WorldWideScience

Sample records for antibioticresistance enzymes aminoglycoside

  1. Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\\beta-lactamase

    Energy Technology Data Exchange (ETDEWEB)

    Brynes, Laura; /Rensselaer Poly.

    2007-10-31

    Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, but its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.

  2. Microplate phosphocellulose binding assay for aminoglycoside-modifying enzymes.

    OpenAIRE

    Cooksey, R C; Metchock, B G; Thornsberry, C

    1986-01-01

    We modified the phosphocellulose binding assay for aminoglycoside-modifying enzymes (AMEs) by use of microdilution plates and a multichannel micropipette. Batteries of aminoglycoside substrates for screening organisms for the presence of AMEs as well as for subclassifying enzymes were prepared and stored in microdilution plates. When tested in parallel with the conventional tube reaction assay, the microplate assay yielded comparable radioactive counts and therefore equally correct identifica...

  3. Strategies to overcome the action of aminoglycoside-modifying enzymes for treating resistant bacterial infections

    OpenAIRE

    Labby, Kristin J.; Garneau-Tsodikova, Sylvie

    2013-01-01

    Shortly after the discovery of the first antibiotics, bacterial resistance began to emerge. Many mechanisms give rise to resistance; the most prevalent mechanism of resistance to the aminoglycoside (AG) family of antibiotics is the action of aminoglycoside-modifying enzymes (AMEs). Since the identification of these modifying enzymes, many efforts have been put forth to prevent their damaging alterations of AGs. These diverse strategies are discussed within this review, including: creating new...

  4. Serum Aminoglycoside Assay by Enzyme-Mediated Immunoassay (EMIT): Correlation with Radioimmunoassay, Fluoroimmunoassay, and Acetyltransferase and Microbiological Assays

    OpenAIRE

    White, L O; Scammell, L. M.; Reeves, D S

    1981-01-01

    Enzyme-mediated immunoassay (EMIT) serum aminoglycoside assay results were accurate and precise and correlated well with radioimmunoassay, fluoroimmunoassay, and acetyltransferase and microbiological assay determinations.

  5. Heparin interferes with the radioenzymatic and homogeneous enzyme immunoassays for aminoglycosides

    International Nuclear Information System (INIS)

    Heparin interferes with measurement of aminoglycosides in serum by biological, radioenzymatic, and homogeneous enzyme immunoassay techniques, but not with radioimmunoassay. At concentrations greater than or equal to 105 and greater than or equal to 3 X 106 USP units/L, respectively, it interferes with the radioenzymatic assay by inhibiting the gentamicin 3-acetyltransferase and kanamycin 6'-acetyltransferase enzymes used in the assay. It interferes with the homogeneous enzyme immunoassays for gentamicin and tobramycin (at concentrations greater than or equal to 105 and greater than or equal to104 USP units/L, respectively), but not with the commercially available homogeneous enzyme immunoassays for other drugs. Heparin interference with the homogeneous enzyme immunoassay for aminoglycosides requires both the heparin polyanion and glucose-6-phosphate dehydrogenase bound to a cationic aminoglycoside. This interference can be reproduced with dextran sulfate (but not dextran), and does not occur with free enzyme (glucose-6-phosphate dehydrogenase) alone. Heparin interference with these two assays and at concentrations that may be present in intravenous infusions or in seriously underfilled blood-collection tubes is described

  6. Dissecting the cosubstrate structure requirements of the Staphylococcus aureus aminoglycoside resistance enzyme ANT(4').

    Science.gov (United States)

    Porter, Vanessa R; Green, Keith D; Zolova, Olga E; Houghton, Jacob L; Garneau-Tsodikova, Sylvie

    2010-12-01

    Aminoglycosides are important antibiotics used against a wide range of pathogens. As a mechanism of defense, bacteria have evolved enzymes able to inactivate these drugs by regio-selectively adding a variety of functionalities (acetyl, phospho, and nucelotidyl groups) to their scaffolds. The aminoglycoside nucleotidyltransferase ANT(4') is one of the most prevalent and unique modifying-enzymes. Here, by TLC, HRMS, and colorimetric assays, we demonstrate that the resistance enzyme ANT(4') from Staphylococcus aureus is highly substrate and cosubstrate promiscuous. We show that deoxy-ribonucleotide triphosphates (dNTPs) are better cosubstrates than NTPs. We demonstrate that the position of the triphosphate group (5' and not 3') on the ribose/deoxyribose ring is important for recognition by ANT(4'), and that NTPs with larger substituents at the 3'-position of the ribose ring are not cosubstrates for ANT(4'). We confirm that for all aminoglycosides tested, the respective nucleotidylated products are completely inactive. These results provide valuable insights into the development of strategies to combat the ever-growing bacterial resistance problem. PMID:21040710

  7. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    2016-01-01

    Full Text Available This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR. Out of 98 isolates, 71 (72.45% isolates were identified as E. coli and the remaining 27 (27.55% as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.

  8. Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    SHI Wei-feng; JIANG Jian-ping; MI Zu-huang

    2005-01-01

    Background Acinetobacter baumannii is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by multi-drug resistance Acinetobacter baumannii is very difficult to treat. This study was designed to investigate the antimicrobial resistance characteristics and four resistant gene expressions of aminoglycoside-modifying enzymes including N-acetyltransferases and O-phosphotransferases in Acinetobacter baumannii. Methods Bacterial identification and antimicrobial susceptibility test were performed by PhoenixTM system in 247 strains of Acinetobacter baumannii. Minimal inhibitory concentrations (MICs) of seven aminoglycosides including gentamicin, amikacin, kanamycin, tobramycin, netilmicin, neomycin and streptomycin in 15 strains of multi-drug resistant Acinetobacter baumannii were detected by agar dilution. Four aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer.Results The resistance rates of 247 strains of Acinetobacter baumannii against cefotaxime, levofloxacin, piperacillin, aztreonam, tetracycline, ciprofloxacin and chloramphenicol were more than 50%. Imipenem and meropenem showed high antibacterial activities with resistance rates of 3.2% and 4.1%. MIC50 and MIC90 of gentamicin, amikacin, streptomycin and kanamycin in 15 strains of multi-drug resistant Acinetobacter baumanii were all more than 1024 mg/L, and the resistance rates were 100%, 100%, 100% and 93.3%, respectively. But their resistance rates to tobramycin, netilmicin and neomycin were 86.7%, 93.3% and 46.7%, respectively. Three modifying enzyme genes, including aacC1, aacC2 and aacA4 genes, were found in 15 strains, but aphA6 had not been detected. Their positive rates were 93.3%, 20.0% and 20.0%, respectively. These three genes existed simultaneously in No.19 strain. Nucleotide sequences of aacC1, aacC2 and aacA4 genes shared 100%, 97.9% and 99.7% identities with GenBank genes (AY307113, S68058 and AY

  9. Identification of aminoglycoside-acetylating enzymes by high-pressure liquid chromatographic determination of their reaction products.

    OpenAIRE

    Lovering, A M; White, L. O.; Reeves, D S

    1984-01-01

    A method to identify the aminoglycoside-acetyltransferase (AAC) enzymes AAC(3), AAC(2') and AAC(6') by high-pressure liquid chromatographic characterization of their products of reaction with tobramycin or sisomicin is described. Conditions are given for the chromatography of kanamycin A, netilmicin, neomycin, and apramycin, and their products of reaction, if any, with the three AAC enzymes are listed.

  10. Effects of F171 Mutations in the 6′-N-Acetyltransferase Type Ib [AAC(6′)-Ib] Enzyme on Susceptibility to Aminoglycosides

    OpenAIRE

    Chavideh, Ramona; Sholly, Steven; Panaite, Doina; Tolmasky, Marcelo E.

    1999-01-01

    Substitutions at position F171 of 6′-N-acetyltransferase type Ib cause variable loss of aminoglycoside resistance, indicating that this residue plays an important role in the structure and/or function of the enzyme.

  11. The prevalence of aminoglycoside-modifying enzyme genes (aac (6'-I, aac (6'-II, ant (2"-I, aph (3'-VI in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Farzam Vaziri

    2011-01-01

    Full Text Available INTRODUCTION: Pseudomonas aeruginosa (P. aeruginosa is one of the primary opportunistic pathogens responsible for nosocomial infections. Aminoglycosides are an import ant component of antipseudomonal chemotherapy. The inactivation of drugs by modifying enzymes is the most common mechanism of aminoglycoside resistance. OBJECTIVES: The inactivation of aminoglycosides by modifying enzymes is the primary resistance mechanism employed by P. aeruginosa. The aim of the present study was to investigate the occurrence of aminoglycoside resistance and the prevalence of four import ant modifying enzyme genes (aac (6'-I, aac (6'-II, ant (2"-I, aph (3'-VI in P. aeruginosa in Iran. METHODS: A total of 250 clinical isolates of P. aeruginosa were collected from several hospitals in seven cities in Iran. Antimicrobial susceptibility tests (using the disk diffusion method and E-tests were performed for all 250 isolates. In addition, all isolates were screened for the presence of modifying enzyme genes by polymerase chain reaction. RESULTS: The resistance rates, as determined by the disk diffusion method, were as follows: gentamicin 43%, tobramycin 38%, and amikacin 24%. Of the genes examined, aac (6'-II (36% was the most frequently identified gene in phenotypic resist ant isolates, followed by ant (2"-I, aph (3'-VI, and aac (6'-I. CONCLUSIONS: Aminoglycoside resistance in P. aeruginosa remains a signific ant problem in Iran. Therefore, there is considerable local surveillance of aminoglycoside resistance.

  12. The prevalence of aminoglycoside-modifying enzyme genes (aac (6′)-I, aac (6′)-II, ant (2″)-I, aph (3′)-VI) in Pseudomonas aeruginosa

    OpenAIRE

    Farzam Vaziri; Shahin Najar Peerayeh; Qorban Behzadian Nejad; Abbas Farhadian

    2011-01-01

    INTRODUCTION: Pseudomonas aeruginosa (P. aeruginosa) is one of the primary opportunistic pathogens responsible for nosocomial infections. Aminoglycosides are an import ant component of antipseudomonal chemotherapy. The inactivation of drugs by modifying enzymes is the most common mechanism of aminoglycoside resistance. OBJECTIVES: The inactivation of aminoglycosides by modifying enzymes is the primary resistance mechanism employed by P. aeruginosa. The aim of the present study was to investig...

  13. An aminoglycoside sensing riboswitch controls the expression of aminoglycoside resistance acetyltransferase and adenyltransferases.

    Science.gov (United States)

    Chen, Dongrong; Murchie, Alastair I H

    2014-10-01

    The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5' leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches. PMID:24631585

  14. Aminoglycoside resistance in clinical Gram-negative isolates from Norway

    OpenAIRE

    Haldorsen, Bjørg Christina

    2011-01-01

    Aminoglycosides represent an important class of antimicrobial agents. The prevalence of aminoglycoside resistance among Gram-negative bacteria in Norway is low, but an increased prevalence among clinical isolates of Escherichia coli has been observed during the last years. The most prevalent resistance mechanism is aminoglycoside modifying enzymes. In addition, resistance may occur when bacteria produces 16S rRNA methylases, which causes high level and broad-spectrum aminoglycoside resistance...

  15. Crystallization and X-ray analysis of 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics

    International Nuclear Information System (INIS)

    The crystallization of 2-deoxy-scyllo-inosose synthase, the key enzyme in the biosynthesis of 2-deoxystreptamine-containing aminoglycoside antibiotics, is reported. A recombinant 2-deoxy-scyllo-inosose synthase from Bacillus circulans has been crystallized at 277 K using PEG 4000 as precipitant. The diffraction pattern of the crystal extends to 2.30 Å resolution at 100 K using synchrotron radiation at the Photon Factory. The crystals are monoclinic and belong to space group P21, with unit-cell parameters a = 80.5, b = 70.4, c = 83.0 Å, β = 117.8°. The presence of two molecules per asymmetric unit gives a crystal volume per protein weight (VM) of 2.89 Å3 Da−1 and a solvent constant of 57.4% by volume

  16. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  17. Aminoglycoside resistance among isolates of nosocomial Enterobacteriaceae

    International Nuclear Information System (INIS)

    Fifty-seven gentamicin-resistant isolates of Enterobacteriaceae, obtained from patients attending hospital, were examined for the production of aminoglycoside-modifying enzymes. Of the 51 strains producing such enzymes, 34 were presumptively plasmid-mediated as indicated by conjugation experiments

  18. Pharmacokinetics of Aminoglycosides

    Institute of Scientific and Technical Information of China (English)

    Lokangu Lombo(Congo); HE Hua

    2004-01-01

    The Pharmacokinetics informations of aminoglycosides, their monograph and clinical Pharmacokinetics parameters are reported in this review. The Aminoglycosides are highly polarity and in reserve for serious infections caused by aerobic gram-negative bacteria and some gram-positive bacteria but their toxicity are major limitations in clinical use.

  19. Study of aminoglycoside modifying enzyme associated resistance genes in Enterococcus%产氨基糖苷类修饰酶肠球菌临床分离株相关耐药基因的研究

    Institute of Scientific and Technical Information of China (English)

    姚杰; 徐元宏; 王友梅; 刘灿

    2011-01-01

    目的 了解临床分离的肠球菌对高水平氨基糖苷类抗菌药物的耐药情况并对其氨基糖苷类修饰酶基因进行检测.方法 用琼脂稀释法检测112株粪肠球菌和118株屎肠球菌对高浓度庆大霉素(500 μg/ml)和高浓度链霉素(2 000 μg/ml)的最低抑菌浓度,随机选取氨基糖苷类高水平耐药的粪肠球菌和屎肠球菌各48株进行氨基糖苷类修饰酶基因检测,PCR扩增aac(6')/aph(2″)、aph(3')-Ⅲ和ant(6)-Ⅰ基因,并对其进行测序分析.结果 112株粪肠球菌和118株屎肠球菌对高浓度庆大霉素的耐药率分别为53.6%和78.8%,对高浓度链霉素的耐药率分别为39.3%和64.4%,且粪肠球菌与屎肠球菌的耐药率差异有统计学意义(P<0.01).aac(6')/aph(2″)基因阳性分别为38株和45株,占80.2%和93.8%;aph(3')-Ⅲ基因阳性分别为14株和19株,占29.2%和39.6%;ant(6)-Ⅰ基因阳性分别为15株和21株,占31.3%和43.8%.其中同时检测出两种和两种以上氨基糖苷类修饰酶基因的菌株有40株,高达41.7%.结论 氨基糖苷类高水平耐药肠球菌已成为医院感染的重要耐药菌,AAC(6')/APH(2″)酶的产生是肠球菌最为常见的氨基糖苷类耐药机制.%Objective To investigate enterococci isolated from clinical specimens on the high level of aminoglycoside antibiotic resistance and the detection of aminoglycoside modifying enzyme gene. Methods 112 strains of E.faecalis and 118 strains of E. faecium to the high-level gentamicin(500 μg/ml)and high-level of streptomycin (2 000 μg/ml)minimum inhibitory concentration were detected by agar ditution method. The aac (6')/aph (2"),aph(3')-Ⅲ and ant(6)- Ⅰ genes were amplified by PCR. Finally,their genotype were determined by DNA sequencing. Results 112 strains of E. faecalis and 118 strains of E. faecium HLGR rates were 53. 1% and 73.2%, and HLSR rates were 38. 9% and 59. 8%. The drug resistance of the two species to high-level gentamicin and high

  20. Aminoglycosides: An Overview.

    Science.gov (United States)

    Krause, Kevin M; Serio, Alisa W; Kane, Timothy R; Connolly, Lynn E

    2016-01-01

    Aminoglycosides are natural or semisynthetic antibiotics derived from actinomycetes. They were among the first antibiotics to be introduced for routine clinical use and several examples have been approved for use in humans. They found widespread use as first-line agents in the early days of antimicrobial chemotherapy, but were eventually replaced in the 1980s with cephalosporins, carbapenems, and fluoroquinolones. Aminoglycosides synergize with a variety of other antibacterial classes, which, in combination with the continued increase in the rise of multidrug-resistant bacteria and the potential to improve the safety and efficacy of the class through optimized dosing regimens, has led to a renewed interest in these broad-spectrum and rapidly bactericidal antibacterials. PMID:27252397

  1. Synergistic effect of [10]-gingerol and aminoglycosides against vancomycin-resistant enterococci (VRE).

    Science.gov (United States)

    Nagoshi, Chihiro; Shiota, Sumiko; Kuroda, Teruo; Hatano, Tsutomu; Yoshida, Takashi; Kariyama, Reiko; Tsuchiya, Tomofusa

    2006-03-01

    An extract from ginger (root of Zingiber officinale) reduced the minimum inhibitory concentrations (MICs) of aminoglycosides in vancomycin-resistant enterococci (VRE). The effective compound was isolated and identified as [10]-gingerol. In the presence of [10]-gingerol at 1/10 concentration of its own MIC, the MIC of arbekacin was lowered by 1/32 to 1/16. [10]-Gingerol also reduced the MICs of other aminoglycosides, and of bacitracin and polymixin B, but not of other antimicrobial agents tested. Because [10]-gingerol reduced the MICs of several aminoglycosides both in strains possessing or lacking aminoglycoside-modification enzymes, it seems that the effect of [10]-gingerol is not related to these enzymes, which mainly confer bacterial resistance against aminoglycosides. It seemed that a detergent-like effect of [10]-gingerol potentiated the antimicrobial activity of the aminoglycosides. In fact, some detergents such as sodium dodecyl sulfate (SDS) and Triton X-100 reduced the MICs of aminoglycosides, bacitracin and polymixin B in VRE. Since the intrinsic resistance to aminoglycosides in enterococci is due to low level of entry of the drugs into the cells, increase in the membrane permeability caused by [10]-gingerol will enhance the influx of aminoglycosides into enterococcal cells. PMID:16508142

  2. Kinetic and Structural Analysis of Bisubstrate Inhibition of the Salmonella enterica Aminoglycoside 6′-N-Acetyltransferase†,‡

    OpenAIRE

    Magalhães, Maria L. B.; Vetting, Matthew W.; Gao, Feng; Freiburger, Lee; Auclair, Karine; Blanchard, John S.

    2007-01-01

    Aminoglycosides are antibacterial compounds that act by binding to the A site of the small 30S bacterial ribosomal subunit and inhibiting protein translation. Clinical resistance to aminoglycosides is generally the result of the expression of enzymes that covalently modify the antibiotic, including phosphorylation, adenylylation, and acetylation. Bisubstrate analogs for the aminoglycoside N-acetyl-transferases are nanomolar inhibitors of Enterococcus faecium AAC(6′)-Ii. However, in the case o...

  3. Structural and Molecular Basis for Resistance to Aminoglycoside Antibiotics by the Adenylyltransferase ANT(2″)-Ia

    OpenAIRE

    Cox, Georgina; Peter J. Stogios; Savchenko, Alexei; Wright, Gerard D.

    2015-01-01

    ABSTRACT   The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure...

  4. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  5. Once-daily aminoglycoside therapy: potential ototoxicity.

    OpenAIRE

    Kirkpatrick, C. M.; Duffull, S. B.; Begg, E J

    1996-01-01

    Current data indicate that once-daily aminoglycoside therapy is as efficacious as traditional multiple daily dosing and equally or less toxic. Our experience with once-daily gentamicin, 6 mg/kg of body weight led to a 10% (3 of 33 patients) occurrence of documented ototoxicity after prolonged aminoglycoside exposure.

  6. Directed Evolution of Aminoglycoside Phosphotransferase (3′) Type IIIa Variants That Inactivate Amikacin but Impose Significant Fitness Costs

    OpenAIRE

    Kramer, Joseph R.; Matsumura, Ichiro

    2013-01-01

    The rules that govern adaptive protein evolution remain incompletely understood. Aminoglycoside aminotransferase (3′) type IIIa (hereafter abbreviated APH(3′)-IIIa) is a good model enzyme because it inactivates kanamycin efficiently; it recognizes other aminoglycoside antibiotics, including amikacin, but not nearly as well. Here we direct the evolution of APH(3′)-IIIa variants with increased activity against amikacin. After four rounds of random mutation and selection in Escherichia coli, the...

  7. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Science.gov (United States)

    2010-04-01

    ... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) SECONDARY DIRECT FOOD ADDITIVES PERMITTED IN FOOD FOR HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.170 Aminoglycoside 3′-phospho-trans... development of genetically modified cotton, oilseed rape, and tomatoes in accordance with the...

  8. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  9. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    OpenAIRE

    Toth, Marta; Vakulenko, Sergei B.; Smith, Clyde A.

    2012-01-01

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken.

  10. Mechanism of enhanced activity of liposome-entrapped aminoglycosides against resistant strains of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mugabe, Clement; Halwani, Majed; Azghani, Ali O; Lafrenie, Robert M; Omri, Abdelwahab

    2006-06-01

    Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resistance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents. We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were incorporated into liposomes, and the bactericidal efficacies of both free and liposomal drugs were evaluated. To define the mechanism of liposome-bacterium interactions, transmission electron microscopy (TEM), flow cytometry, lipid mixing assay, and immunocytochemistry were employed. Encapsulation of aminoglycosides into liposomes significantly increased their antibacterial activity against the resistant strains used in this study (MICs of > or =32 versus < or =8 microg/ml). TEM observations showed that liposomes interact intimately with the outer membrane of P. aeruginosa, leading to the membrane deformation. The flow cytometry and lipid mixing assays confirmed liposome-bacterial membrane fusion, which increased as a function of incubation time. The maximum fusion rate was 54.3% +/- 1.5% for an antibiotic-sensitive strain of P. aeruginosa and 57.8% +/- 1.9% for a drug-resistant strain. The fusion between liposomes and P. aeruginosa significantly enhanced the antibiotics' penetration into the bacterial cells (3.2 +/- 2.3 versus 24.2 +/- 6.2 gold particles/bacterium, P < or = 0.001). Our data suggest that liposome-entrapped antibiotics could successfully resolve infections caused by antibiotic-resistant P. aeruginosa through an enhanced mechanism of drug entry into the bacterial cells. PMID:16723560

  11. Genetic basis of aminoglycoside resistance following changes in aminoglycoside prescription patterns.

    Science.gov (United States)

    Kosmidis, Chris; Giannopoulou, Maria; Flountzi, Anastasia; Markogiannakis, Antonis; Goukos, Dimitris; Petrikkos, George; Daikos, George L; Tzanetou, Konstantina

    2013-08-01

    Aminoglycosides (AG) offer an important therapeutic option for the treatment of infections caused by multiresistant Enterobacteriaceae. We observed a change in AG usage patterns in our institution between 1997 and 2006, namely a reduction in use of all AG except amikacin. We studied the changes in AG susceptibility rates in these time periods and correlated with prevalence of different molecular resistance mechanisms. Enterobacteriaceae isolated from blood cultures from 1997 and 2006 were studied. Susceptibilities to AG were determined with the disk diffusion method. PCR was used to detect genes encoding AG-modifying enzymes and methylases. Gentamicin resistance rates dropped from 14·5 to 8·8%, whereas resistance rates to other AG remained unchanged. The AAC(6')-I+AAC(3)-I combination was more common in 1997, whereas AAC(6')-I was the most common mechanism in 2006. Reduction in gentamicin use may preserve the usefulness of this agent against severe infections by multiresistant bacteria such as carbapenemase-producing Enterobacteriaceae. PMID:23906075

  12. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia.

    Science.gov (United States)

    Cox, Georgina; Stogios, Peter J; Savchenko, Alexei; Wright, Gerard D

    2015-01-01

    The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure and molecular mechanism have been elusive. This study describes the structural and mechanistic basis for adenylylation of aminoglycosides by the ANT(2″)-Ia enzyme. ANT(2″)-Ia confers resistance by magnesium-dependent transfer of a nucleoside monophosphate (AMP) to the 2″-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core. The catalyzed reaction follows a direct AMP transfer mechanism from ATP to the substrate antibiotic. Central to catalysis is the coordination of two Mg(2+) ions, positioning of the modifiable substrate ring, and the presence of a catalytic base (Asp86). Comparative structural analysis revealed that ANT(2″)-Ia has a two-domain structure with an N-terminal active-site architecture that is conserved among other antibiotic nucleotidyltransferases, including Lnu(A), LinB, ANT(4')-Ia, ANT(4″)-Ib, and ANT(6)-Ia. There is also similarity between the nucleotidyltransferase fold of ANT(2″)-Ia and DNA polymerase β. This similarity is consistent with evolution from a common ancestor, with the nucleotidyltransferase fold having adapted for activity against chemically distinct molecules. IMPORTANCE  : To successfully manage the threat associated with multidrug-resistant infectious diseases, innovative therapeutic strategies need to be developed. One such approach involves the enhancement or potentiation of existing antibiotics against resistant strains of bacteria. The reduction in clinical usefulness of the aminoglycosides is a particular

  13. Probing minority population of antibiotic-resistant bacteria.

    Science.gov (United States)

    Huang, Tianxun; Zheng, Yan; Yan, Ya; Yang, Lingling; Yao, Yihui; Zheng, Jiaxin; Wu, Lina; Wang, Xu; Chen, Yuqing; Xing, Jinchun; Yan, Xiaomei

    2016-06-15

    The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies. PMID:26852201

  14. Physiological and Molecular Pathology of Aminoglycoside Ototoxicity

    Science.gov (United States)

    Sha, Su-Hua

    2005-01-01

    The problem of aminoglycoside-induced ototoxicity, which was recognized within a year of the discovery of streptomycin to combat tuberculosis in 1944, is still of great concern due to the widespread use of these powerful antibacterial agents. These drugs can damage to varying degrees the cochlea and vestibular system. Their primary targets are the…

  15. Selective condensation of DNA by aminoglycoside antibiotics.

    Science.gov (United States)

    Kopaczynska, M; Schulz, A; Fraczkowska, K; Kraszewski, S; Podbielska, H; Fuhrhop, J H

    2016-05-01

    The condensing effect of aminoglycoside antibiotics on the structure of double-stranded DNA was examined. The selective condensation of DNA by small molecules is an interesting approach in biotechnology. Here, we present the interaction between calf thymus DNA and three types of antibiotic molecules: tobramycin, kanamycin, and neomycin. Several techniques were applied to study this effect. Atomic force microscopy, transmission electron microscopy images, and nuclear magnetic resonance spectra showed that the interaction of tobramycin with double-stranded DNA caused the rod, toroid, and sphere formation and very strong condensation of DNA strands, which was not observed in the case of other aminoglycosides used in the experiment. Studies on the mechanisms by which small molecules interact with DNA are important in understanding their functioning in cells, in designing new and efficient drugs, or in minimizing their adverse side effects. Specific interactions between tobramycin and DNA double helix was modeled using molecular dynamics simulations. Simulation study shows the aminoglycoside specificity to bend DNA double helix, shedding light on the origins of toroid formation. This phenomenon may lighten the ototoxicity or nephrotoxicity issues, but also other adverse reactions of aminoglycoside antibiotics in the human body. PMID:26646261

  16. Modulation of RNA function by aminoglycoside antibiotics.

    Science.gov (United States)

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-01

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the ribosome at high resolution and how aminoglycosides might induce misreading of the genetic code. In addition to inhibiting prokaryotic translation, aminoglycosides inhibit several catalytic RNAs such as self-splicing group I introns, RNase P and small ribozymes in vitro. Furthermore, these antibiotics interfere with human immunodeficiency virus (HIV) replication by disrupting essential RNA-protein contacts. Most exciting is the potential of many RNA-binding antibiotics to stimulate RNA activities, conceiving small-molecule partners for the hypothesis of an ancient RNA world. SELEX (systematic evolution of ligands by exponential enrichment) has been used in this evolutionary game leading to small synthetic RNAs, whose NMR structures gave valuable information on how aminoglycosides interact with RNA, which could possibly be used in applied science. PMID:10619838

  17. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    OpenAIRE

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual fl...

  18. Study of Klebsiella pneumoniae producing extended-spectrum β-lactamases against aminoglycosides

    Institute of Scientific and Technical Information of China (English)

    WEI FENG SHI; SU JIAN WANG; JIAN PING QIN

    2007-01-01

    Klebsiella pneumoniae ( K. pneumoniae) is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by K. pneumoniae producing extended-spectrum β-lactamases (ESBLs) are very difficult to treat. This paper investigated the resistant characteristics of K. pneumoniae producing ESBLs and their aminoglycoside-modifying enzyme gene expressions including Nacetyltransferases and O-adenyhransferases. Bacteria identification and ESBLs confirmatory tests were performed by Phoenix TM-100 system. And minimum inhibitory concentrations (MICs) of gentamicin,amikacin, kanamycin, tobramycin, netilmicin and neomycin in 53 K. pneumoniae isolates were detected by agar dilution. In addition, six aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer. It was found that imipenem and meropenem against 120 K. pneumoniae isolates produced powerful antimicrobial activities. The resistant rates of gentamicin and amikacin were 55.0% and 46.7%, respectively. Except neomycin,MIC50 and MIC90 of gentamicin, amikacin, kanamycin, tobramycin and netilmicin in 53 K. pneumoniae were all > 128 μg/ml, and the resistant rates were 83.0%, 52.3%, 75.5%, 81. 1% and 69.8%, respectively. However, neomycin was only 39.6%. In addition, five modifying enzyme genes, including aac(3)- Ⅰ , aac(3)-Ⅱ, aac(6′) - Ⅰ b, ant(3″) - Ⅰ, ant(2″) - Ⅰ genes, were found in 53 isoahes except aac (6′)-Ⅱ, and their positive rates were 11.3%, 67.9%, 47.2%,1.9 % and 39.6 %, respectively. It was also confirmed by nucleotide sequence analysis that the above resistant genes shared nearly 100% identities with GenBank published genes. The results obtained in the present study indicated that K. pneumoniae producing ESBLs strains are rapidly spreading in our hospital, and their resistance to aminoglycosides may be associated with aminoglycoside-modifying enzyme gene expressions.

  19. Purification, crystallization and preliminary X-ray analysis of the aminoglycoside-6′-acetyltransferase AAC(6′)-Im

    International Nuclear Information System (INIS)

    AAC(6′)-Im is an N-acetyltransferase enzyme responsible for aminoglycoside resistance in E. faecium and E. coli isolates. Crystals of the kanamycin complex of this enzyme have been prepared and preliminary X-ray diffraction experiments have been undertaken. Bacterial resistance to the aminoglycoside antibiotics is primarily the result of enzymatic deactivation of the drugs. The aminoglycoside N-acetyltransferases (AACs) are a large family of bacterial enzymes that are responsible for coenzyme-A-facilitated acetylation of aminoglycosides. The gene encoding one of these enzymes, AAC(6′)-Im, has been cloned and the protein (comprising 178 amino-acid residues) was expressed in Escherichia coli, purified and crystallized as the kanamycin complex. Synchrotron diffraction data to approximately 2.0 Å resolution were collected from a crystal of this complex on beamline BL12-2 at SSRL (Stanford, California, USA). The crystals belonged to the hexagonal space group P65, with approximate unit-cell parameters a = 107.75, c = 37.33 Å, and contained one molecule in the asymmetric unit. Structure determination is under way using molecular replacement

  20. DNA-Aptamers Binding Aminoglycoside Antibiotics

    OpenAIRE

    Nadia Nikolaus; Beate Strehlitz

    2014-01-01

    Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminog...

