorod widths, including duty cycles of the array between 20% to 80%. We discuss the ...

  1. A surface plasmon resonance immunosensor for detecting a dioxin precursor using a gold binding polypeptide

    DEFF Research Database (Denmark)

    Soh, N; Tokuda, T.; Watanabe, T.; Mishima, K.; Imato, T.; Masadome, T.; Asano, Y.; Okutani, S.; Niwa, O.; Brown, Stanley

    2003-01-01

    A surface plasmon resonance (SPR) based biosensor was developed for monitoring 2,4-dichlorophenol, a known dioxin precursor, using an indirect competitive immunoassay. The SPR sensor was fabricated by immobilizing a gold-thin layer on the surface of an SPR sensor chip with an anti-(2...

  2. Generation of Graphene Surface Plasmons and Their Applications in Beam Steering

    KAUST Repository

    Farhat, Mohamed Dhia Eddine

    2015-01-01

    We propose a novel concept that uses mechanical and electronic properties of graphene to efficiently couple light to surface plasmon polaritons. A graphene-based infrared beam-former based on the concept of surface leaky-wave is also discussed. © OSA 2015.

  3. Fluctuations of the local density of states probe localized surface plasmons on disordered metal films

    CERN Document Server

    Krachmalnicoff, V; De Wilde, Y; Carminati, R

    2010-01-01

    We measure the statistical distribution of the local density of optical states (LDOS) on disordered semi-continuous metal films. We show that LDOS fluctuations exhibit a maximum in a regime where fractal clusters dominate the film surface. These large fluctuations are a signature of surface-plasmon localization on the nanometer scale.

  4. Experimental study of transmission enhancement of evanescent waves through silver films assisted by surface plasmon excitation

    Energy Technology Data Exchange (ETDEWEB)

    Fang, N.; Liu, Z.; Yen, T.-J.; Zhang, X. [University of California, Center for Scalable and Integrated Nanomanufacturing (SINAM), Berkeley, CA (United States)

    2005-03-01

    In this paper, we investigated an essential precursor of superlensing: enhancing the transmission of evanescent waves assisted by excitation of surface plasmon. Using natural roughness as a well characterized grating, the transmission of evanescent waves is studied through silver thin films of increasing thickness. Measurements and calculations are performed in the wavelength range of 514.5 nm to 351.1 nm where the real part of the permittivity of silver is negative. Pronounced peaks due to surface-plasmon excitations are observed in the transmission spectra. We found the transmission of evanescent waves rapidly grows with the film thickness up to about 50 nm, after which it decays as loss becomes significant. As the permittivity of a silver slab approaches -1, we experimentally observed a broadening of surface plasmon bandwidth. Our study indicates a pathway to access the deep subwavelength features by metamaterial superlens. (orig.)

  5. Excitation of surface and volume plasmons in metal nanocluster by fast electrons

    CERN Document Server

    Gildenburg, V B; Pavlichenko, I A

    2015-01-01

    Surface and volume plasmons excited in a metal cluster by moving electron and corresponding inelastic scattering spectra are studied based on the hydrodynamic approach. Along with the bulk losses traditionally taken into account, the surface and radiative ones are also considered as the physical mechanisms responsible for the plasmon damping. The second and third mechanisms are found to be essential for the surface plasmons and depend very differently on the multipole mode order. The differential equations are obtained which describe the temporal evolution of every particular mode as that one of a linear oscillator excited by the given external force, and the electron energy loss spectra are calculated. The changes in spectrum shape with the impact parameter and with the electron passage time are analyzed and found to be in good enough agreement with the data of scanning transmission electron microscopy (STEM) experiments. It is shown that, in the general case, a pronounced contribution to the formation of th...

  6. Band-edge Bilayer Plasmonic Nanostructure for Surface Enhanced Raman Spectroscopy

    CERN Document Server

    Mousavi, S Hamed Shams; Atabaki, Amir H; Adibi, Ali

    2014-01-01

    Spectroscopic analysis of large biomolecules is critical in a number of applications, including medical diagnostics and label-free biosensing. Recently, it has been shown that Raman spectroscopy of proteins can be used to diagnose some diseases, including a few types of cancer. These experiments have however been performed using traditional Raman spectroscopy and the development of the Surface enhanced Raman spectroscopy (SERS) assays suitable for large biomolecules could lead to a substantial decrease in the amount of specimen necessary for these experiments. We present a new method to achieve high local field enhancement in surface enhanced Raman spectroscopy through the simultaneous adjustment of the lattice plasmons and localized surface plasmon polaritons, in a periodic bilayer nanoantenna array resulting in a high enhancement factor over the sensing area, with relatively high uniformity. The proposed plasmonic nanostructure is comprised of two interacting nanoantenna layers, providing a sharp band-edge ...

  7. Infrared Surface-Plasmon-Resonance -- a novel biophysical tool for studying living cell

    CERN Document Server

    Golosovsky, M; Yashunsky, V; Davidov, D; Aroeti, B; 10.1063/1.3116143

    2009-01-01

    We discuss the Surface-Plasmon-Resonance (SPR) technique based on Fourier -Transform - InfraRed (FTIR) spectrometry. We explore the potential of the infrared surface plasmon resonance technique for biological studies in aqueous solutions and compare it to the conventional surface plasmon technique operating in the visible range. We demonstrate that the sensitivity of the SPR technique in the infrared range is not lower and in fact is even higher. We show several examples of applying FTIR-SPR for biological studies: (i) monitoring D-glucose concentration in solution, and (ii) measuring D-glucose uptake by erythrocytes in suspension. We emphasize the advantages of infrared SPR for studying living cell cultures and show how this technique can be used for characterization of (i) cholesterol penetration into plasma membrane, and (ii) transferrin-induced clathrin-mediated endocytosis.

  8. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  9. Low refractive index gas sensing using a surface plasmon resonance fibre device

    International Nuclear Information System (INIS)

    A series of surface plasmonic fibre devices were fabricated using multiple coatings deposited on a lapped section of a single mode fibre. Coupling from the guided mode to surface plasmons was promoted following UV laser irradiation of the coated region through a phase mask, which generated a surface relief grating structure. The devices showed high spectral sensitivities and strong coupling for low refractive indices as compared to other grating-type fibre devices. The plasmonic devices were used to detect the variation in the refractive indices of alkane gases with measured wavelength and coupling sensitivity to index of 3400 nm RIU−1 and 8300 dB RIU−1, respectively. As a demonstration of the performance of these gas sensors, a minimum concentration of 2% by volume of butane in ethane was achieved

  10. Surface Plasmon Resonance (SPR) Analysis of Binding Interactions of Inner-Ear Proteins.

    Science.gov (United States)

    Drescher, Dennis G; Dakshnamurthy, Selvakumar; Drescher, Marian J; Ramakrishnan, Neeliyath A

    2016-01-01

    Surface plasmon resonance is an optical technique that is utilized for detecting molecular interactions. Binding of a mobile molecule (analyte) to a molecule immobilized on a thin metal film (ligand) changes the refractive index of the film. The angle of extinction of light that is completely reflected after polarized light impinges upon the film, is altered, and monitored as a change in detector position for a dip in reflected intensity (the surface plasmon resonance phenomenon). Because the method strictly detects mass, there is no need to label the interacting components, thus eliminating possible changes of their molecular properties. We have utilized surface plasmon resonance to study interaction of proteins of inner-ear sensory epithelia. PMID:27259927

  11. Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles

    Science.gov (United States)

    Patra, Partha Pratim; Chikkaraddy, Rohit; Tripathi, Ravi P. N.; Dasgupta, Arindam; Kumar, G. V. Pavan

    2014-07-01

    Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.

  12. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell

    Science.gov (United States)

    Rana, Aniket; Gupta, Neeraj; Lochan, Abhiram; Sharma, G. D.; Chand, Suresh; Kumar, Mahesh; Singh, Rajiv K.

    2016-08-01

    The inclusion of plasmonic nanoparticles into organic solar cell enhances the light harvesting properties that lead to higher power conversion efficiency without altering the device configuration. This work defines the consequences of the nanoparticle overloading amount and energy transfer process between gold nanorod and polymer (active matrix) in organic solar cells. We have studied the hole population decay dynamics coupled with gold nanorods loading amount which provides better understanding about device performance limiting factors. The exciton and plasmon together act as an interacting dipole; however, the energy exchange between these two has been elucidated via plasmon resonance energy transfer (PRET) mechanism. Further, the charge species have been identified specifically with respect to their energy levels appearing in ultrafast time domain. The specific interaction of these charge species with respective surface plasmon resonance mode, i.e., exciton to transverse mode of oscillation and polaron pair to longitudinal mode of oscillations, has been explained. Thus, our analysis reveals that PRET enhances the carrier population density in polymer via non-radiative process beyond the concurrence of a particular plasmon resonance oscillation mode and polymer absorption range. These findings give new insight and reveal specifically the factors that enhance and control the performance of gold nanorods blended organic solar cells. This work would lead in the emergence of future plasmon based efficient organic electronic devices.

  13. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Bracher, Gregor; Schraml, Konrad; Blauth, Mäx; Wierzbowski, Jakob; López, Nicolás Coca; Bichler, Max; Müller, Kai; Finley, Jonathan J.; Kaniber, Michael, E-mail: Michael.Kaniber@wsi.tum.de [Walter Schottky Institut and Physik Department, Technische Universität München, Am Coulombwall 4, 85748 Garching, Germany and Nanosystems Initiative Munich, Schellingstraße 4, 80799 München (Germany)

    2014-07-21

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length L{sub i} is varied. A splitting ratio of 50:50 is observed for L{sub i}∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  14. Imaging surface plasmon polaritons using proximal self-assembled InGaAs quantum dots

    International Nuclear Information System (INIS)

    We present optical investigations of hybrid plasmonic nanosystems consisting of lithographically defined plasmonic Au-waveguides or beamsplitters on GaAs substrates coupled to proximal self-assembled InGaAs quantum dots. We designed a sample structure that enabled us to precisely tune the distance between quantum dots and the sample surface during nano-fabrication and demonstrated that non-radiative processes do not play a major role for separations down to ∼10 nm. A polarized laser beam focused on one end of the plasmonic nanostructure generates propagating surface plasmon polaritons that, in turn, create electron-hole pairs in the GaAs substrate during propagation. These free carriers are subsequently captured by the quantum dots ∼25 nm below the surface, giving rise to luminescence. The intensity of the spectrally integrated quantum dot luminescence is used to image the propagating plasmon modes. As the waveguide width reduces from 5 μm to 1 μm, we clearly observe different plasmonic modes at the remote waveguide end, enabling their direct imaging in real space. This imaging technique is applied to a plasmonic beamsplitter facilitating the determination of the splitting ratio between the two beamsplitter output ports as the interaction length Li is varied. A splitting ratio of 50:50 is observed for Li∼9±1 μm and 1 μm wide waveguides for excitation energies close to the GaAs band edge. Our experimental findings are in good agreement with mode profile and finite difference time domain simulations for both waveguides and beamsplitters.

  15. Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    HU Ye-Lin; CHEN Zhao-Quan; LIU Ming-Hai; HONG Ling-Li; LI Ping; ZHENG Xiao-Liang; XIA Guang-Qing; HU Xi-Wei

    2011-01-01

    The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP)caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe.Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF,which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part.The beam component energy is pronounced at about 10eV but the bulk part is lower than 3.5eV.The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.During the past several years,in the fabrication ofamorphous or crystalline silicon films,diamond film synthesis and carbon nanotube growth,the large-area overdense plasma source has been useful.In electronic device fabrication techniques such as etching,ashing or plasma chemical vapor deposition,overdense electrons and radicals are required,especially hot electrons.Among the various plasma devices,the planar-type surface-wave plasma (SWP) source is an advanced plasma source,which is a type of promising plasma source satisfying the above rigorous requirements for large-area plasma processing.%The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP) caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe. Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF, which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part. The beam component energy is pronounced at about 10 eV but the bulk part is lower than 3.5 eV. The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.

  16. Adsorbate-metal bond effect on empirical determination of surface plasmon penetration depth.

    Science.gov (United States)

    Kegel, Laurel L; Menegazzo, Nicola; Booksh, Karl S

    2013-05-21

    The penetration depth of surface plasmons is commonly determined empirically from the observed response for adsorbate loading on gold surface plasmon resonance (SPR) substrates. However, changes in the SPR spectrum may originate from both changes in the effective refractive index near the metal surface and changes in the metal permittivity following covalent binding of the adsorbate layer. Herein, the significance of incorporating an additional adsorbate-metal bonding effect in the calculation is demonstrated in theory and in practice. The bonding effect is determined from the nonzero intercept of a SPR shift versus adsorbate thickness calibration and incorporated into the calculation of penetration depth at various excitation wavelengths. Determinations of plasmon penetration depth with and without the bonding response for alkanethiolate-gold are compared and are shown to be significantly different for a thiol monolayer adsorbate system. Additionally, plasmon penetration depth evaluated with bonding effect compensation shows greater consistency over different adsorbate thicknesses and better agreement with theory derived from Maxwell's equation, particularly for adsorbate thicknesses that are much smaller (<5%) than the plasmon penetration depth. The method is also extended to a more practically applicable polyelectrolyte multilayer adsorbate system. PMID:23566015

  17. Waveguide-coupled surface plasmon resonance sensor structures: Fano lineshape engineering for ultrahigh-resolution sensing

    International Nuclear Information System (INIS)

    We analyze in detail the plasmon-induced transparency and Fano resonance exhibited by a waveguide-coupled surface plasmon resonance sensor structure. It is shown that the results of electromagnetic calculations made for the structure agree very well with those of mechanical calculations made for two coupled harmonic oscillators. This implies that an analogy holds between the present electromagnetic system and the coupled-oscillator system. The analogy established allows us to conclude that the plasmon-induced transparency and Fano resonance are caused by the coupling between a surface plasmon polariton and a planar waveguide mode. Sensing action of the Fano resonance is also analyzed in detail. From the calculation of the figure of merit for the sensitivity by intensity, it is shown that there is an optimum condition for the coupling of the modes to achieve a maximum sensitivity. Under the optimum condition, the figure of merit is found to be three orders of magnitude higher than that of a conventional surface plasmon sensor. (paper)

  18. Cholera toxin binding affinity and specificity for gangliosides determined by surface plasmon resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kuziemko, G.M.; Stroh, M.; Stevens, R.C. [Univ. of California, Berkeley, CA (United States)]|[Lawrence Berkeley National Lab., CA (United States)

    1996-05-21

    The present study determines the affinity of cholera toxin for the ganglioside series GM1, GM2, GM3, GD1A, GD1B, GT1B, asialo GM1, globotriosyl ceramide, and lactosyl ceramide using real time biospecific interaction analysis (surface plasmon resonance, SPR). SPR shows that cholera toxin preferably binds to gangliosides in the following sequence: GM1 > GM2 > GD1A > GM3 > GT1B > GD1B > asialo-GM1. The measured binding affinity of cholera toxin for the ganglioside sequence ranges from 4.61 {times} 10{sup {minus}12} M for GM1 to 1.88 {times} 10{sup {minus}10} M for asialo GM1. The picomolar values obtained by surface plasmon resonance are similar to K{sub d} values determined with whole-cell binding assays. Both whole-cell assays ans SPR measurements on synthetic membranes are higher than free solution measurements by several orders of magnitude. This difference may be caused by the effects of avidity and charged lipid head-groups, which may play a major role in the binding between cholera toxin, the receptor, and the membrane surface. The primary difference between free solution binding studies and surface plasmon resonance studies is that the latter technique is performed on surfaces resembling the cell membrane. Surface plasmon resonance has the further advantage of measuring apparent kinetic association and dissociation rates in real time, providing direct information about binding events at the membrane surface. 34 refs., 8 figs., 2 tabs.

