WorldWideScience

Sample records for antibiotics enter bacteria

  1. Incidence and transferability of antibiotic resistance in the enteric bacteria isolated from hospital wastewater

    Directory of Open Access Journals (Sweden)

    Mohammad Zubair Alam

    2013-09-01

    Full Text Available This study reports the occurrence of antibiotic resistance and production of β-lactamases including extended spectrum beta-lactamases (ESβL in enteric bacteria isolated from hospital wastewater. Among sixty-nine isolates, tested for antibiotic sensitivity, 73.9% strains were resistant to ampicillin followed by nalidixic acid (72.5%, penicillin (63.8%, co-trimoxazole (55.1%, norfloxacin (53.6%, methicillin (52.7%, cefuroxime (39.1%, cefotaxime (23.2% and cefixime (20.3%. Resistance to streptomycin, chloramphenicol, nitrofurantoin, tetracycline, and doxycycline was recorded in less than 13% of the strains. The minimum inhibitory concentration (MIC showed a high level of resistance (800-1600 µg/mL to one or more antibiotics. Sixty three (91% isolates produced β-lactamases as determined by rapid iodometric test. Multiple antibiotic resistances were noted in both among ESβL and non-ESβL producers. The β-lactamases hydrolyzed multiple substrates including penicillin (78.8% isolates, ampicillin (62.3%, cefodroxil (52.2%, cefotoxime (21.7% and cefuroxime (18.8%. Fifteen isolates producing ESβLs were found multidrug resistant. Four ESβL producing isolates could transfer their R-plasmid to the recipient strain E. coli K-12 with conjugation frequency ranging from 7.0 x 10-3 to 8.8 x 10-4. The findings indicated that ESβL producing enteric bacteria are common in the waste water. Such isolates may disseminate the multiple antibiotic resistance traits among bacterial community through genetic exchange mechanisms and thus requires immediate attention.

  2. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade.

    Science.gov (United States)

    Casey, Christine L; Hernandez, Sonia M; Yabsley, Michael J; Smith, Katherine F; Sanchez, Susan

    2015-02-01

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic

  3. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade

    International Nuclear Information System (INIS)

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic

  4. The carriage of antibiotic resistance by enteric bacteria from imported tokay geckos (Gekko gecko) destined for the pet trade

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Christine L. [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Hernandez, Sonia M., E-mail: shernz@uga.edu [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 (United States); Yabsley, Michael J. [Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States); Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602 (United States); Smith, Katherine F. [Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 (United States); Sanchez, Susan [The Athens Veterinary Diagnostic Laboratory, Athens, GA 30602 (United States); The Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602 (United States)

    2015-02-01

    The emergence of antibiotic-resistant bacteria is a growing public health concern and has serious implications for both human and veterinary medicine. The nature of the global economy encourages the movement of humans, livestock, produce, and wildlife, as well as their potentially antibiotic-resistant bacteria, across international borders. Humans and livestock can be reservoirs for antibiotic-resistant bacteria; however, little is known about the prevalence of antibiotic-resistant bacteria harbored by wildlife and, to our knowledge, limited data has been reported for wild-caught reptiles that were specifically collected for the pet trade. In the current study, we examined the antibiotic resistance of lactose-positive Enterobacteriaceae isolates from wild-caught Tokay geckos (Gekko gecko) imported from Indonesia for use in the pet trade. In addition, we proposed that the conditions under which wild animals are captured, transported, and handled might affect the shedding or fecal prevalence of antibiotic resistance. In particular we were interested in the effects of density; to address this, we experimentally modified densities of geckos after import and documented changes in antibiotic resistance patterns. The commensal enteric bacteria from Tokay geckos (G. gecko) imported for the pet trade displayed resistance against some antibiotics including: ampicillin, amoxicillin/clavulanic acid, cefoxitin, chloramphenicol, kanamycin and tetracycline. There was no significant difference in the prevalence of antibiotic-resistant bacteria after experimentally mimicking potentially stressful transportation conditions reptiles experience prior to purchase. There were, however, some interesting trends observed when comparing Tokay geckos housed individually and those housed in groups. Understanding the prevalence of antibiotic resistant commensal enteric flora from common pet reptiles is paramount because of the potential for humans exposed to these animals to acquire antibiotic

  5. How beta-lactam antibiotics enter bacteria: a dialogue with the porins.

    Directory of Open Access Journals (Sweden)

    Chloë E James

    Full Text Available BACKGROUND: Multi-drug resistant (MDR infections have become a major concern in hospitals worldwide. This study investigates membrane translocation, which is the first step required for drug action on internal bacterial targets. beta-lactams, a major antibiotic class, use porins to pass through the outer membrane barrier of Gram-negative bacteria. Clinical reports have linked the MDR phenotype to altered membrane permeability including porin modification and efflux pump expression. METHODOLOGY/PRINCIPAL FINDINGS: Here influx of beta-lactams through the major Enterobacter aerogenes porin Omp36 is characterized. Conductance measurements through a single Omp36 trimer reconstituted into a planar lipid bilayer allowed us to count the passage of single beta-lactam molecules. Statistical analysis of each transport event yielded the kinetic parameters of antibiotic travel through Omp36 and distinguishable translocation properties of beta-lactams were quantified for ertapenem and cefepime. Expression of Omp36 in an otherwise porin-null bacterial strain is shown to confer increases in the killing rate of these antibiotics and in the corresponding bacterial susceptibility. CONCLUSIONS/SIGNIFICANCE: We propose the idea of a molecular "passport" that allows rapid transport of substrates through porins. Deciphering antibiotic translocation provides new insights for the design of novel drugs that may be highly effective at passing through the porin constriction zone. Such data may hold the key for the next generation of antibiotics capable of rapid intracellular accumulation to circumvent the further development MDR infections.

  6. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  7. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  8. Levels and treatment options for enteric and antibiotic resistant bacteria in sewage from Sisimiut, Greenland

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Gunnarsdottir, Ragnhildur; Andersen, Henrik Rasmus;

    2013-01-01

    marine environment negatively. Both peracetic acid treatment and UV-C radiation shows potential for disinfection of the wastewater after removal of solids >60μm. E-coli was most susceptible to peracetic acid treatment, while a maximum possible reduction of enterococci and coliforms of 2-3 size orders...... was observed. The highest reduction observed by UV-C treatment was 4 size orders for enterococci, but no maximum level was observed. UV-treatment may thus be a preferred disinfection method, in particular for a community with long transport distances to the nearest chemical supplier and access to hydropower......Sewage treatment in Arctic towns is inadequate. Sewage contains pathogenic microorganisms, parasites, antibiotic resistant bacteria, and toxic compounds. Discharging of untreated sewage can thus have a negative effect on people’s health and the aquatic environment in the receiving water bodies...

  9. Antibiotic resistance in probiotic bacteria

    Directory of Open Access Journals (Sweden)

    Miguel eGueimonde

    2013-07-01

    Full Text Available Probiotics are live microorganisms which when administered in adequate amounts confer a health benefit on the host. The main probiotic bacteria are strains belonging to the genera Lactobacillus and Bifidobacterium, although other representatives, such as Bacillus or Escherichia coli strains, have also been used. Lactobacillus and Bifidobacterium are two common inhabitants of the human intestinal microbiota. Also, some species are used in food fermentation processes as starters, or as adjunct cultures in the food industry. With some exceptions, antibiotic resistance in these beneficial microbes does not constitute a safety concern in itself, when mutations or intrinsic resistance mechanisms are responsible for the resistance phenotype. In fact, some probiotic strains with intrinsic antibiotic resistance could be useful for restoring the gut microbiota after antibiotic treatment. However, specific antibiotic resistance determinants carried on mobile genetic elements, such as tetracycline resistance genes, are often detected in the typical probiotic genera, and constitute a reservoir of resistance for potential food or gut pathogens, thus representing a serious safety issue.

  10. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India

    Directory of Open Access Journals (Sweden)

    Marothi Yogyata

    2010-07-01

    Full Text Available Abstract Background Concerns have been raised about the public health implications of the presence of antibiotic residues in the aquatic environment and their effect on the development of bacterial resistance. While there is information on antibiotic residue levels in hospital effluent from some other countries, information on antibiotic residue levels in effluent from Indian hospitals is not available. Also, concurrent studies on antibiotic prescription quantity in a hospital and antibiotic residue levels and resistant bacteria in the effluent of the same hospital are few. Therefore, we quantified antibiotic residues in waters associated with a hospital in India and assessed their association, if any, with quantities of antibiotic prescribed in the hospital and the susceptibility of Escherichia coli found in the hospital effluent. Methods This cross-sectional study was conducted in a teaching hospital outside the city of Ujjain in India. Seven antibiotics - amoxicillin, ceftriaxone, amikacin, ofloxacin, ciprofloxacin, norfloxacin and levofloxacin - were selected. Prescribed quantities were obtained from hospital records. The samples of the hospital associated water were analysed for the above mentioned antibiotics using well developed and validated liquid chromatography/tandem mass spectrometry technique after selectively isolating the analytes from the matrix using solid phase extraction. Escherichia coli isolates from these waters were tested for antibiotic susceptibility, by standard Kirby Bauer disc diffusion method using Clinical and Laboratory Standard Institute breakpoints. Results Ciprofloxacin was the highest prescribed antibiotic in the hospital and its residue levels in the hospital wastewater were also the highest. In samples of the municipal water supply and the groundwater, no antibiotics were detected. There was a positive correlation between the quantity of antibiotics prescribed in the hospital and antibiotic residue levels in

  11. Growth of bacteria in enteral feeding solutions.

    Science.gov (United States)

    Anderton, A

    1985-08-01

    Solutions of Clinifeed ISO, Triosorbon, Vivonex Standard (full- and half-strength) and Vivonex HN were experimentally contaminated with two strains each of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella aerogenes, Escherichia coli and Enterobacter cloacae at concentrations of 10(2)-10(3) organisms/ml. Samples were incubated at 4, 25 or 37 degrees C and viable counts were made at 0, 4, 8 and 24 h. No increase in numbers of any of the organisms was observed in any of the feeds during 24 h at 4 degrees C. All organisms multiplied rapidly in Clinifeed ISO and in Triosorbon at 25 and 37 degrees C. There was less rapid growth in half-strength Vivonex Standard at 25 degrees C, although at 37 degrees C all strains multiplied rapidly except for the two S. aureus strains, the growth of which was inhibited in half-strength Vivonex Standard at both 25 and 37 degrees C. In full-strength Vivonex Standard at 25 degrees C, only P. aeruginosa showed any increase in numbers during 24 h, whereas P. aeruginosa, K. aerogenes and E. cloacae all multiplied at 37 degrees C. None of the test organisms multiplied in full strength Vivonex HN at any of the temperatures studied. The results of the study show that bacteria survive and may multiply even in feeds with low pH and high osmolarity, and emphasise the importance of strict hygiene during the preparation and handling of all enteral feeds. PMID:3927003

  12. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  13. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective.

    Science.gov (United States)

    Caly, Delphine L; D'Inca, Romain; Auclair, Eric; Drider, Djamel

    2015-01-01

    Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control. PMID:26648920

  14. Bacteriophage biosensors for antibiotic-resistant bacteria.

    Science.gov (United States)

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  15. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    Directory of Open Access Journals (Sweden)

    Roderick I. Mackie

    2013-07-01

    Full Text Available Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  16. Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes

    KAUST Repository

    Hong, Pei-Ying

    2013-07-31

    Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.

  17. Antimicrobial effect of Malaysian vegetables against enteric bacteria

    Directory of Open Access Journals (Sweden)

    Hassanain Al-Talib

    2016-03-01

    Conclusions: Garlic had excellent antimicrobial effects against enteric bacteria and was recommended to be given to patients with gastroenteritis. The other vegetables (pennywort, mint, parsley and celery showed no inhibitory effects on enteric bacteria but still can be used for its richness in vitamins and fibers. The performance of the well diffusion method was better than that of the disc diffusion method in detecting the antibacterial effects of green vegetables.

  18. [Antibiotic resistance of bacteria to 6 antibiotics in secondary effluents of municipal wastewater treatment plants].

    Science.gov (United States)

    Lu, Sun-Qin; Li, Yi; Huang, Jing-Jing; Wei, Bin; Hu, Hong-Ying

    2011-11-01

    Prevalence of antibiotic-resistant bacteria in wastewater effluents is concerned as an emerging contaminant. To estimate antibiotic resistance in secondary effluents of municipal wastewater treatment plants, antibiotic tolerance of heterotrophic bacteria, proportion of antibiotic-resistant bacteria and hemi-inhibitory concentrations of six antibiotics (penicillin, ampicillin, cefalexin, chloramphenicol, tetracycline and rifampicin) were determined at two wastewater treatment plants (WWTPs) in Beijing. The results showed that proportions of ampicillin-resistant bacteria in WWTP-G and chloramphenicol-resistant bacteria in WWTP-Q were highest to 59% and 44%, respectively. The concentrations of ampicillin-resistant bacteria in the effluents of WWTP-G and WWTP-Q were as high as 4.0 x 10(3) CFU x mL(-1) and 3.5 x 10(4) CFU x mL(-1), respectively; the concentrations of chloramphenicol-resistant bacteria were 4.9 x 10(2) CFU x mL(-1) and 4.6 x 10(4) CFU x mL(-1), respectively. The data also indicated that the hemi-inhibitory concentrations of heterotrophic bacteria to 6 antibiotics were much higher than common concentrations of antibiotics in sewages, which suggested that antibiotic-resistant bacteria could exist over a long period in the effluents with low concentrations of antibiotics. Antibiotic-resistant bacteria could be a potential microbial risk during sewage effluent reuse or emission into environmental waters. PMID:22295644

  19. REDUCTION OF ANTIBIOTIC RESISTANCE IN BACTERIA: A REVIEW

    Directory of Open Access Journals (Sweden)

    Suresh Jaiswal et al.

    2012-03-01

    Full Text Available Drug resistant bacteria have been posing a major challenge to the effective control of bacterial infections for quite some time. One of the main causes of antibiotics drug resistance is antibiotic overuse, abuse, and in some cases, misuse, due to incorrect diagnosis. Bacterial antibiotic resistance is a significant issues faced by various industries, including the food and agricultural industries, the medical and veterinary profession and others. The potential for transfer of antibiotics resistance, or of potentially lethal antibiotic resistant bacteria, for example from a food animal to human consumer, is of particular concern. A method of controlling development and spread of antibiotic-resistant bacteria include changes in antibiotic usage and pattern of usage of different antibiotics. However, the ability of bacteria to adapt to antibiotic usage and to acquire resistance to existing and new antibiotics usage overcomes such conventional measures, and requires the continued development of alternative means of control of antibiotic resistance bacteria. Alternative means for overcoming the tendency of bacteria to acquire resistance to antibiotic control measures have taken various forms. This article explains one method evaluated for control, that is reducing or removing antibiotic resistance is so called “curing” of antibiotic resistance. Antibiotic resistance is formed in the chromosomal elements. Thus elimination of such drug-resistance plasmids results in loss of antibiotics resistance by the bacterial cell. “Curing” of a microorganism refers to the ability of the organism to spontaneously lose a resistance plasmid under the effect of particular compounds and environmental conditions, thus recovering the antibiotic sensitive state.

  20. Transfer of antibiotic resistant bacteria from animals to man

    DEFF Research Database (Denmark)

    Wegener, Henrik Caspar; Aarestrup, Frank Møller; Gerner-Smidt, P.;

    1999-01-01

    for animals either for therapy or for growth promotion. Antibiotic resistance in zoonotic bacteria constitute a public health hazard, primarily through the increased risk of treatment failures. This paper describes the zoonotic bacteria, salmonella, campylobacter, yersinia and enterohaemorrhagic E. coli (EHEC......Antibiotic resistance develops in zoonotic bacteria in response to antibiotics used in food animals. A close association exists between the amounts of antibiotics used and the levels of resistance observed. The classes of antibiotics routinely used for treatment of human infections are also used......). Infections with these agents do not generally require antibiotic therapy, but in some cases antibiotics are essential to obtain a successful cure. The levels and types of resistance observed in zoonotic bacteria in some countries, especially the increasing levels of fluoroquinolone resistance in salmonella...

  1. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist’s perspective.

    Directory of Open Access Journals (Sweden)

    Delphine Louise Caly

    2015-12-01

    Full Text Available Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with their host. Here we review recent developments in novel preventive treatments against C. perfringens-induced necrotic enteritis in broiler chickens that employ yeasts, bacteria and bacteriophages or secondary metabolites and other microbial products in disease control.

  2. Epigenetic regulation of enteric neurotransmission by gut bacteria.

    Directory of Open Access Journals (Sweden)

    Tor eSavidge

    2016-01-01

    Full Text Available The Human Microbiome Project defined microbial community interactions with the human host, and provided important molecular insight into how epigenetic factors can influence intestinal ecosystems. Given physiological context, changes in gut microbial community structure are increasingly found to associate with alterations in enteric neurotransmission and disease. At present, it is not known whether shifts in microbial community dynamics represent cause or consequence of disease pathogenesis. The discovery of bacterial-derived neurotransmitters suggests further studies are needed to establish their role in enteric neuropathy. This mini-review highlights recent advances in bacterial communications to the autonomic nervous system and discusses emerging epigenetic data showing that diet, probiotic and antibiotic use may regulate enteric neurotransmission through modulation of microbial communities. Because of its limited scope, a particular emphasis is placed on bacterial regulation of enteric nervous system function in the intestine.

  3. Enteral but not parenteral antibiotics enhance gut function and prevent necrotizing enterocolitis in formula-fed newborn preterm pigs.

    Science.gov (United States)

    Birck, Malene M; Nguyen, Duc Ninh; Cilieborg, Malene S; Kamal, Shamrulazhar S; Nielsen, Dennis S; Damborg, Peter; Olsen, John E; Lauridsen, Charlotte; Sangild, Per T; Thymann, Thomas

    2016-03-01

    Preterm infants are susceptible to infection and necrotizing enterocolitis (NEC) and are often treated with antibiotics. Simultaneous administration of enteral and parenteral antibiotics during the first days after preterm birth prevents formula-induced NEC lesions in pigs, but it is unknown which administration route is most effective. We hypothesized that only enteral antibiotics suppress gut bacterial colonization and NEC progression in formula-fed preterm pigs. Caesarean-delivered preterm pigs (90-92% of gestation) were fed increasing amounts of infant formula from birth to day 5 and given saline (CON) or antibiotics (ampicillin, gentamicin, and metronidazole) via the enteral (ENT) or parenteral (PAR) route (n = 16-17). NEC lesions, intestinal morphology, function, microbiology, and inflammatory mediators were evaluated. NEC lesions were completely prevented in ENT pigs, whereas there were high incidences of mild NEC lesions (59-63%) in CON and PAR pigs (P pigs had elevated intestinal weight, villus height/crypt depth ratio, and goblet cell density and reduced gut permeability, mucosal adherence of bacteria, IL-8 levels, colonic lactic acid levels, and density of Gram-positive bacteria, relative to CON pigs (P pigs were intermediate with few affected parameters (reduced lactic acid levels and density and adherence of Gram-positive bacteria, relative to CON pigs, P pigs. Delayed colonization may support intestinal structure, function, and immunity in the immediate postnatal period of formula-fed preterm neonates.

  4. THE AVAILABILITY OF Mytilus galloprovincialis FOR MONITORING ENTERIC BACTERIA

    Directory of Open Access Journals (Sweden)

    Nüket SĐVRĐ

    2012-01-01

    Full Text Available In this study, the usage of Mediterranean Mussel (Mytilus galloprovincialis Lamarck, 1819 as monitoring organism on enteric bacteria concentrations in heavily polluted marine environments and its use possibilities as water quality improving tool were investigated. The ability of the Mediterranean Mussel to accumulate and purge fecal coliform bacteria investigated in laboratory experiments. First, increase on bacteria concentration was observed on 1,5th hour and sharp decrease rate lasted until 10th hours after that period slow but steady declining bacteria concentration rate was observed and beginning bacteria concentration rate was reached within next 30- 50 hours. Time dependent bacteria concentration reduction has found statistically significant at p<0.001 (r-sq = 0.81. The investigation has also revealed that mussel farming could be established in the over polluted area which is the case only in the different discharge points in the sea.

  5. Antimicrobial effect of Malaysian vegetables against enteric bacteria

    OpenAIRE

    Hassanain Al-Talib; Norliana Dalila Mohamad Ali; Mohamed Harreez Suhaimi; Siti Shafika Nabila Rosli; Nurul Huda Othman; Nur Ain Sakinah Mansor; Amira Kartini Sulaiman Shah; Nurul Syuhada Ariffin; Alyaa Al-Khateeb

    2016-01-01

    Objective: To investigate the antibacterial activities of green vegetables (pennywort, mint, garlic, parsley and celery) against four common enteric bacteria [Salmonella enterica (ATCC 25957) (S. enterica), Shigella flexneri (ATCC 12022) (S. flexneri), Escherichia coli (ATCC 43889) (E. coli) and Enterobacter cloacae (ATCC 13047) (E. cloacae)] as an alternative medicine for controlling food borne diarrhea disease and the synergistic effect of green vegetables against those bacteria. Methods...

  6. Antibiotic susceptibility testing of the Gram-negative bacteria based on flow cytometry

    Directory of Open Access Journals (Sweden)

    Claude Saint-Ruf

    2016-07-01

    Full Text Available Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH, which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3, which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  7. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    Science.gov (United States)

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility.

  8. Antibiotic Susceptibility Testing of the Gram-Negative Bacteria Based on Flow Cytometry.

    Science.gov (United States)

    Saint-Ruf, Claude; Crussard, Steve; Franceschi, Christine; Orenga, Sylvain; Ouattara, Jasmine; Ramjeet, Mahendrasingh; Surre, Jérémy; Matic, Ivan

    2016-01-01

    Rapidly treating infections with adequate antibiotics is of major importance. This requires a fast and accurate determination of the antibiotic susceptibility of bacterial pathogens. The most frequently used methods are slow because they are based on the measurement of growth inhibition. Faster methods, such as PCR-based detection of determinants of antibiotic resistance, do not always provide relevant information on susceptibility, particularly that which is not genetically based. Consequently, new methods, such as the detection of changes in bacterial physiology caused by antibiotics using flow cytometry and fluorescent viability markers, are being explored. In this study, we assessed whether Alexa Fluor® 633 Hydrazide (AFH), which targets carbonyl groups, can be used for antibiotic susceptibility testing. Carbonylation of cellular macromolecules, which increases in antibiotic-treated cells, is a particularly appropriate to assess for this purpose because it is irreversible. We tested the susceptibility of clinical isolates of Gram-negative bacteria, Escherichia coli and Pseudomonas aeruginosa, to antibiotics from the three classes: β-lactams, aminoglycosides, and fluoroquinolones. In addition to AFH, we used TO-PRO®-3, which enters cells with damaged membranes and binds to DNA, and DiBAC4 (3), which enters cells with depolarized membranes. We also monitored antibiotic-induced morphological alterations of bacterial cells by analyzing light scattering signals. Although all tested dyes and light scattering signals allowed for the detection of antibiotic-sensitive cells, AFH proved to be the most suitable for the fast and reliable detection of antibiotic susceptibility. PMID:27507962

  9. Antibiotic Susceptibility of Commensal Bacteria from Human Milk.

    Science.gov (United States)

    Chen, Po-Wen; Tseng, Shu-Ying; Huang, Mao-Sheng

    2016-02-01

    Recent studies have focused on foodborne or commensal bacteria as vehicles of antibiotic resistance. However, the antibiotic resistance of milk bacteria from healthy donors is still vague in Taiwan. For this purpose, human milk samples were obtained from randomly recruited 19 healthy women between 3 and 360 days post-partum. Antibiotic susceptibility profile of bacteria from milk samples was determined. About 20 bacterial species were isolated from milk samples including Staphylococcus (6 species), Streptococcus (4 species), Enterococcus (2 species), Lactobacillus (1 species), and bacteria belonging to other genera (7 species). Some opportunistic or potentially pathogenic bacteria including Kluyvera ascorbata, Klebsiella oxytoca, Klebsiella pneumoniae, Acinetobacter baumannii, Actinomyces bovis, and Staphylococcus aureus were also isolated. Intriguingly, Staphylococcus isolates (22 strains) were resistant to 2–8 of 8 antibiotics, while Streptococcus isolates (3 strains) were resistant to 3–7 of 9 antibiotics, and members of the genus Enterococcus (5 strains) were resistant to 3–8 of 9 antibiotics. Notably, Staphylococcus lugdunensis, S. aureus, Streptococcus parasanguinis, Streptococcus pneumonia, and Enterococcus faecalis were resistant to vancomycin, which is considered as the last-resort antibiotic. Therefore, this study shows that most bacterial strains in human milk demonstrate mild to strong antibiotic resistance. Whether commensal bacteria in milk could serve as vehicles of antibiotic resistance should be further investigated.

  10. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health. PMID:27376311

  11. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  12. Probing minority population of antibiotic-resistant bacteria.

    Science.gov (United States)

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. PMID:26852201

  13. Antibiotics

    Science.gov (United States)

    Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics can save lives. They either kill bacteria or ... natural defenses can usually take it from there. Antibiotics do not fight infections caused by viruses, such ...

  14. Deoxyribonucleoside kinases activate nucleoside antibiotics in severely pathogenic bacteria

    DEFF Research Database (Denmark)

    Sandrini, Michael; Shannon, O.; Clausen, A.R.;

    2007-01-01

    Common bacterial pathogens are becoming progressively more resistant to traditional antibiotics, representing a major public-health crisis. Therefore, there is a need for a variety of antibiotics with alternative modes of action. In our study, several nucleoside analogs were tested against...... alternative for combating pathogenic bacteria....

  15. Plasmid Mediated Antibiotic Resistance in Isolated Bacteria From Burned Patients

    OpenAIRE

    Beige, Fahimeh; Baseri Salehi, Majid; Bahador, Nima; Mobasherzadeh, Sina

    2014-01-01

    Background: Nowadays, the treatment of burned patients is difficult because of the high frequency of infection with antibiotic resistance bacteria. Objectives: This study was conducted to evaluate the level of antibiotic resistance in Gram-negative bacteria and its relation with the existence of plasmid. Materials and Methods: The samples were collected from two hundred twenty hospitalized burned patients in Isfahan burn hospital during a three-month period (March 2012 to June 2012). The samp...

  16. General principles of antibiotic resistance in bacteria.

    Science.gov (United States)

    Martinez, Jose L

    2014-03-01

    Given the impact of antibiotic resistance on human health, its study is of great interest from a clinical view- point. In addition, antibiotic resistance is one of the few examples of evolution that can be studied in real time. Knowing the general principles involved in the acquisition of antibiotic resistance is therefore of interest to clinicians, evolutionary biologists and ecologists. The origin of antibiotic resistance genes now possessed by human pathogens can be traced back to environmental microorganisms. Consequently, a full understanding of the evolution of antibiotic resistance requires the study of natural environments as well as clinical ecosystems. Updated information on the evolutionary mechanisms behind resistance, indicates that ecological connectivity, founder effect and fitness costs are important bottle- necks that modulate the transfer of resistance from environmental microorganisms to pathogens. PMID:24847651

  17. Emergence of ciprofloxacin-resistant extended-spectrum β-lactamase-producing enteric bacteria in hospital wastewater and clinical sources.

    Science.gov (United States)

    Maheshwari, Meenu; Yaser, Nawar Hadi; Naz, Suraiya; Fatima, Mansha; Ahmad, Iqbal

    2016-06-01

    This study aimed to evaluate the incidence of ciprofloxacin-resistant extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and clinical sources. Enteric bacteria, mainly Escherichia coli, were isolated from clinical sources (urinary tract and gastrointestinal tract infections; 80 isolates) and hospital wastewater (103 isolates). The antibiotic resistance profile and ESBL production of the isolates were investigated by disc diffusion assay and combined disc diffusion test, respectively. Plasmid profiling was performed by agarose gel electrophoresis, and elimination of resistance markers was performed by a plasmid curing experiment. Antibiotic susceptibility testing revealed a high incidence of β-lactam resistance, being highest to ampicillin (88.0%) followed by amoxicillin, ceftriaxone, cefpodoxime, cefotaxime, aztreonam, cefepime and ceftazidime. Among the non-β-lactam antibiotics, the highest resistance was recorded to nalidixic acid (85.7%). Moreover, 50.8% of enteric bacteria showed resistance to ciprofloxacin. Among 183 total enteric bacteria, 150 (82.0%) exhibited multidrug resistance. ESBL production was detected in 78 isolates (42.6%). A significantly higher incidence of ciprofloxacin resistance was observed among ESBL-producing enteric bacteria both in clinical (P=0.0015) and environmental isolates (P=0.012), clearly demonstrating a close association between ESBL production and ciprofloxacin resistance. Plasmid profiling of selected ESBL-positive strains indicated the presence of one or more plasmids of varying sizes. Plasmid curing resulted in loss of ciprofloxacin and cefotaxime resistance markers simultaneously from selected ESBL-positive isolates, indicating the close relationship of these markers. This study revealed a common occurrence of ciprofloxacin-resistant ESBL-producing enteric bacteria both in hospital wastewater and clinical sources, indicating a potential public health threat.

  18. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria.

    Science.gov (United States)

    Bennett, P M

    2008-03-01

    Bacteria have existed on Earth for three billion years or so and have become adept at protecting themselves against toxic chemicals. Antibiotics have been in clinical use for a little more than 6 decades. That antibiotic resistance is now a major clinical problem all over the world attests to the success and speed of bacterial adaptation. Mechanisms of antibiotic resistance in bacteria are varied and include target protection, target substitution, antibiotic detoxification and block of intracellular antibiotic accumulation. Acquisition of genes needed to elaborate the various mechanisms is greatly aided by a variety of promiscuous gene transfer systems, such as bacterial conjugative plasmids, transposable elements and integron systems, that move genes from one DNA system to another and from one bacterial cell to another, not necessarily one related to the gene donor. Bacterial plasmids serve as the scaffold on which are assembled arrays of antibiotic resistance genes, by transposition (transposable elements and ISCR mediated transposition) and site-specific recombination mechanisms (integron gene cassettes).The evidence suggests that antibiotic resistance genes in human bacterial pathogens originate from a multitude of bacterial sources, indicating that the genomes of all bacteria can be considered as a single global gene pool into which most, if not all, bacteria can dip for genes necessary for survival. In terms of antibiotic resistance, plasmids serve a central role, as the vehicles for resistance gene capture and their subsequent dissemination. These various aspects of bacterial resistance to antibiotics will be explored in this presentation. PMID:18193080

  19. Commensal enteric bacteria lipopolysaccharide impairs host defense against disseminated Candida albicans fungal infection.

    Science.gov (United States)

    Jiang, T T; Chaturvedi, V; Ertelt, J M; Xin, L; Clark, D R; Kinder, J M; Way, S S

    2015-07-01

    Commensal enteric bacteria maintain systemic immune responsiveness that protects against disseminated or localized infection in extra-intestinal tissues caused by pathogenic microbes. However, as shifts in infection susceptibility after commensal bacteria eradication have primarily been probed using viruses, the broader applicability to other pathogen types remains undefined. In sharp contrast to diminished antiviral immunity, we show commensal bacteria eradication bolsters protection against disseminated Candida albicans fungal infection. Enhanced antifungal immunity reflects more robust systemic expansion of Ly6G(hi)Ly6C(int) neutrophils, and their mobilization into infected tissues among antibiotic-treated compared with commensal bacteria-replete control mice. Reciprocally, depletion of neutrophils from expanded levels or intestinal lipopolysaccharide reconstitution overrides the antifungal protective benefits conferred by commensal bacteria eradication. This discordance in antifungal compared with antiviral immunity highlights intrinsic differences in how commensal bacteria control responsiveness for specific immune cell subsets, because pathogen-specific CD8(+) T cells that protect against viruses were suppressed similarly after C. albicans and influenza A virus infection. Thus, positive calibration of antiviral immunity by commensal bacteria is counterbalanced by restrained activation of other immune components that confer antifungal immunity.

  20. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event.

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, PeiFang; Wang, Chao; Han, Nini; Liu, Bin; Han, Bing; Li, Yi; Anim-Larbi, Kwaku

    2016-05-01

    Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes. PMID:26865482

  1. Antibiotic Resistance Pattern of Gram-Negative Bacteria in Gorgan

    Directory of Open Access Journals (Sweden)

    Golsha, R. (MD

    2014-06-01

    Full Text Available Background and Objective: The excessive use of broad-spectrum antibiotics will lead to drug resistance of microorganism and specially nosocomial organisms. Because of high incidence of antibiotic resistance in hospitals, we aimed to study antibiotic resistance to gram negative bacteria. Material and Methods: This cross-sectional study was conducted on the data of biological samples (2006-2008, with positive culture result. Using antibiogram, microbial resistance to isolated microorganism was determined, and after culturing the samples, bacteria were identified by using differential media and antiserum. Then, antibiotic resistance was performed by disk diffusion. Results: The most common gram-negative microorganism obtained from all cultures was E.coli with the lowest drug resistance to Nitrofurantoin. Conclusion: Based on the results, antimicrobial resistance pattern is not the same in different places and furthermore it is ever changing. Therefore, further research is needed to be done to have an accurate pattern of antibiotic resistance to provide effective treatment regimens. Key words: Antibiotic Resistance; Disk Diffusion; Gram Negative Bacteria; Gorgan

  2. Metagenomic Insights into Transferable Antibiotic Resistance in Oral Bacteria.

    Science.gov (United States)

    Sukumar, S; Roberts, A P; Martin, F E; Adler, C J

    2016-08-01

    Antibiotic resistance is considered one of the greatest threats to global public health. Resistance is often conferred by the presence of antibiotic resistance genes (ARGs), which are readily found in the oral microbiome. In-depth genetic analyses of the oral microbiome through metagenomic techniques reveal a broad distribution of ARGs (including novel ARGs) in individuals not recently exposed to antibiotics, including humans in isolated indigenous populations. This has resulted in a paradigm shift from focusing on the carriage of antibiotic resistance in pathogenic bacteria to a broader concept of an oral resistome, which includes all resistance genes in the microbiome. Metagenomics is beginning to demonstrate the role of the oral resistome and horizontal gene transfer within and between commensals in the absence of selective pressure, such as an antibiotic. At the chairside, metagenomic data reinforce our need to adhere to current antibiotic guidelines to minimize the spread of resistance, as such data reveal the extent of ARGs without exposure to antimicrobials and the ecologic changes created in the oral microbiome by even a single dose of antibiotics. The aim of this review is to discuss the role of metagenomics in the investigation of the oral resistome, including the transmission of antibiotic resistance in the oral microbiome. Future perspectives, including clinical implications of the findings from metagenomic investigations of oral ARGs, are also considered. PMID:27183895

  3. Off-label abuse of antibiotics by bacteria.

    Science.gov (United States)

    Viswanathan, V K

    2014-01-01

    Antibiotics and antibiotic resistance made news on several fronts in the past year. Many public health organizations, including the CDC, used terms such as "crisis", "catastrophic consequences", and "nightmare scenario" to highlight the rapid emergence and spread of antibiotic resistance. A report from the Pew Commission on Industrial Farm Animal Production, on the fifth anniversary of the publication of its landmark 2008 report, noted that state and federal legislative efforts to limit non-therapeutic use of antibiotics in animal production were thwarted by drug and food animal industries. In its lobbying disclosures, the Farm Bureau stated that such efforts to limit use of animal antibiotics were "based on emotion and no credible peer reviewed science." Meanwhile, there have been inexorable advances in our understanding of the molecular mechanisms by which antibiotics induce diversity and resistance in bacteria. This article reviews one study that probed the role of the bacterial general stress response in sub-inhibitory antibiotic-induced mutagenesis and antibiotic resistance. PMID:24637595

  4. ANTIBIOTIC RESISTANT BACTERIA FROM HALIOTIS TUBERCULATA AND MYTILUS GALLOPROVINCIALIS

    Directory of Open Access Journals (Sweden)

    F. Conte

    2009-12-01

    Full Text Available The antibiotic resistance (AR of Gram negative bacteria from Haliotis tuberculata (Ht and Mytilus galloprovincialis (Mg was assessed. Essential differences between R profiles of Pseudomonas spp and of other strains was not observed. Strains AR from Ht and Mg was similar.

  5. Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria.

    Science.gov (United States)

    Yap, Polly Soo Xi; Lim, Swee Hua Erin; Hu, Cai Ping; Yiap, Beow Chin

    2013-06-15

    In this study we investigated the relationship between several selected commercially available essential oils and beta-lactam antibiotics on their antibacterial effect against multidrug resistant bacteria. The antibacterial activity of essential oils and antibiotics was assessed using broth microdilution. The combined effects between essential oils of cinnamon bark, lavender, marjoram, tea tree, peppermint and ampicillin, piperacillin, cefazolin, cefuroxime, carbenicillin, ceftazidime, meropenem, were evaluated by means of the checkerboard method against beta-lactamase-producing Escherichia coli. In the latter assays, fractional inhibitory concentration (FIC) values were calculated to characterize interaction between the combinations. Substantial susceptibility of the bacteria toward natural antibiotics and a considerable reduction in the minimum inhibitory concentrations (MIC) of the antibiotics were noted in some paired combinations of antibiotics and essential oils. Out of 35 antibiotic-essential oil pairs tested, four of them showed synergistic effect (FIC≤0.5) and 31 pairs showed no interaction (FIC>0.5-4.0). The preliminary results obtained highlighted the occurrence of a pronounced synergistic relationship between piperacillin/cinnamon bark oil, piperacillin/lavender oil, piperacillin/peppermint oil as well as meropenem/peppermint oil against two of the three bacteria under study with a FIC index in the range 0.26-0.5. The finding highlighted the potential of peppermint, cinnamon bark and lavender essential oils being as antibiotic resistance modifying agent. Reduced usage of antibiotics could be employed as a treatment strategy to decrease the adverse effects and possibly to reverse the beta-lactam antibiotic resistance. PMID:23537749

  6. Antibiotic Resistance of Diverse Bacteria from Aquaculture in Borneo

    Science.gov (United States)

    Kathleen, M. M.; Felecia, C.; Reagan, E. L.; Kasing, A.; Lesley, M.; Toh, S. C.

    2016-01-01

    The administration of antimicrobials in aquaculture provides a selective pressure creating a reservoir of multiple resistant bacteria in the cultured fish and shrimps as well as the aquaculture environment. The objective of this study was to determine the extent of antibiotic resistance in aquaculture products and aquaculture's surrounding environment in Sarawak, Malaysian Borneo. Ninety-four identified bacterial isolates constituted of 17 genera were isolated from sediment, water, and cultured organisms (fish and shrimp) in selected aquaculture farms. These isolates were tested for their antibiotic resistance against 22 antibiotics from several groups using the disk diffusion method. The results show that the highest resistance was observed towards streptomycin (85%, n = 20), while the lowest resistance was towards gentamicin (1.1%, n = 90). The multiple antibiotic resistant (MAR) index of the isolates tested ranged between 0 and 0.63. It was suggested that isolates with MAR index > 0.2 were recovered from sources with high risk of antibiotic resistant contamination. This study revealed low level of antibiotic resistance in the aquaculture bacterial isolates except for streptomycin and ampicillin (>50% resistance, n = 94) which have been used in the aquaculture industry for several decades. Antibiotic resistant patterns should be continuously monitored to predict the emergence and widespread of MAR. Effective action is needed to keep the new resistance from further developing and spreading.

  7. Synergistic interaction of eugenol with antibiotics against Gram negative bacteria.

    Science.gov (United States)

    Hemaiswarya, S; Doble, M

    2009-11-01

    Eugenol, the principal chemical component of clove oil from Eugenia aromatica has been long known for its analgesic, local anesthetic, anti-inflammatory, and antibacterial effects. The interaction of the eugenol with ten different hydrophobic and hydrophilic antibiotics was studied against five different Gram negative bacteria. The MIC of the combination was found to decrease by a factor of 5-1000 with respect to their individual MIC. This synergy is because of the membrane damaging nature of eugenol, where 1mM of its concentration is able to damage nearly 50% of the bacterial membrane. Eugenol was also able to enhance the activities of lysozyme, Triton X-100 and SDS in damaging the bacterial cell membrane. The hydrophilic antibiotics such as vancomycin and beta-lactam antibiotics which have a marginal activity on these gram negative bacteria exhibit an enhanced antibacterial activity when pretreated with eugenol. Reduced usage of antibiotics could be employed as a treatment strategy to slow down the onset of antibiotic resistance as well as decrease its toxicity. Experiments performed with human blood cells indicated that the concentration of eugenol used for the combination studies were below its cytotoxic values. Pharmacodynamic studies of the combinations need to be performed to decide on the effective dosage. PMID:19540744

  8. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed.

  9. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed. PMID:24619620

  10. Laser based enhancement of susceptibility of bacteria to antibiotic

    Science.gov (United States)

    Reznick, Yana; Banin, Ehud; Lipovsky, Anat; Lubart, Rachel; Zalevsky, Zeev

    2012-03-01

    Our objective is to test the effect of pulsed (Q-switched) and continuous wave (CW) laser light at wavelength of 532nm on the viability of free-living stationary phase bacteria with and without gentamicin (an antibiotic) treatment. Free living stationary phase gram negative bacteria (Pseudomonas aeruginosa strain PAO1) was immersed in Luria Broth (LB) solution and exposed to Q-switched and CW lasers with and without the addition of the antibiotic gentamicin. Cell viability was determined at different time points. Laser treatment alone did not reduce cell viability compared to untreated control and the gentamicin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamicin treatment, however, resulted in a synergistic effect and viability was reduced by 8 log's for P. aeruginosa PAO1.

  11. Prevalence of Antibiotic-Resistant Bacteria on Rectal Swabs and Factors Affecting Resistance to Antibiotics in Patients Undergoing Prostate Biopsy

    OpenAIRE

    Kim, Jong Beom; Jung, Seung Il; Hwang, Eu Chang; Kwon, Dong Deuk

    2014-01-01

    Purpose The prevalence of antibiotic-resistant bacteria on rectal swabs in patients undergoing transrectal ultrasound (TRUS)-guided prostate biopsy and the factors affecting resistance to antibiotics were evaluated. Materials and Methods Two hundred twenty-three men who underwent TRUS-guided prostate biopsy from November 2011 to December 2012 were retrospectively evaluated. Rectal swabs were cultured on MacConkey agar to identify antibiotic-resistant bacteria in rectal flora before TRUS-guide...

  12. Density-dependent adaptive resistance allows swimming bacteria to colonize an antibiotic gradient.

    Science.gov (United States)

    Hol, Felix J H; Hubert, Bert; Dekker, Cees; Keymer, Juan E

    2016-01-01

    During antibiotic treatment, antibiotic concentration gradients develop. Little is know regarding the effects of antibiotic gradients on populations of nonresistant bacteria. Using a microfluidic device, we show that high-density motile Escherichia coli populations composed of nonresistant bacteria can, unexpectedly, colonize environments where a lethal concentration of the antibiotic kanamycin is present. Colonizing bacteria establish an adaptively resistant population, which remains viable for over 24 h while exposed to the antibiotic. Quantitative analysis of multiple colonization events shows that collectively swimming bacteria need to exceed a critical population density in order to successfully colonize the antibiotic landscape. After colonization, bacteria are not dormant but show both growth and swimming motility under antibiotic stress. Our results highlight the importance of motility and population density in facilitating adaptive resistance, and indicate that adaptive resistance may be a first step to the emergence of genetically encoded resistance in landscapes of antibiotic gradients.

  13. The analysis of bacteria strains and sensitivity of bacteria to antibiotics in acute obstructive cholangitis with suppuration

    Institute of Scientific and Technical Information of China (English)

    顾彬

    2013-01-01

    Objective To analyze the changes of bacteria stains in acute obstructive cholangitis with suppuration(AOSC) and sensitivity of different bacteria strains to antibiotics in recent decade. Methods The data of bacterial

  14. Antibiotic susceptibility of different lactic acid bacteria strains.

    Science.gov (United States)

    Karapetkov, N; Georgieva, R; Rumyan, N; Karaivanova, E

    2011-12-01

    Five lactic acid bacteria (LAB) strains belonging to species Lactobacillus acidophilus, Lactobacillus helveticus, Lactobacillus delbrueckii subsp. bulgaricus, Lactobacillus delbrueckii subsp. lactis and Streptococcus thermophilus were tested for their susceptibility to 27 antibiotics. The minimum inhibitory concentrations of each antimicrobial were determined using a microdilution test. Among the strains a high susceptibility was detected for most of the cell-wall synthesis inhibitors (penicillins, cefoxitin and vancomycin) and resistance toward inhibitors of DNA synthesis (trimethoprim/sulfonamides and fluoroquinolones). Generally, the Lactobacillus strains were inhibited by antibiotics such as chloramphenicol, erythromycin and tetracycline at breakpoint levels lower or equal to the levels defined by the European Food Safety Authority. Despite the very similar profile of S. thermophilus LC201 to lactobacilli, the detection of resistance toward erythromycin necessitates the performance of additional tests in order to prove the absence of transferable resistance genes.

  15. Alternatives to antibiotics to prevent necrotic enteritis in broiler chickens: a microbiologist's perspective

    OpenAIRE

    Caly, Delphine L.; D'Inca, Romain; Auclair, Eric; Drider, Djamel

    2015-01-01

    Since the 2006 European ban on the use of antibiotics as growth promoters in animal feed, numerous studies have been published describing alternative strategies to prevent diseases in animals. A particular focus has been on prevention of necrotic enteritis in poultry caused by Clostridium perfringens by the use of microbes or microbe-derived products. Microbes produce a plethora of molecules with antimicrobial properties and they can also have beneficial effects through interactions with thei...

  16. A comparison of fluoroquinolones versus other antibiotics for treating enteric fever: meta-analysis

    OpenAIRE

    Thaver, Durrane; Zaidi, Anita K M; Critchley, Julia; Azmatullah, Asma; Madni, Syed Ali; Bhutta, Zulfiqar A.

    2009-01-01

    Objectives To review evidence supporting use of fluoroquinolones as first line agents over other antibiotics for treating typhoid and paratyphoid fever (enteric fever). Design Meta-analysis of randomised controlled trials. Data sources Cochrane Infectious Diseases Group specialised register, CENTRAL (issue 4, 2007), Medline (1966-2007), Embase (1974-2007), LILACS (1982-2007), selected conferences, reference lists, and ongoing trial register (November 2007). Review methods Trials comparing flu...

  17. Enabling Passive Immunization as an Alternative to Antibiotics for Controlling Enteric Infections in Production Animals

    DEFF Research Database (Denmark)

    Heegaard, Peter M. H.; Hald, Birthe; Madsen, M.;

    massive use of antibiotics in food animals. Thus there is a pressing need for economically feasible, efficient, non-antibiotics based means for controlling the problem. Passive immunization has been known for decades as an efficient way of endowing humans or animals with short-term (weeks) immunity....... To control enteric infections by passive immunization a bolus of immunoglobulin may simply be administered orally. For this to work, large amounts of active immunoglobulins are needed. To be a real alternative to antibiotics the price of the immunoglobulin product needs to be low. We combined an efficient...... administered bovine immunoglobulin is currently being tested in a calf herd with persistent diarrhea problems. Furthermore, it was shown in a Campylobacter challenge model in chickens that caecal and faecal counts of Campylobacter were between 0.5 and 1.0 logs lower in birds when given 200 mg avian...

  18. Synergistic Antibacterial Effect between Silibinin and Antibiotics in Oral Bacteria

    Directory of Open Access Journals (Sweden)

    Young-Soo Lee

    2012-01-01

    Full Text Available Silibinin is a composition of the silymarin group as a hepatoprotective agent, and it exhibits various biological activities, including antibacterial activity. In this study, the antibacterial activities of silibinin were investigated in combination with two antimicrobial agents against oral bacteria. Silibinin was determined with MIC and MBC values ranging from 0.1 to 3.2 and 0.2 to 6.4 μg/mL, ampicillin from 0.125 to 64 and 0.5 to 64 μg/mL, gentamicin from 2 to 256 and 4 to 512 μg/mL, respectively. The ranges of MIC50 and MIC90 were 0.025–0.8 μg/mL and 0.1–3.2 μg/mL, respectively. The antibacterial activities of silibinin against oral bacteria were assessed using the checkerboard and time-kill methods to evaluate the synergistic effects of treatment with ampicillin or gentamicin. The results were evaluated showing that the combination effects of silibinin with antibiotics were synergistic (FIC index <0.5 against all tested oral bacteria. Furthermore, a time-kill study showed that the growth of the tested bacteria was completely attenuated after 2–6 h of treatment with the MBC of silibinin, regardless of whether it was administered alone or with ampicillin or gentamicin. These results suggest that silibinin combined with other antibiotics may be microbiologically beneficial and not antagonistic.

  19. Antibiotic Resistance of Isolated Bacteria from Urban and Hospital Wastewaters in Hamadan City

    OpenAIRE

    Karimi, M; A.M Ebrahimzadeh Namvar; R Shokoohi; M. Hadi; M Solaimany Aminabad

    2011-01-01

    "nBackground and Objectives: widely use of antibiotics as therapy and uncontrolled discharge of them to receiving waters increased the percentages of antibiotic resistant bacteria in various environments which may cause problems in therapy. The aim of this study was to investigate the antibiotic resistance of E. coli, K. pneumoniae and P. aeruginosa bacteria isolated from urban and hospital wastewaters. Nine antibiotics namely Chloramphenicol, Ciprofloxacin, Trimethoprim Sulfamethoxazol, Gent...

  20. Carriage of antibiotic-resistant bacteria by healthy children.

    Science.gov (United States)

    Millar, M R; Walsh, T R; Linton, C J; Zhang, S; Leeming, J P; Bennett, P M

    2001-05-01

    The frequency of carriage of antibiotic-resistant bacteria in healthy 7- and 8-year-old children in Bristol was studied. Children born in Avon between 1 April 1991 and 31 December 1992, attending the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) 7 year follow-up clinic, formed the study population. Carriage was estimated using mouth and stool samples. None of 105 children on whom information was available had received tetracycline, chloramphenicol, ciprofloxacin or an extended-spectrum cephalosporin in the previous year. Staphylococcus aureus was isolated from mouthwashes from 200 (37.1%) of 539 children sampled. Six (3%) of the isolates were resistant to chloramphenicol or tetracycline and four (2%) were methicillin resistant. Haemophilus spp. were isolated from 369 (72%) of 513 samples and 63 (17%) were ampicillin resistant, 49 (13.3%) were erythromycin resistant and seven (1.9%) were tetracycline resistant. Branhamella catarrhalis was isolated from 333 (74%) of 450 samples. Twenty-eight (8.4%) were erythromycin resistant and 14 (4.2%) strains were tetracycline resistant. Group A beta-haemolytic streptococci were isolated from 17 of 507 children sampled. One (5.9%) was tetracycline resistant. Stool samples were returned from 335 (62%) of 539 children from whom they were requested. Eleven per cent of samples yielded Gram-negative bacilli with high-level resistance to chloramphenicol, which was frequently linked to resistance to ampicillin, spectinomycin and streptomycin. Isolates demonstrating resistance to the third-generation cephalosporin ceftazidime were recovered from 17 subjects (3.2%). Six (35%) of 17 isolates possessed extended-spectrum beta-lactamases. Healthy children carry bacteria resistant to antibiotics to which children are not usually exposed. Resistance to ceftazidime, chloramphenicol and tetracycline may be co-selected by exposure to other antibiotics used in children or may be acquired from family members, pets, other children or

  1. A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes.

    Science.gov (United States)

    Sharma, Virender K; Johnson, Natalie; Cizmas, Leslie; McDonald, Thomas J; Kim, Hyunook

    2016-05-01

    Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in the aquatic environment have become an emerging contaminant issue, which has implications for human and ecological health. This review begins with an introduction to the occurrence of ARB and ARG in different environmental systems such as natural environments and drinking water resources. For example, ARG or ARB with resistance to ciprofloxacin, sulfamethoxazole, trimethoprim, quinolone, vancomycin, or tetracycline (e.g., tet(A), tet(B), tet(C), tet(G), tet(O), tet(M), tet(W), sul I, and sul II) have been detected in the environment. The development of resistance may be intrinsic, may be acquired through spontaneous mutations (de novo), or may occur due to horizontal gene transfer from donor bacteria, phages, or free DNA to recipient bacteria. An overview is also provided of the current knowledge regarding inactivation of ARB and ARG, and the mechanism of the effects of different disinfection processes in water and wastewater (chlorination, UV irradiation, Fenton reaction, ozonation, and photocatalytic oxidation). The effects of constructed wetlands and nanotechnology on ARB and ARG are also summarized. PMID:26775188

  2. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website. PMID:27103502

  3. Adaptive resistance to antibiotics in bacteria: a systems biology perspective.

    Science.gov (United States)

    Sandoval-Motta, Santiago; Aldana, Maximino

    2016-05-01

    Despite all the major breakthroughs in antibiotic development and treatment procedures, there is still no long-term solution to the bacterial antibiotic resistance problem. Among all the known types of resistance, adaptive resistance (AdR) is particularly inconvenient. This phenotype is known to emerge as a consequence of concentration gradients, as well as contact with subinhibitory concentrations of antibiotics, both known to occur in human patients and livestock. Moreover, AdR has been repeatedly correlated with the appearance of multidrug resistance, although the biological processes behind its emergence and evolution are not well understood. Epigenetic inheritance, population structure and heterogeneity, high mutation rates, gene amplification, efflux pumps, and biofilm formation have all been reported as possible explanations for its development. Nonetheless, these concepts taken independently have not been sufficient to prevent AdR's fast emergence or to predict its low stability. New strains of resistant pathogens continue to appear, and none of the new approaches used to kill them (mixed antibiotics, sequential treatments, and efflux inhibitors) are completely efficient. With the advent of systems biology and its toolsets, integrative models that combine experimentally known features with computational simulations have significantly improved our understanding of the emergence and evolution of the adaptive-resistant phenotype. Apart from outlining these findings, we propose that one of the main cornerstones of AdR in bacteria, is the conjunction of two types of mechanisms: one rapidly responding to transient environmental challenges but not very efficient, and another much more effective and specific, but developing on longer time scales. WIREs Syst Biol Med 2016, 8:253-267. doi: 10.1002/wsbm.1335 For further resources related to this article, please visit the WIREs website.

  4. Antibiotic resistance of lactic acid bacteria isolated from Chinese yogurts.

    Science.gov (United States)

    Zhou, N; Zhang, J X; Fan, M T; Wang, J; Guo, G; Wei, X Y

    2012-09-01

    The aim of this study was to evaluate the susceptibility of 43 strains of lactic acid bacteria, isolated from Chinese yogurts made in different geographical areas, to 11 antibiotics (ampicillin, penicillin G, roxithromycin, chloramphenicol, tetracycline, chlortetracycline, lincomycin, kanamycin, streptomycin, neomycin, and gentamycin). The 43 isolates (18 Lactobacillus bulgaricus and 25 Streptococcus thermophilus) were identified at species level and were typed by random amplified polymorphic DNA analysis. Thirty-five genotypically different strains were detected and their antimicrobial resistance to 11 antibiotics was determined using the agar dilution method. Widespread resistance to ampicillin, chloramphenicol, chlortetracycline, tetracyclines, lincomycin, streptomycin, neomycin, and gentamycin was found among the 35 strains tested. All of the Strep. thermophilus strains tested were susceptible to penicillin G and roxithromycin, whereas 23.5 and 64.7% of Lb. bulgaricus strains, respectively, were resistant. All of the Strep. thermophilus and Lb. bulgaricus strains were found to be resistant to kanamycin. The presence of the corresponding resistance genes in the resistant isolates was investigated through PCR, with the following genes detected: tet(M) in 1 Lb. bulgaricus and 2 Strep. thermophilus isolates, ant(6) in 2 Lb. bulgaricus and 2 Strep. thermophilus isolates, and aph(3')-IIIa in 5 Lb. bulgaricus and 2 Strep. thermophilus isolates. The main threat associated with these bacteria is that they may transfer resistance genes to pathogenic bacteria, which has been a major cause of concern to human and animal health. To our knowledge, the aph(3')-IIIa and ant(6) genes were found in Lb. bulgaricus and Strep. thermophilus for the first time. Further investigations are required to analyze whether the genes identified in Lb. bulgaricus and Strep. thermophilus isolates might be horizontally transferred to other species.

  5. Distribution and quantification of antibiotic resistant genes and bacteria across agricultural and non-agricultural metagenomes.

    Science.gov (United States)

    Durso, Lisa M; Miller, Daniel N; Wienhold, Brian J

    2012-01-01

    There is concern that antibiotic resistance can potentially be transferred from animals to humans through the food chain. The relationship between specific antibiotic resistant bacteria and the genes they carry remains to be described. Few details are known about the ecology of antibiotic resistant genes and bacteria in food production systems, or how antibiotic resistance genes in food animals compare to antibiotic resistance genes in other ecosystems. Here we report the distribution of antibiotic resistant genes in publicly available agricultural and non-agricultural metagenomic samples and identify which bacteria are likely to be carrying those genes. Antibiotic resistance, as coded for in the genes used in this study, is a process that was associated with all natural, agricultural, and human-impacted ecosystems examined, with between 0.7 to 4.4% of all classified genes in each habitat coding for resistance to antibiotic and toxic compounds (RATC). Agricultural, human, and coastal-marine metagenomes have characteristic distributions of antibiotic resistance genes, and different bacteria that carry the genes. There is a larger percentage of the total genome associated with antibiotic resistance in gastrointestinal-associated and agricultural metagenomes compared to marine and Antarctic samples. Since antibiotic resistance genes are a natural part of both human-impacted and pristine habitats, presence of these resistance genes in any specific habitat is therefore not sufficient to indicate or determine impact of anthropogenic antibiotic use. We recommend that baseline studies and control samples be taken in order to determine natural background levels of antibiotic resistant bacteria and/or antibiotic resistance genes when investigating the impacts of veterinary use of antibiotics on human health. We raise questions regarding whether the underlying biology of each type of bacteria contributes to the likelihood of transfer via the food chain.

  6. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  7. Secular Trends in Nosocomial Bloodstream Infections : Antibiotic-Resistant Bacteria Increase the Total Burden of Infection

    NARCIS (Netherlands)

    Ammerlaan, H. S. M.; Harbarth, S.; Buiting, A. G. M.; Crook, D. W.; Fitzpatrick, F.; Hanberger, H.; Herwaldt, L. A.; van Keulen, P. H. J.; Kluytmans, J. A. J. W.; Kola, A.; Kuchenbecker, R. S.; Lingaas, E.; Meessen, N.; Morris-Downes, M. M.; Pottinger, J. M.; Rohner, P.; dos Santos, R. P.; Seifert, H.; Wisplinghoff, H.; Ziesing, S.; Walker, A. S.; Bonten, M. J. M.

    2013-01-01

    Background. It is unknown whether rising incidence rates of nosocomial bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) replace antibiotic-susceptible bacteria (ASB), leaving the total BSI rate unaffected. Methods. We investigated temporal trends in annual incidence densit

  8. Enteral but not parenteral antibiotics enhance gut function and prevent necrotizing enterocolitis in formula-fed newborn preterm pigs

    DEFF Research Database (Denmark)

    Birck, Malene Muusfeldt; Nguyen, Duc Ninh; Cilieborg, Malene Skovsted;

    2016-01-01

    Preterm infants are susceptible to infection and necrotizing enterocolitis (NEC) and are often treated with antibiotics. Simultaneous administration of enteral and parenteral antibiotics during the first days after preterm birth prevents formula-induced NEC lesions in pigs but it is unknown which...... administration route is most effective. We hypothesized that only enteral antibiotics suppress gut bacterial colonization and NEC progression in formula-fed preterm pigs. Caesarean-delivered preterm pigs (90-92% of gestation) were fed increasing amounts of infant formula from birth to day 5, and given saline...... (CON) or antibiotics (ampicillin, gentamicin and metronidazole) via the enteral (ENT) or parenteral (PAR) route (n=16-17). NEC lesions, intestinal morphology, function, microbiology and inflammatory mediators were evaluated. NEC lesions were completely prevented in ENT pigs, while there were high...

  9. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    Science.gov (United States)

    Unger, Nathan R; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (pbacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline.

  10. Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistance genes in water and wastewater.

    Science.gov (United States)

    McKinney, Chad W; Pruden, Amy

    2012-12-18

    Disinfection of wastewater treatment plant effluent may be an important barrier for limiting the spread of antibiotic-resistant bacteria (ARBs) and antibiotic resistance genes (ARGs). While ideally disinfection should destroy ARGs, to prevent horizontal gene transfer to downstream bacteria, little is known about the effect of conventional water disinfection technologies on ARGs. This study examined the potential of UV disinfection to damage four ARGs, mec(A), van(A), tet(A), and amp(C), both in extracellular form and present within a host ARBs: methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus faecium (VRE), Escherichia coli SMS-3-5, and Pseudomonas aeruginosa 01, respectively. An extended amplicon-length quantitative polymerase chain reaction assay was developed to enhance capture of ARG damage events and also to normalize to an equivalent length of target DNA (∼1000 bp) for comparison. It was found that the two Gram-positive ARBs (MRSA and VRE) were more resistant to UV disinfection than the two Gram-negative ARBs (E. coli and P. aeruginosa). The two Gram-positive organisms also possessed smaller total genome sizes, which could also have reduced their susceptibility to UV because of fewer potential pyrimidine dimer targets. An effect of cell type on damage to ARGs was only observed in VRE and P. aeruginosa, the latter potentially because of extracellular polymeric substances. In general, damage of ARGs required much greater UV doses (200-400 mJ/cm² for 3- to 4-log reduction) than ARB inactivation (10-20 mJ/cm² for 4- to 5-log reduction). The proportion of amplifiable ARGs following UV treatment exhibited a strong negative correlation with the number of adjacent thymines (Pearson r 0.85; p disinfection technologies should be explored.

  11. Emerging antibiotic resistance in bacteria with special reference to India

    Indian Academy of Sciences (India)

    D Raghunath

    2008-11-01

    The antibiotic era started in the 1940s and changed the profile of infectious diseases and human demography. The burgeoning classes and numbers promised much and elimination of this major cause of human (and animal) morbidity appeared possible. Bacterial antibiotic resistance which was observed soon after antibiotic introduction has been studied extensively. Diverse mechanisms have been demonstrated and the genetic basis elucidated. The resilience of the prokaryote ecosystems to antibiotic stress has been realized. The paper presents these subjects briefly to afford an overview. The epidemiology of antibiotic resistance is dealt with and community practices in different countries are described. The role of high antibiotic usage environments is indicated. The implication of the wide use of antibiotics in animals has been pointed out. Steadily increasing antibiotic resistance and decreasing numbers of newer antibiotics appear to point to a post-antibiotic period during which treatment of infections would become increasingly difficult. This article attempts to review the global antimicrobial resistance scene and juxtaposes it to the Indian experience. The prevalence in India of antibiotic resistance among major groups of pathogens is described. The factors that determine the prevalent high antibiotic resistance rates have been highlighted. The future research activity to ensure continued utility of antibiotics in the control of infections has been indicated.

  12. Antibiotics influence on lactic acid bacteria inhibiting gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Andreja Čanžek Majhenič

    2001-04-01

    Full Text Available Lactic acid bacteria (LAB are common inhabitants of the gastrointestinal (GI tract and have important role in maintaining the equilibrium of GI flora, which can be influenced by various factors like diets, antimicrobials and stress. Minimal inhibitory concentrations (MIC and minimal bactericidal concentrations (MBC of 6 antibiotics, commonly used in human medicine for 8 selected lactobacilli strains were determined by macrodilution and microdilution methods in liquid media and by diffusion method on agar plates. The effects of Penicillin G and Ampicillin on intestinal LAB were tested in vivoon mice as well. Lactobacilli were sensitive to Penicillin G, (penicillines and their derivatives and Erythromycin (macrolides by in vitro testing. Clyndamycin (pyranosid showed moderate inhibitory effect. All lactobacilli strains were resistant to Kanamycin and Neomycin (aminoglycosides, while L. salivarius IM 124 has shown extra resistance to Erythromycin and Clyndamycin. The influence of orally administered Ampicillin showed no significant influence on LAB count in mice faeces. The effect of Penicillin G on mice LAB total count was significant, while no effect of orally administered lactobacilli was determined.

  13. The Shared Antibiotic Resistome of Soil Bacteria and Human Pathogens

    DEFF Research Database (Denmark)

    Forsberg, Kevin J.; Reyes, Alejandro; Wang, Bin;

    2012-01-01

    From Farm to Clinic?Soil organisms have long been assumed to be an important source of antibiotic resistance genes, in part because of antibiotic-treated livestock and in part because of the natural ecology of antibiotic production in the soil. Forsberg et al. (p. 1107) developed a metagenomic...

  14. A mathematical model for expected time to extinction of pathogenic bacteria through antibiotic

    Science.gov (United States)

    Ghosh, M. K.; Nandi, S.; Roy, P. K.

    2016-04-01

    Application of antibiotics in human system to prevent bacterial diseases like Gastritis, Ulcers, Meningitis, Pneumonia and Gonorrhea are indispensable. Antibiotics saved innumerable lives and continue to be a strong support for therapeutic application against pathogenic bacteria. In human system, bacterial diseases occur when pathogenic bacteria gets into the body and begin to reproduce and crowd out healthy bacteria. In this process, immature bacteria releases enzyme which is essential for bacterial cell-wall biosynthesis. After complete formation of cell wall, immature bacteria are converted to mature or virulent bacteria which are harmful to us during bacterial infections. Use of antibiotics as drug inhibits the bacterial cell wall formation. After application of antibiotics within body, the released bacterial enzyme binds with antibiotic molecule instead of its functional site during the cell wall synthesis in a competitive inhibition approach. As a consequence, the bacterial cell-wall formation as well as maturation process of pathogenic bacteria is halted and the disease is cured with lysis of bacterial cells. With this idea, a mathematical model has been developed in the present research investigation to review the inhibition of biosynthesis of bacterial cell wall by the application of antibiotics as drug in the light of enzyme kinetics. This approach helps to estimate the expected time to extinction of the pathogenic bacteria. Our mathematical approach based on the enzyme kinetic model for finding out expected time to extinction contributes favorable results for understanding of disease dynamics. Analytical and numerical results based on simulated findings validate our mathematical model.

  15. Selection of antibiotic-resistant standard plate count bacteria during water treatment.

    Science.gov (United States)

    Armstrong, J L; Calomiris, J J; Seidler, R J

    1982-08-01

    Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.

  16. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    Science.gov (United States)

    Unger, Nathan R; Ritter, Erich; Borrego, Robert; Goodman, Jay; Osiyemi, Olayemi O

    2014-01-01

    Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11), suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4) bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001) more common than gram-positive bacteria (39%). The most common organisms were Vibrio spp. (28%), various coagulase-negative Staphylococcus spp. (16%), and Pasteurella spp. (12%). The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline. PMID:25110948

  17. Antibiotic susceptibilities of bacteria isolated within the oral flora of Florida blacktip sharks: guidance for empiric antibiotic therapy.