  1. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel; Desmolaize, Benoît; Douthwaite, Stephen Roger; Mechulam, Yves; Courvalin, Patrice

    2011-01-01

    Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium methyltr......Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium...... locations are required for catalysis. The tertiary structure of EfmM is highly similar to that of RsmF, consistent with m(5)C formation at adjacent sites on the 30S subunit, while distinctive structural features account for the enzymes' respective specificities for nucleotides C1404 and C1407....

  2. Modulation of RNA function by aminoglycoside antibiotics.

    OpenAIRE

    Schroeder, R; Waldsich, C; Wank, H

    2000-01-01

    One of the most important families of antibiotics are the aminoglycosides, including drugs such as neomycin B, paromomycin, gentamicin and streptomycin. With the discovery of the catalytic potential of RNA, these antibiotics became very popular due to their RNA-binding capacity. They serve for the analysis of RNA function as well as for the study of RNA as a potential therapeutic target. Improvements in RNA structure determination recently provided first insights into the decoding site of the...

  3. Aminoglycoside antibiotics and autism: a speculative hypothesis

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2001-10-01

    Full Text Available Abstract Background Recently, it has been suspected that there is a relationship between therapy with some antibiotics and the onset of autism; but even more curious, some children benefited transiently from a subsequent treatment with a different antibiotic. Here, we speculate how aminoglycoside antibiotics might be associated with autism. Presentation We hypothesize that aminoglycoside antibiotics could a trigger the autism syndrome in susceptible infants by causing the stop codon readthrough, i.e., a misreading of the genetic code of a hypothetical critical gene, and/or b improve autism symptoms by correcting the premature stop codon mutation in a hypothetical polymorphic gene linked to autism. Testing Investigate, retrospectively, whether a link exists between aminoglycoside use (which is not extensive in children and the onset of autism symptoms (hypothesis "a", or between amino glycoside use and improvement of these symptoms (hypothesis "b". Whereas a prospective study to test hypothesis "a" is not ethically justifiable, a study could be designed to test hypothesis "b". Implications It should be stressed that at this stage no direct evidence supports our speculative hypothesis and that its main purpose is to initiate development of new ideas that, eventually, would improve our understanding of the pathobiology of autism.

  4. Chronopharmacokinetics of once daily dosed aminoglycosides in hospitalized infectious patients

    OpenAIRE

    van Maarseveen, Erik; Man, Wai Hong; Proost, Johannes; Neef, Cees; Touw, Daniël

    2015-01-01

    Background hospitalized patients with serious infections treated with aminoglycosides are at risk of developing nephrotoxicity. Previous clinical studies have shown that the pharmacokinetics of aminoglycosides in humans follow a circadian rhythm. Therefore, the time of administration could have important clinical implications with respect to the risk of developing aminoglycoside-associated nephrotoxicity in patients treated with once daily dosing regimens. Objective To examine the effect of t...

  5. Synthesis of 4′-aminopantetheine and derivatives to probe aminoglycoside N-6′-acetyltransferase

    Science.gov (United States)

    Yan, Xuxu; Akinnusi, T. Olukayode; Larsen, Aaron T.; Auclair, Karine

    2011-01-01

    Summary A convenient synthesis of 4′-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4′-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6′-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  6. Synthesis of 4'-aminopantetheine and derivatives to probe aminoglycoside N-6'-acetyltransferase.

    Science.gov (United States)

    Yan, Xuxu; Akinnusi, T Olukayode; Larsen, Aaron T; Auclair, Karine

    2011-03-01

    A convenient synthesis of 4'-aminopantetheine from commercial D-pantethine is reported. The amino group was introduced by reductive amination in order to avoid substitution at a sterically congested position. Derivatives of 4'-aminopantetheine were also prepared to evaluate the effect of O-to-N substitution on inhibitors of the resistance-causing enzyme aminoglycoside N-6'-acetyltransferase. The biological results combined with docking studies indicate that in spite of its reported unusual flexibility and ability to adopt different folds, this enzyme is highly specific for AcCoA. PMID:21225062

  7. Crystallization and preliminary crystallographic analysis of an aminoglycoside kinase from Legionella pneumophila

    International Nuclear Information System (INIS)

    Two crystal forms of the antibiotic resistance enzyme APH(9)-Ia from L. pneumophila are reported. 9-Aminoglycoside phosphotransferase type Ia [APH(9)-Ia] is a resistance factor in Legionella pneuemophila, the causative agent of legionnaires’ disease. It is responsible for providing intrinsic resistance to the antibiotic spectinomycin. APH(9)-Ia phosphorylates one of the hydroxyl moieties of spectinomycin in an ATP-dependent manner, abolishing the antibiotic properties of this drug. Here, the crystallization and preliminary X-ray studies of this enzyme in two crystal forms is reported. One of the these crystal forms provides diffraction data to a resolution of 1.7 Å

  8. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup;

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......-deficient P. aeruginosa quorum-sensing mutant are more susceptible to aminoglycoside treatment than wild-type biofilms but become rescued from the detrimental action of aminoglycosides upon supplementation with exogenous DNA. Furthermore, we demonstrate that exposure to lysed polymorphonuclear leukocytes...

  9. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Science.gov (United States)

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria. PMID:27126035

  10. Purification, crystallization and preliminary X-ray analysis of Enterococcus casseliflavus aminoglycoside-2′′-phosphotransferase-IVa

    International Nuclear Information System (INIS)

    Aminoglycoside-2′′-phosphotransferase-IVa [APH(2′′)-IVa] is an enzyme that is responsible for high-level gentamicin resistance in E. casseliflavus isolates. Three different crystals of wild-type substrate-free APH(2′′)-IVa have been prepared and preliminary X-ray diffraction experiments have been undertaken on all three crystal forms. The deactivation of aminoglycoside antibiotics by chemical modification is one of the major sources of bacterial resistance to this family of therapeutic compounds, which includes the clinically relevant drugs streptomycin, kanamycin and gentamicin. The aminoglycoside phosphotransferases (APHs) form one such family of enzymes responsible for this resistance. The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-IVa [APH(2′′)-IVa] from Enterococcus casseliflavus, has been cloned and the protein (comprising 306 amino-acid residues) has been expressed in Escherichia coli and purified. The enzyme was crystallized in three substrate-free forms. Two of the crystal forms belonged to the orthorhombic space group P212121 with similar unit-cell parameters, although one of the crystal forms had a unit-cell volume that was approximately 13% smaller than the other and a very low solvent content of around 38%. The third crystal form belonged to the monoclinic space group P21 and preliminary X-ray diffraction analysis was consistent with the presence of two molecules in the asymmetric unit. The orthorhombic crystal forms of apo APH(2′′)-IVa both diffracted to 2.2 Å resolution and the monoclinic crystal form diffracted to 2.4 Å resolution; synchrotron diffraction data were collected from these crystals at SSRL (Stanford, California, USA). Structure determination by molecular replacement using the structure of the related enzyme APH(2′′)-IIa is proceeding

  11. Characterization of antibiotic-resistant bacteria in rendered animal products.

    Science.gov (United States)

    Hofacre, C L; White, D G; Maurer, J J; Morales, C; Lobsinger, C; Hudson, C

    2001-01-01

    Antibiotics are used in food animal production to treat diseases and also to improve performance. Antibiotics are not used on all farms, and antibiotic resistance is occasionally found on farms that do not use antibiotics. Rendered animal protein products are often included in poultry feeds and could potentially serve as a source of antibiotic-resistant bacteria. One hundred sixty-five rendered animal protein products from cattle, poultry, and fish were aseptically collected from poultry feed mills. Fifty-five percent of the poultry meal samples had detectable levels of gram-negative bacteria ranging from 40 to 10,440 colony-forming units/g of sample. Poultry meal and meat and bone meal had the greatest number of samples with bacteria resistant to five or more antibiotics. A high percentage of feed samples (85%) contained bacteria resistant to amoxicillin, ampicillin, clavulanic acid, or cephalothin, whereas few samples contained bacteria resistant to ciprofloxacin, kanamycin, or trimethoprim/sulfamethoxazole. Acinetobacter calcoaceticus, Citrobacter freundii, and Enterobacter cloacae were the most commonly isolated antibiotic-resistant bacteria. Isolation for Salmonella was also performed, with 14% of the meat and bone meal samples containing Salmonella sp. Only one of the meat and bone meal isolates, Salmonella livingstone, was resistant to five or more antibiotics. Many of the antibiotic-resistant bacteria contained integrons, genetic elements that mediate multiple drug resistance. PMID:11785899

  12. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  13. Worldwide Disseminated armA Aminoglycoside Resistance Methylase Gene Is Borne by Composite Transposon Tn1548

    OpenAIRE

    Galimand, M.; Sabtcheva, S.; Courvalin, P; Lambert, T.

    2005-01-01

    The armA (aminoglycoside resistance methylase) gene, which confers resistance to 4,6-disubstituted deoxystreptamines and fortimicin, was initially found in Klebsiella pneumoniae BM4536 on IncL/M plasmid pIP1204 of ca. 90 kb which also encodes the extended-spectrum β-lactamase CTX-M-3. Thirty-four enterobacteria from various countries that were likely to produce a CTX-M enzyme since they were more resistant to cefotaxime than to ceftazidime were studied. The armA gene was detected in 12 clinic...

  14. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK

    DEFF Research Database (Denmark)

    Hidalgo, Laura; Hopkins, Katie L; Gutierrez, Belen; Ovejero, Cristina M; Shukla, Suruchi; Douthwaite, Stephen Roger; Prasad, Kashi N; Woodford, Neil; Gonzalez-Zorn, Bruno

    2013-01-01

    16S rRNA methyltransferases are an emerging mechanism conferring high-level resistance to clinically relevant aminoglycosides and have been associated with important mechanisms such as NDM-1. We sought genes encoding these enzymes in isolates highly resistant (MIC >200 mg/L) to gentamicin and ami...

  15. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  16. Coenzyme A Binding to the Aminoglycoside Acetyltransferase (3)-IIIb Increases Conformational Sampling of Antibiotic Binding Site

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiaohu [ORNL; Norris, Adrianne [University of Tennessee, Knoxville (UTK); Baudry, Jerome Y [ORNL; Serpersu, Engin H [University of Tennessee, Knoxville (UTK)

    2011-01-01

    NMR spectroscopy experiments and molecular dynamics simulations were performed to describe the dynamic properties of the aminoglycoside acetyltransferase (3)-IIIb (AAC) in its apo and coenzyme A (CoASH) bound forms. The {sup 15}N-{sup 1}H HSQC spectra indicate a partial structural change and coupling of the CoASH binding site with another region in the protein upon the CoASH titration into the apo enzyme. Molecular dynamics simulations indicate a significant structural and dynamic variation of the long loop in the antibiotic binding domain in the form of a relatively slow (250 ns), concerted opening motion in the CoASH enzyme complex and that binding of the CoASH increases the structural flexibility of the loop, leading to an interchange between several similar equally populated conformations.

  17. High throughput LSPR and SERS analysis of aminoglycoside antibiotics.

    Science.gov (United States)

    McKeating, Kristy S; Couture, Maxime; Dinel, Marie-Pier; Garneau-Tsodikova, Sylvie; Masson, Jean-Francois

    2016-08-15

    Aminoglycoside antibiotics are used in the treatment of infections caused by Gram-negative bacteria, and are often dispensed only in severe cases due to their adverse side effects. Patients undergoing treatment with these antibiotics are therefore commonly subjected to therapeutic drug monitoring (TDM) to ensure a safe and effective personalised dosage. The ability to detect these antibiotics in a rapid and sensitive manner in human fluids is therefore of the utmost importance in order to provide effective monitoring of these drugs, which could potentially allow for a more widespread use of this class of antibiotics. Herein, we report on the detection of various aminoglycosides, by exploiting their ability to aggregate gold nanoparticles. The number and position of the amino groups of aminoglycoside antibiotics controlled the aggregation process. We investigated the complementary techniques of surface enhanced Raman spectroscopy (SERS) and localized surface plasmon resonance (LSPR) for dual detection of these aminoglycoside antibiotics and performed an in-depth study of the feasibility of carrying out TDM of tobramycin using a platform amenable to high throughput analysis. Herein, we also demonstrate dual detection of tobramycin using both LSPR and SERS in a single platform and within the clinically relevant concentration range needed for TDM of this particular aminoglycoside. Additionally we provide evidence that tobramycin can be detected in spiked human serum using only functionalised nanoparticles and SERS analysis. PMID:27412506

  18. Evaluation of Aminoglycoside and Non-Aminoglycoside Compounds for Stop-Codon Readthrough Therapy in Four Lysosomal Storage Diseases.

    Directory of Open Access Journals (Sweden)

    Marta Gómez-Grau

    Full Text Available Nonsense mutations are quite prevalent in inherited diseases. Readthrough drugs could provide a therapeutic option for any disease caused by this type of mutation. Geneticin (G418 and gentamicin were among the first to be described. Novel compounds have been generated, but only a few have shown improved results. PTC124 is the only compound to have reached clinical trials. Here we first investigated the readthrough effects of gentamicin on fibroblasts from one patient with Sanfilippo B, one with Sanfilippo C, and one with Maroteaux-Lamy. We found that ARSB activity (Maroteaux-Lamy case resulted in an increase of 2-3 folds and that the amount of this enzyme within the lysosomes was also increased, after treatment. Since the other two cases (Sanfilippo B and Sanfilippo C did not respond to gentamicin, the treatments were extended with the use of geneticin and five non-aminoglycoside (PTC124, RTC13, RTC14, BZ6 and BZ16 readthrough compounds (RTCs. No recovery was observed at the enzyme activity level. However, mRNA recovery was observed in both cases, nearly a two-fold increase for Sanfilippo B fibroblasts with G418 and around 1.5 fold increase for Sanfilippo C cells with RTC14 and PTC124. Afterwards, some of the products were assessed through in vitro analyses for seven mutations in genes responsible for those diseases and, also, for Niemann-Pick A/B. Using the coupled transcription/translation system (TNT, the best results were obtained for SMPD1 mutations with G418, reaching a 35% recovery at 0.25 μg/ml, for the p.W168X mutation. The use of COS cells transfected with mutant cDNAs gave positive results for most of the mutations with some of the drugs, although to a different extent. The higher enzyme activity recovery, of around two-fold increase, was found for gentamicin on the ARSB p.W146X mutation. Our results are promising and consistent with those of other groups. Further studies of novel compounds are necessary to find those with more

  19. Radioenzymatic assays for aminoglycosides with kanamycin 6'- acetyltransferase

    International Nuclear Information System (INIS)

    To facilitate the rapid and accurate quantitation of parenterally administered aminoglycosides, the optimum conditions (pH, duration of incubation, and cofactor concentrations) were defined to permit radioenzymatic assays with kanamycin acetyltransferase. The accuracy in quantitating tobramycin, netilmicin, kanamycin, and amikacin at concentrations in the therapeutic range was greater than 90%, with a mean recovery of 102.8%. The mean of the interassay coefficient of variation was 7.8%. Typical standard curves at six different concentrations resulted in a correlation coefficient (r value) of greater than 0.99 for each aminoglycoside. The radioenzymatic assay correlates well with the bioassay (tobramycin and netilmicin) and radioimmunoassay (amikacin and kanamycin); the correlation coefficient is greater than 0.90 for all. The authors conclude that the radioenzymatic assay utilizing kanamycin 6'-acetyltransferase is feasible for all commercially available parenterally administered aminoglycosides

  20. Can chlorination co-select antibiotic-resistance genes?

    Science.gov (United States)

    Lin, Wenfang; Zhang, Menglu; Zhang, Shenghua; Yu, Xin

    2016-08-01

    Selective pressures, such as chemical or heavy metal pollution, may co-select for bacterial antibiotic resistance in the environment. However, whether chlorination in water treatment can co-select antibiotic-resistant bacteria is controversial. In this study, high capacity quantitative polymerase chain reaction (qPCR) analysis was applied to target almost all known antibiotic-resistance genes (ARGs) (282 types) and 13 mobile genetic elements (MGEs) in bacteria detected in secondary effluents from a municipal wastewater treatment plant after chlorination. The results revealed that 125 unique ARGs were detected in non-chlorinated samples, and the number decreased (79-91 types) as the chlorine concentration was increased. Moreover, 7.49 × 10(4)-3.92 × 10(7) copies/100 ml water reduction of ARGs occurred with 4 mg Cl2/l. Considering the relative abundance of ARGs (i.e., ARG copies normalized to 16S rRNA gene copies), 119 ARGs decreased in response to chlorination, whereas only six ARGs, such as dfrA1, tetPB-03, tetPA, ampC-04, tetA-02, and erm(36), were potentially enriched by 10.90-, 10.06-, 8.63-, 6.86-, 3.77-, and 1.09-fold, respectively. Furthermore, the relative abundance of 12 detected MGEs was lower after chlorination. Therefore, chlorination was effective in reducing ARGs and MGEs rather than co-selecting them. PMID:27192478

  1. Cymbopogon citratus protects against the renal injury induced by toxic doses of aminoglycosides in rabbits

    Directory of Open Access Journals (Sweden)

    N Ullah

    2013-01-01

    Full Text Available Renal injury is the most common side-effect of aminoglycosides. These antimicrobial drugs are particularly effective against Gram-negative microorganisms. The present study was conducted to investigate the renal protective activity of Cymbopogon citratus in gentamicin-induced nephrotoxicity. Male rabbits were divided into four groups (n=6 including group 1 (0.9% saline treated, group 2 (80 mg/kg/day gentamicin-treated, group 3 (200 mg/kg/day Cymbopogon citratus treated and group 4 (80 mg/kg/day gentamicin and 200 mg/kg/day Cymbopogon citratus treated. Biochemical kidney functioning parameters, urinary enzymes and histopathological examination were performed. The results of the present study showed that simultaneous administration of Cymbopogon citrates and gentamicin significantly protected alteration in body weight, blood urea nitrogen, serum creatinine, creatinine clearance, serum uric acid, serum electrolytes, urinary volume, urinary protein, urinary lactate dehydrogenase and urinary alkaline phosphatase induced by gentamicin. Histological examination of the kidney also suggested the same. It is concluded from the current study that co-administration of Cymbopogon citratus with gentamicin for 3 weeks successfully prevented renal damage associated with aminoglycosides.

  2. Cymbopogon citratus Protects against the Renal Injury Induced by Toxic Doses of Aminoglycosides in Rabbits.

    Science.gov (United States)

    Ullah, N; Khan, M A; Khan, T; Ahmad, W

    2013-03-01

    Renal injury is the most common side-effect of aminoglycosides. These antimicrobial drugs are particularly effective against Gram-negative microorganisms. The present study was conducted to investigate the renal protective activity of Cymbopogon citratus in gentamicin-induced nephrotoxicity. Male rabbits were divided into four groups (n=6) including group 1 (0.9% saline treated), group 2 (80 mg/kg/day gentamicin-treated), group 3 (200 mg/kg/day Cymbopogon citratus treated) and group 4 (80 mg/kg/day gentamicin and 200 mg/kg/day Cymbopogon citratus treated). Biochemical kidney functioning parameters, urinary enzymes and histopathological examination were performed. The results of the present study showed that simultaneous administration of Cymbopogon citrates and gentamicin significantly protected alteration in body weight, blood urea nitrogen, serum creatinine, creatinine clearance, serum uric acid, serum electrolytes, urinary volume, urinary protein, urinary lactate dehydrogenase and urinary alkaline phosphatase induced by gentamicin. Histological examination of the kidney also suggested the same. It is concluded from the current study that co-administration of Cymbopogon citratus with gentamicin for 3 weeks successfully prevented renal damage associated with aminoglycosides. PMID:24019578

  3. In vitro read-through of phenylalanine hydroxylase (PAH) nonsense mutations using aminoglycosides: a potential therapy for phenylketonuria.

    Science.gov (United States)

    Ho, Gladys; Reichardt, Juergen; Christodoulou, John

    2013-11-01

    Phenylketonuria (PKU, OMIM 261600) is an autosomal recessive inborn error of phenylalanine metabolism, predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene. Approximately 10% of patients carry a nonsense mutation, which results in an inactive or unstable truncated protein. In some genetic disorders, including cystic fibrosis and Duchenne muscular dystrophy, restoration of full-length protein has been achieved by aminoglycoside antibiotics, such as gentamicin and G-418 (Geneticin). More recently, nonsense read-through has been induced at greater rates using a non-aminoglycoside drug, PTC124 (Ataluren), which has the advantage of being non-toxic in contrast to the antibiotics. The efficacy of read-through induced by three compounds, aminoglycosides G418 and gentamicin, and PTC124 were evaluated for four nonsense mutations of PAH in an in vitro expression system in two mammalian cell lines (COS-7 and HEK293). The production of full-length PAH was investigated using western blotting and the functionality confirmed by enzyme activity. Gentamicin and G-418 induced read-through of nonsense PAH mutations in HEK293 cells. The read-through product partially restored enzymatic activity, which was significantly less than that of wild-type, but comparable to a missense mutation of PAH associated with less severe forms of PKU. Treatment with PTC124 up to 100 μM did not result in full-length PAH polypeptide. Nonsense read-through drugs are a potential form of treatment for PKU, although the high dosage of aminoglycosides used is not appropriate in a clinical setting. In vitro studies with new non-toxic read-through agents as well as in vivo studies would also be essential to determine the extent of read-through required to restore normal phenylalanine levels. PMID:23532445

  4. Directed evolution of aminoglycoside phosphotransferase (3' type IIIa variants that inactivate amikacin but impose significant fitness costs.

    Directory of Open Access Journals (Sweden)

    Joseph R Kramer

    Full Text Available The rules that govern adaptive protein evolution remain incompletely understood. Aminoglycoside aminotransferase (3' type IIIa (hereafter abbreviated APH(3'-IIIa is a good model enzyme because it inactivates kanamycin efficiently; it recognizes other aminoglycoside antibiotics, including amikacin, but not nearly as well. Here we direct the evolution of APH(3'-IIIa variants with increased activity against amikacin. After four rounds of random mutation and selection in Escherichia coli, the minimum inhibitory concentration of amikacin rose from 18 micrograms/mL (wild-type enzyme to over 1200 micrograms/mL (clone 4.1. The artificially evolved 4.1 APH(3'-IIIa variant exhibited 19-fold greater catalytic efficiency (k cat/K M than did the wild-type enzyme in reactions with amikacin. E. coli expressing the evolved 4.1 APH(3'-IIIa also exhibited a four-fold decrease in fitness (as measured by counting colony forming units in liquid cultures with the same optical density compared with isogenic cells expressing the wild-type protein under non-selective conditions. We speculate that these fitness costs, in combination with the prevalence of other amikacin-modifying enzymes, hinder the evolution of APH(3'-IIIa in clinical settings.

  5. Antibiotic-resistant bacteria in wild primates: increased prevalence in baboons feeding on human refuse.

    OpenAIRE

    Rolland, R M; Hausfater, G; Marshall, B.; Levy, S B

    1985-01-01

    We examined three groups of wild baboons (Papio cynocephalus) in Amboseli National Park, Kenya, to determine the prevalence of aerobic antibiotic-resistant fecal bacteria in nonhuman primates with and without contact with human refuse. Using standard isolation and replica plating techniques, we found only low numbers of antibiotic-resistant gram-negative enteric bacteria in two groups of baboons leading an undisturbed existence in their natural habitat and having limited or no contact with hu...

  6. 30S Subunit-Dependent Activation of the Sorangium cellulosum So ce56 Aminoglycoside Resistance-Conferring 16S rRNA Methyltransferase Kmr

    Science.gov (United States)

    Savic, Miloje; Sunita, S.; Zelinskaya, Natalia; Desai, Pooja M.; Macmaster, Rachel; Vinal, Kellie

    2015-01-01

    Methylation of bacterial 16S rRNA within the ribosomal decoding center confers exceptionally high resistance to aminoglycoside antibiotics. This resistance mechanism is exploited by aminoglycoside producers for self-protection while functionally equivalent methyltransferases have been acquired by human and animal pathogenic bacteria. Here, we report structural and functional analyses of the Sorangium cellulosum So ce56 aminoglycoside resistance-conferring methyltransferase Kmr. Our results demonstrate that Kmr is a 16S rRNA methyltransferase acting at residue A1408 to confer a canonical aminoglycoside resistance spectrum in Escherichia coli. Kmr possesses a class I methyltransferase core fold but with dramatic differences in the regions which augment this structure to confer substrate specificity in functionally related enzymes. Most strikingly, the region linking core β-strands 6 and 7, which forms part of the S-adenosyl-l-methionine (SAM) binding pocket and contributes to base flipping by the m1A1408 methyltransferase NpmA, is disordered in Kmr, correlating with an exceptionally weak affinity for SAM. Kmr is unexpectedly insensitive to substitutions of residues critical for activity of other 16S rRNA (A1408) methyltransferases and also to the effects of by-product inhibition by S-adenosylhomocysteine (SAH). Collectively, our results indicate that adoption of a catalytically competent Kmr conformation and binding of the obligatory cosubstrate SAM must be induced by interaction with the 30S subunit substrate. PMID:25733511

  7. Carriage of antibiotic-resistant bacteria by healthy children.

    Science.gov (United States)

    Millar, M R; Walsh, T R; Linton, C J; Zhang, S; Leeming, J P; Bennett, P M

    2001-05-01

    The frequency of carriage of antibiotic-resistant bacteria in healthy 7- and 8-year-old children in Bristol was studied. Children born in Avon between 1 April 1991 and 31 December 1992, attending the Avon Longitudinal Study of Pregnancy and Childhood (ALSPAC) 7 year follow-up clinic, formed the study population. Carriage was estimated using mouth and stool samples. None of 105 children on whom information was available had received tetracycline, chloramphenicol, ciprofloxacin or an extended-spectrum cephalosporin in the previous year. Staphylococcus aureus was isolated from mouthwashes from 200 (37.1%) of 539 children sampled. Six (3%) of the isolates were resistant to chloramphenicol or tetracycline and four (2%) were methicillin resistant. Haemophilus spp. were isolated from 369 (72%) of 513 samples and 63 (17%) were ampicillin resistant, 49 (13.3%) were erythromycin resistant and seven (1.9%) were tetracycline resistant. Branhamella catarrhalis was isolated from 333 (74%) of 450 samples. Twenty-eight (8.4%) were erythromycin resistant and 14 (4.2%) strains were tetracycline resistant. Group A beta-haemolytic streptococci were isolated from 17 of 507 children sampled. One (5.9%) was tetracycline resistant. Stool samples were returned from 335 (62%) of 539 children from whom they were requested. Eleven per cent of samples yielded Gram-negative bacilli with high-level resistance to chloramphenicol, which was frequently linked to resistance to ampicillin, spectinomycin and streptomycin. Isolates demonstrating resistance to the third-generation cephalosporin ceftazidime were recovered from 17 subjects (3.2%). Six (35%) of 17 isolates possessed extended-spectrum beta-lactamases. Healthy children carry bacteria resistant to antibiotics to which children are not usually exposed. Resistance to ceftazidime, chloramphenicol and tetracycline may be co-selected by exposure to other antibiotics used in children or may be acquired from family members, pets, other children or

  8. Radioenzymatic assays for aminoglycosides with kanamycin 6'-acetyltransferase.

    OpenAIRE

    Weber, A; Smith, A L; Opheim, K E

    1985-01-01

    To facilitate the rapid and accurate quantitation of parenterally administered aminoglycosides, we defined the optimum conditions (pH, duration of incubation, and cofactor concentrations) to permit radioenzymatic assays with kanamycin acetyltransferase. The accuracy in quantitating tobramycin, netilmicin, kanamycin, and amikacin at concentrations in the therapeutic range was greater than 90%, with a mean recovery of 102.8%. The mean of the interassay coefficient of variation was 7.8%. Typical...

  9. DETERMINATION OF AMINOGLYCOSIDES IN FOOD BY FLUORESCENCE POLARIZATION IMMUNOASSAY

    Directory of Open Access Journals (Sweden)

    FARAFONOVA O.V.

    2015-01-01

    Full Text Available The methodic for quantitative determination of aminoglycoside antibiotics (gentamicin, kanamycin, streptomycin, amikacin, neomycin in food by polarization fluorescent immunoassay (FPIA is developed. The size and structure influence of a fluorescent molecule on a fluorescence polarization degree is analyzed. Affinity constants of antibodies to compounds and tracers were estimated, optimized working concentration of tracers and antibodies that provide the maximum value of analytical signal. Methods were tested in the antibiotics identification in milk, eggs and chicken.

  10. UK31214, a new aminoglycoside and derivative of kanamycin B.

    OpenAIRE

    Wise, R.; Andrews, J. M.; Bedford, K A

    1980-01-01

    The in vitro activity of UK31214, a kanamycin B derivative, was studied against 250 recent isolates and compared with other aminoglycosides. Against the Enterobacteriaceae (with the exception of Proteus mirabilis and Providencia stuartii) UK31214 and amikacin had similar degrees of activity (mode minimum inhibitory concentration [MIC], 1 microgram/ml). Proteus mirabilis and P. stuartii strains were four- to eight-fold more susceptible to amikacin than to UK31214. Pseudomonas aeruginosa strain...

  11. Determination of aminoglycoside resistance in Staphylococcus aureus by DNA hybridization.

    OpenAIRE

    Dickgiesser, N; Kreiswirth, B N

    1986-01-01

    A method is described for identification of the genes conferring aminoglycoside resistance in Staphylococcus aureus by dot-blot and Southern blot techniques. As radioactive probes, fragments of plasmids pAT48, pUBH2, and pH13, carrying the genes for an aminocyclitol-3'-phosphotransferase, an aminocyclitol-4'-adenylyltransferase, and an aminocyclitol-2''-phosphotransferase-aminocyclitol-6'-acetyltransferase, respectively, were used.

  12. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei T Chang; Meissner, Nicole; Oblad, John; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20′s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were de...

  13. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    OpenAIRE

    Shrestha, Sanjib K.; Cheng-Wei Tom Chang; Nicole eMeissner; John eOblad; Shrestha, Jaya P.; Sorensen, Kevin N.; Michelle M. Grilley; Jon Y Takemoto

    2014-01-01

    K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were d...