  19. Surface plasmon effects in semiconductive polymer composites with metal nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Pfleger, Jiří; Tran, Vinh Son; Halašová, Klára; Kazim, Samrana

    Seoul: Korea Display Industry Association, 2012, 8.1_1-8.1_27. [International Workshop on Flexible & Printable Electronics - IWFPE 2012. Muju Resort, Jeollabuk-do (KR), 14.11.2012-16.11.2012] R&D Projects: GA ČR GAP108/12/1143; GA ČR GAP208/10/0941 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : organic electronics * sensing solar cell * plasmonics Subject RIV: CD - Macromolecular Chemistry

  20. Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance

    OpenAIRE

    Kızılel, Rıza ; Demir, Enis ; Azizoğlu,Selimcan; Asımgil, Hande ; Kavaklı, İbrahim Halil; Kızılel, Seda

    2012-01-01

    4/24/2014 PLOS ONE: Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0044392 1/9 Published: August 29, 2012 DOI: 10.1371/journal.pone.0044392 Investigation of Real-Time Photorepair Activity on DNA via Surface Plasmon Resonance Rıza Kizilel , Enis Demir, Selimcan Azizoglu, Hande Asımgi, Ibrahim Halil Kavakli , Seda Kizilel Corrections 25 Oct 2012: Kizilel R, Demir E, Aziz...

  1. Surface plasmon enhanced quantum transport in a hybrid metal nanoparticle array

    Science.gov (United States)

    Sun, Lin; Nan, Yali; Xu, Shang; Zhang, Sishi; Han, Min

    2014-07-01

    Hybrid Pd-Ag nanoparticle arrays composed of randomly distributed Pd nanoparticles in dense packing and a small number of dispersed Ag nanoparticles were fabricated with controlled coverage. Photo-enhanced conductance was observed in the nanoparticle arrays. Largest enhancement, which can be higher than 20 folds, was obtained with 450 nm light illumination. This wavelength was found to correlate with the surface plasmon resonance of the Ag nanoparticles. Electron transport measurements showed there were significant Coulomb blockade in the nanoparticle arrays and the blockade could be overcome with the surface plasmon enhanced local field of Ag nanoparticles induced by light illumination.

  2. Enhanced sensitivity of surface plasmon resonance phase-interrogation biosensor by using oblique deposited silver nanorods

    Science.gov (United States)

    Chung, Hung-Yi; Chen, Chih-Chia; Wu, Pin Chieh; Tseng, Ming Lun; Lin, Wen-Chi; Chen, Chih-Wei; Chiang, Hai-Pang

    2014-09-01

    Sensitivity of surface plasmon resonance phase-interrogation biosensor is demonstrated to be enhanced by oblique deposited silver nanorods. Silver nanorods are thermally deposited on silver nanothin film by oblique angle deposition (OAD). The length of the nanorods can be tuned by controlling the deposition parameters of thermal deposition. By measuring the phase difference between the p and s waves of surface plasmon resonance heterodyne interferometer with different wavelength of incident light, we have demonstrated that maximum sensitivity of glucose detection down to 7.1 × 10-8 refractive index units could be achieved with optimal deposition parameters of silver nanorods.

  3. Tunable surface plasmon polaritons in Ag composite films by adding dielectrics or semiconductors

    Science.gov (United States)

    Lu, Dylan; Kan, Jimmy; Fullerton, Eric E.; Liu, Zhaowei

    2011-06-01

    We demonstrate that the surface plasmon polariton (SPP) properties of the silver composite films can be tuned by modest additions of silicon oxide or silicon. The dispersion relations deviate from that of pure silver films, and exhibit the capability to shift the surface plasmon frequency and provide larger SPP wave vectors at longer wavelengths. The effective permittivities are modeled phenomenologically by taking into account both filling ratios and size effects. These types of tunable composite films have various useful applications in areas, such as superlens imaging, SPP based sensing, enhanced photoluminescence, and SPP based photovoltatics.

  4. Surface plasmons on a doped graphene sheet with periodically modulated conductivity

    Science.gov (United States)

    Ben Rhouma, M.; Oueslati, M.; Guizal, B.

    2016-08-01

    We propose a model taking into account the periodic spatial modulation of a doped graphene sheet conductivity when it is placed in the vicinity of a dielectric grating. We then compute the absorption and study the excitation of surface plasmons on such a structure. We show that it is possible to excite surface modes leading to very high absorption. Our findings could be of interest in the design of graphene-based plasmonic devices and sensors working in the infra-red and the terahertz regions of the electromagnetic spectrum.

  5. Surface-plasmon-enhanced fluorescence from periodic quantum dot arrays through distance control using biomolecular linkers

    International Nuclear Information System (INIS)

    We have developed a protein-enabled strategy to fabricate quantum dot (QD) nanoarrays where up to a 15-fold increase in surface-plasmon-enhanced fluorescence has been achieved. This approach permits a comprehensive control both laterally (via lithographically defined gold nanoarrays) and vertically (via the QD-metal distance) of the collectively behaving assemblies of QDs and gold nanoarrays by way of biomolecular recognition. Specifically, we demonstrated the spectral tuning of plasmon resonant metal nanoarrays and self-assembly of protein-functionalized QDs in a stepwise fashion with a concomitant incremental increase in separation from the metal surface through biotin-streptavidin spacer units.

  6. The Roles of Substrate vs Nonlocal Optical Nonlinearities in the Excitation of Surface Plasmons in Graphene

    CERN Document Server

    Constant, Thomas J; Hendry, Euan; Chang, Darrick E

    2016-01-01

    It has recently been demonstrated that difference frequency mixing (DFM) can generate surface plasmons in graphene [1]. Here, we present detailed calculations comparing the contributions to this effect from substrate and from graphene nonlinearities. Our calculations show that the substrate (quartz) nonlinearity gives rise to a surface plasmon intensity that is around twelve orders of magnitude smaller than that arising from the intrinsic graphene response. This surprisingly efficient intrinsic process, given the centrosymmetric structure of graphene, arises almost entirely due to non-local contributions to the second order optical nonlinearity of graphene.

  7. Sensitivity-enhanced and noise-reduced surface plasmon resonance sensing with microwell chips

    International Nuclear Information System (INIS)

    In this paper, we study a surface plasmon resonance (SPR) sensor with a microwell chip that is aimed at improving the sensitivity and reducing the noise. We present both theoretical simulations and experimental results obtained for the proposed structure. In comparison to most SPR sensors that use planar gold films, this proposed well structure enables a sensitivity enhancement of 128%. By confining the surface plasmon wave (SPW) within the well, we are able to reduce the noise by more than twice. The increased sensitivity and lower noise makes our proposed novel microwell chip suitable for small molecule or trace amount detection. (paper)

  8. Asymptotics of surface-plasmon redshift saturation at subnanometric separations

    Science.gov (United States)

    Schnitzer, Ory; Giannini, Vincenzo; Craster, Richard V.; Maier, Stefan A.

    2016-01-01

    Many promising nanophotonics endeavors hinge upon the unique plasmonic properties of nanometallic structures with narrow nonmetallic gaps, which support superconcentrated bonding modes that singularly redshift with decreasing separations. In this Rapid Communication, we present a descriptive physical picture, complemented by elementary asymptotic formulas, of a nonlocal mechanism for plasmon redshift saturation at subnanometric gap widths. Thus, by considering the electron-charge and field distributions in the close vicinity of the metal-vacuum interface, we show that nonlocality is asymptotically manifested as an effective potential discontinuity. For bonding modes in the near-contact limit, the latter discontinuity is shown to be effectively equivalent to a widening of the gap. As a consequence, the resonance-frequency near-contact asymptotics are a renormalization of the corresponding local ones. Specifically, the renormalization furnishes an asymptotic plasmon-frequency lower bound that scales with the 1 /4 power of the Fermi wavelength. We demonstrate these remarkable features in the prototypical cases of nanowire and nanosphere dimers, showing agreement between our elementary expressions and previously reported numerical computations.

  9. A surface plasmon enabled liquid-junction photovoltaic cell.

    Science.gov (United States)

    Lee, Woo-ram; Mubeen, Syed; Stucky, Galen D; Moskovits, Martin

    2015-01-01

    Plasmonic nanosystems have recently been shown to be capable of functioning as photovoltaics and of carrying out redox photochemistry, purportedly using the energetic electrons and holes created following plasmonic decay as charge carriers. Although such devices currently have low efficiency, they already manifest a number of favorable characteristics, such as their tunability over the entire solar spectrum and a remarkable resistance to photocorrosion. Here, we report a plasmonic photovoltaic using a 25 μm thick electrolytic liquid junction which supports the iodide/triiodide (I-/I3-) redox couple. The device produces photocurrent densities in excess of 40 μA cm(-2), an open circuit voltage (Voc) of ∼0.24 V and a fill factor of ∼0.5 using AM 1.5 G solar radiation at 100 mW cm(-2). The photocurrent and the power conversion efficiency are primarily limited by the low light absorption in the 2-D gold nanoparticle arrays. The use of a liquid junction greatly reduces dielectric breakdown in the oxide layers utilized, which must be very thin for optimal performance, leading to a great improvement in the long-term stability of the cell's performance. PMID:25740725

  10. Hybridization of Surface Plasmon Polariton and Photonic Crystal Modes in Bragg Mirror with Periodically Profiled Metal Film.

    Science.gov (United States)

    Sosnova, Mariya V; Mamykin, Sergii V; Korovin, Alexander V; Dmitruk, Nicolas L

    2016-12-01

    The hybridization of the plasmonic and guided modes in the case of one-dimension photonic crystal based on Bragg mirror terminated by a corrugated metal film has been demonstrated theoretically. The simulations have showed that the hybrid plasmonic-photonic mode is characterized by low broadening due to redistribution of the electric field intensity between photonic mode and surface plasmon polariton. It was found that the Q-factor and the polarisation sensitivity of these modes are about 144 and 25, respectively, that is 3 times greater than for surface plasmon polariton exciting in similar structure without Bragg mirror. PMID:26979722

  11. Surface Plasmons and Surface Enhanced Raman Spectra of Aggregated and Alloyed Gold-Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Y. Fleger

    2009-01-01

    Full Text Available Effects of size, morphology, and composition of gold and silver nanoparticles on surface plasmon resonance (SPR and surface enhanced Raman spectroscopy (SERS are studied with the purpose of optimizing SERS substrates. Various gold and silver films made by evaporation and subsequent annealing give different morphologies and compositions of nanoparticles and thus different position of the SPR peak. SERS measurements of 4-mercaptobenzoic acid obtained from these films reveal that the proximity of the SPR peak to the exciting laser wavelength is not the only factor leading to the highest Raman enhancement. Silver nanoparticles evaporated on top of larger gold nanoparticles show higher SERS than gold-silver alloyed nanoparticles, in spite of the fact that the SPR peak of alloyed nanoparticles is narrower and closer to the excitation wavelength. The highest Raman enhancement was obtained for substrates with a two-peak particle size distribution for excitation wavelengths close to the SPR.

  12. Transmittance of long-wavelength infrared surface plasmon by hexagonal periodic metal hole arrays

    Science.gov (United States)

    Lee, Byungwoo; Kwak, Hoe Min; Kim, Ha Sul

    2016-03-01

    For long wave length infrared transmission, a surface plasmonic device, having the periodic subwavelength metal hole array on Si substrate, was fabricated using photo-lithography and electron beam evaporation. The maximum transmitted wavelength was adjustable arbitrarily as a function of the period hole arrays. The maximum transmittance was measured 70.3% at 15.4 μm with a plasmonic device composed of a pitch of 5 μm and hole arrays of 3 μm. When the hole size became larger than a half pitch of the hole array, the transmitted infrared spectrum was split into two peaks. The surface plasmon mode of the six degenerated (1,0) Ag/Si was split from three to five modes depending on the incident beam angle. The blue and red wavelength shifts were measured at the same time.

  13. Tuning the transmission of surface plasmon polaritons across nano and micro gaps in gold stripes.

    Science.gov (United States)

    Ghafoori, Golaleh; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke

    2016-07-25

    We applied a far-field technique to measure the surface plasmon propagation over a wide range of gap sizes in thin gold stripes. This is realized with a grating technique which allows the excitation and out coupling of surface plasmon polaritons (SPPs). With this method the intensity can be monitored before and after the gap. The observations show that the SPPs can transmit over gaps with a width of 1μm with a probability of about 40% for Au stripe-waveguides (7 µm width) at a wavelength of 780 nm. The transmission decays exponentially above a gap size of 1 µm. The results also demonstrate that the transmission has non-monotonic behavior for gap sizes smaller than 1 µm that we attribute to excitation of Fabry-Perot modes and resonant localized plasmons within the gap. The experimental results are supported by numerical simulations using a Finite-Difference Time-Domain (FDTD) approach. PMID:27464180

  14. Breaking the challenge of signal integrity using time-domain spoof surface plasmon polaritons

    CERN Document Server

    Zhang, Hao Chi; Zhang, Qian; Fan, Yifeng; Fu, Xiaojian

    2015-01-01

    In modern integrated circuits and wireless communication systems/devices, three key features need to be solved simultaneously to reach higher performance and more compact size: signal integrity, interference suppression, and miniaturization. However, the above-mentioned requests are almost contradictory using the traditional techniques. To overcome this challenge, here we propose time-domain spoof surface plasmon polaritons (SPPs) as the carrier of signals. By designing a special plasmonic waveguide constructed by printing two narrow corrugated metallic strips on the top and bottom surfaces of a dielectric substrate with mirror symmetry, we show that spoof SPPs are supported from very low frequency to the cutoff frequency with strong subwavelength effects, which can be converted to the time-domain SPPs. When two such plasmonic waveguides are tightly packed with deep-subwavelength separation, which commonly happens in the integrated circuits and wireless communications due to limited space, we demonstrate theo...