    Directory of Open Access Journals (Sweden)

    Nathan R Unger

    Full Text Available Sharks possess a variety of pathogenic bacteria in their oral cavity that may potentially be transferred into humans during a bite. The aim of the presented study focused on the identification of the bacteria present in the mouths of live blacktip sharks, Carcharhinus limbatus, and the extent that these bacteria possess multi-drug resistance. Swabs were taken from the oral cavity of nineteen live blacktip sharks, which were subsequently released. The average fork length was 146 cm (±11, suggesting the blacktip sharks were mature adults at least 8 years old. All swabs underwent standard microbiological work-up with identification of organisms and reporting of antibiotic susceptibilities using an automated microbiology system. The oral samples revealed an average of 2.72 (±1.4 bacterial isolates per shark. Gram-negative bacteria, making up 61% of all bacterial isolates, were significantly (p<0.001 more common than gram-positive bacteria (39%. The most common organisms were Vibrio spp. (28%, various coagulase-negative Staphylococcus spp. (16%, and Pasteurella spp. (12%. The overall resistance rate was 12% for all antibiotics tested with nearly 43% of bacteria resistant to at least one antibiotic. Multi-drug resistance was seen in 4% of bacteria. No association between shark gender or fork length with bacterial density or antibiotic resistance was observed. Antibiotics with the highest overall susceptibility rates included fluoroquinolones, 3rd generation cephalosporins and sulfamethoxazole/trimethoprim. Recommended empiric antimicrobial therapy for adult blacktip shark bites should encompass either a fluoroquinolone or combination of a 3rd generation cephalosporin plus doxycycline.

  18. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic

  19. Resistance to antibiotics in Lacid acid bacteria - strain Lactococcus

    Directory of Open Access Journals (Sweden)

    Filipić Brankica

    2015-01-01

    Full Text Available Lactic acid bacteria (LAB are widely used in the food industry, especially in the production of fermented dairy products and meat. The most studied species among Lis Lactococcus lactis. L. lactis strains are of great importance in the production of fermented dairy products such as yogurt, butter, fresh cheese and some kind of semi-hard cheese. Although L. lactis acquired the „Generally Regarded As Safe“ (GRAS status, many investigations indicated that lactococci may act as reservoirs of antibiotic resistance genes, which could be transferred to other bacterial species in human gastrointestinal tract includ­ing pathogens. The genome analysis of L. lactis indicated the presence of at least 40 putative drug transporter genes, and only four multidrug resistance (MDR transporters are functionally characterized: LmrA, LmrP, LmrCD i CmbT. LmrA is the first described MDR transporter in prokaryotes. LmrCD is responsible for resistance to cholate, which is an integral part of human bile and LmrCD is important for intestinal survival of lactococci that are used as probiotics. Secondary multidrug transporter LmrP confers resistance to lincosamides, macrolides, streptogramins and tetracyclines. CmbT protein has an effect on the host cell resistance to lincomycin, sulfadiazine, streptomycin, rifampicin, puromycin and sulfametox­azole. Since the food chain is an important way of transmitting resistance genes in human and animal population, it is of great importance to study the mechanisms of resistance in lactococci and other LAB, intended for the food industry. [Projekat Ministarstva nauke Republike Srbije, br. 173019: Izučavanje gena i molekularnih mehanizama u osnovi probiotičke aktivnosti bakterija mlečne kiseline izolovanih sa područja Zapadnog Balkana

  20. Molecular Characterization of Intrinsic and Acquired antibiotic resistance in lactic Acid bacteria and Bifidobacteria

    NARCIS (Netherlands)

    Ammor, M.S.; Flórez, A.B.; Hoek, van A.H.A.M.; Reyes-Gavilan, de los C.G.; Aarts, H.J.M.; Margolles, A.; Mayo, B.

    2008-01-01

    The minimum inhibitory concentrations (MICs) of 6 different antibiotics (chloramphenicol, clindamycin, erythromycin, streptomycin, tetracycline and vancomycin) were determined for 143 strains of lactic acid bacteria and bifidobacteria using the Etest. Different MICs were found for different species

  1. Differential sensitivity of pigmented and non-pigmented marine bacteria to metals and antibiotics

    Digital Repository Service at National Institute of Oceanography (India)

    Nair, S.; Chandramohan, D.; LokaBharathi, P.A.

    and Hg were less toxic to pigmented bacteria than Cd. Pigmented strains were resistant to antibiotics, particularly at higher concentrations. All the strains, irrespective of their pigments, showed multiple metal and drug resistance...

  2. Surveillance of Antibiotic-Resistant Bacteria from Wastewater Effluents Across the United States

    Science.gov (United States)

    This presentation will inform the audience of the purpose and importance of the antibiotic resistant bacteria surveillances that have been conducted to date. And an overview of why the EPA is looking into this problem in wastewater effluents.

  3. Antibiotic transport in resistant bacteria: synchrotron UV fluorescence microscopy to determine antibiotic accumulation with single cell resolution.

    Directory of Open Access Journals (Sweden)

    Slávka Kaščáková

    Full Text Available A molecular definition of the mechanism conferring bacterial multidrug resistance is clinically crucial and today methods for quantitative determination of the uptake of antimicrobial agents with single cell resolution are missing. Using the naturally occurring fluorescence of antibacterial agents after deep ultraviolet (DUV excitation, we developed a method to non-invasively monitor the quinolones uptake in single bacteria. Our approach is based on a DUV fluorescence microscope coupled to a synchrotron beamline providing tuneable excitation from 200 to 600 nm. A full spectrum was acquired at each pixel of the image, to study the DUV excited fluorescence emitted from quinolones within single bacteria. Measuring spectra allowed us to separate the antibiotic fluorescence from the autofluorescence contribution. By performing spectroscopic analysis, the quantification of the antibiotic signal was possible. To our knowledge, this is the first time that the intracellular accumulation of a clinical antibiotic could be determined and discussed in relation with the level of drug susceptibility for a multiresistant strain. This method is especially important to follow the behavior of quinolone molecules at individual cell level, to quantify the intracellular concentration of the antibiotic and develop new strategies to combat the dissemination of MDR-bacteria. In addition, this original approach also indicates the heterogeneity of bacterial population when the same strain is under environmental stress like antibiotic attack.

  4. The incidence of antibiotic resistant bacteria in chicken and pork / Eugénie van Wijk

    OpenAIRE

    Van Wijk, Eugénie

    2003-01-01

    The emergence of antibiotic resistance in important human pathogens has globally become a public health concern. Consumption of contaminated meat and meat products constitute a major route for the transmission of antibiotic resistant organisms and the dissemination of resistance genes in the human environment. The aim of this study was to determine the level of antibiotic resistance in potentially pathogenic bacteria associated with pork, chicken meat, chicken manure, chicken f...

  5. Is screening patients for antibiotic-resistant bacteria justified in the Indian context?

    OpenAIRE

    Bhattacharya, S.

    2011-01-01

    Infection with multi-antibiotic-resistant bacteria is a common clinical problem in India. In some countries and centres, screening patients to detect colonisation by these organisms is used to determine specific interventions such as decolonisation treatment, prophylactic antibiotics prior to surgical interventions or for selection of empirical antibiotic therapy, and to isolate patients so that transmission of these difficult to treat organisms to other patients could be prevented. In India,...

  6. Recycling antibiotics into GUMBOS: A new combination strategy to combat multi-drug resistant bacteria

    Science.gov (United States)

    The emergence of multi-drug resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded ß-lactam antibiotics (amp...

  7. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    Science.gov (United States)

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms. PMID:26703979

  8. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    Science.gov (United States)

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.

  9. Growth of soil bacteria, on penicillin and neomycin, not previously exposed to these antibiotics.

    Science.gov (United States)

    Zhang, Qichun; Dick, Warren A

    2014-09-15

    There is growing evidence that bacteria, in the natural environment (e.g. the soil), can exhibit naturally occurring resistance/degradation against synthetic antibiotics. Our aim was to assess whether soils, not previously exposed to synthetic antibiotics, contained bacterial strains that were not only antibiotic resistant, but could actually utilize the antibiotics for energy and nutrients. We isolated 19 bacteria from four diverse soils that had the capability of growing on penicillin and neomycin as sole carbon sources up to concentrations of 1000 mg L(-1). The 19 bacterial isolates represent a diverse set of species in the phyla Proteobacteria (84%) and Bacteroidetes (16%). Nine antibiotic resistant genes were detected in the four soils but some of these genes (i.e. tetM, ermB, and sulI) were not detected in the soil isolates indicating the presence of unculturable antibiotic resistant bacteria. Most isolates that could subsist on penicillin or neomycin as sole carbon sources were also resistant to the presence of these two antibiotics and six other antibiotics at concentrations of either 20 or 1000 mg L(-1). The potentially large and diverse pool of antibiotic resistant and degradation genes implies ecological and health impacts yet to be explored and fully understood.

  10. New Antibiotics in Development Against Multidrug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Soner Yýlmaz

    2013-05-01

    Full Text Available The rapid development of resistance to antimicrobial agents caused to investigate new antimicrobial agents for the treatment of various infections and new antibiotic effect mechanisms. Methicillin-resistant Staphylococcus aureus (MRSA, vancomycin-resistant enterococci (VRE, extended-spectrum beta-lactamase (ESBL Escherichia coli and Klebsiella spp., multidrug-resistant strains of Acinetobacter baumannii and Pseudomonas aeruginosa are the most important targets for new antibacterial. Development speed of new antibacterial agents decreased dramatically in the last ten years. Correct use of antibiotics should be the basic principle to avoid the development of resistance. In addition, although the development of new antibiotics is so important, the main purpose should be determining the new targets in order to minimize undesired effects and drug interactions, detecting new antibiotics effect mechanisms and developing new antibiotics for these purposes.

  11. Antibiotic Resistance of Isolated Bacteria from Urban and Hospital Wastewaters in Hamadan City

    Directory of Open Access Journals (Sweden)

    M Karimi

    2011-04-01

    Full Text Available "nBackground and Objectives: widely use of antibiotics as therapy and uncontrolled discharge of them to receiving waters increased the percentages of antibiotic resistant bacteria in various environments which may cause problems in therapy. The aim of this study was to investigate the antibiotic resistance of E. coli, K. pneumoniae and P. aeruginosa bacteria isolated from urban and hospital wastewaters. Nine antibiotics namely Chloramphenicol, Ciprofloxacin, Trimethoprim Sulfamethoxazol, Gentamycin, Ceftizoxime, Nalidixic Acid, Ceftazidime, Ceftriaxon and Cefalexin were investigated in this study."nMaterials and Methods: through a cross-sectional descriptive study the isolation of bacteria from hospital and urban wastewater samples was performed by microbiological identification techniques. The resistance to nine antibiotics was tested by application of the standard disc diffusion technique and zone-size interpretation chart of Kirby-Baeur. Non-parametric Mann-Whitney test was used to assessing two environments differences."nResults: The resistance percentage of E. coli to studied antibiotics was significantly less (ranged from 1.81 to 51.02% than the resistance percentage of P. aeroginosa (ranged from 3.57 to 61.76 and K. pneumoniae (ranged from 6.45 to 91.83%. the highest resistance to antibiotics studied was for K. pneumonia in comparison with others. E. coli, K. pneumonia and P. aeroginosa bacteria showed the highest resistance to CAZ, SXT and CN, respectively. The study showed the resistance rate in hospital wastewater is more than urban wastewater."nConclusion: Easy access and uncontrolled usage of antibiotics cause discharge of antibiotics to wastewaters and consequently diminish the drugs' effectiveness. High concentration of antibiotic and diversity in wastewater of hospital in comparison with urban wastewater causes to transfer resistant agents between bacteria and increased the multiple resistances.

  12. Cecum lymph node dendritic cells harbor slow-growing bacteria phenotypically tolerant to antibiotic treatment.

    Directory of Open Access Journals (Sweden)

    Patrick Kaiser

    2014-02-01

    Full Text Available In vivo, antibiotics are often much less efficient than ex vivo and relapses can occur. The reasons for poor in vivo activity are still not completely understood. We have studied the fluoroquinolone antibiotic ciprofloxacin in an animal model for complicated Salmonellosis. High-dose ciprofloxacin treatment efficiently reduced pathogen loads in feces and most organs. However, the cecum draining lymph node (cLN, the gut tissue, and the spleen retained surviving bacteria. In cLN, approximately 10%-20% of the bacteria remained viable. These phenotypically tolerant bacteria lodged mostly within CD103⁺CX₃CR1⁻CD11c⁺ dendritic cells, remained genetically susceptible to ciprofloxacin, were sufficient to reinitiate infection after the end of the therapy, and displayed an extremely slow growth rate, as shown by mathematical analysis of infections with mixed inocula and segregative plasmid experiments. The slow growth was sufficient to explain recalcitrance to antibiotics treatment. Therefore, slow-growing antibiotic-tolerant bacteria lodged within dendritic cells can explain poor in vivo antibiotic activity and relapse. Administration of LPS or CpG, known elicitors of innate immune defense, reduced the loads of tolerant bacteria. Thus, manipulating innate immunity may augment the in vivo activity of antibiotics.

  13. Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether.

    Science.gov (United States)

    Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru

    2016-02-01

    The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.

  14. Mobile antibiotic resistance - the spread of genes determining the resistance of bacteria through food products.

    Science.gov (United States)

    Godziszewska, Jolanta; Guzek, Dominika; Głąbski, Krzysztof; Wierzbicka, Agnieszka

    2016-01-01

    In recent years, more and more antibiotics have become ineffective in the treatment of bacterial nfections. The acquisition of antibiotic resistance by bacteria is associated with circulation of genes in the environment. Determinants of antibiotic resistance may be transferred to pathogenic bacteria. It has been shown that conjugation is one of the key mechanisms responsible for spread of antibiotic resistance genes, which is highly efficient and allows the barrier to restrictions and modifications to be avoided. Some conjugative modules enable the transfer of plasmids even between phylogenetically distant bacterial species. Many scientific reports indicate that food is one of the main reservoirs of these genes. Antibiotic resistance genes have been identified in meat products, milk, fruits and vegetables. The reason for such a wide spread of antibiotic resistance genes is the overuse of antibiotics by breeders of plants and animals, as well as by horizontal gene transfer. It was shown, that resistance determinants located on mobile genetic elements, which are isolated from food products, can easily be transferred to another niche. The antibiotic resistance genes have been in the environment for 30 000 years. Their removal from food products is not possible, but the risks associated with the emergence of multiresistant pathogenic strains are very large. The only option is to control the emergence, selection and spread of these genes. Therefore measures are sought to prevent horizontal transfer of genes. Promising concepts involve the combination of developmental biology, evolution and ecology in the fight against the spread of antibiotic resistance. PMID:27383577

  15. Multidrug resistance and transferability of blaCTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm.

    Science.gov (United States)

    Maheshwari, Meenu; Ahmad, Iqbal; Althubiani, Abdullah Safar

    2016-09-01

    This study aimed to investigate the occurrence of biofilm-forming extended-spectrum β-lactamase (ESBL)-producing enteric bacteria in hospital wastewater and to evaluate their antibiotic resistance behaviour and transferability of the plasmid-encoded blaCTX-M gene in biofilm. ESBL production was confirmed using the combined disc test and Etest. Amplification of blaCTX-M was performed by PCR. Antibiotic susceptibility was evaluated using the disc diffusion assay and broth dilution method. Transfer of blaCTX-M in planktonic and biofilm state was performed by broth mating and filter mating experiments, respectively. Among 110 enteric bacteria, 24 (21.8%) isolates belonging to Escherichia coli, Klebsiella pneumoniae and Enterobacter cloacae were found to produce ESBL and formed varying levels of biofilm in vitro. Presence of blaCTX-M was detected in 18 (75%) ESBL-producing isolates. A many fold increase in resistance to antibiotics was observed in biofilm. Among ESBL-producers, seven isolates could transfer the blaCTX-M gene by conjugation, with transfer frequencies ranging from 2.22×10(-4) to 7.14×10(-2) transconjugants/recipient cell in the planktonic state and from 3.04×10(-3) to 9.15×10(-1) in biofilm. The transfer frequency of blaCTX-M was significantly higher in biofilm compared with the planktonic state, and co-transfer of ciprofloxacin resistance was also detected in five isolates. This study demonstrates that biofilm-forming ESBL-producing enteric bacteria with a greater transfer frequency of resistance genes will lead to frequent dissemination of β-lactam and fluoroquinolone resistance genes in environmental settings. The emergence and spread of such multidrug resistance is a serious threat to animal and public health. PMID:27530857

  16. Antibiotic-Resistant Fecal Bacteria, Antibiotics, and Mercury in Surface Waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony-forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic

  17. An Antibiotic Selection System For Protein Overproducing Bacteria

    DEFF Research Database (Denmark)

    Rennig, Maja; Nørholm, Morten

    2015-01-01

    Introduction: Protein overproduction is a major bottleneck for analyses of membrane proteins and for the construction of cell factories. Screening for optimized protein production can be very time consuming. In this study we show that the coupling of antibiotic resistance to poorly produced...... membrane proteins of Escherichia coli can be used as a fast and simple selection system for protein overproduction.Methods: We designed an expression plasmid encoding the gene of interest and an additional, inducible antibiotic resistance marker. Both genes were linked by a hairpin structure...... that translationally couples the genes. Consequently, high expressing gene variants also allow for higher production of the coupled antibiotic resistance marker. Therefore, high expressing gene variants in a library can be determined either by plating the expression library on selection plates or by growing...

  18. Zonulin Regulates Intestinal Permeability and Facilitates Enteric Bacteria Permeation in Coronary Artery Disease.

    Science.gov (United States)

    Li, Chuanwei; Gao, Min; Zhang, Wen; Chen, Caiyu; Zhou, Faying; Hu, Zhangxu; Zeng, Chunyu

    2016-01-01

    Several studies have reported an association between enteric bacteria and atherosclerosis. Bacterial 16S ribosomal RNA (rRNA) gene belong to Enterobacteriaceae have been detected in atherosclerotic plaques. How intestinal bacteria go into blood is not known. Zonulin reversibly modulate intestinal permeability (IP), the circulating zonulin levels were increased in diabetes, obesity, all of which are risk factors for atherosclerosis. It is unclear whether the circulating zonulin levels were changed in coronary artery disease (CAD) patients and modulate IP. The 16S rRNA gene of bacteria in blood sample was checked by 454 pyrosequencing. The zonulin levels were determined by enzyme-linked immunosorbent assay (ELISA) methods. The distribution of zonulin was detected by confocal immunofluorescence microscopy. Bacteria and Caco-2 cell surface micro-structure were checked by transmission electron microscopy. A high diversity of bacterial 16S rRNA gene can be detected in samples from CAD patients, most of them (99.4%) belong to Enterobacteriaceaes, eg. Rahnella. The plasma zonulin levels were significantly higher in CAD patients. Pseudomonas fluorescens exposure significantly increased zonulin expression and decreased IP in a time dependent manner. The elevated zonulin increase IP and may facilitate enteric translocation by disassembling the tight junctions, which might explain the observed high diversity of bacterial 16S rRNA genes in blood samples. PMID:27353603

  19. Biochemical characterization of systemic bacteria in bananas, sensitivity to antibiotics and plant phytotoxicity during shoot proliferation

    OpenAIRE

    Janiffe Peres de Oliveira; Jonny Everson Scherwinski-Pereira

    2016-01-01

    The objective of this work was to characterize the biochemically systemic bacterial isolated from banana plants, to evaluate the bacterial sensitivity to antibiotics, and to determine the phytotoxicity of banana shoots during in vitro proliferation. Systemic bacteria belonging to the Klebsiella and Aeromonas genera were isolated from the “Maravilha” (FHIA 01 AAAB), “Preciosa” (PV 4285 AAAB) and “Thap Maeo” (AAB) varieties and were then characterized. Tests of shoot sensitivity to antibiotics ...

  20. Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance.

    Directory of Open Access Journals (Sweden)

    Maria Cristina Thaller

    Full Text Available BACKGROUND: Antibiotic resistance, evolving and spreading among bacterial pathogens, poses a serious threat to human health. Antibiotic use for clinical, veterinary and agricultural practices provides the major selective pressure for emergence and persistence of acquired resistance determinants. However, resistance has also been found in the absence of antibiotic exposure, such as in bacteria from wildlife, raising a question about the mechanisms of emergence and persistence of resistant strains under similar conditions, and the implications for resistance control strategies. Since previous studies yielded some contrasting results, possibly due to differences in the ecological landscapes of the studied wildlife, we further investigated this issue in wildlife from a remote setting of the Galapagos archipelago. METHODOLOGY/PRINCIPAL FINDINGS: Screening for acquired antibiotic resistance was carried out in commensal enterobacteria from Conolophus pallidus, the terrestrial iguana of Isla Santa Fe, where: i the abiotic conditions ensure to microbes good survival possibilities in the environment; ii the animal density and their habits favour microbial circulation between individuals; and iii there is no history of antibiotic exposure and the impact of humans and introduced animal species is minimal except for restricted areas. Results revealed that acquired antibiotic resistance traits were exceedingly rare among bacteria, occurring only as non-dominant strains from an area of minor human impact. CONCLUSIONS/SIGNIFICANCE: Where both the exposure to antibiotics and the anthropic pressure are minimal, acquired antibiotic resistance traits are not normally found in bacteria from wildlife, even if the ecological landscape is highly favourable to bacterial circulation among animals. Monitoring antibiotic resistance in wildlife from remote areas could also be a useful tool to evaluate the impact of anthropic pressure.

  1. Co-occurrence of resistance to different antibiotics among aquatic bacteria

    Directory of Open Access Journals (Sweden)

    Voolaid Veiko

    2012-10-01

    Full Text Available Abstract Background Antibiotic resistance is not confined to pathogens, but is also widespread in various natural environments. In nature the microbes producing antibiotic compounds have been around for millions of years. Heavy use of antibiotics in medicine and veterinary practice may lead to the accumulation of resistance genes in microbial populations, followed by a rise in multiresistant bacteria. Results To test the extent of resistance among aquatic bacteria, we have collected 760 isolates resistant to at least one antibiotic. The phylogeny of the isolates covers a wide range of Proteobacteria, Actinobacteria and Bacteroidetes. In order to determine the extent of multiresistance, the isolates were tested on six antibiotics. As the growth rate of the different bacteria was highly variable, the classical medical resistance tests could not be used, and an alternative method considering the full growth curve was developed. In general, the overall resistances to different antibiotics could be explained by random, independent distribution. An exception to this was the resistances against tetracycline and chloramphenicol, which tended to occur in pairs. Conclusions We conclude that there is no massive spread of multiresistance determinants in the studied environment, although some specific cases can be found, awaiting for molecular characterization of the resistance mechanisms.

  2. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  3. Functional characterization of bacteria isolated from ancient arctic soil exposes diverse resistance mechanisms to modern antibiotics.

    Science.gov (United States)

    Perron, Gabriel G; Whyte, Lyle; Turnbaugh, Peter J; Goordial, Jacqueline; Hanage, William P; Dantas, Gautam; Desai, Michael M

    2015-01-01

    Using functional metagenomics to study the resistomes of bacterial communities isolated from different layers of the Canadian high Arctic permafrost, we show that microbial communities harbored diverse resistance mechanisms at least 5,000 years ago. Among bacteria sampled from the ancient layers of a permafrost core, we isolated eight genes conferring clinical levels of resistance against aminoglycoside, β-lactam and tetracycline antibiotics that are naturally produced by microorganisms. Among these resistance genes, four also conferred resistance against amikacin, a modern semi-synthetic antibiotic that does not naturally occur in microorganisms. In bacteria sampled from the overlaying active layer, we isolated ten different genes conferring resistance to all six antibiotics tested in this study, including aminoglycoside, β-lactam and tetracycline variants that are naturally produced by microorganisms as well as semi-synthetic variants produced in the laboratory. On average, we found that resistance genes found in permafrost bacteria conferred lower levels of resistance against clinically relevant antibiotics than resistance genes sampled from the active layer. Our results demonstrate that antibiotic resistance genes were functionally diverse prior to the anthropogenic use of antibiotics, contributing to the evolution of natural reservoirs of resistance genes.

  4. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Directory of Open Access Journals (Sweden)

    Yok-Ai Que

    Full Text Available Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA, a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  5. A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria.

    Science.gov (United States)

    Que, Yok-Ai; Hazan, Ronen; Strobel, Benjamin; Maura, Damien; He, Jianxin; Kesarwani, Meenu; Panopoulos, Panagiotis; Tsurumi, Amy; Giddey, Marlyse; Wilhelmy, Julie; Mindrinos, Michael N; Rahme, Laurence G

    2013-01-01

    Bacteria can be refractory to antibiotics due to a sub-population of dormant cells, called persisters that are highly tolerant to antibiotic exposure. The low frequency and transience of the antibiotic tolerant "persister" trait has complicated elucidation of the mechanism that controls antibiotic tolerance. In this study, we show that 2' Amino-acetophenone (2-AA), a poorly studied but diagnostically important small, volatile molecule produced by the recalcitrant gram-negative human pathogen Pseudomonas aeruginosa, promotes antibiotic tolerance in response to quorum-sensing (QS) signaling. Our results show that 2-AA mediated persister cell accumulation occurs via alteration of the expression of genes involved in the translational capacity of the cell, including almost all ribosomal protein genes and other translation-related factors. That 2-AA promotes persisters formation also in other emerging multi-drug resistant pathogens, including the non 2-AA producer Acinetobacter baumannii implies that 2-AA may play an important role in the ability of gram-negative bacteria to tolerate antibiotic treatments in polymicrobial infections. Given that the synthesis, excretion and uptake of QS small molecules is a common hallmark of prokaryotes, together with the fact that the translational machinery is highly conserved, we posit that modulation of the translational capacity of the cell via QS molecules, may be a general, widely distributed mechanism that promotes antibiotic tolerance among prokaryotes.

  6. THAWING PROCEDURES FOR HOSPITAL-MADE ENTERAL FEEDINGS: SURVIVAL OF COLIFORM AND MESOPHILIC AEROBIC BACTERIA

    Directory of Open Access Journals (Sweden)

    KATHIA ROSSI ROLIM LOPES

    2009-07-01

    Full Text Available

    ABSTRACT: This study had the purpose to observe the effect of thawing procedures on survival of coliform and mesophilic aerobic bacteria in hospital-made enteral feedings. The samples are represented by three different lots. The tests were realized in three moments: immediately after the sample preparation and after freezing during 1 or 2 months. The thawing procedures were denominated convencional and alternative. The first, used by hospital, utilizes water bath at 50ºC, considering the time spent from the total thawing to its distribution in the infirmaries. The second was the fast thawing made by microwaving. The results showed that the reduction of the mesophiles and coliform was related to the time the samples were frozen. The results obtained indicate an advantage of the alternative method, which presented lower total and fecal coliform counts than the conventional one. KEYWORDS: Enteral feedings; thawing; food microbiology.

  7. Coordinated Slowing of Metabolism in Enteric Bacteria under Nitrogen Limitation A Perspective

    CERN Document Server

    Wingreen, N S; Wingreen, Ned S.; Kustu, Sydney

    2001-01-01

    It is natural to ask how bacteria coordinate metabolism when depletion of an essential nutrient limits their growth, and they must slow their entire rate of biosynthesis. A major nutrient with a fluctuating abundance is nitrogen. The growth rate of enteric bacteria under nitrogen-limiting conditions is known to correlate with the internal concentration of free glutamine, the glutamine pool. Here we compare the patterns of utilization of L-glutamine and L-glutamate, the two central intermediates of nitrogen metabolism. Monomeric precursors of all of the cell's macromolecules -- proteins, nucleic acids, and surface polymers -- require the amide group of glutamine at the first dedicated step of biosynthesis. This is the case even though only a minority (~12%) of total cell nitrogen derives from glutamine. In contrast, the amino group of glutamate, which provides the remainder of cell nitrogen, is generally required late in biosynthetic pathways, e.g. in transaminase reactions for amino acid synthesis. We propose...

  8. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release.

    Science.gov (United States)

    Zhuk, Iryna; Jariwala, Freneil; Attygalle, Athula B; Wu, Yong; Libera, Matthew R; Sukhishvili, Svetlana A

    2014-08-26

    We report on highly efficient, bioresponsive, controlled-release antibacterial coatings constructed by direct assembly of tannic acid (TA) with one of several cationic antibiotics (tobromycin, gentamicin, and polymyxin B) using the layer-by-layer (LbL) technique. These films exhibit a distinct “self-defense” behavior triggered by acidification of the immediate environment by pathogenic bacteria, such as Staphylococcus epidermidis (S. epidermidis) or Escherichia coli (E. coli). Films assembled using spin-assisted and dip-assisted techniques show drastically different morphology, thickness and pH-/bacteria-triggered antibiotic release characteristics. While dip-deposited films have rough surfaces with island-like, granular structures regardless of the film thickness, spin-assisted LbL assemblies demonstrate a transition from linear deposition of uniform 2D films to a highly developed 3D morphology for films thicker than ∼45 nm. Ellipsometry, UV–vis and mass spectrometry confirm that all coatings do not release antibiotics in phosphate buffered saline at pH 7.4 for as long as one month in the absence of bacteria and therefore do not contribute to the development of antibiotic resistance. These films do, however, release antibiotics upon pH lowering. The rate of triggered release can be controlled through the choice of assembled antibiotic and the assembly technique (spin- vs dip-deposition) and by the spinning rate used during deposition, which all affect the strength of TA–antibiotic binding. TA/antibiotic coatings as thin as 40 nm strongly inhibit S. epidermidis and E. coli bacterial growth both at surfaces and in surrounding medium, but support adhesion and proliferation of murine osteoblast cells. These coatings thus present a promising way to incorporate antibacterial agents at surfaces to prevent bacterial colonization of implanted biomedical devices.

  9. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system. PMID:27333280

  10. Prevalence of antibiotic-resistant bacteria in three different aquatic environments over three seasons.

    Science.gov (United States)

    Mohanta, Tandra; Goel, Sudha

    2014-08-01

    The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012-2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n = 138), River Kangsabati (n = 13) and groundwater (n = 12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon > winter > summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.

  11. [Distribution and removal of anaerobic antibiotic resistant bacteria during mesophilic anaerobic digestion of sewage sludge].

    Science.gov (United States)

    Tong, Juan; Wang, Yuan-Yue; Wei Yuan, Song

    2014-10-01

    Sewage sludge is one of the major sources that releasing antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG) into the environment since it contains large amount of ARB, but there is little information about the fate of the anaerobic ARB in the anaerobic digestion of sewage sludge. Therefore, the distribution, removal and seasonal changes of tetracycline and β-lactam antibiotics resistant bacteria in the mesophilic egg-shaped digesters of a municipal wastewater treatment plant were investigated for one year in this study. Results showed that there were higher amounts of ARB and higher resistance rate of β-lactam antibiotics than that of tetracycline antibiotics in the sewage sludge. All ARB could be significantly reduced during the mesophilic anaerobic digestion process by 1.48-1.64 log unit (P < 0.05). Notably, the ampicillin and cephalothin resistance rates were significantly increased after anaerobic digestion by 12.0% and 14.3%, respectively (P < 0.05). The distribution of ARB in the sewage sludge had seasonal change characteristics. Except for chlorotetracycline resistant bacteria, there were more ARB in the sewage sludge in cold season than in warm season (P < 0.05). PMID:25693388

  12. Heavy metal and antibiotic resistance in bacteria isolated from the environment of swine farms

    International Nuclear Information System (INIS)

    The aim of the present study was to determine the level of heavy metal resistance and antibiotic resistance patterns of bacterial isolates from environment of swine farms in China. A total of 284 bacteria were isolated, 158 from manure, 62 from soil and 64 from wastewater in different swine farm samples. All the isolates were tested for resistant against eight heavy metals. From the total of 284 isolates, maximum bacterial isolates were found to be resistant to Zn/sup 2+/ (98.6%) followed by Cu/sup 2+/ (97.5%), Cd/sup 2+/ (68.3%), Mn/sup 2+/ (60.2%), Pb/sup 2+/(51.4%), Ni/sup 2+/(41.5%) and Cr/sup 2+/(45.1%). However, most of the isolates were sensitive to Co/sup 2+/. Meanwhile,all the isolates were tested for sensitively to nine antibiotics. The results shows that most isolates were sensitive to cefoxitin and oxacillin, but resistance to tetracycline, ampicillin, gentamicin, amikacin, erythromycin, clindamycin were widespread. Multiple resistant to metals and antibiotics were also observed in this study. Most isolates were tolerant to different concentrations of various heavy metals and antibiotics. Our results confirmed that environment of swine farms in China has a significant proportion of heavy metal and antibiotic resistant bacteria, and these bacteria constitute a potential risk for swine health and public health. (author)

  13. Methanobactin: a copper binding compound having antibiotic and antioxidant activity isolated from methanotrophic bacteria

    Science.gov (United States)

    DiSpirito, Alan A.; Zahn, James A.; Graham, David W.; Kim, Hyung J.; Alterman, Michail; Larive, Cynthia

    2007-04-03

    A means and method for treating bacterial infection, providing antioxidant activity, and chelating copper using a copper binding compound produced by methanotrophic bacteria is described. The compound, known as methanobactin, is the first of a new class of antibiotics having gram-positive activity. Methanobactin has been sequenced, and its structural formula determined.

  14. When It Comes to Antibiotics, Bacteria Show Some NO-how

    Institute of Scientific and Technical Information of China (English)

    Bhumit A. Patel; Brian R. Crane

    2010-01-01

    @@ Homologs to mammalian nitric oxide synthases are found in many mostly Gram-positive bacteria. In some genera such as bacilli, and staphylococci, these enzymes produce protects against oxidative damage, this effect has now been shown to provide an advantage against antibiotics that kill by increasing cellular levels of reactive oxygen species.

  15. The Study of Blood Culture for Prevalent Bacteria and Antibiotic Resistance on Hospitalized Patients

    Directory of Open Access Journals (Sweden)

    H Alaodolei

    2007-06-01

    Full Text Available Background: Bacteremia means invasion of bacteria to coronary- arthery system. One third of these cases lead to septicemia and in 40-50% cases, it causes patient’s death. Therefore information about resistance and prevalent of bacteria isolated from blood culture is important for deciding about suitable therapeutic management. Methods: This retrospective study was done on all positive blood cultures for typing and detecting of antibiotic resistance during 2001- 2005. Data was analyzed by statistical procedure. Results: In 252 (4.35% of studied blood cultures, the most prevalent bacteries were Staph. epidermidis (35.2% and E. Coli (18.5%. The greatest and the least resistance antibiotics were βLactam (75.2% and glycopeptide (7.8% groups, respectively. Conclusion: With regard to antibiotic resistance increased during these years, awaring of the last changes about it in every therapeutic center is necessary.

  16. Anthrax lethal toxin disrupts intestinal barrier function and causes systemic infections with enteric bacteria.

    Directory of Open Access Journals (Sweden)

    Chen Sun

    Full Text Available A variety of intestinal pathogens have virulence factors that target mitogen activated protein kinase (MAPK signaling pathways, including Bacillus anthracis. Anthrax lethal toxin (LT has specific proteolytic activity against the upstream regulators of MAPKs, the MAPK kinases (MKKs. Using a murine model of intoxication, we show that LT causes the dose-dependent disruption of intestinal epithelial integrity, characterized by mucosal erosion, ulceration, and bleeding. This pathology correlates with an LT-dependent blockade of intestinal crypt cell proliferation, accompanied by marked apoptosis in the villus tips. C57BL/6J mice treated with intravenous LT nearly uniformly develop systemic infections with commensal enteric organisms within 72 hours of administration. LT-dependent intestinal pathology depends upon its proteolytic activity and is partially attenuated by co-administration of broad spectrum antibiotics, indicating that it is both a cause and an effect of infection. These findings indicate that targeting of MAPK signaling pathways by anthrax LT compromises the structural integrity of the mucosal layer, serving to undermine the effectiveness of the intestinal barrier. Combined with the well-described immunosuppressive effects of LT, this disruption of the intestinal barrier provides a potential mechanism for host invasion via the enteric route, a common portal of entry during the natural infection cycle of Bacillus anthracis.

  17. Term-seq reveals abundant ribo-regulation of antibiotics resistance in bacteria.

    Science.gov (United States)

    Dar, Daniel; Shamir, Maya; Mellin, J R; Koutero, Mikael; Stern-Ginossar, Noam; Cossart, Pascale; Sorek, Rotem

    2016-04-01

    Riboswitches and attenuators are cis-regulatory RNA elements, most of which control bacterial gene expression via metabolite-mediated, premature transcription termination. We developed an unbiased experimental approach for genome-wide discovery of such ribo-regulators in bacteria. We also devised an experimental platform that quantitatively measures the in vivo activity of all such regulators in parallel and enables rapid screening for ribo-regulators that respond to metabolites of choice. Using this approach, we detected numerous antibiotic-responsive ribo-regulators that control antibiotic resistance genes in pathogens and in the human microbiome. Studying one such regulator in Listeria monocytogenes revealed an attenuation mechanism mediated by antibiotic-stalled ribosomes. Our results expose broad roles for conditional termination in regulating antibiotic resistance and provide a tool for discovering riboswitches and attenuators that respond to previously unknown ligands.

  18. A Multifunctional Subphthalocyanine Nanosphere for Targeting, Labeling, and Killing of Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Roy, Indranil; Shetty, Dinesh; Hota, Raghunandan; Baek, Kangkyun; Kim, Jeesu; Kim, Chulhong; Kappert, Sandro; Kim, Kimoon

    2015-12-01

    Developing a material that can combat antibiotic-resistant bacteria, a major global health threat, is an urgent requirement. To tackle this challenge, we synthesized a multifunctional subphthalocyanine (SubPc) polymer nanosphere that has the ability to target, label, and photoinactivate antibiotic-resistant bacteria in a single treatment with more than 99 % efficiency, even with a dose as low as 4.2 J cm(-2) and a loading concentration of 10 nM. The positively charged nanosphere shell composed of covalently linked SubPc units can increase the local concentration of photosensitizers at therapeutic sites. The nanosphere shows superior performance compared to corresponding monomers presumably because of their enhanced water dispersibility, higher efficiency of singlet-oxygen generation, and phototoxicity. In addition, this material is useful in fluorescence labeling of living cells and shows promise in photoacoustic imaging of bacteria in vivo.

  19. Sulfhydryl variable-5 extended spectrum β-lactamase in nosocomial enteric bacteria causing sepsis in mexican children

    Directory of Open Access Journals (Sweden)

    Angélica Flores-Pérez

    2015-10-01

    Full Text Available Introduction: Enteric bacteria causing nosocomial infections are often resistant to third-generation cephalosporins due to the production of extended-spectrum β-lactamases (ESBLs. Objective: To describe and characterize the ESBLs pattern present in Klebsiella pneumoniae and Serratia marcescens strains, isolated as causative of nosocomial sepsis in pediatric patients at Instituto Nacional de Pediatría (National Institute of Pediatrics. Material and methods: We analyzed 94 strains of K. pneumoniae and 7 of S. marcescens isolated from clinical specimens from 2002-2005, causative of sepsis in a children’s hospital. We evaluated antibiotic susceptibility and detection of ESBL phenotypes by disk diffusion methods; ceftazidime-resistant isolates were further characterized by pulsed field gel electrophoresis (PFGE; and ESBLs were phenotypically and genotypically characterized by isoelectric focusing, polymerase chain reaction (PCR and sequencing. We also assed for presence of conjugative plasmids bearing the ESBL gene. Results: 51/94 (54% of K. pneumoniae isolates, and 5/7 (71% of S. marcescens isolates were resistant to ceftazidime; all carried a blaSHV-5 gene. All K. pneumoniae isolates had a distinct PFGE profile, yet all carried a ~48-Kb plasmid, that was conjugatively transferable to an Escherichia coli receptor, which expressed the resistance phenotype. On the other hand, all S. marcescens isolates had a similar PFGE profile, were unable to transfer the ceftazidime-resistance phenotype, and were isolated from the same ward in a short time-span suggesting an outbreak. Conclusions: The overall prevalence of ESBL-producing enteric bacteria in this hospital is high but similar to other Latin American reports. The sulfhydryl variable-5 (SHV-5 ESBL gene appears to reside in a highly mobile plasmid, capable of spreading among different K. pneumoniae clones and perhaps even to S. marcescens.

  20. A new approach for the discovery of antibiotics by targeting non-multiplying bacteria: a novel topical antibiotic for staphylococcal infections.

    Directory of Open Access Journals (Sweden)

    Yanmin Hu

    Full Text Available In a clinical infection, multiplying and non-multiplying bacteria co-exist. Antibiotics kill multiplying bacteria, but they are very inefficient at killing non-multipliers which leads to slow or partial death of the total target population of microbes in an infected tissue. This prolongs the duration of therapy, increases the emergence of resistance and so contributes to the short life span of antibiotics after they reach the market. Targeting non-multiplying bacteria from the onset of an antibiotic development program is a new concept. This paper describes the proof of principle for this concept, which has resulted in the development of the first antibiotic using this approach. The antibiotic, called HT61, is a small quinolone-derived compound with a molecular mass of about 400 Daltons, and is active against non-multiplying bacteria, including methicillin sensitive and resistant, as well as Panton-Valentine leukocidin-carrying Staphylococcus aureus. It also kills mupirocin resistant MRSA. The mechanism of action of the drug is depolarisation of the cell membrane and destruction of the cell wall. The speed of kill is within two hours. In comparison to the conventional antibiotics, HT61 kills non-multiplying cells more effectively, 6 logs versus less than one log for major marketed antibiotics. HT61 kills methicillin sensitive and resistant S. aureus in the murine skin bacterial colonization and infection models. No resistant phenotype was produced during 50 serial cultures over a one year period. The antibiotic caused no adverse affects after application to the skin of minipigs. Targeting non-multiplying bacteria using this method should be able to yield many new classes of antibiotic. These antibiotics may be able to reduce the rate of emergence of resistance, shorten the duration of therapy, and reduce relapse rates.

  1. Effect of Oxytetracycline-Medicated Feed on Antibiotic Resistance of Gram-Negative Bacteria in Catfish Ponds

    OpenAIRE

    DePaola, A.; Peller, J. T.; Rodrick, G E

    1995-01-01

    The effect of oxytetracycline-medicated feeds on antibiotic resistance in gram-negative bacteria from fish intestines and water in catfish ponds was investigated. In experiments in the fall and spring, using ponds with no previous history of antibiotic usage, percentages of tetracycline-resistant bacteria in catfish intestines obtained from medicated ponds increased significantly after 10 days of treatment. In the fall, resistance of the intestinal and aquatic bacteria returned to pretreatmen...

  2. Recycling Antibiotics into GUMBOS: A New Combination Strategy to Combat Multi-Drug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Marsha R. Cole

    2015-04-01

    Full Text Available The emergence of multi-drug-resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded β-lactam antibiotics (ampicillin, carbenicillin, cephalothin and oxacillin and a well-known antiseptic (chlorhexidine di-acetate were fashioned into a group of uniform materials based on organic salts (GUMBOS as an alternative to conventional combination drug dosing strategies. The antibacterial activity of precursor ions (e.g., chlorhexidine diacetate and β-lactam antibiotics, GUMBOS and their unreacted mixtures were studied with 25 clinical isolates with varying antibiotic resistance using a micro-broth dilution method. Acute cytotoxicity and therapeutic indices were determined using fibroblasts, endothelial and cervical cell lines. Intestinal permeability was predicted using a parallel artificial membrane permeability assay. GUMBOS formed from ineffective β-lactam antibiotics and cytotoxic chlorhexidine diacetate exhibited unique pharmacological properties and profound antibacterial activity at lower concentrations than the unreacted mixture of precursor ions at equivalent stoichiometry. Reduced cytotoxicity to invasive cell types commonly found in superficial and chronic wounds was also observed using GUMBOS. GUMBOS show promise as an alternative combination drug strategy for treating wound infections caused by drug-resistant bacteria.

  3. Recycling antibiotics into GUMBOS: a new combination strategy to combat multi-drug-resistant bacteria.

    Science.gov (United States)

    Cole, Marsha R; Hobden, Jeffery A; Warner, Isiah M

    2015-01-01

    The emergence of multi-drug-resistant bacteria, coupled with the lack of new antibiotics in development, is fast evolving into a global crisis. New strategies utilizing existing antibacterial agents are urgently needed. We propose one such strategy in which four outmoded β-lactam antibiotics (ampicillin, carbenicillin, cephalothin and oxacillin) and a well-known antiseptic (chlorhexidine di-acetate) were fashioned into a group of uniform materials based on organic salts (GUMBOS) as an alternative to conventional combination drug dosing strategies. The antibacterial activity of precursor ions (e.g., chlorhexidine diacetate and β-lactam antibiotics), GUMBOS and their unreacted mixtures were studied with 25 clinical isolates with varying antibiotic resistance using a micro-broth dilution method. Acute cytotoxicity and therapeutic indices were determined using fibroblasts, endothelial and cervical cell lines. Intestinal permeability was predicted using a parallel artificial membrane permeability assay. GUMBOS formed from ineffective β-lactam antibiotics and cytotoxic chlorhexidine diacetate exhibited unique pharmacological properties and profound antibacterial activity at lower concentrations than the unreacted mixture of precursor ions at equivalent stoichiometry. Reduced cytotoxicity to invasive cell types commonly found in superficial and chronic wounds was also observed using GUMBOS. GUMBOS show promise as an alternative combination drug strategy for treating wound infections caused by drug-resistant bacteria.

  4. Resistance to antibiotics in Gram-negative bacteria isolated from broiler carcasses

    Directory of Open Access Journals (Sweden)

    Moreira M.A.S.

    2002-01-01

    Full Text Available One hundred and ninety-seven isolates of Gram-negative bacteria, comprising 10 genera, were isolated from poultry carcasses at a processing plant in order to investigate resistance to low levels of antibiotics. The samples were taken just after evisceration and before inspection. Most of the isolates were of Samonella and Escherichia. Other genera present were Enterobacter, Serratia, Klebsiella, Kluyvera, Erwinia, Citrobacter, Pseudomonas and Aeromonas. Distinct profiles of antibiotic resistance were detected. Resistance to more than two antibiotics predominated and spanned several classes of antibiotics. Salmonellae and escherichiae were mainly resistant to the aminoglycosides, followed by tetracycline, nitrofuran, sulpha, macrolide, chloramphenicol, quinolones and beta-lactams. Most isolates were sensitive to 30mug/ml olaquindox, the growth promoter in use at the time of sampling. However, many were resistant to a level of 10mug/ml and 13mug/ml olaquindox, levels present in the gut due to the dilution in the feed. The results suggest a possible role of low level administration of antibiotics to broilers in selecting multi-resistant bacteria in vivo.

  5. Bovine Muc1 inhibits binding of enteric bacteria to Caco-2 cells.

    Science.gov (United States)

    Parker, Phillip; Sando, Lillian; Pearson, Roger; Kongsuwan, Kritaya; Tellam, Ross L; Smith, Stuart

    2010-01-01

    Inhibition of bacterial adhesion to intestinal epithelial receptors by the consumption of natural food components is an attractive strategy for the prevention of microbial related gastrointestinal illness. We hypothesised that Muc1, a highly glycosylated mucin present in cows' milk, may be one such food component. Purified bovine Muc1 was tested for its ability to inhibit binding of common enteric bacterial pathogens to Caco-2 cells grown in vitro. Muc1 caused dose-dependent binding inhibition of Escherichia coli, Salmonella enterica serovar Typhimurium (S. Typhimurium), Staphylococcus aureus and Bacillus subtilis. This inhibition was more pronounced for the Gram negative compared with Gram positive bacteria. It was also demonstrated that Muc1, immobilised on a membrane, bound all these bacterial species in a dose-dependent manner, although there was greater interaction with the Gram negative bacteria. A range of monosaccharides, representative of the Muc1 oligosaccharide composition, were tested for their ability to prevent binding of E. coli and S. Typhimurium to Caco-2 cells. Inhibition was structure dependent with sialic acid, L(-) fucose and D(+) mannose significantly inhibiting binding of both Gram negative species. N-acetylglucosamine and N-acetylgalactosamine significantly inhibited binding of E. coli whilst galactose, one of the most abundant Muc1 monosaccharides, showed the strongest inhibition against S. Typhimurium. Treatment with sialidase significantly decreased the inhibitory properties of Muc1, demonstrating the importance of sialic acid in adhesion inhibition. It is concluded that bovine Muc1 prevents binding of bacteria to human intestinal cells and may have a role in preventing the binding of common enteropathogenic bacteria to human intestinal epithelial surfaces.

  6. Antibiotic Resistance

    Science.gov (United States)

    ... lives. But there is a growing problem of antibiotic resistance. It happens when bacteria change and become able ... resistant to several common antibiotics. To help prevent antibiotic resistance Don't use antibiotics for viruses like colds ...

  7. Is screening patients for antibiotic-resistant bacteria justified in the Indian context?

    Directory of Open Access Journals (Sweden)

    S Bhattacharya

    2011-01-01

    Full Text Available Infection with multi-antibiotic-resistant bacteria is a common clinical problem in India. In some countries and centres, screening patients to detect colonisation by these organisms is used to determine specific interventions such as decolonisation treatment, prophylactic antibiotics prior to surgical interventions or for selection of empirical antibiotic therapy, and to isolate patients so that transmission of these difficult to treat organisms to other patients could be prevented. In India, there is no national guideline or recommendation for screening patients for multi-drug-resistant (MDR bacteria such as MRSA (methicillin-resistant Staphylococcus aureus, VRE (vancomycin-resistant enterococcus, ESBL (extended spectrum beta-lactamase or MBL (metallo-beta-lactamase producers. The present article discusses the relevance of screening patients for multi-antibiotic-resistant bacteria in the Indian context. Literature has been reviewed about antibiotic resistance in India, screening methodology, economic debate about screening. The percentages of strains from various hospitals in India which were reported to be MRSA was between 8 and 71%, those for ESBL between 19 and 60% and carbapenem-resistant Gram-negative bacilli between 5.3 and 59%. There exists culture-based technology for the detection of these resistant organisms from patient samples. For some pathogens, such as MRSA and VRE Polymerase chain reaction-based tests are also becoming available. Screening for MDR bacteria is an option which may be used after appraisal of the resources available, and after exploring possibility of implementing the interventions that may be required after a positive screening test result.

  8. Co-selection of antibiotic and heavy metal resistance in freshwater bacteria

    Directory of Open Access Journals (Sweden)

    Andrea Di Cesare

    2016-04-01

    Full Text Available Antibiotic resistant bacteria are found in most environments, especially in highly anthropized waters. A direct correlation between human activities (e.g., pollution and spread and persistence of antibiotic resistant bacteria (ARB and resistance genes (ARGs within the resident bacterial communities appears more and more obvious. Furthermore, the threat posed for human health by the presence of ARB and ARGs in these environments is enhanced by the risk of horizontal gene transfer of resistance genes to human pathogens. Although the knowledge on the spread of antibiotic resistances in waters is increasing, the understanding of the driving factors determining the selection for antibiotic resistance in the environment is still scarce. Antibiotic pollution is generally coupled with contamination by heavy metals (HMs and other chemicals, which can also promote the development of resistance mechanisms, often through co-selecting for multiple resistances. The co-selection of heavy metal resistance genes and ARGs in waters, sediments, and soils, increases the complexity of the ecological role of ARGs, and reduces the effectiveness of control actions. In this mini-review we present the state-of-the-art of the research on antibiotic- and HM-resistance and their connection in the environment, with a focus on HM pollution and aquatic environments. We review the spread and the persistence of HMs and/or ARB, and how it influences their respective gene co-selection. In the last chapter, we propose Lake Orta, a system characterized by an intensive HM pollution followed by a successful restoration of the chemistry of the water column, as a study-site to evaluate the spread and selection of HMs and antibiotic resistances in heavily disturbed environments.

  9. Reprogrammable microbial cell-based therapeutics against antibiotic-resistant bacteria.

    Science.gov (United States)

    Hwang, In Young; Koh, Elvin; Kim, Hye Rim; Yew, Wen Shan; Chang, Matthew Wook

    2016-07-01

    The discovery of antimicrobial drugs and their subsequent use has offered an effective treatment option for bacterial infections, reducing morbidity and mortality over the past 60 years. However, the indiscriminate use of antimicrobials in the clinical, community and agricultural settings has resulted in selection for multidrug-resistant bacteria, which has led to the prediction of possible re-entrance to the pre-antibiotic era. The situation is further exacerbated by significantly reduced antimicrobial drug discovery efforts by large pharmaceutical companies, resulting in a steady decline in the number of new antimicrobial agents brought to the market in the past several decades. Consequently, there is a pressing need for new antimicrobial therapies that can be readily designed and implemented. Recently, it has become clear that the administration of broad-spectrum antibiotics can lead to collateral damage to the human commensal microbiota, which plays several key roles in host health. Advances in genetic engineering have opened the possibility of reprogramming commensal bacteria that are in symbiotic existence throughout the human body to implement antimicrobial drugs with high versatility and efficacy against pathogenic bacteria. In this review, we discuss recent advances and potentialities of engineered bacteria in providing a novel antimicrobial strategy against antibiotic resistance. PMID:27449598

  10. Fluoroquinolone-Resistant Enteric Bacteria in Sub-Saharan Africa: Clones, Implications and Research Needs.

    Science.gov (United States)

    Chattaway, Marie A; Aboderin, Aaron O; Fashae, Kayode; Okoro, Chinyere K; Opintan, Japheth A; Okeke, Iruka N

    2016-01-01

    Fluoroquinolones came into widespread use in African countries in the early 2000s, after patents for the first generation of these drugs expired. By that time, quinolone antibacterial agents had been used intensively worldwide and resistant lineages of many bacterial species had evolved. We sought to understand which Gram negative enteric pandemic lineages have been reported from Africa, as well as the nature and transmission of any indigenous resistant clones. A systematic review of articles indexed in the Medline and AJOL literature databases was conducted. We report on the findings of 43 eligible studies documenting local or pandemic fluoroquinolone-resistant enteric clones in sub-Sahara African countries. Most reports are of invasive non-typhoidal Salmonella and Escherichia coli lineages and there have been three reports of cholera outbreaks caused by fluoroquinolone-resistant Vibrio cholerae O1. Fluoroquinolone-resistant clones have also been reported from commensals and animal isolates but there are few data for non-Enterobacteriaceae and almost none for difficult-to-culture Campylobacter spp. Fluoroquinolone-resistant lineages identified in African countries were universally resistant to multiple other classes of antibacterial agents. Although as many as 972 non-duplicate articles refer to fluoroquinolone resistance in enteric bacteria from Africa, most do not report on subtypes and therefore information on the epidemiology of fluoroquinolone-resistant clones is available from only a handful of countries in the subcontinent. When resistance is reported, resistance mechanisms and lineage information is rarely investigated. Insufficient attention has been given to molecular and sequence-based methods necessary for identifying and tracking resistant clones in Africa and more research is needed in this area. PMID:27148238

  11. Cooperative Electrostatic Polymer-Antibiotic Nanoplexes

    OpenAIRE

    Vadala, Timothy Patrick

    2010-01-01

    Many pathogenic bacteria can enter phagocytic cells and replicate in them, and these intracellular bacteria are difficult to treat because the recommended antibiotics do not transport into the cells efficiently. Examples include food-borne bacteria such as Salmonella and Listeria as well as more toxic bacteria such as Brucella and the Mycobacteria that lead to tuberculosis. Current treatments utilize aminoglycoside antibiotics that are polar and positively charged and such drugs do not ente...

  12. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters

    Science.gov (United States)

    Miller, Jennifer H.; Novak, John T.; Knocke, William R.; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1—a Pseudomonas sp.) and thermophilic (Iso T10—a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457–0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130–0.486, P = 0.075–0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and

  13. Survival of Antibiotic Resistant Bacteria and Horizontal Gene Transfer Control Antibiotic Resistance Gene Content in Anaerobic Digesters.

    Science.gov (United States)

    Miller, Jennifer H; Novak, John T; Knocke, William R; Pruden, Amy

    2016-01-01

    Understanding fate of antibiotic resistant bacteria (ARB) vs. their antibiotic resistance genes (ARGs) during wastewater sludge treatment is critical in order to reduce the spread of antibiotic resistance through process optimization. Here, we spiked high concentrations of tetracycline-resistant bacteria, isolated from mesophilic (Iso M1-1-a Pseudomonas sp.) and thermophilic (Iso T10-a Bacillus sp.) anaerobic digested sludge, into batch digesters and monitored their fate by plate counts and quantitative polymerase chain reaction (QPCR) of their corresponding tetracycline ARGs. In batch studies, spiked ARB plate counts returned to baseline (thermophilic) or 1-log above baseline (mesophilic) while levels of the ARG present in the spiked isolate [tet(G)] remained high in mesophilic batch reactors. To compare results under semi-continuous flow conditions with natural influent variation, tet(O), tet(W), and sul1 ARGs, along with the intI1 integrase gene, were monitored over a 9-month period in the raw feed sludge and effluent sludge of lab-scale thermophilic and mesophilic anaerobic digesters. sul1 and intI1 in mesophilic and thermophilic digesters correlated positively (Spearman rho = 0.457-0.829, P < 0.05) with the raw feed sludge. There was no correlation in tet(O) or tet(W) ratios in raw sludge and mesophilic digested sludge or thermophilic digested sludge (Spearman rho = 0.130-0.486, P = 0.075-0.612). However, in the thermophilic digester, the tet(O) and tet(W) ratios remained consistently low over the entire monitoring period. We conclude that the influent sludge microbial composition can influence the ARG content of a digester, apparently as a result of differential survival or death of ARBs or horizontal gene transfer of genes between raw sludge ARBs and the digester microbial community. Notably, mesophilic digestion was more susceptible to ARG intrusion than thermophilic digestion, which may be attributed to a higher rate of ARB survival and/or horizontal gene

  14. THE STUDY OF ANTIBIOTIC- AND FAGOSENSITIVITY OF NOSOCOMIAL STRAINS BACTERIA ISOLATED FROM TRANSPLANTED PATIENTS

    Directory of Open Access Journals (Sweden)

    N. I. Gabrielan

    2011-01-01

    Full Text Available Antibiotic and fagosensitivity most etiologically important nosocomial strains of bacteria – Pseudomonas aeru- ginosa, Klebsiella pneumoniae, E. coli, Proteus spp., Staphylococcus spp. were studied. Multiple drug-resistant bacteria as gram-positive and gram-negative, isolated from 8 substrates, had been demonstrated. With regard to the sensitivity of Pseudomonas aeruginosa >40% was observed in 40–50% of the strains to aminoglycosides – aztreonam, amikacin, netilmicin, and only 23–25% of the strains – to gentamicin and levofloxacin (an average of antibiotic susceptibility was 27%. All strains of ESBL Klebsiella drew up and were sensitive only to imipenem, meropenem and aminoglycosides. Specific phages lysed 43–48% of the strains Pseudomonas aeruginosa and Klebsiella pneumoniae, E. coli, Pro- teus spp., multidrug resistant strains of Staphylococcus spp. It is proposed to introduce the use of phages in clinical practice. 

  15. Direct laser light enhancement of susceptibility of bacteria to gentamicin antibiotic

    Science.gov (United States)

    Reznick, Yana; Banin, Ehud; Lipovsky, Anat; Lubart, Rachel; Zalevsky, Zeev

    2011-11-01

    ObjectivesTo test the effect of pulsed (Q-switched) and continuous wave (CW) laser light at wavelength of 532 nm on the viability of free-living stationary phase bacteria with and without gentamicin (an antibiotic) treatment. MethodsFree living stationary phase gram negative bacteria ( Pseudomonas aeruginosa strain PAO1) was immersed in Luria Broth (LB) solution and exposed to Q-switched and CW lasers with and without the addition of the antibiotic gentamicin. Cell viability was determined at different time points. ResultsLaser treatment alone did not reduce cell viability compared to untreated control and the gentamicin treatment alone only resulted in a 0.5 log reduction in the viable count for P. aeruginosa. The combined laser and gentamicin treatment, however, resulted in a synergistic effect and viability was reduced by 8 logs for P. aeruginosa PAO1. ConclusionsCombination of laser light with gentamicin shows an improved efficacy against P. aeruginosa.

  16. Biochemical characterization of systemic bacteria in bananas, sensitivity to antibiotics and plant phytotoxicity during shoot proliferation

    Directory of Open Access Journals (Sweden)

    Janiffe Peres de Oliveira

    2016-04-01

    Full Text Available The objective of this work was to characterize the biochemically systemic bacterial isolated from banana plants, to evaluate the bacterial sensitivity to antibiotics, and to determine the phytotoxicity of banana shoots during in vitro proliferation. Systemic bacteria belonging to the Klebsiella and Aeromonas genera were isolated from the “Maravilha” (FHIA 01 AAAB, “Preciosa” (PV 4285 AAAB and “Thap Maeo” (AAB varieties and were then characterized. Tests of shoot sensitivity to antibiotics were performed, and the minimum inhibitory concentration (MIC and phytotoxic effects of selected antibiotics to plants were determined. Among the 20 antibiotics evaluated, the strains showed sensitivity to cefaclor, cefalexin, cefalotin, nalidixic acid, chloramphenicol, and vancomycin. However, during MIC determination, the best results were obtained with cefaclor, vancomycin or nalidixic acid alone in concentrations ranging from 512 to 1,024 mg L-1. In culture medium, cefaclor at 1,024 mg L-1 was the only antibiotic to affect the multiplication and the shoot survival in culture.

  17. ANTIBIOTIC RESISTANCE IN LACTIC ACID BACTERIA ISOLATED FROM FERMENTED DAIRY PRODUCTS AND BOZA

    Directory of Open Access Journals (Sweden)

    Gamze Başbülbül

    2015-06-01

    Full Text Available In this study, the resistance of 83 strains of lactic acid bacteria isolated from Turkish cheese, yogurt, kefir and boza samples to 6 antibiotics (gentamicin, tetracycline, chloramphenicol, erythromycin, vancomycin and ciprofloxacin was evaluated. The 83 isolates were identified by 16S rRNA gene sequencing and according to BLAST comparisons with sequences in the data banks, those strains showing the highest similarities with the isolates were Enterococcus faecium (10, Lactococcus lactis subsp. Lactis (10, Lactobacillus fermentum (6, Lactobacillus plantarum (6, Lactobacillus coryniformis (7, Lactobacillus casei (13, Leuconostoc mesenteroides (14, Pediococcus pentosaceus (10, Weisella confusa (7. Antimicrobial resistance of strains to 6 antibiotics was determined using the agar dilution method. The antibiotic resistance among all the isolates was detected against chloramphenicol (31,3 % of the isolates, tetracycline (30,1 %, erythromycin (2,4 %, ciprofloxacin (2,41%, vancomycin (73,5 %, intrinsic resistance. Overall 19,3 % of the isolates showed resistance against multiple antibiotics. Antibiotic resistance genes were studied by PCR and the following genes were detected; tet(M gene in Lactobacillus fermentum (1, Lactobacillus plantarum (1, Pediococcus pentosaceus (5, Enterococcus faecium (2, Weisella confusa (4 and the vancomycin resistance gene van(A in one Weisella confusa strain.

  18. Quantifying Cost-Effectiveness of Controlling Nosocomial Spread of Antibiotic-Resistant Bacteria : The Case of MRSA

    NARCIS (Netherlands)

    Wassenberg, Marjan W. M.; de Wit, G. Ardine; van Hout, Ben A.; Bonten, Marc J. M.

    2010-01-01

    Background: The costs and benefits of controlling nosocomial spread of antibiotic-resistant bacteria are unknown. Methods: We developed a mathematical algorithm to determine cost-effectiveness of infection control programs and explored the dynamical interactions between different epidemiological var

  19. Occurrence and distribution of multiple antibiotic-resistant bacteria of Enterobacteriaceae family in waters of Veraval coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Maloo, A.; Borade, S.; Dhawde, R.; Gajbhiye, S.N.; Dastager, S.G.

    Current investigation was aimed to the assess occurrence and distribution of multiple antibiotic-resistant bacteria of the Enterobacteriaceae family in surface and bottom waters along the Veraval coast. Comparative prevalence of drug...

  20. Bacteria isolated from a sugarcane agroecosystem: their potential production of polyhydroxyalcanoates and resistance to antibiotics

    Directory of Open Access Journals (Sweden)

    Lima Teresa Cristina S. de

    1999-01-01

    Full Text Available In this investigation, a sugarcane agroecosystem at a coastal tableland, in the northeast of Brazil, was screened to obtain bacteria strains able to synthesize poly-b-hydroxyalkanoates (PHA, using sucrose as the main carbon source. The potential to synthesize PHA was tested qualitatively by Sudan Black staining of colonies growing in different carbon sources: sucrose, glucose, fructose, propionate and cellulose. In a typical sugarcane crop management system, the plantation is burned before harvesting and vinasse, a byproduct of alcohol production, is used in a fertirrigation system causing, probably, selective pressures on the microbiota of natural environments. Eightytwo bacteria strains, belonging to 16 different genera and 35 different species, were isolated. The data showed that 11 strains (ca 13%, nine of which belonging to the genus Pseudomonas, presented a strong Sudan Black staining in several carbon sources tested and, simultaneously, showed multiple resistance to antibiotics. Resistance to antibiotics is an advantageous feature for the biotechnological production of PHAs. The total number of isolates with multiple resistance to antibiotics was 73, and 38% of them belong to the genus Pseudomonas. Among the isolates, ca 86% and 43% grew in the presence of 10-100 U/ml of penicillin and/or 100-300 mg/ml of virginiamycin, respectively. These antibiotics are utilized in the alcohol distillery we investigated. The results suggest that some agroecosystem environments could be considered as habitats where bacteria are submitted to nutritional unbalanced conditions, resulting in strains with potential ability to produce PHAs, and also, to an increase in the microbial diversity.

  1. Enteric bacteria and osmotic stress: intracellular potassium glutamate as a secondary signal of osmotic stress?

    Science.gov (United States)

    Booth, I R; Higgins, C F

    1990-06-01

    Enteric bacteria have evolved an impressive array of mechanisms that allow the cell to grow at widely different external osmotic pressures. These serve two linked functions; firstly, they allow the cell to maintain a relatively constant turgor pressure which is essential for cell growth; and secondly they permit changes in cytoplasmic composition such that the accumulation of intracellular osmolytes required to restore turgor pressure does not impair enzyme function. The primary event in turgor regulation is the controlled accumulation of potassium and its counterion glutamate. At high external osmolarities the cytoplasmic levels of potassium glutamate can impair enzyme function. Rapid growth is therefore dependent upon secondary responses, principally the accumulation of compatible solutes, betaine (N-trimethylglycine), proline and trehalose. The accumulation of these solutes is achieved by the controlled activity of transport systems and enzymes in response to changes in external osmotic pressure. It has been proposed that the accumulation of potassium glutamate during turgor regulation acts as a signal for the activation of these systems [1,2]. This brief review will examine the evidence that control over the balance of cytoplasmic osmolytes is achieved by sensing of the intracellular potassium (and glutamate) concentration. PMID:1974769

  2. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation.