  14. The effect of pharmacy intervention on aminoglycoside costs.

    Science.gov (United States)

    Tsuyuki, R T; Nakagawa, R S

    1987-04-01

    Antibiotics constitute a large percentage of every hospital's drug budget. In an effort to control the escalating costs of antimicrobial therapy, we focused on the usage of aminoglycosides at our institution. The aminoglycosides, gentamicin and tobramycin, are similar in terms of antimicrobial spectra and toxicities. Since gentamicin is much less expensive, it was felt that significant cost savings would be realized if gentamicin were to be used preferentially over tobramycin. Specific criteria for the use of tobramycin were developed and approved by the Pharmacy and Therapeutics Committee. All patients prescribed parenteral tobramycin during the five week data collection period were entered into the study. We chose to use direct verbal intervention as our method for altering physician's prescribing patterns. An educational program of intervention was set up such that when a physician prescribed tobramycin, the patient's chart was immediately reviewed. If tobramycin was prescribed for a purpose other than those in the approved criteria for tobramycin use, the physician was contacted personally to discuss the cost-effectiveness of gentamicin use. Utilization figures from the previous six months showed that our interventions would save approximately $32,000 over a one year period. Our interventions on aminoglycoside prescribing represents a highly successful, cost-effective and educational method for altering physician's prescribing patterns. PMID:10282090

  15. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides.

    Science.gov (United States)

    Doi, Yohei; Arakawa, Yoshichika

    2007-07-01

    Methylation of 16S ribosomal RNA (rRNA) has recently emerged as a new mechanism of resistance against aminoglycosides among gram-negative pathogens belonging to the family Enterobacteriaceae and glucose-nonfermentative microbes, including Pseudomonas aeruginosa and Acinetobacter species. This event is mediated by a newly recognized group of 16S rRNA methylases, which share modest similarity to those produced by aminoglycoside-producing actinomycetes. Their presence confers a high level of resistance to all parenterally administered aminoglycosides that are currently in clinical use. The responsible genes are mostly located on transposons within transferable plasmids, which provides them with the potential to spread horizontally and may in part explain the already worldwide distribution of this novel resistance mechanism. Some of these organisms have been found to coproduce extended-spectrum beta-lactamases or metallo-beta-lactamases, contributing to their multidrug-resistant phenotypes. A 2-tiered approach, consisting of disk diffusion tests followed by confirmation with polymerase chain reaction, is recommended for detection of 16S rRNA methylase-mediated resistance. PMID:17554708

  16. Chaperonins fight aminoglycoside-induced protein misfolding and promote short-term tolerance in Escherichia coli

    DEFF Research Database (Denmark)

    Goltermann, Lise; Good, Liam; Bentin, Thomas

    2013-01-01

    survival, whereas inhibition of chaperonin expression sensitized bacteria. Overexpression of the DnaK/DnaJ/GrpE chaperone system similarly facilitated survival but did not promote growth of aminoglycoside-treated bacteria. Inhibition of chaperonin expression sensitized bacteria to aminoglycosides as...

  17. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer. PMID:27472455

  18. Secular Trends in Nosocomial Bloodstream Infections : Antibiotic-Resistant Bacteria Increase the Total Burden of Infection

    NARCIS (Netherlands)

    Ammerlaan, H. S. M.; Harbarth, S.; Buiting, A. G. M.; Crook, D. W.; Fitzpatrick, F.; Hanberger, H.; Herwaldt, L. A.; van Keulen, P. H. J.; Kluytmans, J. A. J. W.; Kola, A.; Kuchenbecker, R. S.; Lingaas, E.; Meessen, N.; Morris-Downes, M. M.; Pottinger, J. M.; Rohner, P.; dos Santos, R. P.; Seifert, H.; Wisplinghoff, H.; Ziesing, S.; Walker, A. S.; Bonten, M. J. M.

    2013-01-01

    Background. It is unknown whether rising incidence rates of nosocomial bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) replace antibiotic-susceptible bacteria (ASB), leaving the total BSI rate unaffected. Methods. We investigated temporal trends in annual incidence densit

  19. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    International Nuclear Information System (INIS)

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl2, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg2GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA

  20. Development and evaluation of immunochromatography to detect Gram-negative bacteria producing ArmA 16S rRNA methylase responsible for aminoglycoside resistance.

    Science.gov (United States)

    Oshiro, Satoshi; Tada, Tatsuya; Kameoka, Yousuke; Suzuki, Kazuo; Ohmagari, Norio; Miyoshi-Akiyama, Tohru; Kirikae, Teruo

    2015-11-01

    Rapid and reliable detection of aminoglycoside-resistant bacteria is an important infection-control measure and a crucial aspect of antimicrobial chemotherapy. The enzyme 16S rRNA methylase has been shown to mediate aminoglycoside resistance in bacteria. This study describes a newly developed immunochromatographic assay using novel monoclonal antibodies (mAbs) that recognize ArmA 16S rRNA methylase. Epitope mapping showed that these mAbs recognized amino acids 1-93 of ArmA, which consists of 257 amino acids. Evaluation of the assay using ArmA producing and non-producing bacterial species, as well as bacteria producing other types of 16S rRNA methylases, indicated that immunochromatographic detection of the ArmA-type 16S rRNA methylase was fully consistent with PCR analysis for armA genes, with all immunochromatographically positive strains being resistant to aminoglycosides (MIC≥128μg/mL). The detection limit of the assay was 12ng ArmA. These findings indicate that this assay can be used for the rapid and reliable detection of the production of ArmA 16S rRNA methylase by Gram-negative bacteria, including Acinetobacter baumannii and Escherichia coli. PMID:26381663

  1. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  2. In70 of plasmid pAX22, a bla(VIM-1)-containing integron carrying a new aminoglycoside phosphotransferase gene cassette.

    Science.gov (United States)

    Riccio, M L; Pallecchi, L; Fontana, R; Rossolini, G M

    2001-04-01

    An Achromobacter xylosoxydans strain showing broad-spectrum resistance to beta-lactams (including carbapenems) and aminoglycosides was isolated at the University Hospital of Verona (Verona, Italy). This strain was found to produce metallo-beta-lactamase activity and to harbor a 30-kb nonconjugative plasmid, named pAX22, carrying a bla(VIM-1) determinant inserted into a class 1 integron. Characterization of this integron, named In70, revealed an original array of four gene cassettes containing, respectively, the bla(VIM-1) gene and three different aminoglycoside resistance determinants, including an aacA4 allele, a new aph-like gene named aphA15, and an aadA1 allele. The aphA15 gene is the first example of an aph-like gene carried on a mobile gene cassette, and its product exhibits close similarity to the APH(3')-IIa aminoglycoside phosphotransferase encoded by Tn5 (36% amino acid identity) and to an APH(3')-IIb enzyme from Pseudomonas aeruginosa (38% amino acid identity). Expression of the cloned aphA15 gene in Escherichia coli reduced the susceptibility to kanamycin and neomycin as well as (slightly) to amikacin, netilmicin, and streptomycin. Characterization of the 5' and 3' conserved segments of In70 and of their flanking regions showed that In70 belongs to the group of class 1 integrons associated with defective transposon derivatives originating from Tn402-like elements. The structure of the 3' conserved segment indicates the closest ancestry with members of the In0-In2 lineage. In70, with its array of cassette-borne resistance genes, can mediate broad-spectrum resistance to most beta-lactams and aminoglycosides. PMID:11257042

  3. Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ilgu, Muslum [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.

  4. Cp*Rh-based indicator-displacement assays for the identification of amino sugars and aminoglycosides.

    Science.gov (United States)

    Zaubitzer, Friederike; Buryak, Andrey; Severin, Kay

    2006-05-01

    Indicator-displacement assays based on the organometallic complex [{Cp*RhCl2}2] (Cp*=pentamethylcyclopentadienyl) and the dye gallocyanine were used to sense amino sugars and aminoglycosides in buffered aqueous solution by conducting UV-visible spectroscopy. The data of three assays at pH 7.0, 8.0, and 9.0 were sufficient to distinguish between the amino sugars galactosamine, glucosamine, mannosamine and the aminoglycosides kanamycin A, kanamycin B, amikacin, apramycin, paromomycin, and streptomycin. Furthermore, the assays were used to characterize mixtures of aminoglycosides and obtain quantitative information about the respective analytes. PMID:16521137

  5. Occurrence and distribution of multiple antibiotic-resistant bacteria of Enterobacteriaceae family in waters of Veraval coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Maloo, A.; Borade, S.; Dhawde, R.; Gajbhiye, S.N.; Dastager, S.G.

    Current investigation was aimed to the assess occurrence and distribution of multiple antibiotic-resistant bacteria of the Enterobacteriaceae family in surface and bottom waters along the Veraval coast. Comparative prevalence of drug...

  6. Prevalence of Antibiotic-Resistant Bacteria on Rectal Swabs and Factors Affecting Resistance to Antibiotics in Patients Undergoing Prostate Biopsy

    OpenAIRE

    Kim, Jong Beom; Jung, Seung Il; Hwang, Eu Chang; Kwon, Dong Deuk

    2014-01-01

    Purpose The prevalence of antibiotic-resistant bacteria on rectal swabs in patients undergoing transrectal ultrasound (TRUS)-guided prostate biopsy and the factors affecting resistance to antibiotics were evaluated. Materials and Methods Two hundred twenty-three men who underwent TRUS-guided prostate biopsy from November 2011 to December 2012 were retrospectively evaluated. Rectal swabs were cultured on MacConkey agar to identify antibiotic-resistant bacteria in rectal flora before TRUS-guide...

  7. Study of Pseudomonas Aeroginosa resistance to Penicillines, Cephalosporins and Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Maleknezhad P

    1998-07-01

    Full Text Available Drug therapy and prophylaxy in infectious diseases, from hygienic and economical point of view, are very important. Infections caused by pseudomonas aeroginosa were particularly severe, with high mortality rates. In the recent years pseudomonas aeroginosa continued to cause the most severe, life-thereating infections in burned patients, in spite of the introduction of a wide variety of antibiotics advised specifically for their anti pseudomonal activity. The aim of this study, in which many cases of ps.aeroginosa infections are assessed is to identify the drug resistance of this bacteria to penicillines, cephalosporins and aminoglycosides by antibiotic sensitivity test (disk ager diffusion. Results as percent of resistance to each antibiotic were 89% to carbenicillin, 55% to piperacillin, 89% to mezlocillin, 89.5% to ticarcillin+clavulonic acid, 85% to ceftriaxone, 95% to tobramycin, 5% of all isolates were not sensitive to any antibiotics.

  8. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  9. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    Science.gov (United States)

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms. PMID:26703979

  10. Antibiotic-Resistant Gram Negative Bacilli in Meals Delivered at a General Hospital, Italy

    OpenAIRE

    Maria Rosa Anna Plano; Anna Maria Di Noto; Alberto Firenze; Sonia Sciortino; Caterina Mammina

    2009-01-01

    This study aimed at detecting the presence of antibiotic-resistant Gram-negatives in samples of meals delivered at the University General Hospital of Palermo, Italy. Antibiotic resistant Gram negatives were isolated in July—September 2007 ffrom cold dishes and food contact surfaces and utensils. Bacterial strains were submitted to susceptibility test and subtyped by random amplification of polymorphic DNA (RAPD). Forty-six of 55 (83.6%) food samples and 14 of 17 (82.3%) environmental swabs ...

  11. Effective Phages as Green Antimicrobial Agents Against Antibiotic-Resistant Hospital Escherichia coli

    OpenAIRE

    Rahmani, Rana; Zarrini, Gholamreza; Sheikhzadeh, Farzam; Aghamohammadzadeh, Naser

    2015-01-01

    Background: Bacteriophages are viruses that attack bacteria and lead to their lysis in an efficient and highly specific manner. These natural enemies of bacteria were used as therapeutic agents before the advent of antibiotics. Currently, with the rapid spread of multi-drug resistant bacteria, phage therapy can be an effective alternative treatment for antibiotic resistant bacteria. Objectives: This study evaluated the effectiveness of bacteriophages in removing antibiotic-resistant clinical ...

  12. Antagonistic self-sensing and mate-sensing signaling controls antibiotic-resistance transfer

    OpenAIRE

    Chatterjee, Anushree; Cook, Laura C. C.; Shu, Che-Chi; Chen, Yuqing; Manias, Dawn A.; Ramkrishna, Doraiswami; Dunny, Gary M.; Hu, Wei-Shou

    2013-01-01

    Conjugation is one of the most common ways bacteria acquire antibiotic resistance, contributing to the emergence of multidrug-resistant “superbugs.” Bacteria of the genus Enterococcus faecalis are highly antibiotic-resistant nosocomial pathogens that use the mechanism of conjugation to spread antibiotic resistance between resistance-bearing donor cells and resistance-deficient recipient cells. Here, we report a unique quorum sensing-based communication system that uses two antagonistic signal...

  13. Nasopharyngeal carriage of community-acquired, antibiotic-resistant Streptococcus pneumoniae in a Zambian paediatric population.

    OpenAIRE

    Woolfson, A; Huebner, R.; Wasas, A; Chola, S.; Godfrey-Faussett, P.; Klugman, K.

    1997-01-01

    The emergence of antibiotic-resistant Streptococcus pneumoniae is an international health problem. Apart from South Africa few data on pneumococcal resistance are available for sub-Saharan Africa. This study examines the nasopharyngeal carriage and prevalence of antibiotic resistance in pneumococci isolated from 260 Zambian children aged < 6 years. Pneumococci were isolated from 71.9% of the children; the odds of carrying organisms were twice as high among children < 2 years of age compared w...

  14. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium.

    Science.gov (United States)

    Kim, Jeongjin; Jo, Ara; Ding, Tian; Lee, Hyeon-Yong; Ahn, Juhee

    2016-08-01

    This study describes a new effort toward understanding the interaction mechanisms between antibiotic-resistant Salmonella Typhimurium and phages. The antibiotic susceptibility, β-lactamase activity, bacterial motility, gene expression, and lytic activity were evaluated in ciprofloxacin-induced antibiotic-sensitive Salmonella Typhimurium (ASST(CIP)) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium (ARST(CIP)), which were compared to the wild-type strains (ASST(WT) and ARST(WT)). The MIC values of ampicillin, norfloxacin, chloramphenicol, and tetracycline were significantly increased to > 512, 16, 16, and 256 μg/ml, respectively, in the ARST(CIP). The lowest and highest extracellular lactamase activities were observed in ASST(WT) (6.85 μmol/min/ml) and ARST(CIP) (48.83 μmol/min/ml), respectively. The acrA, lpfE, and hilA genes were significantly upregulated by more than tenfold in both ASST(CIP) and ARST(CIP). The induction of multiple antibiotic resistance resulted from the increased efflux pump activity (AcrAB-TolC). The highest phage adsorption rates were more than 95 % for ASST(WT), ASST(CIP), and ARST(WT), while the lowest adsorption rate was 52 % for ARST(CIP) at 15 min of infection. The least lytic activity of phage was 20 % against the ARST(CIP), followed by ASST(CIP) (30 %). The adsorption rate of phage against ARST(CIP) was 52 % at 15 min of infection, which resulted in the decrease in lytic activity (12 %). Understanding the interaction of phage and bacteria is essential for the practical application of phage to control and detect antibiotic-resistant bacteria. The results provide useful information for understanding the binding specificity of phages for multiple antibiotic-resistant pathogens. PMID:27000396

  15. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis.

    Science.gov (United States)

    Lv, Meinan; Ji, Xinjian; Zhao, Junfeng; Li, Yongzhen; Zhang, Chen; Su, Li; Ding, Wei; Deng, Zixin; Yu, Yi; Zhang, Qi

    2016-05-25

    Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products. PMID:27120352

  16. Emerging resistance to aminoglycosides in lactic acid bacteria of food origin-an impending menace.

    Science.gov (United States)

    Jaimee, G; Halami, P M

    2016-02-01

    Aminoglycosides are the most preferred choice of therapy against serious infections in humans. Therefore, its use in animal husbandry has been strictly regulated in the EU, UK, and USA to avoid the hazards of aminoglycoside resistance in gut microflora. Nevertheless, aminoglycosides are recommended for prophylaxis and therapeutics in food animals and agriculture owing to its bactericidal nature. In the recent past, the global surge in aminoglycoside-resistant lactic acid bacteria (LAB) from food sources has been noticed that might question its continued use in animal husbandry. Upon antibiotic administration, a selective pressure is created in the gut environment; in such instances, LAB could act as reservoirs of antibiotic resistance which may facilitate their transfer to pathogenic organisms contradicting its probiotic and industrial significance. This may be a risk to human health as the presence of one aminoglycoside resistance gene renders the bacteria tolerant to almost all antibiotics of the same class, thereby challenging its therapeutic efficacy. Low doses of aminoglycosides are recommended in farm animals due to its toxic nature and insolubility in blood. However, recent investigations indicate that use of aminoglycosides in sub-lethal concentrations can trigger the selection and conjugal transfer of aminoglycoside resistance in probiotic LAB. Resistance to erythromycin, tetracyclines, and fluoroquinolones in LAB were reported earlier to which immediate regulatory measures were adopted by some countries. Paradoxically, lack of regulations on antibiotic use in farms in most developing countries makes them a potential source of antibiotic resistance and its uncontrolled spread around the globe. The prevalence of aminoglycoside resistance was observed in enterococci from food origin earlier; however, its emergence in lactobacilli and pediococci suggests its spread in probiotic cultures which prompts immediate precautionary methods. This review highlights the

  17. Sensitivity of ribosomes of the hyperthermophilic bacterium Aquifex pyrophilus to aminoglycoside antibiotics.

    OpenAIRE

    Bocchetta, M; Huber, R.; Cammarano, P

    1996-01-01

    A poly(U)-programmed cell-free system from the hyperthermophilic bacterium Aquifex pyrophilus has been developed, and the susceptibility of Aquifex ribosomes to the miscoding-inducing and inhibitory actions of all known classes of aminoglycoside antibiotics has been assayed at temperatures (75 to 80 degrees C) close to the physiological optimum for cell growth. Unlike Thermotoga maritima ribosomes, which are systematically refractory to all known classes of aminoglycoside compounds (P. Londei...

  18. Toggled RNA Aptamers Against Aminoglycosides Allowing Facile Detection of Antibiotics Using Gold Nanoparticle Assays

    OpenAIRE

    Derbyshire, Nicola; White, Simon J.; Bunka, David H. J.; Song, Lei; Stead, Sara; Tarbin, Jonathan; Sharman, Matthew; Zhou, Dejian; Stockley, Peter G.

    2012-01-01

    We have used systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers against aminoglycoside antibiotics. The SELEX rounds were toggled against four pairs of aminoglycosides with the goal of isolating reagents that recognize conserved structural features. The resulting aptamers bind both of their selection targets with nanomolar affinities. They also bind the less structurally related targets, although they show clear specificity for this class of antibiotics....

  19. Determination of aminoglycoside antibiotics using complex compounds of chromotropic acid bisazoderivatives with rare earth ions

    International Nuclear Information System (INIS)

    Studies of complex formation of bisazo derivatives of chromotropic acid with rare earth ions and aminoglycoside antibiotics have made it possible to choose carboxyarsenazo, orthanyl R and carboxynitrazo as highly sensitive reagents for determining aminoglycoside antibiotics. Conditions have been found for the formation of precipitates of different-ligand complexes containing rare earth ions, bisazo derivatives of chromotropic acid and aminogylcoside antibiotics. A procedure has been worked out of determining the antibiotics in biological samples with carboxyarsenazo

  20. Once Daily Dosing of Aminoglycosides in Pediatric Cystic Fibrosis Patients: A Review of the Literature

    OpenAIRE

    Wassil, Sarah K.; Fox, Kristie M.; White, James W.

    2008-01-01

    Patients with cystic fibrosis receive many courses of antibiotic therapy throughout their lifetime. Dosing aminoglycosides once daily has become common practice in many of these individuals. Due to ease of home administration, decreased nursing time, and improved quality of life, this regimen is being increasingly explored in the cystic fibrosis population. Because patients with cystic fibrosis have increased aminoglycoside clearance, once daily dosing may result in a prolonged time during th...

  1. The aac(6'Ib gene in Proteus mirabilis strains resistant to aminoglycosides.

    Directory of Open Access Journals (Sweden)

    Jerzy Ratajczak

    2009-01-01

    Full Text Available The aim of this study was to evaluate the presence of aac(6'-Ib gene conferring resistance to aminoglycosides in Proteus mirabilis strains. Five isolates had aac(6'-Ib gene. In one case the gene was no-expressed. Three isolates were resistant to all aminoglycosides and minimum inhibitory concentrations were > or = 256 microg/ml. Additionally, all positive strains were resistant to tetracycline and ciprofloxacin.

  2. Mechanism of Enhanced Activity of Liposome-Entrapped Aminoglycosides against Resistant Strains of Pseudomonas aeruginosa

    OpenAIRE

    Mugabe, Clement; Halwani, Majed; Azghani, Ali O.; Lafrenie, Robert M.; Omri, Abdelwahab

    2006-01-01

    Pseudomonas aeruginosa is inherently resistant to most conventional antibiotics. The mechanism of resistance of this bacterium is mainly associated with the low permeability of its outer membrane to these agents. We sought to assess the bactericidal efficacy of liposome-entrapped aminoglycosides against resistant clinical strains of P. aeruginosa and to define the mechanism of liposome-bacterium interactions. Aminoglycosides were incorporated into liposomes, and the bactericidal efficacies of...

  3. Aminoglycoside microarrays to explore interactions of antibiotics with RNAs and proteins.

    Science.gov (United States)

    Disney, Matthew D; Seeberger, Peter H

    2004-07-01

    RNA is an important target for drug discovery efforts. Several clinically used aminoglycoside antibiotics bind to bacterial rRNA and inhibit protein synthesis. Aminoglycosides, however, are losing efficacy due to their inherent toxicity and the increase in antibiotic resistance. Targeting of other RNAs is also becoming more attractive thanks to the discovery of new potential RNA drug targets through genome sequencing and biochemical efforts. Identification of new compounds that target RNA is therefore urgent, and we report here on the development of rapid screening methods to probe binding of low molecular weight ligands to proteins and RNAs. A series of aminoglycosides has been immobilized onto glass microscope slides, and binding to proteins and RNAs has been detected by fluorescence. Construction and analysis of the arrays is completed by standard DNA genechip technology. Binding of immobilized aminoglycosides to proteins that are models for study of aminoglycoside toxicity (DNA polymerase and phospholipase C), small RNA oligonucleotide mimics of aminoglycoside binding sites in the ribosome (rRNA A-site mimics), and a large (approximately 400 nucleotide) group I ribozyme RNA is detected. The ability to screen large RNAs alleviates many complications associated with binding experiments that use isolated truncated regions from larger RNAs. These studies lay the foundation for rapid identification of small organic ligands from combinatorial libraries that exhibit strong and selective RNA binding while displaying decreased affinity to toxicity-causing proteins. PMID:15224340

  4. XBP1 mitigates aminoglycoside-induced endoplasmic reticulum stress and neuronal cell death.

    Science.gov (United States)

    Oishi, N; Duscha, S; Boukari, H; Meyer, M; Xie, J; Wei, G; Schrepfer, T; Roschitzki, B; Boettger, E C; Schacht, J

    2015-01-01

    Here we study links between aminoglycoside-induced mistranslation, protein misfolding and neuropathy. We demonstrate that aminoglycosides induce misreading in mammalian cells and assess endoplasmic reticulum (ER) stress and unfolded protein response (UPR) pathways. Genome-wide transcriptome and proteome analyses revealed upregulation of genes related to protein folding and degradation. Quantitative PCR confirmed induction of UPR markers including C/EBP homologous protein, glucose-regulated protein 94, binding immunoglobulin protein and X-box binding protein-1 (XBP1) mRNA splicing, which is crucial for UPR activation. We studied the effect of a compromised UPR on aminoglycoside ototoxicity in haploinsufficient XBP1 (XBP1(+/-)) mice. Intra-tympanic aminoglycoside treatment caused high-frequency hearing loss in XBP1(+/-) mice but not in wild-type littermates. Densities of spiral ganglion cells and synaptic ribbons were decreased in gentamicin-treated XBP1(+/-) mice, while sensory cells were preserved. Co-injection of the chemical chaperone tauroursodeoxycholic acid attenuated hearing loss. These results suggest that aminoglycoside-induced ER stress and cell death in spiral ganglion neurons is mitigated by XBP1, masking aminoglycoside neurotoxicity at the organismal level. PMID:25973683

  5. Mechanistic studies of copper(II)-aminoglycoside mediated DNA damage and magnesium catalyzed nuclease activity of hammerhead ribozyme

    Science.gov (United States)

    Patwardhan, Anjali A.

    The antibacterial activity of aminoglycosides stems from their high affinity binding to the 16S rRNA in bacteria resulting in inhibition of protein synthesis. Used to treat acute bacterial infections these antibiotics have limited applications due to their high dosage requirements and the emergence of resistant strains. We have synthesized and characterized Cu(II) derivatives of the aminoglycosides, kanamycin A, tobramycin, neamine, kanamycin B, neomycin B, and paromomycin. The first three exhibit preferential and tight binding to Cu(II) as against neomycin B and kanamycin B and paromomycin. EPR of frozen solutions and UV-visible spectroscopy suggest a change in geometry around the Cu(II) but the stabilities of the complexes in water differ. These copper derivatives efficiently cleave plasmid DNA at micromolar concentrations (hydrolytic) and at nanomolar concentrations in the presence co-reactants like hydrogen peroxide or ascorbic acid. Hydrolysis is multi turnover and exhibits Michelis-Menten kinetics with enzyme-like behavior whereas oxidative cleavage is highly specific with C-4' H abstraction resulting in characteristic base propenal and nucleotide base products. Hydroxyl radicals generated are copper based and are generated in close proximity of the substrate. Hammerhead ribozymes are selectively hydrolyzed in the presence of divalent ions with Mg2+ being the metal ion of choice in vivo . Our studies with complex ions like cobalt hexaammine and fac-triamminetriaquochromium(III) establish outer sphere interactions of Mg2+ with the hammerhead in the catalytic site. There are two sets of sites, one structural and one catalytic. Complex ions in the catalytic site and divalent ions in the structural site result in a slow but active hammerhead ribozyme suggesting that the complex ions are not inhibitory, contrary to what was suggested previously.

  6. Clinical Pharmacokinetics of Penicillins, Cephalosporins and Aminoglycosides in the Neonate: A Review

    Directory of Open Access Journals (Sweden)

    Gian Maria Pacifici

    2010-08-01

    Full Text Available Bacterial infections are common in the neonates and are a major cause of morbidity and mortality. Sixty percent of preterm infants admitted to neonatal intensive care units received at least one antibiotic during the first week of life. Penicillins, aminoglycosides and cephalosporins comprised 53, 43 and 16%, respectively. Kinetic parameters such as the half-life (t1/2, clearance (Cl, and volume of distribution (Vd change with development, so the kinetics of penicillins, cephalosporins and aminoglycosides need to be studied in order to optimise therapy with these drugs. The aim of this study is to review the pharmacokinetics of penicillins, cephalosporins and aminoglycosides in the neonate in a single article in order to provide a critical analysis of the literature and thus provide a useful tool in the hands of physicians. The bibliographic search was performed electronically using PubMed, as the search engine, until February 2nd, 2010. Medline search terms were as follows: pharmacokinetics AND (penicillins OR cephalosporins OR aminoglycosides AND infant, newborn, limiting to humans. Penicillins, cephalosporins and aminoglycosides are fairly water soluble and are mainly eliminated by the kidneys. The maturation of the kidneys governs the pharmacokinetics of penicillins, cephalosporins and aminoglycosides in the neonate. The renal excretory function is reduced in preterms compared to term infants and Cl of these drugs is reduced in premature infants. Gestational and postnatal ages are important factors in the maturation of the neonate and, as these ages proceed, Cl of penicillins, cephalosporins and aminoglycosides increases. Cl and t1/2 are influenced by development and this must be taken into consideration when planning a dosage regimen with these drugs. More pharmacokinetic studies are required to ensure that the dose recommended for the treatment of sepsis in the neonate is evidence based.

  7. A surprising dipolar cycloaddition provides ready access to aminoglycosides.

    Science.gov (United States)

    Dahl, Russell S; Finney, Nathaniel S

    2004-07-14

    This contribution describes the results of a new research effort in our laboratory aimed at the synthesis of novel aminoglycosides and amino-C-glycosides. Despite the importance of such compounds, and the previous development of some methodological solutions, this remains an important area of research. Notable features of our approach, which is distinct from and complementary to previous efforts, are the following: (1) Reliance on a surprising and unprecedented formation of glycal triazolines via an inverse electron demand dipolar cycloaddition of glucal. We believe this desirable transformation has not previously been discovered because of the unusual selection of substrates and solvent required. (2) Very mild reaction conditions. An initial thermal cycloaddition is carried out in an inert solvent, the triazoline generated is photochemically converted to a reactive aziridine, and the crude aziridine undergoes ring opening at room temperature in the presence of a nucleophile and a mild Lewis acid catalyst. (3) Formation of products lacking an N-acyl group, allowing ready synthesis of novel glucosamine derivatives. PMID:15237974

  8. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network.

    Directory of Open Access Journals (Sweden)

    Céline Slekovec

    Full Text Available The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs, generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant. Extended-spectrum β-lactamases (ESBLs and metallo-β-lactamases (MBLs were identified by gene sequencing. All non-wild-type isolates (n = 56 and a similar number of wild-type isolates (n = 54 were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5% contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×10(6 CFU/l or/kg. Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination.

  9. Tracking Down Antibiotic-Resistant Pseudomonas aeruginosa Isolates in a Wastewater Network

    Science.gov (United States)

    Slekovec, Céline; Plantin, Julie; Cholley, Pascal; Thouverez, Michelle; Talon, Daniel; Bertrand, Xavier; Hocquet, Didier

    2012-01-01

    The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs), generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA) from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge) of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant). Extended-spectrum β-lactamases (ESBLs) and metallo-β-lactamases (MBLs) were identified by gene sequencing. All non-wild-type isolates (n = 56) and a similar number of wild-type isolates (n = 54) were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5%) contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×106 CFU/l or/kg). Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination. PMID:23284623

  10. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic marine waters

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.; Nair, S.; LokaBharathi, P.A; Chandramohan, D.

    genes in Escherichia coli. J. Bacteriol 171, 3458-3464. Smibert, R.M. and Krieg, N.R. (1981). General characterization In: Manual of methods for general bacteriology edt: Gerhardt P., Murray R.G.E., Costilow R.N. Nester E.W. Wood W.A. Krieg N... and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters Maria-Judith De Souza? , Shanta Nair, P.A. Loka bharathi and D. Chandramohan Abstract: In the wake of the findings that Antarctic krills concentrate heavy metals at ppm...