  15. Surface plasmon tunneling through a touching gold nanocylinder array on a thin gold film

    Science.gov (United States)

    Xie, Suxia; Li, Hongjian; Fu, Shaoli; Xie, Ding; Xu, Haiqing; Zhou, Xin; Liu, Zhimin

    2011-04-01

    The optical property of a structure composed of a touching gold nanocylinder array on a thin gold film is investigated using finite-difference time-domain (FDTD) method. It is discovered that the transmission behavior can be tuned by tuning the geometry of the structure. As the film thickness increases, the transmission mode associated with the localized surface plasmon resonance blue shifts accompanied with a decrease of magnitude and full width at half maximum, and a second transmission appear due to the interaction of the plasmons on the cylinder with their images induced on the film. The localized waveguide resonance diminishes but the second resonance peak is intensified and broadened noticeably with the separation of the cylinder array and film increase. The cylinder radius size influences the localized surface plasmon resonance mode obviously. These results may be helpful for the design of a novel optical device.

  16. Scattering properties of vein induced localized surface plasmon resonances on a gold disk

    KAUST Repository

    Amin, Muhammad

    2011-12-01

    It is demonstrated via simulations that a gold nano-disk with a non-concentric cavity supports localized surface plasmon resonances over a frequency band that includes the visible and the near-infrared parts of the spectrum. The charge distribution on the disk indicates that the two distinct peaks in the scattering cross section are due to the (hybridized) higher-order plasmon modes; plasmon hybridization that involves the dipole modes of the disk and the cavity enforces the "coupling" of the plane-wave excitation to the originally-dark higher-order modes. It is further demonstrated that the resonance frequencies can be tuned by varying the radius of the embedded non-concentric cavity. The near-field enhancement observed at these two tunable resonance frequencies suggests that the proposed structure can be used as a substrate in surface enhanced spectroscopy applications. © 2011 IEEE.

  17. Transverse magnetic surface plasmons and complete absorption supported by doped graphene in Otto configuration

    Directory of Open Access Journals (Sweden)

    F. Ramos-Mendieta

    2014-06-01

    Full Text Available High sensitivity of the Attenuated Total Reflectance technique for exciting transverse magnetic surface plasmons in free-standing doped graphene is reported; complete agreement with the electromagnetic dispersion relation is numerically demonstrated in the terahertz regime. By reducing the air gap between prism and graphene in the Otto configuration we found that the surface plasmon excitation is weakened, but interference effects arise producing perfect absorption. At 5 THz two dips of zero-reflection were found, one of them with residual plasmonic contribution. Consequently, the reflection can be suppressed by changing the separation between prism and graphene; it is not needed to modify the graphene doping level. Conditions for destructive interference leading to complete absorption are presented and a particular behavior of the evanescent magnetic fields just at perfect absorption is reported

  18. An Electric Field Volume Integral Equation Approach to Simulate Surface Plasmon Polaritons

    Directory of Open Access Journals (Sweden)

    Rob Remis

    2013-02-01

    Full Text Available In this paper we present an electric field volume integral equation approach to simulate surface plasmon propagation along metal/dielectric interfaces. Metallic objects embedded in homogeneous dielectric media are considered. Starting point is a so-called weak-form of the electric field integral equation. This form is discretized on a uniform tensor-product grid resulting in a system matrix whose action on a vector can be computed via the fast Fourier transform. The GMRES iterative solver is used to solve the discretized set of equations and numerical examples, illustrating surface plasmon propagation, are presented. The convergence rate of GMRES is discussed in terms of the spectrum of the system matrix and through numerical experiments we show how the eigenvalues of the discretized volume scattering operator are related to plasmon propagation and the medium parameters of a metallic object.

  19. Study of the Incident Angles and SPP(Surface Plasmon Polaritons) in the Nano Scaled Materials

    Science.gov (United States)

    Kyung, Richard; Cho, Jay-Young

    2016-05-01

    In this study, SPP(Surface Plasmon Polaritons) in multi-layered nano structures, which consist of metals and dielectrics, have been analyzed using numerical and computational simulation. The purpose of this research is to find incident angles, and observe dispersions and plasmon polaritons occurring inside the materials when a laser beam is absorbed by the structure. The setup of the models consisted of air, metal oxide, metal, and prism. Numerical computer programs such as COMSOL and Matlab are used to analyze the phenomenon. Modes of SPP(Surface Plasmon Polaritons) have been observed and calculated for the multi-layered metals and metal oxides. The accurate incident angle, dispersion, magnetic field inside the material and the effective index are found to be different for each model.

  20. Numerically Reproduction of Spatio-Temporal Evolution of Surface Plasmon Polaritons at Dielectric-Plasma Interface

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhao-Quan; LIU Ming-Hai; ZHOU Qi-Yan; HU Ye-Lin; YANG An; ZHU Long-Ji; HU Xi-Wei

    2011-01-01

    @@ Discharges in planar-type overdense plasmas caused by resonant excitation of surface plasmon polaritons(SPPs)are presented.The spatio-temporal evolution of surface waves of SPPs at the dielectric-plasma interface is reproduced numerically.It is found that different discharge light patterns are excited by different spatio-temporal wave fields.Moreover, the corrugation surface included in the proposed plasma sources plays a significant role in producing large-ares uniform plasmas.%Discharges in planar-type overdense plasmas caused by resonant excitation of surface plasmon polaritons (SPPs) are presented.The spatio-temporal evolution of surface waves of SPPs at the dielectric-plasma interface is reproduced numerically.It is found that different discharge light patterns are excited by different spatio-temporal wave fields.Moreover, the corrugation surface included in the proposed plasma sources plays a significant role in producing large-area uniform plasmas.

  1. Lectin binding studies on a glycopolymer brush flow-through biosensor by localized surface plasmon resonance.

    Science.gov (United States)

    Rosencrantz, Ruben R; Nguyen, Vu Hoa; Park, Hyunji; Schulte, Christine; Böker, Alexander; Schnakenberg, Uwe; Elling, Lothar

    2016-08-01

    A localized surface plasmon resonance biosensor in a flow-through configuration was applied for investigating kinetics of lectin binding to surface-grafted glycopolymer brushes. Polycarbonate filter membranes with pore sizes of 400 nm were coated with a 114-nm thick gold layer and used as substrate for surface-initiated atom-transfer radical polymerization of a glycomonomer. These grafted from glycopolymer brushes were further modified with two subsequent enzymatic reactions on the surface to yield an immobilized trisaccharide presenting brush. Specific binding of lectins including Clostridium difficile toxin A receptor domain to the glycopolymer brush surface could be investigated in a microfluidic setup with flow-through of the analytes and transmission surface plasmon resonance spectroscopy. Graphical abstract Glycopolymer brushes serve as high affinity ligands for lectin and toxin interactions in a sensitive, disposable flow-through LSPR biosensor. PMID:27277814

  2. Plasmonic Au/CdMoO4 photocatalyst: Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Au/CdMoO4 composites were constructed for the first time. • Au/CdMoO4 showed superior activity for selective oxidation of benzylic alcohol. • The visible light photocatalytic activity is ascribed to the SPR effect of Au. - Abstract: Novel visible-light-driven plasmonic Au/CdMoO4 photocatalysts were synthesized by hydrothermal process following chemical reduction process. The catalysts were characterized by X-ray diffraction, transmission electron microscopy, UV–vis diffuse reflectance spectroscopy and X-ray photoelectron spectroscopy. The results show the catalysts exhibited strong visible light absorption due to the surface plasmon resonance effect of Au nanoparticles. Compared to CdMoO4, Au/CdMoO4 composites displayed superior photocatalytic activities for the selective oxidation of benzylic alcohol to benzaldehyde under visible light. The highest conversion was obtain by the 1.6% Au loaded CdMoO4. The mechanism for the selective oxidation of benzylic alcohol in the Au/CdMoO4 system is proposed

  3. Detection of bisphenol A using a novel surface plasmon resonance biosensor

    Czech Academy of Sciences Publication Activity Database

    Hegnerová, Kateřina; Piliarik, Marek; Šteinbachová, M.; Flegelová, Z.; Černohorská, H.; Homola, Jiří

    2010-01-01

    Roč. 398, č. 5 (2010), s. 1963-1966. ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701; GA MŠk OC09058 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance biosensor * bisphenol A * endocrine disruptor Subject RIV: JB - Sensors, Measurment, Regulation Impact factor: 3.841, year: 2010

  4. Surface Plasmon Resonance Label-Free Monitoring of Antibody Antigen Interactions in Real Time

    Science.gov (United States)

    Kausaite, Asta; van Dijk, Martijn; Castrop, Jan; Ramanaviciene, Almira; Baltrus, John P.; Acaite, Juzefa; Ramanavicius, Arunas

    2007-01-01

    Detection of biologically active compounds is one of the most important topics in molecular biology and biochemistry. One of the most promising detection methods is based on the application of surface plasmon resonance for label-free detection of biologically active compounds. This method allows one to monitor binding events in real time without…

  5. A surface plasmon polariton analogue of a Wannier-Stark ladder

    Czech Academy of Sciences Publication Activity Database

    Kuzmiak, Vladimír; Maradudin, A. A.; Méndez, E.R.

    Waršava : IEEE, 2014 - (Jaworski, M.; Marciniak, M.), s. 6876428 ISBN 978-1-4799-5600-5. ISSN 2162-7339. [16th International Conference on Transparent Optical Networks, ICTON 2014. Graz (AT), 06.07.2014-10.07.2014] Institutional support: RVO:67985882 Keywords : Gratings * Surface plasmon polariton * Wave propagation Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Using a surface plasmon resonance biosensor for rapid detection of salmonella typhimurium in chicken carcass

    Science.gov (United States)

    Chicken is one of the most popular meat products in the world. Salmonella Typhimurium is a common foodborne pathogens associated with the processing of poultry. An optical Surface Plasmon Resonance (SPR) biosensor was sensitive to the presence of Salmonella Typhimurium in chicken carcass. The Spr...

  7. The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces

    DEFF Research Database (Denmark)

    Lemke, Christoph; Leißner, Till; Klick, Alwin;

    2014-01-01

    Two-photon photoemission electron microscopy (2P-PEEM) is used to measure the real and imaginary part of the dispersion relation of surface plasmon polaritons at different interface systems. A comparison of calculated and measured dispersion data for a gold/vacuum interface demonstrates the...

  8. Improvement of the Specificity of Surface Plasmon Resonance with BSA-modified Chip

    Institute of Scientific and Technical Information of China (English)

    Li Hua CHEN

    2006-01-01

    A chip was modified with bovine serum albumin (BSA), then interaction between glutathione (GSH) immobilized on the top of BSA and glutathione-S-transferase (GST) was examined, using surface plasmon resonance (SPR). The SPR results showed that BSA-modified chip was effective not only in binding the target proteins but also in suppressing the nonspecific binding (NSB) of proteins.

  9. Quantification of antibody production of individual hybridoma cells by Surface Plasmon Resonance imaging.

    NARCIS (Netherlands)

    Stojanovic, I.; Velden, van der T.J.G.; Mulder, H.W.; Schasfoort, R.B.M.; Terstappen, L.W.M.M.

    2015-01-01

    Surface plasmon resonance imaging (SPRi) is most frequently used for the label-free measurement of biomolecular interactions. Here we explore the potential of SPRi to measure antibody production of individual hybridoma cells. As a model system, cells from a hybridoma, producing monoclonal antibodies

  10. Detection of benzimidazole carbamates and amino metabolites in liver by surface plasmon resonance-biosensor

    Science.gov (United States)

    Two surface plasmon resonance (SPR) biosensor screening assays were developed and validated to detect 11 benzimidazole carbamate (BZT) and four amino-benzimidazole veterinary drug residues in liver tissue. The assays used polyclonal antibodies, raised in sheep, to detect BZTs and amino-benzimidazole...

  11. Wavelength response of a surface plasmon resonance palladium-coated optical fiber sensor for hydrogen detection

    NARCIS (Netherlands)

    Perrotton, C.; Slaman, M.; Javahiraly, N.; Schreuders, H.; Dam. B.; Meyrueis, P.

    2011-01-01

    An optical fiber using palladium as sensitive layer is characterized in the range of 450 to 900 nm. The sensitive layer is deposited on the outside of a multimode fiber, after removing the optical cladding. The sensor is based on a measurement technique that uses the surface plasmon resonance effect

  12. Long-range surface plasmon polaritons at THz frequencies in thin semiconductor layers

    Institute of Scientific and Technical Information of China (English)

    Yichen Zhang; Audrey Berrier; Jaime Gómez Rivas

    2011-01-01

    Surface plasmon polaritons (SPPs) are electromagnetic waves coupled to the free charge carriers at the interface between a metal and a dielectric[1].These waves propagate along the interface,while decaying evanescently away from it.The propagation length of SPPs is mainly limited by Ohmic losses in the metal.A possible way to lower these losses is to reduce the penetration of the electromagnetic field inside the metal,which can be achieved by coupling the SPPs at the opposite sides of a thin metallic film.These coupled SPPs are known as long-range surface plasmon polaritons (LRSPPs) and have been thoroughly investigated at optical frequencies in thin layers of noble metals[2].%We present a theoretical investigation of THz long-range surface plasmon polaritons propagating on thin layers of InSb. The metallic behavior of doped semiconductors at THz frequencies allows the excitation of surface plasmon polaritons with propagation and confinement lengths that can be actively controlled. This control is achieved by acting on the free carrier density, which can be realized by changing the temperature of InSb.

  13. Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS

    DEFF Research Database (Denmark)

    Raza, Søren; Stenger, Nicolas; Kadkhodazadeh, Shima;

    2013-01-01

    We study the surface plasmon (SP) resonance energy of isolated spherical Ag nanoparticles dispersed on a silicon nitride substrate in the diameter range 3.5–26 nm with monochromated electron energy-loss spectroscopy. A significant blueshift of the SP resonance energy of 0.5 eV is measured when the...