    Science.gov (United States)

    Bengtsson-Palme, Johan; Larsson, D G Joakim

    2016-01-01

    There are concerns that selection pressure from antibiotics in the environment may accelerate the evolution and dissemination of antibiotic-resistant pathogens. Nevertheless, there is currently no regulatory system that takes such risks into account. In part, this is due to limited knowledge of environmental concentrations that might exert selection for resistant bacteria. To experimentally determine minimal selective concentrations in complex microbial ecosystems for all antibiotics would involve considerable effort. In this work, our aim was to estimate upper boundaries for selective concentrations for all common antibiotics, based on the assumption that selective concentrations a priori need to be lower than those completely inhibiting growth. Data on Minimal Inhibitory Concentrations (MICs) were obtained for 111 antibiotics from the public EUCAST database. The 1% lowest observed MICs were identified, and to compensate for limited species coverage, predicted lowest MICs adjusted for the number of tested species were extrapolated through modeling. Predicted No Effect Concentrations (PNECs) for resistance selection were then assessed using an assessment factor of 10 to account for differences between MICs and minimal selective concentrations. The resulting PNECs ranged from 8 ng/L to 64 μg/L. Furthermore, the link between taxonomic similarity between species and lowest MIC was weak. This work provides estimated upper boundaries for selective concentrations (lowest MICs) and PNECs for resistance selection for all common antibiotics. In most cases, PNECs for selection of resistance were below available PNECs for ecotoxicological effects. The generated PNECs can guide implementation of compound-specific emission limits that take into account risks for resistance promotion.

  3. Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    Directory of Open Access Journals (Sweden)

    Mazari-Hiriart Marisa

    2009-10-01

    Full Text Available Abstract Background Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. Methods The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR. Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. Results The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Conclusion Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.

  4. Gramicidin A Mutants with Antibiotic Activity against Both Gram-Positive and Gram-Negative Bacteria.

    Science.gov (United States)

    Zerfas, Breanna L; Joo, Yechaan; Gao, Jianmin

    2016-03-17

    Antimicrobial peptides (AMPs) have shown potential as alternatives to traditional antibiotics for fighting infections caused by antibiotic-resistant bacteria. One promising example of this is gramicidin A (gA). In its wild-type sequence, gA is active by permeating the plasma membrane of Gram-positive bacteria. However, gA is toxic to human red blood cells at similar concentrations to those required for it to exert its antimicrobial effects. Installing cationic side chains into gA has been shown to lower its hemolytic activity while maintaining the antimicrobial potency. In this study, we present the synthesis and the antibiotic activity of a new series of gA mutants that display cationic side chains. Specifically, by synthesizing alkylated lysine derivatives through reductive amination, we were able to create a broad selection of structures with varied activities towards Staphylococcus aureus and methicillin-resistant S. aureus (MRSA). Importantly, some of the new mutants were observed to have an unprecedented activity towards important Gram-negative pathogens, including Escherichia coli, Klebsiella pneumoniae and Psuedomonas aeruginosa. PMID:26918268

  5. Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children

    Directory of Open Access Journals (Sweden)

    This paper should be cited as: Sedighi I, Alikhani MY, Nakhaee S, Karami P . [ Antibiotic Resistance Patterns in Enteric and Uropathogenic Strains of Escherichia Coli in Children ]. mlj goums . 201 4 ; 8 ( Suppl 4 : 42 - 48 [Article in Per sian] Sedi ghi, I. (MD

    2014-11-01

    Full Text Available Background and Objective: Escherichia coli is the most common cause of urinary tract infections in children and the leading cause of intra-abdominal infections (peritonitis and abscess followed intestinal injuries. Urinary tract infection, including cystitis and pyelonephritis, is a common childhood infection. E. coli causes more than 90 percent of the community acquired and 50% of hospital acquired urinary tract infections; therefore, the determination of E. coli antibiotic susceptibility is a paramount importance to clinical and epidemiological purposes. Material and Methods: In this cross-sectional study, 50 E. coli strains isolated from urine samples of children less than 7 years of age with urinary tract infections. They were compared for drug susceptibility testing by disc diffusion method with 50 strains of Escherichia coli isolated from stool samples of healthy children with the same age and sex pattern. Results: The actual amount of drug sensitivity of uropathogenic and intestinal Escherichia coli strains to amikacin was 94 and 100%, nitrofurantoin 90 and 88%, gentamicin 66 and 94%, cefixime 56 and 60%, nalidixic acid 38 and 44% and to cotrimoxazole 28 and 32%, respectively. Conclusion: the rate of resistance to gentamicin, Cefixime and nalidixic acid in urinary tract infection isolates were more than intestinal strains. The highest rate of drug resistance in urinary Escherichia coli isolates was associated with cotrimoxazole and the lowest one with amikacin.

  6. Resistance to antibiotics in heterotrophic bacteria as a result of environmental pollution

    Directory of Open Access Journals (Sweden)

    Maria Bartoszewic

    2014-12-01

    Full Text Available Introduction. The aim of the study was to investigate resistance to selected antibiotics in Escherichia coli and Enterococcus faecalis strains that were isolated from water collected from ten streams within the administrative boundaries of the city of Sopot. Material and methods. 114 E. coli strains and 57 E. faecalis strains were studied. Antibiotic resistance was determined by the disc diffusion method using antibiotic-impregnated discs. Results. The isolated E. coli strains were resistant to chloramphenicol (21%, cefepime (51%, tetracycline (41%, imipenem (35%, cephazoline (62% and gentamicin (90%. E. faecalis isolates showed resistance to erythromycin (75%, chloramphenicol (21% and imipenem (33%. The relationship between the level of antibiotic resistance, the origin of water sample and the level of water contamination with E. coli and Enterococcus faecalis bacteria in the investigated streams was analyzed. Conclusions. Based on the obtained results, it was determined that multi-drug resistant bacterial strains of E. coli and E. faecalis are present in the investigated surface waters.

  7. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  8. Ozone treatment of conditioned wastewater selects antibiotic resistance genes, opportunistic bacteria, and induce strong population shifts.

    Science.gov (United States)

    Alexander, Johannes; Knopp, Gregor; Dötsch, Andreas; Wieland, Arne; Schwartz, Thomas

    2016-07-15

    An ozone treatment system was investigated to analyze its impact on clinically relevant antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs). A concentration of 0.9±0.1g ozone per 1g DOC was used to treat conventional clarified wastewater. PCR, qPCR analyses, Illumina 16S Amplicon Sequencing, and PCR-DGGE revealed diverse patterns of resistances and susceptibilities of opportunistic bacteria and accumulations of some ARGs after ozone treatment. Molecular marker genes for enterococci indicated a high susceptibility to ozone. Although they were reduced by almost 99%, they were still present in the bacterial population after ozone treatment. In contrast to this, Pseudomonas aeruginosa displayed only minor changes in abundance after ozone treatment. This indicated different mechanisms of microorganisms to cope with the bactericidal effects of ozone. The investigated ARGs demonstrated an even more diverse pattern. After ozone treatment, the erythromycin resistance gene (ermB) was reduced by 2 orders of magnitude, but simultaneously, the abundance of two other clinically relevant ARGs increased within the surviving wastewater population (vanA, blaVIM). PCR-DGGE analysis and 16S-Amplicon-Sequencing confirmed a selection-like process in combination with a substantial diversity loss within the vital wastewater population after ozone treatment. Especially the PCR-DGGE results demonstrated the survival of GC-rich bacteria after ozone treatment. PMID:27058129

  9. Efflux Pump Blockers in Gram-Negative Bacteria: The New Generation of Hydantoin Based-Modulators to Improve Antibiotic Activity.

    Science.gov (United States)

    Otręebska-Machaj, Ewa; Chevalier, Jacqueline; Handzlik, Jadwiga; Szymańska, Ewa; Schabikowski, Jakub; Boyer, Gérard; Bolla, Jean-Michel; Kieć-Kononowicz, Katarzyna; Pagès, Jean-Marie; Alibert, Sandrine

    2016-01-01

    Multidrug resistant (MDR) bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility toward the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility toward nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria. PMID:27199950

  10. Nanosilver-marine fungal chitosan as antibiotic synergizers against sepsis fish bacteria

    Directory of Open Access Journals (Sweden)

    Khouloud Mohamed Barakat

    2016-01-01

    Full Text Available Background and Objectives: Mortality is highly variable within population of cultured fish due to virulent bacteria causing fish septicemia. The use of nano-silver marine fungal chitosan as antibiotic synergisers could be an alternative in the treatment of sepsis fish pathogens.Materials and Methods: Different bulk chitosan solutions were prepared from the mycelia of four marine fungi (Aspergillus terreus, Aspergillus flavipes, Tricoderma hamatum and Fennellia flavipes and used as capping agents for silver nanoparticles. In vitro, the antibacterial activity of these preparations was determined against nine fish-sepsis causing bacteria, alone and in combination with nine antibiotics of choice used in aquaculture. Prepared fungal chitosans (CsF were characterized by yield of chistosan obtained, degree of deacetylation and viscosity.Results and Conclusion: The maximum yield of chitosan (28% was obtained from Aspergillus terreus. A. terreus chitosan (CsF, silver nanoparticles (AgNPs and chitosan-silver nanoparticles (CsF-AgNPs showed maximum activity at the minimum inhibitory concentrations average (MICAVG 27.2, 18.2 and 7.9 μg/ml, respectively. Combination of CsF –AgNPs with amikacin (Ak and rifampicin (RD reduced the MIC values by 96 and 94%, respectively, with fractional inhibitory concentration index (FICI = 0.42 and 0.50 as synergistic effect. It is promising to use CsF-AgNPs as enhancing agent in combination with antibiotics for fish sepsis therapy.Keywords: Marine fungal chitosan, nanosilver, bacterial sepsis, antibiotics, synergy

  11. Antibiotic resistance of lactic acid bacteria isolated from dry-fermented sausages.

    Science.gov (United States)

    Fraqueza, Maria João

    2015-11-01

    Dry-fermented sausages are meat products highly valued by many consumers. Manufacturing process involves fermentation driven by natural microbiota or intentionally added starter cultures and further drying. The most relevant fermentative microbiota is lactic acid bacteria (LAB) such as Lactobacillus, Pediococcus and Enterococcus, producing mainly lactate and contributing to product preservation. The great diversity of LAB in dry-fermented sausages is linked to manufacturing practices. Indigenous starters development is considered to be a very promising field, because it allows for high sanitary and sensorial quality of sausage production. LAB have a long history of safe use in fermented food, however, since they are present in human gastrointestinal tract, and are also intentionally added to the diet, concerns have been raised about the antimicrobial resistance in these beneficial bacteria. In fact, the food chain has been recognized as one of the key routes of antimicrobial resistance transmission from animal to human bacterial populations. The World Health Organization 2014 report on global surveillance of antimicrobial resistance reveals that this issue is no longer a future prediction, since evidences establish a link between the antimicrobial drugs use in food-producing animals and the emergence of resistance among common pathogens. This poses a risk to the treatment of nosocomial and community-acquired infections. This review describes the possible sources and transmission routes of antibiotic resistant LAB of dry-fermented sausages, presenting LAB antibiotic resistance profile and related genetic determinants. Whenever LAB are used as starters in dry-fermented sausages processing, safety concerns regarding antimicrobial resistance should be addressed since antibiotic resistant genes could be mobilized and transferred to other bacteria.

  12. Microbiological air quality in some kindergartens and antibiotic resistance of bacteria of the Staphylococcus spp. genus

    Directory of Open Access Journals (Sweden)

    Łukasz Kubera

    2015-02-01

    Full Text Available Background: Microbiological contamination of the air and the acquisition of the antibiotic resistance by pathogenic bacteria is a growing phenomenon that has a substantial impact on the quality of our health. This problem applies mainly to public areas where we spend a large part of our lives. This study was focused on the microbiological analysis of the air in some kindergartens and antibiotic resistance of bacteria of the Stephylococcus spp. genus. The identification of the isolated mould fungi has been also made. Material and Methods: Air samples were collected from classrooms in the seasonal cycle in the mornings and afternoons using 2 methods, sedimentation and impact. Air samples collected outside the kindergartens served as controls. Air quality assessments were based on the groups of indicator microorganisms, according to Polish standards. The susceptibility of isolated staphylococci was assessed with the disc-diffusion method, using 8 different classes of antibiotics, in line with the recommendations of the European Committee on Antimicrobial Susceptibility Testing (EUCAST. Results: The analyses show that, regardless of the method, the total number of heterothropic bacteria and staphylococci in the air of the analyzed kindergartens exceeded the allowable limits. There was no air pollution with the fungal infection. Based on the antibiogram, it was found that Staphylococcus spp. strains showed the highest sensitivity to chloramphenicol and the lowest to penicillin and gentamicin. Among the fungi moulds of the genus Cladosporium predominated. Conclusions: The results of the analyses highlight the need for regular health checks and further research to help identify biological factors that may significantly affect the quality of health of people living in public spaces. Med Pr 2015;66(1:49–56

  13. Multi-bacteria multi-antibiotic testing using surface enhanced Raman spectroscopy (SERS) for urinary tract infection (UTI) diagnosis

    Science.gov (United States)

    Hadjigeorgiou, Katerina; Kastanos, Evdokia; Pitris, Costas

    2013-06-01

    The inappropriate use of antibiotics leads to antibiotic resistance, which is a major health care problem. The current method for determination of bacterial susceptibility to antibiotics requires overnight cultures. However most of the infections cannot wait for the results to receive treatment, so physicians administer general spectrum antibiotics. This results in ineffective treatments and aggravates the rising problem of antibiotic resistance. In this work, a rapid method for diagnosis and antibiogram for a bacterial infection was developed using Surface Enhanced Raman Spectroscopy (SERS) with silver nanoparticles. The advantages of this novel method include its rapidness and efficiency which will potentially allow doctors to prescribe the most appropriate antibiotic for an infection. SERS spectra of three species of gram negative bacteria, Escherichia coli, Proteus spp., and Klebsiella spp. were obtained after 0 and 4 hour exposure to the seven different antibiotics. Bacterial strains were diluted in order to reach the concentration of (2x105 cfu/ml), cells/ml which is equivalent to the minimum concentration found in urine samples from UTIs. Even though the concentration of bacteria was low, species classification was achieved with 94% accuracy using spectra obtained at 0 hours. Sensitivity or resistance to antibiotics was predicted with 81%-100% accuracy from spectra obtained after 4 hours of exposure to the different antibiotics. This technique can be applied directly to urine samples, and with the enhancement provided by SERS, this method has the potential to be developed into a rapid method for same day UTI diagnosis and antibiogram.

  14. Food Safety Hazards Related to Emerging Antibiotic Resistant Bacteria in Cultured Freshwater Fishes of Kolkata, India

    Directory of Open Access Journals (Sweden)

    T. Jawahar Abraham

    2011-02-01

    Full Text Available Association of opportunistic human bacterial pathogens in cultured freshwater fishes of Kolkata, India and their sensitivity to broad spectrum antibiotics was investigated. Both indigenous and non-indigenous human bacterial pathogens such as Aeromonas hydrophila, A. caviae, Edwardsiella tarda, Escherichia coli, Pseudomonas spp. and Vibrio parahaemolyticus were isolated from freshwater fishes of Kolkata. These strains were highly resistant to oxytetracycline (62% and nitrofurantoin (46%, and sensitive to ciprofloxacin (91% and chloramphenicol (89%. Multiple Antibiotic Resistance (MAR was high in catfishes (76% followed by miscellaneous fishes (66% and sewage-fed farm grown carps (55%. Among the bacterial species, the MAR was high in Ed. tarda (86%. More than 50% of the strains of A. hydrophila, A. caviae, E. coli, Pseudomonas spp., V. parahaemolyticus and unidentified Gram positive rods exhibited MAR. The results suggested that there is added risk of antibacterial resistance developing in the emerging human bacterial pathogens from freshwater aquaculture and of such antibiotic resistant bacterial pathogens entering the food chain.

  15. Monitoring and Comparison of Antibiotic Resistant Bacteria and Their Resistance Genes in Municipal and Hospital Wastewaters

    Directory of Open Access Journals (Sweden)

    Rahim Aali

    2014-01-01

    Full Text Available Background: Human exposure to antibiotic resistant bacteria (ARB is a public health concern which could occur in a number of ways. Wastewaters seem to play an important role in the dissemination of bacteria and antibiotic resistant genes (ARGs in our environment. The aim of this study was to evaluate the occurrence of three groups of ARB and their resistance genes in hospital and municipal wastewaters (MWs as possible sources. Methods: A total of 66 samples were collected from raw MWs and hospital wastewaters (HWs and final effluents of related wastewater treatment plants (WWTPs. Samples were analyzed for the detection of three groups of ARB including gentamicin (GM, chloramphenicol (CHL and ceftazidime resistant bacteria and their ARGs (aac (3-1, cmlA1 and ctx-m-32, respectively. Results: The mean concentration of GM, CHL and ceftazidime resistant bacteria in raw wastewater samples was 1.24 × 10 7 , 3.29 × 10 7 and 5.54 × 10 7 colony forming unit/100 ml, respectively. There is a variation in prevalence of different groups of ARB in MWs and HWs. All WWTPs decreased the concentration of ARB. However, high concentration of ARB was found in the final effluent of WWTPs. Similar to ARB, different groups of ARGs were found frequently in both MWs and HWs. All genes also detected with a relative high frequency in effluent samples of MWs WWTPs. Conclusions: Discharge of final effluent from conventional WWTPs is a potential route for dissemination of ARB and ARGs into the natural environment and poses a hazard to environmental and public health.

  16. Pandrug-resistant Gram-negative bacteria: the dawn of the post-antibiotic era?

    Science.gov (United States)

    Falagas, Matthew E; Bliziotis, Ioannis A

    2007-06-01

    The evolving problem of antimicrobial resistance in Pseudomonas aeruginosa, Acinetobacter baumannii and Klebsiella pneumoniae has led to the emergence of clinical isolates susceptible to only one class of antimicrobial agents and eventually to pandrug-resistant (PDR) isolates, i.e. resistant to all available antibiotics. We reviewed the available evidence from laboratory and clinical studies that reported on polymyxin-resistant and/or PDR P. aeruginosa, A. baumannii or K. pneumoniae clinical isolates. Eleven laboratory studies reported on isolates with resistance to polymyxins, three of which (including two surveillance studies) also included data regarding PDR isolates. In addition, two clinical studies (from Central and Southern Europe) reported on the clinical characteristics and outcomes of patients infected with PDR isolates. These data suggest that polymyxin-resistant or PDR P. aeruginosa, A. baumannii and K. pneumoniae clinical isolates are currently relatively rare. However, they have important global public health implications because of the therapeutic problems they pose. The fears for the dawn of a post-antibiotic era appear to be justified, at least for these three Gram-negative bacteria. We must increase our efforts to preserve the activity of available antibiotics, or at least expand as much as possible the period of their use, whilst intense research efforts should be focused on the development and introduction into clinical practice of new antimicrobial agents. PMID:17306965

  17. High-throughput screening of antibiotic-resistant bacteria in picodroplets.

    Science.gov (United States)

    Liu, X; Painter, R E; Enesa, K; Holmes, D; Whyte, G; Garlisi, C G; Monsma, F J; Rehak, M; Craig, F F; Smith, C A

    2016-04-26

    The prevalence of clinically-relevant bacterial strains resistant to current antibiotic therapies is increasing and has been recognized as a major health threat. For example, multidrug-resistant tuberculosis and methicillin-resistant Staphylococcus aureus are of global concern. Novel methodologies are needed to identify new targets or novel compounds unaffected by pre-existing resistance mechanisms. Recently, water-in-oil picodroplets have been used as an alternative to conventional high-throughput methods, especially for phenotypic screening. Here we demonstrate a novel microfluidic-based picodroplet platform which enables high-throughput assessment and isolation of antibiotic-resistant bacteria in a label-free manner. As a proof-of-concept, the system was used to isolate fusidic acid-resistant mutants and estimate the frequency of resistance among a population of Escherichia coli (strain HS151). This approach can be used for rapid screening of rare antibiotic-resistant mutants to help identify novel compound/target pairs. PMID:27033300

  18. Antibiotic Resistant Bacteria And Their Associated Resistance Genes in a Conventional Municipal Wastewater Treatment Plant

    KAUST Repository

    Aljassim, Nada I.

    2013-12-01

    With water scarcity as a pressing issue in Saudi Arabia and other Middle Eastern countries, the treatment and reuse of municipal wastewater is increasingly being used as an alternative water source to supplement country water needs. Standards are in place to ensure a safe treated wastewater quality, however they do not regulate pathogenic bacteria and emerging contaminants. Information is lacking on the levels of risk to public health associated with these factors, the efficiency of conventional treatment strategies in removing them, and on wastewater treatment in Saudi Arabia in general. In this study, a municipal wastewater treatment plant in Saudi Arabia is investigated to assess the efficiency of conventional treatment in meeting regulations and removing pathogens and emerging contaminants. The study found pathogenic bacterial genera, antibiotic resistance genes and antibiotic resistant bacteria, many of which were multi-resistant in plant discharges. It was found that although the treatments are able to meet traditional quality guidelines, there remains a risk from the discussed contaminants with wastewater reuse. A deeper understanding of this risk, and suggestions for more thorough guidelines and monitoring are needed.

  19. Antibiotic Resistance of Probiotic Strains of Lactic Acid Bacteria Isolated from Marketed Foods and Drugs

    Institute of Scientific and Technical Information of China (English)

    CHANG LIU; ZHUO-YANG ZHANG; KE DONG; JIAN-PING YUAN; XIAO-KUI GUO

    2009-01-01

    Objective To identify the antimicrobial resistance of commercial lactic acid bacteria present in microbial foods and drug additives by analyzing their isolated strains used for fermentation and probioties. Methods Antimicrobial susceptibility of 41 screened isolates was tested with disc diffusion and E-test methods after species-level identification. Resistant strains were selected and examined for the presence of resistance genes by PCR. Results Distribution of resistance was found in different species. All isolates were susceptible to chloramphenicol, tetracycline, ampicillin, amoxicillin/clavulanic acid, cephalothin, and imipenem. In addition, isolates resistant to vancomycin, rifampicin, streptomycin, bacitracin, and erythromycin were detected, although the incidence of resistance to these antibiotics was relatively low. In contrast, most strains were resistant to ciprofloxacin, amikacin, trimethoprim/sulphamethoxazole, and gentamycin. The genes msrC, vanX, and dfrA were detected in strains of Enterococcus faecium, Lactobacillus plantarum, Streptococcus thermophilus, and Lactococcus lactis. Conclusion Antibiotic resistance is present in different species of probiotic strains, which poses a threat to food safety. Evaluation of the safety of lactic acid bacteria for human consumption should be guided by established criteria, guidelines and regulations.

  20. Antagonism and Molecular Identification of an Antibiotic Bacterium BS04 Against Phytopathogenic Fungi and Bacteria

    Institute of Scientific and Technical Information of China (English)

    Xie Jing(谢晶); Ge Shaorong; Tao Yong; Gao Ping; Liu Kun; Liu Shigui

    2004-01-01

    Through a modified agar well diffusion assay, antagonism of bacterium BS04 is tested. The data show that BS04 has antibiotic activity against phytopathogenic fungi and bacteria, including Phoma wasabiae Yokogi, Cochlibolus Heterostrophu, Exserohilum Turcicum, Curuvularia Lunata (Walk) Boed, Thantephorus cucumris, Fusarium graminearum, Xanthomonas axonopodis pv. Citri (Hasse) Dye and Xanthomonas zingiberi (Uyeda) Savulescu. The products of bacterium BS04 can endure the treatment of a wide range of pH, and maintain the antibiotic activity after treatment of 100℃ for 30 min. The result suggests that bacterium BS04 has the potential as a promising biocontrol agent. In order to determine the taxonomic placement, the molecular identification of BS04 is performed. The comparative analysis of 16s rDNA sequences indicates that the 16s rDNA sequence of BS04 is highly homologous with sequences of typical Paenibacillus bacteria from the RPD library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proves that BS04 is subjected to Paenibacillus polymyxa.

  1. Antibiotic susceptibility patterns of isolated bacteria from bile fluids of patients with gallstone disease in Isfahan city (Iran

    Directory of Open Access Journals (Sweden)

    Fatemi Seyed-Masih

    2015-01-01

    Full Text Available Bacterial infections are one of the important agents in the creation of gallstones in the gallbladder. In recent years the spread of antibiotic-resistant bacteria such as extended-spectrum β-lactamases (ESBL is increasing and of concern in hospitalized patients worldwide. The purpose of this study was to investigate the antibiotic susceptibility patterns of isolated bacteria from the bile specimens of patients with chronic and acute cholecystitis who had been operated by single-incision laparoscopic cholecystectomy (SILC in Isfahan (Iran 2 using an antibiogram susceptibility test and molecular technique. The bile fluids of 91 patients were obtained from the Al-Zahra hospital and were cultured on specific media for the isolation of Gram-negative and positive bacteria and the disk diffusion test was done to determine the antibiotic susceptibility patterns of isolated bacteria. Finally, bacterial DNA was extracted from the bile samples and polymerase chain reaction (PCR was performed to investigate extended-spectrum β-lactamases genes. The bacteria Escherichia coli, Klebsiella pneumoniae, Proteus spp. and Staphylococcus aureus were detected in bile specimens cultured with high frequency, and the results showed that biliary infection increased with aging in patients with gallstone disease operated by SILC. The results showed a high frequency of ESBL genes including TEM, SHV, and CTX-M in isolated bacteria (especially Escherichia coli and Klebsiella spp.. Thus, evaluating the antibiotic susceptibility patterns and screening of ESBLs bacteria in patients with gallstones are essential. Prescribing suitable drugs, designing good strategies, and informing the medical community could decrease bile infection and antibiotic-resistant bacteria in clinical centers and hospitals.

  2. Ciprofloxacin residue and antibiotic-resistant biofilm bacteria in hospital effluent.

    Science.gov (United States)

    Ory, Jérôme; Bricheux, Geneviève; Togola, Anne; Bonnet, Jean Louis; Donnadieu-Bernard, Florence; Nakusi, Laurence; Forestier, Christiane; Traore, Ousmane

    2016-07-01

    Discharge of antimicrobial residues and resistant bacteria in hospital effluents is supposed to have strong impacts on the spread of antibiotic resistant bacteria in the environment. This study aimed to characterize the effluents of the Gabriel Montpied teaching hospital, Clermont-Ferrand, France, by simultaneously measuring the concentration of ciprofloxacin and of biological indicators resistant to this molecule in biofilms formed in the hospital effluent and by comparing these data to ciprofloxacin consumption and resistant bacterial isolates of the hospital. Determination of the measured environmental concentration of ciprofloxacin by spot sampling and polar organic chemical integrative (POCIS) sampling over 2 weeks, and comparison with predicted environmental concentrations produced a hazard quotient >1, indicating a potential ecotoxicological risk. A negative impact was also observed with whole hospital effluent samples using the Tetrahymena pyriformis biological model. During the same period, biofilms were formed within the hospital effluent, and analysis of ciprofloxacin-resistant isolates indicated that Gamma-Proteobacteria were numerous, predominantly Aeromonadaceae (69.56%) and Enterobacteriaceae (22.61%). Among the 115 isolates collected, plasmid-mediated fluoroquinolone-resistant genes were detected, with mostly aac(6')-lb-cr and qnrS. In addition, 60% of the isolates were resistant to up to six antibiotics, including molecules mostly used in the hospital (aminosides and third-generation cephalosporins). In parallel, 1247 bacteria isolated from hospitalized patients and resistant to at least one of the fluoroquinolones were collected. Only 5 of the 14 species identified in the effluent biofilm were also found in the clinical isolates, but PFGE typing of the Gram-negative isolates found in both compartments showed there was no clonality among the strains. Altogether, these data confirm the role of hospital loads as sources of pollution for wastewater

  3. Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.

    Science.gov (United States)

    Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann

    2010-05-01

    Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. PMID:20303077

  4. Occurrence of heavy metals and antibiotic resistance in bacteria from internal organs of american bullfrog (Rana catesbeiana) raised in Malaysia

    OpenAIRE

    Lee SW; M. Najiah; W Wendy; M Nadirah; SH Faizah

    2009-01-01

    A total of 40 bacteria have been successfully isolated from internal organs of the American bullfrog (Rana catesbeiana) raised in Malaysia, namely, eight isolates of Aeromonas spp., 21 of Edwardsiella spp., six of Flavobacterium spp. and five of Vibrio spp. In terms of antibiotic susceptibility testing, each isolate was tested against 21 antibiotics, resulting in 482 (57.3%) cases of sensitivity and 61 (7.3%) cases of partial sensitivity. Meanwhile, 297 (35.4%) bacterial isolates were registe...

  5. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  6. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    Science.gov (United States)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  7. Effects of reducing beta-lactam antibiotic pressure on intestinal colonization of antibiotic-resistant gram-negative bacteria

    NARCIS (Netherlands)

    S. Nijssen (Saskia); A.C. Fluit (Ad); D.A.M.C. van de Vijver (David); J. Top (Janetta); R.J.L. Willems (Rob); M.J.M. Bonten (Marc)

    2010-01-01

    textabstractBackground: We determined the effects of two antibiotic policies (predominance of either β-lactam antibiotics or fluroquinolones) on acquisition with third-generation cephalosporin-resistant Enterobacteriaceae (CRE) and fluoroquinolone-resistant CRE (FCRE) in two ICUs, with monitoring of

  8. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P;

    1976-01-01

    Drug resistance to 8 different antibiotics in Enterobacteriaceae isolated from different hospitals and two groups of general practitioners was studied. Escherichia coli dominated among the 632 strains investigated. Drug resistance was found in 62% of the 512 hospital strains and in 38% of the 120...... alone or in combinations were the most common traits transferred....

  9. Occurrence of yeasts, pseudomonads and enteric bacteria in the oral cavity of patients undergoing head and neck radiotherapy

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    2011-09-01

    Full Text Available The aim of this study was to evaluate the occurrence of yeasts, pseudomonads and enteric bacteria in the oral cavity of patients undergoing radiotherapy (RT for treatment of head and neck cancer. Fifty patients receiving RT were examined before, during and 30 days after RT. Saliva, mucosa, and biofilm samples were collected and microorganisms were detected by culture and polymerase chain reaction (PCR. The most prevalent yeasts in patients submitted to RT were Candida albicans, C. tropicalis, C. krusei, C. glabrata and C. parapsilosis. Citrobacter, Enterobacter, Enterococcus, Klebsiella, Proteus, and Pseudomonas were the most frequently cultivated bacteria. Before RT, targeted bacteria were cultivated from 22.2% of edentulous patients and 16.6% of dentate patients; 30 days after RT, these microorganisms were recovered from 77.8% edentulous and 46.8% dentate patients. By PCR, these microorganisms were detected from all edentulous patients, 78.1% of dentate patients. The presence of Gram-negative enteric roads and fungi was particularly frequent in patients presenting mucositis level III or IV. Modifications in the oral environment due to RT treatment seem to facilitate the colonization of oral cavity by members of family Enterobacteriaceae, genera Enterococcus and Candida.

  10. Evaluation of post-antibiotic effect in Gram-negative and Gram-positive bacteria

    Directory of Open Access Journals (Sweden)

    Elisa Tavella

    2008-03-01

    Full Text Available Although the postantibiotic effect (PAE is a well recognized phenomenon, the mechanism by which it is induced has not fully elucidated yet. It has been suggested that PAE is the time required by bacteria to synthesize proteins or mRNA characterized by a short half-life that are consumed during antibiotic treatment.This phenomenon is widely studied on Gram-positive cocci and Gram-negative rods, while information about Gram-positive rods and Gram-negative cocci are scanty.To gain new insights on the PAE, this study was addressed to evaluated the time required by Moraxella catarrhalis and Lactobacillus planctarum to resume their physiological growth rate after exposure to various antibiotics. Methods PAE was estimated in accordance with the method of Craig and Gudmundsson using the following drugs: penicillin, piperacillin-tazobactam, cefalotin, ceftazidime, imipenem, ciprofloxacin, gentamycin and azithromycin. Log-phase bacteria were exposed to drug at a concentration corresponding to 4 times the MIC value for 1h.The drug was inactivated by 1:1000 dilution. Bacterial counts were determined at time zero, immediately after drug dilution, and at each hour after removal for 6 - 7h by a pour-plate technique. The PAE was defined as the difference in time required by test and control cultures to increase by 1 log in CFU number. Results All drugs tested induced a PAE on the strains studied. M. catarrhalis registered PAE values ranging between 0,5 (gentamycin and 2 (ceftazidime, imipenem and azithromycin.With respect to L. plantarum a PAE between 0,8 (cefalotin and 3 hours (ciprofloxacin were detected. Conclusion. These findings demonstrated that all the drugs tested were able to induce a PAE on the strains tested.This observation differs from that observed on Gram-negative rods characterised by negative PAE values induced by penicillins and cephalosporins.This results might reflect the different target of these compounds on these Gram-positive rods or the

  11. The Survey of Withani somnifera Extraction against Resistant Strains of Pseudomonas aeruginosa Bacteria to Selective Antibiotics

    Directory of Open Access Journals (Sweden)

    Mohammad Bokaeian

    2015-11-01

    Full Text Available Introduction:  Due  to  more  resistance  of  pathogenic  bacteria  to  new  and  current antibiotics  researchers  are  looking  to  find  the  agents  of  herbal  with  antimicrobial activities in order to replace chemical drugs.Methods:   The herbal extract of Withani somnifera was done by using a rotary vacuum,20 strains of Pseudomons aeruginosa were isolated from urinary infections hospitalized patients  in  city of Zabol  hospital.  The  MIC  Withani  somnifera  were  determined  by dilution method in various concentrations. Sensitivity of strains to multiple antibiotics was evaluated by standard disk diffusion Kirby-Bauer.Results:    The  result  showed  that  P.  aeruginosa  were  resistance  to  4  of the  agents including ampicillin  (85%, nitrofurantoin  (65%, nalidixic acid  (65%, ciprofloxacin (15% and for 5 strains of Pseudomonas showed MIC with activity of 100 ppm.Conclusion:   This  study  has  suggested  the  effect  of  winter  cherry  extract  on  P. aeruginosa in the in vitro assay. It s effectiveness of on in vivo system can be examined in future.

  12. Occurrence of heavy metals and antibiotic resistance in bacteria from internal organs of american bullfrog (Rana catesbeiana raised in Malaysia

    Directory of Open Access Journals (Sweden)

    SW Lee

    2009-01-01

    Full Text Available A total of 40 bacteria have been successfully isolated from internal organs of the American bullfrog (Rana catesbeiana raised in Malaysia, namely, eight isolates of Aeromonas spp., 21 of Edwardsiella spp., six of Flavobacterium spp. and five of Vibrio spp. In terms of antibiotic susceptibility testing, each isolate was tested against 21 antibiotics, resulting in 482 (57.3% cases of sensitivity and 61 (7.3% cases of partial sensitivity. Meanwhile, 297 (35.4% bacterial isolates were registered as resistant. The multiple antibiotic resistance (MAR index of each bacterial species indicated that bacteria from raised bullfrogs have been exposed to tested antibiotics with results ranging from 0.27 to 0.39. Additionally, high percentages of heavy metal resistance among these isolates were observed, with values ranging from 85.0 to 100.0%. The current results provided us information on bacterial levels of locally farmed bullfrogs exposed to copper, cadmium, chromium as well as 21 types of antibiotics.

  13. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis.

  14. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis. PMID:26022411

  15. Multiple Antibiotic Resistance and Heavy Metal Resistance Profile of Bacteria Isolated from Giant Freshwater Prawn (Macrobrachium rosenbergii) Hatchery

    Institute of Scientific and Technical Information of China (English)

    S W Lee; M Najiah; W Wendy; A Zahrol; M Nadirah

    2009-01-01

    In this article,antibiogram and heavy metal resistance profile of bacteria isolated from giant freshwater prawn (Macrobrachium rosenbergii) hatchery in Malaysia are described.Although giant freshwater prawn was introduced into Malaysia since the 1980s,there was no database information on antibiogram and heavy metal resistance profile of bacteria from giant freshwater prawn (M.rosenbergii) hatchery in Malaysia.Therefore,this study was carried out to determine the effectiveness of antibiotic and heavy metal resistance profile to control bacterial diseases in M.rosenbergii hatchery.The results can provide valuable information for local M.rosenbergii post-larval producer.Antibiotic sensitivity test was carried out by disk-diffusion method against 15 types of antibiotics as follows:oxolinic acid (2 μg),ampicillin (10 μg),erythromycin (15 μg),furazolidone (15 μg),lincomycin (15 μg),amoxicillin (25 μg),col istin sulphate (25 μg),doxycycline (30 μg),florfenicol (30 μg),flumequine (30 μg),nalidixic acid (30 μg),tetracycline (30 μg),oleandomyein (15 μg),fosfomycin (50 μg),and spiramycin (100 μg),whereas heavy metal resistance profile of the present bacterial isolates was determined by 2-fold agar dilution technique.In this study,5 types of bacteria were successfully isolated;they were Aeromonas spp.(n= 77),Escherichia coil (n = 73),Edwardsiella spp.(n = 62),Salmonella spp.(n= 75),and Vibrio spp.(n = 43).The result showed that furazolidone was the most effective antibiotic to control the bacteria isolated in this study,approximately 89.7% of the bacterial isolates were sensitive to this antibiotic.Multiple antibiotic resistance (MAR) index indicated that the hatchery water source and M.rosenbergii post-larval and sediment tanks were at high-risk exposure to the tested antibiotic.Furthermore,all the tested heavy metals (Cd2+,Cr6+ Hg2+,and Cu2+) failed to inhibit the growth of the bacterial isolates.Therefore,it indicated that the water source of the hatchery is

  16. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods.

  17. Antibiotic- and heavy-metal resistance in bacteria isolated from deep subsurface in El Callao region, Venezuela

    Directory of Open Access Journals (Sweden)

    Maura Lina Rojas Pirela

    2014-12-01

    Full Text Available The effect of contamination with mercury (Hg in the deep subsurface bacterial communities in the region of El Callao (Bolívar State, Venezuela was investigated. Bacterial communities from two deep levels (-288 m and -388 m in a gold mine were studied with the aim of describe the most relevant features of their colonizing indigenous culturable bacteria. Antibiotic and heavy metals resistance patterns, presence of the merA gene and plasmids in resistant isolates were evaluated. A high frequency of resistant indigenous bacteria to Hg and other heavy metals was found. From 76 Hg-resistant isolates tested 73.7 % were, in addition, resistant to ampicillin, 86.8% to chloramphenicol, 67.1 % for tetracycline, 56.6 % streptomycin, and 51.3 % kanamycin. Furthermore, it was found that 40.74 % (-328 mm and 26.53 % (-388 m of Hg-resistant bacteria were simultaneously resistant to both four and five of these antibiotics. The presence of low and high molecular weight plasmids was detected and, despite that isolated showed resistance to mercurial compounds, the presence of the gene merA was detected only in 71.05 % of strains. These results suggest that exposure to Hg could be a selective pressure on the proliferation of antibiotic-resistant bacteria and promote the preservation and propagation of these resistance genes. However, the existence of such resistances to these depths could also support the idea that antibiotic resistance in these bacteria is natural and has a more ancient origin than their exposure to Hg.

  18. Selective grazing from protist over enteric bacteria in an aquatic system

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez, M. S.; Escalante, A. H.; Folabella, A. M.; Zamora, A. S.

    2009-07-01

    Its very clear that the grazing from protozoan can be an important source of mortality for the suspended bacteria, both in marine and freshwater environments. Considering that the presence of fecal contamination its a frequent phenomenon in this environments, and that Escherichia coli and members of Enterococcus genera are indicators of microbiology water quality, we analyze the effect of grazing from protozoan over E. coli and Enterococcus faecalis in de Los Padres Lagoon waters (Buenos Aires, Argentina) 37 degree centigrade 56'30'' S, 57 degree centigrade 44'30'' W). (Author)

  19. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks. PMID:27210560

  20. Co-selection of antibiotic and metal(loid) resistance in gram-negative epiphytic bacteria from contaminated salt marshes.

    Science.gov (United States)

    Henriques, Isabel; Tacão, Marta; Leite, Laura; Fidalgo, Cátia; Araújo, Susana; Oliveira, Cláudia; Alves, Artur

    2016-08-15

    The goal of this study was to investigate co-selection of antibiotic resistance in gram-negative epiphytic bacteria. Halimione portulacoides samples were collected from metal(loid)-contaminated and non-contaminated salt marshes. Bacterial isolates (n=137) affiliated with Vibrio, Pseudomonas, Shewanella, Comamonas, Aeromonas and with Enterobacteriaceae. Vibrio isolates were more frequent in control site while Pseudomonas was common in contaminated sites. Metal(loid) and antibiotic resistance phenotypes varied significantly according to site contamination, and multiresistance was more frequent in contaminated sites. However, differences among sites were not observed in terms of prevalence or diversity of acquired antibiotic resistance genes, integrons and plasmids. Gene merA, encoding mercury resistance, was only detected in isolates from contaminated sites, most of which were multiresistant to antibiotics. Results indicate that metal(loid) contamination selects for antibiotic resistance in plant surfaces. In salt marshes, antibiotic resistance may be subsequently transferred to other environmental compartments, such as estuarine water or animals, with potential human health risks.

  1. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; LokaBharathi, P.A.; Chandramohan, D.

    in 68% of the isolates. Depending on the antibiotics the isolates showed different percentage of resistance. Multiple drug and metal-resistance were observed. High incidence of resistance to both antibiotics and metals were common among the pigmented...

  2. Multiple antibiotic-resistant bacteria on fluted pumpkin leaves, a herb of therapeutic value.

    Science.gov (United States)

    Igbeneghu, Oluwatoyin A; Abdu, Abdulrasheed B

    2014-06-01

    Fluted pumpkin (Telfairia occidentalis) is a minimally-processed green leafy vegetable traditionally used for its antianaemic properties in the form of leaf juice without a heating or inactivation step before consumption. The aim of the study was to assess the presence of surface microbiota on T. occidentalis leaves and also to determine the antimicrobial susceptibility of isolated organisms. Bacterial contaminants on 50 samples of T. occidentalis leaves were isolated and characterized using standard biochemical methods and the antimicrobial susceptibility of isolated organisms was determined using the antibiotic disc diffusion assay. The results obtained show that the leaves of T. occidentalis is contaminated with organisms which included Enterobacter agglomerans (25.9%), Proteus vulgaris (24.9%), Klebsiella spp. (2.6%), and Serratia liquefaciens (2.1%). Other bacterial isolates recovered in order of frequency included: Staphylococcus spp. (33.7%), Bacillus spp. (8.3%), and Pseudomonas fluorescens (2.6%). Of the 193 bacterial isolates from the leaves of T. occidentalis samples tested for antimicrobial resistance, all (100%) were found to be resistant to ampicillin, cloxacillin, augmentin, erythromycin, and tetracycline while 96% of the isolates were resistant to cephalothin. Resistance to trimethoprim (93%) and gentamicin (83%) was also observed. Approximately, 22% of the isolates were resistant to ciprofloxacin; however, only 11 (5.8%) were resistant to ofloxacin. Thus, uncooked T. occidentalis is a potential source of highly-resistant epiphytic bacteria which could be opportunistic pathogens in consumers. PMID:25076655

  3. Antibiotic resistance in lactic acid bacteria isolated from some pharmaceutical and dairy products

    Directory of Open Access Journals (Sweden)

    Gamal Fadl M. Gad

    2014-01-01

    Full Text Available A total of 244 lactic acid bacteria (LAB strains were isolated from 180 dairy and pharmaceutical products that were collected from different areas in Minia governorate, Egypt. LAB were identified phenotypically on basis of morphological, physiological and biochemical characteristics. Lactobacillus isolates were further confirmed using PCR-based assay. By combination of phenotypic with molecular identification Lactobacillus spp. were found to be the dominant genus (138, 76.7% followed by Streptococcus spp. (65, 36.1% and Lactococcus spp. (27, 15%. Some contaminant organisms such as (Staphylococcus spp., Escherichia coli, Salmonella spp., mould and yeast were isolated from the collected dairy samples but pharmaceutical products were free of such contaminants. Susceptibility of LAB isolates to antibiotics representing all major classes was tested by agar dilution method. Generally, LAB were highly susceptible to Beta-lactams except penicillin. Lactobacilli were resistant to vancomycin, however lactococci and streptococci proved to be very susceptible. Most strains were susceptible to tetracycline and showed a wide range of streptomycin MICs. The MICs of erythromycin and clindamycin for most of the LAB were within the normal range of susceptibility. Sixteen Lactobacillus,8 Lactococcus and 8 Streptococcus isolates including all tetracycline and/or erythromycin resistant strains were tested for the presence of tetracycline and/or erythromycin resistant genes [tet(M and/or erm(B]. PCR assays shows that some resistant strains harbor tet(M and/or erm(B resistance genes.

  4. 食源性乳酸菌抗药性分析%Antibiotic resistance in food-associated lactic acid bacteria

    Institute of Scientific and Technical Information of China (English)

    孔健; 季明杰; 杨埔

    2011-01-01

    The emergence of antibiotic resistance in pathogens posed a major threat to human health because of abuses or misuse of antibiotics. Lactic acid bacteria ( LAB ) as starter cultures or probiotics were widely used in the production of fermented food and silage processes, and have acquired a "generally recognized as safe" (GRAS) status. However, recentiy it was demonstrated that antibiotic resistance genes from food-associated LAB strains were highly identical with those of pathogens, suggesting that LAB have the potential to serve as a host of antibiotic resistance genes with the risk of transferring the genes in cornmensal or pathogens in the intestinal gut. Antibiotic resistance genes were divided into intrinsic resistance and acquired resistance based on their transferability. Acquired resistance genes were often encoded by conjugative plasmids or conjugative transposons, which could enter into gastrointestinal tract through the consumption of fermented foods, and then transferred to the indigenous microflora and pathogens, furthermore resulted in the disease. This review will focus on the mechanism of resistance, detecting methods of antimicrobial susceptibility and gene horizontal transfer of antibiotic resistance in food-associated LAB.%抗生素的不合理使用导致病原菌耐药性已成为威胁人类健康的公共问题。乳酸菌在食品发酵、饲料青贮等领域具有悠久的应用历史,是公认的安全性菌株。但是研究发现,有些乳酸菌具有抗药性,根据抗药因子的可转移性,乳酸菌的抗药性可分为固有抗药性和外获抗药性。外获抗药性多由接合质粒或转座因子编码,这些抗药基因随发酵食品或益生菌剂进入肠道,是否与肠道共生菌或病原菌进行传递进而对机体带来危害引起了人们的关注。本文就食源性乳酸菌抗药性产生的分子机制、检测方法以及可能的抗药基因水平转移方式进行综述,以便对

  5. Antibiotics and heavy metals resistance patterns of Enterococcus faecalis and faecium bacteria isolated from the human and the livestock sources

    Directory of Open Access Journals (Sweden)

    Yaser Sharifi

    2015-12-01

    Full Text Available Background: Enterococci have emerged as a major cause of nosocomial infections and within this group, Enterococcus faecalis and Enterococcus faecium cause the majority of human and livestock enterococcal infections. In this article, we tried to determine antibiotics and metals resistance patterns of E. faecalis and E. faecium strains. Methods: One hundred sixty different strains of E. faecalis and E. faecium were collected from livestock sewage and the human fecal waste during 15 months. Then bacterial antibiotics sensitivity tests were carried out using the Agar disc diffusion method. Results: Generally, 100% of E. faecalis strains separated from human and livestock sources (i.e. sheep showed penicillin (P/ kanamycin (K/ nitrofurantoin (N/ loracarbef (L/ Ciprofloxacin (Cc/ ampicillin (AN/ nalidixic acid (NA/ sulfamethoxazole (S antibiotics resistance patterns. In addition, 55% of isolated E. faecium showed P/S/AN/NA antibiotics resistance patterns. Each strain showed a resistance to at least two aminoglycoside antibiotics. However, E. faecalis strains from human and the livestock sources showed 94% and 100% of resistance to nitrofurantoin, respectively. The effects of different metal concentrations was evaluated in both strains. The agar dilution method was applied in this stage. Hg at 0.05 mmol/L of minimum inhibitory concentration (MIC showed toxicity to both the human and livestock Enterococcus strains. Cadmium at 1 mmol/L and 0.5 mmol/L concentrations had the most toxicity to E. faecalis and E. faecium strains, respectively. Obviously, toxicity to bacteria is less than other metals. As a result, Zn/Ni/Cu/Co resistance pattern is suggested for both strains. Finally, antibiotics and heavy metals resistance patterns were monitored simultaneously. Conclusion: Almost all E. faecalis strains isolated from humans and livestock showed antibiotics and heavy metals resistance patterns of P/K/L/Cc/S/AN/NA/Zn/Cu/Co simultaneously. Moreover, 55% of E

  6. A single method for recovery and concentration of enteric viruses and bacteria from fresh-cut vegetables.

    Science.gov (United States)

    Sánchez, G; Elizaquível, P; Aznar, R

    2012-01-01

    Fresh-cut vegetables are prone to be contaminated with foodborne pathogens during growth, harvest, transport and further processing and handling. As most of these products are generally eaten raw or mildly treated, there is an increase in the number of outbreaks caused by viruses and bacteria associated with fresh vegetables. Foodborne pathogens are usually present at very low levels and have to be concentrated (i.e. viruses) or enriched (i.e. bacteria) to enhance their detection. With this aim, a rapid concentration method has been developed for the simultaneous recovery of hepatitis A virus (HAV), norovirus (NV), murine norovirus (MNV) as a surrogate for NV, Escherichia coli O157:H7, Listeria monocytogenes and Salmonella enterica. Initial experiments focused on evaluating the elution conditions suitable for virus release from vegetables. Finally, elution with buffered peptone water (BPW), using a Pulsifier, and concentration by polyethylene glycol (PEG) precipitation were the methods selected for the elution and concentration of both, enteric viruses and bacteria, from three different types of fresh-cut vegetables by quantitative PCR (qPCR) using specific primers. The average recoveries from inoculated parsley, spinach and salad, were ca. 9.2%, 43.5%, and 20.7% for NV, MNV, and HAV, respectively. Detection limits were 132 RT-PCR units (PCRU), 1.5 50% tissue culture infectious dose (TCID₅₀), and 6.6 TCID₅₀ for NV, MNV, and HAV, respectively. This protocol resulted in average recoveries of 57.4%, 64.5% and 64.6% in three vegetables for E. coli O157:H7, L. monocytogenes and Salmonella with corresponding detection limits of 10³, 10² and 10³ CFU/g, respectively. Based on these results, it can be concluded that the procedure herein is suitable to recover, detect and quantify enteric viruses and foodborne pathogenic bacteria within 5 h and can be applied for the simultaneous detection of both types of foodborne pathogens in fresh-cut vegetables. PMID:22036077

  7. Antibiotics supplemented culture media can eliminate non-specific bacteria from human semen during sperm preparation for intra uterine insemination

    Directory of Open Access Journals (Sweden)

    D. M. A. B. Dissanayake

    2014-01-01

    Full Text Available Rationale: Bacterial flora can be isolated from many semen samples of subfertile males. Bacteriospermia can compromise the outcome of intra uterine insemination (IUI by contaminating the post-processed sperm sample. Objectives: The objective of the present study is to determine the efficacy of penicillin and streptomycin in eliminating the bacteria from semen samples in the sperm processing procedure, and to assess the effects of antibiotics on sperm motility, survivability, and pregnancy rates. Design and Settings: A prospectively controlled study was carried out using couples undergoing IUI with their informed consent. Intervention: Sperm processing using the swim-up technique in penicillin and streptomycin supplemented culture medium. Subjects And Methods: Couples were consecutively allocated in two groups for sperm processing (a Group AB+ (antibiotics supplemented culture medium, n = 33 and (b Group AB− (antibiotic free culture medium, n = 33. Semen culture was performed before and after sperm processing. Sperm motility was assessed immediately after processing and after 24 h of incubation. Results: Bacterial isolates were found in 20 (60.6% and 22 (66.1% of samples before processing in Groups AB+ and AB− respectively. Addition of antibiotics resulted in completely eliminating non-specific bacteria from semen samples without affecting sperm motility. In vitro survival rate of sperm enhanced in AB+ group compared with AB− group (motile sperm after 24 h, 62.21% (standard deviation [SD]: 37.27 versus 41.36% (SD: 30.78, P = 0.012. Pregnancy rate, was comparable between two groups (9% in Group AB+ vs. 6% in Group AB−, P = 0.45. Conclusion: Penicillin streptomycin combination could completely eliminate non-specific bacteria from semen samples during sperm processing in this population. The types of antibiotics and dosage used did not seem to have any harmful effects on human sperm.

  8. Critical shortage of new antibiotics in development against multidrug-resistant bacteria-Time to react is now.

    Science.gov (United States)

    Freire-Moran, Laura; Aronsson, Bo; Manz, Chris; Gyssens, Inge C; So, Anthony D; Monnet, Dominique L; Cars, Otto

    2011-04-01

    Two commercial databases (Pharmaprojects and Adis Insight R&D) were queried for antibacterial agents in clinical development. Particular attention was given to antibacterial agents for systemic administration. For each agent, reviewers were requested to indicate whether its spectrum of activity covered a set of selected multidrug-resistant bacteria, and whether it had a new mechanism of action or a new target. In addition, PubMed was searched for antibacterial agents in development that appeared in review articles. Out of 90 agents that were considered to fulfil the inclusion criteria for the analysis, 66 were new active substances. Fifteen of these could be systemically administered and were assessed as acting via a new or possibly new mechanism of action or on a new or possibly new target. Out of these, 12 agents were assessed as having documented in vitro activity against antibiotic-resistant Gram-positive bacteria and only four had documented in vitro activity against antibiotic-resistant Gram-negative bacteria. Of these four, two acted on new or possibly new targets and, crucially, none acted via new mechanisms of action. There is an urgent need to address the lack of effective treatments to meet the increasing public health burden caused by multidrug-resistant bacteria, in particular against Gram-negative bacteria.

  9. Relatively high antibiotic resistance among heterotrophic bacteria from arctic fjord sediments than water - Evidence towards better selection pressure in the fjord sediments

    Science.gov (United States)

    Hatha, A. A. Mohamed; Neethu, C. S.; Nikhil, S. M.; Rahiman, K. M. Mujeeb; Krishnan, K. P.; Saramma, A. V.

    2015-12-01

    The objective of this study was to determine the prevalence of antibiotic resistance among aerobic heterotrophic bacteria and coliform bacteria from water and sediment of Kongsfjord. The study was based on the assumption that arctic fjord environments are relatively pristine and offer very little selection pressure for drug resistant mutants. In order to test the hypothesis, 200 isolates belonging to aerobic heterotrophic bacteria and 114 isolates belonging to coliforms were tested against 15 antibiotics belonging to 5 different classes such as beta lactams, aminoglycosides, quinolones, sulpha drugs and tetracyclines. Resistance to beta lactam and extended spectrum beta lactam (ESBL) antibiotics was considerably high and they found to vary significantly (p antibiotic resistance against ESBL's extent and diversity of antibiotic resistance (as revealed by multiple antibiotic resistance index and resistance patterns), was high in the aerobic heterotrophic bacteria. Most striking observation was that isolates from fjord sediments (both heterotrophic bacteria and coliforms) in general showed relatively high prevalence of antibiotic resistance against most of the antibiotics tested, indicating to better selection pressure for drug resistance mutants in the fjord sediments.

  10. Antibacterial Activities of Selected Cameroonian Plants and Their Synergistic Effects with Antibiotics against Bacteria Expressing MDR Phenotypes

    Directory of Open Access Journals (Sweden)

    Stephen T. Lacmata

    2012-01-01

    Full Text Available The present work was designed to assess the antibacterial properties of the methanol extracts of some Cameroonian medicinal plants and the effect of their associations with currently used antibiotics on multidrug resistant (MDR Gram-negative bacteria overexpressing active efflux pumps. The antibacterial activities of twelve methanol extracts of medicinal plants were evaluated using broth microdilution. The results of this test showed that three extracts Garcinia lucida with the minimal inhibitory concentrations (MIC varying from 128 to 512 μg/mL, Garcinia kola (MIC of 256 to 1024 μg/mL, and Picralima nitida (MIC of 128 to 1024 μg/mL were active on all the twenty-nine studied bacteria including MDR phenotypes. The association of phenylalanine arginine β-naphthylamide (PAβN or efflux pumps inhibitor to different extracts did not modify their activities. At the concentration of MIC/2 and MIC/5, the extracts of P. nitida and G. kola improved the antibacterial activities of some commonly used antibiotics suggesting their synergistic effects with the tested antibiotics. The results of this study suggest that the tested plant extracts and mostly those from P. nitida, G. lucida and G. kola could be used alone or in association with common antibiotics in the fight of bacterial infections involving MDR strains.

  11. Sustainability of Water Reclamation: Long-Term Recharge with Reclaimed Wastewater Does Not Enhance Antibiotic Resistance in Sediment Bacteria

    Directory of Open Access Journals (Sweden)

    Jean E. McLain

    2014-03-01

    Full Text Available Wastewater reclamation for municipal irrigation is an increasingly attractive option for extending water supplies. However, public health concerns include the potential for development of antibiotic resistance (AR in environmental bacteria after exposure to residual pharmaceuticals in reclaimed water. Though scientific studies have reported high levels of AR in soils irrigated with wastewater, these works often fail to address the soil resistome, or the natural occurrence of AR. This study compared AR patterns in sediment Enterococcus isolated from water storage basins containing either reclaimed water or groundwater in central Arizona. Resistance to 16 antibiotics was quantified in isolates to a depth of 30 cm. Results reveal high levels of resistance to certain antibiotics, including lincomycin, ciprofloxacin, and erythromycin, exists in sediments regardless of the water source (groundwater, reclaimed water, and higher AR was not detectable in reclaimed water sediments. Furthermore, multiple-antibiotic-resistance (MAR was substantially reduced in isolates from reclaimed water sediments, compared to freshwater sediment isolates. Comparing the development of AR in sediment bacteria at these two sites will increase awareness of the environmental and public health impacts of using reclaimed water for irrigation of municipal areas, and illustrates the necessity for control sites in studies examining AR development in environmental microbiota.

  12. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    OpenAIRE

    Kailong Huang; Junying Tang; Xu-Xiang Zhang; Ke Xu; Hongqiang Ren

    2014-01-01

    In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB) and antibiotic resistance genes (ARGs) in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera cons...

  13. Isolation of Environmental Bacteria from Surface and Drinking Water in Mafikeng, South Africa, and Characterization Using Their Antibiotic Resistance Profiles

    Directory of Open Access Journals (Sweden)

    Suma George Mulamattathil

    2014-01-01

    Full Text Available The aim of this study was to isolate and identify environmental bacteria from various raw water sources as well as the drinking water distributions system in Mafikeng, South Africa, and to determine their antibiotic resistance profiles. Water samples from five different sites (raw and drinking water were analysed for the presence of faecal indicator bacteria as well as Aeromonas and Pseudomonas species. Faecal and total coliforms were detected in summer in the treated water samples from the Modimola dam and in the mixed water samples, with Pseudomonas spp. being the most prevalent organism. The most prevalent multiple antibiotic resistance phenotype observed was KF-AP-C-E-OT-K-TM-A. All organisms tested were resistant to erythromycin, trimethoprim, and amoxicillin. All isolates were susceptible to ciprofloxacin and faecal coliforms and Pseudomonas spp. to neomycin and streptomycin. Cluster analysis based on inhibition zone diameter data suggests that the isolates had similar chemical exposure histories. Isolates were identified using gyrB, toxA, ecfX, aerA, and hylH gene fragments and gyrB, ecfX, and hylH fragments were amplified. These results demonstrate that (i the drinking water from Mafikeng contains various bacterial species and at times faecal and total coliforms. (ii The various bacteria are resistant to various classes of antibiotics.

  14. LiF Reduces MICs of Antibiotics against Clinical Isolates of Gram-Positive and Gram-Negative Bacteria

    Directory of Open Access Journals (Sweden)

    H. C. Syed

    2012-01-01

    Full Text Available Antibiotic resistance is an ever-growing problem yet the development of new antibiotics has slowed to a trickle, giving rise to the use of combination therapy to eradicate infections. The purpose of this study was to evaluate the combined inhibitory effect of lithium fluoride (LiF and commonly used antimicrobials on the growth of the following bacteria: Enterococcus faecalis, Staphyloccoccus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, and Streptococcus pneumoniae. The in vitro activities of ceftazidime, sulfamethoxazole-trimethoprim, streptomycin, erythromycin, amoxicillin, and ciprofloxacin, doxycycline, alone or combined with LiF were performed by microdilution method. MICs were determined visually following 18–20 h of incubation at 37°C. We observed reduced MICs of antibiotics associated with LiF ranging from two-fold to sixteen-fold. The strongest decreases of MICs observed were for streptomycin and erythromycin associated with LiF against Acinetobacter baumannii and Streptococcus pneumoniae. An eight-fold reduction was recorded for streptomycin against S. pneumoniae whereas an eight-fold and a sixteen-fold reduction were obtained for erythromycin against A. baumannii and S. pneumoniae. This suggests that LiF exhibits a synergistic effect with a wide range of antibiotics and is indicative of its potential as an adjuvant in antibiotic therapy.

  15. Antimicrobial and Herbal Drug Resistance in Enteric Bacteria Isolated from Faecal Droppings of Common House Lizard/Gecko (Hemidactylus frenatus

    Directory of Open Access Journals (Sweden)

    Bhoj R. Singh

    2013-01-01

    Full Text Available From 194 faecal dropping samples of common house geckos collected from offices (60, houses (88, integrated farm units (IFS,18 and hostels, guest houses, and dining rooms of different canteen/mess (HGM, 28, 326 bacterial isolates of enteric bacteria belonging to 17 genera and 34 species were detected. Escherichia coli were the most frequently (39 isolated followed by Citrobacter freundii (33, Klebsiella pneumonia (27, Salmonella indica (12, Enterobacter gergoviae (12, and Ent. agglomerans (11. Other important bacteria isolated from gecko droppings were Listonella damsela (2, Raoultella terrigena (3, S. salamae (2, S. houtenae (3, Edwardsiella tarda (4, Edwardsiella hoshinae (1, and Klebsiella oxytoca (2. Of the 223 isolates tested for antimicrobial drug sensitivity, 27 (12.1% had multiple drug resistance (MDR. None of the salmonellae or edwardsiellae had MDR however, MDR strains were significantly more common among Escherichia spp. (P=1.9×10-5 and isolates from IFS units (P=3.58×10-23. The most effective herbal drug, Ageratum conyzoides extract, inhibited growth of only 27.8% of strains tested followed by ethanolic extract of Zanthoxylum rhetsa (13.9%, eucalyptus oil (5.4%, patchouli oil (5.4%, lemongrass oil (3.6%, and sandalwood oil (3.1%, and Artemisia vulgaris essential oil (3.1%.

  16. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater.

    Science.gov (United States)

    Calero-Cáceres, William; Muniesa, Maite

    2016-05-15

    The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones. PMID:26978717

  17. Persistence of naturally occurring antibiotic resistance genes in the bacteria and bacteriophage fractions of wastewater.

    Science.gov (United States)

    Calero-Cáceres, William; Muniesa, Maite

    2016-05-15

    The emergence and prevalence of antibiotic resistance genes (ARGs) in the environment is a serious global health concern. ARGs from bacteria can be mobilized by mobile genetic elements, and recent studies indicate that phages and phage-derived particles, among others, could play a role in the spread of ARGs through the environment. ARGs are abundant in the bacterial and bacteriophage fractions of water bodies and for successful transfer of the ARGs, their persistence in these environments is crucial. In this study, three ARGs (blaTEM, blaCTX-M and sul1) that naturally occur in the bacterial and phage fractions of raw wastewater were used to evaluate the persistence of ARGs at different temperatures (4 °C, 22 °C and 37 °C) and pH values (3, 7 and 9), as well as after various disinfection treatments (thermal treatment, chlorination and UV) and natural inactivation in a mesocosm. Gene copies (GC) were quantified by qPCR; then the logarithmic reduction and significance of the differences between their numbers were evaluated. The ARGs persisted for a long time with minimal reductions after all the treatments. In general, they showed greater persistence in the bacteriophage fraction than in the bacterial fraction. Comparisons showed that the ARGs persisted under conditions that reduced culturable Escherichia coli and infectious coliphages below the limit of detection. The prevalence of ARGs, particularly in the bacteriophage fraction, poses the threat of the spread of ARGs and their incorporation into a new bacterial background that could lead to the emergence of new resistant clones.

  18. Antibacterial activity of some medicinal mangroves against antibiotic resistant pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Abeysinghe P

    2010-01-01

    Full Text Available The antibacterial activity of the leaves and bark of mangrove plants, Avicennia marina, A. officinalis, Bruguiera sexangula, Exoecaria agallocha, Lumnitzera racemosa, and Rhizophora apiculata was evaluated against antibiotic resistant pathogenic bacteria, Staphylococcus aureus and Proteus sp. Soxhlet extracts of petroleum ether, ethyl acetate, ethanol and water were prepared and evaluated the antibacterial activity using agar diffusion method. Most of the plant extracts showed promising antibacterial activity against both bacterial species. However, higher antibacterial activity was observed for Staphylococcus aureus than Proteus sp. The highest antibacterial activity was shown by ethyl acetate of mature leaf extracts of E. agallocha for Staphylococcus aureus. All ethyl acetate extracts showed higher inhibition against S. aureus while some extracts of chloroform, ethyl acetate and ethanol gave inhibition against Proteus sp. None of the petroleum ether and aqueous extracts showed inhibition against Proteus sp. All fresh plant materials did also show more antibacterial activity against both bacterial strains than did dried plant extracts. Antibacterial activity of fresh and dried plant materials reduced for both bacterial strains with time after extraction. Since L. racemosa and A. marina gave the best inhibition for bacterial species, they were used for further investigations. Charcoal treated plant extracts of L. racemosa and A. marina were able to inhibit both bacterial strains more than those of untreated plant extracts. Phytochemical screening of mature leaf, bark of L. racemosa and leaf extracts of A. marina has been carried out and revealed that leaf and bark contained alkaloids, steroids, triterpenoids and flavonoids. None of the above extracts indicate the presence of saponins and cardiac glycosides. Separated bands of extracts by TLC analysis showed antibacterial activity against S. aureus.