  11. Antibiotic-resistant gram-negative bacterial infections in patients with cancer.

    Science.gov (United States)

    Perez, Federico; Adachi, Javier; Bonomo, Robert A

    2014-11-15

    Patients with cancer are at high risk for infections caused by antibiotic resistant gram-negative bacteria. In this review, we summarize trends among the major pathogens and clinical syndromes associated with antibiotic resistant gram-negative bacterial infection in patients with malignancy, with special attention to carbapenem and expanded-spectrum β-lactam resistance in Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia--all major threats to our cancer patients. Optimal therapy for these antibiotic-resistant pathogens still remains to be determined. PMID:25352627

  12. Environmental and genetic factors affecting mutability to aminoglycoside antibiotics among Escherichia coli K12 strains

    Directory of Open Access Journals (Sweden)

    Monteiro A.C.M.

    2003-01-01

    Full Text Available Environmental and genetic factors affecting the in vitro spontaneous mutation frequencies to aminoglycoside resistance in Escherichia coli K12 were investigated. Spontaneous mutation frequencies to kanamycin resistance were at least 100 fold higher on modified Luria agar (L2 plates, when compared to results obtained in experiments carried out with Nutrient agar (NA plates. In contrast to rifampincin, the increased mutability to kanamycin resistance could not be attributed to a mutator phenotype expressed by DNA repair defective strains. Kanamycin mutant selection windows and mutant preventive concentrations on L2 plates were at least fourfold higher than on NA plates, further demonstrating the role of growth medium composition on the mutability to aminoglycosides. Mutability to kanamycin resistance was increased following addition of sorbitol, suggesting that osmolarity is involved on the spontaneous mutability of E. coli K12 strains to aminoglycosides. The spontaneous mutation rates to kanamycin resistance on both L2 and NA plates were strictly associated with the selective antibiotic concentrations. Moreover, mutants selected at different antibiotic concentrations expressed heterogeneous resistance levels to kanamycin and most of them expressing multiple resistance to all tested aminoglycoside antibiotics (gentamicin, neomycin, amykacin and tobramycin. These results will contribute to a better understanding of the complex nature of aminoglycoside resistance and the emergence of spontaneous resistant mutants among E. coli K12 strains.

  13. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    Science.gov (United States)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  14. High-throughput screening of antibiotic-resistant bacteria in picodroplets.

    Science.gov (United States)

    Liu, X; Painter, R E; Enesa, K; Holmes, D; Whyte, G; Garlisi, C G; Monsma, F J; Rehak, M; Craig, F F; Smith, C A

    2016-04-26

    The prevalence of clinically-relevant bacterial strains resistant to current antibiotic therapies is increasing and has been recognized as a major health threat. For example, multidrug-resistant tuberculosis and methicillin-resistant Staphylococcus aureus are of global concern. Novel methodologies are needed to identify new targets or novel compounds unaffected by pre-existing resistance mechanisms. Recently, water-in-oil picodroplets have been used as an alternative to conventional high-throughput methods, especially for phenotypic screening. Here we demonstrate a novel microfluidic-based picodroplet platform which enables high-throughput assessment and isolation of antibiotic-resistant bacteria in a label-free manner. As a proof-of-concept, the system was used to isolate fusidic acid-resistant mutants and estimate the frequency of resistance among a population of Escherichia coli (strain HS151). This approach can be used for rapid screening of rare antibiotic-resistant mutants to help identify novel compound/target pairs. PMID:27033300

  15. Triclosan-Induced Aminoglycoside-Tolerant Listeria monocytogenes Isolates Can Appear as Small-Colony Variants

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Hein-Kristensen, Line; Gram, Lone

    2014-01-01

    Exposure of the human food-borne pathogen Listeria monocytogenes to sublethal concentrations of triclosan can cause resistance to several aminoglycosides. Aminoglycoside-resistant isolates exhibit two colony morphologies: normal-size and pinpoint colonies. The purposes of the present study were to...... heme gene, and addition of heme caused the pinpoint isolates to revert to normal colony size. Triclosan-induced gentamicin-resistant isolates had mutations in several different genes, and it cannot be directly concluded how the different mutations caused gentamicin resistance. However, since many of...... the mutations affected proteins involved in respiration, it seems likely that the mutations affected the active transport of the antibiotic and thereby caused resistance by decreasing the amount of aminoglycoside that enters the bacterial cell. Our study emphasizes that triclosan likely has more...

  16. Emergence of aminoglycoside resistance genes aadA and aadE in the genus Campylobacter.

    OpenAIRE

    Pinto-Alphandary, H; Mabilat, C; Courvalin, P

    1990-01-01

    Resistance to streptomycin or spectinomycin or both in five Campylobacter coli strains, two Campylobacter jejuni strains, and a Campylobacter-like strain was studied by enzymatic assays and dot blot hybridization. Resistance was due to 6- or 3",9-aminoglycoside adenylyltransferases and to new types of phospho- and adenylyltransferases.

  17. Single biosensor immunoassay for the detection of five aminoglycosides in reconstituted skimmed milk

    NARCIS (Netherlands)

    Haasnoot, W.; Cazemier, G.; Koets, M.; Amerongen, van A.

    2003-01-01

    The application of an optical biosensor (Biacore 3000), with four flow channels (Fcs), in combination with a mixture of four specific antibodies resulted in a competitive inhibition biosensor immunoassay (BIA) for the simultaneous detection of the five relevant aminoglycosides in reconstituted skimm

  18. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed...

  19. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  20. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose; Skarina, Tatiana; Shumilin, Igor; Onopryienko, Olena; Porebski, Przemyslaw J.; Cymborowski, Marcin; Zimmerman, Matthew D.; Hasseman, Jeremy; Glomski, Ian J.; Lebioda, Lukasz; Savchenko, Alexei; Edwards, Aled; Minor, Wladek (SC); (Toronto); (UV)

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

  1. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity.

    Science.gov (United States)

    Kruger, Matthew; Boney, Robert; Ordoobadi, Alexander J; Sommers, Thomas F; Trapani, Josef G; Coffin, Allison B

    2016-01-01

    Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment. PMID:27065807

  2. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  3. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners.

    Science.gov (United States)

    Fingerhuth, Stephanie M; Bonhoeffer, Sebastian; Low, Nicola; Althaus, Christian L

    2016-05-01

    The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread. PMID:27196299

  4. Efficacy of Locally Isolated Lactic Acid Bacteria Against Antibiotic-Resistant Uropathogens

    Science.gov (United States)

    Manzoor, Asma; Ul-Haq, Ikram; Baig, Shahjhan; Qazi, Javed Iqbal; Seratlic, Sanja

    2016-01-01

    Background: Antibiotic resistance represents a serious global health threat to public health, so infections such as pneumonia and urinary tract infection (UTI) are becoming harder to treat. Therefore, it is necessary to develop an action plan to restrain the problem of antibiotic resistance. One approach in UTI control could be the use of lactobacilli because these indigenous inhabitants in human intestine have been found to play an important role in protecting the host from various infections. Objectives: We sought to check the efficacy of locally isolated Lactobacillus species to eradicate antibiotic-resistant pathogenic bacteria causing UTI. Materials and Methods: Lactic acid bacteria isolated from spoiled fruits and vegetables and grown in MRS medium were screened against multi-drug-resistant Candida albicans, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus fecalis. Results: Fifty-four lactic acid bacteria were isolated from spoiled fruits and vegetables, of which 11 Gram-positive and catalase-negative Lactobacillus isolates were identified by carbohydrate assimilation profiles as Lactobacillus acidophilus, L. paracasei, L. delbrueckii, L. casei, L. helveticus, L. brevis, L. salivarius, L. fermentum, L. rhamnosus, L. animalis, and L. plantarum. The latter organism had the highest abundance of all the samples, so its isolates were also verified through 16S rRNA gene sequencing. The isolated Lactobacilli were screened against multi-drug-resistant uropathogens, viz. C. albicans, P. aeruginosa, K. pneumoniae, E. fecalis, and E. coli. The growth inhibition zone (GIZ) was over 10 mm against all the uropathogenic test organisms, where L. fermentum and L. plantarum strains demonstrated remarkable inhibitory activities against E. coli and E. faecalis, with a GIZ up to 28 mm. The susceptibility test to 16 antibiotics showed multidrug resistance (3 to 5 antibiotics) among all the tested uropathogens. Conclusions: The obtained results

  5. Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography - tandem mass spectrometry

    Science.gov (United States)

    A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pip...

  6. Defining RNA motif–aminoglycoside interactions via two-dimensional combinatorial screening and structure–activity relationships through sequencing

    OpenAIRE

    Velagapudi, Sai Pradeep; Disney, Matthew D.

    2013-01-01

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluabl...

  7. Assessment on the adverse effects of Aminoglycosides and Flouroquinolone on sperm parameters and male reproductive tissue: A systematic review

    OpenAIRE

    Arash Khaki

    2015-01-01

    Background: Antibiotic therapies used in treatment of many diseases have adverse effects on fertility. This review analyzes previous comparative studies that surveyed the effects of two common groups of antibiotics on male fertility. Objective: To evaluate histo-pathological effects of fluoroquinolones and aminoglycosides on sperm parameters and male reproductive tissue. Materials and Methods: Articles about the effects of aminoglycosides and fluoroquinolones on male infertility, sperm parame...

  8. Draft Genome Sequence of an Antibiotic-Resistant Propionibacterium acnes Strain, PRP-38, from the Novel Type IC Cluster

    OpenAIRE

    McDowell, Andrew; Hunyadkürti, Judit; Horváth, Balázs; Vörös, Andrea; Barnard, Emma; Patrick, Sheila; Nagy, István

    2012-01-01

    Propionibacterium acnes, a non-spore-forming, anaerobic Gram-positive bacterium, is most notably recognized for its association with acne vulgaris (I. Kurokawa et al., Exp. Dermatol. 18:821–832, 2009). We now present the draft genome sequence of an antibiotic-resistant P. acnes strain, PRP-38, isolated from an acne patient in the United Kingdom and belonging to the novel type IC cluster.

  9. Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica).

    Science.gov (United States)

    Wei, Ting; Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-02-01

    The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops. PMID:22526786

  10. Aminoglycoside Efflux in Pseudomonas aeruginosa: Involvement of Novel Outer Membrane Proteins

    OpenAIRE

    Jo, James T. H.; Brinkman, Fiona S.L.; Hancock, Robert E W

    2003-01-01

    The expression of tripartite multidrug efflux pumps such as MexA-MexB-OprM in Pseudomonas aeruginosa contributes to intrinsic resistance to a wide variety of antimicrobials, including β-lactams, chloramphenicol, macrolides, quinolones, and tetracycline. The MexX-MexY linker-pump combination has been shown to be involved in intrinsic resistance to aminoglycosides, but the identity of the cognate outer membrane channel component remains under debate. Fourteen uncharacterized OprM homologs ident...

  11. Molecular Epidemiology of Aminoglycosides Resistance in Acinetobacter Spp. with Emergence of Multidrug-Resistant Strains

    Directory of Open Access Journals (Sweden)

    MH Nazem Shirazi

    2010-06-01

    Full Text Available Background: Acinetobacter spp. is characterized as an important nosocomial pathogen and increasing antimicrobial resistance. Our aim was to evaluate antimicrobial susceptibility and aminoglycosides resistance genes of Acinetobacter spp. isolated from hospitalized patients.Methods: Sixty isolates were identified as Acinetobacter species. The isolates were tested for antibiotic resistance by disc diffusion method for 12 antimicrobials. The presence of aphA6, aacC1 aadA1, and aadB genes were detected using PCR.Results: From the isolated Acinetobacter spp. the highest resistance rate showed against amikacin, tobramycin, and ceftazidim, respectively; while isolated bacteria were more sensitive to ampicillic/subactam. More than 66% of the isolates were resistant to at least three classes of antibiotics, and 27.5% of MDR strains were resistant to all seven tested classes of antimicrobials. The higher MDR rate presented in bacteria isolated from the ICU and blood samples. More than 60% of the MDR bacteria were resistance to amikacin, ceftazidim, ciprofloxacin, piperacillin/tazobactam, doxycycline, tobramycin and levofloxacin. Also, more than 60% of the isolates contained phosphotransferase aphA6, and acetyltransferase genes aacC1, but adenylyltransferase genes aadA1 (41.7%, and aadB (3.3% were less prominent. 21.7% of the strains contain three aminoglycoside resistance genes (aphA6, aacC1 and aadA1.Conclusion: The rising trend of resistance to aminoglycosides poses an alarming threat to treatment of such infections. The findings showed that clinical isolates of Acinetobacter spp. in our hospital carrying various kinds of aminoglycoside resistance genes.

  12. Evaluation of Antibacterial Activity of Aminoglycosides and Modulating the Essential Oil of Cymbopogon citratus (DC.) Stapf

    OpenAIRE

    Tintino, Saulo R.; Lucena, Bruno F. F.; Fernando G. Figueredo; Cícera Datiane de M. OLIVEIRA; José J. DOS S. AGUIAR; Edmilson DO N. CARDOSO; Pedro E. A. DE AQUINO; Jacqueline C. ANDRADE; Coutinho, Henrique D. M.; Ednardo F. F. MATIAS

    2014-01-01

     Several works demonstrated the importance of the study of natural products as an alternative source for new antimicrobial drugs or for modulators for these ones. In this point, the aim of this was to investigate the antibacterial activity and the possible interactions between the essential oil of Cymbopogon citratus alone and in association with aminoglycosides against standard and clinically isolated strains of multidrug-resistant bacteria such as S. aureus, E. coli and P. aeruginosa by mic...

  13. Cymbopogon citratus protects against the renal injury induced by toxic doses of aminoglycosides in rabbits

    OpenAIRE

    Ullah, N.; Khan, M. A.; Khan, T.; W Ahmad

    2013-01-01

    Renal injury is the most common side-effect of aminoglycosides. These antimicrobial drugs are particularly effective against Gram-negative microorganisms. The present study was conducted to investigate the renal protective activity of Cymbopogon citratus in gentamicin-induced nephrotoxicity. Male rabbits were divided into four groups (n=6) including group 1 (0.9% saline treated), group 2 (80 mg/kg/day gentamicin-treated), group 3 (200 mg/kg/day Cymbopogon citratus treated) and group 4 (80 mg/...

  14. Intrasaccular injection of aminoglycosides: a novel method for temporary damaging fish inner ear hair cells

    OpenAIRE

    Faucher, Karine; Aas-Hansen, Øyvind; Damsgard, Borge; Stenklev, Niels-Christian

    2008-01-01

    Fish models are increasingly being used for hearing research investigations. Aminoglycoside antibiotics that are used for damaging the inner ear hair cells can have systemic side effects leading to death of study animals. This study aimed to compare two methods: i) systemic (intravenous) and ii) local (intrasaccular) gentamicin administration for induction of inner ear hair cell damage in the Atlantic cod, Gadus morhua (L.). Hair cell damage was assessed using scanning electron microscopy; ha...

  15. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko

    OpenAIRE

    Stewart, Charles E; Hudspeth, A. James

    2000-01-01

    The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside...

  16. In vitro activities of quinolones against enterococci resistant to penicillin-aminoglycoside synergy.

    OpenAIRE

    Sahm, D F; Koburov, G T

    1989-01-01

    The MICs and MBCs of CI-934, ciprofloxacin, difloxacin (A-56619), A-56620, norfloxacin, enoxacin, amifloxacin, and coumermycin were determined for 43 clinical isolates of Enterococcus faecalis known to be resistant to penicillin-aminoglycoside synergy. Results were compared with those obtained for 37 synergy-susceptible E. faecalis and 22 Enterococcus faecium strains. Although no substantial differences in quinolone activities were observed between synergy-resistant and -susceptible E. faecal...

  17. Rescue of non-sense mutated p53 tumor suppressor gene by aminoglycosides

    OpenAIRE

    Floquet, Célia; Deforges, Jules; Rousset, Jean-Pierre; Bidou, Laure

    2010-01-01

    Mutation-based treatments are a new development in genetic medicine, in which the nature of the mutation dictates the therapeutic strategy. Interest has recently focused on diseases caused by premature termination codons (PTCs). Drugs inducing the readthrough of these PTCs restore the production of a full-length protein. In this study, we explored the possibility of using aminoglycoside antibiotics to induce the production of a full-length functional p53 protein from a gene carrying a PTC. We...

  18. Preparation and characterization of dehydration-rehydration vesicles loaded with aminoglycoside and macrolide antibiotics.

    Science.gov (United States)

    Mugabe, Clement; Azghani, Ali O; Omri, Abdelwahab

    2006-01-13

    Enhanced activity of liposomes-encapsulated antibiotics against clinical isolates of Pseudomonas aeruginosa has been documented with liposomes of low encapsulation efficiency. We sought to construct liposomes with high yield entrapment of aminoglycoside and macrolide antibiotics as well as favorable stability in storage and physiological conditions. Liposome-entrapped aminoglycosides (amikacin, gentamicin, tobramycin) and a macrolide (erythromycin) were prepared by a modified dehydration-rehydration vesicles (DRVs) method, and their particle size and entrapment efficiency were determined. We studied in vitro stability of these vesicles over a 48 h period at 4 and 37 degrees C in phosphate-buffered saline (PBS) and in plasma at 37 degrees C. The mean particle size of DRVs loaded with antibiotics varied from 163.37+/-38.44 to 259.83+/-11.80 nm with no significant difference in regard with the type of the antibiotics encapsulated. Encapsulation efficiency of DRVs loaded with amikacin, gentamicin, tobramycin, and erythromycin were 29.27+/-1.17, 33+/-0.76, 22.33+/-1.48 and 32.06+/-0.82% of initial amount of the drug, respectively. These vesicles were stable regardless of the experimental temperature. Indeed, the liposomes retained more than 75% of the initially encapsulated drugs for the study period of 48 h. DRVs incubated in plasma however, released more antibiotics than those incubated in PBS. In conclusion, using this modified DRV method, we obtained small sized vesicles with high yield entrapment for aminoglycoside and macrolide antibiotics. The technique may be utilized to overcome the low encapsulation efficiency associated with aminoglycoside and macrolide antibiotics. PMID:16289986

  19. Sodium-Glucose Transporter-2 (SGLT2; SLC5A2) Enhances Cellular Uptake of Aminoglycosides

    OpenAIRE

    Meiyan Jiang; Qi Wang; Takatoshi Karasawa; Ja-Won Koo; Hongzhe Li; Steyger, Peter S.

    2014-01-01

    Aminoglycoside antibiotics, like gentamicin, continue to be clinically essential worldwide to treat life-threatening bacterial infections. Yet, the ototoxic and nephrotoxic side-effects of these drugs remain serious complications. A major site of gentamicin uptake and toxicity resides within kidney proximal tubules that also heavily express electrogenic sodium-glucose transporter-2 (SGLT2; SLC5A2) in vivo. We hypothesized that SGLT2 traffics gentamicin, and promotes cellular toxicity. We conf...

  20. LC-MS/MS-Methoden zur Rückstandsanalyse von Penicillinen, Cephalosporinen und Aminoglycosid-Antibiotika

    OpenAIRE

    Becker, Matthias

    2014-01-01

    In today’s livestock farming and milk production, therapeutic, metaphylactic and prophylactic use of ß-lactams (penicillins, cephalosporins) and aminoglycosides is inevitable. However, improper use of these antibiotics may lead to residues in milk and edible tissues and can cause human health hazards as well as technological problems in dairy industry. In general, antibiotics are unwanted components in food, and it has to be ensured that the consumer is not exposed to antibioti...

  1. Antibiotic concentration and antibiotic-resistant bacteria in two shallow urban lakes after stormwater event.

    Science.gov (United States)

    Zhang, Songhe; Pang, Si; Wang, PeiFang; Wang, Chao; Han, Nini; Liu, Bin; Han, Bing; Li, Yi; Anim-Larbi, Kwaku

    2016-05-01

    Stormwater runoff is generally characterized as non-point source pollution. In the present study, antibiotic concentration and antibiotic susceptibilities of cultivable heterotrophic bacteria were investigated in two small shallow urban lakes before and after strong storm event. Several antibiotics, lactose-fermenting bacteria and cultivable heterotrophic bacteria concentrations increased in surface water and/or surface sediment of two small urban lakes (Lake Xuanwu and Wulongtan) after strong storm event. In general, the frequencies of bacteria showing resistance to nine antibiotics increased after storm event. Based on the 16S rRNA genes of 50 randomly selected isolates from each water sample of two lakes, Aeromonas and Bacillus were dominant genera in samples from two lakes, while genera Proteus and Lysinibacillus were the third abundant genera in Lake Xuanwu and Wulongtu, respectively. Presences of nine antibiotic resistance genes (ARGs) in the 100 isolates were detected and most of these isolates harbored at least two ARGs with different functions. The detection frequency of ARGs in Gram-negative isolates was higher than that in Gram-positive isolates. The most prevalent integron in 100 isolates was int(II) (n = 28), followed by int(I) (n = 17) and int(III) (n = 17). Our results indicate that strong storm events potentially contribute to the transfer of ARGs and antibiotic-resistant bacteria from land-sewer system to the urban Lakes. PMID:26865482

  2. Plant-derived compounds inactivate antibiotic-resistant Campylobacter jejuni strains.

    Science.gov (United States)

    Ravishankar, Sadhana; Zhu, Libin; Law, Bibiana; Joens, Lynn; Friedman, Mendel

    2008-06-01

    Sixty-three Campylobacter jejuni isolates were screened for their resistance to the antibiotics ampicillin, cefaclor, ciprofloxacin, erythromycin, gentamycin, tetracycline, and trimethoprim-sulfamethoxazole. Based on this screen, the resistant strains D28a and H2a and the nonresistant strain A24a were selected for evaluation of their resistance and susceptibility to inactivation by cinnamaldehyde and carvacrol, the main constituents of plant-derived cinnamon and oregano oils, respectively. Different concentrations (0.05, 0.1, and 0.2% [vol/vol] in sterile phosphate-buffered saline) of cinnamaldehyde and carvacrol were added to C. jejuni cultures with initial populations of 10(4) CFU/ml. The samples were then mixed thoroughly and incubated at 37 degrees C. Viable bacterial populations were enumerated at incubation periods of 0, 30, 60, and 120 min. The results indicate that the extent of inhibition of microbial survival was related to both the nature and concentration of antimicrobials and the incubation time. Both cinnamaldehyde and carvacrol exhibited rapid antimicrobial activity against both antibiotic-resistant and non-resistant C. jejuni strains, at concentrations of approximately 0.1% and higher. The antimicrobial efficacy of cinnamaldehyde was greater than that of carvacrol. The possible significance of the results for microbiological food safety is discussed. PMID:18592739

  3. Rapid antibiotic-resistance predictions from genome sequence data for Staphylococcus aureus and Mycobacterium tuberculosis.

    Science.gov (United States)

    Bradley, Phelim; Gordon, N Claire; Walker, Timothy M; Dunn, Laura; Heys, Simon; Huang, Bill; Earle, Sarah; Pankhurst, Louise J; Anson, Luke; de Cesare, Mariateresa; Piazza, Paolo; Votintseva, Antonina A; Golubchik, Tanya; Wilson, Daniel J; Wyllie, David H; Diel, Roland; Niemann, Stefan; Feuerriegel, Silke; Kohl, Thomas A; Ismail, Nazir; Omar, Shaheed V; Smith, E Grace; Buck, David; McVean, Gil; Walker, A Sarah; Peto, Tim E A; Crook, Derrick W; Iqbal, Zamin

    2015-01-01

    The rise of antibiotic-resistant bacteria has led to an urgent need for rapid detection of drug resistance in clinical samples, and improvements in global surveillance. Here we show how de Bruijn graph representation of bacterial diversity can be used to identify species and resistance profiles of clinical isolates. We implement this method for Staphylococcus aureus and Mycobacterium tuberculosis in a software package ('Mykrobe predictor') that takes raw sequence data as input, and generates a clinician-friendly report within 3 minutes on a laptop. For S. aureus, the error rates of our method are comparable to gold-standard phenotypic methods, with sensitivity/specificity of 99.1%/99.6% across 12 antibiotics (using an independent validation set, n=470). For M. tuberculosis, our method predicts resistance with sensitivity/specificity of 82.6%/98.5% (independent validation set, n=1,609); sensitivity is lower here, probably because of limited understanding of the underlying genetic mechanisms. We give evidence that minor alleles improve detection of extremely drug-resistant strains, and demonstrate feasibility of the use of emerging single-molecule nanopore sequencing techniques for these purposes. PMID:26686880

  4. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    Science.gov (United States)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  5. Synergistic Effect of Oleanolic Acid on Aminoglycoside Antibiotics against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Bora Shin

    Full Text Available Difficulties involved in treating drug-resistant pathogens have created a need for new therapies. In this study, we investigated the possibility of using oleanolic acid (OA, a natural pentacyclic triterpenoid, as a natural adjuvant for antibiotics against Acinetobacter baumannii. High concentrations of OA can kill cells, partly because it generates reactive oxygen species. Measurement of the fractional inhibitory concentration (FIC for OA and time-kill experiments demonstrated that it only synergizes with aminoglycoside antibiotics (e.g., gentamicin, kanamycin. Other classes of antibiotics (e.g., ampicillin, rifampicin, norfloxacin, chloramphenicol, and tetracycline have no interactions with OA. Microarray and quantitative reverse transcription-PCR analysis indicated that genes involved in ATP synthesis and cell membrane permeability, the gene encoding glycosyltransferase, peptidoglycan-related genes, phage-related genes, and DNA repair genes were upregulated under OA. OA highly induces the expression of adk, which encodes an adenylate kinase, and des6, which encodes a linoleoyl-CoA desaturase, and deletion of these genes increased FICs; these observations indicate that adk and des6 are involved in the synergism of OA with aminoglycosides. Data obtained using 8-anilino-1-naphthalenesulfonic acid, fluorescence-conjugated gentamicin, and membrane fatty acid analysis indicates that adk and des6 are involved in changes in membrane permeability. Proton-motive force and ATP synthesis tests show that those genes are also involved in energy metabolism. Taken together, our data show that OA boosts aminoglycoside uptake by changing membrane permeability and energy metabolism in A. baumannii.

  6. LOWER DOSE OF AMINOGLYCOSIDE OTOTOXIC EXPOSURE CAUSES PRESYNAPTIC ALTERATIONS ASSOICATED WITH HEARING LOSS

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; WANG Xiaoyu; LI Sijun; TANG Siquan; XU Yice; WANG Xuefeng; SUN Jianhe; YANG Weiyan; YANG Shiming

    2014-01-01

    Objective To study presynaptic alternations of cochlear ribbons arising from aminoglycoside ototoxic stimuli in C57BL/6J mice. Methods Animals were injected with low dose gentamicin (100 mg/kg/day) for 14 days, From the 14th to 28th days, the mice were maintained free of gentamicin treatment. Immunohisto-chemistry labeling was employed to trace RIBEYE, a major presynaptic componment of ribbon synapses. RIBEYE/CtBP2 expression levels were assessed and compared with hearing threshold shifts. Auditory func-tion was assessed by auditory brainstem responses. The stereocilia of outer hair cells (OHCs) and IHCs was examined by scanning electron microscopy (SEM). Results Hearing thresholds were elevated with peak hearing loss observed on the 7th day after gentamicin exposure, followed by improvement after the 7th day. RIBEYE/CtBP2 expression directly correlated with observed hearing threshold shifts. Strikingly, we did not see any obvious changes in stereocilia in both OHCs and IHCs until the 28th day. Mild changes in stereocil-ia were only observed in OHCs on the 28th day. Conclusions These findings indicate that presynapse co-chlear ribbons, rather than stereocilia, may be sensitive to aminoglycoside ototoxic exposure in mice cochle-ae. A pattern of RIBEYE/CtBP2 expression changes seems to parallel hearing threshold shifts and suggests presynaptic response properties to lower dosage of aminoglycoside ototoxic stimuli.

  7. [Is it possible to reduce the incidence of aminoglycoside-induced nephrotoxicity?].

    Science.gov (United States)

    Fillastre, J P

    1999-01-01

    The incidence of nephrotoxicity due to aminoglycosides should be sharply reduced. The indications for prescribing these antibiotics should be limited to infectious disorders induced by aerobic Gram-negative bacteria and by some Gram-positive bacteria requiring treatment in specialized hospital units using an association of aminoglycosides and another antibiotic. Daily doses should not exceed those indicated by the manufacturer, and the length of treatment should be as short as possible, with a relay to other antibiotics that are not or are less nephrotoxic. The possibilities for reducing the incidence of nephrotoxicity are few. It is not possible to prevent the antibiotic from entering the renal tubular cell or from producing deleterious effects therein. However, by using short-term intravenous infusion as the administration route, prolonged contact between the antibiotic and its receptors on the brush borders of the proximal tubular cells can be avoided, particularly since the process of cellular absorption is saturable. Essentially, doses should be adapted according to the age and the glomerular filtration of the patient, since renal function usually decreases with age. Volemic and hydroelectrolytic disorders favour nephrotoxicity and should be corrected. Associations with other nephrotoxic drugs should either be avoided or used with increased caution. The same is true in special situations such as endotoxaemia, severe renal parenchymatous infections and cholestasis. In any case, given the well-known insidious onset of nephropathy, aminoglycoside treatment always requires laboratory follow-up consisting of repeated testing of creatinemia during the two weeks of treatment. PMID:10465001

  8. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  9. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness

    Directory of Open Access Journals (Sweden)

    Greinwald John H

    2009-01-01

    Full Text Available Abstract Background South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population. Methods A multiplex method using the SNaPshot technique was used to screen for five mutations in the MT-RNR1 gene: A1555G, C1494T, T1095C, 961delT+C(n and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations. Results A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants. Conclusion The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will

  10. Kunstige Enzymer

    DEFF Research Database (Denmark)

    Bols, Mikael; Bjerre, Jeannette; Marinescu, Lavinia

    2007-01-01

    Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin.......Enzymer har en enestående evne til at accelerere kemiske processer. Der forskes målrettet i at optimere enzymer baseret på cyclodextrin....

  11. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments.