  14. Blueshift of the surface plasmon resonance in silver nanoparticles: substrate effects

    DEFF Research Database (Denmark)

    Raza, Søren; Yan, Wei; Stenger, Nicolas;

    2013-01-01

    We study the blueshift of the surface plasmon (SP) resonance energy of isolated Ag nanoparticles with decreasing particle diameter, which we recently measured using electron energy loss spectroscopy (EELS) [1]. As the particle diameter decreases from 26 down to 3.5 nm, a large blueshift of 0.5 e...

  15. Surface plasmon resonance biosensor for the detection of VEGFR-1-a protein marker of myelodysplastic syndromes

    Czech Academy of Sciences Publication Activity Database

    Pimková, K.; Bocková, Markéta; Hegnerová, Kateřina; Suttnar, J.; Čermák, J.; Homola, Jiří; Dyr, J. E.

    2012-01-01

    Roč. 402, č. 1 (2012), s. 381-387. ISSN 1618-2642 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * myelodysplastic syndromes * vascular endothelial growth factor Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.659, year: 2012

  16. The binding of cytochrome c to neuroglobin: A docking and surface plasmon resonance study

    DEFF Research Database (Denmark)

    Bønding, Signe Helbo; Henty, K.; Dingley, A.J.; Brittain, T.

    2008-01-01

    . surface plasmon resonance studies provide a value of 45 μM for the equilibrium constant for cytochrome c binding to neuroglobin, which increases significantly as the ionic strength of the solution increases. The temperature dependence of the binding constant indicates that the complex formation is...

  17. Detection of Fungal Spores Using a Generic Surface Plasmon Resonance Immunoassay

    DEFF Research Database (Denmark)

    Skottrup, Peter; Hearty, Stephen; Frøkiær, Hanne; Leonard, Paul; Hejgaard, Jørn; O'Kennedy, Richard; Nicolaisen, Mogens; Fejer Justesen, Annemarie

    2007-01-01

    This paper describes a biosensor-based method for detection of fungal spores using Surface Plasmon Resonance (SPR). The approach involves the use of a mouse monoclonal antibody (Pst mAb8) and a SPR sensor for label-free detection of urediniospores from the model organism Puccinia striiformis f...

  18. Rapid Determination of Phytophthora infestans sporangia Using a Surface Plasmon Resonance Immunosensor

    DEFF Research Database (Denmark)

    Skottrup, Peter; Nicolaisen, Mogens; Justesen, Annemarie Fejer

    2007-01-01

    Phytophthora infestans is the cause of late blight disease in potato and is an economically important pathogen worldwide. Early disease detection is important to implement disease control measures. In this study a surface plasmon resonance (SPR) immunosensor for detection of P. infestans sporangia...

  19. Reflection-based fibre-optic refractive index sensor using surface plasmon resonance

    Czech Academy of Sciences Publication Activity Database

    Hlubina, P.; Kadulová, M.; Ciprian, D.; Sobota, Jaroslav

    2014-01-01

    Roč. 9, August 19 (2014), 14033:1-5. ISSN 1990-2573 R&D Projects: GA MŠk(CZ) LO1212 Keywords : surface plasmon resonance * fibre-optic sensor * spectral interrogation technique * aqueous solutions of ethanol * refractive index Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.231, year: 2014

  20. Quantifying protein-protein interactions in the ubiquitin pathway by surface plasmon resonance

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Gordon, Colin

    2005-01-01

    The commercial availability of instruments, such as Biacore, that are capable of monitoring surface plasmon resonance (SPR) has greatly simplified the quantification of protein-protein interactions. Already, this technique has been used for some studies of the ubiquitin-proteasome system. Here we...

  1. Surface Plasmon Microscopy of Two Crystalline Domains in a Lipid Monolayer

    NARCIS (Netherlands)

    Kooyman, R.P.H.; Krull, U.J.

    1991-01-01

    Surface plasmon microscopy is applied to monolayers of dimyristoylphosphatidylethanolamine,dipcast at high lateral pressure (35 mN/m) on a solid substrate. The vertical resolution of better than 1 nm and an in-plane resolution of - 10 um allow for the detection of two separate solid domains. Assumin

  2. Topology optimization of grating couplers for the efficient excitation of surface plasmons

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole; Nishiwaki, Shinji; Nomura, Tsuyoshi

    2010-01-01

    We propose a methodology for a systematic design of grating couplers for efficient excitation of surface plasmons at metal-dielectric interfaces. The methodology is based on a two-dimensional topology optimization formulation based on the H-polarized scalar Helmholtz equation and finite-element m...

  3. Dual-channel surface plasmon resonance sensor with spectral discrimination of sensing channels using dielectric overlayer

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří; Lu, H. B.; Yee, S. S.

    1999-01-01

    Roč. 35, č. 13 (1999), s. 1105-1106. ISSN 0013-5194 Grant ostatní: Defense Advanced Research Projects Agency(US) DAAL01-96-K-3614; Center for Process Analytical Chemistry University of Washington(US) 66-9938 Keywords : surface plasmons * optical sensors * biosensors Impact factor: 1.164, year: 1999

  4. Surface plasmon resonance (SPR) biosensors for detection of biomolecules and their interactions

    Czech Academy of Sciences Publication Activity Database

    Homola, Jiří

    Brussels: European Commission - Directorate General Joint Research Centre Institute for Health and Consumer Protection, 2005. [Enlargement and Integration Workshop on Synthesis and Characterisation of Biological/Non Biological Interafeces. 29.11.2005-30.11.2005, Ispra] Institutional research plan: CEZ:AV0Z2067918 Keywords : biosensors * surface plasmon resonance * optical sensors Subject RIV: JB - Sensors, Measurment, Regulation

  5. First-principles study of surface plasmons on Ag(111) and H/Ag(111)

    DEFF Research Database (Denmark)

    Yan, Jun; Jacobsen, Karsten Wedel; Thygesen, Kristian Sommer

    2011-01-01

    Linear-response time-dependent density functional theory is used to investigate the relation between molecular bonding and surface plasmons for the model system H/Ag(111). We employ an orbital-dependent exchange-correlation functional to obtain a correct description of the Ag 3d band, which is...

  6. Surface Plasmon Resonance Biosensor for Rapid Label-Free Detection of Microribonucleic Acid at Subfemtomole Level

    Czech Academy of Sciences Publication Activity Database

    Šípová, Hana; Zhang, S.-Ch.; Dudley, A.M.; Galas, D.; Wang, K.; Homola, Jiří

    2010-01-01

    Roč. 82, č. 24 (2010), s. 10110-10115. ISSN 0003-2700 R&D Projects: GA AV ČR KAN200670701 Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * microRNA * cancer diagnostics * biosensor Subject RIV: JB - Sensor s, Measurment, Regulation Impact factor: 5.874, year: 2010

  7. Amplitude and phase of surface plasmon polaritons excited at a step edge

    DEFF Research Database (Denmark)

    Klick, Alwin; de la Cruz, Sergio; Lemke, Christoph;

    2016-01-01

    A combined experimental and theoretical study on the laser-induced excitation of surface plasmon polaritons (SPP) at well-defined step edges of a gold–vacuum interface is presented. As a relevant parameter determining the coupling efficiency between laser field and SPP, we identify the ratio betw...

  8. Data transmission in long-range dielectric-loaded surface plasmon polariton waveguides

    DEFF Research Database (Denmark)

    Kharitonov, S.; Kiselev, R.; Kumar, Ashwani;

    2014-01-01

    We demonstrate the data transmission of 10 Gbit/s on-off keying modulated 1550 nm signal through a long-range dielectric-loaded surface plasmon polariton waveguide structure with negligible signal degradation. In the experiment the bit error rate penalties do not exceed 0.6 dB over the 15 nm...

  9. Compact multi-channel high-sensitivity biosensor based on spectroscopy of surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Piliarik, Marek; Hegnerová, Kateřina; Vala, Milan; Chadt, Karel; Tichý, Ivo; Homola, Jiří

    Bellingham, Washington : SPIE, 2009 - (Vo-Dinh, T.; Lakowicz, J.), 719212-1-719212-9 ISBN 9780819474384. ISSN 1605-7422. [Photonics West Biomedical Optics 2009. San Jose (US), 24.01.2009-29.01.2009] Institutional research plan: CEZ:AV0Z20670512 Keywords : Surface plasmon resonance * Biosensor * diffraction grating Subject RIV: JB - Sensors, Measurment, Regulation

  10. Studies on Interactions of Antibiotics with Serum Albumin by Surface Plasmon Resonance Biosensor

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Characterizing how chemical compounds binding to serum albumin is essential in evaluating drug candidates and is the focus of this study. A surface plasmon resonance biosensor developed in this laboratory was used to determine the binding constants of antibiotics with serum albumin. The binding constants of five antibiotics(azithromycin, spectinomycin, gentamycin, metacycline and kanamycin) with serum albumins were obtained.

  11. Enhancement of the Modulation Bandwidth for surface Plasmon coupled LEDs for Visible Light Communication

    DEFF Research Database (Denmark)

    Li, Jiehui; Fadil, Ahmed; Ou, Haiyan;

    2016-01-01

    The modulation bandwidth of surface plasmon coupled GaN-based LEDs is increased by ~1.2 times to 434.5 MHz compared with normal LED by applying Ag nanoparticles. These findings will help for the industrialization of VLC system....

  12. Sensitive surface plasmon resonance biosensors for cancer biomarker discivery and food safety

    Czech Academy of Sciences Publication Activity Database

    Jiang, S.; Vaisocherová, Hana; Taylor, A.; Yang, W.; Yakes, B.; Deeds, J.; Etheridge, S.; Hegnerová, Kateřina; Homola, Jiří

    Dublin: Dublin City University, 2008. s. 64--. ISBN N. [EUROPTRODE /9./. 30.03.2008-02.04.2008, Dublin] Institutional research plan: CEZ:AV0Z20670512 Keywords : surface plasmon resonance * biosensors * cancer * polymers Subject RIV: JB - Sensors, Measurment, Regulation

  13. Surface Plasmon mediated near-field imaging and optical addressing in nanoscience

    CERN Document Server

    Drezet, A; Krenn, J R; Brun, M; Huant, S

    2007-01-01

    We present an overview of recent progress in plasmonics. We focus our study on the observation and excitation of surface plasmon polaritons (SPPs) with optical near-field microscopy. We discuss in particular recent applications of photon scanning tunnelling microscope (PSTM) for imaging of SPP propagating in metal and dielectric wave guides. We show how near-field scanning optical microscopy (NSOM) can be used to optically and actively address remotely nano-objects such as quantum dots. Additionally we compare results obtained with near-field microscopy to those obtained with other optical far-field methods of analysis such as leakage radiation microscopy (LRM).

  14. Experimental demonstration of tunable directional excitation of surface plasmon polaritons with a subwavelength metallic double slit

    International Nuclear Information System (INIS)

    We demonstrate experimentally the directional excitation of surface plasmon polaritons (SPPs) on a metal film by a subwavelength double slit under backside illumination, based on the interference of SPPs generated by the two slits. By varying the incident angle, the SPPs can be tunably directed into two opposite propagating directions with a predetermined splitting ratio. Under certain incident angle, unidirectional SPP excitation can be achieved. This compact directional SPP coupler is potentially useful for many on-chip applications. As an example, we show the integration of the double-slit couplers with SPP Bragg mirrors, which can effectively realize selective coupling of SPPs into different ports in an integrated plasmonic chip.

  15. Surface plasmon-assisted optical bistability in the quantum dot-metal nanoparticle hybrid system

    Science.gov (United States)

    Bao, Chengjun; Qi, Yihong; Niu, Yueping; Gong, Shangqing

    2016-07-01

    We theoretically investigated optical bistability (OB) of a coupled excition-plasmon hybrid system in a unidirectional ring cavity. It is found that the threshold and the region of OB can be tuned by adjusting the center-center distance between the quantum dot and metal nanoparticle (MNP), the Rabi frequency of the control field and the radius of the MNP. Due to the significantly enhanced optical nonlinearity by the surface plasmon effect, the threshold of OB can be decreased greatly when the probe field is parallel to the major axis of the hybrid system. The enhanced OB may have promising applications in optical switching and optical storage.

  16. Near-field surface plasmon effects on Au-double-slit diffraction for polychromatic light.

    Science.gov (United States)

    Han, Pin

    2014-01-01

    The surface plasmon effects on near-field diffraction for polychromatic light are studied. An Au-double-slit is used as the model and Fresnel integral is employed to perform the theoretic analysis. The results are illustrated with numerical examples and they show that, compared with the normal double-slit, the plasmon effect changes the spectral shift from redshift to blueshift and also enhances the intensity peak. This effect can be used in optical data transmission or specific spectral selectors. PMID:25386100

  17. Near-field surface plasmon effects on Au-double-slit diffraction for polychromatic light

    Science.gov (United States)

    2014-01-01

    The surface plasmon effects on near-field diffraction for polychromatic light are studied. An Au-double-slit is used as the model and Fresnel integral is employed to perform the theoretic analysis. The results are illustrated with numerical examples and they show that, compared with the normal double-slit, the plasmon effect changes the spectral shift from redshift to blueshift and also enhances the intensity peak. This effect can be used in optical data transmission or specific spectral selectors. PMID:25386100

  18. Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers

    Science.gov (United States)

    Xu, Guoding; Cao, Ming; Liu, Chang; Sun, Jian; Pan, Tao

    2016-05-01

    We study numerically the properties of surface plasmon-polaritons (SPPs) in a gyroelectric slab sandwiched between two graphene layers, where the external static magnetic field is applied in the Voigt geometry. It is shown that the dispersion characteristics and propagation lenghts of the SPPs for both the optical and the acoustic branches can be tuned flexibly by the external magnetic field and graphene's chemical potential, and that the nonreciprocal properties of the SPPs caused by the external magnetic field are rather obvious. The results provide a method for adjusting and improving the dispersion and propagation properties of the SPPs, which might be helpful for the design of the related plasmonic devices.

  19. Scattering of surface-plasmon polaritons by a localized dielectric surface defect studied using an effective boundary condition

    International Nuclear Information System (INIS)

    By the use of an effective boundary condition we derive a two-dimensional integral equation for the scattering amplitude in the Rayleigh representation of the electric field of a surface-plasmon polariton scattered from a two-dimensional dielectric surface defect. This integral equation is transformed into a set of coupled one-dimensional integral equations by representing the dependence of the amplitude on the azimuthal angle by means of a rotational expansion. Exemplifying the usefulness of this approach, numerical results are obtained for defects of the shape of an anisotropic Gaussian function and a hemiellipsoid with a finite footprint when the surface-plasmon polariton incident on the defect from an arbitrary direction is either a plane wave or a Gaussian beam. Inspecting the near-field distribution of the radiation caused by the scattering, we find a localized increase of surface-plasmon polariton intensity in the vicinity of the dielectric defect, which indicates a focusing for both forms of the incident surface-plasmon polariton.