  19. Antibiotic resistance of Staphylococcus aureus isolated from enteral diets in a public hospital of Minas Gerais Resistência a antibióticos de Staphylococcus aureus isolados de dietas enterais em um hospital público de Minas Gerais

    Directory of Open Access Journals (Sweden)

    Nélio José de Andrade

    2007-10-01

    Full Text Available Enteral diets constitute an excellent means for microbial growth due to its composition rich in nutrients and its time of exposure to room temperature during application. Among the pathogenic bacteria there is the Staphylococcus aureus that is an opportunist microorganism found in the humans’ mucous membrane (buccal, nasal and oral. Samples of enteral diet after application as well as of the environment used for the preparation of the diets, were collected in a public hospital in Minas Gerais and analyzed for the presence of S. aureus. The contamination by S. aureus was evidenced in 83% of the enteral diet samples. As for the environment, the values found were in conformity with APHA recommendation. The isolated strains were submitted to the evaluation of the resistance to different antibiotics. Resistance was observed for tetracycline (100%, erythromycin (90,9%, chloramphenicol (59,1%, estreptomycin (22,72%, penicillin 18,8%, vancomycin (13,63%, ampicillin (13,63%, amoxilin (9,09% and gentamicin (4,54%. Due to the versatility in the resistance development to several antibiotics the S. aureus survives in hospital environments and can be diffused among patients. Dietas enterais constituem um excelente meio para crescimento microbiano, devido à sua composição rica em nutrientes e ao tempo de exposição à temperatura ambiente durante a administração. Dentre as bactérias patogênicas que podem ser encontradas nessas dietas, cita-se o Staphylococcus aureus, microrganismo oportunista encontrado na microbiota da membrana mucosa (bucal, nasal e oral em seres humanos. Amostras de dieta enteral pós-administração e do ambiente utilizado para o seu preparo foram coletadas em um hospital público e analisadas quanto à presença de S. aureus. A contaminação foi evidenciada em 83% das amostras de dietas enterais, e, quanto ao ambiente, os valores encontrados se apresentam de acordo com a recomendação da APHA. As cepas isoladas foram

  20. Natural Hot Spots for Gain of Multiple Resistances: Arsenic and Antibiotic Resistances in Heterotrophic, Aerobic Bacteria from Marine Hydrothermal Vent Fields

    OpenAIRE

    Farias, Pedro; Espírito Santo, Christophe; Branco, Rita; Francisco, Romeu; Santos, Susana; Hansen, Lars; Sorensen, Soren; Morais, Paula V.

    2015-01-01

    Microorganisms are responsible for multiple antibiotic resistances that have been associated with resistance/tolerance to heavy metals, with consequences to public health. Many genes conferring these resistances are located on mobile genetic elements, easily exchanged among phylogenetically distant bacteria. The objective of the present work was to isolate arsenic-, antimonite-, and antibiotic-resistant strains and to determine the existence of plasmids harboring antibiotic/arsenic/antimonite...

  1. The frequency of antibiotic-resistant bacteria in homes differing in their use of surface antibacterial agents.

    Science.gov (United States)

    Marshall, Bonnie M; Robleto, Eduardo; Dumont, Theresa; Levy, Stuart B

    2012-10-01

    Antibacterial agents are common in household cleaning and personal care products, but their long-range impacts on commensal and pathogenic household bacteria are largely unknown. In a one-time survey of 38 households from Boston, MA [19] and Cincinnati, OH [18], 13 kitchen and bathroom sites were sampled for total aerobic bacteria and screened for gram phenotype and susceptibility to six antibiotic drug families. The overall bacterial titers of both user (2 or more antibacterial cleaning or personal care products) and non-user (0 or 1 product) rooms were similar with sponges and sink drains consistently showing the highest overall titers and relatively high titers of antibiotic-resistant bacteria. The mean frequency of resistant bacteria ranged from ≤20 % to as high as 45 % and multi-drug resistance was common. However, no significant differences were noted between biocide users and non-users. The frequency of pathogen recovery was similar in both user and non-user groups. PMID:22752336

  2. The combination of ultrasound with antibiotics released from bone cement decreases the viability of planktonic and biofilm bacteria : an in vitro study with clinical strains

    NARCIS (Netherlands)

    Ensing, Geert T.; Neut, Danielle; Horn, Jim R. van; van der Mei, Henny C.; Busscher, Henk J.

    2006-01-01

    Objectives: Antibiotic-loaded bone cements are used for the permanent fixation of joint prostheses. Antibiotic-loaded cements significantly decrease the incidence of infection. The objective of this study was to investigate whether the viability of bacteria derived from patients with a prosthesis-re

  3. Bacterial Diversity in Buffalo Meat and Bowel from Traditional Market and the Sensitivity of Some Bacteria to Irradiation and Antibiotics

    Directory of Open Access Journals (Sweden)

    Harsojo

    2015-08-01

    Full Text Available The population of buffaloes in Indonesia was 1.37 million in 2012, representing an increase of 5.5 % over its population the previous year. Buffaloes have been in Indonesia for such a long time, they have become a part of the lives of the majority of the Indonesian society. Research has been conducted to know the bacteria diversity in domestic buffalo meat and bowels from traditional markets in Pandeglang, Banten, in order to ascertain their safety based on their initial contamination and also to study the sensitivity of several of the bacteria to irradiation and antibiotics. The total bacterial was assessed by total plate count method as index of quality. The buffalo meat and bowel samples were taken from livers, intestines, lymph, lungs and tripe. Results showed that the contaminating bacteria were aerobic bacteria, coliform bacteria including Escherichia coli (E. coli, and Staphylococcus spp. in buffalo meat and bowel. The numbers of aerobic bacteria were in the 1.7×105- 2.3×106 CFU/g range, while the total coliform bacteria were in the 2.0×103- 6.8×104 CFU/g range. The total number of E. coli was in the 2.0×103- 6.0×104 CFU/g range, and Staphylococcus spp. was in the 2.0×104- 2.7×105 CFU/g range. No Salmonella was detected in any of the samples observed. The total coliform bacteria, E. coli, and Staphylococcus spp. in all buffalo meat and bowel samples exceeded the maximum numbers of microbes permitted by the Indonesian National Standard (SNI. The maximum of total coliform, E. coli, and Staphylococcus spp. permitted by SNI are 1.0×102, 1.0×10 and 1.0×102 CFU/g, respectively. The D10 values of S. aureus were in the 0.13 - 0.23 kGy range, while for E. coli they were in the 0.07 - 0.13 kGy range. The isolate of S. aureus from the lungs was the most resistant to cefoxitin, tetracycline, and amoxicillin antibiotics. The isolate of E. coli from buffalo bowels were almost sensitive to cefoxitin, tetracycline, and amoxicillin antibiotics.

  4. Analysis of enteric pathogenic bacteria survey of 2010 in Tongzhou District, Beijing%2010年北京市通州区肠道病原菌监测结果分析

    Institute of Scientific and Technical Information of China (English)

    陈立新; 刘秀军; 刘晓峰; 王宝兰; 饶丹

    2011-01-01

    目的 了解通州区腹泻病人的病原谱情况,为肠道传染病的防制工作和临床用药等提供参考依据.方法 在通州区的部分二级医院采集未用抗生素的腹泻病人粪便标本,进行流行病学调查,并进行霍乱弧菌、痢疾杆菌、副溶血弧菌、沙门氏菌和5种致泻性大肠埃希菌等细菌分离培养和鉴定.结果 共采集303份腹泻病人粪便标本,其中男性169例,女性134例,以幼儿和青年病例为主,20~39岁占48.5%,城市病例244例,占80.5%.共培养76株细菌,其中志贺氏菌13株(4.3%)、沙门氏菌17株(5.6%)、副溶血弧菌31株(10.2%)、产毒性大肠杆菌1株(0.3%)、其他肠道病原菌14株(4.6%),志贺氏菌、沙门氏菌、副溶血弧菌、产毒性大肠杆菌这4种主要肠道病原菌阳性率为20.5%,总肠道病原菌阳性率为25.1%.结论 通州区腹泻病例肠道病原菌种类繁多,应继续加强监测工作.%Objective To understand enteric pathogenic bacteria spectrum of diarrhea patients in Tongzhou, then put forward preventive and treatment work of enteric infectious disease. Methods Stool samples of unused antibiotics diarrhea patients in grade two hospitals were collected, and epidemiologic survey was conducted among these patients, enteric pathogenic bacteria of shegella salmonella vibrio parahaemolyticus e. coli etc were isolated and cultured. Results 303 stool samples of diarrhea patients were collected, 169 patients were male, 134 patients were female; most of the patients were children and youth from 20 to 39 years old, acounted 48.5% ; patients living in city were 244 cases (80.5% ); shegella 13 strains (4.3%), salmonella 17 strains (5.6%), vibrio parahaemolyticus 31 strains (10.2%), ETEC 1 strain (0.3%) and other enteric pathogenic bacteria 14 strains (4.6%) were cultured. There were 76 enteric pathogenic strains in total. The positive rate of main enteric pathogenic bacteria was 20. 5 percent, the total positive rate of enteric pathogenic

  5. Co-occurrence of antibiotic drugs, resistant bacteria and resistance genes in runoff from cattle feedlots

    Science.gov (United States)

    Agricultural uses of antibiotics raises concerns about the development of antibiotic resistance in food animals, and the potential to transmit resistance to human clinical settings via fecal contamination of surface and ground water. Although there is broad agreement that agricultural resistance can...

  6. Diarrhea-associated pathogens, lactobacilli and cellulolytic bacteria in equine feces: responses to antibiotic challenge

    Science.gov (United States)

    Antibiotics are important to equine medicine, but antibiotic-associated diarrhea (AAD) can lead to poor performance and even mortality. AAD is attributed to disruption of the hindgut microbiota, which permits proliferation of pathogenic microbes. The goal of this study was to evaluate the effects o...

  7. Microbiological quality of ready-to-eat salads: an underestimated vehicle of bacteria and clinically relevant antibiotic resistance genes.

    Science.gov (United States)

    Campos, Joana; Mourão, Joana; Pestana, Nazaré; Peixe, Luísa; Novais, Carla; Antunes, Patrícia

    2013-09-16

    The increase demand for fresh vegetables is causing an expansion of the market for minimally processed vegetables along with new recognized food safety problems. To gain further insight on this topic we analyzed the microbiological quality of Portuguese ready-to-eat salads (RTS) and their role in the spread of bacteria carrying acquired antibiotic resistance genes, food products scarcely considered in surveillance studies. A total of 50 RTS (7 brands; split or mixed leaves, carrot, corn) were collected in 5 national supermarket chains in Porto region (2010). They were tested for aerobic mesophilic counts, coliforms and Escherichia coli counts as well as for the presence of Salmonella and Listeria monocytogenes. Samples were also plated in different selective media with/without antibiotics before and after enrichment. The E. coli, other coliforms and Enterococcus recovered were characterized for antibiotic resistance profiles and clonality with phenotypic and genetic approaches. A high number of RTS presented poor microbiological quality (86%--aerobic mesophilic counts, 74%--coliforms, 4%--E. coli), despite the absence of screened pathogens. In addition, a high diversity of bacteria (species and clones) and antibiotic resistance backgrounds (phenotypes and genotypes) were observed, mostly with enrichment and antibiotic selective media. E. coli was detected in 13 samples (n=78; all types and 4 brands; phylogenetic groups A, B1 and D; none STEC) with resistance to tetracycline [72%; tet(A) and/or tet(B)], streptomycin (58%; aadA and/or strA-strB), sulfamethoxazole (50%; sul1 and/or sul2), trimethoprim (50%; dfrA1 or dfrA12), ampicillin (49%; blaTEM), nalidixic acid (36%), ciprofloxacin (5%) or chloramphenicol (3%; catA). E. coli clones, including the widespread group D/ST69, were detected in different samples from the same brand or different brands pointing out to a potential cross-contamination. Other clinically relevant resistance genes were detected in 2 Raoultella

  8. Antibiotic susceptibility profile of bacteria isolated from natural sources of water from rural areas of East Sikkim

    Directory of Open Access Journals (Sweden)

    Shubra Poonia

    2014-01-01

    Full Text Available Background: Contamination of water, food, and environment with antibiotic-resistant bacteria poses a serious public health issue. Objective: The objective was to study the bacterial pollution of the natural sources of water in east Sikkim and to determine the antimicrobial profile of the bacterial isolates. Materials and Methods: A total of 225 samples, 75 each during winter, summer, and monsoon season were collected from the same source in every season for bacteriological analysis by membrane filtration method. Antibiotic susceptibility test was performed using standard disc diffusion method. Results: A total of 19 bacterial species of the genera Escherichia, Klebsiella, Proteus, Salmonella, Shigella, Enterobacter, Citrobacter, Morganella, Pseudomonas, Acinetobacter, Flavobacterium, and Serratia were isolated and their antimicrobial sensitivity tested. Generally, most bacterial isolates except Salmonella and Shigella species were found resistant to commonly used antibiotics such as ampicillin (57.5%, trimethoprim/sulfamethoxaole (39.1%, amoxicillin/clavulanic acid (37.4%, cefixime (34.5%, tetracycline (29.1%, ceftazidime (26.3%, ofloxacin (25.9%, amikacin (8.7%, and gentamicin (2.7% but sensitive to imipenem and piperacillin/tazobactam. Conclusion: Natural sources of water in east Sikkim are grossly contaminated with bacteria including enteropathogens. The consumption of untreated water from these sources might pose health risk to consumers.

  9. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-05-15

    Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs. PMID:26896719

  10. Evaluation of antibiotics as a methodological procedure to inhibit free-living and biofilm bacteria in marine zooplankton culture

    Directory of Open Access Journals (Sweden)

    Vanessa O. Agostini

    2016-01-01

    Full Text Available There is a problem with keeping culture medium completely or partially free from bacteria. The use of prokaryotic metabolic inhibitors, such as antibiotics, is suggested as an alternative solution, although such substances should not harm non-target organisms. Thus, the aim of this study was to assess the effectiveness of antibiotic treatments in inhibiting free-living and biofilm bacteria and their half-life in artificial marine environment using the copepod Acartia tonsa as bioindicador of non-harmful antibiotic combinations. Regarding to results, the application of 0.025 g L-1 penicillin G potassium + 0.08 g L-1 streptomycin sulphate + 0.04 g L-1 neomycin sulphate showed great potential for use in marine cultures and scientific experiments without lethal effects to non-target organisms. The effect of this combination starts within the first six hours of exposure and reduces up to 93 % the bacterial density, but the half-life is short, requiring replacement. No adverse changes in water quality were observed within 168 hours of exposure. As a conclusion, we can infer that this treatment was an effective procedure for zooplankton cultures and scientific experiments with the aim of measuring the role of free-living and biofilm in the marine community.

  11. Long-term effects of antibiotics on the elimination of chemical oxygen demand, nitrification, and viable bacteria in laboratory-scale wastewater treatment plants.

    Science.gov (United States)

    Schmidt, Susan; Winter, Josef; Gallert, Claudia

    2012-10-01

    Antibiotics and other pharmaceuticals are contaminants of the environment because of their widespread use and incomplete removal by microorganisms during wastewater treatment. The influence of a mixture of ciprofloxacin (CIP), gentamicin (GM), sulfamethoxazole (SMZ)/trimethoprim (TMP), and vancomycin (VA), up to a final concentration of 40 mg/L, on the elimination of chemical oxygen demand (COD), nitrification, and survival of bacteria, as well as the elimination of the antibiotics, was assessed in a long-term study in laboratory treatment plants (LTPs). In the presence of 30 mg/L antibiotics, nitrification of artificial sewage by activated sludge ended at nitrite. Nitrate formation was almost completely inhibited. No nitrification at all was possible in the presence of 40 mg/L antibiotics. The nitrifiers were more sensitive to antibiotics than heterotrophic bacteria. COD elimination in antibiotic-stressed LTPs was not influenced by ≤20 mg/L antibiotics. Addition of 30 mg/L antibiotic mixture decreased COD removal efficiency for a period, but the LTPs recovered. Similar results were obtained with 40 mg/L antibiotic mixture. The total viable count of bacteria was not affected negatively by the antibiotics. It ranged from 2.2 × 10(6) to 8.2 × 10(6) colony-forming units per milliliter (CFU/mL) compared with the control at 1.4 × 10(6)-6.3 × 10(6) CFU/mL. Elimination of the four antibiotics during phases of 2.4-30 mg/L from the liquid was high for GM (70-90 %), much lower for VA, TMP, and CIP (0-50 %), and highly fluctuating for SMZ (0-95 %). The antibiotics were mainly adsorbed to the sludge and not biodegraded. PMID:22622431

  12. Spectrum and antibiotic sensitivity of bacteria contaminating the upper gut in patients with malabsorption syndrome from the tropics

    Directory of Open Access Journals (Sweden)

    Naik Subhash R

    2003-05-01

    Full Text Available Abstract Background Various causes of malabsorption syndrome (MAS are associated with intestinal stasis that may cause small intestinal bacterial overgrowth (SIBO. Frequency, nature and antibiotic sensitivity of SIBO in patients with MAS are not well understood. Methods Jejunal aspirates of 50 consecutive patients with MAS were cultured for bacteria and colony counts and antibiotic sensitivity were performed. Twelve patients with irritable bowel syndrome were studied as controls. Results Culture revealed growth of bacteria in 34/50 (68% patients with MAS and 3/12 controls (p 2 to 1015 (median 105 in MAS and 100 to 1000 (median 700 CFU/ml in controls (p 0.003. 21/50 (42% patients had counts ≥105 CFU/ml in MAS and none of controls (p Escherichia coli respectively. The isolated bacteria were more often sensitive to quinolones than to tetracycline (ciprofloxacin: 39/47 and norfloxacin: 34/47 vs. tetracycline 19/47, Conclusions SIBO is common in patients with MAS due to various causes and quinolones may be the preferred treatment. This needs to be proved further by a randomized controlled trial.

  13. Fate of antibiotic resistance bacteria and genes during enhanced anaerobic digestion of sewage sludge by microwave pretreatment.

    Science.gov (United States)

    Tong, Juan; Liu, Jibao; Zheng, Xiang; Zhang, Junya; Ni, Xiaotang; Chen, Meixue; Wei, Yuansong

    2016-10-01

    The fate of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) were investigated during the sludge anaerobic digestion (AD) with microwave-acid (MW-H), microwave (MW) and microwave-H2O2-alkaline (MW-H2O2) pretreatments. Results showed that combined MW pretreatment especially for the MW-H pretreatment could efficiently reduce the ARB concentration, and most ARG concentrations tended to attenuate during the pretreatment. The subsequent AD showed evident removal of the ARB, but most ARGs were enriched after AD. Only the concentration of tetX kept continuous declination during the whole sludge treatment. The total ARGs concentration showed significant correlation with 16S rRNA during the pretreatment and AD. Compared with unpretreated sludge, the AD of MW and MW-H2O2 pretreated sludge presented slightly better ARB and ARGs reduction efficiency. PMID:26970692

  14. Efflux pump blockers in Gram-negative bacteria:The new generation of hydantoin based-modulators to improve antibiotic activity

    Directory of Open Access Journals (Sweden)

    Ewa eOtrębska-Machaj

    2016-05-01

    Full Text Available Multidrug resistant (MDR bacteria are an increasing health problem with the shortage of new active antibiotic agents. Among effective mechanisms that contribute to the spread of MDR Gram-negative bacteria are drug efflux pumps that expel clinically important antibiotic classes out of the cell. Drug pumps are attractive targets to restore the susceptibility towards the expelled antibiotics by impairing their efflux activity. Arylhydantoin derivatives were investigated for their potentiation of activities of selected antibiotics described as efflux substrates in Enterobacter aerogenes expressing or not AcrAB pump. Several compounds increased the bacterial susceptibility towards nalidixic acid, chloramphenicol and sparfloxacin and were further pharmacomodulated to obtain a better activity against the AcrAB producing bacteria.

  15. Detecting bacteria and Determining Their Susceptibility to Antibiotics by Stochastic Confinement in Nanoliter Droplets using Plug-Based Microfluidics

    Energy Technology Data Exchange (ETDEWEB)

    Boedicker, J.; Li, L; Kline, T; Ismagilov, R

    2008-01-01

    This article describes plug-based microfluidic technology that enables rapid detection and drug susceptibility screening of bacteria in samples, including complex biological matrices, without pre-incubation. Unlike conventional bacterial culture and detection methods, which rely on incubation of a sample to increase the concentration of bacteria to detectable levels, this method confines individual bacteria into droplets nanoliters in volume. When single cells are confined into plugs of small volume such that the loading is less than one bacterium per plug, the detection time is proportional to plug volume. Confinement increases cell density and allows released molecules to accumulate around the cell, eliminating the pre-incubation step and reducing the time required to detect the bacteria. We refer to this approach as stochastic confinement. Using the microfluidic hybrid method, this technology was used to determine the antibiogram - or chart of antibiotic sensitivity - of methicillin-resistant Staphylococcus aureus (MRSA) to many antibiotics in a single experiment and to measure the minimal inhibitory concentration (MIC) of the drug cefoxitin (CFX) against this strain. In addition, this technology was used to distinguish between sensitive and resistant strains of S. aureus in samples of human blood plasma. High-throughput microfluidic techniques combined with single-cell measurements also enable multiple tests to be performed simultaneously on a single sample containing bacteria. This technology may provide a method of rapid and effective patient-specific treatment of bacterial infections and could be extended to a variety of applications that require multiple functional tests of bacterial samples on reduced timescales.

  16. Incidence of antimicrobial-resistance genes and integrons in antibiotic-resistant bacteria isolated from eels and aquaculture ponds.

    Science.gov (United States)

    Lin, Mao; Wu, Xiaomei; Yan, Qingpi; Ma, Ying; Huang, Lixing; Qin, Yingxue; Xu, Xiaojin

    2016-07-01

    The overuse of antimicrobials in aquaculture has promoted the selection of antimicrobial-resistant bacteria. Here we investigated the abundance of antimicrobial-resistance genes and integrons in 108 strains of antibiotic-resistant bacteria isolated from eels and aquaculture ponds in China. Conventional PCR was implemented to examine common antibiotic-resistance genes, integrons, and their gene cassette arrays. The results showed that the antibiotic-resistance genes blaTEM, tetC, sulI, aadA, floR, and qnrB were detected at high percentages, as were a number of other resistance genes. Class I integrons were present in 79.63% of the strains, and 10 out of 108 isolates carried class II integrons. Class III integrons were not detected. Three strains carried both class I and class II integrons, and 73.26% of the class I integron-positive isolates contained the qacEΔ1/sul1 gene. Fourteen types of integron cassette arrays were found among class I integron-positive isolates. A new array, dfrB4-catB3-blaOXA-10-aadA1, was discovered in this study. The gene cassette array dfrA12-orfF-aadA2 was the most widely distributed. In summary, 23 different gene cassettes encoding resistance to 8 classes of antibiotics were identified in the class I integrons, and the main cassettes contained genes encoding resistance to aminoglycosides (aad) and trimethoprim (dfr). All class II integron-positive strains had only a single gene cassette array, viz. dfrA1-catB2-sat2-aadA1. High levels of antimicrobial-resistance genes and integrons in eels and auqauculture ponds suggest that the overuse of antimicrobials should be strictly controlled and that the levels of bacterial antimicrobial-resistance genes in aquaculture should be monitored. PMID:27409235

  17. 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic

    Science.gov (United States)

    ... E. coli and nearly 7,500 strains of Klebsiella pneumoniae collected from hospitals in North America, Latin America, ... used antibiotics. That means that E. coli and Klebsiella pneumoniae with mcr-1 are unlikely to cause hard- ...

  18. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria.

    Science.gov (United States)

    El Salabi, Allaaeddin; Walsh, Timothey R; Chouchani, Chedly

    2013-05-01

    Infectious diseases due to Gram-negative bacteria are a leading cause of morbidity and mortality worldwide. Antimicrobial agents represent one major therapeutic tools implicated to treat these infections. The misuse of antimicrobial agents has resulted in the emergence of resistant strains of Gram-negatives in particular Enterobacteriaceae and non-fermenters; they have an effect not only on a human but on the public health when bacteria use the resistance mechanisms to spread in the hospital environment and to the community outside the hospitals by means of mobile genetic elements. Gram-negative bacteria have become increasingly resistant to antimicrobial agents. They have developed several mechanisms by which they can withstand to antimicrobials, these mechanisms include the production of Extended-spectrum β-lactamases (ESBLs) and carbapenemases, furthermore, Gram-negative bacteria are now capable of spreading such resistance between members of the family Enterobacteriaceae and non-fermenters using mobile genetic elements as vehicles for such resistance mechanisms rendering antibiotics useless. Therefore, addressing the issue of mechanisms of antimicrobial resistance is considered one of most urgent priorities. This review will help to illustrate different resistance mechanisms; ESBLs, carbapenemases encoded by genes carried by mobile genetic elements, which are used by Gram-negative bacteria to escape antimicrobial effect.

  19. Odontogenic bacteria in periodontal disease and resistance patterns to common antibiotics used as treatment and prophylaxis in odontology in Spain.

    Science.gov (United States)

    Maestre, J R; Bascones, A; Sánchez, P; Matesanz, P; Aguilar, Lorenzo; Giménez, M J; Pérez-Balcabao, I; Granizo, J J; Prieto, J

    2007-03-01

    Resistance in streptococci or Gram-negative bacteria is associated with antibiotic consumption. Scarce information exists on the antibiotic susceptibility of bacterial isolates from patients with periodontitis in countries with high antibiotic consumption, as this is an area in which microbiological testing is not performed in daily practice. The present study was undertaken to explore the susceptibility of bacterial isolates in periodontitis to antibiotics prescribed in odontology in Spain as treatment for local infections or prophylaxis for distant focal infections. Periodontal samples were prospectively collected in 48 patients classified by pocket depth of or=4 mm. Species were identified by culture, selecting the five most frequent morphotypes per sample, and polymerase chain reaction (PCR). Susceptibility was determined by E-test. A total of 261 isolates were identified: 72.9% patients had Streptococcus oralis; 70.8% Streptococcus mitis; 60.4% Prevotella buccae; 39.6% Prevotella denticola; 37.5% Fusobacterium nucleatum; 35.4% Prevotella intermedia; 25% Capnocytophaga spp.; 23% Veillonella spp.; 22.9% Prevotella melaninogenica and Streptococcus sanguis; and resistance rates were 0% for amoxicillin, approximately 10% for clindamycin, 9-22% for tetracycline, and for azithromycin ranged from 18.2% for S. sanguis to 47.7% for S. mitis. Prevotella isolates were susceptible to amoxicillin-clavulanic acid, with amoxicillin resistance ranging from 17.1% in P. buccae to 26.3% in P. denticola. Metronidazole resistance was resistance ranged from 0 to 21.1%. beta-Lactamase production was positive in 54.1% Prevotella spp., 38.9% F. nucleatum, 30% Capnocytophaga spp., and 10% Veillonella spp. In this study, amoxicillin-clavulanic acid was the most active antibiotic against all species tested, followed by metronidazole in the case of anaerobes.

  20. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii

    Science.gov (United States)

    Wan, Guoqing; Ruan, Lingao; Yin, Yu; Yang, Tian; Ge, Mei; Cheng, Xiaodong

    2016-01-01

    Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs) show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604). Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 μg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs–antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. PMID:27574420

  1. [Emerging and important antibiotic resistance in Gram negative bacteria: epidemiology, theory and practice].

    Science.gov (United States)

    Nordmann, P; Poirel, L

    2014-04-23

    Emerging and clinically-relevant antibiotic resistance mechanisms among Gram-negative rods are the extended-spectrum beta-lactamases (ESBL), carbapenemases, and 16S RNA methylases conferring resistance to aminoglycosides. Those resistance determinants do confer multiresistance to antibiotics. They are found in Enterobacteriaceae (especially community-acquired isolates, Pseudomonas aeruginosa and Acinetobacter baumannii). Detection of ESBL-producing and carbapenemase-producing isolates rely on the use of rapid diagnostic techniques that have to be performed when a reduced susceptibility to 3rd/4th generation cephalosporins or to carbapenems is observed, respectively. Only an early detection of those emerging resistance traits may contribute to limit their nosocomial spread and to optimize the antibiotic stewardship.

  2. Effects of silver nanoparticles in combination with antibiotics on the resistant bacteria Acinetobacter baumannii

    Directory of Open Access Journals (Sweden)

    Wan G

    2016-08-01

    Full Text Available Guoqing Wan,1,2 Lingao Ruan,2,3 Yu Yin,2,3 Tian Yang,2,3 Mei Ge,2 Xiaodong Cheng1,4 1School of Life Science and Technology, China Pharmaceutical University, Nanjing, 2Shanghai Laiyi Center for Biopharmaceutical R&D, 3School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People’s Republic of China; 4Department of Integrative Biology & Pharmacology, The University of Texas Health Science Center, Houston, TX, USA Abstract: Acinetobacter baumannii resistance to carbapenem antibiotics is a serious clinical challenge. As a newly developed technology, silver nanoparticles (AgNPs show some excellent characteristics compared to older treatments, and are a candidate for combating A. baumannii infection. However, its mechanism of action remains unclear. In this study, we combined AgNPs with antibiotics to treat carbapenem-resistant A. baumannii (aba1604. Our results showed that single AgNPs completely inhibited A. baumannii growth at 2.5 µg/mL. AgNP treatment also showed synergistic effects with the antibiotics polymixin B and rifampicin, and an additive effect with tigecyline. In vivo, we found that AgNPs–antibiotic combinations led to better survival ratios in A. baumannii-infected mouse peritonitis models than that by single drug treatment. Finally, we employed different antisense RNA-targeted Escherichia coli strains to elucidate the synergistic mechanism involved in bacterial responses to AgNPs and antibiotics. Keywords: Acinetobacter baumannii, AgNPs, synergistic, antibiotic combination, anti­sense RNA 

  3. Evaluation of Antibacterial Activity of Aqueous Extracts of Onion and some Antibiotics on a Number of Important Bacteria in Terms of Food Hygiene

    Directory of Open Access Journals (Sweden)

    Anzabi Younes

    2014-10-01

    Full Text Available Objective: The purpose of this study was to evaluate the antibacterial effect of edible onion plant and a number of common antibiotics in the case of some important bacteria regarding food hygiene. Materials and Methods: The sensitivity or resistance of standard strains of 9 important species of transmissible pathogenic bacteria, through food in laboratory Mueller Hinton agar medium and using blank paper discs containing onion extract, 9 standard synthetic chemicals, and antibiotics by agar disk diffusion method (disk diffusion agar, were investigated. Results: The findings of this study showed that, of the 9 species of bacteria tested, the aqueous extract of onion only has relatively small antibacterial activity on the 2 species of Staphylococcus aureus and clostridium perfringens. Statistical analysis of the results also indicated that there was no significant relationship among the different antibiotics used and the edible onion aqueous extract, and the resistance or susceptibility of isolates. Moreover, there was a difference between different antibiotics tested in this study and aqueous extract of onion, regarding the number of resistant bacteria, and intermediate and moderate susceptibility, and susceptibility to the antibacterial compounds. Conclusion: It seems that the aqueous extract of onions cannot be used as an alternative to commonly used antibiotics to fight important bacteria in terms food hygiene.

  4. Antibiotic Resistance and Heavy Metals Tolerance in Gram-Negative Bacteria from Diseased American Bullfrog (Rana catesbeiana) Cultured in Malaysia

    Institute of Scientific and Technical Information of China (English)

    M Na-jian; S W Lee; W Wendy; L W Tee; M Nadirah; S H Faizah

    2009-01-01

    A total of 140 bacterial isolates have been successfully isolated from various organs of diseased American bullfrog (Rana catesbeiana) cultured in Malaysia. The most frequently isolated bacteria was Edwardsiella spp. (46 isolates) followed by Aeromonas spp. (33 isolates), Flavobacterium spp. (31 isolates), and Vibrio spp. (30 isolates). Majority of the bacterial isolates were found sensitive to furazolidone (85.0%), chloramphenicol (85.0%), oxolinic acid (90.0%), florfenicol (95.0%), and flumequine (97.5%). On the other hand, most of the bacterial isolates were resistant to oleandomycin (77.5%) and lincomycin (87.5%). Nitrofurantoin and flumequine can be inhibited the growth of all of Vibrio spp. whereas all isolates of Edwardsiella spp. were found sensitive to florfenicol and flumequine. Multiple antibiotic resistance (MAR) index were in range of 0.30-0.40, indicating that bacterial isolates from cultured bullfrogs may have received high risk exposure to the tested antibiotics. In addition, 90-100% of the isolates were resistant to copper, cadmium, and chromium. These results provided insight information on tolerance level of bacterial isolates from cultured bullfrogs to 21 antibiotics as well as heavy metals.

  5. Multi-antibiotic resistant bacteria in frozen food (ready to cook food) of animal origin sold in Dhaka, Bangladesh

    Institute of Scientific and Technical Information of China (English)

    Fouzia Sultana; Kamrunnahar; Hafsa Afroz; Afroz Jahan; Md Fakruddin; Suvamoy Datta

    2014-01-01

    Objective: To investigate the bacterial load and antibiotic resistance pattern of bacterial isolates obtained from (ready to cook) frozen food samples of animal origin in Dhaka, Bangladesh. Methods: A total of 20 samples of frozen ready to cook food of animal origin were purchased from different separate grocery stores in Dhaka, Bangladesh. Bacteria were isolated and identified based on the basis of biochemical properties. Results: A total of 57 isolates has been isolated from 20 samples, of them 35.08% were Gram positive and 64.92% were Gram negative organisms. Highest percentages of isolated organisms were Staphylococcocus spp. (24.56%), Alcaligene spp. (17.54%), Klebshiella spp. (12.28%) and the lowest percentages of organisms were Enterococcus spp., Actinobacillus spp. and Proteus spp. Antibiogram results clearly showed that levofloxacin and imipenem were the most effective drug against the isolates. The less effective antibiotics were chloramphenicol and nalidixic acid and resistance was highest against ciprofloxacin. The most contaminated food was chicken nuggets. Conclusions: This type of frozen food contaminated with multi-antibiotic resistant microorganisms can be potential vehicles for transmitting food-borne diseases.

  6. Antibiotic resistance profile of bacteria isolated from raw milk samples of cattle and buffaloes

    Directory of Open Access Journals (Sweden)

    Tahlina Tanzin

    2016-03-01

    Conclusion: Two different species of bacteria i.e., S. aureus and E. coli are contaminating with milk samples. The pathogenic bacteria can be controlled effectively by using Ciprofloxacin and Levofloxacin in the case of mastitis in cattle and buffaloes in Bangladesh. [J Adv Vet Anim Res 2016; 3(1.000: 62-67

  7. Darwinian and neo-Darwinian selection mechanisms in bacteria: Effects on antibiotic resistance

    Science.gov (United States)

    Darwin’s concept of survival of the fittest is as critical when applied to bacteria as it is to animals. Bacteria live in a highly competitive environment that is similar to the macrobiological world with its selective pressures. Neo-Darwinism views genes as selfish and as the ultimate unit of nat...

  8. Epilobi Hirsuti Herba Extracts Influence the In Vitro Activity of Common Antibiotics on Standard Bacteria

    Directory of Open Access Journals (Sweden)

    Pirvu Lucia

    2016-03-01

    Full Text Available Epilobium genus has been confirmed as an effective source of natural antimicrobials. However, the influence of Epilobi hirsuti herba derived products on usual antibiotics activity has not been studied. In this study, several standardized Epilobi hirsuti herba extracts (EHE were evaluated in order to asses their potential effects on usual antibiotics tested on standard Gram-positive and Gram-negative bacterial strains in vitro. The results emphasized that the bacterial strains ranged from sensitive (MIC values between 50–200 μg GAE mL-1 (S. epidermidis ATCC 12228 to very resistant (E. coli strains, E. faecalis ATCC 29212 being practically immune to EHE. In terms of synergistic interaction, Tetracycline and Ampicillin combinations lead to the most important stimulatory effects, the diameters of the inhibition zone being even 60% bigger compared to the antibiotic alone. Synergistic effects between myricetin(galloyl derivates and Tetracycline were also revealed on P. aeruginosa and E. coli strains. Together, it clearly demonstrated not only EHE’s own antimicrobial properties, but also their capacity to influence the antimicrobial potency of some common antibiotics. These results could be useful for the area of herbal medicines and as potential candidates in managing microbial resistance, but also for physicians and pharmacists using combined antibacterial therapy.

  9. CIEF separation, UV detection, and quantification of ampholytic antibiotics and bacteria from different matrices

    OpenAIRE

    Horká, M. (Marie); Vykydalová, M. (Marie); Růžička, F.; Šalplachta, J. (Jiří); Holá, V.; Dvořáčková, M.; Kubesová, A. (Anna); Šlais, K. (Karel)

    2014-01-01

    The isoelectric points of some ampholytic antibiotics dissolved in water or growth medium were found by capillary isoelectric focusing and the influence of selected antimicrobials on S. epidermidis re-suspended in medium or human blood was monitored by this electrophoretic technique or MALDI-TOF MS.

  10. Combination of Pantothenamides with Vanin Inhibitors as a Novel Antibiotic Strategy against Gram-Positive Bacteria

    NARCIS (Netherlands)

    Jansen, P.A.M.; Hermkens, P.H.H.; Zeeuwen, P.L.J.M.; Botman, P.N.M.; Blaauw, R.H.; Burghout, P.; Galen, P.M. van; Mouton, J.W.; Rutjes, F.P.J.T.; Schalkwijk, J.

    2013-01-01

    The emergence of resistance against current antibiotics calls for the development of new compounds to treat infectious diseases. Synthetic pantothenamides are pantothenate analogs that possess broad-spectrum antibacterial activity in vitro in minimal media. Pantothenamides were shown to be substrate

  11. Longitudinal nasopharyngeal carriage and antibiotic resistance of respiratory bacteria in indigenous Australian and Alaska native children with bronchiectasis.

    Directory of Open Access Journals (Sweden)

    Kim M Hare

    Full Text Available BACKGROUND: Indigenous children in Australia and Alaska have very high rates of chronic suppurative lung disease (CSLD/bronchiectasis. Antibiotics, including frequent or long-term azithromycin in Australia and short-term beta-lactam therapy in both countries, are often prescribed to treat these patients. In the Bronchiectasis Observational Study we examined over several years the nasopharyngeal carriage and antibiotic resistance of respiratory bacteria in these two PCV7-vaccinated populations. METHODS: Indigenous children aged 0.5-8.9 years with CSLD/bronchiectasis from remote Australia (n = 79 and Alaska (n = 41 were enrolled in a prospective cohort study during 2004-8. At scheduled study visits until 2010 antibiotic use in the preceding 2-weeks was recorded and nasopharyngeal swabs collected for culture and antimicrobial susceptibility testing. Analysis of respiratory bacterial carriage and antibiotic resistance was by baseline and final swabs, and total swabs by year. RESULTS: Streptococcus pneumoniae carriage changed little over time. In contrast, carriage of Haemophilus influenzae declined and Staphylococcus aureus increased (from 0% in 2005-6 to 23% in 2010 in Alaskan children; these changes were associated with increasing age. Moraxella catarrhalis carriage declined significantly in Australian, but not Alaskan, children (from 64% in 2004-6 to 11% in 2010. While beta-lactam antibiotic use was similar in the two cohorts, Australian children received more azithromycin. Macrolide resistance was significantly higher in Australian compared to Alaskan children, while H. influenzae beta-lactam resistance was higher in Alaskan children. Azithromycin use coincided significantly with reduced carriage of S. pneumoniae, H. influenzae and M. catarrhalis, but increased carriage of S. aureus and macrolide-resistant strains of S. pneumoniae and S. aureus (proportion of carriers and all swabs, in a 'cumulative dose-response' relationship

  12. Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Naqvi SZ

    2013-08-01

    Full Text Available Syed Zeeshan Haider Naqvi, Urooj Kiran, Muhammad Ishtiaq Ali, Asif Jamal, Abdul Hameed, Safia Ahmed, Naeem Ali Microbiology Research Laboratory, Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan Abstract: Biological synthesis of nanoparticles is a growing innovative approach that is relatively cheaper and more environmentally friendly than current physicochemical processes. Among various microorganisms, fungi have been found to be comparatively more efficient in the synthesis of nanomaterials. In this research work, extracellular mycosynthesis of silver nanoparticles (AgNPs was probed by reacting the precursor salt of silver nitrate (AgNO3 with culture filtrate of Aspergillus flavus. Initially, the mycosynthesis was regularly monitored by ultraviolet-visible spectroscopy, which showed AgNP peaks of around 400–470 nm. X-ray diffraction spectra revealed peaks of different intensities with respect to angle of diffractions (2θ corresponding to varying configurations of AgNPs. Transmission electron micrographs further confirmed the formation of AgNPs in size ranging from 5–30 nm. Combined and individual antibacterial activities of the five conventional antibiotics and AgNPs were investigated against eight different multidrug-resistant bacterial species using the Kirby–Bauer disk-diffusion method. The decreasing order of antibacterial activity (zone of inhibition in mm of antibiotics, AgNPs, and their conjugates against bacterial group (average was; ciprofloxacin + AgNPs (23 > imipenem + AgNPs (21 > gentamycin + AgNPs (19 > vancomycin + AgNPs (16 > AgNPs (15 > imipenem (14 > trimethoprim + AgNPs (14 > ciprofloxacin (13 > gentamycin (11 > vancomycin (4 > trimethoprim (0. Overall, the synergistic effect of antibiotics and nanoparticles resulted in a 0.2–7.0 (average, 2.8 fold-area increase in antibacterial activity, which clearly revealed that nanoparticles can be effectively used in

  13. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria.

    Science.gov (United States)

    Russell, A D

    2002-01-01

    Biocides and other antimicrobial agents have been employed for centuries. Much later, iodine found use as a wound disinfectant, chlorine water in obstetrics, alcohol as a hand disinfectant and phenol as a wound dressing and in antiseptic surgery. In the early part of the twentieth century, other chlorine-releasing agents (CRAs), and acridine and other dyes were introduced, as were some quaternary ammonium compounds (QACs, although these were only used as biocides from the 1930s). Later still, various phenolics and alcohols, formaldehyde and hydrogen peroxide were introduced and subsequently (although some had actually been produced at an earlier date) biguanides, iodophors, bisphenols, aldehydes, diamidines, isocyanurates, isothiazolones and peracetic acid. Antibiotics were introduced clinically in the 1940s, although sulphonamides had been synthesized and used previously. After penicillin came streptomycin and other aminoglycosides-aminocyclitols, tetracyclines, chloramphenicol, macrolides, semi-synthetic beta-lactams, glycopeptides, lincosamides, 4-quinolones and diaminopyrimidines. Bacterial resistance to antibiotics is causing great concern. Mechanisms of such resistance include cell impermeability, target site mutation, drug inactivation and drug efflux. Bacterial resistance to biocides was described in the 1950s and 1960s and is also apparently increasing. Of the biocides listed above, cationic agents (QACs, chlorhexidine, diamidines, acridines) and triclosan have been implicated as possible causes for the selection and persistence of bacterial strains with low-level antibiotic resistance. It has been claimed that the chronological emergence of qacA and qacB determinants in clinical isolates of Staphylococcus aureus mirrors the introduction and usage of cationic biocides.

  14. Glycopeptide Antibiotic To Overcome the Intrinsic Resistance of Gram-Negative Bacteria.

    Science.gov (United States)

    Yarlagadda, Venkateswarlu; Manjunath, Goutham B; Sarkar, Paramita; Akkapeddi, Padma; Paramanandham, Krishnamoorthy; Shome, Bibek R; Ravikumar, Raju; Haldar, Jayanta

    2016-02-12

    The emergence of drug resistance along with a declining pipeline of clinically useful antibiotics has made it vital to develop more effective antimicrobial therapeutics, particularly against difficult-to-treat Gram-negative pathogens (GNPs). Many antibacterial agents, including glycopeptide antibiotics such as vancomycin, are inherently inactive toward GNPs because of their inability to cross the outer membrane of these pathogens. Here, we demonstrate, for the first time, lipophilic cationic (permanent positive charge) vancomycin analogues were able to permeabilize the outer membrane of GNPs and overcome the inherent resistance of GNPs toward glycopeptides. Unlike vancomycin, these analogues were shown to have a high activity against a variety of multidrug-resistant clinical isolates such as Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Acinetobacter baumannii. In the murine model of carbapenem-resistant A. baumannii infection, the optimized compound showed potent activity with no observed toxicity. The notable activity of these compounds is attributed to the incorporation of new membrane disruption mechanisms (cytoplasmic membrane depolarization along with outer and inner (cytoplasmic) membrane permeabilization) into vancomycin. Therefore, our results indicate the potential of the present vancomycin analogues to be used against drug-resistant GNPs, thus strengthening the antibiotic arsenal for combating Gram-negative bacterial infections. PMID:27624964

  15. Marine Pseudomonas putida: a potential source of antimicrobial substances against antibiotic-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Palloma Rodrigues Marinho

    2009-08-01

    Full Text Available Bacteria isolated from marine sponges found off the coast of Rio de Janeiro, Brazil, were screened for the production of antimicrobial substances. We report a new Pseudomonas putida strain (designated P. putida Mm3 isolated from the sponge Mycale microsigmatosa that produces a powerful antimicrobial substance active against multidrug-resistant bacteria. P. putida Mm3 was identified on the basis of 16S rRNA gene sequencing and phenotypic tests. Molecular typing for Mm3 was performed by RAPD-PCR and comparison of the results to other Pseudomonas strains. Our results contribute to the search for new antimicrobial agents, an important strategy for developing alternative therapies to treat infections caused by multidrug-resistant bacteria.

  16. Antimicrobial Activity and Antibiotic Sensitivity of Three Isolates of Lactic Acid Bacteria From Fermented Fish Product, Budu

    Directory of Open Access Journals (Sweden)

    Liasi, S. A.

    2009-01-01

    Full Text Available Three isolates of lactic acid bacteria (LAB from the fermented food product, Budu, were identified as genus lactobacillus (Lactobacillus casei LA17, Lactobacillus plantarum LA22 and L. paracasei LA02, and the highest population was Lb. paracasei LA02. The antibacterial agent produced by the isolates inhibited the growth of a range of gram-positive and gram-negative microorganisms. Antimicrobial sensitivity test to 18 different types of antibiotic were evaluated using the disc diffusion method. Inhibition zone diameter was measured and calculated from the means of five determinations and expressed in terms of resistance or susceptibility. All the LAB isolates were resistant to colestin sulphate, streptomycin, amikacin, norfloxacin, nalidixic acid, mecillinam, sulphanethoxazole/ trimethoprim, kanamycin, neomycin, bacitracin and gentamycin but susceptible to erythromycin, penicillin G, chloramphenicol, tetracycline, ampicillin and nitrofurantion.

  17. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Nicolas Barraud

    Full Text Available The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF, suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10-40 mM increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.

  18. How Often Are Antibiotic-Resistant Bacteria Said to "Evolve" in the News?

    Science.gov (United States)

    Singh, Nina; Sit, Matthew T; Chung, Deanna M; Lopez, Ana A; Weerackoon, Ranil; Yeh, Pamela J

    2016-01-01

    Media plays an important role in informing the general public about scientific ideas. We examine whether the word "evolve," sometimes considered controversial by the general public, is frequently used in the popular press. Specifically, we ask how often articles discussing antibiotic resistance use the word "evolve" (or its lexemes) as opposed to alternative terms such as "emerge" or "develop." We chose the topic of antibiotic resistance because it is a medically important issue; bacterial evolution is a central player in human morbidity and mortality. We focused on the most widely-distributed newspapers written in English in the United States, United Kingdom, Canada, India, and Australia. We examined all articles that focused primarily on the evolution of antibiotic resistance, were published in 2014 or earlier, and were accessible in online archives, for a total of 1639 articles. The total years examined per newspaper ranged from 5 to 37 years with a median of 27 years, and the overall range was 1978-2014. We quantified how many articles included the term "evolve" and analyzed how this varied with newspaper, country, and time. We found that an overall rate of 18% of articles used the term "evolve" but with significant variation among countries. Newspapers in the United Kingdom had the highest rate (24%), more than double of those in India (9%), the country with the lowest rate. These frequencies were lower than those found in scientific papers from both evolutionary journals and biomedical journals. There were no statistically significant changes in frequency and no trends when "evolve" usage was compared against variables such as newspaper circulation, liberal/conservative bias, time, and state evolution acceptance in U.S. newspapers. This study highlights the globally low usage of the word "evolve" in the popular press. We suggest this low usage may affect public understanding and acceptance of evolutionary concepts. PMID:26934595

  19. The effect of bacteria on diatom community structure - The 'antibiotics' approach

    Digital Repository Service at National Institute of Oceanography (India)

    DeCosta, P.M.; Anil, A.C.

    Biological Laboratory, Woods Hole, pp. 84. Croft, M.T., Lawrence, A.D., Raux-Deery, E., Warren, M.J., Smith, A.G., 2005. Algae acquire vitamin B 12 through a symbiotic relationship with bacteria. Nature 438, 90-93. Cullen, J.J., Lesser, M.P., 1991...

  20. A Comprehensive Insight into Tetracycline Resistant Bacteria and Antibiotic Resistance Genes in Activated Sludge Using Next-Generation Sequencing

    Directory of Open Access Journals (Sweden)

    Kailong Huang

    2014-06-01

    Full Text Available In order to comprehensively investigate tetracycline resistance in activated sludge of sewage treatment plants, 454 pyrosequencing and Illumina high-throughput sequencing were used to detect potential tetracycline resistant bacteria (TRB and antibiotic resistance genes (ARGs in sludge cultured with different concentrations of tetracycline. Pyrosequencing of 16S rRNA gene revealed that tetracycline treatment greatly affected the bacterial community structure of the sludge. Nine genera consisting of Sulfuritalea, Armatimonas, Prosthecobacter, Hyphomicrobium, Azonexus, Longilinea, Paracoccus, Novosphingobium and Rhodobacter were identified as potential TRB in the sludge. Results of qPCR, molecular cloning and metagenomic analysis consistently indicated that tetracycline treatment could increase both the abundance and diversity of the tet genes, but decreased the occurrence and diversity of non-tetracycline ARG, especially sulfonamide resistance gene sul2. Cluster analysis showed that tetracycline treatment at subinhibitory concentrations (5 mg/L was found to pose greater effects on the bacterial community composition, which may be responsible for the variations of the ARGs abundance. This study indicated that joint use of 454 pyrosequencing and Illumina high-throughput sequencing can be effectively used to explore ARB and ARGs in the environment, and future studies should include an in-depth investigation of the relationship between microbial community, ARGs and antibiotics in sewage treatment plant (STP sludge.

  1. Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients.

    Science.gov (United States)

    Gholipourmalekabadi, M; Bandehpour, M; Mozafari, M; Hashemi, A; Ghanbarian, H; Sameni, M; Salimi, M; Gholami, M; Samadikuchaksaraei, A

    2015-11-01

    Human amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients. Therefore, a HAM was decellularized and tested for its antibacterial activity. Decellularization of the tissue was confirmed by hematoxylin and eosin (H&E) and 4,6-diamidino-2-phenylindole (DAPI) staining. In addition, the cyto-biocompatibility of the acellular HAM was proven by the cell viability test (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) and scanning electron microscopy (SEM). The resistant bacteria were isolated from burns, identified, and tested for their susceptibility to antibiotics using both the antibiogram and polymerase chain reaction (PCR) techniques. Among the isolated bacteria, three blaIMP gene-positive Pseudomonas aeruginosa strains were chosen for their high resistance to the tested antibiotics. The antibacterial activity of the HAM was also tested for Klebsiella pneumoniae (American Type Culture Collection (ATCC) 700603) as a resistant ATCC bacterium; Staphylococcus aureus (mecA positive); and three standard strains of ATCC bacteria including Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27833), and S. aureus (ATCC 25923). Antibacterial assay revealed that only the latter three bacteria were susceptible to the HAM. All the data obtained from this study suggest that an alternative strategy is required to complement HAM grafting in order to fully protect burns from nosocomial infections.

  2. 后抗生素时代我们如何征服细菌?%How to conquer bacteria in post-antibiotic era?

    Institute of Scientific and Technical Information of China (English)

    郭晓奎

    2012-01-01

    The occurrence of antibiotic resistant bacteria, especially pan-drug resistant bacteria may make no antibiotics available for the treatment of infectious diseases, which will lead to the emerge of post-antibiotic era. It is imperative to find new antibacterial drugs or strategies to solve the increasingly serious problem of drug resistance. The invention status and application prospect of new-type antibiotics, antimicrobial peptide, bacteriophage and traditional Chinese medicine preparation are introduced in this paper, which may provide reference for the exploration of antibacterial drugs to conquer bacteria in post-antibiotic era.%耐药性“超级细菌”的出现,将使我们重新步入无抗生素可用的时代,即“后抗生素时代”.面对日益严重的细菌耐药性,寻找新的抗菌药物及治疗方案已成为目前急需解决的难题.文章阐述新型抗生素、抗菌肽、噬菌体和中药制剂的研究开发及应用前景,为后抗生素时代针对耐药细菌,特别是超级细菌的抗感染药物的研究提供思路.

  3. Control of multi-resistant bacteria and ventilator-associated pneumonia: is it possible with changes in antibiotics?

    Directory of Open Access Journals (Sweden)

    Elisa M. Jukemura

    2007-08-01

    Full Text Available Potent antimicrobial agents have been developed as a response to the development of antibiotic-resistant bacteria, which especially affect patients with prolonged hospitalization in Intensive Care Units (ICU and who had been previously treated with antimicrobials, especially third-generation cephalosporins.This study was to determine how changes in the empirical treatment of infections in ICU patients affect the incidence of Gram-negative bacteria species and their susceptibility to antimicrobials, and examine the impact of these changes on nosocomial infections. A prospective interventional study was performed in a university hospital during two periods: 1 First period (September 1999 to February 2000; and 2 Second period (August 2000 to December 2000; empirical treatment was changed from ceftriaxone and/or ceftazidime in the first period to piperacillin/tazobactam in the second. ICU epidemiological and infection control rates, as well as bacterial isolates from upper airways were analyzed. Ceftazidime consumption dropped from 34.83 to 0.85 DDD/1000 patients per day (p=0.004. Piperacillin/tazobactam was originally not available; its consumption reached 157.07 DDD/1000 patients per day in the second period (p=0.0002. Eighty-seven patients and 66 patients were evaluated for upper airway colonization in the first and second periods, respectively. There was a significant decrease in the incidence of K. pneumoniae (p=0.004 and P. mirabilis (p=0.036, restoration of K. pneumoniae susceptibility to cephalosporins (p<0.0001 and reduction of ventilator-associated pneumonia rates (p<0.0001. However, there was an increase in P. aeruginosa incidence (p=0.005 and increases in ceftazidime (p=0.003 and meropenem (p<0.0001 susceptibilities. Changing antimicrobial selective pressure on multi-resistant Gram-negative bacteria helps control ventilator-associated pneumonia and decreases antimicrobial resistance.

  4. Prevalence and Antibiotic Resistance of Gram-Negative Pathogenic Bacteria Species Isolated from Periplaneta americana and Blattella germanica in Varanasi, India.

    Directory of Open Access Journals (Sweden)

    D Leshan Wannigama

    2014-06-01

    Full Text Available Cockroaches are among the medically important pests found within the human habitations that cause serious public health problems. They may harbor a number of pathogenic bacteria on the external surface with antibiotic resistance. Hence, they are regarded as major microbial vectors. This study investigates the prevalence and antibiotic resistance of Gram-negative pathogenic bacteria species isolated from Periplaneta americana and Blattella germanica in Varanasi, India.Totally, 203 adult cockroaches were collected form 44 households and 52 food-handling establishments by trapping. Bacteriological examination of external surfaces of Pe. americana and Bl. germanica were carried out using standard method and antibiotics susceptibility profiles of the isolates were determined using Kirby-Bauer disc diffusion methods.Among the places, we found that 54% had cockroache infestation in households and 77% in food- handling establishments. There was no significant different between the overall bacteria load of the external surface in Pe. americana (64.04% and Bl. germanica (35.96%. However the predominant bacteria on cockroaches were Klebsiella pneumonia, Escherichia coli, Enterobacter aerogenes, and Pseudomonas aeruginosa. However, Kl. pneumoniae and Ps. aeruginosa were the most prevalent, drug-resistant strains were isolated from the cockroaches with 100% resistance to sulfamethoxazole/trimethoprim and ampicillin. For individual strains of bacteria, Escherichia coli was found to have multi-resistance to four antibiotic tested, Citrobacter freundii four, Enterobacter aerogenes and Proteus mirabilis to three.Cockroaches are uniformly distributed in domestic environment, which can be a possible vector for transmission of drug-resistant bacteria and food-borne diseases.

  5. Forgotten antibiotics

    DEFF Research Database (Denmark)

    Pulcini, Céline; Bush, Karen; Craig, William A;

    2012-01-01

    In view of the alarming spread of antimicrobial resistance in the absence of new antibiotics, this study aimed at assessing the availability of potentially useful older antibiotics. A survey was performed in 38 countries among experts including hospital pharmacists, microbiologists, and infectious...... disease specialists in Europe, the United States, Canada, and Australia. An international expert panel selected systemic antibacterial drugs for their potential to treat infections caused by resistant bacteria or their unique value for specific criteria. Twenty-two of the 33 selected antibiotics were...... available in fewer than 20 of 38 countries. Economic motives were the major cause for discontinuation of marketing of these antibiotics. Fourteen of 33 antibiotics are potentially active against either resistant Gram-positive or Gram-negative bacteria. Urgent measures are then needed to ensure better...

  6. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    Science.gov (United States)

    Meek, Richard William; Vyas, Hrushi; Piddock, Laura Jane Violet

    2015-10-01

    The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted. PMID:26444324

  7. Nonmedical Uses of Antibiotics: Time to Restrict Their Use?

    Directory of Open Access Journals (Sweden)

    Richard William Meek

    2015-10-01

    Full Text Available The global crisis of antibiotic resistance has reached a point where, if action is not taken, human medicine will enter a postantibiotic world and simple injuries could once again be life threatening. New antibiotics are needed urgently, but better use of existing agents is just as important. More appropriate use of antibiotics in medicine is vital, but the extensive use of antibiotics outside medical settings is often overlooked. Antibiotics are commonly used in animal husbandry, bee-keeping, fish farming and other forms of aquaculture, ethanol production, horticulture, antifouling paints, food preservation, and domestically. This provides multiple opportunities for the selection and spread of antibiotic-resistant bacteria. Given the current crisis, it is vital that the nonmedical use of antibiotics is critically examined and that any nonessential use halted.

  8. Studies on the ecology of aquatic bacteria of the lower Niger Delta: multiple antibiotic resistance among the standard plate count organisms.

    Science.gov (United States)

    Ogan, M T; Nwiika, D E

    1993-05-01

    The ecology of multiple antibiotic resistant (MAR) bacteria in the fresh-waters of the lower Niger Delta was studied in the Port Harcourt area, Rivers State. On the basis of decreasing pollution levels three zones, A, B, C, were recognized. Cell recovery by two viable count media, casein-peptone-starch (CPS) and plate count (PC) agar containing chloramphenicol, tetracycline, penicillin, streptomycin or ampicillin were compared in an initial study. Higher numbers of antibiotic resistant (AR) bacteria were recovered on CPS containing tetracycline, penicillin, streptomycin and ampicillin from the faecally-polluted New Calabar River (zone A) than on SPC agar containing similar antibiotics but the reverse was observed for forest stream (zone B) samples. Differences between the two media were also observed at individual sample sites. The proportions of strains of AR bacteria resistant to their primary isolation antibiotic varied from 55% (zone B) to 72% in the least polluted Isiokpo and Elele-Alimini streams (zone C), for ampicillin, and mostly count media without antibiotics included mainly species of Bacillus (12) and enterobacteria (18). Between five and 10 strains were resistant to > or = three antibiotics; seven were resistant to all five. The antibiograms of most strains were variable and depended on the method of drug application (discs or incorporation into agar), media and temperature of incubation (25 degrees, 37 degrees or 44.5 degrees C). Twenty-one strains were consistently resistant to ampicillin by the two methods; 10 to 19 were consistent for chloramphenicol, tetracycline and penicillin.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. An investigation into the removal of Salmonella and enteric indicator bacteria from the separated liquid fraction of raw or anaerobically digested pig manure using novel on-farm woodchip biofilters.

    Science.gov (United States)

    McCarthy, G; Lawlor, P G; Carney, K N; Zhan, X; Gutierrez, M; Gardiner, G E

    2015-05-01

    The objective was to investigate the removal of Salmonella and enteric indicator bacteria from the liquid fraction of raw and anaerobically digested (AD) pig manure in woodchip biofilters over a 14 week (98 day) period. Antibiotic susceptible Salmonella Infantis was detected in one influent material (liquid fraction of raw manure) on two occasions but was not found in the effluent at any time point. Furthermore, mean coliform reductions of 56% were observed in the biofilters treating the liquid fraction of raw manure. However, a mean increase of 228% was found in those treating the liquid from AD manure, despite the fact that the microbial challenge to these biofilters was lower. In addition, relatively high coliform counts were still present in the effluent from both biofilter treatments, especially in the systems treating the liquid fraction of AD manure. However, findings for Escherichia coli and Enterococcus were more promising, with reductions observed for both treatments (10 and 18.5% for E. coli and 71 and 87% for Enterococcus). Moreover, E. coli and Enterococcus were at, or just above, the limit of detection in the final effluents. Overall, although, there are no microbial limits for discharge or washwaters, the woodchip filter effluent would appear safe for discharge to waterways or use on-farm as regards Salmonella, E. coli and Enterococcus but not coliform. In conclusion, woodchip biofilters offer potential as a low-cost sustainable novel treatment option for the removal of pathogens from the liquid fraction of pig manure.

  10. Interactions between bacteria and the intestinal mucosa: Do enteric neurotransmitters acting on epithelium cells influence mucosal colonization or infection?

    Science.gov (United States)

    The mechanisms governing the ability of bacteria to adhere to and colonize human and animal hosts in health and disease are still incompletely understood. Throughout the extensive mucosal surfaces of the body that are in contact with the external environment, epithelial cells represent the first po...

  11. The Comparison of Antagonistic Effects of Normal Vaginal Lactobacilli and Some Commonly used Antibiotics on Isolated Bacteria of Uterine Infections in Dairy Cows

    Directory of Open Access Journals (Sweden)

    Pouya Dini

    2012-12-01

    Full Text Available Uterine infections are one of the major reproductive complications during postpartum. The antibiotics and antiseptic agents used in the treatment of postpartum infections have residues in food, induce bacterial resistance, increase the financial costs and cause failure in defense mechanism of host. On the other hand, nowadays the administration of probiotics is considered as an alternative method for the prevention and treatment of infections. Therefore, preventive treatment with probiotic product could decrease the usage of antibiotic and bring advantages in dairy farm systems. The objective of this study was screening of the antagonistic properties of isolated vaginal Lactic Acid Bacteria (LAB against the most prevalent bacteria in uterine infections in order to investigate their probiotic potentials as an alternative approach for prevention of uterine infections. LAB were isolated from sampling of cranial part of vagina during estrus phase and luteal phase of Holstein dairy cattle and pathogens bacteria were isolated from merits and endometritis specimens which referred to our veterinary laboratory. The antagonistic activity of isolated LAB against uterine pathogens was tested by Agar spot test. Antibiotic susceptibilities of pathogenic strains to commonly used antibiotics were investigated by using disc diffusion method. Inhibition zones around both the probiotic spots and the antibiotic discs were classified to weak, moderate and strong categories and their antagonistic efficacies were compared. Isolated LAB had antagonistic effects against all the pathogenic strains including both gram negative and gram positive, Arcanobacterium pyogenes and Pseudomonas aeroginosa were the most sensitive bacteria (with 12.60 and 14 mm an average inhibition zone, respectively. LAB had the least antagonistic effects on Clostridium perfringens (3.6 mm of an average inhibition zone. Comparing the antagonistic efficacies, the percentages of overall

  12. A high speed detection platform based on surface-enhanced Raman scattering for monitoring antibiotic-induced chemical changes in bacteria cell wall.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Liu

    Full Text Available Rapid and accurate diagnosis for pathogens and their antibiotic susceptibility is critical for controlling bacterial infections. Conventional methods for determining bacterium's sensitivity to antibiotic depend mostly on measuring the change of microbial proliferation in response to the drug. Such "biological assay" inevitably takes time, ranging from days for fast-growing bacteria to weeks for slow-growers. Here, a novel tool has been developed to detect the "chemical features" of bacterial cell wall that enables rapid identification of drug resistant bacteria within hours. The surface-enhanced Raman scattering (SERS technique based on our newly developed SERS-active substrate was applied to assess the fine structures of the bacterial cell wall. The SERS profiles recorded by such a platform are sensitive and stable, that could readily reflect different bacterial cell walls found in Gram-positive, Gram-negative, or mycobacteria groups. Moreover, characteristic changes in SERS profile were noticed in the drug-sensitive bacteria at the early period (i.e., approximately 1 hr of antibiotic exposure, which could be used to differentiate them from the drug-resistant ones. The SERS-based diagnosis could be applied to a single bacterium. The high-speed SERS detection represents a novel approach for microbial diagnostics. The single-bacterium detection capability of SERS makes possible analyses directly on clinical specimen instead of pure cultured bacteria.

  13. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria

    Science.gov (United States)

    Rios, D; Wood, M B; Li, J; Chassaing, B; Gewirtz, A T; Williams, I R

    2016-01-01

    Secretory IgA (SIgA) directed against gut resident bacteria enables the mammalian mucosal immune system to establish homeostasis with the commensal gut microbiota after weaning. Germinal centers (GCs) in Peyer's patches (PPs) are the principal inductive sites where naive B cells specific for bacterial antigens encounter their cognate antigens and receive T-cell help driving their differentiation into IgA-producing plasma cells. We investigated the role of antigen sampling by intestinal M cells in initiating the SIgA response to gut bacteria by developing mice in which receptor activator of nuclear factor-κB ligand (RANKL)-dependent M-cell differentiation was abrogated by conditional deletion of Tnfrsf11a in the intestinal epithelium. Mice without intestinal M cells had profound delays in PP GC maturation and emergence of lamina propria IgA plasma cells, resulting in diminished levels of fecal SIgA that persisted into adulthood. We conclude that M-cell-mediated sampling of commensal bacteria is a required initial step for the efficient induction of intestinal SIgA. PMID:26601902

  14. Dual Recognition Strategy for Specific and Sensitive Detection of Bacteria Using Aptamer-Coated Magnetic Beads and Antibiotic-Capped Gold Nanoclusters.