    Directory of Open Access Journals (Sweden)

    Andrea Di Cesare

    Full Text Available Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M, tet(L, tet(O] and macrolide [erm(A, erm(B and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M and tet(L in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O, erm(B and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an

  12. Antibacterial Activity of Various Plants Extracts Against Antibiotic-resistant Aeromonas hydrophila

    Science.gov (United States)

    Al Laham, Shaza Anwar; Al Fadel, Frdoos Mohammad

    2014-01-01

    Background: Aeromonas hydrophila cause one of the most important diseases in fishes and lead to economic losses, and may be contaminated human beings. Objectives: The current research aimed to investigate the anti-bacterial activity shown by the extracts prepared from different parts of Olea europea, Myrtus communis, Thymus vulgaris, Rosmarinuis officinalis, and Achillea falcata that grow in Syria against A. hydrophila that causes the most dangerous bacterial diseases in fish. Materials and Methods: The study was performed in four stages: First of all, the presence of A. hydrophila was investigated in 450 Samples of Cyprinus Carpio fish using blood agar, Trypticase soya agar, and Analytical Profile Index (API20E). Secondly, the plants extract was obtained using water, absolute alcohol, then ether using Soxhlet extraction apparatus and rotary vacuum evaporator. Thirdly, the antibacterial activity of some antibiotics on these bacteria was evaluated by disk diffusion method. Finally, the antibacterial effect of the extracts was determined by disk diffusion method. Results: The studied antibiotics showed no antibacterial activity against these bacteria, except amikacin which had an acceptable effectiveness. However, the ethanol extracts of the studied plants revealed different antibacterial effects against A. hydrophila which showed antibiotic resistant. T. vulgaris extract had the strongest effect, whereas O. europea extract had the weakest activity. The water and ether petroleum extracts had no antibacterial activities. Conclusions: Ethanol extracts of the studied plants had different antibacterial effects against antibiotic-resistant A. hydrophila. T. vulgaris had the highest activity, R. officinalis had the second, and M. communis and A. falcate were in the third place, while the O. europea had the weakest antibacterial activity. PMID:25368797

  13. Antibiotic contamination and occurrence of antibiotic-resistant bacteria in aquatic environments of northern Vietnam.

    Science.gov (United States)

    Hoa, Phan Thi Phuong; Managaki, Satoshi; Nakada, Norihide; Takada, Hideshige; Shimizu, Akiko; Anh, Duong Hong; Viet, Pham Hung; Suzuki, Satoru

    2011-07-01

    The ubiquitous application and release of antibiotics to the environment can result in bacterial antibiotic resistance, which in turn can be a serious risk to humans and other animals. Southeast Asian countries commonly apply an integrated recycling farm system called VAC (Vegetable, Aquaculture and Caged animal). In the VAC environment, antibiotics are released from animal and human origins, which would cause antibiotic-resistant bacteria (ARB). This study evaluated occurrence of ARB in the VAC environment in northern Vietnam, with quantitative analysis of antibiotic pollution. We found that sulfonamides were commonly detected at all sites. In dry season, while sulfamethazine was a major contaminant in pig farm pond (475-6662 ng/l) and less common in city canal and aquaculture sites, sulfamethoxazole was a major one in city canal (612-4330 ng/l). Erythromycin (154-2246 ng/l) and clarithromycin (2.8-778 ng/ml) were the common macrolides in city canal, but very low concentrations in pig farm pond and aquaculture sites. High frequencies of sulfamethoxazole-resistant bacteria (2.14-94.44%) were found whereas the occurrence rates of erythromycin-resistant bacteria were lower (Aeromonas were the major genera. Twenty three of 25 genera contained sul genes. This study showed specific contamination patterns in city and VAC environments and concluded that ARB occurred not only within contaminated sites but also those less contaminated. Various species can obtain resistance in VAC environment, which would be reservoir of drug resistance genes. Occurrence of ARB is suggested to relate with rainfall condition and horizontal gene transfer in diverse microbial community. PMID:21669325

  14. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  15. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site. PMID:23719281

  16. Molecular basis of rare aminoglycoside susceptibility and pathogenesis of Burkholderia pseudomallei clinical isolates from Thailand.

    Directory of Open Access Journals (Sweden)

    Lily A Trunck

    Full Text Available BACKGROUND: Burkholderia pseudomallei is intrinsically resistant to aminoglycosides and macrolides, mostly due to AmrAB-OprA efflux pump expression. We investigated the molecular mechanisms of aminoglycoside susceptibility exhibited by Thai strains 708a, 2188a, and 3799a. METHODOLOGY/PRINCIPAL FINDINGS: qRT-PCR revealed absence of amrB transcripts in 708a and greatly reduced levels in 2188a and 3799a. Serial passage on increasing gentamicin concentrations yielded 2188a and 3799a mutants that became simultaneously resistant to other aminoglycosides and macrolides, whereas such mutants could not be obtained with 708a. Transcript analysis showed that the resistance of the 2188a and 3799a mutants was due to upregulation of amrAB-oprA expression by unknown mechanism(s. Use of a PCR walking strategy revealed that the amrAB-oprA operon was missing in 708a and that this loss was associated with deletion of more than 70 kb of genetic material. Rescue of the amrAB-oprB region from a 708a fosmid library and sequencing showed the presence of a large chromosome 1 deletion (131 kb and 141 kb compared to strains K96243 and 1710b, respectively. This deletion not only removed the amrAB-oprA operon, but also the entire gene clusters for malleobactin and cobalamin synthesis. Other genes deleted included the anaerobic arginine deiminase pathway, putative type 1 fimbriae and secreted chitinase. Whole genome sequencing and PCR analysis confirmed absence of these genes from 708a. Despite missing several putative virulence genes, 708a was fully virulent in a murine melioidosis model. CONCLUSIONS/SIGNIFICANCE: Strain 708a may be a natural candidate for genetic manipulation experiments that use Select Agent compliant antibiotics for selection and validates the use of laboratory-constructed Delta(amrAB-oprA mutants in such experiments.

  17. Phytochemical screening and synergistic interactions between aminoglycosides, selected antibiotics and extracts from the bryophyte Octoblepharum albidum Hedw (Calymperaceae

    Directory of Open Access Journals (Sweden)

    Vidal C.A.S.

    2012-01-01

    Full Text Available This work is the first to describe the modulation of antibiotic activity of the bryophyte Octoblepharum albidum Hedw extract. The antibacterial activity of ethanolic extract of O. albidum (EEOa, alone and in association with aminoglycosides, was determined against six bacterial strains by a microdilution test. The results showed a similar inhibitory activity of EEOa against Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 33018 (MICs 512 μg/mL. The synergistic effect of the extracts and aminoglycosides was also verified. The most pronounced effects were obtained with EEOa + gentamicin against E. coli and EEOa + kanamycin against K. pneumoniae with MICs reduction (128 to 32 μg/mL. The data from this study are indicative of the antibacterial activity of the bryophyte O. albidum extracts and its potential in modifying the resistance of aminoglycosides analyzed.

  18. Correction of ATM gene function by aminoglycoside-induced read-through of premature termination codons

    OpenAIRE

    Lai, Chih-Hung; Chun, Helen H.; Nahas, Shareef A.; Mitui, Midori; Gamo, Kristin M.; Du, Liutao; Gatti, Richard A.

    2004-01-01

    Approximately 14% of genetic mutations in patients with ataxia-telangiectsia (A-T) are single-nucleotide changes that result in primary premature termination codons (PTCs), either UAA, UAG, or UGA. The purpose of this study was to explore a potential therapeutic approach for this subset of patients by using aminoglycosides to induce PTC read-through, thereby restoring levels of full-length ATM (A-T mutated) protein. In experiments using a modified in vitro cDNA coupled transcription/translati...

  19. Design of Novel Aminoglycoside Derivatives with Enhanced Suppression of Diseases-Causing Nonsense Mutations.

    Science.gov (United States)

    Sabbavarapu, Narayana Murthy; Shavit, Michal; Degani, Yarden; Smolkin, Boris; Belakhov, Valery; Baasov, Timor

    2016-04-14

    New pseudotrisaccharide derivatives of aminoglycosides that exploit additional interaction on the shallow groove face of the decoding-site rRNA of eukaryotic ribosome were designed, synthesized and biologically evaluated. Novel lead structures (6 and 7 with an additional 7'-OH), exhibiting enhanced specificity to eukaryotic cytoplasmic ribosome, and superior nonsense mutation suppression activity than those of gentamicin, were discovered. The comparative benefit of new leads was demonstrated in four different nonsense DNA-constructs underling the genetic diseases cystic fibrosis, Usher syndrome, and Hurler syndrome. PMID:27096052

  20. Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county

    DEFF Research Database (Denmark)

    Norskov-Lauritsen, N.; Sandvang, Dorthe; Hedegaard, J.; Fussing, V.; Mortensen, K.K.; Sperling-Petersen, H.U.; Schonheyder, H.C.

    2001-01-01

    During 1997, attention was drawn to an increased frequency of aminoglycoside-resistant Citrobacter freundii in a Danish county, when a total of 24 resistant C. freundii isolates was detected. In this study, 15 such isolates were typed by pulsed-field gel electrophoresis, riboprinting and partial ...... dihydrofolate reductase gene in a class I integron. The source of the strain remains unresolved. Representative isolates were obtained from various specimens from hospitals and general practice throughout the county, with no evidence of patient-to-patient transmission....

  1. Chitosan Microparticles Exert Broad-Spectrum Antimicrobial Activity against Antibiotic-Resistant Micro-organisms without Increasing Resistance.

    Science.gov (United States)

    Ma, Zhengxin; Kim, Donghyeon; Adesogan, Adegbola T; Ko, Sanghoon; Galvao, Klibs; Jeong, Kwangcheol Casey

    2016-05-01

    Antibiotic resistance is growing exponentially, increasing public health concerns for humans and animals. In the current study, we investigated the antimicrobial features of chitosan microparticles (CM), engineered from chitosan by ion gelation, seeking potential application for treating infectious disease caused by multidrug resistant microorganisms. CM showed excellent antimicrobial activity against a wide range of microorganisms, including clinically important antibiotic-resistant pathogens without raising resistant mutants in serial passage assays over a period of 15 days, which is a significantly long passage compared to tested antibiotics used in human and veterinary medicine. In addition, CM treatment did not cause cross-resistance, which is frequently observed with other antibiotics and triggers multidrug resistance. Furthermore, CM activity was examined in simulated gastrointestinal fluids that CM encounter when orally administered. Antimicrobial activity of CM was exceptionally strong to eliminate pathogens completely. CM at a concentration of 0.1 μg/mL killed E. coli O157:H7 (5 × 10(8) CFU/mL) completely in synthetic gastric fluid within 20 min. Risk assessment of CM, in an in vitro animal model, revealed that CM did not disrupt the digestibility, pH or total volatile fatty acid production, indicating that CM likely do not affect the functionality of the rumen. Given all the advantages, CM can serve as a great candidate to treat infectious disease, especially those caused by antibiotic-resistant pathogens without adverse side effects. PMID:27057922

  2. Effect of biochar amendment on the control of soil sulfonamides, antibiotic-resistant bacteria, and gene enrichment in lettuce tissues.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Wan, Jinzhong; Xie, Shanni; Tian, Da; Zhao, Yu; Wu, Jun; Hu, Feng; Li, Huixin; Jiang, Xin

    2016-05-15

    Considering the potential threat of vegetables growing in antibiotic-polluted soil with high abundance of antibiotic-resistant genes (ARGs) against human health through the food chain, it is thus urgent to develop novel control technology to ensure vegetable safety. In the present work, pot experiments were conducted in lettuce cultivation to assess the impedance effect of biochar amendment on soil sulfonamides (SAs), antibiotic-resistant bacteria (ARB), and ARG enrichment in lettuce tissues. After 100 days of cultivation, lettuce cultivation with biochar amendment exhibited the greatest soil SA dissipation as well as the significant improvement of lettuce growth indices, with residual soil SAs mainly existing as the tightly bound fraction. Moreover, the SA contents in roots and new/old leaves were reduced by one to two orders of magnitude compared to those without biochar amendment. In addition, isolate counts for SA-resistant bacterial endophytes in old leaves and sul gene abundances in roots and old leaves also decreased significantly after biochar application. However, neither SA resistant bacteria nor sul genes were detected in new leaves. It was the first study to demonstrate that biochar amendment can be a practical strategy to protect lettuce safety growing in SA-polluted soil with rich ARB and ARGs. PMID:26896719

  3. Feasibility of lettuce cultivation in sophoroliplid-enhanced washed soil originally polluted with Cd, antibiotics, and antibiotic-resistant genes.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Wan, Jinzhong; Feng, Yanfang; Zhao, Yu; Tian, Da; Hu, Feng; Jiang, Xin

    2016-02-01

    Vegetable cultivation in soils polluted with heavy metals, antibiotics and a high abundance of antibiotic-resistance genes (ARGs) can seriously threaten human health through the food chain. Therefore, novel techniques that not only remediate soil, but also ensure food security are urgently required. In the present study, two successive washings with 20gL(-1) of sophoroliplid solution plus ultrasonication (35kHz) were effective in extracting 71.2% Cd, 88.2% tetracycline, 96.6% sulfadiazine, and 100% roxithromycin. Simultaneously, relative abundance of ARGs (tetM, tetX, sulI, and sulII) was decreased to 10(-7)-10(-8) (ARG copies/16S copies). Further, lettuce cultivation in the 2nd washed soil showed significant improvement in vegetable growth indices (fresh/dry weight, root surface area, chlorophyll content and soluble protein content) and a decrease in isolate counts for antibiotic-resistant bacterial endophytes and ARG abundance in lettuce tissues. This combined cleanup strategy provides an environmentally friendly technology for ensuring vegetable security in washed soils. PMID:26590696

  4. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs

    DEFF Research Database (Denmark)

    Gutierrez, Belen; Douthwaite, Stephen Roger; Gonzalez-Zorn, Bruno

    2013-01-01

    of 16S rRNA helix 44 with a secondary target in 23S rRNA helix 69. Here, we have mapped P. aeruginosa rRNAs using MALDI mass spectrometry and reverse transcriptase primer extension to identify nucleotide modifications that could influence aminoglycoside interactions. Helices 44 and 45 contain...... indigenous (housekeeping) modifications at m (4)Cm1402, m (3)U1498, m (2)G1516, m (6) 2A1518, and m (6) 2A1519; helix 69 is modified at m (3)Ψ1915, with m (5)U1939 and m (5)C1962 modification in adjacent sequences. All modifications were close to stoichiometric, with the exception of m (3)Ψ1915, where about...... 80% of rRNA molecules were methylated. The modification status of a virulent clinical strain expressing the acquired methyltransferase RmtD was altered in two important respects: RmtD stoichiometrically modified m (7)G1405 conferring high resistance to the aminoglycoside tobramycin and, in doing so...

  5. Assessment of hearing loss in multi-drug resistant tuberculosis (MDR-TB patients undergoing Aminoglycoside treatment

    Directory of Open Access Journals (Sweden)

    Sheikh Nizamuddin

    2015-07-01

    Conclusion: Aminoglycosides in MDR-TB patients may cause irreversible hearing loss involving higher frequencies and can become a hearing handicap as speech frequencies are too implied in more or less of the patients, thus underlining the need for regular audiologic evaluation in patients of MDR-TB during the treatment. [Int J Res Med Sci 2015; 3(7.000: 1734-1740

  6. Audiologic monitoring of multi-drug resistant tuberculosis patients on aminoglycoside treatment with long term follow-up

    Directory of Open Access Journals (Sweden)

    Sarkar Malay

    2007-11-01

    Full Text Available Abstract Background Multi-drug resistant tuberculosis has emerged as a significant problem with the resurfacing of tuberculosis and thus the need to use the second line drugs with the resultant increased incidence of adverse effects. We discuss the effect of second line aminoglycoside anti-tubercular drugs on the hearing status of MDR-TB patients. Methods Sixty four patients were put on second line aminoglycoside anti-TB drugs. These were divided into three groups: group I, 34 patients using amikacin, group II, 26 patients using kanamycin and group III, 4 patients using capreomycin. Results Of these, 18.75% of the patients developed sensorineural hearing loss involving higher frequencies while 6.25% had involvement of speech frequencies also. All patients were seen again approximately one year after aminoglycoside discontinuation and all hearing losses were permanent with no threshold improvement. Conclusion Aminoglycosides used in MDR-TB patients may result in irreversible hearing loss involving higher frequencies and can become a hearing handicap as speech frequencies are also involved in some of the patients thus underlining the need for regular audiologic evaluation in patients of MDR-TB during the treatment.

  7. Non-derivatization approach to high-performance liquid chromatography-fluorescence detection for aminoglycoside antibiotics based on a ligand displacement reaction.

    Science.gov (United States)

    Yang, M; Tomellini, S A

    2001-12-21

    An indirect fluorescence detection method has been developed for detecting the aminoglycoside antibiotics following chromatographic separation. This approach to detection is based on a displacement reaction between the aminoglycosides and a copper(II)-L-tryptophan (L-Trp) complex, Cu(L-Trp)2. The aminoglycosides, which contain multiple amino groups, have strong affinities for the Cu(II) ion and displace L-Trp from the Cu(L-Trp)2 complex. The resulting increase in L-Trp fluorescence, which is quenched when coordinated to Cu(II), is indicative of the presence of the aminoglycoside. Fluorescence titration data indicate that there is a stoichiometric ratio of 1:1 between the reaction of the aminoglycosides with Cu(L-Trp)2. This HPLC detection scheme is implemented postcolumn by mixing a buffered Cu(L-Trp)2 solution with the column eluent prior to detection. The aminoglycosides were separated with the use of a column packed with a polymeric strong cation-exchanger. Separation and detection variables were optimized and are discussed. The detection limits for the aminoglycosides tested ranged from 4.2 to 14.5 ng injected (S/N=3). A linear working curve was achieved for amikacin in the range of 29-586 ng for a six point linearity test. The developed separation and detection scheme was further tested by analyzing commercial pharmaceutical formulations of these antibiotics. PMID:11806546

  8. No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lopé National Park, Gabon.

    Science.gov (United States)

    Benavides, Julio Andre; Godreuil, Sylvain; Bodenham, Rebecca; Ratiarison, Sandra; Devos, Céline; Petretto, Marie-Odile; Raymond, Michel; Escobar-Páramo, Patricia

    2012-06-01

    The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance. PMID:22492436

  9. Prevalence of antibiotic-resistant E. coli in retail chicken: comparing conventional, organic, kosher, and raised without antibiotics [v2; ref status: indexed, http://f1000r.es/1pu

    Directory of Open Access Journals (Sweden)

    Jack M Millman

    2013-09-01

    Full Text Available Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA – designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E. coli is unknown. We examined the occurrence of antibiotic-resistant E. coli on raw chicken marketed as conventional, organic, kosher and RWA. From April – June 2012, we purchased 213 samples of raw chicken from 15 locations in the New York City metropolitan area. We screened E. coli isolates from each sample for resistance to 12 common antibiotics. Although the organic and RWA labels restrict the use of antibiotics, the frequency of antibiotic-resistant E. coli tended to be only slightly lower for RWA, and organic chicken was statistically indistinguishable from conventional products that have no restrictions. Kosher chicken had the highest frequency of antibiotic-resistant E. coli, nearly twice that of conventional products, a result that belies the historical roots of kosher as a means to ensure food safety. These results indicate that production methods influence the frequency of antibiotic-resistant E. coli on poultry products available to consumers. Future research to identify the specific practices that cause the high frequency of antibiotic-resistant E. coli in kosher chicken could promote efforts to reduce consumer exposure to this potential pathogen.

  10. Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment

    DEFF Research Database (Denmark)

    Macià, María D.; Pérez, José L.; Molin, Søren;

    2011-01-01

    Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently...... monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One.......01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting...

  11. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    Science.gov (United States)

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  12. Study of the Interference between Plectranthus Species Essential Oils from Brazil and Aminoglycosides.

    Science.gov (United States)

    Galvão Rodrigues, Fabíola Fernandes; Costa, José Galberto Martins; Rodrigues, Fábio Fernandes Galvao; Campos, Adriana Rolim

    2013-01-01

    Plectranthus is one of the most representative genera of Lamiaceae family. In this study, the essential oils from Plectranthus amboinicus, Plectranthus ornatus, and Plectranthus barbatus were investigated for their chemical composition and antimicrobial and modulatory activities. The major components found were carvacrol (54.4%-P. amboinicus) and eugenol (22.9%-P. ornatus e 25.1%-P. barbatus). In vitro antimicrobial activity was conducted against Escherichia coli, Proteus vulgaris, Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus aureus (multiresistant) using microdilution method. The results of bioassay showed that all strains were sensitive to the oils, except P. aeruginosa that was resistant to P. amboinicus and P. ornatus. A synergistic effect of all essential oils combined with the aminoglycosides was demonstrated. These results show that P. amboinicus, P. ornatus, and P. barbatus inhibit the growth of pathogenic microorganism, and besides this they present antibiotic modifying activity, providing a new perspective against the problem of bacterial resistance to antibiotics. PMID:23662150

  13. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation.

    Science.gov (United States)

    Martitz, Janine; Hofmann, Peter Josef; Johannes, Jörg; Köhrle, Josef; Schomburg, Lutz; Renko, Kostja

    2016-09-01

    Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation. Selenocysteine incorporation requires the presence of a selenoprotein-specific stem-loop structure within the 3'-untranslated region of the mRNA, the so-called Sec-insertion sequence (SECIS) element. Interestingly, selenoprotein genes differ in their SECIS-element sequence and in their UGA base context. We hypothesized that the SECIS-element and the specific codon context synergize in controlling the effects of AG on stop codon readthrough. To this end, the SECIS-elements of glutathione peroxidase 1, glutathione peroxidase 4 and selenoprotein P transcripts were cloned into a reporter system and analyzed in combination with different UGA codon contexts. Our results indicate that a cytosine in position 4 (directly downstream of UGA) confers strongest effects on both the Se- and AG-dependent readthrough. Overall selenoprotein biosynthesis rate depends on the Se-status, AG concentration and the specific SECIS-element present in the transcript. These findings help to get a better understanding for the susceptibility of different transcripts towards AG-mediated interference with the biosynthesis of functional Se-containing selenoproteins, and highlight the importance of the Se-status for successful selenoprotein biosynthesis under antibiotic therapy. PMID:27157664

  14. Investigation on the Mechanism of Exacerbation of Myasthenia Gravis by Aminoglycoside Antibiotics in Mouse Model

    Institute of Scientific and Technical Information of China (English)

    LIU Changqin; HU Fang

    2005-01-01

    Summary: To investigate the underlying mechanism of the exacerbation of myasthenia gravis by aminoglycoside antibiotics. C57/BL6 mice were immunized with acetylcholine receptor (AChR), extracted from electric organ of Narcine timilei according to Xu Haopeng's methods, in complete Fruend's adjuvant (CFA) to establish experimental autoimmune myasthenia gravis (EAMG). EAMG mice were divided randomly into 5 groups: MG group, NS group and three antibiotics groups. The clinical symptom scores of mice were evaluated on d7 after the last immunization and d14 of antibiotics treatment. Repetitive nerve stimulation (RNS) was performed and the levels of anti-AChR antibody (AChR-Ab) were tested at the same time. The mean clinical symptom grades of gentamycin group (1.312, 2.067), amikacin group (1.111, 1.889) and etimicin group (1.263, 1.632) were significantly higher than those of MG group (1.000, 1.200) (P<0.05). The positive rates of RNS of three antibiotics groups were 69.23 %, 58.82 % and 63.16 % respectively, which were significantly higher than those of MG group and NS group (40.00 %, 40.00 %, P<0.05). The AChR-Ab level in serum and the expression of AChR on neuromuscular junction (NMJ) of mice in three antibiotics groups were also higher than those of MG group. Our results indicated that aminoglycoside antibiotics could aggravate the symptom of myasthenia gravis. The exacerbation of myasthenia gravis by these antibiotics probably involves competitively restraining the release of acetylcholine from presynaptic membrane, impairing the depolarization of postsynaptic membrane, depressing the irritability of myocyte membrane around the end-plate membrane and consequently leading to the blockade of neuromuscular junction.

  15. Azobenzene-aminoglycoside: Self-assembled smart amphiphilic nanostructures for drug delivery.

    Science.gov (United States)

    Deka, Smriti Rekha; Yadav, Santosh; Mahato, Manohar; Sharma, Ashwani Kumar

    2015-11-01

    Here, we have designed and synthesized a novel cationic amphiphilic stimuli-responsive azobenzene-aminoglycoside (a small molecule) conjugate, Azo-AG 5, and characterized it by UV and FTIR. Light responsive nature of Azo-AG 5 was assessed under UV-vis light. Self- assembly of Azo-AG 5 in aqueous solutions into nanostructures and their ability to act as drug carrier were also investigated. The nanostructures of Azo-AG 5 showed average hydrodynamic diameter of ∼ 255 nm with aminoglycoside moiety (neomycin) and 4-dimethylaminoazobenzene forming hydrophilic shell and hydrophobic core, respectively. In the hydrophobic core, eosin and aspirin were successfully encapsulated. Dynamic light scattering (DLS) measurements demonstrated that the nanoassemblies showed expansion and contraction on successive UV and visible light irradiations exhibiting reversible on-off switch for controlling the drug release behavior. Similar behavior was observed when these nanostructures were subjected to pH-change. In vitro drug release studies showed a difference in UV and visible light-mediated release pattern. It was observed that the release rate under UV irradiation was comparatively higher than that observed under visible light. Further, azoreductase-mediated cleavage of the azo moiety in Azo-AG 5 nanoassemblies resulted in the dismantling of the structures into aggregated microstructures. Azo-AG 5 nanostructures having positive surface charge (+9.74 mV) successfully interacted with pDNA and retarded its mobility on agarose gel. Stimuli responsiveness of nanostructures and their on-off switch like behavior ensure the great potential as controlled drug delivery systems and in other biomedical applications such as colon-specific delivery and gene delivery. PMID:26255160

  16. Ribozyme-based aminoglycoside switches of gene expression engineered by genetic selection in S. cerevisiae.

    Science.gov (United States)

    Klauser, Benedikt; Atanasov, Janina; Siewert, Lena K; Hartig, Jörg S

    2015-05-15

    Systems for conditional gene expression are powerful tools in basic research as well as in biotechnology. For future applications, it is of great importance to engineer orthogonal genetic switches that function reliably in diverse contexts. RNA-based switches have the advantage that effector molecules interact immediately with regulatory modules inserted into the target RNAs, getting rid of the need of transcription factors usually mediating genetic control. Artificial riboswitches are characterized by their simplicity and small size accompanied by a high degree of modularity. We have recently reported a series of hammerhead ribozyme-based artificial riboswitches that allow for post-transcriptional regulation of gene expression via switching mRNA, tRNA, or rRNA functions. A more widespread application was so far hampered by moderate switching performances and a limited set of effector molecules available. Here, we report the re-engineering of hammerhead ribozymes in order to respond efficiently to aminoglycoside antibiotics. We first established an in vivo selection protocol in Saccharomyces cerevisiae that enabled us to search large sequence spaces for optimized switches. We then envisioned and characterized a novel strategy of attaching the aptamer to the ribozyme catalytic core, increasing the design options for rendering the ribozyme ligand-dependent. These innovations enabled the development of neomycin-dependent RNA modules that switch gene expression up to 25-fold. The presented aminoglycoside-responsive riboswitches belong to the best-performing RNA-based genetic regulators reported so far. The developed in vivo selection protocol should allow for sampling of large sequence spaces for engineering of further optimized riboswitches. PMID:24871672

  17. Aminoglycoside 6′-N-Acetyltransferase Variants of the Ib Type with Altered Substrate Profile in Clinical Isolates of Enterobacter cloacae and Citrobacter freundii

    OpenAIRE

    Casin, Isabelle; Bordon, Florence; Bertin, Philippe; Coutrot, Anne; Podglajen, Isabelle; Brasseur, Robert; Collatz, Ekkehard

    1998-01-01

    Three clinical isolates, Enterobacter cloacae EC1562 and EC1563 and Citrobacter freundii CFr564, displayed an aminoglycoside resistance profile evocative of low-level 6′-N acetyltransferase type II [AAC(6′)-II] production, which conferred reduced susceptibility to gentamicin but not to amikacin or isepamicin. Aminoglycoside acetyltransferase assays suggested the synthesis in the three strains of an AAC(6′) which acetylated amikacin practically as well as it acetylated gentamicin in vitro. Bot...

  18. Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion

    OpenAIRE

    Bernacchi, Serena; Freisz, Séverine; Maechling, Clarisse; Spiess, Bernard; Marquet, Roland; Dumas, Philippe; Ennifar, Eric

    2007-01-01

    Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop–loop complex. We showed that ...

  19. Isolation and speciation of Enterococci from various clinical samples and their antimicrobial susceptibility pattern with special reference to high level Aminoglycoside resistance

    Directory of Open Access Journals (Sweden)

    :Saroj Golia, Nirmala AR, Asha S Kamath B

    2014-07-01

    Full Text Available Background and Objectives: Enterococci are important nosocomial agents and strains resistant to penicillin and other antibiotics occur frequently. Enterococci are intrinsically resistant to cephalosporins and offer low level resistance to aminoglycosides. In penicillin sensitive strains, synergism occurs with combination treatment with penicillin and aminoglycoside. Serious infections caused by them are treated with penicillin and aminoglycoside combination. But the synergistic effect is lost, when the strain develops high level aminoglycoside resistance. The choice of drug for infections due to such strains is vancomycin. The present study was carried out to isolate and speciate Enterococci from various clinical samples, to know the susceptibility pattern of the isolates, to determine the High Level Aminoglycoside Resistance (HLAR among Enterococcal isolates. Methods: A total of One hundred Enterococcal species isolated from various clinical samples were identified by various biochemical reactions. Antimicrobial susceptibility testing and HLAR were determined by Kirby- Bauer disc diffusion method. Results: Out of 100 Enterococcal isolates, 59 were E. faecalis, 38 were E. faecium, 3 were other Enterococcal species. Among these 53 isolates showed High Level Aminoglycoside Resistance. Conclusion: Present study shows the presence of drug resistance to most of commonly used antibiotics and HLAR is also more in E.faecium compared to E.fecalis.

  20. Aminoglycoside binding to the HIV-1 RNA dimerization initiation site: thermodynamics and effect on the kissing-loop to duplex conversion.

    Science.gov (United States)

    Bernacchi, Serena; Freisz, Séverine; Maechling, Clarisse; Spiess, Bernard; Marquet, Roland; Dumas, Philippe; Ennifar, Eric

    2007-01-01

    Owing to a striking, and most likely fortuitous, structural and sequence similarity with the bacterial 16 S ribosomal A site, the RNA kissing-loop complex formed by the HIV-1 genomic RNA dimerization initiation site (DIS) specifically binds 4,5-disubstituted 2-deoxystreptamine (2-DOS) aminoglycoside antibiotics. We used chemical probing, molecular modeling, isothermal titration calorimetry (ITC) and UV melting to investigate aminoglycoside binding to the DIS loop-loop complex. We showed that apramycin, an aminoglycoside containing a bicyclic moiety, also binds the DIS, but in a different way than 4,5-disubstituted 2-DOS aminoglycosides. The determination of thermodynamic parameters for various aminoglycosides revealed the role of the different rings in the drug-RNA interaction. Surprisingly, we found that the affinity of lividomycin and neomycin for the DIS (K(d) approximately 30 nM) is significantly higher than that obtained in the same experimental conditions for their natural target, the bacterial A site (K(d) approximately 1.6 microM). In good agreement with their respective affinity, aminoglycoside increase the melting temperature of the loop-loop interaction and also block the conversion from kissing-loop complex to extended duplex. Taken together, our data might be useful for selecting new molecules with improved specificity and affinity toward the HIV-1 DIS RNA. PMID:17942426

  1. Ultrastructural analysis of aminoglycoside-induced hair cell death in the zebrafish lateral line reveals an early mitochondrial response.