  20. Backward spoof surface wave in plasmonic metamaterial of ultrathin metallic structure

    Science.gov (United States)

    Liu, Xiaoyong; Feng, Yijun; Zhu, Bo; Zhao, Junming; Jiang, Tian

    2016-02-01

    Backward wave with anti-parallel phase and group velocities is one of the basic properties associated with negative refraction and sub-diffraction image that have attracted considerable interest in the context of photonic metamaterials. It has been predicted theoretically that some plasmonic structures can also support backward wave propagation of surface plasmon polaritons (SPPs), however direct experimental demonstration has not been reported, to the best of our knowledge. In this paper, a specially designed plasmonic metamaterial of corrugated metallic strip has been proposed that can support backward spoof SPP wave propagation. The dispersion analysis, the full electromagnetic field simulation and the transmission measurement of the plasmonic metamaterial waveguide have clearly validated the backward wave propagation with dispersion relation possessing negative slope and opposite directions of group and phase velocities. As a further verification and application, a contra-directional coupler is designed and tested that can route the microwave signal to opposite terminals at different operating frequencies, indicating new application opportunities of plasmonic metamaterial in integrated functional devices and circuits for microwave and terahertz radiation.

  1. Integrated Quantum Controlled-NOT Gate Based on Dielectric-Loaded Surface Plasmon Polariton Waveguide

    CERN Document Server

    Wang, S M; Gong, Y X; Xu, P; Li, L; Li, T; Zhu, S N

    2014-01-01

    It has been proved that surface plasmon polariton (SPP) can well conserve and transmit the quantum nature of entangled photons. Therefore, further utilization and manipulation of such quantum nature of SPP in a plasmonic chip will be the next task for scientists in this field. In quantum logic circuits, the controlled-NOT (CNOT) gate is the key building block. Here, we implement the first plasmonic quantum CNOT gate with several-micrometer footprint by utilizing a single polarization-dependent beam-splitter (PDBS) fabricated on the dielectric-loaded SPP waveguide (DLSPPW). The quantum logic function of the CNOT gate is characterized by the truth table with an average fidelity of. Its entangling ability to transform a separable state into an entangled state is demonstrated with the visibilities of and for non-orthogonal bases. The DLSPPW based CNOT gate is considered to have good integratability and scalability, which will pave a new way for quantum information science.

  2. Size-Reduction Template Stripping of Smooth Curved Metallic Tips for Adiabatic Nanofocusing of Surface Plasmons.

    Science.gov (United States)

    Johnson, Timothy W; Klemme, Daniel J; Oh, Sang-Hyun

    2016-06-01

    We present a new technique to engineer metallic interfaces to produce sharp tips with smooth curved surfaces and variable tip angles, as well as ridges with arbitrary contour shapes, all of which can be integrated with grating couplers for applications in plasmonics and nanophotonics. We combine template stripping, a nanofabrication scheme, with atomic layer deposition (ALD) to produce the ultrasharp nanoscale tips and wedges using only conventional photolithography. Conformal ALD coating of insulators over silicon trench molds of various shapes reduces their widths to make nanoscale features without high-resolution lithography. Along with a metal deposition and template stripping, this size-reduction scheme can mass-produce narrow and ultrasharp (optical spectroscopy, plasmonic waveguides, particle trapping, hot-electron plasmonics, and nonlinear optics. PMID:27156522

  3. Plasmonics of opalic surface: a combined near-and far-field approach

    CERN Document Server

    Lethiec, Clotilde; Popescu, Trajan; Frederich, Hugo; Ngoc, Phan; Yraola, Eduardo; Schwob, Catherine; Charra, Fabrice; Coolen, Laurent; Douillard, Ludovic; Maître, Agnès

    2016-01-01

    An opalic plasmonic sample, constituted by a hexagonal arrangement of metallized silica spheres, presents remarkable optical properties due to the mixing of periodic arrangement and singularities at the sphere touching points. It is therefore an interesting candidate for exploiting the excitation of both localized and propagating surface plasmons. Several channels of excitation based on these properties or exploiting a certain level of disorder are evidenced, opening new routes for the efficient excitation of plasmons on a wide spectral range. The versatility of such hybrid system is evidenced in the context of two complementary experiments: specular reflective spectrometry and photoemission electron microscopy. Both techniques offer different points of view on the same physical phenomenon and the link between them is discussed. Such experiments evidence the opportunities offered by these 2D hybrid materials in the context of nanophotonics.

  4. Beam filter and splitter based on surface plasmon propagation in ring metal heterowaveguide

    Indian Academy of Sciences (India)

    Gaige Zheng; Linhua Xu; Yunyun Chen; Wei Su; Yuzhu Liu

    2014-12-01

    Surface plasmon polaritons (SPPs) beam filter (BF) and beam splitter (BS) constructed using metal heterostructures are proposed and demonstrated numerically. Both structures have a ring metal heterowaveguide, which is constructed by a metal cylinder and a ring dielectric cladding. The two-dimensional finite-difference time-domain (2D-FDTD) method is employed to study the properties of the proposed BF and BS, and the results show that SPPs can effectively propagate on bended plasmonic waveguides with dielectric claddings. By introducing dielectric and plasmonic waveguides on both sides of the resonant ring, SPPs can be efficiently excited at the output of the waveguide ring resonator (WRR) through mode coupling. The planar metal heterostructures provide a way for constructing various nanoscale counterparts of conventional planar integrated devices such as filters, splitters, resonators, sensors, optical switches, and so on.

  5. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using the finite-difference time-domain(FDTD) method,we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere.The influences of coupling with different nanoparticles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated.It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanoparticle.This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

  6. Coupling-induced excitation of a forbidden surface plasmon mode of a gold nanorod

    Institute of Scientific and Technical Information of China (English)

    YAO HaoMin; LI Zhi; GONG QiHuang

    2009-01-01

    Using the finite-difference time-domain (FDTD) method, we simulate the coupling between a gold nanorod and gold nanoparticles with different plasmonic resonant frequencies/volumes as well as that between the nanorod and a dielectric nanosphere. The influences of coupling with different nanoparti-cles on the excitation of a forbidden longitudinal surface plasmon mode of the nanorod under normal incidence are investigated. It is found that the cause of this excitation is the broken symmetry of the local electric field experienced by the nanorod resulting from the charge pileup on the other nanopar-ticle. This result is valuable for understanding the near-field optical characterization of plasmonic metal nanoparticles.

  7. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal–semiconductor, and metal–insulator–metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  8. The effect of hot electrons and surface plasmons on heterogeneous catalysis.

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-29

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles. PMID:27166263

  9. Diffuse Surface Scattering in the Plasmonic Resonances of Ultra-Low Electron Density Nanospheres

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2015-01-01

    Localized surface plasmon resonances (LSPRs) have recently been identified in extremely diluted electron systems obtained by doping semiconductor quantum dots. Here we investigate the role that different surface effects, namely electronic spill-out and diffuse surface scattering, play in the optical properties of these ultra-low electron density nanosystems. Diffuse scattering originates from imperfections or roughness at a microscopic scale on the surface. Using an electromagnetic theory that describes this mechanism in conjunction with a dielectric function including the quantum size effect, we find that the LSPRs show an oscillatory behavior both in position and width for large particles and a strong blueshift in energy and an increased width for smaller radii, consistent with recent experimental results for photodoped ZnO nanocrystals. We thus show that the commonly ignored process of diffuse surface scattering is a more important mechanism affecting the plasmonic properties of ultra-low electron density ...

  10. The Influence of Surface Plasmons on Excited State Dynamics in PTCDA

    Science.gov (United States)

    Azarova, N. A.

    Organic thin film solar cells can be paired with nanostructured substrates to overcome the issue of narrow spectral absorption in a thin-film configuration. The nanostructured surface acts not only as an effective scattering back reflector to increase the light path within the absorbing thin film but also affords plasmonic activity. The interface between the metal and the absorbing chromophore supports surface plasmon modes. The associated strong electromagnetic field can potentially couple with excitations of the chromophore, altering its exciton dynamics. Such a plasmon-exciton coupling can lead to control over excitation processes, namely singlet fission. Singlet fission is a sharing of excited state energy between chromophores that may regulate instances of multi-exciton generation, allowing the solar cell efficiency to exceed the thermodynamical Shockley-Queisser limit. The current investigation focuses on hybridization of the plasmon and molecular exciton. We coat an organic semiconductor, 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA), on the nanogratings consisting of lines of Ag on a substrate coated with a thick Ag backing. A dielectric spacer layer is included between the organic and the metal in some samples to eliminate any reaction between the two. The SP resonance of the grating is tuned through a PTCDA exciton line by sweeping the incident wave vector. Successful anticrossing between the plasmon and the exciton peaks would be observed in steady-state reflectance data as a function of angle. Though a detailed analysis of reflectance spectra has not been completed, the potential for plasmon-exciton hybdridization is demonstrated.

  11. Sensing (un)binding events via surface plasmons: effects of resonator geometry

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Claudio, Virginia; Käll, Mikael

    2016-04-01

    The resonance conditions of localized surface plasmon resonances (LSPRs) can be perturbed in any number ways making plasmon nanoresonators viable tools in detection of e.g. phase changes, pH, gasses, and single molecules. Precise measurement via LSPR of molecular concentrations hinge on the ability to confidently count the number of molecules attached to a metal resonator and ideally to track binding and unbinding events in real-time. These two requirements make it necessary to rigorously quantify relations between the number of bound molecules and response of plasmonic sensors. This endeavor is hindered on the one hand by a spatially varying response of a given plasmonic nanosensor. On the other hand movement of molecules is determined by stochastic effects (Brownian motion) as well as deterministic flow, if present, in microfluidic channels. The combination of molecular dynamics and the electromagnetic response of the LSPR yield an uncertainty which is little understood and whose effect is often disregarded in quantitative sensing experiments. Using a combination of electromagnetic finite-difference time-domain (FDTD) calculations of the plasmon resonance peak shift of various metal nanosensors (disk, cone, rod, dimer) and stochastic diffusion-reaction simulations of biomolecular interactions on a sensor surface we clarify the interplay between position dependent binding probability and inhomogeneous sensitivity distribution. We show, how the statistical characteristics of the total signal upon molecular binding are determined. The proposed methodology is, in general, applicable to any sensor and any transduction mechanism, although the specifics of implementation will vary depending on circumstances. In this work we focus on elucidating how the interplay between electromagnetic and stochastic effects impacts the feasibility of employing particular shapes of plasmonic sensors for real-time monitoring of individual binding reactions or sensing low concentrations

  12. Studies of Biomacromolecule Adsorption and Activity at Solid Surfaces by Surface Plasmon Resonance and Quartz Crystal Microbalance with Dissipation Monitoring

    OpenAIRE

    Liu, Zelin

    2010-01-01

    Self-assembly of polysaccharide derivatives at liquid/solid interfaces was studied by surface plasmon resonance spectroscopy (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D). Carboxymethyl cellulose (CMC) adsorption onto cellulose surfaces from aqueous solutions was enhanced by electrolytes, especially by divalent cations. A combination of SPR and QCM-D results showed that CMC formed highly hydrated layers on cellulose surfaces (90 to 95% water by mass). Voigt-based v...

  13. Combined surface acoustic wave and surface plasmon resonance measurement of collagen and fibrinogen layers

    CERN Document Server

    Friedt, J M; Francis, L; Zhou, C; Campitelli, A; Friedt, Jean-Michel; Denis, Frederic; Francis, Laurent; Zhou, Cheng; Campitelli, Andrew

    2003-01-01

    We use an instrument combining optical (surface plasmon resonance) and acoustic (Love mode acoustic wave device) real-time measurements on a same surface for the identification of water content in collagen and fibrinogen protein layers. After calibration of the surface acoustic wave device sensitivity by copper electrodeposition, the bound mass and its physical properties -- density and optical index -- are extracted from the complementary measurement techniques and lead to thickness and water ratio values compatible with the observed signal shifts. Such results are especially usefully for protein layers with a high water content as shown here for collagen on an hydrophobic surface. We obtain the following results: collagen layers include 70+/-20 % water and are 16+/-3 to 19+/-3 nm thick for bulk concentrations ranging from 30 to 300 ug/ml. Fibrinogen layers include 50+/-10 % water for layer thicknesses in the 6+/-1.5 to 13+/-2 nm range when the bulk concentration is in the 46 to 460 ug/ml range.

  14. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  15. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  16. Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing

    Science.gov (United States)

    Wang, Yi; Wu, Lin; Wong, Ten It; Bauch, Martin; Zhang, Qingwen; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Dostalek, Jakub; Liedberg, Bo

    2016-04-01

    We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 102 as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize the efficiency of surface plasmon-enhanced fluorescence spectroscopy for implementation in ultra-sensitive bioassays.We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 102 as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize

  17. Surface Plasmon Resonance Analysis of Histidine-Tagged F1-ATPase Surface Adsorption

    Science.gov (United States)

    Tucker, Jenifer K.; Richter, Mark L.; Berrie, Cindy L.

    2015-11-01

    Studies of the rotational activity of the enzymatic core (α3β3γ) of the F1-ATPase motor protein have relied on binding the enzyme to NTA-coated glass surfaces via polyhistidine tags engineered into the C-termini of each of the three α or β subunits. Those studies revealed the rotational motion of the central γ subunit by monitoring the motion of attached micron-long actin filaments or spherical nanoparticles. However, only a small percentage of the attached filaments or particles were observed to rotate, likely due, at least in part, to non-uniform surface attachment of the motor proteins. In this study, we have applied surface plasmon resonance to monitor the kinetics and affinity of binding of the His-tagged motor protein to NTA-coated gold sensor surfaces. The binding data, when fit to a heterogeneous binding model, exhibit two sets of adsorption-desorption rate constants with two dissociation constants of 4.0 × 10-9 M and 8.6 × 10-11 M for 6His-α3β3γ binding to the nickel ion-activated NTA surface. The data are consistent with mixed attachment of the protein via two (bimodal) and three (trimodal) NTA/Ni2+-His-tag interactions, respectively, with the less stable bimodal interaction dominating. The results provide a partial explanation for the low number of surface-attached F1 motors previously observed in rotation studies and suggest alternative approaches to uniform F1 motor surface attachment for future fabrication of motor-based nanobiodevices and materials.