    Science.gov (United States)

    Cheng, Dan; Yu, Mengqun; Fu, Fei; Han, Weiye; Li, Gan; Xie, Jianping; Song, Yang; Swihart, Mark T; Song, Erqun

    2016-01-01

    Food poisoning and infectious diseases caused by pathogenic bacteria such as Staphylococcus aureus (SA) are serious public health concerns. A method of specific, sensitive, and rapid detection of such bacteria is essential and important. This study presents a strategy that combines aptamer and antibiotic-based dual recognition units with magnetic enrichment and fluorescent detection to achieve specific and sensitive quantification of SA in authentic specimens and in the presence of much higher concentrations of other bacteria. Aptamer-coated magnetic beads (Apt-MB) were employed for specific capture of SA. Vancomycin-stabilized fluorescent gold nanoclusters (AuNCs@Van) were prepared by a simple one-step process and used for sensitive quantification of SA in the range of 32-10(8) cfu/mL with the detection limit of 16 cfu/mL via a fluorescence intensity measurement. And using this strategy, about 70 cfu/mL of SA in complex samples (containing 3 × 10(8) cfu/mL of other different contaminated bacteria) could be successfully detected. In comparison to prior studies, the developed strategy here not only simplifies the preparation procedure of the fluorescent probes (AuNCs@Van) to a great extent but also could sensitively quantify SA in the presence of much higher concentrations of other bacteria directly with good accuracy. Moreover, the aptamer and antibiotic used in this strategy are much less expensive and widely available compared to common-used antibodies, making it cost-effective. This general aptamer- and antibiotic-based dual recognition strategy, combined with magnetic enrichment and fluorescent detection of trace bacteria, shows great potential application in monitoring bacterial food contamination and infectious diseases.

  15. Identification of Enterococcus faecalis bacteria resistant to heavy metals and antibiotics in surface waters of the Mololoa River in Tepic, Nayarit, Mexico.

    Science.gov (United States)

    Mondragón, Verónica Alejandra; Llamas-Pérez, Dámaris F; González-Guzmán, Gladis E; Márquez-González, Antonio R; Padilla-Noriega, Roberto; Durán-Avelar, Ma de Jesús; Franco, Bernardo

    2011-12-01

    Heavy metal and antibiotic resistance have been shown to have a strong correlation in nature, and their inter-relation is an important subject of study. We report an analysis of surface waters of the Mololoa River in the municipality of Tepic, state of Nayarit, Mexico. This river has two distinctive sources of contamination: sewage waters and trash confinements. Our findings demonstrate a correlation between the river flow pattern and resistance to heavy metals or to heavy metals and antibiotics in isolated bacteria of the genus Enterococcus, specifically Enterococcus faecalis. The Mololoa River provides a model to study the relationship between water flow and generation of biodiversity, and more importantly, it constitutes a model for studying genetic diversity of bacteria affecting human health.

  16. Enhancement of Antibacterial Activity of Capped Silver Nanoparticles in Combination with Antibiotics, on Model Gram-Negative and Gram-Positive Bacteria

    Directory of Open Access Journals (Sweden)

    Aruna Jyothi Kora

    2013-01-01

    Full Text Available The nanoparticles used in this study were prepared from AgNO3 using NaBH4 in the presence of capping agents such as citrate, sodium dodecyl sulfate, and polyvinylpyrrolidone. The formed nanoparticles were characterized with UV-Vis, TEM, and XRD. The generation of silver nanoparticles was confirmed from the appearance of yellow colour and an absorption maximum between 399 and 404 nm. The produced nanoparticles were found to be spherical in shape and polydisperse. For citrate, SDS, and PVP capped nanoparticles, the average particle sizes were 38.3±13.5, 19.3±6.0, and 16.0±4.8 nm, respectively. The crystallinity of the nanoparticles in FCC structure is confirmed from the SAED and XRD patterns. Also, the combined antibacterial activity of these differently capped nanoparticles with selected antibiotics (streptomycin, ampicillin, and tetracycline was evaluated on model Gram-negative and Gram-positive bacteria, employing disc diffusion assay. The activity of the tested antibiotics was enhanced in combination with all the stabilized nanoparticles, against both the Gram classes of bacteria. The combined effects of silver nanoparticles and antibiotics were more prominent with PVP capped nanoparticles as compared to citrate and SDS capped ones. The results of this study demonstrate potential therapeutic applications of silver nanoparticles in combination with antibiotics.

  17. Enhanced simultaneous PEC eradication of bacteria and antibiotics by facilely fabricated high-activity {001} facets TiO2 mounted onto TiO2 nanotubular photoanode.

    Science.gov (United States)

    Li, Guiying; Nie, Xin; Chen, Jiangyao; Wong, Po Keung; An, Taicheng; Yamashita, Hiromi; Zhao, Huijun

    2016-09-15

    Biohazards and coexisted antibiotics are two groups of emerging contaminants presented in various aquatic environments. They can pose serious threat to the ecosystem and human health. As a result, inactivation of biohazards, degradation of antibiotics, and simultaneous removal of them are highly desired. In this work, a novel photoanode with a hierarchical structured {001} facets exposed nano-size single crystals (NSC) TiO2 top layer and a perpendicularly aligned TiO2 nanotube array (NTA) bottom layer (NSC/NTA) was successfully fabricated. The morphology and facets of anatase TiO2 nanoparticles covered on the top of NTA layer could be controlled by adjusting precalcination temperature and heating rate as the pure NTA was clamped with glasses. Appropriate recalcination can timely remove surface F from {001} facets, and the photocatalytic activity of the resultant photoanode was subsequently activated. NSC/NTA photoanode fabricated under 500 °C precalcination with 20 °C min(-1) followed by 550 °C recalcination possessed highest photoelectrocatalytic efficiency to simultaneously remove bacteria and antibiotics. Results suggest that two-step calcination is necessary for fabrication of high photocatalytic activity NSC/NTA photoanode. The capability of simultaneous eradication of bacteria and antibiotics shows great potential for development of a versatile approach to effectively purify various wastewaters contaminated with complex pollutants. PMID:27314556

  18. Phage-Based Fluorescent Biosensor Prototypes to Specifically Detect Enteric Bacteria Such as E. coli and Salmonella enterica Typhimurium.

    Directory of Open Access Journals (Sweden)

    Manon Vinay

    Full Text Available Water safety is a major concern for public health and for natural environment preservation. We propose to use bacteriophages to develop biosensor tools able to detect human and animal pathogens present in water. For this purpose, we take advantage of the highly discriminating properties of the bacteriophages, which specifically infect their bacterial hosts. The challenge is to use a fluorescent reporter protein that will be synthesized, and thus detected, only once the specific recognition step between a genetically modified temperate bacteriophage and its bacterial host has occurred. To ensure the accuracy and the execution speed of our system, we developed a test that does not require bacterial growth, since a simple 1-hour infection step is required. To ensure a high sensitivity of our tool and in order to detect up to a single bacterium, fluorescence is measured using a portable flow cytometer, also allowing on-site detection. In this study, we have constructed and characterized several "phagosensor" prototypes using the HK620 bacteriophage and its host Escherichia coli TD2158 and we successfully adapted this method to Salmonella detection. We show that the method is fast, robust and sensitive, allowing the detection of as few as 10 bacteria per ml with no concentration nor enrichment step. Moreover, the test is functional in sea water and allows the detection of alive bacteria. Further development will aim to develop phagosensors adapted on demand to the detection of any human or animal pathogen that may be present in water.

  19. Community analysis of chronic wound bacteria using 16S rRNA gene-based pyrosequencing: impact of diabetes and antibiotics on chronic wound microbiota.

    Directory of Open Access Journals (Sweden)

    Lance B Price

    Full Text Available BACKGROUND: Bacterial colonization is hypothesized to play a pathogenic role in the non-healing state of chronic wounds. We characterized wound bacteria from a cohort of chronic wound patients using a 16S rRNA gene-based pyrosequencing approach and assessed the impact of diabetes and antibiotics on chronic wound microbiota. METHODOLOGY/PRINCIPAL FINDINGS: We prospectively enrolled 24 patients at a referral wound center in Baltimore, MD; sampled patients' wounds by curette; cultured samples under aerobic and anaerobic conditions; and pyrosequenced the 16S rRNA V3 hypervariable region. The 16S rRNA gene-based analyses revealed an average of 10 different bacterial families in wounds--approximately 4 times more than estimated by culture-based analyses. Fastidious anaerobic bacteria belonging to the Clostridiales family XI were among the most prevalent bacteria identified exclusively by 16S rRNA gene-based analyses. Community-scale analyses showed that wound microbiota from antibiotic treated patients were significantly different from untreated patients (p = 0.007 and were characterized by increased Pseudomonadaceae abundance. These analyses also revealed that antibiotic use was associated with decreased Streptococcaceae among diabetics and that Streptococcaceae was more abundant among diabetics as compared to non-diabetics. CONCLUSIONS/SIGNIFICANCE: The 16S rRNA gene-based analyses revealed complex bacterial communities including anaerobic bacteria that may play causative roles in the non-healing state of some chronic wounds. Our data suggest that antimicrobial therapy alters community structure--reducing some bacteria while selecting for others.

  20. Isolation of multiple drug-resistant enteric bacteria from feces of wild Western Lowland Gorilla (Gorilla gorilla gorilla) in Gabon.

    Science.gov (United States)

    Mbehang Nguema, Pierre Philippe; Okubo, Torahiko; Tsuchida, Sayaka; Fujita, Shiho; Yamagiwa, Juichi; Tamura, Yutaka; Ushida, Kazunari

    2015-05-01

    Prevalence of drug-resistant bacteria in wildlife can reveal the actual level of anthropological burden on the wildlife. In this study, we isolated two multiple drug-resistant strains, GG6-2 and GG6-1-1, from 27 fresh feces of wild western lowland gorillas in Moukalaba-Doudou National Park, Gabon. Isolates were identified as Achromobacter xylosoxidans and Providencia sp., respectively. Minimum inhibitory concentrations of the following 12 drugs-ampicillin (ABPC), cefazolin (CEZ), cefotaxime (CTX), streptomycin (SM), gentamicin (GM), kanamycin (KM), tetracycline (TC), nalidixic acid (NA), ciprofloxacin (CPFX), colistin (CL), chloramphenicol (CP) and trimethoprim (TMP)-were determined. Isolate GG6-2 was resistant to all antimicrobials tested and highly resistant to CTX, SM, TC, NA and TMP. Isolate GG6-1-1 was resistant to ABPC, CEZ, TC, CL, CP and TMP.

  1. PATTERN AND ANTIBIOTIC SUSCEPTIBILITY OF BACTERIA ISOLATED IN CLINICALLY SUSPECTED CASES OF ACUTE PYOGENIC MENINGITIS IN CHILDREN IN KRH, GWALIOR

    Directory of Open Access Journals (Sweden)

    Dutt

    2014-05-01

    Full Text Available This study was conducted in Department of Pediatrics, Kamla Raja Hospital Gwalior, (MP, during a period of a year September 2011 to August 2012. It was prospective and investigational study. Two hundred cases were enrolled for the study confirmed by either CSF r/m and or CSF c/s. Their history, complete physical examination and investigation like CSF, RBS, Blood c/s and Urine c/s were sent. Out of 200, male were 66% and female were 34% making a ratio of 1.9:1. Maximum cases were below the age group of 6year (80%. About 60% cases were from the rural area and 40% from urban area. More cases found in the months of May, Jun and July (45%. Commonest manifestations were fever (96%, irritability/ lethargy (88%, vomiting (80%, convulsion (75%, unconsciousness (53% and headache (31%. Signs of meningeal irritation were neck rigidity (57%; kerning’s sign (51%, brudzinki’s sign (45% and photophobia (28%. Anterior fontanel Bulging were found in (30% cases. Sensitivity of gram stain of the CSF was 88%. Culture was found positive in 35%. Out of 70 cases of culture positive 52 cases were gram negative and 18 cases were gram positive. Bacteria isolated from CSF were common below 3 years age group and there was very less difference in sex distribution. The bacteria isolated from the CSF culture were pseudomonas, Klebsiella, Acinetobacter, Streptococci pneumonia, Staph. Aureus, E.coli, Gm –ve bacilli, Citrobacter, Proteus, Enterobacter. Overall sensitivity pattern were for meropenem (90%, vancomycin (87.5%, ceftriaxone (85.7%, Amikacin (85.7%, Ceftazidime (82.2%, Piperacillin-Tazobactam (81.4%, Amoxyclav (77.1%, Cefotaxime (70%, Gentamicin (70%, and Netilmicin (70%. Blood and urine culture were positive 5% and 2% respectively. Case fatality rate was 11.5%. Acute bacterial meningitis in children has a considerable mortality, morbidity and serious long term sequelae therefore neurodevelopmental follow up and therapy should begin early. The study concluded that

  2. Antibiotic susceptibility of coagulase-negative staphylococci isolated from very low birth weight babies: comprehensive comparisons of bacteria at different stages of biofilm formation

    Directory of Open Access Journals (Sweden)

    Garland Suzanne M

    2010-05-01

    Full Text Available Abstract Background Coagulase-negative staphylococci are major causes of bloodstream infections in very low birth weight babies cared for in Neonatal Intensive Care Units. The virulence of these bacteria is mainly due to their ability to form biofilms on indwelling medical devices. Biofilm-related infections often fail to respond to antibiotic chemotherapy guided by conventional antibiotic susceptibility tests. Methods Coagulase-negative staphylococcal blood culture isolates were grown in different phases relevant to biofilm formation: planktonic cells at mid-log phase, planktonic cells at stationary phase, adherent monolayers and mature biofilms and their susceptibilities to conventional antibiotics were assessed. The effects of oxacillin, gentamicin, and vancomycin on preformed biofilms, at the highest achievable serum concentrations were examined. Epifluorescence microscopy and confocal laser scanning microscopy in combination with bacterial viability staining and polysaccharide staining were used to confirm the stimulatory effects of antibiotics on biofilms. Results Most coagulase-negative staphylococcal clinical isolates were resistant to penicillin G (100%, gentamicin (83.3% and oxacillin (91.7% and susceptible to vancomycin (100%, ciprofloxacin (100%, and rifampicin (79.2%. Bacteria grown as adherent monolayers showed similar susceptibilities to their planktonic counterparts at mid-log phase. Isolates in a biofilm growth mode were more resistant to antibiotics than both planktonic cultures at mid-log phase and adherent monolayers; however they were equally resistant or less resistant than planktonic cells at stationary phase. Moreover, for some cell-wall active antibiotics, concentrations higher than conventional MICs were required to prevent the establishment of planktonic cultures from biofilms. Finally, the biofilm-growth of two S. capitis isolates could be enhanced by oxacillin at the highest achievable serum concentration. Conclusion

  3. Antibiotic resistance in Burkholderia species.

    Science.gov (United States)

    Rhodes, Katherine A; Schweizer, Herbert P

    2016-09-01

    The genus Burkholderia comprises metabolically diverse and adaptable Gram-negative bacteria, which thrive in often adversarial environments. A few members of the genus are prominent opportunistic pathogens. These include Burkholderia mallei and Burkholderia pseudomallei of the B. pseudomallei complex, which cause glanders and melioidosis, respectively. Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia vietnamiensis belong to the Burkholderia cepacia complex and affect mostly cystic fibrosis patients. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. The first line of defense against antimicrobials in Burkholderia species is the outer membrane penetration barrier. Most Burkholderia contain a modified lipopolysaccharide that causes intrinsic polymyxin resistance. Contributing to reduced drug penetration are restrictive porin proteins. Efflux pumps of the resistance nodulation cell division family are major players in Burkholderia multidrug resistance. Third and fourth generation β-lactam antibiotics are seminal for treatment of Burkholderia infections, but therapeutic efficacy is compromised by expression of several β-lactamases and ceftazidime target mutations. Altered DNA gyrase and dihydrofolate reductase targets cause fluoroquinolone and trimethoprim resistance, respectively. Although antibiotic resistance hampers therapy of Burkholderia infections, the characterization of resistance mechanisms lags behind other non-enteric Gram-negative pathogens, especially ESKAPE bacteria such as Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa. PMID:27620956

  4. Identification of 8-methyladenosine as the modification catalyzed by the radical SAM methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Giessing, Anders; Jensen, Søren Skov; Rasmussen, Anette;

    2009-01-01

    The Cfr methyltransferase confers combined resistance to five different classes of antibiotics that bind to the peptidyl transferase center of bacterial ribosomes. The Cfr-mediated modification has previously been shown to occur on nucleotide A2503 of 23S rRNA and has a mass corresponding......,8-dimethyladenosine. The mutation of single conserved cysteine residues in the radical SAM motif CxxxCxxC of Cfr abolishes its activity, lending support to the notion that the Cfr modification reaction occurs via a radical-based mechanism. Antibiotic susceptibility data confirm that the antibiotic resistance...

  5. Study on the pathogenic bacteria carries status of flies and antibiotic resistance of Ganyu%赣榆县常见蝇类携带病原菌及其耐药状况研究

    Institute of Scientific and Technical Information of China (English)

    徐正涛; 周振涛; 丁强

    2011-01-01

    目的 了解我县城区常见蝇类携带病原菌及其耐药状况.方法 采用诱蝇笼诱捕法诱捕苍蝇,对常见 蝇类携带大肠菌群、细菌菌落数和病原菌及其耐药状况进行检测.结果 6月蝇密度最高,为49.3只/笼,绿蝇占总数的33.0%.常见蝇类体表携带细菌菌落数最高达7.1×107cfu/只,体内携带细菌菌落数最高达2.3×109cfu/只;常见蝇类体表携带大肠菌群数最高达9882MPN/只,体内携带大肠菌群数最高达12263MPN/只.未检出致病菌,但检出多种条件致病菌,肠道杆菌菌株对常用抗生素有一定耐药率.结论 苍蝇体内外携带大量各种细菌,有传播肠道传染病的风险,应加强环境卫生,消灭“四害”.%Objective To understand flies carrying pathogen status and its resistance condition in Ganyu. Method Catching flies with cages and detecting conform bacteria, bacterial colony and pathogenic bacteria which carried by flies, resistant situation was observation too. Results Flies density was highest in June, it was 49. 3 per cage, greenbottle was accounted for 33. 0% of the total. There were 7. 1 × 107 bacterial colonies in common flies body surface and 2. 3 × 109 internal. There were 9 882 MPN coliform bacteria in common flies body surface and 12 263 in common flies body. The hathogenic bacteria had not detected out, but conditional pathogenic bacteria existed. There was resistance ratio of enteric bacilli to common antibiotics. Conclusions Flies carried various kinds of bacteria and may spread intestinal disease, so environmental health should be strengthened and eliminated pests too.

  6. Detection and Antibiotic Susceptibility Pattern of Biofilm Producing Gram Positive and Gram Negative Bacteria Isolated From a Tertiary Care Hospital of Pakistan

    Directory of Open Access Journals (Sweden)

    Iqbal, M.

    2011-01-01

    Full Text Available Microorganisms adhere to non-living material or living tissue, and form biofilms made up of extracellular polymers/slime. Biofilm-associated microorganisms behave differently from free-floating bacteria with respect to growth rates and ability to resist antimicrobial treatments and therefore pose a public health problem. The objective of this study is to detect the prevalence of biofilm producers among Gram positive and Gram negative bacteria isolated from clinical specimens, and to study their antimicrobial susceptibility pattern. The study was carried out from October 2009 to March 2010, at the Department of Microbiology, Army Medical College/ National University of Sciences and Technology (NUST, Rawalpindi, Pakistan. Clinical specimens were received from various wards of a tertiary care hospital. These were dealt by standard microbiological procedures. Gram positive and Gram negative bacteria isolated were subjected to biofilm detection by congo red agar method (CRA. Antimicrobial susceptibility testing of those isolates, which showed positive results (slime production, was done according to the Kirby-Bauer disc diffusion technique. A total of 150 isolates were tested for the production of biofilm/slime. Among them, 81 isolates showed positive results. From these 81, 51 were Gram positive and 30 were Gram negative. All the 81(54% slime producers showed reduced susceptibility to majority of antibiotics. Bacterial biofilms are an important virulence factor associated with chronic nosocomial infection. Detection of biofilm forming organisms can help in appropriate antibiotic choice.

  7. Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria.

    Science.gov (United States)

    Sepehr, Shayesteh; Rahmani-Badi, Azadeh; Babaie-Naiej, Hamta; Soudi, Mohammad Reza

    2014-01-01

    Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA), an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants) on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward developing new strategies

  8. Unsaturated fatty acid, cis-2-decenoic acid, in combination with disinfectants or antibiotics removes pre-established biofilms formed by food-related bacteria.

    Directory of Open Access Journals (Sweden)

    Shayesteh Sepehr

    Full Text Available Biofilm formation by food-related bacteria and food-related pathogenesis are significant problems in the food industry. Even though much disinfection and mechanical procedure exist for removal of biofilms, they may fail to eliminate pre-established biofilms. cis-2 decenoic acid (CDA, an unsaturated fatty acid messenger produced by Pseudomonas aeruginosa, is reportedly capable of inducing the dispersion of established biofilms by multiple types of microorganisms. However, whether CDA has potential to boost the actions of certain antimicrobials is unknown. Here, the activity of CDA as an inducer of pre-established biofilms dispersal, formed by four main food pathogens; Staphylococcus aureus, Bacillus cereus, Salmonella enterica and E. coli, was measured using both semi-batch and continuous cultures bioassays. To assess the ability of CDA combined biocides treatments to remove pre-established biofilms formed on stainless steel discs, CFU counts were performed for both treated and untreated cultures. Eradication of the biofilms by CDA combined antibiotics was evaluated using crystal violet staining. The effect of CDA combined treatments (antibiotics and disinfectants on biofilm surface area and bacteria viability was evaluated using fluorescence microscopy, digital image analysis and LIVE/DEAD staining. MICs were also determined to assess the probable inhibitory effects of CDA combined treatments on the growth of tested microorganisms' planktonic cells. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least two-fold increase in the number of planktonic cells in all cultures. While antibiotics or disinfectants alone exerted a trivial effect on CFU counts and percentage of surface area covered by the biofilms, combinational treatments with both 310 nM CDA and antibiotics or disinfectants led to approximate 80% reduction in biofilm biomass. These data suggests that combined treatments with CDA would pave the way toward

  9. Antibiotic resistance monitoring: the Spanish programme. The VAV Network. Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario.

    Science.gov (United States)

    Moreno, M A; Domínguez, L; Teshager, T; Herrero, I A; Porrero, M C

    2000-05-01

    Antimicrobial resistance is a problem in modern public health and antimicrobial use and especially misuse, the most important selecting force for bacterial antibiotic resistance. As this resistance must be monitored we have designed the Spanish network 'Red de Vigilancia de Resistencias Antibióticas en Bacterias de Origen Veterinario'. This network covers the three critical points of veterinary responsibility, bacteria from sick animals, bacteria from healthy animals and bacteria from food animals. Key bacteria, antimicrobials and animal species have been defined for each of these groups along with laboratory methods for testing antimicrobial susceptibility and for data analysis and reporting. Surveillance of sick animals was first implemented using Escherichia coli as the sentinel bacterium. Surveillance of E. coli and Enterococcus faecium from healthy pigs was implemented in 1998. In July 1999, data collection on Salmonella spp. was initiated in poultry slaughterhouses. Additionally, the prevalence of vancomycin resistant E. faecium was also monitored. This network has specific topics of interest related to methods of determining resistance, analysis and reporting of data, methods of use for veterinary practitioners and collaboration with public health authorities.

  10. Antibiotic Resistance of Bacteria Involved in Urinary Infections in Brazil: A Cross-Sectional and Retrospective Study

    Science.gov (United States)

    Rodrigues, Wellington Francisco; Miguel, Camila Botelho; Nogueira, Ana Paula Oliveira; Ueira-Vieira, Carlos; Paulino, Tony De Paiva; Soares, Siomar De Castro; De Resende, Elisabete Aparecida Mantovani Rodrigues; Lazo-Chica, Javier Emilio; Araújo, Marcelo Costa; Oliveira, Carlo José

    2016-01-01

    Empirical and prolonged antimicrobial treatment of urinary tract infections caused by Escherichia coli is associated with the emergence of bacterial resistance, and not all countries have strict policies against the indiscriminate use of drugs in order to prevent resistance. This cross-sectional and retrospective study (2010–2015) aimed to evaluate the sensitivity and resistance of patient-derived E. coli to different drugs broadly used to treat urinary infections in Brazil: ampicillin + sulbactam, cephalothin, ciprofloxacin, norfloxacin, and nitrofurantoin. We obtained 1654 E. coli samples from ambulatory patients with disease symptoms of the urinary tract from a Brazilian public hospital. While all antibiotics were effective in killing E. coli to a large degree, nitrofurantoin was the most effective, with fewer samples exhibiting antibiotic resistance. We assessed the costs of generic and brand name versions of each antibiotic. Nitrofurantoin, the most effective antibiotic, was the cheapest, followed by the fluoroquinolones (ciprofloxacin and norfloxacin), ampicillin + sulbactam and, lastly, cephalothin. Finally, assessment of antibiotic resistance to fluoroquinolones over the study period and extrapolation of the data led to the conclusion that these antibiotics could no longer be effective against E. coli-based urinary infections in approximately 20 years if their indiscriminate use in empirical treatment continues. PMID:27649224

  11. Characterization and sensitivity to antibiotics of bacteria isolated from the lower respiratory tract of ventilated patients hospitalized in intensive care units

    Directory of Open Access Journals (Sweden)

    Manuel Medell

    2012-02-01

    Full Text Available OBJECTIVE: This observational study described the characterization of bacteria isolated from the lower respiratory tract of ventilated patients hospitalized in intensive care units. The demonstration of isolated microorganism resistance to antibiotics and a time-trend analysis of infection comparing a 48-month period were also other objectives. METHOD: Semi-quantitative assays of 1254 samples taken from 741 ventilated patients were performed, while pathogens were identified using the Enterotube II assay and VITEK 2 Compact equipment. Bacterial resistance to antibiotics was assessed by the Kirby-Bauer disc diffusion method and time-trend analysis of infection was based on data recorded by hospital microbiology laboratories. RESULTS: The most prevalent isolated bacteria from the patient's lower respiratory tract were with Gram-negative bacteria (67.8% mostly represented by: Acinetobacter spp. (25.2%, Pseudomonas spp. (18.3% and Klebsiellas spp. (9.4%. Acinetobacter spp. showed moderate high to very high resistance to ceftriaxone (CRO, gentamicin (CN, amikacin (AK, meropenem (MRP, aztreonam (ATM and piperacillin/tazobactam (TZP. Some isolates of Acinetobacter spp. resistant to colistin (CS were identified in this patient population. Pseudomonas spp. and Klebsiella spp. were very highly resistant to ampicillin/sublactam (AMS and with moderate or low resistance to CRO, ATM, MRP, AK, CN and TZP. A decrease in the Pseudomonas spp. prevalence rate was observed, whereas an increase in Acinetobacter spp. and Klebsiella spp. prevalence rates were observed in a 48-month period. CONCLUSION: This research corroborated that these nosocomial infections are a relevant medical problem in our context. The most prevalent bacterial infections in the lower respiratory tract of ventilated patients were by Acinetobacter spp., Pseudomonas spp. and Klebsiella spp. The panel of antibiotics used as preventive therapy was not the solution of infections and probably induced

  12. Radiation enteritis

    Science.gov (United States)

    ... enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... often are no good treatments for chronic radiation enteritis that is more severe. Medicines such as cholestyramine, ...

  13. Isolation and identification of antibiotics resistant bacteria from fresh milk%鲜牛奶中耐药性细菌的分离与鉴定

    Institute of Scientific and Technical Information of China (English)

    张晓梅; 杨洪江

    2012-01-01

    Objective: Isolation and identification of antibiotics resistant bacteria in fresh milk. Methods: Luria-Bertani plates containing tetracycline (16 μg/mL), ciprofloxacin (4 μg/mL) or gentamicin (16 μg/ mL) were used in isolating the antibiotics resistant bacteria from samples. K-B disk diffusion method was used to confirm the resistant phenotypes. Blood agar plates were used in hemolysis assay. 16S rRNA analysis method was used to identify the isolates. Results: 30 fresh milk samples collected from Zhangjiakou were screened for antibiotic resistant bacteria. The screening results showed that 23 (76.67%) samples had isolates resistant to more than one antibiotic, 7(23.33%) samples had isolates resistant tomore than two antibiotics, and 1 (3.33%) sample had isolates resistant to three antibiotics tested. Totally, 37 strains were isolated resistant to tetracycline, 8 strains were isolated resistant to ciprofloxacin, and 7 strains were isolated resistant to gentamicin. Six strains (two from each antibiotic resistant bacteria group) were randomLy selected for 16S rRNA analysis and they were identified as Serratia marcescens (1), Pseudomonas aeruginosa (2), Acinetobacter junii (1), Cronobacter sakazakii (1) and Staphylococcus aureus (1). Hemolysis test results showed that 3 strains with a-hemolytic phenotype, 1 strains with 13-hemolytic phenotype, and 2 strains with y-hemolytic phenotype. Furthermore, antibiotic resistant phenotypes of the six isolates were validated K-B disk diffusion method and only one isolate sensitive to gentamicin. Conclusion: Fresh milk is the reservoir of a variety of antibiotics resistant bacteria, antibiotic plates can be used for preliminary screening of antibiotics resistant bacteria from fresh milk samples.%目的:分离鉴定鲜牛奶中耐药性细菌的分布。方法:利用含有四环素(16μg/mL)、环丙沙星(4μg/mL)或庆大霉素(16μg/mL)的Luria-Bertani

  14. A 980nm driven photothermal ablation of virulent and antibiotic resistant Gram-positive and Gram-negative bacteria strains using Prussian blue nanoparticles.

    Science.gov (United States)

    Maaoui, Houcem; Jijie, Roxana; Pan, Guo-Hui; Drider, Djamel; Caly, Delphine; Bouckaert, Julie; Dumitrascu, Nicoleta; Chtourou, Radouane; Szunerits, Sabine; Boukherroub, Rabah

    2016-10-15

    A 980nm laser-driven antimicrobial photothermal therapy using poly(vinylpyrrolidone) -coated Prussian Blue nanoparticles (PVP/PB NPs) is demonstrated. This approach allows an efficient eradication of a virulent strain of Gram-negative Escherichia coli (E. coli) associated with urinary tract infection as well as for the ablation of antibiotic resistant pathogens such as methicillin resistant Staphylococcus aureus (MRSA) and extended spectrum β-lactamase (ESBL) E. coli. Interestingly the 980nm irradiation exhibits minimal effect on mammalian cells up to a PVP/PB NPs concentration of 50μgmL(-1), while at this concentration bacteria are completely eradicated. This feature is certainly very promising for the selective targeting of bacteria over mammalian cells. PMID:27405072

  15. Isolation of antibiotic-resistant pathogenic and potentially pathogenic bacteria from carpets of mosques in Tripoli, Libya

    OpenAIRE

    Rahouma, Amal; Elghamoudi, Abdunabi; Nashnoush, Halima; Belhaj, Khalifa; Tawil, Khaled; Ghenghesh, Khalifa Sifaw

    2010-01-01

    Objective: Isolation of potentially pathogenic bacteria from carpets in hospitals has been reported earlier, but not from carpets in mosques. The aim of the present study is to determine the pathogenic and potentially pathogenic bacteria that may exist on the carpets of mosques in Tripoli, Libya. Methods: Dust samples from carpets were collected from 57 mosques in Tripoli. Samples were examined for pathogenic bacteria using standard bacteriological procedures. Susceptibility of isolated bacte...

  16. Investigating the Antibiotic Resistance Problem.

    Science.gov (United States)

    Lawson, Michael; Lawson, Amy L.

    1998-01-01

    Seeks to give teachers useful information on the extent of the problem of antibiotic-resistant bacteria, mechanisms bacteria use to resist antibiotics, the causes of the emergence of antibiotic-resistant organisms, and practices that can prevent or reverse this trend. Contains 19 references. (DDR)

  17. Whole blood-mediated endothelial permeability and adhesion molecule expression: a model study into the effects of bacteria and antibiotics.

    NARCIS (Netherlands)

    Nooteboom, A.; Linden, C.J. van der; Hendriks, T.

    2005-01-01

    AIM: To investigate whether the inflammatory response of cultured endothelial cells, as induced by conditioned plasma, depends on the bacterial species or type of antibiotic used for incubation with whole blood. MATERIALS AND METHODS: Blood from healthy volunteers was stimulated ex vivo with differe

  18. Antibiotic Resistance

    DEFF Research Database (Denmark)

    Munck, Christian

    morbidity and mortality as well as an increase in the cost of treatment. Understanding how bacteria respond to antibiotic exposure gives the foundations for a rational approach to counteract antimicrobial resistance. In the work presented in this thesis, I explore the two fundamental sources...... of antimicrobial resistance: (1) adaptive mutations and (2) horizontal acquisition of resistance genes from antibiotic gene reservoirs. By studying the geno- and phenotypic changes of E. coli in response to single and drug-pair exposures, I uncover the evolutionary trajectories leading to adaptive resistance. I...... to rationally design drug combinations that limit the evolution of antibiotic resistance due to counteracting evolutionary trajectories. My results highlight that an in-depth knowledge about the genetic responses to the individual antimicrobial compounds enables the prediction of responses to drug combinations...

  19. N-Heterocyclic molecule-capped gold nanoparticles as effective antibiotics against multi-drug resistant bacteria

    Science.gov (United States)

    Feng, Yan; Chen, Wenwen; Jia, Yuexiao; Tian, Yue; Zhao, Yuyun; Long, Fei; Rui, Yukui; Jiang, Xingyu

    2016-07-01

    We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs.We demonstrate that N-heterocyclic molecule-capped gold nanoparticles (Au NPs) have broad-spectrum antibacterial activity. Optimized antibacterial activity can be achieved by using different initial molar ratios (1 : 1 and 10 : 1) of N-heterocyclic prodrugs and the precursor of Au NPs (HAuCl4). This work opens up new avenues for antibiotics based on Au NPs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr03317b

  20. Antibiotics and heavy metals resistance patterns of Enterococcus faecalis and faecium bacteria isolated from the human and the livestock sources

    OpenAIRE

    Yaser Sharifi; Azadeh Abedzadeh; Atieh Salighe; Naser Kalhor; Mohammad Khodadad Motlagh; Ali Javadi

    2015-01-01

    Background: Enterococci have emerged as a major cause of nosocomial infections and within this group, Enterococcus faecalis and Enterococcus faecium cause the majority of human and livestock enterococcal infections. In this article, we tried to determine antibiotics and metals resistance patterns of E. faecalis and E. faecium strains. Methods: One hundred sixty different strains of E. faecalis and E. faecium were collected from livestock sewage and the human fecal waste during 15 months. T...

  1. Antibiotic resistance in faecal bacteria isolated from horses receiving virginiamycin for the prevention of pasture-associated laminitis

    OpenAIRE

    Menzies-Gow, N.J.; Young, N. J.

    2011-01-01

    Abstract Enterococcus faecium, a major cause of potentially life-threatening hospital-acquired human infections, can be resistant to several antimicrobials, such that streptogramin quinupristin-dalfopristin (Q/D) is one of the few antibiotics still effective. Consequently use of the streptogramin virginiamycin as an animal growth promoter was banned in the EU in 1999 as some believed this contributed to the emergence of Q/D resistant E. faecium. Virginiamycin is advocated for preve...

  2. Etiology and antibiotic susceptibility patterns of bacteria collected from urinary tract infections in the ASL3 in Genoa

    Directory of Open Access Journals (Sweden)

    Manuela Fedele

    2010-06-01

    Full Text Available An epidemiological study addressed to identify the pathogens collected from urine samples and their antibiotic susceptibility patterns was conducted. From January 2008 to May 2009 56,435 urine samples were processed in the Clinical Microbiological Laboratory of the ASL3 in Genoa. Materials and methods. Urine samples were firstly screened by automated equipment Uroquik (ALIFAX.All urine cultures with microbial ≥105 CFU / ml were seeded on Chromagar Orientation (BD and incubated at 37 ° C °.The identification of the isolates and the evaluation of their susceptibility to antibiotics were determined by the automated system Vitek 2 (bioMérieux. Results. About 33% (18,543 of the urine samples gave positive results.The number and frequency of the microorganisms collected was: 13,379 (72% Gram-negative including 9179 (69% E.coli, 1382 (10% Klebsiella spp, 1209 (9% Proteus spp, 445 (3% Pseudomonas spp, and other species 1164 (9%, 4942 (27% Gram positive which included 3615 (73% Enterococcus spp, 821 (17% Staphylococcus spp, 506 (10% Streptococcus spp and 222 (1% fungi. In E. coli the incidence of susceptible strains ranged between 90-96% for gentamicin, fosfomycin, nitrofurantoin, piperacillin-tazobactam, between 87-89% for the cefepime, cefotaxime, ceftazidime, about 70% for quinolones ciprofloxacin, norfloxacin, and trimethoprim-sulfamethoxazole, 62% for piperacillin, about 50% to ampicillin. For Klebsiella spp and Proteus spp the percentage of susceptible strains ranged from 95-99% to piperacillin-tazobactam, gentamicin, and respectively 93% and between 68-52% for third-generation cephalosporins cefotaxime and ceftazidime and fluoroquinolones ciprofloxacin and norfloxacin. Conclusions. Present findings indicate that among the Enterobacteriaceae, E. coli, cause most of UTI and in vitro resulted susceptible various antibiotics.There was an increased resistance to fluoroquinolones among community-acquired E. coli and Proteus spp.A periodical

  3. Gel-Entrapped Staphylococcus aureus Bacteria as Models of Biofilm Infection Exhibit Growth in Dense Aggregates, Oxygen Limitation, Antibiotic Tolerance, and Heterogeneous Gene Expression.

    Science.gov (United States)

    Pabst, Breana; Pitts, Betsey; Lauchnor, Ellen; Stewart, Philip S

    2016-10-01

    An experimental model that mimicked the structure and characteristics of in vivo biofilm infections, such as those occurring in the lung or in dermal wounds where no biomaterial surface is present, was developed. In these infections, microbial biofilm forms as cell aggregates interspersed in a layer of mucus or host matrix material. This structure was modeled by filling glass capillary tubes with an agarose gel that had been seeded with Staphylococcus aureus bacteria and then incubating the gel biofilm in medium for up to 30 h. Confocal microscopy showed that the bacteria formed in discrete pockets distributed throughout the gel matrix. These aggregates enlarged over time and also developed a size gradient, with the clusters being larger near the nutrient- and oxygen-supplied interface and smaller at greater depths. Bacteria entrapped in gels for 24 h grew slowly (specific growth rate, 0.06 h(-1)) and were much less susceptible to oxacillin, minocycline, or ciprofloxacin than planktonic cells. Microelectrode measurements showed that the oxygen concentration decreased with depth into the gel biofilm, falling to values less than 3% of air saturation at depths of 500 μm. An anaerobiosis-responsive green fluorescent protein reporter gene for lactate dehydrogenase was induced in the region of the gel where the measured oxygen concentrations were low, confirming biologically relevant hypoxia. These results show that the gel biofilm model captures key features of biofilm infection in mucus or compromised tissue: formation of dense, distinct aggregates, reduced specific growth rates, local hypoxia, and antibiotic tolerance. PMID:27503656

  4. Detection of antibiotic-resistant bacteria endowed with antimicrobial activity from a freshwater lake and their phylogenetic affiliation

    Science.gov (United States)

    Zothanpuia; Passari, Ajit K.; Gupta, Vijai K.

    2016-01-01

    Antimicrobial resistance poses a serious challenge to global public health. In this study, fifty bacterial strains were isolated from the sediments of a freshwater lake and were screened for antibiotic resistance. Out of fifty isolates, thirty-three isolates showed resistance against at least two of the selected antibiotics. Analysis of 16S rDNA sequencing revealed that the isolates belonged to ten different genera, namely Staphylococcus(n = 8), Bacillus(n = 7), Lysinibacillus(n = 4), Achromobacter(n=3), bacterium(n = 3), Methylobacterium(n = 2), Bosea(n = 2), Aneurinibacillus(n = 2), Azospirillum(n = 1), Novosphingobium(n = 1). Enterobacterial repetitive intergenic consensus (ERIC) and BOX-PCR markers were used to study the genetic relatedness among the antibiotic resistant isolates. Further, the isolates were screened for their antimicrobial activity against bacterial pathogens viz., Staphylococcus aureus(MTCC-96), Pseudomonas aeruginosa(MTCC-2453) and Escherichia coli(MTCC-739), and pathogenic fungi viz., Fusarium proliferatum (MTCC-286), Fusarium oxysporum (CABI-293942) and Fusarium oxy. ciceri (MTCC-2791). In addition, biosynthetic genes (polyketide synthase II (PKS-II) and non-ribosomal peptide synthetase (NRPS)) were detected in six and seven isolates, respectively. This is the first report for the multifunctional analysis of the bacterial isolates from a wetland with biosynthetic potential, which could serve as potential source of useful biologically active metabolites. PMID:27330861

  5. Synergistic Interactions of Methanolic Extract of Acacia mearnsii De Wild. with Antibiotics against Bacteria of Clinical Relevance

    Directory of Open Access Journals (Sweden)

    Anthony J. Afolayan

    2012-07-01

    Full Text Available With the emergence of multidrug-resistant organisms, combining medicinal plants with synthetic or orthodox medicines against resistant bacteria becomes necessary. In this study, interactions between methanolic extract of Acacia mearnsii and eight antibiotics were investigated by agar diffusion and checkerboard assays. The minimum inhibitory concentrations (MICs of all the antibiotics ranged between 0.020 and 500 µg/mL while that of the crude extract varied between 0.156 and 1.25 mg/mL. The agar diffusion assay showed that extract-kanamycin combination had zones of inhibition ≥20 ± 1.0 mm in all the bacteria tested (100%, followed by extract-chloramphenicol (90% > extract-ciprofloxacin = extract-tetracycline (70% > extract-amoxicillin (60% > extract-nalidixic acid (50% > extract-erythromycin (40% > extract-metronidazole (20%. The checkerboard showed synergistic interaction (61.25%, additivity/indifference (23.75% and antagonistic (15% effects. The synergistic interaction was most expressed by combining the extract with tetracycline, metronidazole, amoxicillin, ciprofloxacin, chloramphenicol and nalidixic acid against E. coli (ATCC 25922, erythromycin, metronidazole, amoxicillin, chloramphenicol and kanamycin against S. aureus (ATCC 6538, erythromycin, tetracycline, amoxicillin, nalidixic acid and chloramphenicol against B. subtilis KZN, erythromycin, metronidazole and amoxicillin against E. faecalis KZN, erythromycin, tetracycline, nalidixic acid and chloramphenicol against K. pneumoniae (ATCC 10031, erythromycin, tetracycline, metronidazole and chloramphenicol against P. vulgaris (ATCC 6830, erythromycin, tetracycline, amoxicillin and chloramphenicol against S. sonnei (ATCC 29930, metronidazole, amoxicillin and chloramphenicol against E. faecalis (ATCC 29212 and ciprofloxacin and chloramphenicol

  6. Chronic Endometritis Due to Common Bacteria Is Prevalent in Women With Recurrent Miscarriage as Confirmed by Improved Pregnancy Outcome After Antibiotic Treatment

    Science.gov (United States)

    Matteo, Maria; Tinelli, Raffaele; Pinto, Vincenzo; Marinaccio, Marco; Indraccolo, Ugo; De Ziegler, Dominique; Resta, Leonardo

    2014-01-01

    Recurrent miscarriage (RM) is defined as 3 or more miscarriages before 20 weeks’ pregnancy. In recent years, interest has been focused on chronic endometritis (CE), a subtle inflammation thought to be associated with RM. We aimed to evaluate the relationships between CE and RM. The records of 360 women with unexplained RM were retrospectively analyzed. Data from hysteroscopy, endometrial histology, endometrial culture, and polymerase chain reaction for chlamydia, performed before and after antibiotic treatment for CE, were analyzed. The occurrence of successful pregnancies within 1 year after treatment was also evaluated. Results showed that 208 (57.8%) women with RM showed CE at hysteroscopy; 190 (91.3%), positive at hysteroscopy, were also positive at histology, and 142 (68.3%) had positive cultures. Common bacteria were found in 110 (77.5%) patients. Mycoplasma and Ureaplasma were found in 36 (25.3%) patients and Chlamydia in 18 patients (12.7%). In 102 (71%) women, antibiogram-based antibiotic treatment normalized hysteroscopy, histology, and cultures (group 1); while in 40 (28.2%) patients, CE was still present at hysteroscopy (group 2). In 16 of the 66 patients positive at hysteroscopy, but not at cultures, the hysteroscopy becomes normal (group 3) after a Centers for Disease Control and Prevention-based therapy; while in 50 women, CE was still present (group 4). One year after treatment, group 1 showed a significantly higher number of pregnancies (78.4%) compared to group 2 (17.5%; P < .001) and group 4 (15.3%; P = .005). The CE is frequent in women with RM. Antibiotic treatment seems to be associated with an improved reproductive outcome. PMID:24177713

  7. Antibacterial and anti-biofilm activities of melittin and colistin, alone and in combination with antibiotics against Gram-negative bacteria.

    Science.gov (United States)

    Dosler, Sibel; Karaaslan, Elif; Alev Gerceker, A

    2016-04-01

    In vitro antibacterial and anti-biofilm activities of antimicrobial cationic peptides (AMPs) - melittin and colistin - both alone and in combination with antibiotics were evaluated against clinical isolates of Gram-negative bacteria. Minimum inhibitory concentration (MIC) and fractional inhibitory concentration (FIC) index were determined by the microbroth dilution and chequerboard techniques, respectively. The time-kill curve (TKC) method was used for determining the bactericidal activities of AMPs alone and in combination. Measurements of anti-biofilm activities were performed spectrophotometrically for both inhibition of attachment and 24-hour biofilm formation at MIC or subMIC. According to MIC90 values, the most active agents against Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae were colistin, imipenem and ciprofloxacin, respectively. In combination studies, synergistic effects were mostly seen with colistin-imipenem against E. coli and K. pneumoniae (50 and 54%, respectively), colistin-ciprofloxacin against P. aeruginosa (77%). In TKC studies, synergism was observed with almost all expected combinations, even more frequently than chequerboard method. All of the antimicrobial agents were able to inhibit attachment and 24-hour biofilm formation between 0-57% at 1/10 × MIC and 7-73% at 1 × or 1/10 × MIC, respectively. AMPs seem to be a good candidate for antimicrobial chemotherapy with their antibacterial and anti-biofilm activities as a single agent or in combination with antibiotics. PMID:25801062

  8. Epidemiological study on distribution and antibiotic susceptibility patterns of Enterobacteriaceae and non-fermenting bacteria, isolated in Liguria and in a neighbouring area

    Directory of Open Access Journals (Sweden)

    Elisabetta Maioli

    2008-06-01

    Full Text Available Introduction. An epidemiological study addressed to identify gram-negative bacteria, isolated from laboratories in a Northern area of Italy, and their antibiotic resistance patterns was conducted. Methods. Twelve laboratories distributed on Ligurian territory or neighbouring areacollected all consecutive gram-negative isolates belonging to the Enterobacteriaceae family and non-fermenter group for 2 months and sent them to a reference laboratory. Results. A total of 1880 pathogens were collected, including 899 and 981 strains isolated from nosocomial- and community-acquired infections, respectively. Escherichia coli (63.3% of total was the most frequently isolated pathogen followed by Pseudomonas aeruginosa (9.6%, Proteus mirabilis (8.9% and Klebsiella pneumoniae (5.4%. Nosocomial samples were collected mainly from patients in general medicine wards (19.9% and healthcare settings (14.1%. Urine was the most common clinical sample (79.9% of the total. Other samples were sputum and bronchoaspirates (8%, skin wounds including those from decubitus (5.3% and blood (4.1%. E. coli and P. mirabilis were collected mainly from urinary tract infection while P. aeruginosa appears more involved in respiratory or other infections. Considering the resistance to representative classes of antibiotics, it was higher (% for piperacillin-tazobactam in P. mirabilis (30.3, for ceftazidime in Enterobacter aerogenes (40.8 and in Providencia stuartii (40, for imipenem and amikacin in P. aeruginosa (16.2 and 13.7 respectively, for ciprofloxacin in P. stuartii (66.6 and in P. mirabilis (44.7 than in others bacteria. Conclusions. The increasing age of the population in general medical wards and healthcare settings is associated with urinary tract and bedsore infections. E. coli confirms its epidemiologic and pathogenic role, but P. mirabilis and P. aeruginosa are emerging as alternativechallenges.

  9. Antibiotic Resistance of Bacteria in Effluents of Municipal Wastewater Treatnent Plants%城市污水处理厂所出水中的细菌对抗生素耐性的研究

    Institute of Scientific and Technical Information of China (English)

    陈朝琼

    2012-01-01

    为研究城市污水厂所出水中的一般细菌对抗生素的耐性.在成都市选取了2座有代表性的污水厂,检测分析其出水中的细菌分别对6种抗生素(青霉素、头孢氨苄、环丙沙星、四环素、庆大霉素、阿奇霉素)的抗性菌浓度、比例、及半抑制浓度.结果表明:2座污水厂出水的细菌总数随着抗生素浓度的增加而减少;青霉素和头孢氨苄对细菌总数的影响较小,四环素和环丙沙星对细菌总数的影响较大.青霉素的抗性菌浓度最高,A、B厂分别高达6.5×104、2×104 CFU/mL,B厂的四环素抗性菌浓度最低为8.9 ×102 CFU/mL.A、B污水厂出水中细菌的庆大霉素抗性水平最高,其半抑制浓度分别高达28.1 mg/L和25.4 mg/L.2座污水厂出水细菌的抗生素半抑制浓度高于污水中的抗生素浓度,低浓度的抗生素是抗性菌稳定存在的重要因素,因此应该谨慎抗生素的使用,降低抗性菌的环境污染风险.%Prevalence of antibiotic-resistant bacteria in wastewater effluents was concerned as an emerging contaminant. To estimate antibiotic resistance of bacteria in effluents of municipal wastewater treatment plants (WWTP), antibiotic tolerance, proportion of antibiotic-resistant bacteria, and hemi-inhibitory concentrations of six antibiotics (Penicillin, Cefalexin, Ciprofloxacin, Tetracycline, Gentamicin and Azithromycin) were determined at two wastewater treatment plants in Chengdu. The results showed that the total bacterial counts decreased along with the increase of antibiotic concentration, and the variations of Penicillin and Cefalexin were relatively higher than that of Tetracycline and Ciprofloxacin. Moreover, the concentrations of Ampicillin-resistant bacteria were highest to 6.5×104 and 7.2 ×104 CFU/mL in WWTP-A and WWTP-B, respectively, and the lowest antibiotic-resistant bacteria concentration was also as high as 8.9 CFU/mL. The hemi-inhibitory concentration of Gentamicin was highest in the 6

  10. The role of the outer membrane of Gram-negative bacteria in antibiotic resistance: Ajax' shield or Achilles' heel?

    Science.gov (United States)

    Page, Malcolm G P

    2012-01-01

    There has been an enormous increase in our knowledge of the fundamental steps in the biosynthesis and assembly of the outer membrane of Gram-negative bacteria. Lipopolysaccharide is a major component of the outer membrane of Gram-negative bacteria as is peptidoglycan. Porins, efflux pumps and other transport proteins of the outer membrane are also present. It is clear that there are numerous essential proteins that have the potential to be targets for novel antimicrobial agents. Progress, however, has been slow. Much of the emphasis has been on cytoplasmic processes that were better understood earlier on, but have the drawback that two penetration barriers, with different permeability properties, have to be crossed. With the increased understanding of the late-stage events occurring in the periplasm, it may be possible to shift focus to these more accessible targets. Nevertheless, getting drugs across the outer membrane will remain a challenge to the ingenuity of the medicinal chemist. PMID:23090596

  11. Antibiotic resistance in wild birds.

    Science.gov (United States)

    Bonnedahl, Jonas; Järhult, Josef D

    2014-05-01

    Wild birds have been postulated as sentinels, reservoirs, and potential spreaders of antibiotic resistance. Antibiotic-resistant bacteria have been isolated from a multitude of wild bird species. Several studies strongly indicate transmission of resistant bacteria from human rest products to wild birds. There is evidence suggesting that wild birds can spread resistant bacteria through migration and that resistant bacteria can be transmitted from birds to humans and vice versa. Through further studies of the spatial and temporal distribution of resistant bacteria in wild birds, we can better assess their role and thereby help to mitigate the increasing global problem of antibiotic resistance. PMID:24697355

  12. Campylobacter pylori-associated gastritis: attempts to eradicate the bacteria by various antibiotics and anti-ulcer regimens.

    Science.gov (United States)

    Glupczynski, Y; Burette, A; Nyst, J F; De Prez, C; De Koster, E; Deltenre, M

    1988-01-01

    The efficacy of various antimicrobial and anti-ulcer agents on the eradication of Campylobacter pylori in patients with antral gastritis or duodenal ulcers was investigated by several open studies or double-blind, placebo-controlled protocols. Among the anti-ulcer agents, ranitidine, cimetidine or sucraflate had no effect on C. pylori. Colloidal bismuth subcitrate achieved clearance of C. pylori in 40% of treated patients at the end of therapy but a high relapse rate (14/16 patients) was observed after a 6-month follow-up period. The antibacterial agents doxycycline, minocycline, ofloxacin, clindamycin, paromomycin and nifuroxazide failed to eradicate C. pylori in most patients. By contrast, short term elimination of C. pylori could be achieved in more than 90% of patients treated with amoxycillin. However, relapse occurred as a rule in all amoxycillin-treated patients within one month after therapy. Overall, we observed no correlation between the in-vitro activity of the different antibacterial agents and their in vivo efficacy. Development of resistance during therapy does not seem to account for this discrepancy since it occurred only with ofloxacin. On the basis of these results, we conclude that long term eradication of C. pylori from the gastric antrum cannot be achieved after monotherapy either with antibiotics or with bismuth salts. PMID:2979039

  13. Abundances of tetracycline, sulphonamide and beta-lactam antibiotic resistance genes in conventional wastewater treatment plants (WWTPs) with different waste load

    DEFF Research Database (Denmark)

    Laht, Mailis; Karkman, Antti; Voolaid, Veiko;

    2014-01-01

    Antibiotics and antibiotic resistant bacteria enter wastewater treatment plants (WWTPs), an environment where resistance genes can potentially spread and exchange between microbes. Several antibiotic resistance genes (ARGs) were quantified using qPCR in three WWTPs of decreasing capacity located...... in the relative abundance of resistance genes, while the raw abundances fell by several orders of magnitude. Standard water quality variables (biological oxygen demand, total phosphorus and nitrogen, etc.) were weakly related or unrelated to the relative abundance of resistance genes. Based on our results we...... conclude that there is neither considerable enrichment nor purification of antibiotic resistance genes in studied conventional WWTPs....

  14. Antibiotics: Miracle Drugs

    Centers for Disease Control (CDC) Podcasts

    2015-04-16

    The overuse of antibiotics has led to the development of resistance among bacteria, making antibiotics ineffective in treating certain conditions. This podcast discusses the importance of talking to your healthcare professional about whether or not antibiotics will be beneficial if you’ve been diagnosed with an infectious disease.  Created: 4/16/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  15. Cross-Contamination of Residual Emerging Contaminants and Antibiotic Resistant Bacteria in Lettuce Crops and Soil Irrigated with Wastewater Treated by Sunlight/H2O2.

    Science.gov (United States)

    Ferro, Giovanna; Polo-López, María I; Martínez-Piernas, Ana B; Fernández-Ibáñez, Pilar; Agüera, Ana; Rizzo, Luigi

    2015-09-15

    The sunlight/H2O2 process has recently been considered as a sustainable alternative option compared to other solar driven advanced oxidation processes (AOPs) in advanced treatment of municipal wastewater (WW) to be reused for crop irrigation. Accordingly, in this study sunlight/H2O2 was used as disinfection/oxidation treatment for urban WW treatment plant effluent in a compound parabolic collector photoreactor to assess subsequent cross-contamination of lettuce and soil by contaminants of emerging concern (CECs) (determined by QuEChERS extraction and LC-QqLIT-MS/MS analysis) and antibiotic resistant (AR) bacteria after irrigation with treated WW. Three CECs (carbamazepine (CBZ), flumequine (FLU), and thiabendazole (TBZ) at 100 μg L(-1)) and two AR bacterial strains (E. coli and E. faecalis, at 10(5) CFU mL(-1)) were spiked in real WW. A detection limit (DL) of 2 CFU mL(-1) was reached after 120 min of solar exposure for AR E. coli, while AR E. faecalis was more resistant to the disinfection process (240 min to reach DL). CBZ and TBZ were poorly removed after 90 min (12% and 50%, respectively) compared to FLU (94%). Lettuce was irrigated with treated WW for 5 weeks. CBZ and TBZ were accumulated in soil up to 472 ng g(-1) and 256 ng g(-1) and up-taken by lettuce up to 109 and 18 ng g(-1), respectively, when 90 min treated WW was used for irrigation; whereas no bacteria contamination was observed when the bacterial density in treated WW was below the DL. A proper treatment time (>90 min) should be guaranteed in order to avoid the transfer of pathogens from disinfected WW to irrigated crops and soil.

  16. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    Science.gov (United States)

    Shiver, Anthony L; Osadnik, Hendrik; Kritikos, George; Li, Bo; Krogan, Nevan; Typas, Athanasios; Gross, Carol A

    2016-06-01

    Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens. PMID:27355376

  17. A Chemical-Genomic Screen of Neglected Antibiotics Reveals Illicit Transport of Kasugamycin and Blasticidin S.

    Directory of Open Access Journals (Sweden)

    Anthony L Shiver

    2016-06-01

    Full Text Available Fighting antibiotic resistance requires a deeper understanding of the genetic factors that determine the antibiotic susceptibility of bacteria. Here we describe a chemical-genomic screen in Escherichia coli K-12 that was designed to discover new aspects of antibiotic resistance by focusing on a set of 26 antibiotics and other stresses with poorly characterized mode-of-action and determinants of resistance. We show that the screen identifies new resistance determinants for these antibiotics including a common signature from two antimicrobials, kasugamycin and blasticidin S, used to treat crop diseases like rice blast and fire blight. Following this signature, we further investigated the mechanistic basis for susceptibility to kasugamycin and blasticidin S in E. coli using both genetic and biochemical approaches. We provide evidence that these compounds hijack an overlapping set of peptide ABC-importers to enter the bacterial cell. Loss of uptake may be an underappreciated mechanism for the development of kasugamycin resistance in bacterial plant pathogens.

  18. 家养禽类肠道可培养细菌抗生素抗性的种类、数量和分布%Diversity and distribution of antibiotic resistance for gut culturable bacteria from domestic poultry

    Institute of Scientific and Technical Information of China (English)

    周俊雄; 马荣琴; 李冬松; 田容川; 李敏昱; 罗艺彬; 刘平平; 田宝玉

    2016-01-01

    The wide-use, misuse and even abuse of antibiotics in recent years have led to an increase in the resistance of environ-mental and pathogenic microorganisms to antibiotics. In this study, diversity and ecological distribution of antibiotic resistances for culturable intestinal bacteria from domestic poultry, including chicken, duck and pigeon, were investigated using traditional micro-culture and replica plating techniques. Results showed that all the isolated bacteria were resistant to at least 1 of the 10 tested antibi-otics. Proportions of bacteria which were resistant to greater than or equal to 5 antibiotics were 75%, 58.9% and 97.4% for chicken, duck and pigeon, respectively. And 66 out of 192 ( 34%) isolates were resistant to all the antibiotics. Moreover, a variety of bacteri-a, with the highest overall proportion in pigeon and lowest in duck, showed resistance to nalidixic acid, tetracyyline, clindamycin, sulfadiazine and erythromycin. In order to identify bacteria that presentd high and multi-drug antibiotic resistance, 16S rRNA genes of 8 representative strains were amplified and followed by phylogenetic analysis. It turned out that the bacteria were grouped into the branch of Escherichia coli under the family of Enterobacterium. Referring to database from National Center of Biotechnology Informa-tion ( NCBI) , sequences with 99% similarity with the 8 strains were widely distributed in a variety of environment, including soil, animal host and pathogenic bacteria. Results indicated that culturable gut bacteria from domestic poultry was a potential source of an-tibiotic resistance for environmental microbiota and human pathogenic bacteria.%采用微生物培养和影印法对家养禽类鸡、鸭和肉鸽肠道可培养细菌抗生素抗性的种类、数量和分布进行了调查.结果表明:在调查的鸡、鸭和肉鸽3种禽类中,肠道可培养细菌抗生素抗性的分布非常普遍,所有测试细菌至少可以抗一种抗生素,抗5

  19. Evaluation of Statens Serum Institut Enteric Medium for Detection of Enteric Pathogens

    OpenAIRE

    Blom, Marianne; Meyer, Aase; Gerner-Smidt, Peter; Gaarslev, Knud; Espersen, Frank

    1999-01-01

    The efficacy of the Statens Serum Institut (SSI) enteric medium for isolation and direct identification of enteric pathogens was evaluated. Six different biochemical reactions can be read by using the SSI enteric medium, allowing direct identification of a range of enteric pathogens. All 248 gram-negative bacterial species that were tested grew on the SSI enteric medium. Only 10 of 248 bacteria (4%) showed discrepant results in the biochemical reactions, and none of these were enteric pathoge...

  20. Eosinofil enteritis

    DEFF Research Database (Denmark)

    Gjersøe, P; Rasmussen, S N; Hansen, B F

    2000-01-01

    We present a case of eosinophilic enteritis in a 45 year-old male with clinical and radiological signs of stenotic inflammatory ileal disease. A diagnosis of Crohn's disease was considered. He developed small bowel obstruction and sixty cm of obstructed ileum was resected. Histopathological...... examination revealed the diagnosis of eosinophilic enteritis primarily localized to the tunica muscularis. One year postoperatively he relapsed and small bowel X-ray demonstrated 1 m narrow and irregular ileum. He was treated with mesalamine, azathioprine, and cromoglicate, went into remission and fares well...

  1. Enteric viruses

    Science.gov (United States)

    Characteristic clinical signs associated with viral enteritis in young poultry include diarrhea, anorexia, litter eating, ruffled feathers, and poor growth. Intestines may have lesions; intestines are typically dilated and are filled with fluid and gaseous contents. The sequela to clinical disease...

  2. Review article: antibiotics and probiotics in inflammatory bowel disease.

    Science.gov (United States)

    Kruis, W

    2004-10-01

    Treatment with antibiotics in inflammatory bowel disease has a long tradition and is widely used. The indications for antibiotic therapy are wide ranging, from specific situations such as abscesses or fistulae, to patients with severe disease (as an unspecific 'protective' measure), and to address the hypothesis that the enteric flora as a whole, or specific microorganisms such as mycobacteria, are involved in the pathogenesis of inflammatory bowel disease. The best-studied single antibiotic compound is metronidazole. However, overall, the scientific basis for the use of antibiotics is limited, which may reflect a lack of interest from sponsors within the pharmaceutical industry. Despite this weak evidence base, antibiotics are a globally established therapeutic tool in inflammatory bowel disease. Growing evidence from human and animal studies points towards a pivotal pathogenetic role of intestinal bacteria in inflammatory bowel disease. In view of these experimental findings, clinical trials have been undertaken to elucidate the therapeutic effects of probiotics in inflammatory bowel disease. Probiotics are viable nonpathogenic microorganisms which confer health benefits to the host by improving the microbial balance of the indigenous microflora. So far, of the many candidates, one specific strain (Escherichia coli Nissle 1917) and a mixture of eight different bacteria have demonstrated convincing therapeutic efficacy in controlled studies. Maintenance therapy in ulcerative colitis and prevention therapy, as well as the treatment of pouchitis, have emerged as areas in which probiotic therapy offers a valid therapeutic alternative to current treatments. Further investigations may detect additional clinically effective probiotics and other clinical indications.

  3. A compositional shift in the soil microbiome induced by tetracycline, sulfamonomethoxine and ciprofloxacin entering a plant-soil system.

    Science.gov (United States)

    Lin, Hui; Jin, Danfeng; Freitag, Thomas E; Sun, Wanchun; Yu, Qiaogang; Fu, Jianrong; Ma, Junwei

    2016-05-01

    Antibiotics entering the soil likely disturb the complex regulatory network of the soil microbiome, which is closely associated with soil quality and ecological function. This study investigated the effects of tetracycline (TC), sulfamonomethoxine (SMM), ciprofloxacin (CIP) and their combination (AM) on the bacterial community in a soil-microbe-plant system and identified the main bacterial responders. Antibiotic effects on the soil microbiome depended on antibiotic type and exposure time. TC resulted in an acute but more rapidly declining effect on soil microbiome while CIP and SMM led to a delayed antibiotic effect. The soil exposed to AM presented a highly similar bacterial structure to that exposed to TC rather than to SMM and CIP. TC, SMM and CIP had their own predominantly impacted taxonomic groups that include both resistance and sensitive bacteria. The antibiotic sensitive responders predominantly distributed within the phylum Proteobacteria. The potential bacteria resistant to each antibiotic exhibited phyla preference to some extent, particularly those resistant to TC. CIP and SMM resistance in soil was increased with exposure time while TC resistance gave the opposite result. Overall, the work extended the understanding of antibiotic effects on soil microbiome after introduced into the soil during greenhouse vegetable cultivation. PMID:26952272

  4. Do we need new antibiotics?

    Science.gov (United States)

    Rolain, J-M; Abat, C; Jimeno, M-T; Fournier, P-E; Raoult, D

    2016-05-01

    For several years, alarmist articles both in mass media and in the scientific community have reported an increase in antibiotic resistance, even citing an inability to treat patients infected with multidrug-resistant bacteria (MDR) responsible for high mortality worldwide. In this review we summarize and discuss the key points associated with the reality of (i) the existence of pandrug-resistant bacteria, (ii) the increase of resistance worldwide, (iii) the link between resistance and death, and (iv) the need to develop new antibiotics. Data on antibiotic resistance in Europe for the main bacteria associated with invasive infections apparently demonstrate that apart from Klebsiella pneumoniae, which is resistant to carbapenems in three countries (Romania, Italy and Greece), the level of resistance to three or more classes of antibiotics (defined as MDR phenotype) has remained low and stable over the last 5 years and that therapeutic options exist both for reference antibiotics and for old antibiotics. The clinical outcome of patients infected by MDR bacteria remains controversial and death rates attributable to MDR bacteria versus non-MDR bacteria are still debated. The arsenal of antibiotics currently available (including 'old antibiotics') suffices for facing the waves of emergence of new bacterial resistance and should be considered as a World Heritage. This heritage should be managed in a non-profit model with international regulatory approval. PMID:27021418

  5. Trueperella pyogenes and Escherichia coli as an etiological factor of endometritis in cows and the susceptibility of these bacteria to selected antibiotics.