    OpenAIRE

    Owens, Kelly,; Cunningham, Dale,; Macdonald, Glen; Rubel, Edwin,; Raible, David,; Pujol, Remy

    2007-01-01

    Loss of the mechanosensory hair cells in the auditory and vestibular organs leads to hearing and balance deficits. To investigate initial, in vivo events in aminoglycoside-induced hair cell damage, we examined hair cells from the lateral line of the zebrafish, Danio rerio. The mechanosensory lateral line is located externally on the animal and therefore allows direct manipulation and observation of hair cells. Labeling with vital dyes revealed a rapid response of hair cells to the aminoglycos...

  2. Resistance-Nodulation-Cell Division-Type Efflux Pump Involved in Aminoglycoside Resistance in Acinetobacter baumannii Strain BM4454

    OpenAIRE

    Magnet, Sophie; Courvalin, Patrice; Lambert, Thierry

    2001-01-01

    Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs in...

  3. Appearance of amikacin and tobramycin resistance due to 4'-aminoglycoside nucleotidyltransferase [ANT(4')-II] in gram-negative pathogens.

    OpenAIRE

    Jacoby, G A; Blaser, M J; Santanam, P; Hächler, H; Kayser, F H; Hare, R S; Miller, G. H.

    1990-01-01

    Following the use of amikacin as the principal aminoglycoside at a Denver hospital, amikacin resistance appeared first in Pseudomonas aeruginosa and then in Escherichia coli, Klebsiella pneumoniae, and other enteric organisms from debilitated and compromised patients who had spent time in intensive care units and who had been treated with multiple antibiotics, usually including amikacin. In a P. aeruginosa isolate, resistance to amikacin and tobramycin was transferable by the IncP-2 plasmid p...

  4. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin

    OpenAIRE

    Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.

    2012-01-01

    Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the ...

  5. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland

    OpenAIRE

    Anna Diana Michalska; Pawel Tomasz Sacha; Dominika Ojdana; * Anna Wieczorek; Elzbieta Tryniszewska

    2014-01-01

    The present study was conducted to investigate the prevalence of genes encoding resistance to aminoglycosides and fluoroquinolones among twenty-five Pseudomonas aeruginosa isolated between 2002 and 2009. In PCR, following genes were detected: ant(2″)-Ia in 9 (36.0%), aac(6′)-Ib in 7 (28.0%), qnrB in 5 (20.0%), aph(3″)-Ib in 2 (8.0%) of isolates.

  6. Purification, crystallization and diffraction studies of the methyltransferases BT-2972 and BVU-3255 from antibiotic-resistant pathogens of the genus Bacteroides from the human intestine

    International Nuclear Information System (INIS)

    The expression, purification, crystallization and diffraction of two methyltransferases BT-2972 and BVU-3255 from two Bacteroides species of antibiotic-resistant pathogens from the human intestine are reported. The methyltransferases BT-2972 and BVU-3255 from two different Bacteroides species that are antibiotic-resistant pathogens from the human intestine were cloned, overexpressed and purified, yielding approximately 120 mg of each protein from 1 l culture. Apo BT-2972 and BVU-3255 and their complexes with S-adenosylmethionine or S-adenosylhomocysteine were crystallized in four different crystal forms using the hanging-drop vapour-diffusion method. These crystals diffracted to resolutions ranging from 2.8 to 2.2 Å. Sequence analysis suggested that the two proteins are homologous small-molecule methyltransferases

  7. The comparative effects of aminoglycoside antibiotics and muscle relaxants on electrical field stimulation response in rat bladder smooth muscle.

    Science.gov (United States)

    Min, Chang Ho; Min, Young Sil; Lee, Sang Joon; Sohn, Uy Dong

    2016-06-01

    It has been reported that several aminoglycoside antibiotics have a potential of prolonging the action of non-depolarizing muscle relaxants by drug interactions acting pre-synaptically to inhibit acetylcholine release, but antibiotics itself also have a strong effect on relaxing the smooth muscle. In this study, four antibiotics of aminoglycosides such as gentamicin, streptomycin, kanamycin and neomycin were compared with skeletal muscle relaxants baclofen, tubocurarine, pancuronium and succinylcholine, and a smooth muscle relaxant, papaverine. The muscle strips isolated from the rat bladder were stimulated with pulse trains of 40 V in amplitude and 10 s in duration, with pulse duration of 1 ms at the frequency of 1-8 Hz, at 1, 2, 4, 6, 8 Hz respectively. To test the effect of four antibiotics on bladder smooth muscle relaxation, each of them was treated cumulatively from 1 μM to 0.1 mM with an interval of 5 min. Among the four antibiotics, gentamicin and neomycin inhibited the EFS response. The skeletal muscle relaxants (baclofen, tubocurarine, pancuronium and succinylcholine) and inhibitory neurotransmitters (GABA and glycine) did not show any significant effect. However, papaverine, had a significant effect in the relaxation of the smooth muscle. It was suggested that the aminoglycoside antibiotics have inhibitory effect on the bladder smooth muscle. PMID:27260628

  8. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2016-06-01

    Full Text Available Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

  9. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  10. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  11. Antibiotic-Resistant Fecal Bacteria, Antibiotics, and Mercury in Surface Waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony-forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  12. Salmonella spp. and antibiotic-resistant strains in wild mammals and birds in north-western Italy from 2002 to 2010

    OpenAIRE

    Velca Botti; Francine Valérie Navillod; Lorenzo Domenis; Riccardo Orusa; Erika Pepe; Serena Robetto; Cristina Guidetti

    2013-01-01

    Salmonella is an important zoonotic pathogen of economic importance. In Europe, salmonellosis is the second food-borne infection, in Italy, Salmonella is still the major cause of food-borne outbreaks. In Europe, there are many Salmonella surveillance plans on farmed animals, while Salmonella survey of wild animals is occasionally performed. The aim of this study was to investigate the presence of Salmonella including the antibiotic-resistant strains in wild animals. Between 2002 and 2010, 2,7...

  13. No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lope National Park, Gabon

    OpenAIRE

    Benavides, Julio Andre; Godreuil, Sylvain; Bodenham, Rebecca; Ratiarison, Sandra; Devos, Céline; Petretto, Marie-Odile; Raymond, Michel; Escobar-Páramo, Patricia

    2012-01-01

    The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resist...

  14. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health.

    Science.gov (United States)

    Um, Maryse Michèle; Barraud, Olivier; Kérourédan, Monique; Gaschet, Margaux; Stalder, Thibault; Oswald, Eric; Dagot, Christophe; Ploy, Marie-Cecile; Brugère, Hubert; Bibbal, Delphine

    2016-01-01

    The goal of this study was to investigate the involvement of bovine slaughterhouse effluents and biosolids in the risk of environmental dissemination of pathogenic and antibiotic-resistant Escherichia coli. Several samples were collected from one adult cattle and one veal calf slaughterhouse wastewater treatment plant (WWTP). The treatment process had no impact on the percentage of Shiga toxin-producing E. coli (STEC) and on the percentage of atypical enteropathogenic E. coli (aEPEC). A STEC O157:H7 was isolated from the thickened sludge of the adult cattle slaughterhouse. As thickened sludge is intended to be spread on agricultural lands, the detection of this pathogenic strain is a public health issue. The percentage of antibiotic-resistant E. coli was 5.0% and 87.5% in wastewater from the adult cattle and the veal calf slaughterhouse, respectively. These percentages were not significantly different after treatment. Integron-bearing E. coli isolates were only detected in the veal calf slaughterhouse WWTP with percentages above 50.0% for all sampling points whatever the step of the treatment process. Taken together, these findings highlighted the fact that different public health risks might be associated with adult cattle or veal calf slaughterhouses regarding the dissemination of pathogenic and antibiotic-resistant E. coli isolates into the environment. PMID:26460853

  15. Photoreactivating enzymes

    International Nuclear Information System (INIS)

    Photoreactivating enzymes (PRE) also called photolyases (EC 4.1.99.3) catalyze the light 300 to 600 nm)-dependent monomerization of cyclobutyl pyrimidine dimers, formed between adjacent pyrimidines on the same DNA strand, upon exposure to ultraviolet (uv) irradiation (220 to 320 nm). Although much is known about the substrate and product of these unusual enzymes, their identification required the development and synthesis of such fields as photochemistry, biochemistry, and microbiology. Photoreactivation was first known as a biological recovery phenomenon: cells exposed to visible light following uv irradiation showed higher survival than those kept in the dark. Early investigators examined the photoreactivability of an enormous range of cellular damage in both prokaryotes and eukaryotes. This review article discusses the purification and properties of PRE, the kinetics of photoreactivation and the biological role of this repair process

  16. Engineering enzymes

    OpenAIRE

    Dutton, P. Leslie; Moser, Christopher C.

    2011-01-01

    Fundamental research into bioinorganic catalysis of the kind presented at this Faraday Discussion has the potential to turn inspiration drawn from impressive natural energy and chemical transformations into artificial catalyst constructions useful to mankind. Creating bio-inspired artificial constructions requires a level of understanding well beyond simple description of structures and mechanisms of natural enzymes. To be useful, such description must be augmented by a practical sense of str...

  17. Calcined Eggshell Waste for Mitigating Soil Antibiotic-Resistant Bacteria/Antibiotic Resistance Gene Dissemination and Accumulation in Bell Pepper.

    Science.gov (United States)

    Ye, Mao; Sun, Mingming; Feng, Yanfang; Li, Xu; Schwab, Arthur P; Wan, Jinzhong; Liu, Manqiang; Tian, Da; Liu, Kuan; Wu, Jun; Jiang, Xin

    2016-07-13

    The combined accumulation of antibiotics, heavy metals, antibiotic-resistant bacteria (ARB)/antibiotic resistance genes (ARGs) in vegetables has become a new threat to human health. This is the first study to investigate the feasibility of calcined eggshells modified by aluminum sulfate as novel agricultural wastes to impede mixed contaminants from transferring to bell pepper (Capsicum annuum L.). In this work, calcined eggshell amendment mitigated mixed pollutant accumulation in bell pepper significantly, enhanced the dissipation of soil tetracycline, sulfadiazine, roxithromycin, and chloramphenicol, decreased the water-soluble fractions of antibiotics, and declined the diversity of ARB/ARGs inside the vegetable. Moreover, quantitative polymerase chain reaction analysis detected that ARG levels in the bell pepper fruits significantly decreased to 10(-10) copies/16S copies, indicating limited risk of ARGs transferring along the food chain. Furthermore, the restoration of soil microbial biological function suggests that calcined eggshell is an environmentally friendly amendment to control the dissemination of soil ARB/ARGs in the soil-vegetable system. PMID:27333280

  18. Peptide IDR-1018: modulating the immune system and targeting bacterial biofilms to treat antibiotic-resistant bacterial infections.

    Science.gov (United States)

    Mansour, Sarah C; de la Fuente-Núñez, César; Hancock, Robert E W

    2015-05-01

    Host defense (antimicrobial) peptides, produced by all complex organisms, typically contain an abundance of positively charged and hydrophobic amino acid residues. A small synthetic peptide termed innate defense regulator (IDR-)1018 was derived by substantial modification of the bovine neutrophil host defense peptide bactenecin. Here, we review its intriguing properties that include anti-infective, anti-inflammatory, wound healing, and anti-biofilm activities. It was initially developed as an immune modulator with an ability to selectively enhance chemokine production and polarize cellular differentiation while suppressing/balancing the pro-inflammatory response. In this regard, it has demonstrated in vivo activity in murine models including enhancement of wound healing and an ability to protect against Staphylococcus aureus, multidrug resistant Mycobacterium tuberculosis, herpes virus, and inflammatory disorders, including cerebral malaria and neuronal damage in a pre-term birth model. More recently, IDR-1018 was shown, in a broad-spectrum fashion, to selectively target bacterial biofilms, which are adaptively resistant to many antibiotics and represent the most common growth state of bacteria in human infections. Furthermore, IDR-1018 demonstrated synergy with conventional antibiotics to both prevent biofilm formation and treat pre-existing biofilms. These data are consistent with a strong potential as an adjunctive therapy against antibiotic-resistant infections. PMID:25358509

  19. The frequency of antibiotic-resistant bacteria in homes differing in their use of surface antibacterial agents.

    Science.gov (United States)

    Marshall, Bonnie M; Robleto, Eduardo; Dumont, Theresa; Levy, Stuart B

    2012-10-01

    Antibacterial agents are common in household cleaning and personal care products, but their long-range impacts on commensal and pathogenic household bacteria are largely unknown. In a one-time survey of 38 households from Boston, MA [19] and Cincinnati, OH [18], 13 kitchen and bathroom sites were sampled for total aerobic bacteria and screened for gram phenotype and susceptibility to six antibiotic drug families. The overall bacterial titers of both user (2 or more antibacterial cleaning or personal care products) and non-user (0 or 1 product) rooms were similar with sponges and sink drains consistently showing the highest overall titers and relatively high titers of antibiotic-resistant bacteria. The mean frequency of resistant bacteria ranged from ≤20 % to as high as 45 % and multi-drug resistance was common. However, no significant differences were noted between biocide users and non-users. The frequency of pathogen recovery was similar in both user and non-user groups. PMID:22752336

  20. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis. PMID:26022411

  1. Cefditoren and ceftriaxone enhance complement-mediated immunity in the presence of specific antibodies against antibiotic-resistant pneumococcal strains.

    Directory of Open Access Journals (Sweden)

    Elisa Ramos-Sevillano

    Full Text Available BACKGROUND: Specific antibodies mediate humoral and cellular protection against invading pathogens such as Streptococcus pneumoniae by activating complement mediated immunity, promoting phagocytosis and stimulating bacterial clearance. The emergence of pneumococcal strains with high levels of antibiotic resistance is of great concern worldwide and a serious threat for public health. METHODOLOGY/PRINCIPAL FINDINGS: Flow cytometry was used to determine whether complement-mediated immunity against three antibiotic-resistant S. pneumoniae clinical isolates is enhanced in the presence of sub-inhibitory concentrations of cefditoren and ceftriaxone. The binding of acute phase proteins such as C-reactive protein and serum amyloid P component, and of complement component C1q, to pneumococci was enhanced in the presence of serum plus either of these antibiotics. Both antibiotics therefore trigger the activation of the classical complement pathway against S. pneumoniae. C3b deposition was also increased in the presence of specific anti-pneumococcal antibodies and sub-inhibitory concentrations of cefditoren and ceftriaxone confirming that the presence of these antibiotics enhances complement-mediated immunity to S. pneumoniae. CONCLUSIONS/SIGNIFICANCE: Using cefditoren and ceftriaxone to promote the binding of acute phase proteins and C1q to pneumococci, and to increase C3b deposition, when anti-pneumococcal antibodies are present, might help reduce the impact of antibiotic resistance in S. pneumoniae infections.

  2. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    Science.gov (United States)

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses. PMID:27136163

  3. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.; (UIUC)

    2009-06-17

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  4. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-05-21

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  5. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    International Nuclear Information System (INIS)

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers

  6. Study of the Interference between Plectranthus Species Essential Oils from Brazil and Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Fabíola Fernandes Galvão Rodrigues

    2013-01-01

    Full Text Available Plectranthus is one of the most representative genera of Lamiaceae family. In this study, the essential oils from Plectranthus amboinicus, Plectranthus ornatus, and Plectranthus barbatus were investigated for their chemical composition and antimicrobial and modulatory activities. The major components found were carvacrol (54.4%—P. amboinicus and eugenol (22.9%—P. ornatus e 25.1%—P. barbatus. In vitro antimicrobial activity was conducted against Escherichia coli, Proteus vulgaris, Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus aureus (multiresistant using microdilution method. The results of bioassay showed that all strains were sensitive to the oils, except P. aeruginosa that was resistant to P. amboinicus and P. ornatus. A synergistic effect of all essential oils combined with the aminoglycosides was demonstrated. These results show that P. amboinicus, P. ornatus, and P. barbatus inhibit the growth of pathogenic microorganism, and besides this they present antibiotic modifying activity, providing a new perspective against the problem of bacterial resistance to antibiotics.

  7. Andrographolide: A potent antituberculosis compound that targets Aminoglycoside 2'-N-acetyltransferase in Mycobacterium tuberculosis.

    Science.gov (United States)

    Prabu, Amudha; Hassan, Sameer; Prabuseenivasan; Shainaba, A S; Hanna, L E; Kumar, Vanaja

    2015-09-01

    Tuberculosis (TB) still remains a major challenging infectious disease. The increased rate of emergence of multi-drug resistant and extensively-drug resistant strains of the organism has further complicated the situation, resulting in an urgent need for new anti-TB drugs. Antimycobacterial activity of Andrographis paniculata was evaluated using a rapid LRP assay and the probable targets were identified by docking analysis. The methanolic extract of A. paniculata showed maximum antimycobacterial activity at 250μg/ml against all the tested strains of M. tuberculosis (H37Rv, MDR, and drug sensitive). Based on bioassay guided fractionation, andrographolide was identified as the potent molecule. With the docking analysis, both ICDH (Isocitrate Dehydrogenase) and AAC (Aminoglycoside 2'-N-acetyltransferase) were predicted as targets of andrographolide in M. tuberculosis. Molecular simulation revealed that, ICDH showed low binding affinity to andrographolide. However, for AAC, the andrographolide was observed to be well within the active site after 10ns of molecular simulation. This suggests that ACC (PDB ID 1M4I) could be the probable target for andrographolide. PMID:26245695

  8. Effects of salicylates and aminoglycosides on spontaneous otoacoustic emissions in the Tokay gecko.

    Science.gov (United States)

    Stewart, C E; Hudspeth, A J

    2000-01-01

    The high sensitivity and sharp frequency discrimination of hearing depend on mechanical amplification in the cochlea. To explore the basis of this active process, we examined the pharmacological sensitivity of spontaneous otoacoustic emissions (SOAEs) in a lizard, the Tokay gecko. In a quiet environment, each ear produced a complex but stable pattern of emissions. These SOAEs were reversibly modulated by drugs that affect mammalian otoacoustic emissions, the salicylates and the aminoglycoside antibiotics. The effect of a single i.p. injection of sodium salicylate depended on the initial power of the emissions: ears with strong control SOAEs displayed suppression at all frequencies, whereas those with weak control emissions showed enhancement. Repeated oral administration of acetylsalicylic acid reduced all emissions. Single i.p. doses of gentamicin or kanamycin suppressed SOAEs below 2.6 kHz, while modulating those above 2.6 kHz in either of two ways. For ears whose emission power at 2.6-5.2 kHz encompassed more than half of the total, individual emissions displayed facilitation as great as 35-fold. For the remaining ears, emissions dropped to as little as one-sixth of their initial values. The similarity of the responses of reptilian and mammalian cochleas to pharmacological intervention provides further evidence for a common mechanism of cochlear amplification. PMID:10618439

  9. Hair cell regeneration in the bullfrog vestibular otolith organs following aminoglycoside toxicity

    Science.gov (United States)

    Baird, Richard A.; Torres, M. A.; Schuff, N. R.

    1994-01-01

    Adult bullfrogs were given single intraotic injections of the aminoglycoside antibiotic gentamicin sulfate and sacrificed at postinjection times ranging from 0.5 to 9 days. The saccular and utricular maculae of normal and injected animals were examined in wholemount and cross-section. Intraotic 200 (mu) M gentamicin concentrations resulted in the uniform destruction of the hair bundles and, at later times, the cell bodies of saccular hair cells. In the utriculus, striolar hair cells were selectively damaged while extrastriolar hair cells were relatively unaffected. Regenerating hair cells, identified in sectioned material by their small cell bodies and short, well-formed hair bundles, were seen in the saccular and utricular maculae as early as 24-48 h postinjection. Immature versions of mature hair cell types in both otolith organs were recognized by the presence of absence of a bulbed kinocilia and the relative lengths of their kinocilia and longest sterocilia. Utricular hair cell types with kinocilia longer than their longest stereocilia were observed at earlier times than hair cell types with shorter kinocilia. In the same sacculus, the hair bundles of gentamicin-treated animals, even at 9 days postinjection, were significantly smaller than those of normal animals. The hair bundles of utricular hair cells, on the other hand, reached full maturity within the same time period.

  10. Potentiation of aminoglycoside antibiotic activity using the body fat from the snake Boa constrictor

    Directory of Open Access Journals (Sweden)

    Felipe S. Ferreira

    2011-06-01

    Full Text Available Boa constrictor is widely used in traditional communities in many different folk remedies and products derived from it are sold in public markets throughout northeastern Brazil and as its body fat has many different therapeutic indications as a folk remedy. The present work evaluates the antibacterial activity of the body fat from the snake Boa constrictor when employed either alone or in combination with antibiotics and discusses the ecological implications of the use of this traditional remedy. Oil (OBC was extracted from body fat located in the ventral region of B. constrictor using hexane as a solvent. The antibacterial activity of OBC was tested against standard as well as multi-resistant lines, either alone and in combination with antibiotics. OBC did not demonstrate any relevant antibacterial activity against standard or multidrug-resistant bacterial strains. OBC showed synergistic activity when combined with the aminoglycoside antibiotics. Our results indicate that the body fat of Boa constrictor does not possess bactericidal activity, from the clinical point of view, but when combined with an antibiotic, the fat demonstrated a significant synergistic activity.

  11. Introducing Aztreonam The First Monobactam Antibiotic, A Suitable Substitution for the Aminoglycosides

    Directory of Open Access Journals (Sweden)

    A. Jahanshahi M.Khajeh - Karamadeni S. Fazli Bazaz

    1992-07-01

    Full Text Available Aztreonam (Azactam for injection, squibb is the first member of a new and unique class of beta - lactam antibiotics designated by researchers at the Squibb Institute for Medical Research as monobactams (monocyclic bacterially produced beta - lactam antibiotics."nIn this research, for the first time, antimicrobial spectrum of aztrenoam was determined by Disk - Agar Diffusion (250 spp. and Macrodilution Broth Methods (150 Spp."nWe also compared this antibiotic with two routine aminoglycoside antibiotics (Amikacin, Gentamicin in Iran. The most active antibiotic in our study was aztreonam which had MIC50 & MIC90 of 4 & 32 ^g/ml specifically against Pseudomonas aeruginosa."nThis rate for the other aerobic gram - negative bacteria (E. coli, Kleb. pneumoniae, Proteus mirabilis, enterobacter spp., Shigella Spp. and Salmonella Spp. was less than 0.5 & 4 g/ml respectively."nAztreonam's MIC90 for kleb pneumoniae was 8/jg/mI our results were Correlated to the other studies"nAll aerobic gram - negative bacteria has been obtained from the Qhaem's Medical Center in Mashhad - IRAN."nThe results of Disk - Agar Diffusion Method determines that all bacteria were 100% susceptible against aztreonam except Pseudomonas aeruginosa with 83% susceptibility.

  12. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    International Nuclear Information System (INIS)

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV–visible spectroscopy, transmission electron microscopy, X‐ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 ± 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected‐area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: ► Method for NaBH4 reduced and BSA capped gold nanoparticle was standardized. ► Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. ► Nanoparticles are extremely stable towards pH modification and electrolyte addition. ► Antibiotic conjugated nanoparticles exhibited enhanced antibacterial activity

  13. Potentiation of antibiotic activity of aminoglycosides by natural products from Cordia verbenacea DC.

    Science.gov (United States)

    Matias, Edinardo F F; Alves, Erivania F; Silva, Maria K N; Carvalho, Victoria R A; Medeiros, Cassio R; Santos, Francisco A V; Bitu, Vanessa C N; Souza, Celestina E S; Figueredo, Fernando G; Boligon, Aline A; Athayde, Margareth L; Costa, José G M; Coutinho, Henrique D M

    2016-06-01

    Medicinal plants are often the only therapeutic resource for many communities and ethnic groups. Cordia verbenacea DC., "Erva-baleeira," is one of the species of plants currently used to produce a phytotherapeutic product extracted from its leaves. The present study aimed to establish its chemical profile, antibacterial activity and resistance-modulating potential. The C. verbenacea extracts were prepared from fresh leaves using solvents as methanol and hexane. Ethyl Acetate was used for the preparation of the fraction. Phytochemical screening was carried out using HPLC-DAD for determination and quantification of the secondary metabolites present in the fractions. Antibacterial and resistance-modulation assays were performed to determine minimum inhibitory concentration (MIC) using a microdilution assay. The data were subjected to statistical analysis with two-way ANOVA and Bonferroni posttests. Results of phytochemical prospecting and HPLC analysis of the fractions were in agreement with the literature. The natural products presented moderate antibacterial activity when considering the clinical relevance of a MIC of 256 μg/mL against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa, and 512 μg/mL against P. aeruginosa. However, when the fractions were combined with antibiotics we observed a synergic effect, as natural products enhanced the antibacterial effect of aminoglycosides, significantly decreasing the MIC of antibiotics at 12.5%-98.4%. We believe that the data obtained from phytochemical analysis and from antibacterial and resistance modulation assays of C. verbenacea extracts new can open perspectives in the search for new alternatives for the treatment of bacterial infections and stimulate the renewed use of antibiotics with reduced effectiveness due to resistance. PMID:27033000

  14. Efficacy of an ototoxic aminoglycoside (gentamicin) on the differentiation of the inner ear of cichlid fish

    Science.gov (United States)

    Schönleber, J.; Anken, R. H.

    2004-01-01

    Previous investigations revealed that the growth of fish inner ear otoliths depends on the amplitude and the direction of gravity, thus suggesting the existence of a (negative) feedback mechanism. In the course of these experiments, it was shown that altered gravity both affected otolith size (and thus the provision of the proteinacious matrix) as well as the incorporation of calcium. It is hitherto unknown, as of whether sensory hair cells are involved either in the regulation of otolith growth or in the provision of otolithic material (such as protein or inorganic components) or even both. The ototoxic aminoglycoside gentamicin (GM) damages hair cells in many vertebrates (and is therefore used for the treatment of Meniere's disease in humans). The present study was thus designed to determine as of whether vestibular sensory cells are needed for otolith growth by applying GM in order to induce a (functionally relevant) loss of these cells. Developing cichlid fish Oreochromis mossambicus were therefore immersed in 120 mg/l GM for 10 or 21 days. At the beginning and at the end of the experimental periods, the fish were incubated in the calcium-tracer alizarin complexone (AC). After the experiment, otoliths were dissected and the area grown during GM-exposure (i.e., the area enclosed by the two AC labellings) was determined planimetrically. The results showed that incubating the animals in a GM-solution had no effect on otolith growth, but the development of otolith asymmetry was affected. Ultrastructural examinations of the sensory hair cells revealed that they had obviously not been affected by GM-treatment (no degenerative morphological features observed). Overall, the present results suggest that hair cells are not affected by GM concerning their possible role in (general) otolith growth, but that these cells indeed might have transitionally been impaired by GM resulting in a decreased capacity of regulating otolith symmetry.

  15. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods. PMID:26241491

  16. SYNTHESIS AND CYTOTOXIC ACTIVITY OF NEW 5H-INDOLO[2,3-B]QUINOLINE O-AMINOGLYCOSIDES.

    Science.gov (United States)

    Badowska-Rosłonek, Katarzyna; Ciesielska, Agnieszka; Switalska, Marta; Piskozub, Małgorzata; Peczyńska-Czoch, Wanda; Wietrzyk, Joanna; Kaczmarek, Łukasz

    2016-01-01

    Novel 5H-indolo[2,3-b]quinoline O-aminoglycosides were synthesized in order to check the hypothesis that the construction of hybrids composed of the active 5H-indolo[2,3-b]quinoline chromophore and daunosaminyl or acosaminyl moiety may result in the cytotoxic activity of the obtained derivatives that is much higher than the one of the parent DIMIQ (5,11-dimethyl-5H-indolo[2,3-b]quinoline) and 6H-indoloquinoline analogs. Actually, 5H-indolo[2,3-b]indoloquinoline O-aminoglycosides showed the anti-proliferative activity in vitro against human lung adenocarcinoma A549, breast cancer MCF-7, melanoma Hs294T, promyelocytic leukemia HL-60, uterine sarcoma MES-SA and colon cancer LoVo cell lines, which was 10 times higher than that of the 6H-analogs and comparable to the one of the referential DIMIQ. Unexpectedly, it appeared that except for HL-60/MX2 (P-gp-independent and topoisomerase II-dependent resistance), other MDR tumor cell lines (LoVo/DX. P-gp-dependent, MRP-, LRP-dependent multidrug resistance) and MES-SA/DX5 (P-gp-dependent resistance to doxorubicin) are also resistant to the 5H-indolo[2,3-b]indoloquinoline O-aminoglycosides tested. This is surprising because 6H-analogs, in general, 10 times less active against non-MDR tumor cell lines, as well as the DIMIQ itself, are able to overcome drug resistance in all MDR cell lines examined. The cytotoxicity of the tested compounds against tumor cell lines and against normal cells (mice fibroblasts BALB/3T3) was comparable. PMID:27476287

  17. Natural antioxidant L-carnosine inhibits LPO intensification in structures of the auditory analyzer under conditions of chronic exposure to aminoglycoside antibiotics.