  18. Effects of the rotation angle on surface plasmon coupling of nanoprisms

    Science.gov (United States)

    Chien, Miao-Hsuan; Nien, Li-Wei; Chao, Bo-Kai; Li, Jia-Han; Hsueh, Chun-Hway

    2016-02-01

    We studied the effects of relative orientation of bowtie nanostructures on the plasmon resonance both experimentally and theoretically in this work. Specifically, we fabricated gold bowtie nanoantennas with rotated nanoprisms, measured the near-field and the far-field resonance behaviors using Raman spectroscopy and scattering microspectroscopy, and simulated the effects of the rotation angle on the localized surface plasmonic resonance using finite-difference time-domain simulations. In addition to the widely-discussed dipolar resonance in regular bowtie nanostructures, defined as tip-mode resonance in the present study, the excitations of edge-mode resonance were discovered under certain rotation angles of nanoprisms. Because of the resonances of different modes at different wavelengths, two different incident laser sources were used to measure the Raman spectra to provide evidence for the evolution of different resonance modes. Also, both the tip-mode and edge-mode resonances were verified by the simulated charge density distribution and their trends were discussed. Based on the discovered trend, a plasmon protractor was created with a near-exponential decay relationship between the relative resonance wavelength shift and cosine of the rotation angle. A plasmon hybridization model was also proposed for rotated bowties to explain the coupling between nanoprisms during rotation.We studied the effects of relative orientation of bowtie nanostructures on the plasmon resonance both experimentally and theoretically in this work. Specifically, we fabricated gold bowtie nanoantennas with rotated nanoprisms, measured the near-field and the far-field resonance behaviors using Raman spectroscopy and scattering microspectroscopy, and simulated the effects of the rotation angle on the localized surface plasmonic resonance using finite-difference time-domain simulations. In addition to the widely-discussed dipolar resonance in regular bowtie nanostructures, defined as tip

  19. Plasmon-Enhanced Surface Photovoltage of ZnO/Ag Nanogratings

    OpenAIRE

    Minji Gwon; Ahrum Sohn; Yunae Cho; Soo-Hyon Phark; Jieun Ko; Youn Sang Kim; Dong-Wook Kim

    2015-01-01

    We investigated the surface photovoltage (SPV) behaviors of ZnO/Ag one-dimensional (1D) nanogratings using Kelvin probe force microscopy (KPFM). The grating structure could couple surface plasmon polaritons (SPPs) with photons, giving rise to strong light confinement at the ZnO/Ag interface. The larger field produced more photo-excited carriers and increased the SPV. SPP excitation influenced the spatial distribution of the photo-excited carriers and their recombination processes. As a result...

  20. [Detection of antigen-antibody interaction of human adenovirus by the method of surface plasmon resonance].

    Science.gov (United States)

    Nosach, L M; Boltovets', P M; Povnytsia, O Iu; Zhovnovata, V L; Zakharenko, O M; Snopok, B A; Shyrshov, Iu M; Diachenko, N S

    2005-01-01

    A possibility to detect adenoviral protein--hexon, using specific antibodies by surface plasmon resonance (SPR) was demonstrated. The hexon of the human adenovirus 2 (Ad2) binds to antibodies immobilized on the sensor surface treated by KNCS and protein A Staphylococcus aureus. The specificity of antihexon antibodies was demonstrated by indirect method of fluorescent antibodies (MFA) and cellular variant of the immunoassay (cELISA). PMID:16250237

  1. Systematic studies of protein immobilization by surface plasmon field-enhanced fluorescence spectroscopy

    OpenAIRE

    Liu, Jing

    2005-01-01

    The research interest of this study is to investigate surface immobilization strategies for proteins and other biomolecules by the surface plasmon field-enhanced fluorescence spectroscopy (SPFS) technique. The recrystallization features of the S-layer proteins and the possibility of combining the S-layer lattice arrays with other functional molecules make this protein a prime candidate for supramolecular architectures. The recrystallization behavior on gold or on the secondary cell wall po...

  2. Tapered Optical Fiber Probe Assembled with Plasmonic Nanostructures for Surface-Enhanced Raman Scattering Application.

    Science.gov (United States)

    Huang, Zhulin; Lei, Xing; Liu, Ye; Wang, Zhiwei; Wang, Xiujuan; Wang, Zhaoming; Mao, Qinghe; Meng, Guowen

    2015-08-12

    Optical fiber-Raman devices integrated with plasmonic nanostructures have promising potentials for in situ probing remote liquid samples and biological samples. In this system, the fiber probe is required to simultaneously demonstrate stable surface enhanced Raman scattering (SERS) signals and high sensitivity toward the target species. Here we demonstrate a generic approach to integrate presynthesized plasmonic nanostructures with tapered fiber probes that are prepared by a dipping-etching method, through reversed electrostatic attraction between the silane couple agent modified silica fiber probe and the nanostructures. Using this approach, both negatively and positively charged plasmonic nanostructures with various morphologies (such as Au nanosphere, Ag nanocube, Au nanorod, Au@Ag core-shell nanorod) can be stably assembled on the tapered silica fiber probes. Attributed to the electrostatic force between the plasmonic units and the fiber surface, the nanostructures do not disperse in liquid samples easily, making the relative standard deviation of SERS signals as low as 2% in analyte solution. Importantly, the detection sensitivity of the system can be optimized by adjusting the cone angle (from 3.6° to 22°) and the morphology of nanostructures assembled on the fiber. Thus, the nanostructures-sensitized optical fiber-Raman probes show great potentials in the applications of SERS-based environmental detection of liquid samples. PMID:26186260

  3. A selectively coated photonic crystal fiber based surface plasmon resonance sensor

    DEFF Research Database (Denmark)

    Yu, X; Zhang, Y.; Pan, S.S.; Shum, P.; Yan, Min; Leviatan, Y.; Li, C.M.

    2010-01-01

    We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index sensi...... terms of signal to noise ratio (SNR). The improvements in spectral width and SNR can both contribute to a better detection limit for this refractive index sensor.......We propose a novel design for a photonic crystal fiber based surface plasmonic resonance sensor. The sensor consists of selectively metal-coated air holes containing analyte channels, which enhance the phase matching between the plasmonic mode and the core-guided mode. Good refractive index...... sensitivity as high as 5500 nm/RIU (refractive index unit) can be achieved in the proposed structure. Compared with the entirely coated structure, the selectively coated sensor design demonstrates narrower resonance spectral width. Moreover, the greater resonance depth can improve the sensing performance in...

  4. Self-assembled large-area annular cavity arrays with tunable cylindrical surface plasmons for sensing.

    Science.gov (United States)

    Ni, Haibin; Wang, Ming; Shen, Tianyi; Zhou, Jing

    2015-02-24

    Surface plasmons that propagate along cylindrical metal/dielectric interfaces in annular apertures in metal films, called cylindrical surface plasmons (CSPs), exhibit attractive optical characteristics. However, it is challenging to fabricate these nanocoaxial structures. Here, we demonstrate a practical low-cost route to manufacture highly ordered, large-area annular cavity arrays (ACAs) that can support CSPs with great tunability. By employing a sol-gel coassembly method, reactive ion etching and metal sputtering techniques, regular, highly ordered ACAs in square-centimeter-scale with a gap width tunable in the range of several to hundreds of nanometers have been produced with good reproducibility. Ag ACAs with a gap width of 12 nm and a gap height of 635 nm are demonstrated. By finite-difference time-domain simulation, we confirm that the pronounced dips in the reflectance spectra of ACAs are attributable to CSP resonances excited in the annular gaps. By adjusting etching time and Ag film thickness, the CSP dips can be tuned to sweep the entire optical range of 360 to 1800 nm without changing sphere size, which makes them a promising candidate for forming integrated plasmonic sensing arrays. The high tunability of the CSP resonant frequencies together with strong electric field enhancement in the cavities make the ACAs promising candidates for surface plasmon sensors and SERS substrates, as, for example, they have been used in liquid refractive index (RI) sensing, demonstrating a sensitivity of 1505 nm/RIU and a figure of merit of 9. One of the CSP dips of ACAs with a certain geometry size is angle- (0-70 degrees) and polarization-independent and can be used as a narrow-band absorber. Furthermore, the nano annular cavity arrays can be used to construct solar cells, nanolasers and nanoparticle plasmonic tweezers. PMID:25639937

  5. Diffuse Surface Scattering and Quantum Size Effects in the Surface Plasmon Resonances of Low Carrier Density Nanocrystals

    CERN Document Server

    Monreal, R Carmina; Apell, S Peter

    2016-01-01

    The detailed understanding of the physical parameters that determine Localized Surface Plasmon Resonances (LSPRs) is essential to develop new applications for plasmonics. A relatively new area of research has been opened by the identification of LSPRs in low carrier density systems obtained by doping semiconductor quantum dots. We investigate theoretically how diffuse surface scattering of electrons in combination with the effect of quantization due to size (QSE) impact the evolution of the LSPRs with the size of these nanosystems. Two key parameters are the length $R_0$ giving the strength of the QSE and the velocity $\\beta_T$ of the electronic excitations entering in the length scale for diffuse surface scattering. While the QSE itself only produces a blueshift in energy of the LSPRs, the diffuse surface scattering mechanism gives to both energy and linewidth an oscillatory-damped behavior as a function of size, with characteristic lengths that depend on material parameters. Thus, the evolution of the LSPRs...

  6. Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells.

    Science.gov (United States)

    Li, Chien-Hung; Li, Min-Chih; Liu, Si-Ping; Jamison, Andrew C; Lee, Dahye; Lee, T Randall; Lee, Tai-Chou

    2016-04-13

    Gold-silver nanoshells (GS-NSs) having a tunable surface plasmon resonance (SPR) were employed to facilitate charge separation of photoexcited carriers in the photocalytic production of hydrogen from water. Zinc indium sulfide (ZnIn2S4; ZIS), a visible-light-active photocatalyst, where the band gap varies with the [Zn]/[In] ratio, was used as a model ZIS system (Eg = 2.25 eV) to investigate the mechanisms of plasmonic enhancement associated with the nanoshells. Three types of GS-NS cores with intense absorptions centered roughly at 500, 700, and 900 nm were used as seeds for preparing GS-NS@ZIS core-shell structures via a microwave-assisted hydrothermal reaction, yielding core-shell particles with composite diameters of ∼200 nm. Notably, an interlayer of dielectric silica (SiO2) between the GS-NSs and the ZIS photocatalyst provided another parameter to enhance the production of hydrogen and to distinguish the charge-transfer mechanisms. In particular, the direct transfer of hot electrons from the GS-NSs to the ZIS photocatalyst was blocked by this layer. Of the 10 particle samples examined in this study, the greatest hydrogen gas evolution rate was observed for GS-NSs having a SiO2 interlayer thickness of ∼17 nm and an SPR absorption centered at ∼700 nm, yielding a rate 2.6 times higher than that of the ZIS without GS-NSs. The apparent quantum efficiencies for these core-shell particles were recorded and compared to the absorption spectra. Analyses of the charge-transfer mechanisms were evaluated and are discussed based on the experimental findings. PMID:26973998

  7. Modern plasmonics

    CERN Document Server

    Maradudin, Alexei A; Barnes, William L

    2014-01-01

    Plasmonics is entering the curriculum of many universities, either as a stand alone subject, or as part of some course or courses. Nanotechnology institutes have been, and are being, established in universities, in which plasmonics is a significant topic of research. Modern Plasmonics book offers a comprehensive presentation of the properties of surface plasmon polaritons, in systems of different structures and various natures, e.g. active, nonlinear, graded, theoretical/computational and experimental techniques for studying them, and their use in a variety of applications. Contains materia

  8. Discontinuous variation of the surface plasmon linewidth of small sodium nanoparticles with electron temperatures

    Science.gov (United States)

    Wang, Guozhong; Zheng, Yizhuang; Zi, Jian

    2015-05-01

    We found a novel behavior of the surface plasmon linewidth of small sodium nanoparticles, which monotonically decreases with the electron temperature and bears a sudden drop or rise at high electron temperatures. Our calculation is based on the model constructed by splitting the total Hamiltonian of all valence electrons of a metallic nanoparticle into two sub-Hamiltonians and the coupling between them. This novel behavior of the surface plasma resonance linewidth can be verified by pump-probe femtosecond spectroscopy experiments and is able to take place for metallic particles with sizes less than few nanometers. In addition, we propose that it is the size uncertainty of small nanoparticles that yields the intrinsic linewidth of the surface plasmon resonance, which is supported by experimental and theoretical results of nanoparticles Na8 and Na20.

  9. Surface plasmon resonance study of the actin-myosin sarcomeric complex and tubulin dimers

    CERN Document Server

    Schüssler, H A; Kolomenskij, A A; Nanopoulos, Dimitri V; Schuessler, Hans A.; Mershin, Andreas; Kolomenskii, Alexander A.

    2003-01-01

    Biosensors based on the principle of surface plasmon resonance (SPR) detection were used to measure biomolecular interactions in sarcomeres and changes of the dielectric constant of tubulin samples with varying concentration. At SPR, photons of laser light efficiently excite surface plasmons propagating along a metal (gold) film. This resonance manifests itself as a sharp minimum in the reflection of the incident laser light and occurs at a characteristic angle. The dependence of the SPR angle on the dielectric permittivity of the sample medium adjacent to the gold film allows the monitoring of molecular interactions at the surface. We present results of measurements of cross-bridge attachment/detachment within intact mouse heart muscle sarcomeres and measurements on bovine tubulin molecules pertinent to cytoskeletal signal transduction models.

  10. Surface scattering contribution to the plasmon width in embedded Ag nanospheres

    CERN Document Server

    Monreal, R Carmina; Antosiewicz, Tomasz J

    2014-01-01

    Nanometer-sized metal particles exhibit broadening of the localized surface plasmon resonance (LSPR) in comparison to its value predicted by the classical Mie theory. Using our model for the LSPR dependence on non-local surface screening and size quantization, we quantitatively relate the observed plasmon width to the nanoparticle radius $R$ and the permittivity of the surrounding medium $\\epsilon_m$. For Ag nanospheres larger than 8 nm only the non-local dynamical effects occurring at the surface are important and, up to a diameter of 25 nm, dominate over the bulk scattering mechanism. Qualitatively, the LSPR width is inversely proportional to the particle size and has a nonmonotonic dependence on the permittivity of the host medium, exhibiting for Ag a maximum at $\\epsilon_m\\approx2.5$. Our calculated LSPR width is compared with recent experimental data.