    Science.gov (United States)

    Brodzki, P; Bochniarz, M; Brodzki, A; Wrona, Z; Wawron, W

    2014-01-01

    The aim of this study was to determine the percentage of participation of particular species of microorganisms, isolated from the uterus of cows with endometritis and from cows without inflammatory lesions of the uterus, in the same postpartum period. The aim of the study was also to examine how long after parturition non-treated endometritis persists. Moreover, antibiotic susceptibility tests were carried out of the bacterial isolates dominating in the uterus. Forty cows were included in the study: 20 cows with endometritis (experimental group) and 20 cows without any inflammatory condition of the uterus (control group). The material for cytological and bacteriological tests was collected on the 5th, 26th, 40th and 60th day after parturition, using an intrauterine brush adapted for cows. The total number of collected isolates was 149, including 120 isolates from the uterus of cows with endometritis and 29 isolates from the uterus of cows without endometritis. The following species of microorganisms were isolated from the material collected from cows with endometritis: T. pyogenes (49.2%), E.coli (22.5%), F. necrophorum (11.7%), Staphylococcus sp. (6.7%), B. melaninogenicus (5.8%), and Streptococcus sp. (4.1%). The participation percentage of particular species of bacteria in the material collected from the uterus of cows without endometritis was as follows: T. pyogenes (27.6%), E.coli (24.2%), Staphylococcus sp. (20.7%), Streptococcus sp. (20.7%), B. melaninogenicus (3.4%) and F. necrophorum (3.4%). The highest percentage of T. pyogenes isolates was susceptible to ceftiofur (89.6%); cefoperazone (85.1%) and amoxicillin combined with clavulanic acid (79.1%). E. coli isolates were most susceptible to amoxicillin combined with clavulanic acid (100%), cefoperazone (94.1%) and oxytetracycline (82.3%). PMID:25638979

  6. Discovery research: the scientific challenge of finding new antibiotics.

    Science.gov (United States)

    Livermore, David M

    2011-09-01

    The dwindling supply of new antibiotics largely reflects regulatory and commercial challenges, but also a failure of discovery. In the 1990s the pharmaceutical industry abandoned its classical ways of seeking antibiotics and instead adopted a strategy that combined genomics with high-throughput screening of existing compound libraries. Too much emphasis was placed on identifying targets and molecules that bound to them, and too little emphasis was placed on the ability of these molecules to permeate bacteria, evade efflux and avoid mutational resistance; moreover, the compound libraries were systematically biased against antibiotics. The sorry result is that no antibiotic found by this strategy has yet entered clinical use and many major pharmaceutical companies have abandoned antibiotic discovery. Although a raft of start-up companies-variously financed by venture capital, charity or public money--are now finding new antibiotic compounds (some of them very promising in vitro or in early trials), their development through Phase III depends on financial commitments from large pharmaceutical companies, where the discouraging regulatory environment and the poor likely return on investment remain paramount issues.

  7. 污水处理厂削减耐药菌与抗性基因的研究进展%State-of-the-art removal of antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG) in wastewater treatment plants (WWTPs)

    Institute of Scientific and Technical Information of China (English)

    佟娟; 魏源送

    2012-01-01

    长期滥用抗生素导致细菌耐药性增强,并使抗性广泛传播.污水处理厂既是耐药菌(antibiotic resistance bacteria,ARB)与抗性基因(antibiotic resistance gene,ARG)的储存库,排放的污水与污泥是向自然环境中传播抗性的重要污染源,也是削减ARB和ARG及控制抗性传播的重要环节.本文总结了天然水体中的耐药菌和抗性基因污染现状,分析了近年来耐药菌与抗性基因在污水/污泥处理过程中的转归与去除方面的研究进展,同时对将来的重点研究方向提出展望,以期为今后耐药菌和抗性基因的污染控制提供参考.%The abuse and overuse of antibiotics lead to increasing bacterial resistance to actibiotics and extensive dissemination of resistance. As a reservoir for antibiotic resistance bacteria (ARB) and antibiotic resistance gene (ARG) , the effluent and biosolids of wastewater treatment plants (WWTPs) are the important contamination sources for the antibiotic resistance dissemination. Meanwhile, WWTPs play an important role in controlling of resistance dissemination. The purpose of this paper is to summarize pollution status of antibiotic resistance in the aquatic environment, to thoroughly review the advances of removing ARB and ARG during WWTP treating processes, and to propose the future research direction.

  8. Antibiotics Quiz

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  9. Selection of antibiotic resistance at very low antibiotic concentrations.

    Science.gov (United States)

    Sandegren, Linus

    2014-05-01

    Human use of antibiotics has driven the selective enrichment of pathogenic bacteria resistant to clinically used drugs. Traditionally, the selection of resistance has been considered to occur mainly at high, therapeutic levels of antibiotics, but we are now beginning to understand better the importance of selection of resistance at low levels of antibiotics. The concentration of an antibiotic varies in different body compartments during treatment, and low concentrations of antibiotics are found in sewage water, soils, and many water environments due to natural production and contamination from human activities. Selection of resistance at non-lethal antibiotic concentrations (below the wild-type minimum inhibitory concentration) occurs due to differences in growth rate at the particular antibiotic concentration between cells with different tolerance levels to the antibiotic. The minimum selective concentration for a particular antibiotic is reached when its reducing effect on growth of the susceptible strain balances the reducing effect (fitness cost) of the resistance determinant in the resistant strain. Recent studies have shown that resistant bacteria can be selected at concentrations several hundred-fold below the lethal concentrations for susceptible cells. Resistant mutants selected at low antibiotic concentrations are generally more fit than those selected at high concentrations but can still be highly resistant. The characteristics of selection at low antibiotic concentrations, the potential clinical problems of this mode of selection, and potential solutions will be discussed.

  10. 医院感染细菌的临床分布及耐药性分析%Clinical distribution and antibiotic resistance analysis on bacteria of nosocomial infection

    Institute of Scientific and Technical Information of China (English)

    陈映; 乔岩; 赵燕

    2013-01-01

    Objective To investigate the distribution and antibiotic resistance of hospitalized infection bacteria in clinical departments and specimens. Methods French biology-bioMerieux ATB bacterial identification system, susceptibility detection instrument and supporting microbial detection reagent were applied for bacterial identification and susceptibility testing. The distribution of bacterial infection and antibiotic resistance data from January 2011 to December 2011 were analyzed, respectively. Results Among 455 bacteria, Escherichia coli, Klebsiella pneumoniae, Candida albicans, Staphylococcus epidermidis, Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus were the seven major infection bacteria, accounting for 68. 13% of the total detected bacteria. Methicillin-resistant Staphylococcus aureus ( MRSA ) and Staphylococcus epidermidis ( MRSE ) were with 46. 43% and 75. 68% detection, no vancomycin-resistant and teicoplain-resistant Staphylococcus aureus were detected. There were 38 cases with multiple antibiotic resistant bacteria with positive rate as 8. 35% . There was 37. 93% ( 11/29 ) Acinetobacter baumannii detected as pan-resistant bacteria. The sources of bacterial were mainly from respiratory medicine and intensive care unit ( ICU ). Sputum samples had the highest positive bacteria with 178 ( 39. 12% ). Conslusions That conducting regular surveillance of antibiotic resistance could help analyze changes of antibiotic resistant of hospital bacteria, providing a theoretical basis for the clinical experience of drug use.%目的 了解医院感染细菌在临床科室和标本中的分布及耐药情况.方法 回顾性分析2011年1月~2011年12月本院感染菌的分布及耐药情况.使用法国生物-梅里埃ATB细菌鉴定系统,应用药敏测试仪及配套微生物检测试剂进行细菌鉴定和药敏试验.结果 本研究分离的455株感染菌中,大肠埃希菌、肺炎克雷伯菌、白假丝酵母菌、表皮葡萄球菌、

  11. Controlling antibiotic resistance in the ICU

    NARCIS (Netherlands)

    Derde, L.P.G.

    2013-01-01

    Patients admitted to intensive care units (ICUs) are frequently colonized with (antibiotic-resistant) bacteria, which may lead to healthcare associated infections. Antimicrobial-resistant bacteria (AMRB), such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococci (V

  12. Ease with VITEK 2 systems, biomerieux in identification of non-lactose fermenting bacteria including their antibiotic drug susceptibility: our experience

    Directory of Open Access Journals (Sweden)

    Susmitha Simgamsetty

    2016-03-01

    Results: Out of the 186 strains, 50 strains were isolated from tracheal aspirate, 47 from pus/wound infections, 43 from blood cultures, 25 from urine, 20 from sputum and one from central line tip. The VITEK-2 compact system identified all the strains with a level of 95-99% probability. Most of the strains were identified as Pseudomonas aeruginosa followed by Acientobacter baumannii. Pseudomonas aeruginosa strains were most susceptible to Meropenem (72% and least susceptible to Cefuroxime and Trimethoprim/Sulfamethoxazole (0% while Sphingomonas paucimobilis showed resistance to all the antibiotics tested. Conclusions: Care in detection, evaluation of effective antibiotic options, and judicious use of antibiotics by instituting antibiotic policy for combination therapy and rigorous infection control measures will help us to fight against these multidrug resistant NFGNB during the effective management of patients. [Int J Res Med Sci 2016; 4(3.000: 813-817

  13. The multifaceted roles of antibiotics and antibiotic resistance in nature

    Directory of Open Access Journals (Sweden)

    Saswati eSengupta

    2013-03-01

    Full Text Available Antibiotics are chemotherapeutic agents, which have been a very powerful tool in the clinical management of bacterial diseases since the 1940s. However, benefits offered by these magic bullets have been substantially lost in subsequent days following the widespread emergence and dissemination of antibiotic resistant strains. While it is obvious that excessive and imprudent use of antibiotics significantly contributes to the emergence of resistant strains, antibiotic-resistance is also observed in natural bacteria of remote places unlikely to be impacted by human intervention. Both antibiotic biosynthetic genes and resistance-conferring genes have been known to evolve billions of years ago, long before clinical use of antibiotics. Hence it appears that antibiotics and antibiotics resistance determinants have some other roles in nature, which often elude our attention because of overemphasis on the therapeutic importance of antibiotics and the crisis imposed by the antibiotic-resistance in pathogens. In the natural milieu, antibiotics are often found to be present in subinhibitory concentrations acting as signalling molecules supporting quorum sensing and biofilm formation. They also play an important role in the production of virulence factors and influence host-parasite interactions (e.g., phagocytosis, adherence to the target cell and so on. The evolutionary and ecological aspects of antibiotics and antibiotic-resistance in the naturally occurring microbial community are little understood. Therefore, the actual role of antibiotics in nature warrants in-depth investigations. Studies on such an intriguing behaviour of the microorganisms promise insight into the intricacies of the microbial physiology and are likely to provide some lead in controlling the emergence and subsequent dissemination of antibiotic resistance. This article highlights some of the recent findings on the role of antibiotics and genes that confer resistance to antibiotics in

  14. [Prophylactic antibiotics in neurosurgery].

    Science.gov (United States)

    Iacob, G; Iacob, Simona; Cojocaru, Inimioara

    2007-01-01

    Because of a low risk of infection (around 2-3%), prophylactic use of antibiotics in neurosurgery is a controversial issue. Some neurosurgeons consider that there are strong arguments against the use of antimicrobials (promotion of antibiotic-resistant strains of bacteria, superinfection and adverse drug reactions) and meticulous aseptic techniques could be more usefully than prophylactic antibiotics. On the other hand, despite of being rare, the consequences of a neurosurgical infection can be dramatic and may result in a rapid death, caused by meningitis, cerebritis, abscess formation or sepsis. Clinical studies emphasized that the most important factors influencing the choice of antibiotic prophylaxis in neurosurgery is the patient's immune status, virulence of the pathogens and the type of surgery ("clean contaminated"--procedure that crosses the cranial sinuses, "clean non-implant"--procedure that does not cross the cranial sinuses, CSF shunt surgery, skull fracture). Prophylaxis has become the standard of care for contaminated and clean-contaminated surgery, also for surgery involving insertion of artificial devices. The antibiotic (first/second generation of cephalosporins or vancomycin in allergic patients) should recover only the cutaneous possibly contaminating flora (S. aureus, S. epidermidis) and should be administrated 30' before the surgical incision, intravenously in a single dose. Most studies pointed that identification of the risk factors for infections, correct asepsis and minimal prophylactic antibiotic regimen, help neurosurgeons to improve patient care and to decrease mortality without selecting resistant bacteria. PMID:18293694

  15. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    Directory of Open Access Journals (Sweden)

    Azam Fatahi Sadeghabadi

    2014-01-01

    Full Text Available Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species isolated were evaluated. Materials and Methods: According to the guideline on National Surveillance System for Foodborn Diseases, random samples from patients with acute diarrhea were examined in local laboratories of health centers and samples suspicious of Shigella spp. were further assessed in referral laboratory. Isolated pathogens were identified by standard biochemical and serologic tests and antibiotic susceptibility testing was carried out by disc diffusion method. Results: A total of 1086 specimens were obtained and 58 samples suspicious of Shigella were specifically evaluated. The most prevalent isolated pathogen was Shigella sonnei (26/58 followed by E. coli (25/58 and Shigella flexneri (3/58. A large number of isolated bacteria were resistant to co-trimoxazole (Shigella spp: 100%, E. coli: 80%, azithromycin (Shigella spp: 70.4%, E. coli: 44.0%, ceftriaxone (Shigella spp: 88.9%, E. coli: 56.0% and cefixime (Shigella spp: 85.2%, E. coli: 68.0%. About88.3% of S. sonnei isolates, one S. flexneri isolate, and 56% of E. coli strains were resistant to at least three antibiotic classes (multidrug resistant. Conclusion: Due to high levels of resistance to recommended and commonly used antibiotics for diarrhea, continuous monitoring of antibiotic resistance seems essential for determining best options of empirical therapy.

  16. Antibiotic resistance in Salmonella

    NARCIS (Netherlands)

    Vo, A.T.T.

    2007-01-01

    Immediately after their introduction in the beginning of the fourties of the previous century, the agents used to combat infectious diseases caused by bacteria were regarded with suspicion, but not long thereafter antibiotics had the status of miracle drugs. For decades mankind has lived under the i

  17. From Bench-Top to Bedside: A Prospective In Vitro Antibiotic Combination Testing (iACT) Service to Guide the Selection of Rationally Optimized Antimicrobial Combinations against Extensively Drug Resistant (XDR) Gram Negative Bacteria (GNB)

    Science.gov (United States)

    Lim, Tze-Peng; Teo, Jocelyn Qi-Min; Lee, Winnie; Kurup, Asok; Koh, Tse-Hsien; Tan, Thuan-Tong; Kwa, Andrea L.

    2016-01-01

    Introduction Combination therapy is increasingly utilized against extensively-drug resistant (XDR) Gram negative bacteria (GNB). However, choosing a combination can be problematic as effective combinations are often strain-specific. An in vitro antibiotic combination testing (iACT) service, aimed to guide the selection of individualized and rationally optimized combination regimens within 48 hours, was developed. We described the role and feasibility of the iACT service in guiding individualized antibiotic combination selection in patients with XDR-GNB infections. Methods A retrospective case review was performed in two Singapore hospitals from April 2009–June 2014. All patients with XDR-GNB and antibiotic regimen guided by iACT for clinical management were included. The feasibility and role of the prospective iACT service was evaluated. The following patient outcomes were described: (i) 30-day in-hospital all-cause and infection-related mortality, (ii) clinical response, and (iii) microbiological eradication in patients with bloodstream infections. Results From 2009–2014, the iACT service was requested by Infectious Disease physicians for 39 cases (20 P. aeruginosa, 13 A. baumannii and 6 K. pneumoniae). Bloodstream infection was the predominant infection (36%), followed by pneumonia (31%). All iACT recommendations were provided within 48h from request for the service. Prior to iACT-guided therapy, most cases were prescribed combination antibiotics empirically (90%). Changes in the empiric antibiotic regimens were recommended in 21 (54%) cases; in 14 (36%) cases, changes were recommended as the empiric regimens were found to be non-bactericidal in vitro. In 7 (18%) cases, the number of antibiotics used in combination empirically was reduced by the iACT service. Overall, low 30-day infection-related mortality (15%) and high clinical response (82%) were observed. Microbiological eradication was observed in 79% of all bloodstream infections. Conclusions The i

  18. Effects of environmental conditions on the morphologic change of Pseudomonas aeruginosa and its association with antibiotic resistance in burn patients

    Directory of Open Access Journals (Sweden)

    Mohsen Moghoofei

    2015-12-01

    Full Text Available Introduction: Pseudomonas aeruginosa is an aerobic gram-negative bacteria, which causes hospital infections. Bacteria under stress, such as lack of food, pH and osmotic pressure change and antibiotic stress transforms its morphology to coccoid form. In the bacill form due to changes in the peptidoglycan cell wall, membrane lipids and decreased metabolic activity, bacteria resistant to antibiotics. Due to an increase in mortality in burn patients and important problem of antibiotic resistance in P.aeruginosa the researcher decided to study the factors affecting on morphologic change to coccoid form. Materials and methods: In this study P.aeruginosa strains obtained from clinical samples of burned patients (8 samples were taken from the wound by Infectious Disease Specialist and standard strain ATCC 27853 were used. Samples were confirmed by biochemical tests and PCR by 16srDNA primer. Then bacteria were put under lack of food and antibiotic stress invitro. After that bacterial morphology was examined on different days by digital DP 72-BX 51 microscope to 60 days. After induction coccoid forms, bacterial viability was confirmed by flow cytometry. Results: Bacteria begin to change morphology from 5 days for antibiotic stress and 10 days for other stress. Changing morphology was initially elongate bacilli, U shape and finally the coccoid form was seen. Discussion and conclusion: Changing morphology of bacilli to coccoid bacteria that are the result of stress on the bacteria which enter the body can lead to bacterial resistance to antibiotics and have grave consequences for the patient.

  19. Marine echinoderms as reservoirs of antimicrobial resistant bacteria

    Directory of Open Access Journals (Sweden)

    Catarina Marinho

    2014-06-01

    Full Text Available Echinoderms are benthic animals that play an important ecological role in marine communities occupying diverse trophic levels in the marine food chains. The majority of echinoderms feed on small particles of edible matter, although they can eat many kinds of food (Clark, 1968. Although, some echinoderms species has been facing an emerging demand for human consumption, particularly in Asian and Mediterranean cuisine, where these animals can be eaten raw (Kelly, 2005; Micael et al., 2009. Echinoderms own an innate immune mechanism that allows them to defend themselves from high concentrations of bacteria, viruses and fungus they are often exposed, on marine sediment (Janeway and Medzhitov, 1998, Cooper, 2003. The most frequent genera of gut bacteria in echinoderms are Vibrio, Pseudomonas, Flavobacterium, and Aeromonas; nevertheless Enterococcus spp. and Escherichia coli are also present (Harris, 1993; Marinho et al., 2013. Moreover, fecal resistant bacteria found in the aquatic environment might represent an index of marine pollution (Foti et al., 2009, Kummerer, 2009. Several studies had been lead in order to identify environmental reservoirs for antibiotic-resistant bacteria in populations of fish, echinoderms and marine mammals, and they all support the thesis that these animals may serve as reservoirs since they had acquired resistant microbial species (Johnson et al., 1998, Marinho et al., 2013, Miranda and Zemelman, 2001. However, to our knowledge, there are only available in bibliography one study of antimicrobial resistant bacteria isolated from marine echinoderms (Marinho et al., 2013, which stats that their provenience in this environment is still unclear. Antimicrobial resistance outcomes from the intensive use of antimicrobial drugs in human activities associated with various mechanisms for bacteria genetic transfer (Barbosa and Levy, 2000, Coque et al., 2008. Antibiotic-resistant bacteria enter into water environments where they are

  20. Insights into the structure, function and evolution of the radical-SAM 23S rRNA methyltransferase Cfr that confers antibiotic resistance in bacteria

    DEFF Research Database (Denmark)

    Karminska, K. H.; Purta, E.; Hansen, L .H.;

    2010-01-01

    The Cfr methyltransferase confers combined resistance to five classes of antibiotics that bind to the peptidyl tranferase center of bacterial ribosomes by catalyzing methylation of the C-8 position of 23S rRNA nucleotide A2503. The same nucleotide is targeted by the housekeeping methyltransferase...... of a 4Fe-4S cluster, a SAM molecule coordinated to the iron-sulfur cluster (SAM1) and a SAM molecule that is the putative methyl group donor (SAM2). All mutations at predicted functional sites affect Cfr activity significantly as assayed by antibiotic susceptibility testing and primer extension analysis...

  1. Improved in vitro evaluation of novel antimicrobials: potential synergy between human plasma and antibacterial peptidomimetics, AMPs and antibiotics against human pathogenic bacteria

    DEFF Research Database (Denmark)

    Citterio, Linda; Franzyk, Henrik; Palarasah, Yaseelan;

    2016-01-01

    Stable peptidomimetics mimicking natural antimicrobial peptides (AMPs) have emerged as a promising class of potential novel antibiotics. In the present study, we aimed at determining whether the antibacterial activity of two α-peptide/β-peptoid peptidomimetics against a range of bacterial pathogens...... treatments might be lower than traditionally deduced from MICs determined in laboratory media. Thus, antibiotics previously considered too toxic could be developed into usable last-resort drugs, due to ensuing lowered risk of side effects. In contrast, the activity of the compounds was significantly...

  2. Environmental pollution by antibiotics and by antibiotic resistance determinants

    International Nuclear Information System (INIS)

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  3. Environmental pollution by antibiotics and by antibiotic resistance determinants

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Jose Luis, E-mail: jlmtnez@cnb.csic.e [Departamento de Biotecnologia Microbiana, Centro Nacional de Biotecnologia, Consejo Superior de Investigaciones Cientificas, Darwin 3, Cantoblanco, 28049 Madrid, and CIBERESP (Spain)

    2009-11-15

    Antibiotics are among the most successful drugs used for human therapy. However, since they can challenge microbial populations, they must be considered as important pollutants as well. Besides being used for human therapy, antibiotics are extensively used for animal farming and for agricultural purposes. Residues from human environments and from farms may contain antibiotics and antibiotic resistance genes that can contaminate natural environments. The clearest consequence of antibiotic release in natural environments is the selection of resistant bacteria. The same resistance genes found at clinical settings are currently disseminated among pristine ecosystems without any record of antibiotic contamination. Nevertheless, the effect of antibiotics on the biosphere is wider than this and can impact the structure and activity of environmental microbiota. Along the article, we review the impact that pollution by antibiotics or by antibiotic resistance genes may have for both human health and for the evolution of environmental microbial populations. - The article reviews the current knowledge on the effects that pollution by antibiotics and antibiotic resistance genes may have for the microbiosphere.

  4. 发酵类抗生素制药菌渣焚烧处理设计%Design of Antibiotics Pharmaceutical Bacteria Fermentation Residue Incineration

    Institute of Scientific and Technical Information of China (English)

    李刚; 邓伟年

    2015-01-01

    焚烧处理是发酵类抗生素菌渣无害化和减量化处理最具有实际意义的措施.通过对发酵类抗生素菌渣焚烧处理工艺的设计,比较分析了菌渣焚烧过程中最佳的燃料方案以及烘干水分比例,提出了二次污染防治措施的有效途径,为抗生素菌渣的焚烧处理提供一定参考.%Incineration is the most meaningful measure for the antibiotic fermentation residue harmless treatment and quantity reduction treatment. Based on the antibiotic fermentation residue incineration process design,comparative analysis of the best antibiotic fermentation residue scheme and the best proportion of water drying in the process of in?cineration was carried out,effective ways to prevent and control the secondary pollution were put forward,providing a reference for incineration of antibiotics residue.

  5. Studies on the chemical control of psychrophilic bacterial spoilage of fish. 2 - The effect of antibiotics on the growth of psycrophilic bacteria isolated from marine fish

    OpenAIRE

    Anand, C.P.; Rudra Setty, T.M.

    1981-01-01

    Among the various antibiotics tried, tetracyclines particularly chlorotetracycline (CTC), chloramphenicol and chlorostrep were found to be fairly effective at 8 and 10 p.p.m. levels. The order of sensitivity to CTC among the six genera studied was found to be Achromobacter

  6. Impacts of Gut Bacteria on Human Health and Diseases

    Directory of Open Access Journals (Sweden)

    Yu-Jie Zhang

    2015-04-01

    Full Text Available Gut bacteria are an important component of the microbiota ecosystem in the human gut, which is colonized by 1014 microbes, ten times more than the human cells. Gut bacteria play an important role in human health, such as supplying essential nutrients, synthesizing vitamin K, aiding in the digestion of cellulose, and promoting angiogenesis and enteric nerve function. However, they can also be potentially harmful due to the change of their composition when the gut ecosystem undergoes abnormal changes in the light of the use of antibiotics, illness, stress, aging, bad dietary habits, and lifestyle. Dysbiosis of the gut bacteria communities can cause many chronic diseases, such as inflammatory bowel disease, obesity, cancer, and autism. This review summarizes and discusses the roles and potential mechanisms of gut bacteria in human health and diseases.

  7. Third generation cephalosporin resistant Enterobacteriaceae and multidrug resistant gram-negative bacteria causing bacteremia in febrile neutropenia adult cancer patients in Lebanon, broad spectrum antibiotics use as a major risk factor, and correlation with poor prognosis

    Directory of Open Access Journals (Sweden)

    Rima eMoghnieh

    2015-02-01

    Full Text Available Bacteremia remains a major cause of life-threatening complications in patients receiving anticancer chemotherapy. The spectrum and susceptibility profiles of causative microorganisms differ with time and place. Data from Lebanon are scarce. We aim at evaluating the epidemiology of bacteremia in cancer patients in a university hospital in Lebanon, emphasizing antibiotic resistance and risk factors of multi-drug resistant organism (MDRO-associated bacteremia.This is a retrospective study of 75 episodes of bacteremia occurring in febrile neutropenic patients admitted to the hematology-oncology unit at Makassed General Hospital, Lebanon, from October 2009-January 2012.It corresponds to epidemiological data on bacteremia episodes in febrile neutropenic cancer patients including antimicrobial resistance and identification of risk factors associated with third generation cephalosporin resistance (3GCR and MDRO-associated bacteremia. Out of 75 bacteremias, 42.7% were gram-positive (GP, and 57.3% were gram-negative (GN. GP bacteremias were mostly due to methicillin-resistant coagulase negative staphylococci (28% of total bacteremias and 66% of GP bacteremias. Among the GN bacteremias, Escherichia coli (22.7% of total, 39.5% of GN organisms and Klebsiellapneumoniae(13.3% of total, 23.3% of GN organisms were the most important causative agents. GN bacteremia due to 3GC sensitive (3GCS bacteria represented 28% of total bacteremias, while 29% were due to 3GCR bacteria and 9% were due to carbapenem-resistant organisms. There was a significant correlation between bacteremia with MDRO and subsequent intubation, sepsis and mortality. Among potential risk factors, only broad spectrum antibiotic intake >4 days before bacteremia was found to be statistically significant for acquisition of 3GCR bacteria. Using carbapenems or piperacillin/ tazobactam>4 days before bacteremia was significantly associated with the emergence of MDRO (p value<0.05.

  8. Inducible xylitol dehydrogenases in enteric bacteria.

    OpenAIRE

    Doten, R C; Mortlock, R P

    1985-01-01

    Morganella morganii ATCC 25829, Providencia stuartii ATCC 25827, Serratia marcescens ATCC 13880, and Erwinia sp. strain 4D2P were found to induce a xylitol dehydrogenase when grown on a xylitol-containing medium. The xylitol dehydrogenases were partially purified from the four strains, and those from M. morganii ATCC 25829, P. stuartii ATCC 25827, and S. marcescens ATCC 13880 were all found to oxidize xylitol to D-xylulose. These three enzymes had KmS for xylitol of 7.1 to 16.4 mM and molecul...

  9. 泡菜中乳酸菌的分离及其发酵液抑菌活性研究%Study on the Isolation of the Lactic Acid Bacteria from Pickled Vegetable and Its Antibiotic Activity

    Institute of Scientific and Technical Information of China (English)

    陈静; 朱强; 朱明

    2011-01-01

    [ Objective ] The reference for the production of the ferment of pure lactic acid bacteria and the improvement of traditional lactic acid fermentation was provided through the research on the isolation of the lactic acid bacteria from pickled vegetable and the formation of its antibiotic material. [ Method] The bacterium for acid formation was isolated from the pickled vegetable by means of the medium of lactic acid isolation and the product was identified based on the experiment in acid formation and morphologic/biochemical character. The antibiotic activity of the supernatant was tested. [ Result] 11 bacterium strains were isolated from pickled vegetable and the experiment in the acid-producing of the strain indicated that the strain: J-4, J-5, J-9 and J-11, was better strain. The preliminary identification of morphologic/biochemical character indicated that 4 bacterium strains belonged to lactic acid bacteria spp. The experiment in antibiotic activity of the supernatant indicated that the four bacterium strains was with stronger antibiotic activity, among which, the strain: J-4, had broad-spectrum antibiotic activity.[ Conclusion] The research could provide the inspiration and reference value of development and application of the fermentation and antibacterial factor of lactic acid bacteria.%[目的]从泡菜中分离筛选优势乳酸菌并时其产抑菌物质进行研究,为生产纯菌乳酸茵发酵剂、改进传统乳酸发酵食品生产提供参考.[方法]利用乳酸菌分离培养基从泡菜中分离产酸菌,并通过产酸试验、形态学及生化特性判断是否为乳酸菌属;取发酵上清液进行抑菌活性研究.[结果]从泡菜中分离获得11株产酸菌,产酸试验表明J-4、J-5、J-9、J-11为优势产酸菌;通过形态学及生化特性,初步鉴定4株产酸菌均为乳酸杆菌属;发酵上清液抑菌试验表明,4株菌均具有较强的抑菌活性,其中,J-4还具有广谱抑菌活性.[结论]研究对于纯种发

  10. Using an Adenosine Triphosphate Bioluminescent Assay to Determine Effective Antibiotic Combinations against Carbapenem-Resistant Gram Negative Bacteria within 24 Hours.

    Directory of Open Access Journals (Sweden)

    Yiying Cai

    Full Text Available Current in vitro combination testing methods involve enumeration by bacterial plating, which is labor-intensive and time-consuming. Measurement of bioluminescence, released when bacterial adenosine triphosphate binds to firefly luciferin-luciferase, has been proposed as a surrogate for bacterial counts. We developed an ATP bioluminescent combination testing assay with a rapid turnaround time of 24h to determine effective antibiotic combinations.100 strains of carbapenem-resistant (CR GNB [30 Acinetobacter baumannii (AB, 30 Pseudomonas aeruginosa (PA and 40 Klebsiella pneumoniae (KP] were used. Bacterial suspensions (105 CFU/ml were added to 96-well plates containing clinically achievable concentrations of multiple single and two-antibiotic combinations. At 24h, the luminescence intensity of each well was measured. Receiver operator characteristic curves were plotted to determine optimal luminescence threshold (TRLU to discriminate between inhibitory/non-inhibitory combinations when compared to viable plating. The unweighted accuracy (UA [(sensitivity + specificity/2] of TRLU values was determined. External validation was further done using 50 additional CR-GNB.Predictive accuracies of TRLU were high for when all antibiotic combinations and species were collectively analyzed (TRLU = 0.81, UA = 89%. When individual thresholds for each species were determined, UA remained high. Predictive accuracy was highest for KP (TRLU = 0.81, UA = 91%, and lowest for AB (TRLU = 0.83, UA = 87%. Upon external validation, high overall accuracy (91% was observed. The assay distinguished inhibitory/non-inhibitory combinations with UA of 80%, 94% and 93% for AB, PA and KP respectively.We developed an assay that is robust at identifying useful combinations with a rapid turn-around time of 24h, and may be employed to guide the timely selection of effective antibiotic combinations.

  11. Distribution and drug resistance of enteric pathogenic bacteria in Fengtai, Beijing,2010-2012%2010-2012年北京市丰台区感染性腹泻病原菌分布及耐药性分析

    Institute of Scientific and Technical Information of China (English)

    封会茹; 曲梅; 耿荣; 秦萌; 余红; 尉秀霞; 赵伟; 邢洪光; 杨军勇

    2013-01-01

    coli. The time, population and serotype distributions of the pathogens were analyzed by statistical methods. The susceptibility of 140 strains of pathogens to antibiotics was tested by Kirby-Bauer method recommended by US Clinical and Laboratory Standards Institute. Results Totally 357 strains of pathogens were isolated from 1108 specimens (32. 22%). V. parahaemolyticus was predominant, accounting for 50. 98% , followed by Salmonella (18.49% ). The seasonality of the positive detection of pathogens was obvious, the detection rate was high during July-September. The differences in detection rate in different age groups were statistical significant ( P < 0. 05 ). The difference in positive rate of V. parahaemolyticus between males and females was statistical significant (P < 0. 01). The major serotype of V. parahaemolyticus was O3K6, the major serotype of Shigella was Shigella Sonnei and the major serotype of Salmonella were Salmonella Enteritidis and Salmonella senftenberg. The sensitivity of different pathogens to antibiotics varied. Most isolated strains were highly sensitive to cefoxitin, amoxicillin-clavulanic acid and aztreonam. Conclusion V. parahaemolyticus and Salmonella were the main pathogenic bacteria causing infectious diarrhea in Fengtai. The pathogen spectrum had changed. Different pathogenic bacterium had different resistance to antibiotics. The active surveillance of these pathogenic bacteria should be strengthened.

  12. Antibiotics in agroecosystems: Introduction to the special section

    Science.gov (United States)

    The presence of antibiotic drug residues, antibiotic resistant bacteria, and antibiotic resistance genes in agroecosystems has become a significant area of research in recent years, and is a growing public health concern. While antibiotics are utilized for human medicine and agricultural practices, ...

  13. Reducing Parental Demand for Antibiotics by Promoting Communication Skills

    Science.gov (United States)

    Alder, Stephen C.; Trunnell, Eric P.; White, George L., Jr.; Lyon, Joseph L.; Reading, James P.; Samore, Matthew H.; Magill, Michael K.

    2005-01-01

    Antibiotic-resistant strains of bacteria are continuing to emerge as high rates of antibiotic use persist. Children are among the highest users of antibiotics, with parents influencing physician decision-making regarding antibiotic prescription. An intervention based on Social Cognitive Theory (SCT) to reduce parents' expectations for antibiotics…

  14. Survival of Bactericidal Antibiotic Treatment by a Persister Subpopulation of Listeria monocytogenes

    DEFF Research Database (Denmark)

    Knudsen, Gitte Maegaard; Ng, Yin; Gram, Lone

    2013-01-01

    Listeria monocytogenes can cause the serious infection listeriosis, which despite antibiotic treatment has a high mortality. Understanding the response of L. monocytogenes to antibiotic exposure is therefore important to ensure treatment success. Some bacteria survive antibiotic treatment...

  15. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria Atividade de extratos vegetais e fitofármacos sobre bactérias resistentes a antibióticos

    Directory of Open Access Journals (Sweden)

    Gislene G. F. Nascimento

    2000-10-01

    Full Text Available The antimicrobial activity of plant extracts and phytochemicals was evaluated with antibiotic susceptible and resistant microorganisms. In addition, the possible synergistic effects when associated with antibiotics were studied. Extracts from the following plants were utilized: Achillea millifolium (yarrow, Caryophyllus aromaticus (clove, Melissa offficinalis (lemon-balm, Ocimun basilucum (basil, Psidium guajava (guava, Punica granatum (pomegranate, Rosmarinus officinalis (rosemary, Salvia officinalis (sage, Syzygyum joabolanum (jambolan and Thymus vulgaris (thyme. The phytochemicals benzoic acid, cinnamic acid, eugenol and farnesol were also utilized. The highest antimicrobial potentials were observed for the extracts of Caryophyllus aromaticus and Syzygyum joabolanum, which inhibited 64.2 and 57.1% of the tested microorganisms, respectively, with higher activity against antibiotic-resistant bacteria (83.3%. Sage and yarrow extracts did not present any antimicrobial activity. Association of antibiotics and plant extracts showed synergistic antibacterial activity against antibiotic-resistant bacteria. The results obtained with Pseudomonas aeruginosa was particularly interesting, since it was inhibited by clove, jambolan, pomegranate and thyme extracts. This inhibition was observed with the individual extracts and when they were used in lower concentrations with ineffective antibiotics.Foi avaliada a atividade antimicrobiana de extratos vegetais e fitofármacos frente a microrganismos sensíveis e resistentes a antibióticos, bem como observado o possível efeito sinérgico da associação entre antibióticos e extratos vegetais. Foram utilizados os extratos de plantas cujo nomes populares são: tomilho, alecrim, cravo-da-Índia, jambolão, erva cidreira, romã, goiaba, sálvia, manjericão e mil-folhas, e ainda os fitofármacos, ácido benzóico, ácido cinâmico, eugenol e farnesol. Na avaliação da atividade antimicrobiana através do m

  16. [Action of antibiotics as signalling molecules].

    Science.gov (United States)

    Bulgakova, V G; Vinogradova, K A; Orlova, T I; Kozhevin, P A; Polin, A N

    2014-01-01

    It was thought that antibiotics should be produced by soil microorganisms to inhibit the growth of competitors in natural habitats. Yet it has been shown that antibiotics at subinhibitory concentrations may have a role as signalling molecules providing cell-to-cell communication in bacteria in the environment. Antibiotics modulate gene transcription and regulate gene expression in microbial populations. Subinhibitory concentrations of antibiotics may cause a number of phenotypic and genotypic changes in microorganisms. These transcription changes are dependent on the interaction of antibiotics with macromolecular receptors such as ribosome or RNA-polymerase. Antibiotic signalling and quorum-sensing system are important regulatory mechanisms in bacteria. It was demonstrated that antibiotics interfered with quorum-sensing system.

  17. CURRENT ISSUES REGARDING ENDOCRINE DISRUPTING CHEMICALS AND ANTIBIOTIC RESISTANCE

    Science.gov (United States)

    Recently public concern has increased regarding industrial and environmental substances that may have adverse hormonal effects in human and wildlife populations. This concern has also been expanded to include antibiotic-resistant bacteria and the presence of various antibiotics a...

  18. Stenotrophomonas maltophilia D457R Contains a Cluster of Genes from Gram-Positive Bacteria Involved in Antibiotic and Heavy Metal Resistance

    OpenAIRE

    Alonso, Ana; Sanchez, Patricia; Martínez, José L.

    2000-01-01

    A cluster of genes involved in antibiotic and heavy metal resistance has been characterized from a clinical isolate of the gram-negative bacterium Stenotrophomonas maltophilia. These genes include a macrolide phosphotransferase (mphBM) and a cadmium efflux determinant (cadA), together with the gene cadC coding for its transcriptional regulator. The cadC cadA region is flanked by a truncated IS257 sequence and a region coding for a bin3 invertase. Despite their presence in a gram-negative bact...

  19. Negative Cross-Communication among Wheat Rhizosphere Bacteria: Effect on Antibiotic Production by the Biological Control Bacterium Pseudomonas aureofaciens 30-84

    OpenAIRE

    Morello, J. E.; Pierson, E.A.; Pierson, L S

    2004-01-01

    Phenazine antibiotic production in the biological control bacterium Pseudomonas aureofaciens 30-84 is regulated in part via the PhzR/PhzI N-acyl homoserine lactone (AHL) system. Previous work showed that a subpopulation of the wheat rhizosphere community positively affected phenazine gene expression in strain 30-84 via AHL signals (E. A. Pierson, D. W. Wood, J. A. Cannon, F. M. Blachere, and L. S. Pierson III, Mol. Plant-Microbe Interact. 11:1078-1084, 1998). In the present work, a second sub...

  20. How honey kills bacteria

    NARCIS (Netherlands)

    P.H.S. Kwakman; A.A. te Velde; L. de Boer; D. Speijer; C.M.J.E. Vandenbroucke-Grauls; S.A.J. Zaat

    2010-01-01

    With the rise in prevalence of antibiotic-resistant bacteria, honey is increasingly valued for its antibacterial activity. To characterize all bactericidal factors in a medical-grade honey, we used a novel approach of successive neutralization of individual honey bactericidal factors. All bacteria t

  1. Functional metagenomics for the investigation of antibiotic resistance

    OpenAIRE

    Mullany, Peter

    2014-01-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in thes...

  2. Analysis of Distribution and Antibiotic Resistance of Pathogenic Bacteria of Blood Cultures in Newborns in Nanjing Area%南京地区新生儿血培养病原菌分布及耐药性分析

    Institute of Scientific and Technical Information of China (English)

    张晓洁; 邱胜丰; 葛高霞; 黎青

    2012-01-01

    目的:了解南京地区新生儿败血症病原菌分布及其耐药情况,为临床合理选择抗生素提供参考.方法:收集2009年1月-2011年9月我院住院新生儿血培养标本1546例,分析其病原菌分布及耐药性.结果:1 546例新生儿血培养标本共检出细菌186株,总阳性率为12.03%,因无临床表现支持而被视为假菌血症者7例,污染率为3.76%(7/186).其中革兰阳性茵129株,占总分离菌的72.07%,革兰阳性菌以凝固酶阴性葡萄球菌为主,占革兰阳性茵的76.74%,占总分离菌的55.31%;革兰阴性菌50株,占总分离菌的27.93%,革兰阴性菌以肺炎克雷伯茵居多,占革兰阴性菌的42.00%,占总分离菌的11.73%.革兰阳性菌对抗生素耐药率最高的为青霉素,其次为红霉素,对万古霉素、哌拉西林/他唑巴坦、阿米卡星以及左氧氟沙星表现了较低的耐药率;革兰阴性菌对抗生素耐药率最高的为氨苄西林,其次为哌拉西林、头孢唑林、氨曲南,对亚胺培南、头孢吡肟、阿米卡星、左氧氟沙星以及加酶抑制剂的复合制剂表现了较低的耐药率.结论:凝固酶阴性葡萄球菌是南京地区近2年新生儿败血症最常见的病原菌,其次为肺炎克雷伯菌,对常用抗生素均有不同程度的耐药.%OBJECTIVE: To investigate distribution and antibiotic resistance of pathogens causing neonatal septicemia and to provide evidence for reasonable use of antibiotics in clinic in Nanjing area. METHODS: 1546 neonatal blood samples were collect-ed from our hospital during Jan. 2009 -Sept. 2011. The distribution and antibiotic resistance of pathogens causing neonatal septice-mia were analyzed. RESULTS: 186 pathogenic strains were isolated from 1546 specimens and the positive rate was 12.03%. 7 cas-es were considered as false bacteremia due to non-clinical support, in which contamination rate was 3.76% (7/186). Among them, 129 strains were Gram-positive bacteria (72.07% ) , and the

  3. Elimination of indigenous endophytic bacteria in Eucalyptus urophylla by heat and antibiotics treatment%热处理和抗生素对桉树固有内生细菌去除的研究

    Institute of Scientific and Technical Information of China (English)

    宋艳祥; 王玉凤; 冉隆贤

    2011-01-01

    In order to obtain endophytic bacteria free seedlings of Eucalyptus urophylla , three methods were applied to eliminate or inhibit the indigenous endophytic bacteria in E. Urophylla, I. E. , heat treatment of the seeds of E. Urophylla at stable and variated high temperatures, heat treatment of seedlings from tissue culture of E. Urophylla combined with apical meristem culture, and antibiotics treatment of the seedlings grown in tissue culture. A differential staining procedure was used to detect the existence of endophytic bacteria and hemacytometer counting method was used to study the bacterial population. The results showed that there was no obvious effect in the elimination of endophytic bacteria by heat treatment of the seeds, and the bacteria in root of treated seedlings had a bit more population than that of control. However, the bacteria in stem and leaf of treated seedlings had less population than those of control. After the heat treatment of seedlings combined with shoot-tip culture, the endophytic bacteria can be removed effectively as the temperature increased daily, with less number compared with control. And when it reached 40 ℃ , the bacterial growth was inhibited largely. Heat treatment at 37 ℃ reduced the number of indigenous bacteria at 20th and 21st day, with a population of 5. 33 × 108 CFU/g and 4. 02 × 108 CFU/g, respectively, and only about one seventh of the number of control at 3. 43 × 109 CFU/g. When the temperature for heat treatment reached 40 ℃ , the number of bacteria decreased to 1. 63×108 CFU/g, occupied only one forty-seventh of the bacteria number of control at 7. 70 × 109CFU/g, indicating that treatment with higher temperature at 37 ℃ and 40℃ could significantly reduce the number of bacteria in seedlings grown in vitro culture. The population of the endophytic bacteria of E. Urophylla increased obviously after growing in the MS supplemented with antibiotics, I. E. , oxytetracycline, tetra-cycline and cephamycins

  4. Deliberations on the impact of antibiotic contamination on dissemination of antibiotic resistance genes in aquatic environments

    OpenAIRE

    Berglund, Björn

    2014-01-01

    The great success of antibiotics in treating bacterial infectious diseases has been hampered by the increasing prevalence of antibiotic resistant bacteria. Not only does antibiotic resistance threaten to increase the difficulty in treating bacterial infectious diseases, but it could also make medical procedures such as routine surgery and organ transplantations very dangerous to perform. Traditionally, antibiotic resistance has been regarded as a strictly clinical problem and studies of the p...

  5. Management options for reducing the release of antibiotics and antibiotic resistance genes to the environment

    DEFF Research Database (Denmark)

    Pruden, Amy; Larsson, D.G. Joakim; Amézquita, Alejandro;

    2013-01-01

    Background: There is growing concern worldwide about the role of polluted soil and water environments in the development and dissemination of antibiotic resistance. Objective: Our aim in this study was to identify management options for reducing the spread of antibiotics and antibiotic resistance...... of management strategies is also highlighted. Finally, we describe a case study in Sweden that illustrates the critical role of communication to engage stakeholders and promote action. Conclusions: Environmental releases of antibiotics and antibiotic-resistant bacteria can in many cases be reduced at little...... associated with antibiotic resistance strongly indicate the need for action....

  6. Antibiotic-resistant bacteria inhibited by extracts and fractions from Brazilian marine sponges Bactérias resistentes a antibióticos inibidas por extratos e frações de esponjas marinhas do Brasil

    Directory of Open Access Journals (Sweden)

    Palloma R. Marinho

    2010-05-01

    Full Text Available The growing number of bacterial strains resistant to conventional antibiotics has become a serious medical problem in recent years. Marine sponges are a rich source of bioactive compounds, and many species can be useful for the development of new antimicrobial drugs. This study reports the in vitro screening of marine sponges in the search for novel substances against antibiotic-resistant bacteria. Sponge extracts were tested against 44 bacterial strains, including fourteen antibiotic-resistant strains. Ten out of the twelve sponge species studied showed activity in one or more of the bioassays. Aqueous extracts of Cinachyrella sp. and Petromica citrina showed a large action spectrum over resistant-bacteria such as Staphylococcus aureus, coagulase-negative staphylococci and Enterococcus faecalis. Aqueous extract of P. citrina was fractioned and aqueous fraction showed a greatest inhibitory activity on Staphylococcus strains. In addition, this fraction demonstrated a bactericidal effect on exponentially growing S. aureus cells at the MIC (16 µg/mL. The mechanism of action of bioactive fraction is still unclear, but we showed that it affect protein biosynthesis of Staphylococcus. Our results demonstrated for the first time that P. citrina is a potential source of new drugs for the treatment of infections by antibiotic-resistant bacteria.O número crescente de bactérias resistentes aos antibióticos tem se tornado um sério problema médico nos últimos anos. As esponjas marinhas são uma fonte rica em compostos bioativos e muitas espécies podem ser úteis para o desenvolvimento de novos antimicrobianos. Esse estudo descreve uma triagem in vitro de esponjas para a pesquisa de novas substâncias contra bactérias resistentes. Os extratos de esponjas foram testados sobre 44 estirpes bacterianas, incluindo quatorze resistentes a antibióticos. Dez entre doze espécies de esponjas apresentaram atividade em um ou mais bioensaios. Os extratos aquosos

  7. [THE ROLE OF (p)ppGpp MOLECULES IN FORMATION OF "STRICT RESPONSE" IN BACTERIA AND BIOSYNTHESIS OF ANTIBIOTICS AND MORPHOLOGICAL DIFFERENTIATION IN ACTINOMYCETES].

    Science.gov (United States)

    Klymyshin, D; Stephanyshyn, O; Fedorenko, V

    2016-01-01

    Strict response is a pleiotropic physiological response of cells caused by lack of aminoacetylated tRNAs. Experimentally, this response occurs due to the lack of amino acids in the environment and the limitation of tRNA aminoacylation even in the presence of the corresponding amino acids in the cell. Many features of this response indicate its dependence on the accumulation of ppGpp molecules. There is a correlation between the growth rate of actinomycetes and biosynthesis of their secondary metabolites. Introduction of additional relA gene copies of ppGpp synthetase can affect the production of antibiotics in streptomycetes. The article presents the authors' own experimental data, dedicated to the influence of heterologous relA gene expression in Streptomyces nogalater cells.

  8. Distribution and antibiotic resistance analysis of fermentable sugars bacteria strains isolated from inpatients from 2008 to 2010%2008-2010年住院患者不发酵糖菌分布及耐药性分析

    Institute of Scientific and Technical Information of China (English)

    林晓; 黄东煜; 张昕; 赵建铭; 林宇岚; 林其昌

    2013-01-01

    目的 了解福建医科大学附属第一医院2008年1月1日至2010年12月31日临床分离不发酵糖菌分布及其对所测抗菌药物的耐药性,以引起临床医师和医院感染管理部门的关注,指导临床合理用药.方法 收集2008年1月1日至2010年12月31日我院住院患者临床分离的不发酵糖菌,采用法国生物梅里埃公司VITEK 2全自动细菌鉴定仪器检测,采用纸片扩散法(Kirby-Bauer法)进行抗菌药物的药敏试验,并对数据进行统计分析.结果 3年临床分离的不发酵糖菌共2 651株,其中铜绿假单胞菌1 268株,不动杆菌属1119株,嗜麦芽窄食单胞菌264株.铜绿假单胞菌对碳青霉烯类抗生素的耐药率在上升,达到19.5%~28.8%.不动杆菌耐药性更强,目前仅有米诺环素、头孢哌酮/舒巴坦、阿米卡星的耐药率<30%,碳青霉烯类、喹诺酮类及氨苄西林/舒巴坦等抗菌药物的耐药率已经超过50%.嗜麦芽窄食单胞菌耐药率变化不大,对哌拉西林/他唑巴坦、复方新诺明、米诺环素等敏感率超过90%.结论 3年来我院住院患者临床分离不发酵糖菌占总的临床分离菌的比例波动于36.9%~40.6%,铜绿假单胞菌、不动杆菌属始终占据临床分离菌的前两位,不动杆菌耐药性逐年上升,铜绿假单胞菌对碳青霉烯类抗生素敏感性在下降,值得临床医师高度重视,定期开展细菌分布及耐药性监测,了解其动态变化,对合理应用抗菌药物有重要指导意义,同时院感部门应加强消毒隔离工作,防止耐药菌医院内传播.%Objective To investigate the distribution and antibiotic resistance of fermentable sugars bacteria strains collected in the First Hospital affiliated to Fujian Medical University from January 1,2008 to December 31,2010,attract the attention of clinicians and hospital infection control department,and guide the rational antimicrobial therapy.Methods All the fermentable sugars bacteria strains

  9. Comparison of multiplex real-time PCR and PCR-reverse blot hybridization assay for the direct and rapid detection of bacteria and antibiotic resistance determinants in positive culture bottles.

    Science.gov (United States)

    Wang, Hye-Young; Kim, Seoyong; Kim, Jungho; Park, Soon Deok; Kim, Hyo Youl; Uh, Young; Lee, Hyeyoung

    2016-09-01

    The aim of this study was to evaluate the performance of a commercially available multiplex real-time PCR assay and a PCR-reverse blot hybridization assay (PCR-REBA) for the rapid detection of bacteria and identification of antibiotic resistance genes directly from blood culture bottles and to compare the results of these molecular assays with conventional culture methods. The molecular diagnostic methods were used to evaluate 593 blood culture bottles from patients with bloodstream infections. The detection positivity of multiplex real-time PCR assay for Gram-positive bacteria, Gram-negative bacteria and Candida spp. was equivalent to PCR-REBA as 99.6 %, 99.1 % and 100 %, respectively. Using conventional bacterial cultures as the gold standard, the sensitivity, specificity, positive predictive value and negative predictive value of these two molecular methods were 99.5 % [95 % confidence interval (CI), 0.980-1.000; PPCR assay targeting the mecA gene to detect methicillin resistance was lower than that of the PCR-REBA method, detecting an overall positivity of 98.4 % (n=182; 95 % CI, 0.964-1.000; P<0.009) and 99.5 % (n=184; 95 % CI, 0.985-1.000; P<0.0001), respectively. The entire two methods take about 3 h, while results from culture can take up to 48-72 h. Therefore, the use of these two molecular methods was rapid and reliable for the characterization of causative pathogens in bloodstream infections.

  10. Coping with antibiotic resistance: combining nanoparticles with antibiotics and other antimicrobial agents.

    Science.gov (United States)

    Allahverdiyev, Adil M; Kon, Kateryna Volodymyrivna; Abamor, Emrah Sefik; Bagirova, Malahat; Rafailovich, Miriam

    2011-11-01

    The worldwide escalation of bacterial resistance to conventional medical antibiotics is a serious concern for modern medicine. High prevalence of multidrug-resistant bacteria among bacteria-based infections decreases effectiveness of current treatments and causes thousands of deaths. New improvements in present methods and novel strategies are urgently needed to cope with this problem. Owing to their antibacterial activities, metallic nanoparticles represent an effective solution for overcoming bacterial resistance. However, metallic nanoparticles are toxic, which causes restrictions in their use. Recent studies have shown that combining nanoparticles with antibiotics not only reduces the toxicity of both agents towards human cells by decreasing the requirement for high dosages but also enhances their bactericidal properties. Combining antibiotics with nanoparticles also restores their ability to destroy bacteria that have acquired resistance to them. Furthermore, nanoparticles tagged with antibiotics have been shown to increase the concentration of antibiotics at the site of bacterium-antibiotic interaction, and to facilitate binding of antibiotics to bacteria. Likewise, combining nanoparticles with antimicrobial peptides and essential oils generates genuine synergy against bacterial resistance. In this article, we aim to summarize recent studies on interactions between nanoparticles and antibiotics, as well as other antibacterial agents to formulate new prospects for future studies. Based on the promising data that demonstrated the synergistic effects of antimicrobial agents with nanoparticles, we believe that this combination is a potential candidate for more research into treatments for antibiotic-resistant bacteria. PMID:22029522

  11. Swollen hindgut syndrome (SHG of tiger shrimp Penaeus monodon (Crustacea, Malacostraca, Penaeidae post larvae: Identification of causing pathogenic bacteria and their sensitivity to some antibiotics

    Directory of Open Access Journals (Sweden)

    Sheikh Aftabuddin

    2011-01-01

    Full Text Available Swollen Hindgut syndrome (SHG of black tiger shrimp Penaeus monodon Fabricius, 1798post larvae has been reported from Bangladesh shrimp hatcheries in recent years. At present SHG is abudding problem causing significant economic loss to the shrimp hatcheries in Bangladesh. Unlike therapid mortalities associated with viral disease such as white spot syndrome and yellow head virus,progression of SHG is gradual leading to low level mortalities without affecting swimming activity. Thesign of SHG are a bloated or swollen in hind gut area, with the posterior digestive tract convolutingthrough the last abdominal segment. This syndrome tends to occur at later PL stages, typically afterPL10. Two types of Vibrio spp. were isolated from the swollen hindgut syndrome post larvae, identified asVibrio harveyi (Johnson and Shunk 1936and Vibrio alginolyticus (Miyamoto, Nakamura & Takizawa1961. Among these V. alginolyticus was dominant to V. harveyi. The bacterial isolates showed sensitiveto oxytetracycline (OTC, norfloxacin and ciprofloxacin and resistant to penicillin, ampicillin andamoxycillin. The luminous V. harveyi showed resistant to many antibiotics and susceptibility to only twodrugs. The cause of swollen hindgut syndrome (SHG was probably bacterial infections and poor waterquality, possibly heavy metal i.e. iron, the presence of toxic substances from chemical prophylactics andlow quality or diseased nauplii.

  12. Antibiotics May Blunt Breast-Feeding's Benefits

    Science.gov (United States)

    ... fighting infection because of the immunity offered in mother's milk," said Dr. William Muinos, a pediatric gastroenterologist at Nicklaus Children's Hospital in Miami. Antibiotics kill the bacteria in the gut, he said. "If ...

  13. 护理人员多药耐药菌知识掌握的调查%Investigation on knowledge level of multiple antibiotic resistant bacteria in 240 nurses

    Institute of Scientific and Technical Information of China (English)

    高岸英; 王子珍; 李燕; 韩贞; 王秀梅; 赵新惠

    2015-01-01

    OBJECTIVE To understand the knowledge level of staff in hospital clinical departments about the pre‐vention and control of multi‐resistant bacteria so as to promote the prevention and control of multi‐drug resistant bacteria and decrease nosocomial infections .METHODS The 240 clinical nursing staff had taken the closed‐book ex‐am to know their knowledge level about multi‐drug resistant bacteria .The result was statistically analyzed by SPSS 17 .0 software .RESULTS Of the 240 clinical nursing staff ,those with or under junior college degree got the excellent rate in examination of 32 .25% ,and those with bachelor′s degree got 58 .12% (P0 .05) .Staff with middle intermediate title or below had the excellent rate of 46 .07% , while those with senior vice title or above had 40 .81% (P>0 .05) .CONCLUSION Recruitment selection of nursing staff should pay attention to school education ,and the selected nurses need to pass the exams ,at the same time knowledge about multi‐drug resistant bacteria should be strengthened in clinical nursing staff and regular assess‐ment should be perfumed to improve their prevention ability of nosocomial infections .%目的:了解医院临床科室护理人员对多药耐药菌预防控制知识的掌握情况,以提高护理人员多药耐药菌预防控制水平,有效降低医院感染。方法以闭卷考试的方式对240名临床护理人员进行多药耐药菌知识掌握情况的调查,对考试成绩采用SPSS17.0软件进行统计分析。结果240名临床护理人员学历大专及其以下考试成绩优秀率32.52%,本科及其以上学历成绩优秀率58.12%( P<0.01);考试成绩优秀率非重点科室40.00%、重点科室88.00%( P<0.01);性别及职称不同,考试成绩优秀率无明显差异,考试成绩优秀率男性护理人员51.22%、女性护理人员43.72%( P>0.05);考试成绩优秀率中级及中级以下46.07

  14. Detection of residues antibiotics in food using a microbiological method

    International Nuclear Information System (INIS)

    Antibiotics are effective therapeutic agents because of their property of selective bacterial toxicity which helps controlling infections. Animals, just like humans, can be treated with antibiotics. This use of antibiotics can lead to the development of resistance. Resistant strains may cause severe infections in humans and animals. In addition, antibiotic residues might represent a problem for human health. Our objective is to develop a microbiological method for the detection of antibiotic residues in poultry(muscle, liver,...). For this purpose, antibiotic sensitive bacteria and selective agar media were used. An inhibition growth zone surrounds each of the food samples containing antibiotic residues after a prescribed incubation time. (Author). 23 refs

  15. Emergence and dissemination of antibiotic resistance: a global problem.

    Science.gov (United States)

    Choudhury, R; Panda, S; Singh, D V

    2012-01-01

    Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure. PMID:23183460

  16. Antibiotic tolerance and resistance in biofilms

    DEFF Research Database (Denmark)

    Ciofu, Oana; Tolker-Nielsen, Tim

    2010-01-01

    One of the most important features of microbial biofilms is their tolerance to antimicrobial agents and components of the host immune system. The difficulty of treating biofilm infections with antibiotics is a major clinical problem. Although antibiotics may decrease the number of bacteria...... in biofilms, they will not completely eradicate the bacteria in vivo which may have important clinical consequences in form of relapses of the infection....

  17. Contributions of gut bacteria to Bacillus thuringiensis-induced mortality vary across a range of Lepidoptera

    Directory of Open Access Journals (Sweden)

    Holt Jonathan

    2009-03-01

    Full Text Available Abstract Background Gut microbiota contribute to the health of their hosts, and alterations in the composition of this microbiota can lead to disease. Previously, we demonstrated that indigenous gut bacteria were required for the insecticidal toxin of Bacillus thuringiensis to kill the gypsy moth, Lymantria dispar. B. thuringiensis and its associated insecticidal toxins are commonly used for the control of lepidopteran pests. A variety of factors associated with the insect host, B. thuringiensis strain, and environment affect the wide range of susceptibilities among Lepidoptera, but the interaction of gut bacteria with these factors is not understood. To assess the contribution of gut bacteria to B. thuringiensis susceptibility across a range of Lepidoptera we examined larval mortality of six species in the presence and absence of their indigenous gut bacteria. We then assessed the effect of feeding an enteric bacterium isolated from L. dispar on larval mortality following ingestion of B. thuringiensis toxin. Results Oral administration of antibiotics reduced larval mortality due to B. thuringiensis in five of six species tested. These included Vanessa cardui (L., Manduca sexta (L., Pieris rapae (L. and Heliothis virescens (F. treated with a formulation composed of B. thuringiensis cells and toxins (DiPel, and Lymantria dispar (L. treated with a cell-free formulation of B. thuringiensis toxin (MVPII. Antibiotics eliminated populations of gut bacteria below detectable levels in each of the insects, with the exception of H. virescens, which did not have detectable gut bacteria prior to treatment. Oral administration of the Gram-negative Enterobacter sp. NAB3, an indigenous gut resident of L. dispar, restored larval mortality in all four of the species in which antibiotics both reduced susceptibility to B. thuringiensis and eliminated gut bacteria, but not in H. virescens. In contrast, ingestion of B. thuringiensis toxin (MVPII following antibiotic

  18. ANTIMICROBIAL PEPTIDES: AN EFFECTIVE ALTERNATIVE FOR ANTIBIOTIC THERAPY

    Directory of Open Access Journals (Sweden)

    KK PULICHERLA

    2013-01-01

    Full Text Available Extensive use of classical antibiotics has led to the growing emergence of many resistant strains of pathogenic bacteria. Evidence has suggested that cationic antimicrobial peptides (AMP’s are of greatest potential to represent a new class of antibiotics. These peptides have a good scope in current antibiotic research. During the past two decades several AMPs have been isolated from a wide variety of animals (both vertebrates and invertebrates, and plants as well as from bacteria and fungi. These are relatively small (<10kDa, cationic and amphipathic peptides of variable length, sequence and structure. These peptides exhibit broad-spectrum activity against a wide range of microorganisms including gram-positive and gram-negative bacteria, protozoa, yeast, fungi and viruses. Most of these peptides are believed to act by disrupting the plasma membrane leading to the lysis of the cell. Antimicrobial peptides encompass a wide variety of structural motifs such as α -helical peptides, β -sheet peptides, looped peptides and extended peptides. Preparations enriched by a specific protein are rarely easily obtained from natural host cells. Hence, recombinant protein production is frequently the sole applicable procedure. Several fusion strategies have been developed for the expression and purification of small antimicrobial peptides (AMPs in recombinant bacterial expression systems which were produced by cloning. This article aims to review in brief the sources of antimicrobial peptides, diversity in structural features, mode of action, production strategies and insight into the current data on their antimicrobial activity followed by a brief comment on the peptides that have entered clinical trials.

  19. Synthesis and mode of action of hydrophobic derivatives of the glycopeptide antibiotic eremomycin and des-(N-methyl-D-leucyl)eremomycin against glycopeptide-sensitive and -resistant bacteria.

    Science.gov (United States)

    Printsevskaya, Svetlana S; Pavlov, Andrey Y; Olsufyeva, Evgenia N; Mirchink, Elena P; Isakova, Elena B; Reznikova, Marina I; Goldman, Robert C; Branstrom, Arthur A; Baizman, Eugene R; Longley, Clifford B; Sztaricskai, Ferenc; Batta, Gyula; Preobrazhenskaya, Maria N

    2002-03-14

    Des-(N-methyl-D-leucyl)eremomycin was obtained by Edman degradation of eremomycin. Derivatives with a hydrophobic substituent at the exterior of the molecule were then synthesized, and their antibacterial activities were compared with similar derivatives of eremomycin. Comparison of derivatives of eremomycin containing the n-decyl or p-(p-chlorophenyl)benzyl substituent in the eremosamine moiety (N') and n-decyl or p-(p-chlorophenyl)benzylamides with similar derivatives of eremomycin possessing the damaged peptide core (a defective binding pocket) showed that compounds of both types are almost equally active against glycopeptide-resistant strains of enterococci (GRE), whereas eremomycin derivatives are more active against staphylococci. Hydrophobic 7d-alkylaminomethylated derivatives of eremomycin (9, 10) demonstrated similar antibacterial properties. Since the basic mode of action of glycopeptide antibiotics involves binding to cell wall intermediates terminating in -D-Ala-D-Ala and this interaction is seriously decreased in the hexapeptide derivatives (lacking the critical N-methyl-D-leucine), we suggest that these hydrophobic derivatives may inhibit peptidoglycan synthesis in the absence of dipeptide binding. NMR binding experiments using Ac-D-Ala-D-Ala show that binding constants of these hexapeptide derivativies are decreased in comparison with the corresponding heptapeptides with intact binding pocket. This is in agreement with the decreased biological activity of the hexapeptide derivatives against vancomycin-sensitive strains in comparison with the activity of parent compounds. Binding to the lactate cell wall analogue Ac-D-Ala-D-Lac with decylamide of eremomycin 8 was not observed, demonstrating that the interaction with this target in GRE does not occur. While hydrophobic glycopeptide derivatives retain the ability to inhibit the synthesis of peptidoglycan in manner of natural glycopeptides, biochemical investigation supports the hypothesis that they

  20. Pathogenic species and antibiotic sensitivity in 344 children with Salmonella enteritis%小儿沙门菌肠炎344例病原菌分布及药敏试验结果

    Institute of Scientific and Technical Information of China (English)

    杨晓华; 谭南; 林爱心

    2014-01-01

    Objective To investigate the epidemiological characteristics and antibiotic sensitivity of Salmonella infection in children with diarrhea in Zhongshan City for rational use of antibiotics.Methods A total of 6 920 stool specimens were collected from children with diarrhea including outpatients and inpatients in Zhongshan Boai Hospital from September 2009 to April 2013.Salmonella strains (n = 344)were isolated and identified by enrichment culture.The overall infection rate was 5.0%(344/6 920).Antimicrobial susceptibility was tested by VITEK-2 Compact automicroscan.Results Of the 344 strains of Sal-monella,185 (53.8%)strains were Salmonella typhimurium ,43 (12.5%)were Salmonella stanley ,29 (8.4%)were Sal-monella enteritidis .The male-to-female ratio was 1.8∶1 for the children with diarrhea.The infection rate was 68.9% (237/344)in children under 1-year old.Susceptibility testing results indicated that majority (88.9%-98.0%)of these Salmonella strains were susceptible to levofloxacin,piperacillin-tazobactam,cefepime,ceftazidime,and ceftriaxone,but to ampicillin, 39.2% of the strains were susceptible.Conclusions Most Salmonella infections in Zhongshan City were caused by Salmonella typhimurium,followed by Salmonella stanley and Salmonella enteritidis .Such infections usually peak in summer and autumn seasons.The chidren under 1-year old were more susceptible to Salmonella infections.Higher incidence of infection is associat-ed with boys.Antibiotics should be chosen reasonably and prudently based on antimicrobial sensitivity testing.%目的:了解中山市区腹泻儿童中沙门菌感染的流行病学特征及其对抗菌药物敏感性,为临床选用抗菌药物提供依据。方法中山市博爱医院2009年9月至2013年4月儿科门诊及住院腹泻患儿的粪便标本中,共检出沙门菌属344株,检出率为5.0%,采用 VITEK-2 Compact 进行药敏试验。结果344株沙门菌属经血清学鉴定,鼠伤寒沙门菌185株(53.8

  1. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    Science.gov (United States)

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  2. Role of tetracycline speciation in the bioavailability to Escherichia coli for uptake and expression of antibiotic resistance.