    Science.gov (United States)

    Zhuravskii, S G; Aleksandrova, L A; Sirot, V S; Ivanov, S A

    2004-10-01

    Intragastric administration of L-carnosine suspension to Wistar-Kyoto rats 3 days before and after 7-day course of intraperitoneal injections of ototoxic aminoglycoside antibiotic kanamycin compensated expenditures of tissue antioxidant systems and significantly eliminated kanamycin-induced intensification of MDA production in tissues of the membrane part of the cochlea and in the auditory cortex of the temporal lobe. L-NAME (competitive NO synthase inhibitor) also inhibited LPO, increased total antioxidant activity, and decreased ototoxicity of kanamycin, which confirms the contribution of NO into LPO intensification under conditions of aminoglycoside treatment. Inhibition of pathological intensification of LPO processes and increase in total antioxidant activity under conditions of induced acute aminoglycoside ototoxicity characterizes L-carnosine as a highly effective otoprotector. PMID:15665945

  18. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    . Determination of B-lactamase and AmpC-B-lactamase enzyme production were carried out by two methods. Cefotaxime, ceftazidime, cefoperazone, cefoxitin and aztreonam were used with and without amoxycillin clavulanic acid to detect the presence of extended-spectrum B-lactamase (ESBL) harbouring isolates by using double-disk diffusion synergy test (DDST). Combined disk method was used also to detect the presence of ESBL harbouring isolates by using cefoperazone (CFP) and cefoperazone sulbactam (SCF) among the tested strains. Agar dilution method was used to determine minimum inhibitory concentration (MIC) of ampicillin sulbactam, cefoperazone, gentamycin and levofloxacin alone and in combination (Ampicillin sulbactam with both of gentamycin and levofloxacin) and (cefoperazone with both of gentamycin and levofloxacin). Fractional inhibitory concentration (FIC) for the combined antibiotics were calculated according to checkerboard method and synergistic effect were determined. Some resistant isolates were subjected to molecular studies including plasmid profile (Kleb.52 Morg.60 and Ps.72 ) by using a high pure plasmid isolation kit and protein pattern of Ps.72 before and after irradiation in the presence of different antibiotics alone (cefoperazone, gentamycin and ampicillin sulbactam) or in combined (cefoperazone with gentamycin and ampicillin sulbactam with gentamycin)The result of the present investigation showed that, 9 multi-drug resistant isolates were identified as; 2 isolates Escherichia coli, 2 isolates Pseudomonas aeruginosa, 1 isolate Citrobacter freundii, 1 isolate Morganella morganii all were isolated from urine samples

  19. Plasmid-Mediated High-Level Resistance to Aminoglycosides in Enterobacteriaceae Due to 16S rRNA Methylation

    OpenAIRE

    Galimand, Marc; Courvalin, Patrice; Lambert, Thierry

    2003-01-01

    A self-transferable plasmid of ca. 80 kb, pIP1204, conferred multiple-antibiotic resistance to Klebsiella pneumoniae BM4536, which was isolated from a urinary tract infection. Resistance to β-lactams was due to the blaTEM1 and blaCTX-M genes, resistance to trimethroprim was due to the dhfrXII gene, resistance to sulfonamides was due to the sul1 gene, resistance to streptomycin-spectinomycin was due to the ant3"9 gene, and resistance to nearly all remaining aminoglycosides was due to the aac3-...

  20. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  1. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    Science.gov (United States)

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract. PMID:24903814

  2. COMBINATIONAL ADMINISTRATION OF AMINOGLYCOSIDES AND LOOP DIURETICS AS AN EFFICIENT STRATEGY TO ESTABLISH DEAFNESS MODELS IN RATS

    Institute of Scientific and Technical Information of China (English)

    CONG Tao; LIU Riyuan; YUAN Shuolong; XU Liangwei; YANG Shiming

    2014-01-01

    It is known that aminoglycoside antibiotics can damage the vestibular and auditory sensory epithelia, and the loop diuretics can enhance the ototoxic effect of aminoglycosides. Previous studies on the synergistic effect of these two types of drugs have used mice, guinea pigs and cats, but not rats. The aim of this study was to determine this synergistic effects in rat cochleae. Rats received intravenous injections of different doses of furosemide and/or intramuscular injections of kanamycin sulfate. Au-ditory brainstem response (ABR), scanning electron microscopy (SEM) and immunocytochemistry were used to determine the effects of drug administration. In the group receiving combined administration of furosemide and kanamycin, the ABR thresh-old showed significant elevation 3 days after drug administration, greater than single drug administration. The hair cells showed various degrees of injury from the apical turn to the basal turn of the cochlea and from the outer hair cells to the inner hair cells. Neuron fibers of the hair cells showed significant loss 7 days after the drug administration, but the number of spiral ganglia did not decrease and supporting cells showed no signs of injury. Our study suggest that combined administration of fu-rosemide and kanamycin has an synergistic ototoxic effect, and can result in hair cell loss and hearing loss in rats.

  3. A preliminary report on the susceptibility to aminoglycosides of Escherichia coli isolated from the community-acquired urinary tract infections in adults in south-east Poland

    Directory of Open Access Journals (Sweden)

    Fidecka-Skwarzynska Magdalena

    2015-03-01

    Full Text Available World-wide, urinary tract infections (UTIs are an important clinical problem. In such, the most frequently isolated uropathogen is Escherichia coli. In the treatment of uncomplicated UTIs, e.g. cystitis, the widely used antibiotics are nitrofurantoin, trimethoprim/sulfamethoxazole, fosfomycin trometamol or ciprofloxacin, while the treatment of pyelonephritis requires the usage of antibiotics with a broader spectrum of activity, such as cephalosporins of the 3rd and 4th generation, aminoglycosides or even carbapenems. The aim of this study was to assess the susceptibility to aminoglycosides (such as amikacin, gentamicin, netilmicin and tobramycin of E. coli isolated from UTIs in adult community patients living in Lubelszczyzna. We found that all of the 86 strains of E. coli encountered were susceptible to amikacin. Moreover, the prevalence of susceptibility to tobramycin, gentamicin or netilmicin among the tested strains was found to be 89,5%, 90,7% or 94,2%, respectively. The data obtained in the present study shows the high susceptibility to aminoglycosides of E. coli isolated from the community-acquired UTIS in adults. These data, together with that derived from current literature, indicate that aminoglycosides, when employed in combination therapy with other antibiotics, may still be very useful group of antibacterial agents in the treatment of UTI’s in Poland.

  4. Clinical evaluation and mitochondrial DNA sequence analysis in two Chinese families with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    We report here the clinical, genetic, and molecular characterization of two Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing impairment. Clinical evaluation revealed the variable phenotype of hearing impairment including audiometric configuration in these subjects. Penetrances of hearing loss in BJ105 and BJ106 pedigrees are 67% and 33%, respectively. In particular, three of 10 affected matrilineal relatives of BJ105 pedigree had aminoglycoside-induced hearing loss, while seven affected matrilineal relatives in BJ105 pedigree and six affected matrilineal relatives in BJ106 pedigree did not have a history of exposure to aminoglycosides. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mtDNA variants belonging to haplogroups F3 and M7b. These variants showed no evolutionary conservation, implying that mitochondrial haplotype may not play a significant role in the phenotypic expression of the A1555G mutation in these Chinese pedigrees. However, aminoglycosides and nuclear backgrounds appear to be major modifier factors for the phenotypic manifestation of the A1555G mutation in these Chinese families

  5. Mitochondrial 12S Ribosomal RNA A1555G Mutation Associated with Cardiomyopathy and Hearing Loss following High-Dose Chemotherapy and Repeated Aminoglycoside Exposure

    DEFF Research Database (Denmark)

    Skou, Anne-Sofie; Tranebjærg, Lisbeth; Jensen, Tim;

    2014-01-01

    A 19-month-old girl with the A1555G mitochondrial mutation in the 12S ribosomal RNA gene and acute myelogenous leukemia developed dilated cardiomyopathy and bilateral sensorineural hearing loss before undergoing allogeneic stem cell transplantation. She had received gentamicin during episodes of ...... febrile neutropenia. Testing for the A1555G mutation is recommended in patients frequently treated with aminoglycosides....

  6. Antibiotic, cytotoxic and enzyme inhibitory activity of crude extracts from Brazilian marine invertebrates Atividade antibiótica, citotóxica e de inibição enzimática de extratos brutos de invertebrados marinhos do Brasil

    OpenAIRE

    Mirna H.R. Seleghim; Simone P. Lira; Miriam H. Kossuga; Tatiana Batista; Roberto G. S. Berlinck; Eduardo Hajdu; Guilherme Muricy; Rosana M. da Rocha; Gislene G. F. do Nascimento; Marcio Silva; Eli F. Pimenta; Thiemann, Otávio H.; Glaucius Oliva; Bruno C. Cavalcanti; Claudia Pessoa

    2007-01-01

    Herein we present the results of a screening with 349 crude extracts of Brazilian marine sponges, ascidians, bryozoans and octocorals, against 16 strains of susceptible and antibiotic-resistant bacteria, one yeast (Candida albicans), Mycobacterium tuberculosis H37Rv, three cancer cell lines MCF-7 (breast), B16 (murine melanoma ) and HCT8 (colon), and Leishmania tarentolae adenine phosphoribosyl transferase (L-APRT) enzyme. Less than 15% of marine sponge crude extracts displayed antibacterial ...

  7. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Qing Wei

    Full Text Available BACKGROUND: Small colony variants (SCVs are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch. METHODOLOGY/PRINCIPAL FINDINGS: One SCV (termed PAO-SCV was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5 on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS. Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM, the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels. CONCLUSIONS: By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the

  8. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted by that...... enzyme...

  9. Enzyme immobilization: an update

    OpenAIRE

    Homaei, Ahmad Abolpour; Sariri, Reyhaneh; Vianello, Fabio; Stevanato, Roberto

    2013-01-01

    Compared to free enzymes in solution, immobilized enzymes are more robust and more resistant to environmental changes. More importantly, the heterogeneity of the immo-bilized enzyme systems allows an easy recovery of both enzymes and products, multiple re-use of enzymes, continuous operation of enzymatic processes, rapid termination of reactions, and greater variety of bioreactor designs. This paper is a review of the recent literatures on enzyme immobilization by various techniques, the need...

  10. Study of matrix effects for liquid chromatography-electrospray ionization tandem mass spectrometric analysis of 4 aminoglycosides residues in milk.

    Science.gov (United States)

    Wang, Yuan; Li, Shaohui; Zhang, Feifang; Lu, Yifeng; Yang, Bingcheng; Zhang, Feng; Liang, Xinmiao

    2016-03-11

    Matrix effect (ME) is always a major issue for the development of LC-MS/MS method. ME resulting from co-eluting residual matrix components can affect the ionization efficiency of target analytes, leading to quantification errors of the analytes of interest. The present work evaluates MEs of milk samples on simultaneous analysis of four aminoglycosides residues via LC-ESI/MS/MS including streptomycin, dihydrostreptomycin, spectinomycin and kanamycin. Approaches to reduce MEs were examined: optimization of the sample preparation, sample dilution and lower flow rate used. Three commercial sorbents were tested including Oasis MCX, Oasis HLB and Oasis WCX. WCX behaved better for all analytes, but high MEs (80.8-134.9%) were obtained. Therefore, a consecutive SPE of tC18-WCX was found to effectively reduce ME. Milk samples from different manufacturers were analyzed and low MEs (85.6-112.9%) were obtained. PMID:26875117

  11. Development of aminoglycoside and β-lactamase resistance in intestinal microbiota of swine treated with lincomycin, chlorotetracycline and amoxicillin

    Directory of Open Access Journals (Sweden)

    Jian eSun

    2014-11-01

    Full Text Available Lincomycin, chlortetracycline, and amoxicillin are commonly used antimicrobials for growth promotion and infectious disease prophylaxis in swine production. In this study, we investigated the shifts and resistance development among intestinal microbiota in pregnant sows before and after lincomycin, chlortetracycline, and amoxicillin treatment by using phylogenetic analysis, bacterial enumeration, and PCR. After the antimicrobial treatment, shifts in microbial community, an increased proportion of resistant bacteria, and genes related to antimicrobial resistance as compared to the day before antimicrobial administration (day 0 were observed. Importantly, a positive correlation between antimicrobial resistance gene expression in different categories, especially those encoding aminoglycoside and β-lactamase and antimicrobial resistance, was observed. These findings demonstrate an important role of antimicrobial usage in animals in the development of antimicrobial resistance, and support the notion that prudent use of antimicrobials in swine is needed to reduce the risk of the emergence of multi-drug resistant (MDR zoonotic pathogens.

  12. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D;

    1999-01-01

    Decoding of genetic information occurs upon interaction of an mRNA codon-tRNA anticodon complex with the small subunit of the ribosome. The ribosomal decoding region is associated with highly conserved sequences near the 3' end of 16 S rRNA. The decoding process is perturbed by the aminoglycoside...... of universally conserved nucleotides at 1406 to 1408 and 1494 to 1495 in the decoding region of plasmid-encoded bacterial 16 S rRNA. Phenotypic changes range from the benign effect of U1406-->A or A1408-->G substitutions, to the highly deleterious 1406G and 1495 mutations that assemble into 30 S subunits...... but are defective in forming functional ribosomes. Changes in the local conformation of the decoding region caused by these mutations were identified by chemical probing of isolated 30 S subunits. Ribosomes containing 16 S rRNA with mutations at positions 1408, 1407+1494, or 1495 had reduced affinity...

  13. Involvement of aph(3‘-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments

    Directory of Open Access Journals (Sweden)

    Markus eWoegerbauer

    2015-05-01

    Full Text Available Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination.We screened the GenBank database for mosaic gene formation in homologs of the aph(3’-IIa (nptII gene. APH(3’-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria.The retrieved GenBank sequences were grouped in 3 datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program, RDP4, and the Genetic Algorithm for Recombination Detection, GARD.From a total of 89 homologous sequences, 83% showed 99% - 100% sequence identity with aph(3’-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3’-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3’-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants.

  14. Involvement of aph(3′)-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments

    Science.gov (United States)

    Woegerbauer, Markus; Kuffner, Melanie; Domingues, Sara; Nielsen, Kaare M.

    2015-01-01

    Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination. We screened the GenBank database for mosaic gene formation in homologs of the aph(3′)-IIa (nptII) gene. APH(3′)-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria. The retrieved GenBank sequences were grouped in three datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program (RDP4), and the Genetic Algorithm for Recombination Detection (GARD). From a total of 89 homologous sequences, 83% showed 99–100% sequence identity with aph(3′)-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3′)-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3′)-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants. PMID:26042098

  15. The MisR Response Regulator Is Necessary for Intrinsic Cationic Antimicrobial Peptide and Aminoglycoside Resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Kandler, Justin L; Holley, Concerta L; Reimche, Jennifer L; Dhulipala, Vijaya; Balthazar, Jacqueline T; Muszyński, Artur; Carlson, Russell W; Shafer, William M

    2016-08-01

    During infection, the sexually transmitted pathogen Neisseria gonorrhoeae (the gonococcus) encounters numerous host-derived antimicrobials, including cationic antimicrobial peptides (CAMPs) produced by epithelial and phagocytic cells. CAMPs have both direct and indirect killing mechanisms and help link the innate and adaptive immune responses during infection. Gonococcal CAMP resistance is likely important for avoidance of host nonoxidative killing systems expressed by polymorphonuclear granulocytes (e.g., neutrophils) and intracellular survival. Previously studied gonococcal CAMP resistance mechanisms include modification of lipid A with phosphoethanolamine by LptA and export of CAMPs by the MtrCDE efflux pump. In the related pathogen Neisseria meningitidis, a two-component regulatory system (2CRS) termed MisR-MisS has been shown to contribute to the capacity of the meningococcus to resist CAMP killing. We report that the gonococcal MisR response regulator but not the MisS sensor kinase is involved in constitutive and inducible CAMP resistance and is also required for intrinsic low-level resistance to aminoglycosides. The 4- to 8-fold increased susceptibility of misR-deficient gonococci to CAMPs and aminoglycosides was independent of phosphoethanolamine decoration of lipid A and the levels of the MtrCDE efflux pump and seemed to correlate with a general increase in membrane permeability. Transcriptional profiling and biochemical studies confirmed that expression of lptA and mtrCDE was not impacted by the loss of MisR. However, several genes encoding proteins involved in membrane integrity and redox control gave evidence of being MisR regulated. We propose that MisR modulates the levels of gonococcal susceptibility to antimicrobials by influencing the expression of genes involved in determining membrane integrity. PMID:27216061

  16. Prevalence of plasmid-mediated quinolone resistance and aminoglycoside resistance determinants among carbapeneme non-susceptible Enterobacter cloacae.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Simultaneous resistance to aminoglycosides and fluoroquinolones in carbapeneme non-susceptible (CNS isolates will inevitably create problems. The present study was performed to characterize the prevalence of the plasmid-mediated quinolone resistance determinants (QRDs and aminoglycoside resistance determinants (ARDs among the CNS Enterobacter cloacae (E. cloacae isolates in a Chinese teaching hospital, and to acquire their molecular epidemiological characteristics. METHODS: The β-lactamases genes (including class A carbapenemase genes bla(KPC and bla(SME, metallo-β-lactamase genes (MBLs bla(IMP, bla(VIM and bla(NDM, and extended spectrum β-lactamases (ESBLs,bla(CTX-M, bla(TEM and bla(SHV, QRDs (including qnrA, qnrB, qnrS and aac(6'-Ib-cr and ARDs (including aac(6'-Ib, armA and rmtB of these 35 isolates were determined by PCR and sequenced bidirectionally. The clonal relatedness was investigated by pulsed-field gel electrophoresis (PFGE. RESULTS: Of the 35 isolates, 9 (25.7% harbored a carbapenemase gene; 23 (65.7% carried ESBLs; 24 (68.6% were QRD positive; and 27 (77.1% were ARD positive. Among the 5 bla(IMP-8 positive strains, 4 (80% contained both ESBL and QRD genes, and all the 5 (100% harbored ARD genes. Of the 23 ESBLs positive isolates, 6 (26.1% were carbapenemase positive, 14 (60.9% were QRD positive, and 18 (78.3% were ARD positive. PFGE revealed genetic diversity among the 35 isolates, indicating that the high prevalence of CNS E. cloacae isolates was not caused by clonal dissemination. CONCLUSION: QRD and ARD genes were highly prevalent among the CNS E. cloacae isolates. Multiple resistant genes were co-expressed in the same isolates. The CNS E. cloacae isolate co-expressing bla(NDM-1, bla(IMP-26, qnrA1 and qnrS1 was first reported.

  17. Adeno-associated virus-mediated Bcl-xL prevents aminoglycoside-induced hearing loss in mice

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-he; KE Xiao-mei; QIN Yong; GU Zhi-ping; XIAO Shui-fang

    2007-01-01

    Background Recent studies showed that aminoglycosides destroyed the cochlear cells and induced ototoxicity by producing reactive oxygen species, including free radicals in the mitochondria, damaging the membrane of mitochondria and resulting in apoptotic cell death. Bcl-xL is a well characterized anti-apoptotic member of the Bcl-2 family. The aim of this study was to determine the potential cochlear protective effect of Bcl-xL as a therapeutic agent in the murine model of aminoglycoside ototoxicity.Methods Serotype 2 of adeno-associated virus (AAV2) as a vector encoding the mouse Bcl-xL gene was injected into mice cochleae prior to injection of kanamycin. Bcl-xL expression in vitro and in vivo was examined with Western blotting and immunohistochemistry separately. Cochlear dissection and auditory steady state responses were checked to evaluate the cochlear structure and function.Results The animals in the AAV2-Bcl-xL/kanamycin group displayed better auditory steady state responses hearing thresholds and cochlear structure than those in the artificial perilymph/kanamycin or AAV2-enhanced humanized green fluorescent protein/kanamycin control group at all tested frequencies. The auditory steady state responses hearing thresholds and cochlear structure in the inoculated side were better than that in the contralateral side.Conclusions AAV2-Bcl-xL afforded significant preservation of the cochlear hair cells against ototoxic insults and protected the cochlear function. AAV2-mediated Bcl-xL might be an approach with respect to potential therapeutic application in the cochlear degeneration.

  18. Impact of Gut Colonization by Antibiotic-Resistant Bacteria on the Outcomes of Allogeneic Hematopoietic Stem Cell Transplantation: A Retrospective, Single-Center Study.

    Science.gov (United States)

    Bilinski, Jaroslaw; Robak, Katarzyna; Peric, Zinaida; Marchel, Halina; Karakulska-Prystupiuk, Ewa; Halaburda, Kazimierz; Rusicka, Patrycja; Swoboda-Kopec, Ewa; Wroblewska, Marta; Wiktor-Jedrzejczak, Wieslaw; Basak, Grzegorz W

    2016-06-01

    Gut colonization by antibiotic-resistant bacteria may underlie hard-to-treat systemic infections. There is also accumulating evidence on the immunomodulatory function of gut microbiota after allogeneic stem cell transplantation (alloSCT) and its impact on graft-versus-host disease (GVHD). We investigated the epidemiology and clinical impact of gut colonization after alloSCT and retrospectively analyzed data on 107 alloSCTs performed at a single transplant center. Pretransplant microbiology screening identified colonization in 31% of cases. Colonization had a negative impact on overall survival after alloSCT in univariate (34% versus 74% at 24 months, P antibiotic-resistant bacteria decreases the overall survival of patients undergoing alloSCT by increasing nonrelapse mortality and the incidences of systemic infection and acute GVHD. PMID:26900084

  19. Evaluation of Antibacterial Activity of Aminoglycosides and Modulating the Essential Oil of Cymbopogon citratus (DC. Stapf

    Directory of Open Access Journals (Sweden)

    Saulo R. TINTINO

    2014-05-01

    Full Text Available  Several works demonstrated the importance of the study of natural products as an alternative source for new antimicrobial drugs or for modulators for these ones. In this point, the aim of this was to investigate the antibacterial activity and the possible interactions between the essential oil of Cymbopogon citratus alone and in association with aminoglycosides against standard and clinically isolated strains of multidrug-resistant bacteria such as S. aureus, E. coli and P. aeruginosa by microdilution method. The results indicated a synergism between the antibiotics and the essential oil with a subinhibitory concentration (MIC/8, reducing the minimal inhibitory concentration (MIC sixteen times against the multidrug-resistant strains of S. aureus 358, E. coli 27 and P. aeruginosa 143, but none modulatory activity was observed against P. aeruginosa 78 and P. aeruginosa 91 strains. By our results, can be concluded that the essential oil of Cymbopogon citratus can be an interesting source of natural products with antibacterial and/or modulatory antibiotic activitieAVALIAÇÃO DA ATIVIDADE ANTIBACTERIANA E MODULADORA DE AMINOGLICOSÍDEOS DO ÓLEO ESSENCIAL DE Cymbopogon citratus (DC. STAPFVários trabalhos vêm demonstrando a importância do estudo de produtos naturais como fonte alternativa para novos antimicrobianos ou que venham potencializar os já existentes. Neste contexto este trabalho teve como objetivo investigar a atividade antibacteriana e as possíveis interações entre o óleo essencial de Cymbopogon citratus combinados a aminoglicosídeos frente a linhagens padrões e multirresistentes de S. aureus, E. coli e de P. aeruginosa provenientes de isolados clínicos. Um ensaio de microdiluição foi realizado para verificar a atividade antibacteriana e as possíveis interacções entre o produto natural e os antibióticos, utilizando uma concentração sub-inibitória. Através dos resultados foi constatado a interferência sinérgica dos

  20. Enhancement of the antibiotic activity of aminoglycosides by extracts from Anadenanthera colubrine (Vell.) Brenan var. cebil against multi-drug resistant bacteria.

    Science.gov (United States)

    Barreto, Humberto M; Coelho, Kivia M R N; Ferreira, Josie H L; Dos Santos, Bernadete H C; de Abreu, Aislan P L; Coutinho, Henrique D M; da Silva, Romezio A C; de Sousa, Taciana O; Citó, Antonia M das G L; Lopes, José A D

    2016-06-01

    The aim of this work was to evaluate the antimicrobial activity of ethanol (EEAC) and hexane (HFAC) extracts from the stem bark of Anadenanthera colubrina (Vell.) Brenan var. cebil alone or in combination with aminoglycosides against multi-drug resistant (MDR) bacteria. Minimal inhibitory concentrations (MICs) of the extracts were determined by using microdilution assay. For the evaluation of extracts as modulators of antibiotic resistance, MICs of neomycin and amikacin were determined in presence or absence of each compound at sub-inhibitory concentrations. Both EEAC and HFAC did not show antimicrobial activity against MDR strains tested. However, the addition of EEAC and HFAC enhanced the activity of neomycin and amikacin against Staphylococcus aureus SA10 strain. When the natural products were replaced by chlorpromazine, the same effect was observed. Anadenanthera colubrine var. cebil may be a source of phytochemicals able to potentiate the aminoglycoside activity against MDR S. aureus by the inhibition of efflux pump. PMID:26158209

  1. Chemoprophylactic efficacy against experimental endocarditis caused by beta-lactamase-producing, aminoglycoside-resistant enterococci is associated with prolonged serum inhibitory activity.

    OpenAIRE

    Bayer, A S; Tu, J

    1990-01-01

    We studied the prevention of experimental aortic endocarditis caused by a beta-lactamase-producing, aminoglycoside-resistant strain of Enterococcus faecalis (HH22) in 146 catheterized rabbits. Both vancomycin and ampicillin-sulbactam readily killed this resistant enterococcus strain in vitro. At a challenge inoculum of approximately 10(9) CFU, vancomycin (40 mg/kg intravenously [i.v.]), ampicillin (40 mg/kg i.v.), or a combination of ampicillin plus a beta-lactamase inhibitor, sulbactam (20 m...

  2. Aminoglycoside antibiotics and the sensory hair cells of inner ear and lateral line system in the Atlantic cod, Gadus morhua: effects on fish hearing threshold

    OpenAIRE

    Faucher, Karine; Aas-Hansen, Øyvind; Damsgard, Borge; Bégout, Marie-Laure; Fuhr, Torgrim; Laukli, Einar; Stenklev, Niels-Christian

    2007-01-01

    The aims of the present study were to investigate: a) the potential involvement of the fish lateral line system in hearing at 250 Hz and b) the possible regeneration of the inner ear hair cells in the Atlantic cod (Gadus morhua). The inner ear and lateral line system of the Atlantic cod were inactivated using ototoxic aminoglycoside antibiotics by injection (gentamicin) or bath (gentamicin and streptomycin), respectively. Hearing thresholds were measured in the fish using the Auditory Brainst...

  3. Increasing Prevalence of Aminoglycoside-Resistant Enterococcus faecalis Isolates Due to the aac(6’)-aph(2”) Gene: A Therapeutic Problem in Kermanshah, Iran

    Science.gov (United States)

    Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin

    2016-01-01

    Background: Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. Objectives: This study was designed to identify the prevalence of, and to compare, the aac(6’)-aph(2”) and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. Patients and Methods: One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6’)-aph(2”) and aph(3”)-IIIa were analyzed with multiplex PCR. Results: The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6’)-aph(2”). The prevalence of aph(3”)-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Conclusions: Remarkably increased incidence of aac(6’)-aph(2”) among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary.

  4. The ENZYME data bank.

    Science.gov (United States)

    Bairoch, A

    1994-01-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. It is primarily based on the recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (IUBMB) and it contains the following data for each type of characterized enzyme for which an EC (Enzyme Commission) number has been provided: EC number Recommended name Alternative names (if any) Catalytic activity Cofactors (if any) Pointers to the SWISS-PROT protein sequence entrie(s) that correspond to the enzyme (if any) Pointers to human disease(s) associated with a deficiency of the enzyme (if any). PMID:7937072

  5. Enzyme Therapy: Current Perspectives.

    Science.gov (United States)

    UmaMaheswari, Thiyagamoorthy; Hemalatha, Thiagarajan; Sankaranarayanan, Palavesam; Puvanakrishnan, Rengarajulu

    2016-01-01

    Enzymes control all metabolic processes in human system from simple digestion of food to highly complex immune response. Physiological reactions occuring in healthy individuals are disturbed when enzymes are deficient or absent. Enzymes are administered for normalizing biological function in certain pathologies. Initially, crude proteolytic enzymes were used for the treatment of gastrointestinal disorders. Recent advances have enabled enzyme therapy as a promising tool in the treatment of cardiovascular, oncological and hereditary diseases. Now, a spectrum of other diseases are also covered under enzyme therapy. But, the available information on the use of enzymes as therapeutic agents for different diseases is scanty. This review details the enzymes which have been used to treat various diseases/disorders. PMID:26891548

  6. Bench-to-bedside review: The role of β-lactamases in antibiotic-resistant Gram-negative infections

    OpenAIRE

    Bush, Karen

    2010-01-01

    Multidrug resistance has been increasing among Gram-negative bacteria and is strongly associated with the production of both chromosomal- and plasmid-encoded β-lactamases, whose number now exceeds 890. Many of the newer enzymes exhibit broad-spectrum hydrolytic activity against most classes of β-lactams. The most important plasmid-encoded β-lactamases include (a) AmpC cephalosporinases produced in high quantities, (b) the expanding families of extended-spectrum β-lactamases such as the CTX-M ...

  7. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus;

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes with...

  8. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454.

    Science.gov (United States)

    Magnet, S; Courvalin, P; Lambert, T

    2001-12-01

    Multidrug-resistant strain Acinetobacter baumannii BM4454 was isolated from a patient with a urinary tract infection. The adeB gene, which encodes a resistance-nodulation-cell division (RND) protein, was detected in this strain by PCR with two degenerate oligodeoxynucleotides. Insertional inactivation of adeB in BM4454, which generated BM4454-1, showed that the corresponding protein was responsible for aminoglycoside resistance and was involved in the level of susceptibility to other drugs including fluoroquinolones, tetracyclines, chloramphenicol, erythromycin, trimethoprim, and ethidium bromide. Study of ethidium bromide accumulation in BM4454 and BM4454-1, in the presence or in the absence of carbonyl cyanide m-chlorophenylhydrazone, demonstrated that AdeB was responsible for the decrease in intracellular ethidium bromide levels in a proton motive force-dependent manner. The adeB gene was part of a cluster that included adeA and adeC which encodes proteins homologous to membrane fusion and outer membrane proteins of RND-type three-component efflux systems, respectively. The products of two upstream open reading frames encoding a putative two-component regulatory system might be involved in the regulation of expression of the adeABC gene cluster. PMID:11709311

  9. Hair cell stereociliary bundle regeneration by espin gene transduction after aminoglycoside damage and hair cell induction by Notch inhibition.

    Science.gov (United States)

    Taura, A; Taura, K; Koyama, Y; Yamamoto, N; Nakagawa, T; Ito, J; Ryan, A F

    2016-05-01

    Once inner ear hair cells (HCs) are damaged by drugs, noise or aging, their apical structures including the stereociliary arrays are frequently the first cellular feature to be lost. Although this can be followed by progressive loss of HC somata, a significant number of HC bodies often remain even after stereociliary loss. However, in the absence of stereocilia they are nonfunctional. HCs can sometimes be regenerated by Atoh1 transduction or Notch inhibition, but they also may lack stereociliary bundles. It is therefore important to develop methods for the regeneration of stereocilia, in order to achieve HC functional recovery. Espin is an actin-bundling protein known to participate in sterociliary elongation during development. We evaluated stereociliary array regeneration in damaged vestibular sensory epithelia in tissue culture, using viral vector transduction of two espin isoforms. Utricular HCs were damaged with aminoglycosides. The utricles were then treated with a γ-secretase inhibitor, followed by espin or control transduction and histochemistry. Although γ-secretase inhibition increased the number of HCs, few had stereociliary arrays. In contrast, 46 h after espin1 transduction, a significant increase in hair-bundle-like structures was observed. These were confirmed to be immature stereociliary arrays by scanning electron microscopy. Increased uptake of FM1-43 uptake provided evidence of stereociliary function. Espin4 transduction had no effect. The results demonstrate that espin1 gene therapy can restore stereocilia on damaged or regenerated HCs. PMID:26886463

  10. Determination of aminoglycosides in honey by capillary electrophoresis tandem mass spectrometry and extraction with molecularly imprinted polymers.