  11. Large range localized surface plasmon resonance of Ag nanoparticles films dependent of surface morphology

    Science.gov (United States)

    Yan, Lijuan; Yan, Yaning; Xu, Leilei; Ma, Rongrong; Jiang, Fengxian; Xu, Xiaohong

    2016-03-01

    Noble metal nanoparticles (NPs) have received enormous attention since it displays uniquely optical and electronic properties. In this work, we study localized surface plasmon resonances (LSPR) at different thicknesses and substrate temperatures of Ag NPs films grown by Laser Molecule Beam Epitaxy (LMBE). The LSPR wavelength can be largely tuned in the visible light range of 470 nm to 770 nm. The surface morphology is characterized by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The average size of Ag NPs increased with the thickness increased which leading to the LSPR band broaden and wavelength red-shift. As the substrate temperature is increased from RT to 200 °C, the Ag NPs size distribution becomes homogeneous and particle shape changes from oblate spheroid to sphere, the LSPR band displays sharp, blue-shift and significantly symmetric. Obviously, the morphology of Ag NPs films is important for tuning absorption position. We obtain the cubic crystal structure of Ag NPs with a (1 1 1) main diffraction peak from the X-ray diffraction (XRD) spectra. The high resolution TEM (HR-TEM) and selected area electron diffraction (SAED) prove that Ag NPs is polycrystal structure. The Ag NPs films with large range absorption in visible light region can composite with semiconductor to apply in various optical or photoelectric devices.

  12. Spoof surface plasmon modes on doubly corrugated metal surfaces at terahertz frequencies

    Science.gov (United States)

    Liu, Yong-Qiang; Kong, Ling-Bao; Du, Chao-Hai; Liu, Pu-Kun

    2016-06-01

    Spoof surface plasmons (SSPs) have many potential applications such as imaging and sensing, communications, innovative leaky wave antenna and many other passive devices in the microwave and terahertz (THz) spectrum. The extraordinary properties of SSPs (e.g. extremely strong near field, enhanced beam–wave interaction) make them especially attractive for developing novel THz electronic sources. SSP modes on doubly corrugated metal surfaces are investigated and analyzed both theoretically and numerically in this paper. The analytical SSP dispersion expressions of symmetric and anti-symmetric modes are obtained with a simplified modal field expansion method; the results are also verified by the finite integration method. Additionally, the propagation losses are also considered for real copper surfaces with a limited constant conductivity in a THz regime. It is shown that the asymptotical frequency of the symmetric mode at the Brillouin boundary decreases along with the decreased gap size between these two corrugated metal surfaces while the asymptotical frequency increases for the anti-symmetric mode. The anti-symmetric mode demonstrates larger propagation losses than the symmetric mode. Further, the losses for both symmetric and anti-symmetric modes decrease when this gap size enlarges. By decreasing groove depth, the asymptotical frequency increases for both the symmetric and the anti-symmetric mode, but the variation of propagation losses is more complicated. Propagation losses increase along with the increased period. Our studies on the dispersion characteristics and propagation losses of SSP modes on this doubly corrugated metallic structure with various parameters is instructive for numerous applications such as waveguides, circuitry systems with high integration, filters and powerful electronic sources in the THz regime.

  13. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry.

    Science.gov (United States)

    Brown, Ana M; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A; Atwater, Harry A

    2016-01-26

    The behavior of metals across a broad frequency range from microwave to ultraviolet frequencies is of interest in plasmonics, nanophotonics, and metamaterials. Depending on the frequency, losses of collective excitations in metals can be predominantly classical resistive effects or Landau damping. In this context, we present first-principles calculations that capture all of the significant microscopic mechanisms underlying surface plasmon decay and predict the initial excited carrier distributions so generated. Specifically, we include ab initio predictions of phonon-assisted optical excitations in metals, which are critical to bridging the frequency range between resistive losses at low frequencies and direct interband transitions at high frequencies. In the commonly used plasmonic materials, gold, silver, copper, and aluminum, we find that resistive losses compete with phonon-assisted carrier generation below the interband threshold, but hot carrier generation via direct transitions dominates above threshold. Finally, we predict energy-dependent lifetimes and mean free paths of hot carriers, accounting for electron-electron and electron-phonon scattering, to provide insight toward transport of plasmonically generated carriers at the nanoscale. PMID:26654729

  14. Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters.

    Science.gov (United States)

    Malola, Sami; Lehtovaara, Lauri; Enkovaara, Jussi; Häkkinen, Hannu

    2013-11-26

    Gold nanoclusters protected by a thiolate monolayer (MPC) are widely studied for their potential applications in site-specific bioconjugate labeling, sensing, drug delivery, and molecular electronics. Several MPCs with 1-2 nm metal cores are currently known to have a well-defined molecular structure, and they serve as an important link between molecularly dispersed gold and colloidal gold to understand the size-dependent electronic and optical properties. Here, we show by using an ab initio method together with atomistic models for experimentally observed thiolate-stabilized gold clusters how collective electronic excitations change when the gold core of the MPC grows from 1.5 to 2.0 nm. A strong localized surface plasmon resonance (LSPR) develops at 540 nm (2.3 eV) in a cluster with a 2.0 nm metal core. The protecting molecular layer enhances the LSPR, while in a smaller cluster with 1.5 nm gold core, the plasmon-like resonance at 540 nm is confined in the metal core by the molecular layer. Our results demonstrate a threshold size for the emergence of LSPR in these systems and help to develop understanding of the effect of the molecular overlayer on plasmonic properties of MPCs enabling engineering of their properties for plasmonic applications. PMID:24107127

  15. Effects of the rotation angle on surface plasmon coupling of nanoprisms.

    Science.gov (United States)

    Chien, Miao-Hsuan; Nien, Li-Wei; Chao, Bo-Kai; Li, Jia-Han; Hsueh, Chun-Hway

    2016-02-14

    We studied the effects of relative orientation of bowtie nanostructures on the plasmon resonance both experimentally and theoretically in this work. Specifically, we fabricated gold bowtie nanoantennas with rotated nanoprisms, measured the near-field and the far-field resonance behaviors using Raman spectroscopy and scattering microspectroscopy, and simulated the effects of the rotation angle on the localized surface plasmonic resonance using finite-difference time-domain simulations. In addition to the widely-discussed dipolar resonance in regular bowtie nanostructures, defined as tip-mode resonance in the present study, the excitations of edge-mode resonance were discovered under certain rotation angles of nanoprisms. Because of the resonances of different modes at different wavelengths, two different incident laser sources were used to measure the Raman spectra to provide evidence for the evolution of different resonance modes. Also, both the tip-mode and edge-mode resonances were verified by the simulated charge density distribution and their trends were discussed. Based on the discovered trend, a plasmon protractor was created with a near-exponential decay relationship between the relative resonance wavelength shift and cosine of the rotation angle. A plasmon hybridization model was also proposed for rotated bowties to explain the coupling between nanoprisms during rotation. PMID:26809737

  16. Surface plasmon resonance induced excellent solar control for VO₂@SiO₂ nanorods-based thermochromic foils.

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Li, Yamei; Ji, Shidong; Gao, Yanfeng; Jin, Ping

    2013-10-01

    Transition-metal oxide nanocrystals are novel candidates for being used as the hosts of localized surface plasmon resonance because they exhibit fascinating properties arising from the unique characteristics of their outer-d valence electrons. VO₂(M) nanocrystal is well-known due to its reversible metal-insulator transition (MIT) temperature near room temperature (∼68 °C) corresponding to the appearance/disappearance of localized surface plasmon resonance across the MIT. In this study, a microemulsion-based method was introduced to synthesize VO₂(M)@SiO₂ nanoparticles which were applied to prepare VO₂-based thermochromic foils owing to a strong and tunable surface plasmon resonance in the metallic state. The optical transmittance spectra demonstrates that the employment of surface plasmon resonance in VO₂-based thermochromic foils greatly improves their solar regulating efficiency up to 18.54%, and provides an unprecedented insight in optimizing VO₂-based thermochromic windows for solar control. PMID:23934483

  17. Spin-patterned plasmonics: towards optical access to topological-insulator surface states.

    Science.gov (United States)

    Spektor, Grisha; David, Asaf; Bartal, Guy; Orenstein, Meir; Hayat, Alex

    2015-12-14

    Topological insulators (TI) are new phases of matter with topologically protected surface states (SS) possessing novel physical properties such as spin-momentum locking. Coupling optical angular momentum to the SS is of interest for both fundamental understanding and applications in future spintronic devices. However, due to the nanoscale thickness of the surface states, the light matter interaction is dominated by the bulk. Here we propose and experimentally demonstrate a plasmonic cavity enabling both nanoscale light confinement and control of surface plasmon-polariton (SPP) spin angular momentum (AM)--towards coupling to topological-insulator SS. The resulting SPP field components within the cavity are arranged in a chess-board-like pattern. Each chess-board square exhibits approximately a uniform circular polarization (spin AM) of the local in-plane field interleaved by out-of-plane field vortices (orbital AM). As the first step, we demonstrate the predicted pattern experimentally by near-field measurements on a gold-air interface, with excellent agreement to our theory. Our results pave the way towards efficient optical access to topological-insulator surface states using plasmonics. PMID:26699065

  18. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers

    Science.gov (United States)

    Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang

    2016-05-01

    Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy.

  19. Interference enhancement and modulation introduced by surface plasmon polaritons in a concentric-ring structure

    Science.gov (United States)

    Lai, Senfeng; Wu, Wen; Peng, Li; Gu, Wenhua

    2015-10-01

    This article studied the interference enhancement and modulation introduced by surface plasmon polaritons (SPPs) in a double-concentric-ring structure. Young's double-slit interference experiment is a classic experiment in the history of physics, and has many modifications with deep impacts in many areas including physics, optics, and electromagnetics. In this work, to use the classic bull's eye structure to produce the surface plasmon polariton effect, a double-concentricring- hole structure was used instead of the double-slit structure to generate optical interference, and the bull's eye structure was applied in the surroundings to generate surface plasmonic wave for modulation of the interference. For structure details, a concentric double-ring-hole was etched in a silver film, with a series of periodic concentric-ringshaped shallow grooves etched in both the upper and bottom surfaces of the silver films. Simulation results showed that the interference of the double-ring-hole could be modulated by SPPs, generating new transmission spectra with desired peak positions and intensities. The transmission peak intensity could be enhanced by 2 to 6 times. The proposed structure can be used as a powerful and convenient tool to adjust the transmission spectra, which can have promising applications in the design and implementation of optical devices for filtering and sensing, especially in the sub-wavelength structure size range.

  20. Localized surface plasmon enhanced photothermal conversion in Bi2Se3 topological insulator nanoflowers.

    Science.gov (United States)

    Guozhi, Jia; Peng, Wang; Yanbang, Zhang; Kai, Chang

    2016-01-01

    Localized surface plasmons (LSP), the confined collective excitations of electrons in noble metal and doped semiconductor nanostructures, enhance greatly local electric field near the surface of the nanostructures and result in strong optical response. LSPs of ordinary massive electrons have been investigated for a long time and were used as basic ingredient of plasmonics and metamaterials. LSPs of massless Dirac electrons, which could result in novel tunable plasmonic metamaterials in the terahertz and infrared frequency regime, are relatively unexplored. Here we report for first time the observation of LSPs in Bi2Se3 topological insulator hierarchical nanoflowers, which are consisted of a large number of Bi2Se3 nanocrystals. The existence of LSPs can be demonstrated by surface enhanced Raman scattering and absorbance spectra ranging from ultraviolet to near-infrared. LSPs produce an enhanced photothermal effect stimulated by near-infrared laser. The excellent photothermal conversion effect can be ascribed to the existence of topological surface states, and provides us a new way for practical application of topological insulators in nanoscale heat source and cancer therapy. PMID:27172827

  1. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO{sub 2} were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO{sub 2}, large photoelectrocatalytic effect for the reduction of CO{sub 2} was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO{sub 2} in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  2. Helicity Dependent Directional Surface Plasmon Polariton Excitation Using A Metasurface with Interfacial Phase Discontinuity

    CERN Document Server

    Huang, Lingling; Bai, Benfeng; Tan, Qiaofeng; Jin, Guofan; Zentgraf, Thomas; Zhang, Shuang; 10.1038/lsa.2013.26

    2013-01-01

    Surface plasmon polaritons (SPPs) have been widely exploited in various scientific communities, ranging from physics, chemistry to biology, due to the strong confinement of light to the metal surface. For many applications it is important that the free space photon can be coupled to SPPs in a controllable manner. In this Letter, we apply the concept of interfacial phase discontinuity for circularly polarizations on a metasurface to the design of a novel type of polarization dependent SPP unidirectional excitation at normal incidence. Selective unidirectional excitation of SPPs along opposite directions is experimentally demonstrated at optical frequencies by simply switching the helicity of the incident light. This approach, in conjunction with dynamic polarization modulation techniques, opens gateway towards integrated plasmonic circuits with electrically reconfigurable functionalities.

  3. Localized Surface Plasmon-Enhanced Electroluminescence in OLEDs by Self-Assembly Ag Nanoparticle Film

    Science.gov (United States)

    He, Xiaoxiao; Wang, Wenjun; Li, Shuhong; Wang, Qingru; Zheng, Wanquan; Shi, Qiang; Liu, Yunlong

    2015-12-01

    We fabricated Ag nanoparticle (NP) film in organic light emission diodes (OLEDs), and a 23 times increase in electroluminescence (EL) at 518 nm was probed by time-resolved EL measurement. The luminance and relative external quantum efficiency (REQE) were increased by 5.4 and 3.7 times, respectively. There comes a new energy transport way that localized surface plasmons (LSPs) would absorb energy that corresponds to the electron-hole pair before recombination, promoting the formation of electron-hole pair and exciting local surface plasmon resonance (LSPR). The extended lifetime of Alq3 indicates the existence of strong interaction between LSPR and exciton, which decreases the nonradiative decay rate of OLEDs.

  4. Narrow-Line Single-Molecule Transducer between Electronic Circuits and Surface Plasmons

    Science.gov (United States)

    Chong, Michael C.; Reecht, Gaël; Bulou, Hervé; Boeglin, Alex; Scheurer, Fabrice; Mathevet, Fabrice; Schull, Guillaume

    2016-01-01

    A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultranarrow-line emission at an energy of ≈1.5 eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emitting unit from the surface. The recorded spectra also reveal several vibronic peaks of low intensities that can be viewed as a fingerprint of the emitter. Surface plasmons localized at the tip-sample interface are shown to play a major role in both excitation and emission of the molecular excitons.