    Science.gov (United States)

    Zhang, Yingjie; Boyd, Stephen A; Teppen, Brian J; Tiedje, James M; Li, Hui

    2014-05-01

    Tetracycline contains ionizable functional groups that manifest several species with charges at different locales and differing net charge; the fractional distribution of each species depends on pH-pKa relationship in the aqueous phase. In nature, these species interact with naturally abundant cations (e.g., Ca(2+) and Mg(2+)) to form metal-tetracycline complexes in water. In this study, we used Escherichia coli MC4100/pTGM whole-cell bioreporter to investigate tetracycline uptake from solution under varying conditions of pH, salt composition and concentration by quantifying the corresponding expression of antibiotic resistance gene. The expression of antibiotic resistance gene in the E. coli bioreporter responded linearly to intracellular tetracycline concentration. Less tetracycline entered E. coli cells at solution pH of 8.0 than at pH 6.0 or 7.0 indicating reduced bioavailability of the antibiotic at higher pH. Both Mg(2+) and Ca(2+) in solution formed metal-tetracycline complexes which reduced uptake of tetracycline by E. coli hence diminishing the bioresponse. Among the various tetracycline species present in solution, including both metal-complexed and free (noncomplexed) species, zwitterionic tetracycline was identified as the predominant species that most readily passed through the cell membrane eliciting activation of the antibiotic resistance gene in E. coli. The results indicate that the same total concentration of tetracycline in ambient solution can evoke very different expression of antibiotic resistance gene in the exposed bacteria due to differential antibiotic uptake. Accordingly, geochemical factors such as pH and metal cations can modulate the selective pressure exerted by tetracycline for development and enrichment of antibiotic resistant bacteria. We suggest that tetracycline speciation analysis should be incorporated into the risk assessment framework for evaluating environmental exposure and the corresponding development of antibiotic

  3. Pollution Characteristics of Antibiotics and Antibiotic-Resistant Bacteria and Genes in Wangyanggou River, Shijiazhuang, China%石家庄汪洋沟地区抗生素、抗性细菌和抗性基因污染特征

    Institute of Scientific and Technical Information of China (English)

    徐艳; 张远; 郭昌胜; 王红梅; 王丁明; 王凯; 李晓晨; 徐建

    2014-01-01

    以石家庄汪洋沟地区为研究对象,采用高效液相色谱-质谱法(HPLC-MS)、平板计数、实时荧光定量(qPCR)法分别对地表水、地下水及沉积物样品中的抗生素、抗性细菌和抗性基因进行定量分析。结果表明,汪洋沟地区四环素类抗生素总体含量高于磺胺类抗生素,水体中ρ(Σ四环素)为5.81×101~3.87×105 ng·L-1,ρ(Σ磺胺)为1.02×101~5.37×103 ng·L-1;沉积物中w(Σ四环素)为4.28×101~1.63×105 ng·g-1,w(Σ磺胺)为1.18×101~1.68×104 ng·g-1;水体中四环素的抗性细菌数量为4.00×101~2.13×104 CFU·mL-1,磺胺抗性细菌数量为6.67×101~7.34×105 CFU·mL-1;水体中抗性细菌含量比沉积物中低3~4个数量级。样品中检出的5种四环素类抗性基因(tetA、tetB、tetE、tetW和tetZ)、2种磺胺类抗性基因(sul1,sul2)及2种整合子基因(int1,int2)的相对表达量较高,其中tetA及sul1为汪洋沟地区的优势抗性基因,相对表达量均高于1.58×10-2。主成分分析结果表明ARGs的含量分布受不同污染源和复杂的水质特征的影响。从te t(B)基因的系统发育分析结果可以看出,水质的变化会导致抗性菌种存在差异。与国内外河流相比,汪洋沟抗生素含量处于较高污染水平,抗性基因污染也较为严重。%Extensive uses of antibiotics have promoted development of antibiotic-resistant bacteria and genes in the environment. In this study, high performance liquid chromatography- mass spectrometry(HPLC- MS), plate counting, and real- time quantitative polymerase chain reaction(qPCR)were respectively applied to analyze the level of antibiotics, antibiotic-resistant bacteria and genes in surface water, groundwater and sediment samples from Wangyanggou River. The total concentration of tetracyclines was higher than that of sulfonamides. The concentrations of three tetracyclines(tetracycline, oxytetracycline and

  4. Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication.

    Science.gov (United States)

    Fröhlich, Esther E; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-08-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-d-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  5. Cognitive Impairment by Antibiotic-Induced Gut Dysbiosis: Analysis of Gut Microbiota-Brain Communication

    Science.gov (United States)

    Fröhlich, Esther E.; Farzi, Aitak; Mayerhofer, Raphaela; Reichmann, Florian; Jačan, Angela; Wagner, Bernhard; Zinser, Erwin; Bordag, Natalie; Magnes, Christoph; Fröhlich, Eleonore; Kashofer, Karl; Gorkiewicz, Gregor; Holzer, Peter

    2016-01-01

    Emerging evidence indicates that disruption of the gut microbial community (dysbiosis) impairs mental health. Germ-free mice and antibiotic-induced gut dysbiosis are two approaches to establish causality in gut microbiota-brain relationships. However, both models have limitations, as germ-free mice display alterations in blood-brain barrier and brain ultrastructure and antibiotics may act directly on the brain. We hypothesized that the concerns related to antibiotic-induced gut dysbiosis can only adequately be addressed if the effect of intragastric treatment of adult mice with multiple antibiotics on (i) gut microbial community, (ii) metabolite profile in the colon, (iii) circulating metabolites, (iv) expression of neuronal signaling molecules in distinct brain areas and (v) cognitive behavior is systematically investigated. Of the antibiotics used (ampicillin, bacitracin, meropenem, neomycin, vancomycin), ampicillin had some oral bioavailability but did not enter the brain. 16S rDNA sequencing confirmed antibiotic-induced microbial community disruption, and metabolomics revealed that gut dysbiosis was associated with depletion of bacteria-derived metabolites in the colon and alterations of lipid species and converted microbe-derived molecules in the plasma. Importantly, novel object recognition, but not spatial, memory was impaired in antibiotic-treated mice. This cognitive deficit was associated with brain region-specific changes in the expression of cognition-relevant signaling molecules, notably brain-derived neurotrophic factor, N-methyl-D-aspartate receptor subunit 2B, serotonin transporter and neuropeptide Y system. We conclude that circulating metabolites and the cerebral neuropeptide Y system play an important role in the cognitive impairment and dysregulation of cerebral signaling molecules due to antibiotic-induced gut dysbiosis. PMID:26923630

  6. 2011年汉中市中心医院细菌耐药性监测分析%Analysis of Bacteria Antibiotic Resistance in Hanzhong Centre Hospital in 2011

    Institute of Scientific and Technical Information of China (English)

    何宝明; 柏莹; 汤进; 黄晓霞

    2012-01-01

    目的 了解2011年临床分离菌株对常用抗生素的耐药情况.方法 细菌鉴定与药敏实验采用全自动细菌鉴定仪,手工鉴定系统以及纸片扩散法.实验及判读标准均按美国临床实验室标准化协会推荐的进行.结果 2011年细菌培养标本14 701例,分离菌株3643株,革兰阴性菌占71%,革兰阳性菌占29%.前5位的细菌为:大肠埃希菌、肺炎克雷伯菌、鲍曼不动杆菌、金黄色葡萄球菌、铜绿假单胞菌.其中耐药菌种大肠埃希菌产超广谱β内酰胺酶占54.7%,肺炎克雷伯菌产β内酰胺酶占50.7%,多重耐药鲍曼不动杆菌占36.40%,耐甲氧西林金黄色葡萄球菌占32.20%,多重耐药铜绿假单胞菌占7.70%.结论 常见葡萄球菌、链球菌对红霉素都有较高的耐药性.分离到对万古霉素耐药的溶血葡萄球菌(5.7%).大肠埃希菌、肺炎克雷伯菌、奇异变形杆菌都对亚胺培南保持较高的敏感性,而阴沟肠杆菌则有1%的耐药率.%Objective To investigate the antibiotic resistance status of bacteria isolated from the hospital in 2011. Methods Bacterial identification and antibiotic testing were carried out by automatic system, manual identification and K-B method was done according to CLS1. Results A total of 3643 bacteria were isolated from 14701 samples in 2011 , Gram-negative bacteria accounted for 71% , (Tram-positive bacteria accounted for 29% . The top five were E. coli,K. pneumoniae , Acinetobacter baumannii, Staphylococcus aureus, and Pseudomonas aeruginosa. In (Tram negative bacilli, ESBLs was up to 54. 7% . In K. pneumoniae, ESBLs was up to 50. 7% , MDR Acinetobacter baumannii, MRS A, MDR pseudomonas aeruginosa were 36. 40% , 32. 20% ,7. 70% . Conclusion Common ataphylococcus and streptococcus showed a high resistance to eryth-romycin ; Staphylococcus haemolyticus showed 5.7% resistance to vancomycin ;E. coli,K. pneumoniae ,Proteus mirabilis showed a high susceptibility to imipenem, while enterobacter

  7. Efforts to slacken antibiotic resistance: Labeling meat products from animals raised without antibiotics in the United States.

    Science.gov (United States)

    Centner, Terence J

    2016-09-01

    As bacteria and diseases spread due to climatic change, greater amounts of antibiotics will be used thereby exacerbating the problem of antibiotic resistance. To help slacken the development of resistant bacteria, the medical community is attempting to reduce unnecessary and excessive usage of antibiotics. One of the targets is the use of antibiotics for enhancing animal growth and promoting feed efficiency in the production of food animals. While governments can adopt regulations prohibiting nontherapeutic uses of antibiotics in food animals and strategies to reduce antibiotic usage, another idea is to publicize when antibiotics are used in food animal production by allowing labeled meat products. This paper builds upon existing labeling and marketing efforts in the United States to show how a government can develop a verified antibiotic-free labeling program that would allow consumers to purchase meat products from animals that had never received antibiotics. PMID:27236477

  8. Pharmacodynamics of TD-1792, a novel glycopeptide-cephalosporin heterodimer antibiotic used against Gram-positive bacteria, in a neutropenic murine thigh model.

    Science.gov (United States)

    Hegde, Sharath S; Okusanya, Olanrewaju O; Skinner, Robert; Shaw, Jeng-Pyng; Obedencio, Glenmar; Ambrose, Paul G; Blais, Johanne; Bhavnani, Sujata M

    2012-03-01

    TD-1792 is a novel glycopeptide-cephalosporin heterodimer investigational antibiotic that displays potent bactericidal effects against clinically relevant Gram-positive organisms in vitro. The present studies evaluated the in vivo pharmacokinetics (PK) and pharmacodynamics (PD) of TD-1792 in the neutropenic murine thigh infection animal model. TD-1792, dosed subcutaneously (SC), produced dose-dependent reduction in the thigh bacterial burden of several organisms, including methicillin-susceptible and -resistant strains of Staphylococcus aureus and Staphylococcus epidermidis (MSSA, MRSA, MSSE, MRSE, respectively), penicillin-susceptible strains of Streptococcus pneumoniae (PSSP), Streptococcus pyogenes, and vancomycin-intermediate-susceptible Staphylococcus aureus (VISA). In single-dose efficacy studies, the 1-log(10) CFU kill effective dose (ED(1-log kill)) estimates for TD-1792 ranged from 0.049 to 2.55 mg/kg of body weight administered SC, and the bacterial burden was reduced by up to 3 log(10) CFU/g from pretreatment values. Against S. aureus ATCC 33591 (MRSA), the total 24-h log(10) stasis dose (ED(stasis)) and ED(1-logkill) doses for TD-1792 were 0.53 and 1.11 mg/kg/24 h, respectively, compared to 23.4 and 54.6 mg/kg/24 h for vancomycin, indicating that TD-1762 is 44- to 49-fold more potent than vancomycin. PK-PD analysis of data from single-dose and dose-fractionation studies for MRSA (ATCC 33591) demonstrated that the total-drug 24-h area under the concentration-time curve-to-MIC ratio (AUC/MIC ratio) was the best predictor of efficacy (r(2) = 0.826) compared to total-drug maximum plasma concentration of drug-to-MIC ratio (Cmax/MIC ratio; r(2) = 0.715) and percent time that the total-drug plasma drug concentration remains above the MIC (%Time>MIC; r(2) = 0.749). The magnitudes of the total-drug AUC/MIC ratios associated with net bacterial stasis, a 1-log(10) CFU reduction from baseline and near maximal effect, were 21.1, 37.2, and 51.8, respectively. PK

  9. Widespread antibiotic resistance of diarrheagenic Escherichia coli and Shigella species

    OpenAIRE

    Azam Fatahi Sadeghabadi; Ali Ajami; Reza Fadaei; Masoud Zandieh; Elham Heidari; Mahmoud Sadeghi; Behrooz Ataei; Shervin Ghaffari Hoseini

    2014-01-01

    Background: Antibiotic resistance of enteric pathogens particularly Shigella species, is a critical world-wide problem and monitoring their resistant pattern is essential, because the choice of antibiotics is absolutely dependent on regional antibiotic susceptibility patterns. During summer 2013, an unusual increase in number of diarrheal diseases was noticed in Isfahan, a central province of Iran. Therefore, the antibiotic resistance of diarrheagenic Escherichia coli and Shigella species iso...

  10. The vicissitude of pathogenic bacteria isolated from critically ill patients in an intensive care unit during a period of using antibiotics%危重患者抗生素应用过程中致病菌快速变化的探讨

    Institute of Scientific and Technical Information of China (English)

    魏宏建; 刘丽丽; 肖李乐云; 王雨平; 黄冬; 骈淮燕; 祝艳翠

    2009-01-01

    Objective To observe the changing spectrum of the pathogenic bacteria during seven-day antibiotics targeted therapy in an intensive care unit(ICU).Methods In a group of 100 patients of hospital-acquired pneumonia(HAP)with identified pathogenic bacteria undergoing antibiotic treatment according to susceptibility test,the changes in the species of the pathogens and their ratio in their sputum specimens were studied,and the relationship were analyzed the characteristic between the changes and the age,the time of medication and the length of stay.Results Among all the bacterial isolates(n=295)in ICU,the percentage of Gram-negative bacillus was 62.4%(184/295).The prevalent causative microorganisms isolated were Pseudomonas aeruginosa 22.4%(66/295),MRSA/MRSE 20.7%(61/295)and Acinetobacter spp.10.5% (31/295).When one or more than one potent antibiotic in accord with the result of sensitivity test,change in ratio of pathogens occurred in 160,and change in species in 126.When the use of antibiotics was prolonged,the change in the former became less often.The change in ratio was less in 3-5 days than that of 6-7 days,the ratio was 72.7%,62.5%,60.O%(P<0.01)respectively on the 3rd day,the 4th day and the 5th day,showing that susceptible pathogenic bacteria became less gradually,indicating that the treatment was effective,However,the change in species of pathogenic bacteria began more obvious,and it was more predominant on the 6th day and the 7th day,which was 66.0%,77.1%(P<0.01)respectively,showing emergence of new non-susceptible pathogenic bacteria.With increase in the use of different antibiotics,the species of pathogenic bacteria showed to increase an increasing tendency of change.When Gram-negative bacillus infection was treated,antibiotic resistant bacteria such as Candida albicans and MRSA usually appeared.But when Gram.positive bacillus infections were treated,Candida albicans,Pseudomonas aeruginosa and Enterobacter cloacae readily appeared.There was relationship

  11. Enteric pathogens and soil: a short review.

    Science.gov (United States)

    Santamaría, Johanna; Toranzos, Gary A

    2003-03-01

    It is known that soil is a recipient of solid wastes able to contain enteric pathogens in high concentrations. Although the role of soil as a reservoir of certain bacterial pathogens is not in question, recent findings show that soil may have a larger role in the transmission of enteric diseases than previously thought. Many of the diseases caused by agents from soil have been well characterized, although enteric diseases and their link to soil have not been so well studied. Gastrointestinal infections are the most common diseases caused by enteric bacteria. Some examples are salmonellosis ( Salmonella sp.), cholera ( Vibrio cholerae), dysentery ( Shigella sp.) and other infections caused by Campylobacter jejuni, Yersinia sp. and Escherichia coli O157:H7 and many other strains. Viruses are the most hazardous and have some of the lowest infectious doses of any of the enteric pathogens. Hepatitis A, hepatitis E, enteric adenoviruses, poliovirus types 1 and 2, multiple strains of echoviruses and coxsackievirus are enteric viruses associated with human wastewater. Among the most commonly detected protozoa in sewage are Entamoeba histolytica, Giardia intestinalis and Cryptosporidium parvum. This article reviews the existing literature of more than two decades on waste disposal practices that favor the entry of enteric pathogens to soil and the possible consequent role of the soil as a vector and reservoir of enteric pathogens.

  12. Antibiotic Resistance in Multidrug-Resistant Gram-Negative Bacteria from Burn Wards%烧伤病房革兰阴性多重耐药菌耐药性分析

    Institute of Scientific and Technical Information of China (English)

    庞宗超; 李惠斌

    2015-01-01

    目的:分析烧伤病房革兰阴性多重耐药菌的病原菌分布及耐药性,为临床合理应用抗生素提供依据,并探讨多重耐药菌的防控策略。方法应用 VITEK2-compact全自动微生物鉴定及药敏分析系统对临沂市人民医院烧伤整形科2012年1月至2014年1月送检标本分离的菌株进行菌种鉴定,采用 K-B纸片扩散法进行药敏试验,统计分析革兰阴性多重耐药菌的分布情况及其对抗菌药物的耐药情况。结果共检出130株革兰阴性多重耐药菌,创面分泌物为其主要标本来源,占81.54%,其次为痰液,占12.30%。菌株分布以鲍曼不动杆菌和大肠埃希菌为主,分别占38.46%(50/130)、29.23%(38/130)。大肠埃希菌和肺炎克雷伯菌产超广谱β-内酰胺酶(ESBLs)菌株分离率为89.47%(34/38)、87.50%(14/16)。耐碳青霉烯类抗生素鲍曼不动杆菌(CR-AB)对除替加环素、左氧氟沙星之外的所有测试抗菌药物均呈现高度耐药,耐药率在90%~100%之间;肺炎克雷伯菌和大肠埃希菌对碳青霉烯类抗生素、含酶抑制剂的复合制剂、替加环素耐药率均小于20%,而对氨基糖苷类、第三代头孢菌素类、喹诺酮类抗生素耐药率较高。铜绿假单胞菌和阴沟肠杆菌仅对丁胺卡那霉素有较高敏感性。结论革兰阴性多重耐药菌对常用抗菌药物表现出较高耐药性,应及时制定防控策略,缓解细菌耐药性。%Objective To analyze the distribution and antibiotic resistance of multidrug-resist-ant gram-negative bacteria from burn wards,and to provide a basis for rational use of antibiotics and prevention and control of multidrug-resistant bacteria.Methods VITEK2-compact automatic microorganism system and drug sensitivity analyzer were used to identify the pathogens isolated from specimens from patients hospitalized in Department of Burn and Plastic Surgery of Linyi

  13. Antibiotics as CECs: An Overview of the Hazards Posed by Antibiotics and Antibiotic Resistance

    Directory of Open Access Journals (Sweden)

    Geoffrey Ivan Scott

    2016-04-01

    Full Text Available ABSTRACTMonitoring programs have traditionally monitored legacy contaminants but are shifting focus to Contaminants of Emerging Concern (CECs. CECs present many challenges for monitoring and assessment, because measurement methods don't always exist nor have toxicological studies been fully conducted to place results in proper context. Also some CECs affect metabolic pathways to produce adverse outcomes that are not assessed through traditional toxicological evaluations. Antibiotics are CECs that pose significant environmental risks including development of both toxic effects at high doses and antibiotic resistance at doses well below the Minimum Inhibitory Concentration (MIC which kill bacteria and have been found in nearly half of all sites monitored in the US. Antimicrobial resistance has generally been attributed to the use of antibiotics in medicine for humans and livestock as well as aquaculture operations. The objective of this study was to assess the extent and magnitude of antibiotics in the environment and estimate their potential hazards in the environment. Antibiotics concentrations were measured in a number of monitoring studies which included Waste Water Treatment Plants (WWTP effluent, surface waters, sediments and biota. A number of studies reported levels of Antibiotic Resistant Microbes (ARM in surface waters and some studies found specific ARM genes (e.g. the blaM-1 gene in E. coli which may pose additional environmental risk. High levels of this gene were found to survive WWTP disinfection and accumulated in sediment at levels 100-1000 times higher than in the sewerage effluent, posing potential risks for gene transfer to other bacteria.in aquatic and marine ecosystems. Antibiotic risk assessment approaches were developed based on the use of MICs and MIC Ratios [High (Antibiotic Resistant/Low (Antibiotic Sensitive MIC] for each antibiotic indicating the range of bacterial adaptability to each antibiotic to help define the No

  14. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro.

    Science.gov (United States)

    Wright, S A; Zumoff, C H; Schneider, L; Beer, S V

    2001-01-01

    Pantoea agglomerans (synonym: Erwinia herbicola) strain Eh318 produces through antibiosis a complex zone of inhibited growth in an overlay seeded with Erwinia amylovora, the causal agent of fire blight. This zone is caused by two antibiotics, named pantocin A and B. Using a genomic library of Eh318, two cosmids, pCPP702 and pCPP704, were identified that conferred on Escherichia coli the ability to inhibit growth of E. amylovora. The two cosmids conferred different antibiotic activities on E. coli DH5alpha and had distinct restriction enzyme profiles. A smaller, antibiotic-conferring DNA segment from each cosmid was cloned. Each subclone was characterized and mutagenized with transposons to generate clones that were deficient in conferring pantocin A and B production, respectively. Mutated subclones were introduced into Eh318 to create three antibiotic-defective marker exchange mutants: strain Eh421 (pantocin A deficient); strain Eh439 (pantocin B deficient), and Eh440 (deficient in both pantocins). Cross-hybridization results, restriction maps, and spectrum-of-activity data using the subclones and marker exchange mutants, supported the presence of two distinct antibiotics, pantocin A and pantocin B, whose biosynthetic genes were present in pCPP702 and pCPP704, respectively. The structure of pantocin A is unknown, whereas that of pantocin B has been determined as (R)-N-[((S)-2-amino-propanoylamino)-methyl]-2-methanesulfonyl-s uccina mic acid. The two pantocins mainly affect other enteric bacteria, based on limited testing. PMID:11133457

  15. Antibiotic resistance - the interplay between antibiotic use in animals and human beings

    DEFF Research Database (Denmark)

    Singer, R.S.; Finch, R.; Wegener, Henrik Caspar;

    2003-01-01

    Antibiotic-resistant bacteria were first identified in the 1940s, but while new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. Today, the excessive use of antibiotics compounded by the paucity of new agents on the market has...... meant the problem of antibiotic resistance is fast escalating into a global health crisis. There is no doubt that misuse of these drugs in human beings has contributed to the increasing rates of resistance, but recently the use of antibiotics in food animals and its consequent effect on resistance...... of antibiotics in animals-whether therapeutic or as growth promoters-pales by comparison with human use, and that efforts should be concentrated on the misuse of antibiotics in people. Others warn of the dangers of unregulated and unnecessary use of antibiotics, especially growth promoters in animal husbandry...

  16. 黄芪浸出液对致龋菌的体外抑菌实验%In vitro antibiotic effect of the leaching solution of astragalus on cariogenic bacteria

    Institute of Scientific and Technical Information of China (English)

    张金婷; 邓旎; 车团结; 康妍丽; 何祥一

    2009-01-01

    选择甘肃产黄芪为原料,制成水浸出液,研究其对口腔常见致龋菌的抑制效果,并与国外致龋菌抑菌产品(MI)进行比较.以变形链球菌、乳酸杆菌为实验菌株,用选择性培养基进行液体培养,在培养基中添加不等量的药物,测培养24 h后菌液的A值、pH值;用SPSS 13.0对数据进行统计分析.黄芪浸出液对变形链球菌、乳酸杆菌的生长、产酸均有抑制效果,抗菌效果与MI相当.%Astragalus produced in Gansu were chosen as the raw material to leachate. Studied the antibiotic effects of the leaching solution on the cariogenic bacteria and compared with the imported bacteriostatic product MI. Streptococcus mutans and Lactobacilli were cultured in the medium for 24 h. The PH and A600 values were measured. Statistical analysis was conducted by using SPSS 13.0. The leaching solution of astragalus has the same inhibitory effects on the growth and acid production of streptococcus mutans and lactobacilli as MI.

  17. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  18. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria

    Science.gov (United States)

    Dicks, L. M. T.; Heunis, T. D. J.; van Staden, D. A.; Brand, A.; Noll, K. Sutyak; Chikindas, M. L.

    The frequent use of antibiotics has led to a crisis in the antibiotic ­resistance of pathogens associated with humans and animals. Antibiotic resistance and the emergence of multiresistant bacterial pathogens have led to the investigation of alternative antimicrobial agents to treat and prevent infections in both humans and animals. Research on antimicrobial peptides, with a special interest on bacteriocins of lactic acid bacteria, is entering a new era with novel applications other than food preservation. Many scientists are now focusing on the application of these peptides in medicinal and personal care products. However, it is difficult to assess the success of such ventures due to the dearth of information that has been published and the lack of clinical trials.

  19. [Antibiotic sensitivity to epidemic strains of Vibrio cholerae and Shigella dysenteriae 1 isolated in Rwandan refugee camps in Zaire].

    Science.gov (United States)

    Cavallo, J D; Niel, L; Talarmin, A; Dubrous, P

    1995-01-01

    Multiresistance or epidemic enteric bacteria to antibiotics greatly complicates treatment, and in some cases prophylaxis, of severe invasive gastroenteritis. During the summer of 1994, two epidemics of diarrhea, one due to Vibrio cholerae and the other to Shigella dysenteriae 1 isolated from the Goma and Bukavu camps was determined by measurement of the Agar Minimal Inhibitory Concentration. Multiresistance to tetracyclins, aminopenicillins, trimethoprimsulfamethoxazole, and nifuroxazide was observed. After intensive treatment mutant forms of both bacteria resistant to nalidixic acid rapidly appeared. Only fluoroquinolones remained active on these mutant strains, but the availability of this agent in Africa is restricted due to cost. The most effective way of preventing resistance is to limit the spread of enteric infections by health education and improvement of hygiene. This can be difficult during wartime. PMID:8830219

  20. Identification and Antibiotic Resistance Genes Detection of Bacteria in Aquaculture Organisms and Aquatic Environment%水产养殖生物和养殖环境细菌鉴定及抗生素抗性基因检测

    Institute of Scientific and Technical Information of China (English)

    黄志坚; 陈旭凌; 路晓峰; 钟立洪; 何建国

    2012-01-01

    Antibiotic resistance genes (ARGs) greatly limit the aquaculture development in China. In this study, 194 strains of bacteria were identified with an improved boiling method for DNA extraction. Polymerase chain reaction (PCR) assay was applied to detect the antibiotic resistance genes of florfenicol {floR) , two sulfonamide (sul1 and sul2) , streptomycin {str) , trimethoprim (dfrA20) in 139 bacterial strains. It showed that 194 strains were identified as 62 different species, mainly Lysine Bacillus, Vibrio parahaemolyticus, Aeromonas media, Aeromonas hydrophila, Aeromonas sobria, Bacillus cereus, Citrobacter freundii, Chryseobacterium ureilyticum, Pseudoalleromonas whanghaensis, Vibrio cholerae and so on. ARGs of floR, sul1, sul2, str and dfrA20 in 139 strains were detected with positive rate of 11. 51% , 20. 86% , 12. 23% , 10. 07% and 2. 88% , respectively. The results showed that antibiotic resistance genes could be the potential emerging pollutants in aquaculture organisms and aquatic environment.%抗生素抗性基因(Antibiotic Resistance Genes,ARGs)作为一种新型环境污染物,极大地限制了我国水产养殖业的发展.采用改进的煮沸法,设计快速提取DNA的方法,鉴定194株水产养殖生物和养殖环境中革兰氏阴性菌和阳性菌.选取其中的139株细菌,采用PCR方法研究氟氯霉素抗性基因(floR)、2种磺胺类抗性基因(sul1、sul2)、链霉素抗性基因(str)及甲氧苄啶抗性基因(dfrA20)的存在情况.结果表明,鉴定的194株菌株属于62种不同种属,主要以赖氨酸芽孢杆菌、副溶血性弧菌、中间气单胞菌、嗜水气单胞菌、温和气单胞菌、蜡样芽孢杆菌、弗氏柠檬酸杆菌、金黄杆菌、假交替单胞菌、霍乱弧菌为主.139株细菌中floR、sul1、sul2、str、dfrA20检测结果呈阳性的分别占11.51%、20.86%、12.23%、10.07%、2.88%,表明水产养殖生物和养殖环境中存在不同程度的抗生素污染.

  1. STUDIES ON ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF CITRUS FRUIT JUICES AGAINST SELECTED ENTERIC PATHOGENS

    Directory of Open Access Journals (Sweden)

    Bansode.D.S.

    2012-11-01

    Full Text Available The present study was carried out to find out the antimicrobial activity and phytochemical study of citrus fruit juices viz. Lemon (Citrus limon and Orange (Citrus ourantium against medically important selected enteric pathogens. As microorganisms are becoming resistant to present day antibiotics, our study focuses on antimicrobial activity and phytochemical study of Citrus fruit juices against selected enteric pathogens. Biological active compounds present in the medicinal important fruit juices have always been of great interest to scientist. These compounds, not only play an important physiological and etiological role, but are also of commercial interest because of their multitude application in the food and pharmaceutical industries. In the present study, the Lemon and Orange fruit juices were subjected to screening against enteric pathogens, E.coli, Salmonella paratyphy B, and Shigella sonnei. Antimicrobial analysis was done by using agar well diffusion method against selected enteric bacteria. The MIC values were determined by using U.V. Spectrophotometer. The fresh crude Lemon fruit juice produced the highest antimicrobial activity against Salmonella para.B and Shigella sonnei followed by E.coli and fresh crude Orange fruit juice produced the highest antimicrobial activity against Shigella sonnei and Salmonella para.B. followed by E.coli. The antimicrobial activity of standard antibiotic Ampicillin was studied in comparison with Lemon and Orange fruit juices. The Minimum inhibitory concentration observed at 25% conc. of lemon juice against Salmonella paratyphy B, and Shigella sonnei and 25% concentration of orange juice against Shigella sonnei. The phytochemical analysis showed the presence of phenols, flavonoids, glycosides, steroid, saponin, and reducing sugar in citrus fruit juices.

  2. Why Finish Your Antibiotics? A Novel, Hands-On, Classroom Approach for Teaching the Dynamics of Antibiotic Resistance

    Science.gov (United States)

    Wassmer, Gary T.; Kipe-Nolt, Judith A.; Chayko, Catherine A.

    2006-01-01

    We present an effective, engaging, and fun method for teaching how the use or misuse of antibiotics can select for resistant strains of bacteria. This method uses candy as a substitute for strains of bacteria varying in resistance to a given antibiotic. Results and discussion are presented in the context of this emerging healthcare crisis.

  3. Predation and selection for antibiotic resistance in natural environments

    DEFF Research Database (Denmark)

    Leisner, Jørgen; Jørgensen, Niels O. G.; Middelboe, Mathias

    2016-01-01

    Genes encoding resistance to antibiotics appear, like the antibiotics themselves, to be ancient, originating long before the rise of the era of anthropogenic antibiotics. However, detailed understanding of the specific biological advantages of antibiotic resistance in natural environments is still...... lacking, thus limiting our efforts to prevent environmental influx of resistance genes. Here, we propose that antibiotic-resistant cells not only evade predation from antibiotic producers but also take advantage of nutrients released from cells that are killed by the antibiotic-producing bacteria. Thus......, predation is potentially an important mechanism for driving antibiotic resistance during slow or stationary phase of growth when nutrients are deprived. This adds to explain the ancient nature and widespread occurrence of antibiotic resistance in natural environments unaffected by anthropogenic antibiotics...

  4. Multi drug resistance of campylobacter jejuni and campylobacter coli to tested antibiotics in strains originating from humans, poultry and swine

    Directory of Open Access Journals (Sweden)

    Tambur Zoran Ž.

    2010-01-01

    Full Text Available Thermophilic Campylobacter are among the most common cause of bacterial enteritis in humans. Food animals are considered one of the most important sources of Campylobacter causing infections in man. Campylobacter infection is clinically mild and resolves spontaneously. In severe or long-lasting cases, treatment with antibiotics is necessary. Resistance of Campylobacter spp. to drugs used in treatment of infection is a matter of concern. The aim of this paper is to determine presence of multi drug resistant strains of Campylobacter jejuni and Campylobacter coli isolated from animals and man. Material for testing was obtained by scraping the cecum surface from boilers, pig cecum and colon, and human feces. For isolation Campylobacter jejuni and Campylobacter coli microaerophilic conditions, temperature of 42°C and antibiotic supplement were required to inhibit the growth of other intestinal bacteria. In this research, for sensitivity testing of Campylobacter jejuni and Campylobacter coli three different methods were used: disc diffusion test, E-test, and dilution agar method. A total of 55 strains of Campylobacter jejuni and Campylobacter coli. Out of the total, 24 strains originated from man, 16 from broilers were isolated, and 15 from pigs. Multidrug resistance was determined in cases when the strains were resistant to two or more antibiotics. Applying E-test, we detected that the largest number of Campylobacter jejuni were multi drug resistant to two antibiotics (41.2%, and three antibiotics (11.8%. Applying disc diffusion method it was detected that 5.9% of Campylobacter jejuni from man was resistant to four tested antibiotics. Applying all three methods, it was detected that the largest number of Campylobacter strains was resistant to two antibiotics and three antibiotics. Applying disc diffusion method it was detected that 50% of Campylobacter coli strains from pigs were resistant to three tested antibiotics.

  5. Effective Phages as Green Antimicrobial Agents Against Antibiotic-Resistant Hospital Escherichia coli

    OpenAIRE

    Rahmani, Rana; Zarrini, Gholamreza; Sheikhzadeh, Farzam; Aghamohammadzadeh, Naser

    2015-01-01

    Background: Bacteriophages are viruses that attack bacteria and lead to their lysis in an efficient and highly specific manner. These natural enemies of bacteria were used as therapeutic agents before the advent of antibiotics. Currently, with the rapid spread of multi-drug resistant bacteria, phage therapy can be an effective alternative treatment for antibiotic resistant bacteria. Objectives: This study evaluated the effectiveness of bacteriophages in removing antibiotic-resistant clinical ...

  6. A systematic review and meta-analysis of the effects of antibiotic consumption on antibiotic resistance.

    NARCIS (Netherlands)

    Bell, B.G.; Schellevis, F.; Stobberingh, E.; Goossen, H.; Pringle, M.

    2014-01-01

    Background: Greater use of antibiotics during the past 50 years has exerted selective pressure on susceptible bacteria and may have favoured the survival of resistant strains. Existing information on antibiotic resistance patterns from pathogens circulating among community-based patients is substant

  7. Aerobic digestion reduces the quantity of antibiotic resistance genes in residual municipal wastewater solids

    OpenAIRE

    Burch, Tucker R.; Sadowsky, Michael J.; LaPara, Timothy M.

    2013-01-01

    Numerous initiatives have been undertaken to circumvent the problem of antibiotic resistance, including the development of new antibiotics, the use of narrow spectrum antibiotics, and the reduction of inappropriate antibiotic use. We propose an alternative but complimentary approach to reduce antibiotic resistant bacteria (ARB) by implementing more stringent technologies for treating municipal wastewater, which is known to contain large quantities of ARB and antibiotic resistance genes (ARGs)...

  8. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics.

    Science.gov (United States)

    Li, Lu; Wang, Qiyao; Zhang, Hui; Yang, Minjun; Khan, Mazhar I; Zhou, Xiaohui

    2016-02-01

    β-Lactams disrupt bacterial cell wall synthesis, and these agents are the most widely used antibiotics. One of the principle mechanisms by which bacteria resist the action of β-lactams is by producing β-lactamases, enzymes that degrade β-lactams. In Gram-negative bacteria, production of β-lactamases is often induced in response to the antibiotic-associated damage to the cell wall. Here, we have identified a previously unidentified mechanism that governs β-lactamase production. In the Gram-negative enteric pathogen Vibrio parahaemolyticus, we found a histidine kinase/response regulator pair (VbrK/VbrR) that controls expression of a β-lactamase. Mutants lacking either VbrK or VbrR do not produce the β-lactamase and are no longer resistant to β-lactam antibiotics. Notably, VbrK autophosphorylation is activated by β-lactam antibiotics, but not by other lactams. However, single amino acid substitutions in the putative periplasmic binding pocket of VbrK leads its phosphorylation in response to both β-lactam and other lactams, suggesting that this kinase is a β-lactam receptor that can directly detect β-lactam antibiotics instead of detecting the damage to cell wall resulting from β-lactams. In strong support of this idea, we found that purified periplasmic sensor domain of VbrK binds penicillin, and that such binding is critical for VbrK autophosphorylation and β-lactamase production. Direct recognition of β-lactam antibiotics by a histidine kinase receptor may represent an evolutionarily favorable mechanism to defend against β-lactam antibiotics.

  9. New record of Pterotaenia fasciata (Wiedemann) (Diptera, Ulidiidae) in Brazil, a probably mechanical vector of enteric bacteria Novo registro de Pterotaenia fasciata (Wiedemann) (Diptera, Ulidiidae) no Brasil, um provável vetor mecânico de enterobactérias

    OpenAIRE

    Anderson Sena Barnabe; Gabriel Zorello Laporta; Marcia Zorello Laporta; Carlos José Einicker Lamas

    2007-01-01

    Pterotaenia fasciata is commonly recorded in rural areas in Argentina, but during a Diptera survey study developed in a reservoir which retains storm water from polluted canals in an urban area of Taboão da Serra municipality, SP, Brazil, we could capture P. fasciata adults. Enteric bacteria Escherichia coli T. Escherich, 1885 and Proteus sp. were isolated from P. fasciata collected in traps inside the reservoir and around it. Fecal coliforms and E. coli were found in the water of the reservo...

  10. The Agricultural Antibiotic Carbadox Induces Phage-mediated Gene Transfer in Salmonella

    Directory of Open Access Journals (Sweden)

    Bradley L. Bearson

    2014-02-01

    Full Text Available Antibiotics are used for disease therapeutic or preventative effects in humans and animals, as well as for enhanced feed conversion efficiency in livestock. Antibiotics can also cause undesirable effects in microbial populations, including selection for antibiotic resistance, enhanced pathogen invasion, and stimulation of horizontal gene transfer. Carbadox is a veterinary antibiotic used in the U.S. during the starter phase of swine production for improved feed efficiency and control of swine dysentery and bacterial swine enteritis. Carbadox has been shown in vitro to induce phage-encoded Shiga toxin in Shiga toxin-producing Escherichia coli and a phage-like element transferring antibiotic resistance genes in Brachyspira hyodysenteriae, but the effect of carbadox on prophages in other bacteria is unknown. This study examined carbadox exposure on prophage induction and genetic transfer in Salmonella enterica serovar Typhimurium, a human foodborne pathogen that frequently colonizes swine without causing disease. S. Typhimurium LT2 exposed to carbadox induced prophage production, resulting in bacterial cell lysis and release of virions that were visible by electron microscopy. Carbadox induction of phage-mediated gene transfer was confirmed by monitoring the transduction of a sodCIII::neo cassette in the Fels-1 prophage from LT2 to a recipient Salmonella strain. Furthermore, carbadox frequently induced generalized transducing phages in multidrug-resistant phage type DT104 and DT120 isolates, resulting in the transfer of chromosomal and plasmid DNA that included antibiotic resistance genes. Our research indicates that exposure of Salmonella to carbadox induces prophages that can transfer virulence and antibiotic resistance genes to susceptible bacterial hosts. Carbadox-induced, phage-mediated gene transfer could serve as a contributing factor in bacterial evolution during animal production, with prophages being a reservoir for bacterial fitness

  11. Differential transcriptional response to antibiotics by Pseudomonas putida DOT-T1E

    DEFF Research Database (Denmark)

    Molina-Santiago, Carlos; Daddaoua, Abdelali; Gómez Lozano, María;

    2015-01-01

    Multi-drug resistant bacteria are a major threat to humanity, especially because the current battery of known antibiotics is not sufficient to combat infections produced by these microbes. Therefore, the study of how current antibiotics act and how bacteria defend themselves against antibiotics i...

  12. Molecular characterization and antibiotic specificities of multidrug transporters in Lactoccus lactis

    NARCIS (Netherlands)

    Putman, Monique

    2000-01-01

    Many infectious diseases caused by various pathogenic bacteria can often successfully be treated with antibiotics. however, a major drawback of the widespread use of antibiotics is the selection of antibiotic resistant bacteria. Consequently, bacterial diseases that were believed to be controlled, a

  13. Systems, not pills: The options market for antibiotics seeks to rejuvenate the antibiotic pipeline.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2016-02-01

    Over the past decade, there has been a growing recognition of the increasing growth of antibiotic resistant bacteria and a relative decline in the production of novel antibacterial therapies. The combination of these two forces poses a potentially grave threat to global health, in both developed and developing countries. Current market forces do not provide appropriate incentives to stimulate new antibiotic development, thus we propose a new incentive mechanism: the Options Market for Antibiotics. This mechanism, modelled on the principle of financial call options, allows payers to buy the right, in early stages of development, to purchase antibiotics at a discounted price if and when they ever make it to market approval. This paper demonstrates the effect of such a model on the expected Net Present Value of a typical antibacterial project. As part of an integrated strategy to confront the impending antibiotic crisis, the Options Market for Antibiotics may effectively stimulate corporate and public investment into antibiotic research and development. PMID:26808335

  14. Systems, not pills: The options market for antibiotics seeks to rejuvenate the antibiotic pipeline.

    Science.gov (United States)

    Brogan, David M; Mossialos, Elias

    2016-02-01

    Over the past decade, there has been a growing recognition of the increasing growth of antibiotic resistant bacteria and a relative decline in the production of novel antibacterial therapies. The combination of these two forces poses a potentially grave threat to global health, in both developed and developing countries. Current market forces do not provide appropriate incentives to stimulate new antibiotic development, thus we propose a new incentive mechanism: the Options Market for Antibiotics. This mechanism, modelled on the principle of financial call options, allows payers to buy the right, in early stages of development, to purchase antibiotics at a discounted price if and when they ever make it to market approval. This paper demonstrates the effect of such a model on the expected Net Present Value of a typical antibacterial project. As part of an integrated strategy to confront the impending antibiotic crisis, the Options Market for Antibiotics may effectively stimulate corporate and public investment into antibiotic research and development.

  15. Current Perspectives on Viable but Non-Culturable (VBNC Pathogenic Bacteria

    Directory of Open Access Journals (Sweden)

    Thandavarayan eRamamurthy

    2014-07-01

    Full Text Available Under stress conditions, many species of bacteria enter into starvation mode of metabolism or a physiologically viable but non-culturable (VBNC state. Several human pathogenic bacteria have been reported to enter into the VBNC state under these conditions. The pathogenic VBNC bacteria cannot be grown using conventional culture media, although they continue to retain their viability and express their virulence. Though there have been debates on the VBNC concept in the past, several molecular studies have shown that not only VBNC state can be induced under in vitro conditions but also that resuscitation from this state is possible under appropriate conditions. The most notable advance in resuscitating VBNC bacteria is the discovery of resuscitation-promoting factor (Rpf, which is a bacterial cytokines found in both Gram-positive and Gram-negative organisms. VBNC state is a survival strategy adopted by the bacteria, which has important implication in several fields, including environmental monitoring, food technology and infectious disease management and hence it is important to investigate the association of bacterial pathogens under VBNC state and the water/foodborne outbreaks. In this review, we describe various aspects of VBNC bacteria, which include their proteomic and genetic profiles under the VBNC state, conditions of resuscitation, methods of detection, antibiotic resistance and observations on Rpf.

  16. Evaluation of Curetis Unyvero, a multiplex PCR-based testing system, for rapid detection of bacteria and antibiotic resistance and impact of the assay on management of severe nosocomial pneumonia.

    Science.gov (United States)

    Jamal, Wafaa; Al Roomi, Ebtehal; AbdulAziz, Lubna R; Rotimi, Vincent O

    2014-07-01

    Health care-associated pneumonia due to multidrug-resistant organisms represents a major therapeutic challenge. Unfortunately, treatment is dependent on empirical therapy, which often leads to improper and inadequate antimicrobial therapy. A rapid multiplex PCR-based Unyvero pneumonia application (UPA) assay that assists in timely decision-making has recently become available. In this study, we evaluated the performance of UPA in detecting etiological pathogens and resistance markers in patients with nosocomial pneumonia (NP). The impact of this assay on the management of severe nosocomial pneumonia was also assessed. Appropriate specimens were processed by UPA according to the manufacturer's protocol in parallel with conventional culture methods. Of the 56 patients recruited into the study, 49 (87.5%) were evaluable. Of these, 27 (55.1%) and 4 (8.2%) harbored multiple bacteria by the PCR assay and conventional culture, respectively. A single pathogen was detected in 8 (16.3%) and 4 (8.2%) patients, respectively. Thirteen different genes were detected from 38 patients, including the ermB gene (40.8%), the blaOXA-51-like gene (28.6%), the sul1 (28.6%) and int1 (20.4%) integrase genes, and the mecA and blaCTX-M genes (12.3% each). The time from sample testing to results was 4 h versus 48 to 96 h by UPA and culture, respectively. Initial empirical treatment was changed within 5 to 6 h in 33 (67.3%) patients based on the availability of UPA results. Thirty (62.2%) of the patients improved clinically. A total of 3 (6.1%) patients died, mainly from their comorbidities. These data demonstrate the potential of a multiplex PCR-based assay for accurate and timely detection of etiological agents of NP, multidrug-resistant (MDR) organisms, and resistance markers, which can guide clinicians in making early antibiotic adjustments.

  17. Prevention of soya-induced enteritis in Atlantic salmon (Salmo salar) by bacteria grown on natural gas is dose dependent and related to epithelial MHC II reactivity and CD8α+ intraepithelial lymphocytes.

    Science.gov (United States)

    Romarheim, Odd H; Hetland, Dyveke L; Skrede, Anders; Øverland, Margareth; Mydland, Liv T; Landsverk, Thor

    2013-03-28

    An experiment was carried out to study the preventive effect of bacterial meal (BM) produced from natural gas against plant-induced enteropathy in Atlantic salmon (Salmo salar). Salmon were fed a diet based on fish meal (FM) or seven diets with 200 g/kg solvent-extracted soyabean meal (SBM) to induce enteritis in combination with increasing levels of BM from 0 to 300 g/kg. Salmon fed a SBM-containing diet without BM developed typical SBM-induced enteritis. The enteritis gradually disappeared with increasing inclusion of BM. By morphometry, no significant (P>0.05) differences in the size of stretches stained for proliferating cell nuclear antigen were found with 150 g/kg BM compared with the FM diet. Increasing BM inclusion caused a gradual decline in the number of cluster of differentiation 8 α positive (CD8α+) intraepithelial lymphocytes, and fish fed BM at 200 g/kg or higher revealed no significant difference from the FM diet. Histological sections stained with antibody for MHC class II (MHC II) showed that fish with intestinal inflammation had more MHC II-reactive cells in the lamina propria and submucosa, but less in the epithelium and brush border, compared with fish without inflammation. There were no significant (P>0.05) differences in growth among the diets, but the highest levels of BM slightly reduced protein digestibility and increased the weight of the distal intestine. In conclusion, the prevention of SBM-induced enteritis by BM is dose dependent and related to intestinal levels of MHC II- and CD8α-reactive cells.

  18. Protective role of E. coli outer membrane vesicles against antibiotics.

    Science.gov (United States)

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics. PMID:26640046

  19. Protective role of E. coli outer membrane vesicles against antibiotics.

    Science.gov (United States)

    Kulkarni, Heramb M; Nagaraj, R; Jagannadham, Medicharla V

    2015-12-01

    The outer membrane vesicles (OMVs) from bacteria are known to posses both defensive and protective functions and thus participate in community related functions. In the present study, outer membrane vesicles have been shown to protect the producer bacterium and two other bacterial species from the growth inhibitory effects of some antibiotics. The OMVs isolated from E. coli MG1655 protected the bacteria against membrane-active antibiotics colistin, melittin. The OMVs of E. coli MG1655 could also protect P. aeruginosa NCTC6751 and A. radiodioresistens MMC5 against these membrane-active antibiotics. However, OMVs could not protect any of these bacteria against the other antibiotics ciprofloxacin, streptomycin and trimethoprim. Hence, OMVs appears to protect the bacterial community against membrane-active antibiotics and not other antibiotics, which have different mechanism of actions. The OMVs of E. coli MG1655 sequester the antibiotic colistin, whereas their protein components degrade the antimicrobial peptide melittin. Proteomic analysis of OMVs revealed the presence of proteases and peptidases which appear to be involved in this process. Thus, the protection of bacteria by OMVs against antibiotics is situation dependent and the mechanism differs for different situations. These studies suggest that OMVs of bacteria form a common defense for the bacterial community against specific antibiotics.

  20. The HIV-Associated Enteric Microbiome Has Gone Viral.

    Science.gov (United States)

    Palmer, Brent E; Li, Sam X; Lozupone, Catherine A

    2016-03-01

    HIV infection is associated with dramatic alterations in enteric bacteria, but little is known about other microbiome components. In this issue of Cell Host & Microbe, studies by Monaco et al. (2016) and Handley et al. (2016) reveal an under-appreciated role of the enteric virome in HIV-associated gastroenteritis and pathogenesis. PMID:26962936

  1. Analysis of antibiotic consumption in burn patients.

    Science.gov (United States)

    Soleymanzadeh-Moghadam, Somayeh; Azimi, Leila; Amani, Laleh; Rastegar Lari, Aida; Alinejad, Faranak; Rastegar Lari, Abdolaziz

    2015-01-01

    Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of Pseudomonas aeruginosa, Acinetobacter baumannii and Staphylococcus aureus were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used. The results indicated that P. aeruginosa is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR) microorganisms, but it can also decrease the cost of treatment. PMID:26124986

  2. Analysis of antibiotic consumption in burn patients

    Directory of Open Access Journals (Sweden)

    Soleymanzadeh-Moghadam, Somayeh

    2015-06-01

    Full Text Available Infection control is very important in burn care units, because burn wound infection is one of the main causes of morbidity and mortality among burn patients. Thus, the appropriate prescription of antibiotics can be helpful, but unreasonable prescription can have detrimental consequences, including greater expenses to patients and community alike. The aim of this study was to determine the effect of antibiotic therapy on the emergence of antibiotic-resistant bacteria. 525 strains of and were isolated from 335 hospitalized burn patients. Antibiotic susceptibility tests were performed after identification the strains. The records of patients were audited to find the antibiotic used.The results indicated that is the most prevalent Gram-negative bacteria. Further, it showed a relation between abuse of antibiotics and emergence of antibiotic resistance. Control of resistance to antibiotics by appropriate prescription practices not only facilitates prevention of infection caused by multi-drug resistant (MDR microorganisms, but it can also decrease the cost of treatment.

  3. Live combined bacillus subtilis and enterococcus faecium enteric-coated capsules combined with smecta in treatment of antibiotics-related diarrhea%美常安与思密达治疗抗生素相关性腹泻的临床研究

    Institute of Scientific and Technical Information of China (English)

    周爱玲

    2016-01-01

    Objective To investigate the clinical efficacy of live combined bacillus subtilis and enterococcus faecium enteric-coated capsules combined with smecta in the treatment of antibiotics-related diarrhea.Methods 80 patients with antibiotics-related diarrhea were randomly divided into a study group and a control group.The study group was treated with live combined bacillus subtilis and enterococcus faecium enteric-coated capsules (two capsules each time,three times a day) and smecta (taking 3.0 g dissolved in 50 ml warm water between meals,three times a day) and the control group with live combined bacillus subtilis and enterococcus faecium enteric-coated capsules (two capsules each time,three times a day).The relief times of main symptoms (diarrhea,bloating,fatigue),stool frequency and forming time,mold detection rate,treatment effective rate,and adverse drug reactions were compared between these two groups.Results The effective rate was significantly higher in the study group than in the control group (g 2=4.021,P<0.05).After the treatment,the relief times of diarrhea,bloating,and fatigue and stool forming time were significantly shorter and the stool frequency and stool mold detection rate were significantly lower in the study group than in the control group (t=-15.460,t=-10.086,t=-6.555,P<0.01;t=-3.471,P< 0.01;t=-1.903,P<0.01;x 2=7.440,P<0.05).No serious adverse reactions occurred in both groups.Conclusions Live combined bacillus subtilis and enterococcus faecium enteric-coated capsules combined with smecta in the treatment of antibiotics-related diarrhea is effective,safe,and reliable,can rapidly improve the patients' clinical symptoms,has no adverse drug reactions,and has clinical application value.%目的 探讨美常安联合思密达治疗抗生素相关性腹泻的临床效果.方法 将80例抗生素相关性腹泻患者按照数字表法分为研究组和对照组.研究组采用美常安(每次2粒,每天3次)与思密达(3.0g溶解于50 ml温

  4. Prevalence of Tetracycline Resistance Genes in Oral Bacteria

    OpenAIRE

    Villedieu, A.; Diaz-Torres, M. L.; Hunt, N; McNab, R; Spratt, D. A.; Wilson, M.; Mullany, P.

    2003-01-01

    Tetracycline is a broad-spectrum antibiotic used in humans, animals, and aquaculture; therefore, many bacteria from different ecosystems are exposed to this antibiotic. In order to determine the genetic basis for resistance to tetracycline in bacteria from the oral cavity, saliva and dental plaque samples were obtained from 20 healthy adults who had not taken antibiotics during the previous 3 months. The samples were screened for the presence of bacteria resistant to tetracycline, and the tet...

  5. Experimental Evolution of Antibiotic Resistance in Bacteria

    Science.gov (United States)

    Krist, Amy C.; Showsh, Sasha A.

    2007-01-01

    Evolution is typically measured as a change in allele or genotype frequencies over one or more generations. Consequently, evolution is difficult to show experimentally in a semester-long lab course because most organisms have longer generation times than 15 weeks. In this article, the authors present an experiment to demonstrate and study…

  6. Beyond Antibiotics?

    Directory of Open Access Journals (Sweden)

    LE Nicolle

    2006-01-01

    Full Text Available The AMMI Canada meeting in March 2006 hosted a symposium exploring the potential alternatives to antibiotics for the prevention and treatment of infection. Four papers summarizing talks from that session are published in this issue of the Journal (1-4. These reviews address the scientific underpinnings for a number of proposed concepts, and summarize the current status of clinical use. The approaches - probiotics, bacteriophage therapy, and manipulation of innate immunity - are all intriguing but are still removed from immediate practical applications.

  7. What Is Enteral Nutrition?

    Science.gov (United States)

    ... a Clinician Press Room Career Center Advertising and Sponsorship Join / Renew Donate Online Store Certification Claim CE Credits Clinical Nutrition Week eLearning Center Professional Development Webinars Calendar of Events What Is Enteral Nutrition ...

  8. Characterization of Escherichia coli Isolates from an Urban Lake Receiving Water from a Wastewater Treatment Plant in Mexico City: Fecal Pollution and Antibiotic Resistance.

    Science.gov (United States)

    Rosas, Irma; Salinas, Eva; Martínez, Leticia; Cruz-Córdova, Ariadnna; González-Pedrajo, Bertha; Espinosa, Norma; Amábile-Cuevas, Carlos F

    2015-10-01

    The presence of enteric bacteria in water bodies is a cause of public health concerns, either by directly causing water- and food-borne diseases, or acting as reservoirs for antibiotic resistance determinants. Water is used for crop irrigation; and sediments and aquatic plants are used as fertilizing supplements and soil conditioners. In this work, the bacterial load of several micro-environments of the urban lake of Xochimilco, in Mexico City, was characterized. We found a differential distribution of enteric bacteria between the water column, sediment, and the rhizoplane of aquatic plants, with human fecal bacteria concentrating in the sediment, pointing to the need to assess such bacterial load for each micro-environment, for regulatory agricultural purposes, instead of only the one of the water, as is currently done. Resistance to tetracycline, ampicillin, chloramphenicol, and trimethoprim-sulfamethoxazole was common among Escherichia coli isolates, but was also differentially distributed, being again higher in sediment isolates. A distinct distribution of chloramphenicol minimum inhibitory concentrations (MIC) among these isolates suggests the presence of a local selective pressure favoring lower MICs than those of isolates from treated water. Fecal bacteria of human origin, living in water bodies along with their antibiotic resistance genes, could be much more common than typically considered, and pose a higher health risk, if assessments are only made on the water column of such bodies. PMID:26198413

  9. Antibiotic Agents

    Science.gov (United States)

    ... either as public health or as non-public health antimicrobial agents. What is the difference between bacteriostats, sanitizers, disinfectants ... bacteria, however, there is considerable controversy surrounding their health benefits. The ... producing agents (Table of Antibacterials) have been used for many ...

  10. Study on the application of performance management to enhance administration of antibiotics and depress drug-resistant bacteria%绩效管理措施在加强抗菌药物管理控制院内耐药菌感染中的应用效果研究

    Institute of Scientific and Technical Information of China (English)

    周勇

    2012-01-01

    目的 探讨绩效管理措施对医院合理使用抗菌药物管理控制院内耐药菌感染的效果.方法 在抗菌药物使用管理中实施绩效管理措施,制定绩效考核标准,加强监管和教育,对耐药流行菌趋势分析,指导临床合理用药.结果 应用绩效管理措施后,抗菌药物使用率由59.01%下降为43.00%,院内感染率由9.00%下降为4.40%.流行菌中的耐药菌株比例明显降低.结论 应用绩效管理措施可以加强医院抗菌药物管理,控制医院耐药菌流行和提高医院感染管理科学水平.%OBJECTIVE To explore application of performance management to enhance administration of antibiotics and depress drug resistant bacteria in hospital. METHODS The performance management was applied in the proper administration of antibiotics usage. It included perfected regulation system, established the standard of the performance management, enhanced monitoring, analyzed the popular trend of drug-resistant bacteria, educated the medical staff and guided their appropriate antibiotics usage. RESULTS After taking the performance management in the administration of antibiotics, the rate of the antibiotics usage decreased from 59.01% to 43.00% and the rate of hospital infection decreased from 9.00% to 4.40%. The drug-resistant bacteria ratio obviously repressed in hospital. CONCLUSION Application of the performance management in the proper administration of antibiotics usage is effective.

  11. Antibiotics and the burn patient.

    Science.gov (United States)

    Ravat, François; Le-Floch, Ronan; Vinsonneau, Christophe; Ainaud, Pierre; Bertin-Maghit, Marc; Carsin, Hervé; Perro, Gérard

    2011-02-01

    Infection is a major problem in burn care and especially when it is due to bacteria with hospital-acquired multi-resistance to antibiotics. Moreover, when these bacteria are Gram-negative organisms, the most effective molecules are 20 years old and there is little hope of any new product available even in the distant future. Therefore, it is obvious that currently available antibiotics should not be misused. With this aim in mind, the following review was conducted by a group of experts from the French Society for Burn Injuries (SFETB). It examined key points addressing the management of antibiotics for burn patients: when to use or not, time of onset, bactericidia, combination, adaptation, de-escalation, treatment duration and regimen based on pharmacokinetic and pharmacodynamic characteristics of these compounds. The authors also considered antibioprophylaxis and some other key points such as: infection diagnosis criteria, bacterial inoculae and local treatment. French guidelines for the use of antibiotics in burn patients have been designed up from this work. PMID:20510518

  12. Minocycline: far beyond an antibiotic

    OpenAIRE

    Garrido-Mesa, N; Zarzuelo, A; Gálvez, J

    2013-01-01

    Minocycline is a second-generation, semi-synthetic tetracycline that has been in therapeutic use for over 30 years because of its antibiotic properties against both gram-positive and gram-negative bacteria. It is mainly used in the treatment of acne vulgaris and some sexually transmitted diseases. Recently, it has been reported that tetracyclines can exert a variety of biological actions that are independent of their anti-microbial activity, including anti-inflammatory and anti-apoptotic acti...

  13. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    Energy Technology Data Exchange (ETDEWEB)

    Tao Ran [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Ying Guangguo, E-mail: guangguo.ying@gmail.co [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Su Haochang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, 511 Kehua Street, Tianhe District, Guangzhou 510640 (China); Zhou Hongwei [Department of Environmental Health, School of Public Health and Tropical Medicine, Southern Medical University, 1838 North Guangzhou Street, Baiyun District, Guangzhou 510515 (China); Sidhu, Jatinder P.S. [CSIRO Land and Water, Queensland Bioscience Precinct, 306 Carmody Road, St Lucia QLD 4067 (Australia)

    2010-06-15

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  14. Detection of antibiotic resistance and tetracycline resistance genes in Enterobacteriaceae isolated from the Pearl rivers in South China

    International Nuclear Information System (INIS)

    This study investigated antibiotic resistance profiles and tetracycline resistance genes in Enterobacteriaceae family isolates from the Pearl rivers. The Enterobacteriaceae isolates were tested for susceptibility to seven antibiotics ampicillin, chloramphenicol, ciprofloxacin, levofloxacin, sulphamethoxazole/trimethoprim, tetracycline and trimethoprim. In Liuxi reservoir, with an exception to ampicillin resistant strains (11%) no other antibiotic resistance bacterial strains were detected. However, multiple drug resistance in bacterial isolates from the other sites of Pearl rivers was observed which is possibly due to sewage discharge and input from other anthropogenic sources along the rivers. Four tetracycline resistance genes tet A, tet B, tet C and tet D were detected in the isolates from the rivers. The genes tet A and tet B were widely detected with the detection frequencies of 43% and 40% respectively. Ciprofloxacin and levofloxacin resistant enteric bacteria were also isolated from the pig and duck manures which suggest a wider distribution of human specific drugs in the environment. This investigation provided a baseline data on antibiotic resistance profiles and tetracycline resistance genes in the Pearl rivers delta. - High rates of antibiotic resistance in Enterobacteriaceae from river water are attributed to wastewater contamination.

  15. Intensive Care Unit Infections and Antibiotic Use

    OpenAIRE

    Ayşegül Yeşilkaya; Hande Arslan

    2011-01-01

    Burn wound infections is the leading cause of morbidity and mortality in burn trauma patients. Although burn wound is sterile at the beginning, because of risk factors such as prolonged hospital stay, immunesuppression and burn affecting large body surface area, colonisation firstly with Staphylococcus aureus and then Pseudomonas aeruginosa will occur later. Delay in wound closure and treatment with broad-spectrum antibiotic will result wound colonisation with antibiotic-resistant bacteria. T...

  16. Antibiotic resistance genes in the environment

    Directory of Open Access Journals (Sweden)

    Jianqiang Su

    2013-07-01

    Full Text Available Antibiotic resistance and its spread in bacteria are topics of great importance in global research. In this paper, we review recent progress in understanding sources, dissemination, distribution and discovery of novel antibiotics resistance genes (ARGs in the environment. Bacteria exhibiting intrinsic resistance and antibiotic resistant bacteria in feces from humans and animals are the major sources of ARGs occurring in the environment. A variety of novel ARGs have been discovered using functional metagenomics. Recently, the long-term overuse of antibotics in drug therapy and animal husbandry has led to an increase in diversity and abundance of ARGs, causing the environmental dissemination of ARGs in aquatic water, sewage treatmentplants, rivers, sediment and soil. Future research should focus on dissemination mechanisms of ARGs, the discovery of novel ARGs and their resistant mechanisms, and the establishment of environmental risk assessment systems for ARGs.

  17. Antibiotic research and development: business as usual?

    Science.gov (United States)

    Harbarth, S; Theuretzbacher, U; Hackett, J

    2015-01-01

    The global burden of antibiotic resistance is tremendous and, without new anti-infective strategies, will continue to increase in the coming decades. Despite the growing need for new antibiotics, few pharmaceutical companies today retain active antibacterial drug discovery programmes. One reason is that it is scientifically challenging to discover new antibiotics that are active against the antibiotic-resistant bacteria of current clinical concern. However, the main hurdle is diminishing economic incentives. Increased global calls to minimize the overuse of antibiotics, the cost of meeting regulatory requirements and the low prices of currently marketed antibiotics are strong deterrents to antibacterial drug development programmes. New economic models that create incentives for the discovery of new antibiotics and yet reconcile these incentives with responsible antibiotic use are long overdue. DRIVE-AB is a €9.4 million public-private consortium, funded by the EU Innovative Medicines Initiative, that aims to define a standard for the responsible use of antibiotics and to develop, test and recommend new economic models to incentivize investment in producing new anti-infective agents. PMID:25673635

  18. Antibiotic treatments and microbes in the gut.

    Science.gov (United States)

    Macfarlane, Sandra

    2014-04-01

    Antibiotic therapies are important in combating disease-causing microorganisms and maintaining host health. It is widely accepted that exposure of the gut microbiota to antibiotics can lead to decreased susceptibility and the development of multi-drug-resistant disease-causing organisms, which can be a major clinical problem. It is also important to consider that antibiotics not only target pathogenic bacteria in the gut, but also can have damaging effects on the ecology of commensal species. This can reduce intrinsic colonization resistance and contribute to problems with antibiotic resistance, including lateral transfer of resistance genes. Our knowledge of the impact of antibiotic treatment on the ecology of the normal microbiota has been increased by recent advances in molecular methods and use of in vitro model systems to investigate the impact of antibiotics on the biodiversity of gut populations and the spread of antibiotic resistance. These highlight the need for more detailed structural and functional information on the long-term antibiotic-associated alterations in the gut microbiome, and spread of antibiotic resistance genes. This will be crucial for the development of strategies, such as targeted therapeutics, probiotics, prebiotics and synbiotics, to prevent perturbations in the gut microbiota, the restoration of beneficial species and improvements in host health.