  5. Molecular resonant dissociation of surface-adsorbed molecules by plasmonic nanoscissors

    Science.gov (United States)

    Zhang, Zhenglong; Sheng, Shaoxiang; Zheng, Hairong; Xu, Hongxing; Sun, Mengtao

    2014-04-01

    The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis, photosynthesis and the degradation of plastic, it is hard to break individual molecular bonds for those molecules adsorbed on the surface because of the weak light-absorption in molecules and the redistribution of the resulting vibrational energy both inside the molecule and to its surrounding environment. Here we show how to overcome these obstacles with a plasmonic hot-electron mediated process and demonstrate a new method that allows the sensitive control of resonant dissociation of surface-adsorbed molecules by `plasmonic' scissors. To that end, we used a high-vacuum tip-enhanced Raman spectroscopy (HV-TERS) setup to dissociate resonantly excited NC2H6 fragments from Malachite green. The surface plasmons (SPs) excited at the sharp metal tip not only enhance the local electric field to harvest the light incident from the laser, but crucially supply `hot electrons' whose energy can be transferred to individual bonds. These processes are resonant Raman, which result in some active chemical bonds and then weaken these bonds, followed by dumping in lots of indiscriminant energy and breaking the weakest bond. The method allows for sensitive control of both the rate and probability of dissociation through their dependence on the density of hot electrons, which can be manipulated by tuning the laser intensity or tunneling current/bias voltage in the HV-TERS setup, respectively. The concepts of plasmonic scissors open up new versatile avenues for the deep understanding of in situ surface-catalyzed chemistry.The ability to break individual bonds or specific modes in chemical reactions is an ardently sought goal by chemists and physicists. While photochemistry based methodologies are very successful in controlling e.g. photocatalysis

  6. The theoretic analysis of maskless surface plasmon resonant interference lithography by prism coupling

    International Nuclear Information System (INIS)

    The use of an attenuated total reflection-coupling mode of prism coated with metal film to excite the interference of the surface plasmon polaritons (SPPs) was proposed for periodic patterning with a resolution of subwavelength scale. High intensity of electric field can be obtained because of the coupling between SPPs and evanescence under a resonance condition, which can reduce exposure time and improve contrast. In this paper, several critical parameters for maskless surface plasmon resonant lithography are described, and the preliminary simulation based on a finite difference time-domain technique agrees well with the theoretical analysis, which demonstrates this scheme and provides the theoretical basis for further experiments. (classical areas of phenomenology)

  7. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Science.gov (United States)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P.

    2015-05-01

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  8. Localized surface plasmon and exciton interaction in silver-coated cadmium sulphide quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, P.; Rustagi, K. C.; Vasa, P.; Singh, B. P., E-mail: bhanuprs@gmail.com [Department of Physics, Indian Institute of Technology Bombay, Mumbai- 400076 (India)

    2015-05-15

    Localized surface plasmon and exciton coupling has been investigated on colloidal solutions of silver-coated CdS nanoparticles (NPs), synthesized by gamma irradiation. Two broad photoluminescence (PL) bands (blue/red) corresponding to band to band and defect state transitions have been observed for the bare and coated samples. In case of bare CdS NPs, the intensity of the red PL peak is about ten times higher than the blue PL peak intensity. However, on coating the CdS NPs with silver, the peak intensity of the blue PL band gets enhanced and becomes equal to that of the red PL band. High-resolution transmission electron microscopic (HRTEM) images adequately demonstrate size distribution of these metal/semiconductor nanocomposites. UV-Vis absorption studies show quantum confinement effect in these semiconductor quantum dot (SQD) systems. Absorption spectrum of silver-coated SQDs shows signature of surface plasmon-exciton coupling which has been theoretically verified.

  9. Design optimization of highly sensitive LSPR enhanced surface plasmon resonance biosensors with nanoholes

    Institute of Scientific and Technical Information of China (English)

    Bin Wu; Qingkang Wang

    2008-01-01

    For breaking through the sensitivity limitation of conventional surface plasmon resonance (SPR) biosensors, novel highly sensitive SPR biosensors with Au nanoparticles and nanogratings enhancement have been proposed recently.But in practice, these structures have obvious disadvantages.In this study, a nanohole based sensitivity enhancement SPR biosensor is proposed and the influence of different structural parameters on the performance is investigated by using rigorous coupled wave analysis (RCWA).Electromagnetic field distributions around the nanohole are also given out to directly explain the performance difference for various structural parameters.The results indicate that significant sensitivity increase is associated with localized surface plasmons (LSPs) excitation mediated by nanoholes.Except to outcome the weakness of other LSP based biosensors, larger resonance angle shift, reflectance amplitude, and sharper SPR curves' width are obtained simultaneously under optimized structural parameters.

  10. Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability

    Science.gov (United States)

    Gollub, Jonah N.; Smith, David R.; Vier, David C.; Perram, Tim; Mock, Jack J.

    2005-05-01

    We study the surface plasmons (SPs) that exist at the interface between air and a metamaterial constructed of split ring resonators (SRRs). The SRR metamaterial possesses a frequency band in the microwave regime (12.5-14GHz) over which the permeability is negative. We apply an attenuated total reflection technique in the Otto configuration in which a beam of microwaves is reflected from a higher dielectric (polycarbonate) prism to excite and probe the surface plasmons. The resulting evanescent microwave fields on the transmission side of the prism couple to SPs on the metamaterial and are indicated by a dip in the reflected power. The experimental data are compared with analytic solutions in which the metamaterial slab is approximated as an infinite half space, for which the frequency-dependent permeability (and permittivity) is derived from finite-element simulations on an SRR structure with the same parameters as those measured.

  11. Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons.

    Science.gov (United States)

    Eizner, Elad; Avayu, Ori; Ditcovski, Ran; Ellenbogen, Tal

    2015-09-01

    We study the optical dynamics in complexes of aluminum nanoantennas coated with molecular J-aggregates and find that they provide an excellent platform for the formation of hybrid exciton-localized surface plasmons. Giant Rabi splitting of 0.4 eV, which corresponds to ∼10 fs energy transfer cycle, is observed in spectral transmittance. We show that the nanoantennas can be used to manipulate the polarization of hybrid states and to confine their mode volumes. In addition, we observe enhancement of the photoluminescence due to enhanced absorption and increase in the local density of states at the exciton-localized surface plasmon energies. With recent emerging technological applications based on strongly coupled light-matter states, this study opens new possibilities to explore and utilize the unique properties of hybrid states over all of the visible region down to ultraviolet frequencies in nanoscale, technologically compatible, integrated platforms based on aluminum. PMID:26258257

  12. Detection of biomolecules and bioconjugates by monitoring rotated grating-coupled surface plasmon resonance

    CERN Document Server

    Szalai, Aniko; Somogyi, Aniko; Szenes, Andras; Banhelyi, Balazs; Csapo, Edit; Dekany, Imre; Csendes, Tibor; Csete, Maria

    2016-01-01

    Plasmonic biosensing chips were prepared by fabricating wavelength-scaled dielectric-metal interfacial gratings on thin polycarbonate films covered bimetal layers via two-beam interference laser lithography. Lysozyme (LYZ) biomolecules and gold nanoparticle (AuNP-LYZ) bioconjugates with 1:5 mass ratio were seeded onto the biochip surfaces. Surface plasmon resonance spectroscopy was performed before and after biomolecule seeding in a modified Kretschmann-arrangement by varying the azimuthal and polar angles to optimize the conditions for rotated grating-coupling. The shift of secondary and primary resonance peaks originating from rotated grating-coupling phenomenon was monitored to detect the biomolecule and bioconjugate adherence. Numerical calculations were performed to reproduce the measured reflectance spectra and the resonance peak shifts caused by different biocoverings. Comparison of measurements and calculations proved that monitoring the narrower secondary peaks under optimal rotated-grating coupling ...

  13. Analysis of a highly birefringent asymmetric photonic crystal fibre based on a surface plasmon resonance sensor

    Science.gov (United States)

    Liu, Chao; Wang, Famei; Zheng, Shijie; Sun, Tao; Lv, Jingwei; Liu, Qiang; Yang, Lin; Mu, Haiwei; Chu, Paul K.

    2016-07-01

    A highly birefringent photonic crystal fibre is proposed and characterized based on a surface plasmon resonance sensor. The birefringence of the sensor is numerically analyzed by the finite-element method. In the numerical simulation, the resonance wavelength can be directly positioned at this birefringence abrupt change point and the depth of the abrupt change of birefringence reflects the intensity of excited surface plasmon. Consequently, the novel approach can accurately locate the resonance peak of the system without analyzing the loss spectrum. Simulated average sensitivity is as high as 1131 nm/RIU, corresponding to a resolution of 1 × 10-4 RIU in this sensor. Therefore, results obtained via the approach not only show polarization independence and less noble metal consumption, but also reveal better performance in terms of accuracy and computation efficiency.

  14. Narrow-Line Single-Molecule Transducer between Electronic Circuits and Surface Plasmons.

    Science.gov (United States)

    Chong, Michael C; Reecht, Gaël; Bulou, Hervé; Boeglin, Alex; Scheurer, Fabrice; Mathevet, Fabrice; Schull, Guillaume

    2016-01-22

    A molecular wire containing an emitting molecular center is controllably suspended between the plasmonic electrodes of a cryogenic scanning tunneling microscope. Passing current through this circuit generates an ultranarrow-line emission at an energy of ≈1.5  eV which is assigned to the fluorescence of the molecular center. Control over the linewidth is obtained by progressively detaching the emitting unit from the surface. The recorded spectra also reveal several vibronic peaks of low intensities that can be viewed as a fingerprint of the emitter. Surface plasmons localized at the tip-sample interface are shown to play a major role in both excitation and emission of the molecular excitons. PMID:26849607

  15. Variable Optical Attenuator Based on Long-Range Surface Plasmon Polariton Multimode Interference Coupler

    Directory of Open Access Journals (Sweden)

    Xiaoqiang Sun

    2014-01-01

    Full Text Available The fabrication and characterization of a thermal variable optical attenuator based on long-range surface plasmon polariton (LRSPP waveguide with multimode interference architecture were investigated. The surface morphology and waveguide configuration of Au stripe were studied by atomic force microscopy. The fluctuation of refractive index of poly(methyl-methacrylate-glycidyl-methacrylate polymer cladding was confirmed to be less than 3×10-4 within 8 h curing at 120°C. The end-fire excitation of LRSPP mode guiding at 1550 nm along Au stripe indicated that the extinction ratio of attenuator was about 12 dB at a driving power of 69 mW. The measured optical rise time and fall time are 0.57 and 0.87 ms, respectively. These favorable properties promise potentials of this plasmonic device in the application of optical interconnection.

  16. Surface plasmon polaritons in a composite system of porous silicon and gold

    International Nuclear Information System (INIS)

    A composite system of silicon quantum dots and gold particles with properties periodically changing along the surface (i.e., a system exhibiting the properties of a diffraction grating) is obtained by a one-step metal-assisted chemical etching. The spectral and angular dependences of the photoresponse for the composite system on single-crystal silicon are studied. The photoresponse peaks were observed, which behavior (the dependence on the parameters of the diffraction grating, wavelength and incidence angles of light) is attributed to the excitation of plasmon-polariton modes at the surface of the composite system with the diffraction grating. At the same time, the obtained values of the wave vectors for these modes are smaller than those calculated for plasmon polaritons excited at the interface between air and metal (gold) diffraction grating

  17. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Science.gov (United States)

    Tiwari, Kunal; Sharma, Suresh C.; Hozhabri, Nader

    2016-04-01

    Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = /∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  18. Hafnium dioxide as a dielectric for highly-sensitive waveguide-coupled surface plasmon resonance sensors

    Directory of Open Access Journals (Sweden)

    Kunal Tiwari

    2016-04-01

    Full Text Available Hafnium dioxide has been recognized as an excellent dielectric for microelectronics. However, its usefulness for the surface plasmon based sensors has not yet been tested. Here we investigate its usefulness for waveguide-coupled bi-metallic surface plasmon resonance sensors. Several Ag/HfO2/Au multilayer structure sensors were fabricated and evaluated by optical measurements and computer simulations. The resulting data establish correlations between the growth parameters and sensor performance. The sensor sensitivity to refractive index of analytes is determined to be S n = ∂ θ SPR ∂ n ≥ 4 7 0 . The sensitivity data are supported by simulations, which also predict 314 nm for the evanescent field decay length in air.

  19. Observation of a nonradiative flat band for spoof surface plasmons in a metallic Lieb lattice

    CERN Document Server

    Kajiwara, Sho; Nakata, Yosuke; Nakanishi, Toshihiro; Kitano, Masao

    2016-01-01

    We demonstrate a nonradiative flat band for spoof surface plasmon polaritons bounded on a structured surface with Lieb lattice symmetry in the terahertz regime. First, we theoretically derive the dispersion relation of spoof plasmons in a metallic Lieb lattice based on the electrical circuit model. We obtain three bands, one of which is independent of wave vector. To confirm the theoretical result, we numerically and experimentally observe the flat band in transmission and attenuated total reflection configurations. We reveal that the quality factor of the nonradiative flat-band mode decoupled from the propagating wave is higher than that of the radiative flat-band mode. This indicates that the nonradiative flat-band mode is three-dimensionally confined in the lattice.

  20. Fiber Optic Surface Plasmon Resonance-Based Biosensor Technique: Fabrication, Advancement, and Application.

    Science.gov (United States)

    Liang, Gaoling; Luo, Zewei; Liu, Kunping; Wang, Yimin; Dai, Jianxiong; Duan, Yixiang

    2016-05-01

    Fiber optic-based biosensors with surface plasmon resonance (SPR) technology are advanced label-free optical biosensing methods. They have brought tremendous progress in the sensing of various chemical and biological species. This review summarizes four sensing configurations (prism, grating, waveguide, and fiber optic) with two ways, attenuated total reflection (ATR) and diffraction, to excite the surface plasmons. Meanwhile, the designs of different probes (U-bent, tapered, and other probes) are also described. Finally, four major types of biosensors, immunosensor, DNA biosensor, enzyme biosensor, and living cell biosensor, are discussed in detail for their sensing principles and applications. Future prospects of fiber optic-based SPR sensor technology are discussed. PMID:27119268