  19. Antibiotics that target protein synthesis.

    Science.gov (United States)

    McCoy, Lisa S; Xie, Yun; Tor, Yitzhak

    2011-01-01

    The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine. PMID:21957007

  20. The 'liaisons dangereuses' between iron and antibiotics.

    Science.gov (United States)

    Ezraty, Benjamin; Barras, Frédéric

    2016-05-01

    The decline in the rate of new antibiotic discovery is of growing concern, and new antibacterial strategies must now be explored. This review brings together research in two fields (metals in biology and antibiotics) in the hope that collaboration between scientists working in these two areas will lead to major advances in understanding and the development of new approaches to tackling microbial pathogens. Metals have been used as antiseptics for centuries. In this review, we focus on iron, an essential trace element that can nevertheless be toxic to bacteria. We review the many situations in which iron and antibiotics have combinatorial effects when used together. Understanding the molecular relationships between iron and antibiotics, from pure chemistry to gene reprogramming via biochemical competition, is important not only to increase basic knowledge, but also for the development of treatments against pathogens, with a view to optimizing antibiotic efficacy. PMID:26945776

  1. The 'liaisons dangereuses' between iron and antibiotics.

    Science.gov (United States)

    Ezraty, Benjamin; Barras, Frédéric

    2016-05-01

    The decline in the rate of new antibiotic discovery is of growing concern, and new antibacterial strategies must now be explored. This review brings together research in two fields (metals in biology and antibiotics) in the hope that collaboration between scientists working in these two areas will lead to major advances in understanding and the development of new approaches to tackling microbial pathogens. Metals have been used as antiseptics for centuries. In this review, we focus on iron, an essential trace element that can nevertheless be toxic to bacteria. We review the many situations in which iron and antibiotics have combinatorial effects when used together. Understanding the molecular relationships between iron and antibiotics, from pure chemistry to gene reprogramming via biochemical competition, is important not only to increase basic knowledge, but also for the development of treatments against pathogens, with a view to optimizing antibiotic efficacy.

  2. Antibiotic resistance in ocular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-01-01

    Full Text Available Bacterial infections of the eye are common and ophthalmologists are spoilt for choice with a variety of antibiotics available in the market. Antibiotics can be administered in the eye by a number of routes; topical, subconjunctival, subtenon and intraocular. Apart from a gamut of eye drops available, ophthalmologists also have the option of preparing fortified eye drops from parenteral formulations, thereby, achieving high concentrations; often much above the minimum inhibitory concentration (MIC, of antibiotics in ocular tissues during therapy. Antibiotic resistance among ocular pathogens is increasing in parallel with the increase seen over the years in bacteria associated with systemic infections. Although it is believed that the rise in resistant ocular bacterial isolates is linked to the rise in resistant systemic pathogens, recent evidence has correlated the emergence of resistant bacteria in the eye to prior topical antibiotic therapy. One would like to believe that either of these contributes to the emergence of resistance to antibiotics among ocular pathogens. Until recently, ocular pathogens resistant to fluoroquinolones have been minimal but the pattern is currently alarming. The new 8-fluoroquinolone on the scene-besifloxacin, is developed exclusively for ophthalmic use and it is hoped that it will escape the selective pressure for resistance because of lack of systemic use. In addition to development of new antibacterial agents, the strategies to halt or control further development of resistant ocular pathogens should always include judicious use of antibiotics in the treatment of human, animal or plant diseases.

  3. Influence of Antibiotics Added in Milk over Yogurth Quality

    Directory of Open Access Journals (Sweden)

    Cornelia Vintila

    2010-10-01

    Full Text Available Large spectrum antibiotics used in different cow diseases leads to their release in milk altering its proprieties during processing. Knowing the inhibitory effect of antibiotics upon lactic bacteria development and multiplying we followed the effect of gentamycin, a large spectrum antibiotic added in different doses in milk used for yogurth processing. In our research, besides the effect of antibiotica we followed also the influence of milk fat content upon milk clotting time, while antibiotics added in milk incease the clotting time of yogurth. Clotting density deceases proportional with the dosis of antibiotics added to milk.

  4. Bacteriocins - exploring alternatives to antibiotics in mastitis treatment.

    Science.gov (United States)

    Pieterse, Reneé; Todorov, Svetoslav D

    2010-07-01

    Mastitis is considered to be the most costly disease affecting the dairy industry. Management strategies involve the extensive use of antibiotics to treat and prevent this disease. Prophylactic dosages of antibiotics used in mastitis control programmes could select for strains with resistance to antibiotics. In addition, a strong drive towards reducing antibiotic residues in animal food products has lead to research in finding alternative antimicrobial agents. In this review we have focus on the pathogenesis of the mastitis in dairy cows, existing antibiotic treatments and possible alternative for application of bacteriocins from lactic acid bacteria in the treatment and prevention of this disease.

  5. Bacteriocins: exploring alternatives to antibiotics in mastitis treatment

    Directory of Open Access Journals (Sweden)

    Reneé Pieterse

    2010-10-01

    Full Text Available Mastitis is considered to be the most costly disease affecting the dairy industry. Management strategies involve the extensive use of antibiotics to treat and prevent this disease. Prophylactic dosages of antibiotics used in mastitis control programmes could select for strains with resistance to antibiotics. In addition, a strong drive towards reducing antibiotic residues in animal food products has lead to research in finding alternative antimicrobial agents. In this review we have focus on the pathogenesis of the mastitis in dairy cows, existing antibiotic treatments and possible alternative for application of bacteriocins from lactic acid bacteria in the treatment and prevention of this disease.

  6. Antibiotic resistance: from Darwin to Lederberg to Keynes.

    Science.gov (United States)

    Amábile-Cuevas, Carlos F

    2013-04-01

    The emergence and spread of antibiotic-resistant bacteria reflects both, a gradual, completely Darwinian evolution, which mostly yields slight decreases in antibiotic susceptibility, along with phenotypes that are not precisely characterized as "resistance"; and sudden changes, from full susceptibility to full resistance, which are driven by a vast array of horizontal gene transfer mechanisms. Antibiotics select for more than just antibiotic resistance (i.e., increased virulence and enhanced gene exchange abilities); and many non-antibiotic agents or conditions select for or maintain antibiotic resistance traits as a result of a complex network of underlying and often overlapping mechanisms. Thus, the development of new antibiotics and thoughtful, integrated anti-infective strategies is needed to address the immediate and long-term threat of antibiotic resistance. Since the biology of resistance is complex, these new drugs and strategies will not come from free-market forces, or from "incentives" for pharmaceutical companies.

  7. Distribution and antibiotic resistance of pathogenic bacteria isolated from blood samples of neonate in anyang%新生儿血流感染病原菌的分布及耐药性检测

    Institute of Scientific and Technical Information of China (English)

    张红升

    2011-01-01

    OBJECTIVE To explore the distribution of neonatal septicemia pathogenic bacteria and drug -sensitive situation for a reasonable choice of antibiotics. METHODS VersaTREK-240 automated blood culture system was applied for the culture of blood samples and ARIS 2X micro-analysis system was applied for bacteriological identification and the drug sensitivity analysis was performed. RESULTS A total of 159 strains of pathogens were isolated from 890 cases of blood culture, among which Gram-positive cocci accounted for 94.97%, Gram-negative bacilli accounted for 4.40%; fungi accounted for 0. 63%. CNS was the major pathogen, followed by S. aureuse and Streptococcus. The drug resistant rates of Staphylococcus to PEN, AMP, OXA and ERY were high.Vancomycin-resistant strains were not found in Gram-positive bacteria. The detection rates of methicillin-resistant Staphylococcus in S. epi, S. aureuse, S. hae, S. hom and S. war were 80. 36% ,68.42% ,90. 00%, 81.82% and 54.55 %, respectively Inducible clindamycin resistance detection rate of S. epi, S. aur, S. hae、S. hom and S. war in the proportion respectively 61. 11%, 65.00%, 64.29%, 42.86 % and 50.00%. CONCLUSION CNS and S. aureuse are the major hospital pathogens causing the neonatal sepsis. To detect the pathogens from the blood culture and their drug resistance is an important reference for the clinical diagnosis and treatment. Carrying out D-test to detect the drug resistance of staphylococcus to erythromycin and clindamycin can help the physicians to select the right type of lincomycin and macrolide antibiotics.%目的 探讨新生儿败血症的病原菌分布及耐药性,以合理地选择抗菌药物.方法 采用先德VersaTREK240全自动血培养仪培养血样本,并以ARIS 2X微生物分析系统进行细菌鉴定及药敏分析.结果 890份血培养分离出病原菌159株,其中革竺阳性球菌占94.97%,革兰阴性杆菌占4.40%,真菌占0.63%;以凝固酶阴性葡萄球菌为主,其

  8. Facts about Antibiotic Resistance

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  9. Antibiotic / Antimicrobial Resistance Glossary

    Science.gov (United States)

    ... Recommendations Pediatric Treatment Recommendations Inpatient Healthcare Professionals Community Pharmacists Continuing Education & Curriculum Opportunities Weighing in on Antibiotic Resistance Improving Prescribing Outpatient Antibiotic Stewardship Interventions That Work Systematic Reviews ...

  10. Understanding Antibiotic Use in Minya District, Egypt: Physician and Pharmacist Prescribing and the Factors Influencing Their Practices

    OpenAIRE

    Dooling, Kathleen L.; Amr Kandeel; Hicks, Lauri A.; Waleed El-Shoubary; Khaled Fawzi; Yasser Kandeel; Ahmad Etman; Anna Leena Lohiniva; Maha Talaat

    2014-01-01

    Overuse of antibiotics has contributed to the emergence of antibiotic-resistant bacteria globally. In Egypt, patients can purchase antibiotics without a prescription, and we hypothesized frequent inappropriate antibiotic prescribing and dispensing. We interviewed physicians (n = 236) and pharmacists (n = 483) and conducted focus groups in Minya, Egypt, to assess attitudes and practices regarding antibiotic prescribing for outpatient acute respiratory infections (ARI). Antibiotics were reporte...

  11. Recent government regulations in the United States seek to ensure the effectiveness of antibiotics by limiting their agricultural use.

    Science.gov (United States)

    Centner, Terence J

    2016-09-01

    The development of bacteria resistant to antibiotics is viewed as a medical health threat. Because thousands of people die every year due to antibiotic-resistant bacteria, efforts are underway to reduce antibiotic usage which in turn will reduce the development of antibiotic-resistant bacteria. In the United States, the use of antibiotics in the production of food animals to enhance animal growth has been identified as contributing to resistance. In 2015, a veterinary feed directive was adopted by the U.S. federal government prohibiting nontherapeutic uses of antibiotics in food animals that should reduce usage. The continued usage of antibiotics by producers for preventing disease may mean the directive is insufficient to reduce nontherapeutic antibiotic administration. This may lead some consumers to seek meat products from animals raised without antibiotics. A governmentally-sponsored labeling program could encourage reduction in antibiotic usage. PMID:27182666

  12. Future of enteral nutrition.

    OpenAIRE

    Silk, D. B.

    1986-01-01

    Although there has been agreement that enteral nutrition remains an excellent means of providing nutritional support to malnourished patients with normal or near normal gastrointestinal function, it is clear that areas of controversy do exist, and attention needs to be directed towards these in the future.

  13. Inorganic nanoparticles engineered to attack bacteria.

    Science.gov (United States)

    Miller, Kristen P; Wang, Lei; Benicewicz, Brian C; Decho, Alan W

    2015-11-01

    Antibiotics were once the golden bullet to constrain infectious bacteria. However, the rapid and continuing emergence of antibiotic resistance (AR) among infectious microbial pathogens has questioned the future utility of antibiotics. This dilemma has recently fueled the marriage of the disparate fields of nanochemistry and antibiotics. Nanoparticles and other types of nanomaterials have been extensively developed for drug delivery to eukaryotic cells. However, bacteria have very different cellular architectures than eukaryotic cells. This review addresses the chemistry of nanoparticle-based antibiotic carriers, and how their technical capabilities are now being re-engineered to attack, kill, but also non-lethally manipulate the physiologies of bacteria. This review also discusses the surface functionalization of inorganic nanoparticles with small ligand molecules, polymers, and charged moieties to achieve drug loading and controllable release.

  14. 南京市4个污水处理厂的活性污泥中细菌的分离鉴定和抗生素耐药性分析%Isolation and Identification of Bacteria in the Activated Sludge from Four Sewage Treatment Plants in Nanjing City and Its Antibiotic Resistance Analysis

    Institute of Scientific and Technical Information of China (English)

    葛峰; 郭坤; 周广灿; 张会娟; 刘济宁; 戴亦军

    2012-01-01

    通过16S rDNA序列分析对南京CN、CE、JN和JM这4个污水处理厂的活性污泥中分离的细菌进行鉴定,采用Kirby-Bauer纸片琼脂扩散法分析细菌的抗生素耐药性,目的是阐明该地区污水处理厂活性污泥中细菌抗生素耐药性现状,探索污水及污泥的潜在环境风险.4个污水处理厂分别分离到7、9、8和11株菌落形态不同的细菌,上述35株细菌分属25个种,17个属.抗生素耐药性分析显示,97.1%的菌株具有抗生素耐药性,80%菌株具有多重耐药性.分离菌株对氨苄西林、卡那霉素、氯霉素、链霉素、庆大霉素、四环素、红霉素和大观霉素的耐药率分别为71.4%、37.1%、37.1%、57.1%、34.3%、68.6%、94.3%和65.7%.结果表明活性污泥中细菌耐药性严重;不同菌株间的耐药性分析显示,危害水产养殖业的病原菌气单胞菌具有严重的多重耐药性,所有芽孢杆菌对氯霉素、链霉素和庆大霉素敏感;污水处理厂应加强出水的消杀工作,避免二次污染.%Bacteria were isolated from the activated sludge of CN,CE,JN and JM Sewage Treatment Plants(STPs) in Nanjing city and identified by 16S rDNA sequence analysis.The antibiotic resistance analysis of the isolated bacteria was conducted by Kirby-Bauer Disc Agar Diffusion Method.The objective of this study is to clarify the current state of bacteria antibiotic resistance from the four STPs and analyze the potential environmental risk of the produced waste water and the sludge.The 7,9,8 and 11 bacterial strains with different morphology were respectively isolated from the above four sample sites,which belonged to 25 species and 17 genera.Antibiotic resistance analysis indicated that 97.1% of isolates had antibiotic resistance and 80% of isolates had multi-antibiotic resistance.The drug resistance rates were 71.4%,37.1%,37.1%,57.1%,34.3%,68.6%,94.3% and 65.7% of ampicillin(AM),kanamycin(KAN),chloromycetin

  15. Genetically disparate Fayoumi chicken lines show different response to avian Necrotic Enteritis

    Science.gov (United States)

    Necrotic enteritis (NE) has reemerged as a significant problem as a result of growing restrictions of antibiotics in agricultural animal production and increasing concerns over antibiotic resistance in human pathogens. To enhance our understanding of host-pathogen immunobiology in NE, transcriptomi...

  16. The drinking water treatment process as a potential source of affecting the bacterial antibiotic resistance.

    Science.gov (United States)

    Bai, Xiaohui; Ma, Xiaolin; Xu, Fengming; Li, Jing; Zhang, Hang; Xiao, Xiang

    2015-11-15

    Two waterworks, with source water derived from the Huangpu or Yangtze River in Shanghai, were investigated, and the effluents were plate-screened for antibiotic-resistant bacteria (ARB) using five antibiotics: ampicillin (AMP), kanamycin (KAN), rifampicin (RFP), chloramphenicol (CM) and streptomycin (STR). The influence of water treatment procedures on the bacterial antibiotic resistance rate and the changes that bacteria underwent when exposed to the five antibiotics at concentration levels ranging from 1 to 100 μg/mL were studied. Multi-drug resistance was also analyzed using drug sensitivity tests. The results indicated that bacteria derived from water treatment plant effluent that used the Huangpu River rather than the Yangtze River as source water exhibited higher antibiotic resistance rates against AMP, STR, RFP and CM but lower antibiotic resistance rates against KAN. When the antibiotic concentration levels ranged from 1 to 10 μg/mL, the antibiotic resistance rates of the bacteria in the water increased as water treatment progressed. Biological activated carbon (BAC) filtration played a key role in increasing the antibiotic resistance rate of bacteria. Chloramine disinfection can enhance antibiotic resistance. Among the isolated ARB, 75% were resistant to multiple antibiotics. Ozone oxidation, BAC filtration and chloramine disinfection can greatly affect the relative abundance of bacteria in the community.

  17. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  18. U.S. Officials Confirm Superbug Resistant to All Antibiotics

    Science.gov (United States)

    ... E. coli was genetically resistant to the drug colistin. Colistin, an older antibiotic, fell out of favor in ... if carbapenem-resistant bacteria also gain resistance to colistin, it could leave doctors with no treatment options ...

  19. Topical and oral antibiotics for acne vulgaris.

    Science.gov (United States)

    Del Rosso, James Q

    2016-06-01

    Antibiotics, both oral and topical, have been an integral component of the management of acne vulgaris (AV) for approximately 6 decades. Originally thought to be effective for AV due to their ability to inhibit proliferation of Propionibacterium acnes, it is now believed that at least some antibiotics also exert anti-inflammatory effects that provide additional therapeutic benefit. To add, an increase in strains of P acnes and other exposed bacteria that are less sensitive to antibiotics used to treat AV have emerged, with resistance directly correlated geographically with the magnitude of antibiotic use. Although antibiotics still remain part of the therapeutic armamentarium for AV treatment, current recommendations support the following when used to treat AV: 1) monotherapy use should be avoided; 2) use benzoyl peroxide concomitantly to reduce emergence of resistant P acnes strains; 3) oral antibiotics should be used in combination with a topical regimen for moderate-to-severe inflammatory AV; and 4) use oral antibiotics over a limited duration to achieve control of inflammatory AV with an exit plan in place to discontinue their use as soon as possible. When selecting an oral antibiotic to treat AV, potential adverse effects are important to consider. PMID:27416309

  20. Topical and oral antibiotics for acne vulgaris.

    Science.gov (United States)

    Del Rosso, James Q

    2016-06-01

    Antibiotics, both oral and topical, have been an integral component of the management of acne vulgaris (AV) for approximately 6 decades. Originally thought to be effective for AV due to their ability to inhibit proliferation of Propionibacterium acnes, it is now believed that at least some antibiotics also exert anti-inflammatory effects that provide additional therapeutic benefit. To add, an increase in strains of P acnes and other exposed bacteria that are less sensitive to antibiotics used to treat AV have emerged, with resistance directly correlated geographically with the magnitude of antibiotic use. Although antibiotics still remain part of the therapeutic armamentarium for AV treatment, current recommendations support the following when used to treat AV: 1) monotherapy use should be avoided; 2) use benzoyl peroxide concomitantly to reduce emergence of resistant P acnes strains; 3) oral antibiotics should be used in combination with a topical regimen for moderate-to-severe inflammatory AV; and 4) use oral antibiotics over a limited duration to achieve control of inflammatory AV with an exit plan in place to discontinue their use as soon as possible. When selecting an oral antibiotic to treat AV, potential adverse effects are important to consider.

  1. Antibiotic Susceptibilities of Acinetobacter Baumanii Strains Isolated from Clinical Samples

    OpenAIRE

    Harun Aðca

    2013-01-01

         Aim :  In this study it was aimed to investigate the antibiotic susceptibilities of Acinetobacter baumanii strains isolated from various clinical samples sent to Tavsanli State Hospital Microbiology Laboratory retrospectively. Material and Method: All of the cultures were examined for the agent and antibiotic susceptibilities. For the identification of bacteria, various chemical tests and BBL Crystal E/NF (Beckton Dickinson, ABD) system was used. Antibiotic susce...

  2. Some aspects of genetic control of antibiotic biosynthesis in Streptomyces

    OpenAIRE

    М. P. Teplitskaya; I. E. Sokolova

    2005-01-01

    These work contain a review of basic hypotheses and experimental information in relation to the problem of antibiotic synthesis regulation by the bacteria of the Streptomyces family. Data on cluster organization of antibiotics biosynthesis genes in these microorganisms were generalized. The examples of the positive and negative specific control of antibiotic production genes were resulted. Except for it, proofs that confirm participation of a few genes of more high level in the process of ini...

  3. Ecology of Anti-Biofilm Agents I: Antibiotics versus Bacteriophages

    OpenAIRE

    Abedon, Stephen T.

    2015-01-01

    Bacteriophages, the viruses that infect bacteria, have for decades been successfully used to combat antibiotic-resistant, chronic bacterial infections, many of which are likely biofilm associated. Antibiotics as anti-biofilm agents can, by contrast, be inefficacious against even genetically sensitive targets. Such deficiencies in usefulness may result from antibiotics, as naturally occurring compounds, not serving their producers, in nature, as stand-alone disruptors of mature biofilms. Anti-...

  4. Transmission of antibiotic resistance from animals to humans

    NARCIS (Netherlands)

    Huijbers, P.M.C.

    2016-01-01

    Huijbers, P.M.C. (2016). Transmission of antibiotic resistance from animals to humans: Broilers as a reservoir of ESBL-producing bacteria. PhD thesis, Wageningen University, Wageningen, the Netherlands. Antibiotic resistance in animals becomes a public health issue when there is transmission of anti

  5. Antibiotic resistance in urban aquatic environments: can it be controlled?

    OpenAIRE

    Manaia, Célia; Macedo, Gonçalo; Fatta-Kassinos, Despo; Nunes, Olga

    2016-01-01

    Over the last decade, numerous evidences have contributed to establish a link between the natural and humanimpacted environments and the growing public health threat that is the antimicrobial resistance. In the environment, in particular in areas subjected to strong anthropogenic pressures, water plays a major role on the transformation and transport of contaminants including antibiotic residues, antibioticresistant bacteria, and antibiotic resistance genes. Therefore, ...

  6. Semi-synthesis of nisin-based peptide antibiotics

    NARCIS (Netherlands)

    Slootweg, J.C.

    2013-01-01

    There is a growing need for novel antibiotics since there are more and more cases of infections caused by resistant bacteria. Possible novel antibiotics are antimicrobial peptides, especially the lantibiotic nisin. Lantibiotics are ribosomally synthesized cationic peptides that contain several unnat

  7. Evaluating antibiotic resistance genes in soils with applied manures

    Science.gov (United States)

    Antibiotics are commonly used in livestock production to promote growth and combat disease. Recent studies have shown the potential for spread of antibiotic resistance genes (ARG) to the environment following application of livestock manures. In this study, concentrations of bacteria with ARG in soi...

  8. Prophylaxis for infective endocarditis: antibiotic sensitivity of dental plaque.

    OpenAIRE

    MacFarlane, T W; McGowan, D A; Hunter, K.; MacKenzie, D

    1983-01-01

    The antibiotic sensitivity pattern of bacteria isolated from bacteraemia after dental extraction was compared with that of bacteria isolated from dental plaque samples from the same patient. The results supported the current practice of using penicillin and erythromycin empirically for prophylaxis. The prediction of the most appropriate antibiotic for prophylaxis using dental plaque samples was most accurate when the minimum inhibitory concentration (MIC) of plaque isolates were used. It appe...

  9. Antibiotics in Canadian poultry productions and anticipated alternatives.

    Science.gov (United States)

    Diarra, Moussa S; Malouin, François

    2014-01-01

    The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics (growth promoters) in feed need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily be spread within microbial communities. In Canada, poultry production involves more than 2600 regulated chicken producers who have access to several antibiotics approved as feed additives for poultry. Feed recipes and mixtures vary greatly geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While some reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens) have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno-stimulatory activities. PMID:24987390

  10. Antibiotics in Canadian poultry productions and anticipated alternatives

    Directory of Open Access Journals (Sweden)

    Moussa Sory Diarra

    2014-06-01

    Full Text Available The use of antibiotics in food-producing animals has significantly increased animal health by lowering mortality and the incidence of diseases. Antibiotics also have largely contributed to increase productivity of farms. However, antibiotic usage in general and relevance of non-therapeutic antibiotics in feed (growth promoters need to be reevaluated especially because bacterial pathogens of humans and animals have developed and shared a variety of antibiotic resistance mechanisms that can easily spread within microbial communities. In Canada, poultry production involves more than 2,600 regulated chicken producers. There are several antibiotics approved as feed additives available for poultry farmers. Feed recipes and mixtures greatly vary geographically and from one farm to another, making links between use of a specific antibiotic feed additive and production yields or selection of specific antibiotic-resistant bacteria difficult to establish. Many on-farm studies have revealed the widespread presence of antibiotic-resistant bacteria in broiler chickens. While sporadic reports linked the presence of antibiotic-resistant organisms to the use of feed supplemented with antibiotics, no recent studies could clearly demonstrate the benefit of antimicrobial growth promoters on performance and production yields. With modern biosecurity and hygienic practices, there is a genuine concern that intensive utilization of antibiotics or use of antimicrobial growth promoters in feed might no longer be useful. Public pressure and concerns about food and environmental safety (antibiotic residues, antibiotic-resistant pathogens have driven researchers to actively look for alternatives to antibiotics. Some of the alternatives include pre- and probiotics, organic acids and essential oils. We will describe here the properties of some bioactive molecules, like those found in cranberry, which have shown interesting polyvalent antibacterial and immuno

  11. Effect analysis of Bacillus subtilis two (Live) enteric-coated capsules combined with Bacillus licheniformis capsule in the treatment of antibiotic associated diarrhea%枯草杆菌二联活菌肠溶胶囊联合地衣芽胞杆菌活菌胶囊治疗老年抗生素相关性腹泻的效果分析

    Institute of Scientific and Technical Information of China (English)

    袁宏伟

    2015-01-01

    Objective To explore the clinical effect of Bacillus subtilis two (Live) enteric-coated capsules combined with Bacillus licheniformis capsule in the treatment of antibiotic associated diarrhea. Methods 120 patients with an-tibiotic associated diarrhea in our hospital from February 2013 to February 2014 were selected,and were divided into three groups based on random number table,Bacillus subtilis two (Live) enteric-coated capsules group,Bacillus licheni-formis capsule group,and joint application of Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheni-formis capsule group.The therapeutic effects among three groups were compared. Results The cure rate of joint applica-tion of Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheniformis capsule group was higher than that of Bacillus subtilis two (Live) enteric-coated capsules group and Bacillus licheniformis capsule group,the differ-ence was significant (χ2=8.26,P=0.02).The number of diarrhea in healed patients of joint application of Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheniformis capsule group was less than that of Bacillus subtilis two (Live) enteric-coated capsules group and Bacillus licheniformis capsule group,the difference was significant (F=91.03, P=0.00). Conclusion Both Bacillus subtilis two (Live) enteric-coated capsules and Bacillus licheniformis capsule are classified into probiotics,and have some effect on treating senile associated diarrhea caused by antibiotics.Joint applica-tion of the two drugs displays remarkable effect on treating antibiotic associated diarrhea,and plays a certain assistant role in clinical treatment.%目的:探讨枯草杆菌二联活菌肠溶胶囊联合地衣芽胞杆菌活菌胶囊对老年抗生素相关性腹泻的临床疗效。方法收集2013年2月~2014年2月本院老年抗生素相关性腹泻患者120例,根据随机数字表法分为枯草杆菌二联活菌肠溶胶囊组、地衣芽胞杆

  12. Occurrence of yeasts, enterococci and other enteric bacteria in subgingival biofilm of HIV-positive patients with chronic gingivitis and necrotizing periodontitis Ocorrência de leveduras, enterococos e outras bactérias entéricas no biofilme subgengival de pacientes HIV-positivos com gengivite crônica e periodontite necrosante

    Directory of Open Access Journals (Sweden)

    Elerson Gaetti-Jardim Júnior

    2008-06-01

    Full Text Available The purpose of this study was to determine the prevalence of enteric bacteria and yeasts in biofilm of 80 HIV-positive patients with plaque-associated gingivitis or necrotizing periodontitis. Patients were subjected to extra, intra oral and radiographic examinations. The oral hygiene, bleeding on probing, gingival conditions, and attachment loss were evaluated. Clinical specimens were collected from gingival crevices or periodontal pockets, transferred to VMGA III, diluted and transferred to Sabouraud Dextrose agar with 100 µg/ml of chloramphenicol, peptone water, EVA broth, EMB agar, SS agar, Bile esculin agar and Brilliant green agar. Isolation of yeasts was carried out at room temperature, for 3-7 days; and for the isolation of enteric microorganisms plates were incubated at 37ºC, for 24-48 h. The yeasts identification was performed according to the carbon and nitrogen assimilation, fermentation of carbohydrates and germ tube formation. Bacteria were identified according to their colonial and cellular morphologies and biochemical tests. Yeasts were identified as Candida albicans and its occurrence was more common in patients with CD4+ below 200/mm³ and was affected by the extension of periodontal involvement (P = 0.0345. Enteric bacteria recovered from clinical specimens were identified as Enterobacter sakazakii, Enterobacter cloacae, Serratia liquefaciens, Klebsiella oxytoca and Enterococcus sp. Enterobacteriaceae and enterococci were detected in 32.5% of clinical samples from patients with necrotizing periodontitis. In conclusion, non-oral pathogenic bacteria and C. albicans were more prevalent in periodontal sites of HIV-positive patients with necrotizing periodontitis and chronic gingivitis.O objetivo desse estudo foi avaliar a ocorrência de bactérias entéricas e leveduras no biofilme subgengival de pacientes HIV-positivos com gengivite crônica ou periodontite necrosante. Os pacientes foram submetidos a exame clínico e radiogr

  13. Colistin : Revival of an Old Polymyxin Antibiotic

    NARCIS (Netherlands)

    Dijkmans, Anneke C.; Wilms, Erik B.; Kamerling, Ingrid M. C.; Birkhoff, Willem; Ortiz-Zacarias, Natalia V.; van Nieuwkoop, Cees; Verbrugh, Henri A.; Touw, Daan J.

    2015-01-01

    Colistin (polymyxin E) is a positively charged deca-peptide antibiotic that disrupts the integrity of the outer membrane of the cell wall of gram-negative bacteria by binding to the lipid A moiety of lipopolysaccharides, resulting in cell death. The endotoxic activity of lipopolysaccharides is simul

  14. Antibiotics for the treatment of rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Ogrendik M

    2013-12-01

    Full Text Available Mesut OgrendikDivision Physical Therapy and Rheumatology, Nazilli State Hospital, Nazilli, TurkeyAbstract: Antibiotic treatment for rheumatoid arthritis (RA commenced in the 1930s with the use of sulfasalazine. Later, tetracyclines were successfully used for the treatment of RA. In double-blind and randomized studies, levofloxacin and macrolide antibiotics (including clarithromycin and roxithromycin were also shown to be effective in the treatment of RA. There have been several reports in the literature indicating that periodontal pathogens are a possible cause of RA. Oral bacteria are one possible cause of RA. In this review, we aimed to investigate the effects of different antibiotics in RA treatment.Keywords: oral bacteria, treatment, disease-modifying antirheumatic drugs, periodontitis

  15. "Practical knowledge" and perceptions of antibiotics and antibiotic resistance among drugsellers in Tanzanian private drugstores

    Directory of Open Access Journals (Sweden)

    Tomson Göran

    2010-09-01

    Full Text Available Abstract Background Studies indicate that antibiotics are sold against regulation and without prescription in private drugstores in rural Tanzania. The objective of the study was to explore and describe antibiotics sale and dispensing practices and link it to drugseller knowledge and perceptions of antibiotics and antibiotic resistance. Methods Exit customers of private drugstores in eight districts were interviewed about the drugstore encounter and drugs bought. Drugsellers filled in a questionnaire with closed- and open-ended questions about antibiotics and resistance. Data were analyzed using mixed quantitative and qualitative methods. Results Of 350 interviewed exit customers, 24% had bought antibiotics. Thirty percent had seen a health worker before coming and almost all of these had a prescription. Antibiotics were dispensed mainly for cough, stomachache, genital complaints and diarrhea but not for malaria or headache. Dispensed drugs were assessed as relevant for the symptoms or disease presented in 83% of all cases and 51% for antibiotics specifically. Non-prescribed drugs were assessed as more relevant than the prescribed. The knowledge level of the drugseller was ranked as high or very high by 75% of the respondents. Seventy-five drugsellers from three districts participated. Seventy-nine percent stated that diseases caused by bacteria can be treated with antibiotics but 24% of these also said that antibiotics can be used for treating viral disease. Most (85% said that STI can be treated with antibiotics while 1% said the same about headache, 4% general weakness and 3% 'all diseases'. Seventy-two percent had heard of antibiotic resistance. When describing what an antibiotic is, the respondents used six different kinds of keywords. Descriptions of what antibiotic resistance is and how it occurs were quite rational from a biomedical point of view with some exceptions. They gave rise to five categories and one theme: Perceiving antibiotic

  16. Emergence and dissemination of antibiotic resistance: A global problem

    Directory of Open Access Journals (Sweden)

    R Choudhury

    2012-01-01

    Full Text Available Antibiotic resistance is a major problem in clinical health settings. Interestingly the origin of many of antibiotic resistance mechanisms can be traced back to non-pathogenic environmental organisms. Important factors leading to the emergence and spread of antibiotic resistance include absence of regulation in the use of antibiotics, improper waste disposal and associated transmission of antibiotic resistance genes in the community through commensals. In this review, we discussed the impact of globalisation on the transmission of antibiotic resistance genes in bacteria through immigration and export/import of foodstuff. The significance of surveillance to define appropriate use of antibiotics in the clinic has been included as an important preventive measure.

  17. Manipulation of the Quorum Sensing Signal AI-2 Affects the Antibiotic-Treated Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Jessica Ann Thompson

    2015-03-01

    Full Text Available The mammalian gut microbiota harbors a diverse ecosystem where hundreds of bacterial species interact with each other and their host. Given that bacteria use signals to communicate and regulate group behaviors (quorum sensing, we asked whether such communication between different commensal species can influence the interactions occurring in this environment. We engineered the enteric bacterium, Escherichia coli, to manipulate the levels of the interspecies quorum sensing signal, autoinducer-2 (AI-2, in the mouse intestine and investigated the effect upon antibiotic-induced gut microbiota dysbiosis. E. coli that increased intestinal AI-2 levels altered the composition of the antibiotic-treated gut microbiota, favoring the expansion of the Firmicutes phylum. This significantly increased the Firmicutes/Bacteroidetes ratio, to oppose the strong effect of the antibiotic, which had almost cleared the Firmicutes. This demonstrates that AI-2 levels influence the abundance of the major phyla of the gut microbiota, the balance of which is known to influence human health.

  18. Antibiotics in Wastewater of a Rural and an Urban Hospital before and after Wastewater Treatment, and the Relationship with Antibiotic Use—A One Year Study from Vietnam

    OpenAIRE

    Lien, La Thi Quynh; Hoa, Nguyen Quynh; Chuc, Nguyen Thi Kim; Thoa, Nguyen Thi Minh; Phuc, Ho Dang; Diwan, Vishal; Dat, Nguyen Thanh; Tamhankar, Ashok J.; Lundborg, Cecilia Stålsby

    2016-01-01

    Hospital effluents represent an important source for the release of antibiotics and antibiotic resistant bacteria into the environment. This study aims to determine concentrations of various antibiotics in wastewater before and after wastewater treatment in a rural hospital (60 km from the center of Hanoi) and in an urban hospital (in the center of Hanoi) in Vietnam, and it aims to explore the relationship between antibiotic concentrations in wastewater before wastewater treatment and quantit...

  19. In vitro and in vivo bactericidal activity of Vitex negundo leaf extract against diverse multidrug resistant enteric bacterial pathogens

    Institute of Scientific and Technical Information of China (English)

    Muhammad Kamruzzaman; S.M. Nayeemul Bari; Shah M. Faruque

    2013-01-01

    Objective: To investigate in vitro and in vivo antibacterial potentials of Vitex negundo (V. negundo) leaf extracts against diverse enteric pathogens. Methods: Water and methanol extracts of V. negundo leaves were evaluated against enteric bacterial pathogens by using standard disc diffusion, viable bacterial cell count methods, determination of minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC). Results: Methanol extract of V. negundo leaves showed potent antibacterial activity (inhibition zone: 9.9-22.6 mm, MIC:200-3 200 μg/mL, MBC: 200-6 400 μg/mL) against all the pathogenic enteric bacteria (Vibriocholerae , Vibrio parahaemolyticus, Vibrio mimicus, Echerichia coli, Shigella spps., and Aeromonas spps) tested. Methanol extract of V. negundo leaves showed potent bactericidal activity both in vitro laboratory conditions (MBC, 200-400 μg/mL) and in the intestinal environment (Dose, 1-2 mg/mL) of infant mice against pathogenic Vibrio cholerae, the major causative agent of cholera. Furthermore, assays using the mice cholera model showed that V. negundo methanol extract can protect mice from Vibrio cholerae infection and significantly decrease the mortality rate (P<0.0001). Conclusions: For the first time we showed that methanol extract of V. negundo leaves exhibited strong vibriocidal activity both in vitro and in vivo conditions. Therefore, it will be useful to identify and isolate the active compounds of this extract that could be a good alternative of antibiotics to treat cholera.

  20. Sensitivity of antibiotic resistant and antibiotic susceptible Escherichia coli, Enterococcus and Staphylococcus strains against ozone.

    Science.gov (United States)

    Heß, Stefanie; Gallert, Claudia

    2015-12-01

    Tolerance of antibiotic susceptible and antibiotic resistant Escherichia coli, Enterococcus and Staphylococcus strains from clinical and wastewater samples against ozone was tested to investigate if ozone, a strong oxidant applied for advanced wastewater treatment, will affect the release of antibiotic resistant bacteria into the aquatic environment. For this purpose, the resistance pattern against antibiotics of the mentioned isolates and their survival after exposure to 4 mg/L ozone was determined. Antibiotic resistance (AR) of the isolates was not correlating with higher tolerance against ozone. Except for ampicillin resistant E. coli strains, which showed a trend towards increased resistance, E. coli strains that were also resistant against cotrimoxazol, ciprofloxacin or a combination of the three antibiotics were similarly or less resistant against ozone than antibiotic sensitive strains. Pigment-producing Enterococcus casseliflavus and Staphylococcus aureus seemed to be more resistant against ozone than non-pigmented species of these genera. Furthermore, aggregation or biofilm formation apparently protected bacteria in subsurface layers from inactivation by ozone. The relatively large variance of tolerance against ozone may indicate that resistance to ozone inactivation most probably depends on several factors, where AR, if at all, does not play a major role.

  1. Priorities for antibiotic resistance surveillance in Europe

    DEFF Research Database (Denmark)

    Fluit, A. C.; van der Bruggen, J. T.; Aarestrup, Frank Møller;

    2006-01-01

    Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies, be longitud......Antibiotic resistance is an increasing global problem. Surveillance studies are needed to monitor resistance development, to guide local empirical therapy, and to implement timely and adequate countermeasures. To achieve this, surveillance studies must have standardised methodologies...... to the various reservoirs of antibiotic-resistant bacteria, such as hospitalised patients, nursing homes, the community, animals and food. Two studies that could serve as examples of tailored programmes are the European Antimicrobial Resistance Surveillance System (EARSS), which collects resistance data during...... of antibiotic resistance....

  2. [Evolution in the antibiotic susceptibility and resistance].

    Science.gov (United States)

    Stefani, S

    2009-07-01

    Over the last decade the proliferation of antibiotic-resistant pathogens has been a growing problem, especially in some geographic areas, making useless most of the classical antibiotic therapies. The rapid emergence of resistant bacteria is the result of different factors as the intrinsic microbial complexity, the growing attitude to travel of humans, animals and goods, the use of antibiotics outside hospitals, and the lack of precise therapeutic chooses for high risk group of patients. The antibiotic-resistance becomes certainly a serious problem when a resistant pathogen, and often multi-resistant today, is present in an infective site. In fact in a recent estimate of the Centre for Disease Control and Prevention (CDC) about 90.000 deaths per year in the USA are attributable to bacterial infections and in particular to resistant pathogens. It appears clear that the clinic relevance of this problem is the decimation of the sensible germs of the normal flora that leads to the upper hand of the only resistant bacteria. The antibiotic therapy, in fact, select the resistance and each bacteria has developed a particular strategy to survive: mutations of the genetic content or acquisition of resistance genes from the external. Among the Gram positive bacteria, besides methicillin resistant Staphyloccocus aureus, there are other pathogens such as coagulase-negative staphylococci (CoNS), Enterococcus faecium and Enterococcus faecalis, some species of streptococci and multiresistant Corynebacterium. The CoNS, eg. S. epidermidis, S. hominis and S. haemolyticus, are recognized as new important nosocomial pathogens and are not only responsible of invasive infections but have become in few years resistant to oxacillin (more than 60%) and multiresistant. The unsuspected fragility of glycopeptides, which for 40 years have been the most important treatment against infections due to Gram-positive bacteria, has posed the need for new antimicrobial molecules. Among the therapeutic

  3. Genotypic Detection of Antibiotic Resistance in "Escherichia Coli.": A Classroom Exercise

    Science.gov (United States)

    Longtin, Sarah; Guilfoile, Patrick; Asper, Andrea

    2004-01-01

    Bacterial antibiotic resistance remains a problem of clinical importance. Current microbiological methods for determining antibiotic resistance are based on culturing bacteria, and may require up to 48 hours to complete. Molecular methods are increasingly being developed to speed the identification of antibiotic resistance and to determine its…

  4. Antibiotic usage and resistance in different regions of the Dutch community

    NARCIS (Netherlands)

    Bruinsma, N; Filius, PMG; De Smet, PAGM; Degener, J; Endtz, P; Van den Bogaard, AE; Stobberingh, EE

    2002-01-01

    Regional differences of antibiotic use and antibiotic resistance in the fecal indicator bacteria Escherichia coli and enterococci were determined in different cities in the south, west, and north of The Netherlands. In 1999, differences in antibiotic consumption were observed between the different r

  5. Restricted use of antibiotics in organic pig farming

    DEFF Research Database (Denmark)

    Aabo, Søren; Jensen, Annette Nygaard

    2013-01-01

    Can the restricted use of antibiotics in organic pig farming be documented to provide a safer, high quality meat product with less antibiotic resistant bacteria? The project SafeOrganic aims to document that the restricted use of antimicrobials in organic pig production leads to lower levels...... of antibiotic resistant bacteria compared with the level in conventional pigs. However, the project will also address the risk of losing this quality parameter, due to a widespread practice of slaughtering organic pigs together with conventional pigs, implying a risk of cross-contamination....

  6. Antimicrobial decision making for enteric diseases of cattle.

    Science.gov (United States)

    Smith, Geof

    2015-03-01

    Diarrhea in neonatal and adult cattle is common and can be caused by several etiologic agents. As diagnostic testing is not always readily available, practitioners must often decide on a course of treatment based on knowledge of the likely pathogen and their own clinical experience. Antimicrobials have long been used to treat diarrhea in adults and neonates; however, there is increased pressure to prevent unnecessary use of antibiotics in food animal species. This article reviews existing data on the use of antibiotics given to cattle with enteric diseases to decide when they are necessary and which antimicrobials should be used. PMID:25705025

  7. Peptide Antibiotics for ESKAPE Pathogens

    DEFF Research Database (Denmark)

    Thomsen, Thomas Thyge

    is considered poor compared to medicines for lifestyle diseases. According to the WHO we could be moving towards a post-antibiotic era in which previously treatable infections become fatal. Of special importance are multidrug resistant bacteria from the ESKAPE group (Enterococcus faecium, Staphylococcus aureus...... a cecropin-mellitin hybrid peptide and proved effective in killing colistin resistant Gram-negative A. baumannii in vitro. The molecule was improved with regard to toxicity, as measured by hemolytic ability. Further, this peptide is capable of specifically killing non-growing cells of colistin resistant A...

  8. Magnetic isotope effect of magnesium (25)Mg on E. coli resistance to antibiotics.

    Science.gov (United States)

    Letuta, U G; Vekker, A S; Kornilova, T A; Gryaznov, A A; Cheplakov, I A

    2016-07-01

    Effects of synergism and antagonism of antibacterial drugs and magnetic isotope of magnesium (25)Mg on antibiotic resistance of bacteria E. coli were discovered. Fourteen antibiotics from seven different groups were tested. The increase in antibiotic resistance in the presence of the ion (25)Mg(2+) was discovered in E. coli cells incubated with quinolones/fluoroquinolones, indicating the inhibiting effect of the magnetic moments of nuclei (25)Mg on DNA synthesis. The change in antibiotic resistance was also detected in bacteria affected by magnesium (25)Mg and certain antibiotics from aminoglycoside and lincosamide groups. PMID:27599512

  9. Antibacterial activity of GUAVA, Psidium guajava Linnaeus, leaf extracts on diarrhea-causing enteric bacteria isolated from Seabob shrimp, Xiphopenaeus kroyeri (Heller Avaliação da atividade antibacteriana de extrato de folhas de goiabeira, Psidium guajava Linnaeus, sobre bactérias entéricas diarreiogênicas, isoladas de camarão sete-barbas, Xiphopenaeus kroyeri (Heller

    Directory of Open Access Journals (Sweden)

    Flávia A. Gonçalves

    2008-02-01

    Full Text Available Guava leaf tea of Psidium guajava Linnaeus is commonly used as a medicine against gastroenteritis and child diarrhea by those who cannot afford or do not have access to antibiotics. This study screened the antimicrobial effect of essential oils and methanol, hexane, ethyl acetate extracts from guava leaves. The extracts were tested against diarrhea-causing bacteria: Staphylococcus aureus, Salmonella spp. and Escherichia coli. Strains that were screened included isolates from seabob shrimp, Xiphopenaeus kroyeri (Heller and laboratory-type strains. Of the bacteria tested, Staphylococcus aureus strains were most inhibited by the extracts. The methanol extract showed greatest bacterial inhibition. No statistically significant differences were observed between the tested extract concentrations and their effect. The essential oil extract showed inhibitory activity against S. aureus and Salmonella spp. The strains isolated from the shrimp showed some resistance to commercially available antibiotics. These data support the use of guava leaf-made medicines in diarrhea cases where access to commercial antibiotics is restricted. In conclusion, guava leaf extracts and essential oil are very active against S. aureus, thus making up important potential sources of new antimicrobial compounds.O chá de folhas de goiaba Psidium guajava Linnaeus é comumente usado como remédio nas gastrenterites e diarréias infantis por aqueles que não têm acesso a antibióticos. Esta pesquisa estudou o efeito antibacteriano sobre bactérias causadoras de diarréias, do óleo essencial e do extrato de folhas de goiabeira usando como diluente: metanol, hexano e acetato de etila. Os extratos foram testados sobre Staphylococcus aureus, Salmonella spp. e Escherichia coli. As bactérias testadas foram isoladas de camarão sete-barbas Xiphopenaeus kroyeri (Heller usando-se como controle cepas padrão, de cada espécie. Das bactérias testadas, o melhor efeito inibitório foi

  10. Enhanced uptake of antibiotic resistance genes in the presence of nanoalumina.

    Science.gov (United States)

    Ding, Chengshi; Pan, Jie; Jin, Min; Yang, Dong; Shen, Zhiqiang; Wang, Jingfeng; Zhang, Bin; Liu, Weili; Fu, Jialun; Guo, Xuan; Wang, Daning; Chen, Zhaoli; Yin, Jing; Qiu, Zhigang; Li, Junwen

    2016-10-01

    Nanomaterial pollution and the spread of antibiotic resistance genes (ARGs) are global public health and environmental concerns. Whether nanomaterials could aid the transfer of ARGs released from dead bacteria into live bacteria to cause spread of ARGs is still unknown. Here, we demonstrated that nano-Al2O3 could significantly promote plasmid-mediated ARGs transformation into Gram-negative Escherichia coli strains and into Gram-positive Staphylococcus aureus; however, bulk Al2O3 did not have this effect. Under suitable conditions, 7.4 × 10(6) transformants of E. coli and 2.9 × 10(5) transformants of S. aureus were obtained from 100 ng of a pBR322-based plasmid when bacteria were treated with nano-Al2O3. Nanoparticles concentrations, plasmid concentrations, bacterial concentrations, interaction time between the nanomaterial and bacterial cells and the vortexing time affected the transformation efficiency. We also explored the mechanisms underlying this phenomenon. Using fluorescence in situ hybridization and scanning electron microscopy, we found that nano-Al2O3 damaged the cell membrane to produce pores, through which plasmid could enter bacterial cells. Results from reactive oxygen species (ROS) assays, genome-wide expression microarray profiling and quantitative real-time polymerase chain reactions suggested that intracellular ROS damaged the cell membrane, and that an SOS response promoted plasmid transformation. Our results indicated the environmental and health risk resulting from nanomaterials helping sensitive bacteria to obtain antibiotic resistance. PMID:26946995

  11. Reducing antibiotic use in marine larviculture by probiotics

    DEFF Research Database (Denmark)

    Gram, Lone; D'Alvise, Paul; Grotkjær, Torben;

    2014-01-01

    to the industry.Vaccines are not effective at the larval stages and antibiotics are used for disease control, although thereare serious concerns about development of bacterial antibiotic resistance and its transfer to humanpathogenic bacteria. There is a strong need for development of non-antibiotic disease...... control strategies,especially at the larval stages.The objective of our work is to reduce the need for antibiotics in marine larviculture by developingprobiotic strategies; probiotics being defined by WHO as “live microbial cultures that excert a beneficialeffect on the host”. Rearing of marine larvae...

  12. Antibiotic resistance gene discovery in food-producing animals.

    Science.gov (United States)

    Allen, Heather K

    2014-06-01

    Numerous environmental reservoirs contribute to the widespread antibiotic resistance problem in human pathogens. One environmental reservoir of particular importance is the intestinal bacteria of food-producing animals. In this review I examine recent discoveries of antibiotic resistance genes in agricultural animals. Two types of antibiotic resistance gene discoveries will be discussed: the use of classic microbiological and molecular techniques, such as culturing and PCR, to identify known genes not previously reported in animals; and the application of high-throughput technologies, such as metagenomics, to identify novel genes and gene transfer mechanisms. These discoveries confirm that antibiotics should be limited to prudent uses.

  13. Functional metagenomics for the investigation of antibiotic resistance.

    Science.gov (United States)

    Mullany, Peter

    2014-04-01

    Antibiotic resistance is a major threat to human health and well-being. To effectively combat this problem we need to understand the range of different resistance genes that allow bacteria to resist antibiotics. To do this the whole microbiota needs to be investigated. As most bacteria cannot be cultivated in the laboratory, the reservoir of antibiotic resistance genes in the non-cultivatable majority remains relatively unexplored. Currently the only way to study antibiotic resistance in these organisms is to use metagenomic approaches. Furthermore, the only method that does not require any prior knowledge about the resistance genes is functional metagenomics, which involves expressing genes from metagenomic clones in surrogate hosts. In this review the methods and limitations of functional metagenomics to isolate new antibiotic resistance genes and the mobile genetic elements that mediate their spread are explored.

  14. Integron involvement in environmental spread of antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Thibault eStalder

    2012-04-01

    Full Text Available The spread of antibiotic-resistant bacteria is a growing problem and a public health issue. In recent decades, various genetic mechanisms involved in the spread of resistance genes among bacteria have been identified. Integrons -- genetic elements that acquire, exchange and express genes embedded within gene cassettes (GC -- are one of these mechanisms. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried by mobile genetic elements, plasmids and transposons, which promote their spread within bacterial communities. Initially studied mainly in the clinical setting for their involvement in antibiotic resistance, their role in the environment is now an increasing focus of attention. The aim of this review is to provide an in-depth analysis of recent studies of antibiotic-resistance integrons in the environment, highlighting their potential involvement in antibiotic resistance outside the clinical context. We will focus particularly on the impact of human activities (agriculture, industries, wastewater treatment, etc..

  15. Resistant bacteria in stem cell transplant recipients

    Directory of Open Access Journals (Sweden)

    Nucci Marcio

    2002-01-01

    Full Text Available Bacterial infections account for most infections in hematopoietic stem cell transplant recipients. While early mortality reduced dramatically with the introduction of the concept of empirical antibiotic therapy in neutropenic patients, no effect of prophylaxis on the mortality was observed in many studies. On the other hand, antibiotic prophylaxis has resulted in the emergence of resistance among bacteria. In addition, the choice of the antibiotic regimen for empirical therapy and the practices of antibiotic therapy during neutropenia may result in a significant shift in the pattern of bacterial infections. The use of quinolones and vancomycin as prophylaxis, and of carbapenems and vancomycin in the empirical antibiotic therapy, are associated with the appearance of resistant Gram-positive and Gram-negative bacteria. Therefore, hematologists must be aware of the impact of these practices on the emergence of infections due to multi-resistant pathogens, since these infections may be associated with increased mortality.

  16. 某院1998-2010年两种非发酵菌耐药率情况及与抗生素使用相关性分析%Antimicrobial resistance of two non-fermenting bacteria and correlation with antibiotic consumption between 1998 and 2010 in a hospital

    Institute of Scientific and Technical Information of China (English)

    耿嘉阳; 段金菊

    2012-01-01

    -domunas aeruginosa and Acinelobacler baumannii, and the correlation between antibiotics consunipliun and antimicrobial resistance rales between 1998 and 2010. Methods A retrospective analysis was performed based on the isolation and resistance rales of two non-fermenting bacteria, Pseudomonas aeruginosa and Acinelobacter baumannii, between 1998 and 2010. Also surveyed was antibiotics consumption of the same period. The frequency of antibiotic consumption was assessed using defined daily dose (DDD) recommended by World Health Organization. The correlation between bacterial resistance and antibiotics consumption was analyzed using SPSS13.0 software package for statistics. Results Pseudomonas aeruginosa exhibited higher sensitivity to amikacin and ceftazidime (resistance rate: approximately 20%) as compared with other antibiotics (resistance rate: over 30%). The resistance rate of Acinetobac-ter baumannii to imipenem and meropenem climbed to nearly 40% by 2010, and the figure to cefoperazone sulbactam surpassed 30% despite the low ranking. The DDD of imipenem and aztreonam was shown to be positively correlated with Pseudomonas aeruginosa resistance (P<0.05). A positive correlation was found between DDDs of imipenem, meropenem, cefoperazone sulbactam, piperacillin tazobactam and Acinetobacter baumannii resistance (P<0.05). There was a. Positive correlation between cephalosponns consumption and resistance rates of cefoperazone, aztreonam and imipenem, between compound preparation consumption and resistance rates of ciprofloxacm and levoiloxacm, as well a.s between carbapenems consumption and resistance rates oi cefoperazone, aztreona.m and imipenem (all P<0.05), as revealed by the correlation sta.tistics oi Pseudomonas aemginosa-rela.t.ed antibiotic resistance and accumulated DDDs oi various antibiotics. Based on the correlation statistics oi Acinetobacter baumannii antibiotic resistance and accumulated DDDs oi various antibiotics, positive correlation was found between cephalosponns

  17. [Fiber and enteral nutrition].

    Science.gov (United States)

    Gómez Candela, C; de Cos Blanco, A I; Iglesias Rosado, C

    2002-01-01

    Dietary fibre is a mixture of various substances and is essential for maintaining appropriate intestinal functionality and it is currently considered to be a necessary part of a healthy diet. Current recommendations for fibre consumption by adults range from 20 to 35 g/day. Enteral nutrition is an emerging therapeutic variation in both hospital and domestic settings. To a great extent, this development has been made possible thanks to the design of new formulas that adapt better and better to the clinicla conditions or our patients. The type of fibre used in these preparations varies greatly. Some have only one source of fibre while others use differnet combinations. There are currently 32 formulas available on the Spanish market, without counting the modules or specific preparations of individual types of fibre. Despite the enormous advances in the knowledge of the beneficial effects of fibre, the fact of the matter is that enteral nutrition that we routinely prescribe in normal clinical practice does not contain fibre. The are several explanations for this, perhaps the most plausible is that these formulas may lead to problems in their administration and tolerance. It is necessary to choose the correct calibre of catheter and define the best infusion method and timing. Another difficulty may be the gastrointestinal tolerance of the formulas containing fibre. No large-scale problems of intolerance have however been described in healthy volunteers nor in patients with acute or chronic pathologies, although it is of fundamental importance to monitor the rhythm of depositions in all patients with enteral nutrition (EN) and ensure proper intake of liquids, which would also be useful to prevent occlusion of the catheter. The theoretical benefits of EN with fibre with a view to maintaining or improving normal intestinal structure and function are very varied. Nonetheless, it has noit yet been possible to prove many of these effects in controlled clinical trials. At the

  18. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli

    OpenAIRE

    Tazzyman, Samuel J; Hall, Alex R

    2014-01-01

    The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under pha...

  19. Effects of combination of antibiotic-resistant bifidobacteria and corresponding antibiotics on survival of irradiated mice

    Energy Technology Data Exchange (ETDEWEB)

    Korshunov, V.M.; Pinegin, B.V.; Ivanova, N.P.; Mal' tsev, V.N.

    1982-05-01

    Broad-spectrum antibiotics are used to treat intestinal dysbacteriosis of diverse etiology, including postradiation dysbacteriosis. Antibiotic therapy is instrumental in decontaminating the intestine. In addition to pathogenic microorganisms, there is disappearance of lactobacilli and bifidobacteria which perform several important and useful functions. For this reason, in addition to antibiotics, bifidobacterial preparations are used to restore the microbial cenosis and administration thereof is started after antibiotics are discontinued. There are some flaws to deferred administration of bifidobacteria, since the process of colonization of the intestine with commercial bifidobacterial preparations is rather lengthy, and there is slow elevation of bididobacterium level in the intestinal tract, whereas exogenous recontamination of the intestine by conditionally pathogenic bacteria is possible after antibiotic therapy is discontinued. On the other hand, use of antibiotics alone could, in turn, be the cause of intestinal dysbacteriosis. Our objective was to eliminate intestinal dysbacteriosis in irradiated animals by means of combining antibiotics and preparations of bifidobacteria resistant to these antibiotics, and thus prolong the life of these animals.

  20. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture.

    Science.gov (United States)

    Chuah, Li-Oon; Effarizah, M E; Goni, Abatcha Mustapha; Rusul, Gulam

    2016-06-01

    Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture. PMID:27038482

  1. Entering the Anthropocene

    Science.gov (United States)

    Vince, Gaia

    2016-04-01

    There is growing evidence that we are now entering a new geological age defined by human influence on the planet, the Anthropocene. Millions of years from now, a stripe in the accumulated layers of rock on Earth's surface will reveal our human fingerprint just as we can see evidence of dinosaurs in rocks of the Jurassic, or the explosion of life that marks the Cambrian. There is now no part of the planet untouched by human influence. The realisation that we wield such planetary power requires a quite extraordinary shift in perception, fundamentally toppling the scientific, cultural and religious philosophies that define our place in the world. This session explores these issues and examines our new relationship with nature now that we so strongly influence the biosphere. And this session will look at what the impacts of our planetary changes mean for us, and how we might deal with the consequences of the Anthropocene we have created.

  2. Antibiotic resistance: are we all doomed?

    Science.gov (United States)

    Collignon, P

    2015-11-01

    Antibiotic resistance is a growing and worrying problem associated with increased deaths and suffering for people. Overall, there are only two factors that drive antimicrobial resistance, and both can be controlled. These factors are the volumes of antimicrobials used and the spread of resistant micro-organisms and/or the genes encoding for resistance. The One Health concept is important if we want to understand better and control antimicrobial resistance. There are many things we can do to better control antimicrobial resistance. We need to prevent infections. We need to have better surveillance with good data on usage patterns and resistance patterns available across all sectors, both human and agriculture, locally and internationally. We need to act on these results when we see either inappropriate usage or resistance levels rising in bacteria that are of concern for people. We need to ensure that food and water sources do not spread multi-resistant micro-organisms or resistance genes. We need better approaches to restrict successfully what and how antibiotics are used in people. We need to restrict the use of 'critically important' antibiotics in food animals and the entry of these drugs into the environment. We need to ensure that 'One Health' concept is not just a buzz word but implemented. We need to look at all sectors and control not only antibiotic use but also the spread and development of antibiotic resistant bacteria - both locally and internationally. PMID:26563691

  3. Know When Antibiotics Work

    Centers for Disease Control (CDC) Podcasts

    2015-04-15

    This podcast provides a brief background about antibiotics and quick tips to help prevent antibiotic resistance.  Created: 4/15/2015 by Division of Bacterial Diseases (DBD), National Center for Immunization and Respiratory Disease (NCIRD), Get Smart: Know When Antibiotics Work Program.   Date Released: 4/16/2015.

  4. Strengthening Control of Antibiotics

    Institute of Scientific and Technical Information of China (English)

    EthelLu

    2005-01-01

    IT is a well-known fact that buy-ng guns is much easier than purchasing antibiotics in the United States. In China, however, the situation is different. According to a recent WHO survey,about 80 percent of Chinese inpatients take antibiotic medicines, and 58 percent of them are prescribed multifunctional antibiotics,

  5. The Artistry of Bacterial Colonies and the Antibiotic Crisis

    Science.gov (United States)

    Golding, Ido; Ben-Jacob, Eshel

    Since the beginning of massive usage of antibiotics during World War II we have witnessed a dramatic evolutionary event - the emergence of multiple drug resistant bacteria. The bacteria are capable of developing antibiotic resistance at a higher rate than scientists develop new drugs [1, and references therein. See also the UN's World Health Report 1996]. We seem to be loosing a crucial battle on our health. To reverse this course of events, we have to "outsmart" the bacteria by taking new avenues of study which will lead to the development of novel strategies to fight them.

  6. Insects Represent a Link between Food Animal Farms and the Urban Environment for Antibiotic Resistance Traits

    OpenAIRE

    Zurek, Ludek; Ghosh, Anuradha

    2014-01-01

    Antibiotic-resistant bacterial infections result in higher patient mortality rates, prolonged hospitalizations, and increased health care costs. Extensive use of antibiotics as growth promoters in the animal industry represents great pressure for evolution and selection of antibiotic-resistant bacteria on farms. Despite growing evidence showing that antibiotic use and bacterial resistance in food animals correlate with resistance in human pathogens, the proof for direct transmission of antibi...

  7. [Rational antibiotic therapy in the dental office: Practical guidelines for decision-making].

    Science.gov (United States)

    Zadik, Y

    2016-04-01

    Although most dental and periodontal diseases are caused by bacteria, the usual therapy is mechanical/surgical rather than antimicrobial medications. However, sometimes antibiotic administration may be necessary in addition to or as an alternative to the surgical/mechanical treatment. Many studies have shown that the misuse of antibiotics by dentists may be mostly attributed to unnecessity or inefficient regimen, and could contribute to bacterial resistance to antibiotics. The article presents practical guidelines to the administration of antibiotics in the dental office.

  8. Identification of a small molecule that simultaneously suppresses virulence and antibiotic resistance of Pseudomonas aeruginosa

    OpenAIRE

    Qiaoyun Guo; Yu Wei; Bin Xia; Yongxin Jin; Chang Liu; Xiaolei Pan; Jing Shi; Feng Zhu; Jinlong Li; Lei Qian; Xinqi Liu; Zhihui Cheng; Shouguang Jin; Jianping Lin; Weihui Wu

    2016-01-01

    The rising antibiotic resistance of bacteria imposes a severe threat on human health. Inhibition of bacterial virulence is an alternative approach to develop new antimicrobials. Molecules targeting antibiotic resistant enzymes have been used in combination with cognate antibiotics. It might be ideal that a molecule can simultaneously suppress virulence factors and antibiotic resistance. Here we combined genetic and computer-aided inhibitor screening to search for such molecules against the ba...

  9. How to Fight Back Against Antibiotic Resistance

    DEFF Research Database (Denmark)

    Dantas, Gautam; Sommer, Morten

    2014-01-01

    Mapping the exchange of genes between pathogens and nonpathogens offers new ways to understand and manage the spread of drug-resistant strains. In reality, the development of new antibiotics is only part of the solution, as pathogens will inevitably develop resistance to even the most promising new...... compounds. To save the era of antibiotics, scientists must figure out what it is about bacterial pathogens that makes resistance inevitable. Although most studies on drug resistance have focused on disease causing pathogens, recent efforts have shifted attention to the resistomes of nonpathogenic bacteria...

  10. Indications of antibiotic prophylaxis in dental practice- review.

    Science.gov (United States)

    Ramu, C; Padmanabhan, T V

    2012-09-01

    Antibiotics are frequently used in dental practice. Clinical and bacteriological epidemiological factors determine the indications of antibiotics in dentistry. Antibiotics are used in addition to appropriate treatment to aid the host defences in the elimination of remaining bacteria. It is indicated when there is evidence of clinical sign involvement and spread of infection. Antibiotics are prescribed in dental practice for treating odontoge nic infections, non-odontogenic infections, as prophylaxis against focal and local infection. Special care needs to be addressed to patients with organ transplants, poorly controlled diabetes and pregnancy. Antibiotics should be used only as an adjunct to dental treatment and never alone as the first line of care. The present paper reviews the indications of antibiotics in dental practice.

  11. Use of Antibiotics and Risk of Type 2 Diabetes

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbæk; Knop, Filip Krag; Frost, Morten;

    2015-01-01

    CONTEXT AND OBJECTIVE: Evidence that bacteria in the human gut may influence nutrient metabolism is accumulating. We investigated whether use of antibiotics influences the risk of developing type 2 diabetes and whether the effect can be attributed to specific types of antibiotics. METHODS: We....... RESULTS: The odds ratio (OR) associating type 2 diabetes with exposure to antibiotics of any type was 1.53 (95% confidence interval 1.50-1.55) with redemption of more than or equal to 5 versus 0-1 prescriptions. Although no individual group of antibiotics was specifically associated with type 2 diabetes...... risk, slightly higher ORs for type 2 diabetes were seen with narrow-spectrum and bactericidal antibiotics (OR 1.55 and 1.48) compared to broad-spectrum and bacteriostatic types of antibiotics (OR 1.31 and 1.39), respectively. A clear dose-response effect was seen with increasing cumulative load...

  12. Indications of antibiotic prophylaxis in dental practice–Review

    Directory of Open Access Journals (Sweden)

    C Ramu

    2012-09-01

    Full Text Available Antibiotics are frequently used in dental practice. Clinical and bacteriological epidemiological factors determine the indications of antibiotics in dentistry. Antibiotics are used in addition to appropriate treatment to aid the host defences in the elimination of remaining bacteria. It is indicated when there is evidence of clinical sign involvement and spread of infection. Antibiotics are prescribed in dental practice for treating odontoge nic infections, non-odontogenic infections, as prophylaxis against focal and local infection. Special care needs to be addressed to patients with organ transplants, poorly controlled diabetes and pregnancy. Antibiotics should be used only as an adjunct to dental treatment and never alone as the first line of care. The present paper reviews the indications of antibiotics in dental practice.