    Science.gov (United States)

    Moreno-González, David; Lara, Francisco J; Jurgovská, Nikola; Gámiz-Gracia, Laura; García-Campaña, Ana M

    2015-09-01

    A new analytical method based on capillary zone electrophoresis-tandem mass spectrometry is proposed and validated for the identification and simultaneous quantification of nine aminoglycosides in honey samples. Detection using an ion trap mass analyzer operating in the multiple reaction monitoring mode was used. Different parameters were optimized in order to obtain an adequate separation combined with the highest sensitivity. In order to achieve high selectivity in the sample treatment, a commercially-available molecularly imprinted polymer has been used for the solid phase extraction of the analytes. Under optimum conditions, recoveries for fortified samples ranged from 88.2 to 99.8%, with relative standard deviations lower than 8%. The limits of detection ranged from 0.4 to 28.5 μg kg(-1). Furthermore, the decision limit and the detection capability were evaluated, ranging from 3.5 to 60.5 μg kg(-1) and from 6.0 to 103.1 μg kg(-1), respectively, demonstrating the sensitivity and applicability of this fast and simple method. PMID:26388393

  11. Enzymes for improved biomass conversion

    Energy Technology Data Exchange (ETDEWEB)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  12. Enzymes and muscle diseases

    Directory of Open Access Journals (Sweden)

    M. Plebani

    2011-09-01

    Full Text Available Skeletal muscle disorders may result in release of muscle enzymes into the circulation and give increased serum enzyme activity. A variety of enzymes routinely determined in the clinical laboratory may be elevated, but creatine kinase is the enzyme present in the highest concentration in muscle, and in every variety of muscle disease is the serum enzyme which shows the greatest incidence and degree of elevation. Aspartate aminotransferase is the enzyme associated most significantly with inflammation. A diagnostic algorithm based on the combined measurement of creatine kinase, aspartate aminotransferase and aldolase has been found to discriminate muscular distrophies from polymyositis and other myopathies. This combination of laboratory tests has diagnostic application and thus allows the clinician to better select patients who need to have a skeletal muscle biopsy as a diagnostic procedure.

  13. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    LI TaiShan; LIU ShaoPu; LIU ZhongFang; HU XiaoLi; ZHANG LiPing

    2009-01-01

    CdTe nanocrystals (CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate. The product was detected by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), fluorescence spectra, ultraviolet-visible spectra and X-ray diffraction (XRD). The CdTe NCs are of cubic structure and the average size is about 5 nm. The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light. The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm. CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator. The resonance Rayleigh scattering (RRS) of CdTe NCs in the aqueous solution was investigated. The maximum scattering peak was located at about 554 nm. The interactions of CdTe NCs with amikacin sulfate (AS) and micronomicin sulfate (MS) were in-vestigated respectively. The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed. It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs. Under optimum conditions, there are linear relationships between quenching intensity (F0-F), intensity of RRS (1-10) and concentration of AS and MS. The detection limits (3σ) of AS and MS are re-spectively 3.4 ng.mL-1 and 2.6 ng.mL-1 by the fluorescence quenching method, and 15.2 ng.mL-1 and 14.0 ng.mL-1 by the RRS method. The methods have high sensitivity, thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  14. Kinetics of kill of bacterial conjunctivitis isolates with moxifloxacin, a fluoroquinolone, compared with the aminoglycosides tobramycin and gentamicin

    Directory of Open Access Journals (Sweden)

    Rudolph S Wagner

    2010-01-01

    Full Text Available Rudolph S Wagner1, David B Granet2, Steven J Lichtenstein3, Tiffany Jamison4, Joseph J Dajcs4, Robert D Gross5, Paul Cockrum41New Jersey Medical School, Newark, NJ, USA; 2Ratner Children’s Eye Center, University of California – San Diego, La Jolla, CA, USA; 3University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA; 4Alcon Research, Ltd, Fort Worth, TX, USA; 5Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USAPurpose: To compare the kinetics and speed of kill of Streptococcus pneumoniae and Haemophilus influenzae on exposure to three topical ophthalmic antibiotic solutions.Materials and methods: Bacterial conjunctivitis isolates of S. pneumoniae and H. influenzae were exposed to 1:1000 dilutions of moxifloxacin 0.5%, tobramycin 0.3%, gentamicin 0.3%, and water (control. At 15, 30, 60, 120, and 180 minutes after exposure, aliquots were collected, cells were cultured, and viable cell counts were determined using standard microbiological methods.Results: Moxifloxacin achieved 99.9% kill (3-log reduction at approximately 2 hours for S. pneumoniae and at 15 minutes for H. influenzae. Tobramycin and gentamicin did not achieve 3-log reduction of S. pneumoniae during the 180-minute study period. An increase in bacterial growth was noted for these isolates. Gentamicin took more than 120 minutes to achieve the 3-log reduction of H. influenzae and tobramycin did not reach the 3-log reduction of this pathogen during the 180-minute study period.Conclusion: Moxifloxacin killed S. pneumoniae and H. influenzae in vitro faster than tobramycin and gentamicin, suggesting its potential clinical benefit as a first-line treatment for bacterial conjunctivitis to minimize patient symptoms and to limit the contagiousness of the disease.Keywords: kinetics of kill, bacterial conjunctivitis, in vitro, Streptococcus pneumoniae, Haemophilus influenzae, fluoroquinolones, aminoglycosides

  15. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets.

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    Full Text Available Aminoglycosides, amikacin (AK and kanamycin (KM are second line anti-tuberculosis drugs used to treat tuberculosis (TB and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308, Trigger factor (Rv2462c, Dihydrolipoyl dehydrogenase (Rv0462, Elongation factor Tu (Rv0685, Transcriptional regulator MoxR1(Rv1479, Universal stress protein (Rv2005c, 35kDa hypothetical protein (Rv2744c, Proteasome subunit alpha (Rv2109c, Putative short-chain type dehydrogenase/reductase (Rv0148, Bacterioferritin (Rv1876, Ferritin (Rv3841 and Alpha-crystallin/HspX (Rv2031c. Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.

  16. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets

    Science.gov (United States)

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM. PMID:26436944

  17. Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations.

    Directory of Open Access Journals (Sweden)

    Manuela Vecsler

    Full Text Available BACKGROUND: Nonsense mutations in the X-linked methyl CpG-binding protein 2 (MECP2 comprise a significant proportion of causative MECP2 mutations in Rett syndrome (RTT. Naturally occurring aminoglycosides, such as gentamicin, have been shown to enable partial suppression of nonsense mutations related to several human genetic disorders, however, their clinical applicability has been compromised by parallel findings of severe toxic effects. Recently developed synthetic NB aminoglycosides have demonstrated significantly improved effects compared to gentamicin evident in substantially higher suppression and reduced acute toxicity in vitro. RESULTS: We performed comparative study of suppression effects of the novel NB54 and gentamicin on three MECP2 nonsense mutations (R294X, R270X and R168X common in RTT, using ex vivo treatment of primary fibroblasts from RTT patients harboring these mutations and testing for the C-terminal containing full-length MeCP2. We observed that NB54 induces dose-dependent suppression of MECP2 nonsense mutations more efficiently than gentamicin, which was evident at concentrations as low as 50 µg/ml. NB54 read-through activity was mutation specific, with maximal full-length MeCP2 recovery in R168X (38%, R270X (27% and R294X (18%. In addition, the recovered MeCP2 was translocated to the cell nucleus and moreover led to parallel increase in one of the most important MeCP2 downstream effectors, the brain derived neurotrophic factor (BDNF. CONCLUSION: Our findings suggest that NB54 may induce restoration of the potentially functional MeCP2 in primary RTT fibroblasts and encourage further studies of NB54 and other rationally designed aminoglycoside derivatives as potential therapeutic agents for nonsense MECP2 mutations in RTT.

  18. Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yanmin Hu

    Full Text Available Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA and methicillin-resistant Staphylococcus aureus (MRSA are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101 and MRSA (n = 115. Minimum inhibitory concentrations (MIC were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI, plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA

  19. Salmonella enterica Serovar Typhimurium blaPER-1-Carrying Plasmid pSTI1 Encodes an Extended-Spectrum Aminoglycoside 6′-N-Acetyltransferase of Type Ib

    OpenAIRE

    Casin, Isabelle; Hanau-Berçot, Beatrice; Podglajen, Isabelle; Vahaboglu, Haluk; Collatz, Ekkehard

    2003-01-01

    We have studied the aminoglycoside resistance gene, which confers high levels of resistance to both amikacin and gentamicin, that is carried by plasmid pSTI1 in the PER-1 β-lactamase-producing strain of Salmonella enterica serovar Typhimurium previously isolated in Turkey. This gene, called aac(6′)-Ib11, was found in a class 1 integron and codes for a protein of 188 amino acids, a fusion product between the N-terminal moiety (8 amino acids) of the signal peptide of the β-lactamase OXA-1 and t...

  20. Identification of a novel 6'-N-aminoglycoside acetyltransferase, AAC(6')-Iak, from a multidrug-resistant clinical isolate of Stenotrophomonas maltophilia.

    Science.gov (United States)

    Tada, Tatsuya; Miyoshi-Akiyama, Tohru; Dahal, Rajan K; Mishra, Shyam K; Shimada, Kayo; Ohara, Hiroshi; Kirikae, Teruo; Pokhrel, Bharat M

    2014-10-01

    Stenotrophomonas maltophilia IOMTU250 has a novel 6'-N-aminoglycoside acetyltransferase-encoding gene, aac(6')-Iak. The encoded protein, AAC(6')-Iak, consists of 153 amino acids and has 86.3% identity to AAC(6')-Iz. Escherichia coli transformed with a plasmid containing aac(6')-Iak exhibited decreased susceptibility to arbekacin, dibekacin, neomycin, netilmicin, sisomicin, and tobramycin. Thin-layer chromatography showed that AAC(6')-Iak acetylated amikacin, arbekacin, dibekacin, isepamicin, kanamycin, neomycin, netilmicin, sisomicin, and tobramycin but not apramycin, gentamicin, or lividomycin. PMID:25092711

  1. Magnetically responsive enzyme powders

    International Nuclear Information System (INIS)

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction

  2. HYDRATION AND ENZYME ACTIVITY

    OpenAIRE

    Poole, P.

    1984-01-01

    Hydration induced conformation and dynamic changes are followed using a variety of experimental techniques applied to hen egg white lysozyme. These changes are completed just before the onset of enzyme activity, which occurs before all polar groups are hydrated, and before monolayer coverage is attained. We suggest that these hydration induced changes are necessary for the return of enzyme activity.

  3. Directed Evolution of Enzymes

    OpenAIRE

    Doucet, Nicolas; Pelletier, Joelle,

    2004-01-01

    This brief technological report presents an overview of techniques and applications in the field of directed evolution of enzyme catalysts. These techniques allow for the creation of modified enzymes that are better adapted to many industrial contexts. Recent applications in organic synthesis as well as commercial, biomedical, and environmental usage of these modified catalysts will be presented.

  4. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  5. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models that...... successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well as...

  6. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Dasenaki, Marilena E; Michali, Christina S; Thomaidis, Nikolaos S

    2016-06-24

    A multiresidue/multiclass method for the simultaneous determination of 76 veterinary drugs and pharmaceuticals in bovine muscle tissue has been developed and validated according to the requirements of European Commission Decision 2002/657/EC. The analytes belong in 13 different classes, including aminoglycoside antibiotics, whose different physicochemical properties (extremely polar character) render their simultaneous determination with other veterinary drugs quite problematic. The method combines a two-step extraction procedure (extraction with acetonitrile followed by an acidic aqueous buffer extraction) with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) determination, allowing confirmation and quantification in a single chromatographic run. Further cleanup with solid phase extraction was performed using polymeric SPE cartridges. A thorough ionization study of aminoglycosides was performed in order to increase their sensitivity and significant differences in the abundance of the precursor ions of the analytes were revealed, depending on the composition of the mobile phase tested. Further gradient elution optimization and injection solvent optimization were performed for all target analytes.The method was validated according to the European Commission Decision 2002/657. Quantitative analysis was performed by means of standard addition calibration. Recoveries varied from 37.4% (bromhexine) to 106% (kanamycin) in the lowest validation level and 82% of the compounds showed recovery >70%. Detection capability (CCβ) varied from 2.4 (salinomycin) to 1302 (apramycin) μgkg(-1). PMID:27215463

  7. A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species

    Directory of Open Access Journals (Sweden)

    Ravichandran Manickam

    2007-12-01

    Full Text Available Abstract Background Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE. This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR, multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene. Results Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases. Conclusion The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay

  8. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    CdTe nanocrystals(CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate.The product was detected by transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),fluorescence spectra,ultraviolet-visible spectra and X-ray diffraction(XRD).The CdTe NCs are of cubic structure and the average size is about 5 nm.The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light.The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm.CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator.The resonance Rayleigh scattering(RRS) of CdTe NCs in the aqueous solution was investigated.The maximum scattering peak was located at about 554 nm.The interactions of CdTe NCs with amikacin sulfate(AS) and micronomicin sulfate(MS) were investigated respectively.The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed.It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs.Under optimum conditions,there are linear relationships between quenching intensity(F0-F),intensity of RRS(I-I0) and concentration of AS and MS.The detection limits(3б) of AS and MS are respectively 3.4 ng·mL-1 and 2.6 ng·mL-1 by the fluorescence quenching method,and 15.2 ng·mL-1 and 14.0 ng·mL-1 by the RRS method.The methods have high sensitivity,thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  9. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  10. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    difference. In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial...... enzyme fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric...... TMP on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone...

  11. Enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kofod, L.V.; Andersen, L N; Dalboge, H; Kauppinen, M.S.; Christgau, S; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1998-01-01

    An enzyme exhibiting rhamnogalacturonase activity, capable of cleaving a rhamnogalacturonan backbone in such a manner that galacturonic acids are left as the non-reducing ends, and which exhibits activity on hairy regions from a soy bean material and/or on saponified hairy regions from a sugar beet material. The enzyme has the amino acid sequence of SEQ ID NO:2 and is encoded by the DNA sequence of SEQ ID NO:1

  12. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  13. Clinical and molecular analysis of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss associated with the mitochondrial 12S rRNA C1494T mutation

    International Nuclear Information System (INIS)

    We report here the clinical, genetic, and molecular characterization of a four-generation Chinese family with aminoglycoside-induced and nonsyndromic hearing loss. Five of nine matrilineal relatives had aminoglycoside-induced hearing loss. These matrilineal relatives exhibited variable severity and audiometric configuration of hearing impairment, despite sharing some common features: being bilateral and having sensorineural hearing impairment. Sequence analysis of mitochondrial DNA (mtDNA) in the pedigree identified 16 variants and the homoplasmic 12S rRNA C1494T mutation, which was associated with hearing loss in the other large Chinese family. In fact, the occurrence of the C1494T mutation in these genetically unrelated pedigrees affected by hearing impairment strongly indicated that this mutation is involved in the pathogenesis of aminoglycoside-induced and nonsyndromic hearing loss. However, incomplete penetrance of hearing loss indicated that the C1494T mutation itself is not sufficient to produce a clinical phenotype but requires the involvement of modifier factors for the phenotypic expression. Those mtDNA variants, showing no evolutional conservation, may not have a potential modifying role in the pathogenesis of the C1494T mutation. However, nuclear background seems to contribute to the phenotypic variability of matrilineal relatives in this family. Furthermore, aminoglycosides modulate the expressivity and penetrance of deafness associated with the C1494T mutation in this family

  14. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or...

  15. Long-time follow-up study of localized gastric mucosa-associated lymphoid tissue (MALT) lymphoma and the clinical features of antibiotic-resistant cases of gastric MALT lymphoma

    International Nuclear Information System (INIS)

    To clarify the clinical features of gastric mucosa-associated lymphoid tissue (MALT) lymphoma (GML) with persistent lymphoma after eradication therapy of Helicobacter pylori (H. pylori), and the outcome of long-time follow-up study after treatment against GML, seventy-six patients with localized GML were studied. The median follow-up period was 44.4 months. Thirty-eight of 49 patients (77.6%) with H. pylori-positive GML had been cured of GML by antibiotic therapy alone. On the other hand, none of 13 patients with H. pylori-negative GML had been cured by antibiotic therapy (77.6% vs 0%, p<0.001). ''H. pylori-negative'' is one of the clinical features of antibiotic-resistant cases with GML. There was no significant difference in sex, age, stage, endoscopic finding, depth, and affected region between the two groups of cured and persistent GML with H. pylori infection. Twenty-two of 29 patients (75.6%) with antibiotic-resistant or H. pylori-negative cases of GML had been cured by 30 Gy radiation therapy. Low-dose radiation was thought to be a useful therapeutic procedure as a second line treatment'' of localized GML. (author)

  16. Hyperthermophilic Enzymes with Industrial Applications

    OpenAIRE

    Mojsov, Kiro; Janevski, Aco; Andronikov, Darko; Zezova, Silvana

    2014-01-01

    Hyperthermophilic enzymes are typically thermostable and are optimally active at high temperatures. Hyperthermophilic enzymes are very similar to their mesophilic homologues. No single mechanism that is responsible for the remarkable stability of hyperthermophilic enzymes. Increased thermo stability must be found in a small number of highly specific alterations. In this review are described current uses and potential applications of thermophilic and hyperthermophilic enzymes as ...

  17. The ENZYME database in 2000.

    Science.gov (United States)

    Bairoch, A

    2000-01-01

    The ENZYME database is a repository of information related to the nomenclature of enzymes. In recent years it has became an indispensable resource for the development of metabolic databases. The current version contains information on 3705 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/enzyme/ ). PMID:10592255

  18. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function? To...... solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  19. Mitochondrial DNA A1555G mutation screening using a testing kit method and its significance in preventing aminoglycoside-related hearing loss

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; YANG Weiyan; HAN Dongyi; JIN Zhengce; GUAN Minxin; DAI Pu; HUANG Deliang; YUAN Huijun; LI Weiming; YU Fei; ZHANG Xin; KANG Dongyang; CAO Juyang

    2006-01-01

    To report a new screening method for mitochondrial DNA 1555A→G mutation and the results of genotype analysis in 19 maternal inherited deafness pedigrees. Method Five hundred and forty-six non-syndromic neuro-sensory hearing loss patients were tested for 1555A→G mutation using a new compact testing kit, which allows clear distinction between wild type and 1555 A→G mutated mtDNAs. Results Nineteen subjects among the 546 patients (3.48%) were found to carry mtDNA A1555G mutation. The results were confirmed by sequencing in an ABI 3100 Avant sequencer. Conclusions Maternal inherited deafness families are a frequently seen in outpatient group. The detection ofmtDNA 1555 A→G mutation with a low cost, ready to use detection kit is needed and suitable in China for large scale screening and preventive testing before usage of aminoglycoside antibiotics.

  20. Partial characterization of an endemic strain of a methicillin- and aminoglycoside-resistant Staphylococcus aureus (MARSA) homogeneously resistant to beta-lactam antibiotics.

    Science.gov (United States)

    Jacob, J; Meers, P D

    1992-06-01

    Selected strains of methicillin- and aminoglycoside-resistant Staphylococcus aureus (MARSA) were subjected to a preliminary examination. They were representative of a larger group collected in a routine clinical microbiology laboratory over a period of 2 years. MARSA was endemic in the associated hospital. The characteristics investigated were antimicrobial resistance, the production of beta-lactamase, free and bound coagulase, protein A, DNA-ase, urease, lipase and pigment. The MARSA strains were generally indistinguishable, other than in their antimicrobial resistances. The resistance to methicillin was completely homogeneous. Except with imipenem, growth extended to the edge of discs containing methicillin and the other beta-lactam antibiotics tested when the strains were cultured at 37 degrees C on media without added salt. Homogeneous resistance may confer an epidemiological advantage on strains of this phenotype. PMID:1353087

  1. The impact of methicillin- and aminoglycoside-resistant Staphylococcus aureus on the pattern of hospital-acquired infection in an acute hospital.

    Science.gov (United States)

    Meers, P D; Leong, K Y

    1990-10-01

    Infections due to methicillin- and aminoglycoside-resistant Staphylococcus aureus (MARSA) appeared in a new teaching hospital shortly after it opened. The effect this had on the pattern of hospital-acquired infections in the four years that followed is described. No control measures were applied and MARSA became endemic. New infections appeared at a rate of about four for each 1000 patients discharged. It established itself at different levels of incidence in various specialist units, patients under intensive care being most severely affected. MARSA was implicated in half of all hospital-acquired infections due to S. aureus but it was not more pathogenic than its more sensitive counterpart. It had little impact on the life of the hospital. PMID:1979573

  2. Magnetically responsive enzyme powders

    Czech Academy of Sciences Publication Activity Database

    Pospišková, K.; Šafařík, Ivo

    2015-01-01

    Roč. 380, APR 2015 (2015), s. 197-200. ISSN 0304-8853 R&D Projects: GA MŠk(CZ) LD13021 Institutional support: RVO:67179843 Keywords : enzyme powders * cross-linking * magnetic modification * magnetic separation * magnetic iron oxides particles * microwave-assisted synthesis Subject RIV: CE - Biochemistry Impact factor: 1.970, year: 2014

  3. Enzymes in Forest Soils

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Štursová, Martina

    Heidelberg, Dordrecht, NY: Springer, 2011 - (Shukla, G.; Varma, A.), s. 61-73 ISBN 978-3-642-14225-3 R&D Projects: GA ČR GA526/08/0751; GA MŠk OC08050 Institutional research plan: CEZ:AV0Z50200510 Keywords : forest soils * soil ecology * enzymes Subject RIV: EE - Microbiology, Virology

  4. Enzymes of Saprotrophic Basidiomycetes

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr

    Amsterdam: Academic Press, 2007, s. 19-41. ISBN 978-0-12-374185-1 R&D Projects: GA AV ČR KJB600200516; GA ČR GA526/05/0168; GA MŠk LC06066 Institutional research plan: CEZ:AV0Z50200510 Keywords : saprotrophic basidiomycetes * extracellular enzymes * polymers Subject RIV: EE - Microbiology, Virology

  5. Antibiotic-Resistant Gonorrhea (ARG)

    Science.gov (United States)

    ... 1993, ciprofloxacin, a fluoroquinolone, and cephalosporins ceftriaxone and cefixime were the recommended treatments for gonorrhea. However, in ... people in the United States. The cephalosporins, either cefixime or ceftriaxone, were the only remaining recommended treatments. ...

  6. Distribution of 16S rRNA methylases among different species of Gram-negative bacilli with high-level resistance to aminoglycosides.

    Science.gov (United States)

    Zhou, Y; Yu, H; Guo, Q; Xu, X; Ye, X; Wu, S; Guo, Y; Wang, M

    2010-11-01

    16S rRNA methylases confer high-level resistance to most aminoglycosides in Gram-negative bacteria. Seven 16S rRNA methylase genes, armA, rmtA, rmtB, rmtC, rmtD, rmtE and npmA, have been identified since 2003. We studied the distribution of methylase genes in more than 200 aminoglycoside-resistant Gram-negative clinical isolates collected in 2007 at our hospital in Shanghai, China. 16S rRNA methylase genes were amplified by polymerase chain reaction (PCR) among 217 consecutive clinical isolates of Gram-negative bacilli resistant to gentamicin and amikacin by a disk diffusion method. 16S rRNA methylase genes were present in 97.5% (193/198) of clinical isolates highly resistant to amikacin (≥512 μg/ml), with armA and rmtB detected in 67.2 and 30.3% of strains, respectively, while no 16S rRNA methylase genes were detected in 19 strains with amikacin minimum inhibitory concentration (MIC) ≤256 μg/ml. armA or rmtB genes were detected in 100% of 104 strains of Enterobacteriaceae, and these two genes were equally represented (49 vs. 55 strains). Genes for armA or rmtB were detected in 94.7% (89/94) of Acinetobacter baumannii and Pseudomonas aeruginosa strains, and armA was predominant (84 vs. 5 strains with rmtB). No rmtA, rmtC, rmtD or npmA genes were found. Enterobacterial repetitive intergenic consensus sequence (ERIC-PCR) indicated that armA and rmtB genes were spread by both horizontal transfer and clonal dissemination. PMID:20614151

  7. Computational enzyme design

    Science.gov (United States)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  8. Evaluation of a method for enzymic radiochemical assay of tobramycin and amikacin in serum

    Energy Technology Data Exchange (ETDEWEB)

    McKnight, R.P.; Willis, J.E.

    1981-07-01

    This enzymic radiochemical procedure for measuring tobramycin and amikacin in serum is based on the transfer of the /sup 14/C-acetyl group from (/sup 14/C)acetyl-coenzyme A to the 6' nitrogen atom of the drug by the enzyme kanamycin 6'-acetyltransferase (EC 2.3.1.55). The transfer, stoichiometric and quantitative, is complete after 10-min incubation at 37 degrees C. The labeled acetylaminoglycoside is adsorbed onto phosphocellulose paper discs, which are washed to removed any unreacted (/sup 14/C)acetyl-coenzyme A. The radioactivity is then eluted into liquid scintillation counting vials and counted for 1 min each. The assay detects as little as 2 ng of either drug and the standard curve is linear into the toxic range of concentrations. Most of the commonly administered aminoglycosides act as substrates in the assay, except for the C1 component of gentamicin C complex. Neither hemolysis, lipemia, nor icterus interfere with the assay. Results compare favorably with those determined by radioimmunoassay and a microbiological method.

  9. Evaluation of a method for enzymic radiochemical assay of tobramycin and amikacin in serum

    International Nuclear Information System (INIS)

    This enzymic radiochemical procedure for measuring tobramycin and amikacin in serum is based on the transfer of the 14C-acetyl group from [14C]acetyl-coenzyme A to the 6' nitrogen atom of the drug by the enzyme kanamycin 6'-acetyltransferase (EC 2.3.1.55). The transfer, stoichiometric and quantitative, is complete after 10-min incubation at 37 degrees C. The labeled acetylaminoglycoside is adsorbed onto phosphocellulose paper discs, which are washed to removed any unreacted [14C]acetyl-coenzyme A. The radioactivity is then eluted into liquid scintillation counting vials and counted for 1 min each. The assay detects as little as 2 ng of either drug and the standard curve is linear into the toxic range of concentrations. Most of the commonly administered aminoglycosides act as substrates in the assay, except for the C1 component of gentamicin C complex. Neither hemolysis, lipemia, nor icterus interfere with the assay. Results compare favorably with those determined by radioimmunoassay and a microbiological method

  10. Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates.

    Science.gov (United States)

    Liu, Zhenru; Ling, Baodong; Zhou, Liming

    2015-08-01

    Multidrug-resistant Acinetobacter baumannii has become a worldwide problem, and methylation of 16S rRNA has recently emerged as a new mechanism of resistance to aminoglycosides, which is mediated by a newly recognized group of 16S rRNA methylases. 16S rRNA methylase confers a high-level resistance to all 4,6-substituted deoxystreptamine aminoglycosides that are currently used in clinical practice. Some of the A. baumannii isolates have been found to coproduce extended-spectrum beta-lactamases (ESBLs), contributing to their multidrug resistance. The aim of this study was to detect the determinants of the 16S rRNA methylase genes armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA, the modifying enzyme genes aac(6')-Ib, ant(3″)-Ia, aph(3')-I, and the extended-spectrum beta-lactamase genes bla(TEM), bla(SHV), and bla(CTX-M-3) among A. baumannii isolates in northeastern Sichuan, China. Minimum inhibitory concentrations (MICs) of 21 different antimicrobial agents against the A. baumannii isolates were determined. The clinical isolates showed a high level of resistance (MIC≧256 μg/ml) to aminoglycosides, which ranged from 50·1 to 83·8%. The resistances to meropenem and imipenem, two of the beta-lactam antibiotics and the most active antibiotics against A. baumannii, were 9·1 and 8·2%, respectively. Among 60 amikacin-resistant isolates, only the 16S rRNA methylase gene armA was found to be prevalent (66·7%), but the other 16S rRNA methylase genes rmtA, rmtB, rmtC, rmtD, rmtE, and npmA were not detected. The prevalences of the modifying enzyme genes aac (6')-Ib, ant (3″)-Ia, and aph (3')-I were 51·7, 81·7, and 58·3%, respectively, which are different from a previous study in which the occurrences of these genes were 3, 64, and 72%, respectively. Among the 40 isolates that were armA-positive, the prevalences of bla(TEM), bla(SHV), and bla(CTX-M-3) genes were detected for the first time in China, and their occurrences were 45, 65, and 52·5%, respectively. In all, A

  11. Deubiquitylating enzymes and disease

    OpenAIRE

    Baker Rohan T; Taylor Matthew C; Singhal Shweta

    2008-01-01

    Abstract Deubiquitylating enzymes (DUBs) can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin), including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been charac...

  12. Quorum quenching enzymes.

    Science.gov (United States)

    Fetzner, Susanne

    2015-05-10

    Bacteria use cell-to-cell communication systems based on chemical signal molecules to coordinate their behavior within the population. These quorum sensing systems are potential targets for antivirulence therapies, because many bacterial pathogens control the expression of virulence factors via quorum sensing networks. Since biofilm maturation is also usually influenced by quorum sensing, quenching these systems may contribute to combat biofouling. One possibility to interfere with quorum sensing is signal inactivation by enzymatic degradation or modification. Such quorum quenching enzymes are wide-spread in the bacterial world and have also been found in eukaryotes. Lactonases and acylases that hydrolyze N-acyl homoserine lactone (AHL) signaling molecules have been investigated most intensively, however, different oxidoreductases active toward AHLs or 2-alkyl-4(1H)-quinolone signals as well as other signal-converting enzymes have been described. Several approaches have been assessed which aim at alleviating virulence, or biofilm formation, by reducing the signal concentration in the bacterial environment. These involve the application or stimulation of signal-degrading bacteria as biocontrol agents in the protection of crop plants against soft-rot disease, the use of signal-degrading bacteria as probiotics in aquaculture, and the immobilization or entrapment of quorum quenching enzymes or bacteria to control biofouling in membrane bioreactors. While most approaches to use quorum quenching as antivirulence strategy are still in the research phase, the growing number of organisms and enzymes known to interfere with quorum sensing opens up new perspectives for the development of innovative antibacterial strategies. PMID:25220028

  13. Enzyme linked immunoassay with stabilized polymer saccharide enzyme conjugates

    Science.gov (United States)

    Callstrom, M.R.; Bednarski, M.D.; Gruber, P.R.

    1997-11-25

    An improvement in enzyme linked immunoassays is disclosed wherein the enzyme is in the form of a water soluble polymer saccharide conjugate which is stable in hostile environments. The conjugate comprises the enzyme which is linked to the polymer at multiple points through saccharide linker groups. 19 figs.

  14. Enzyme Molar Fractions: A Powerful Tool for Understanding Enzyme Kinetics.

    Science.gov (United States)

    Serra, Juan L.; And Others

    1986-01-01

    Deduces the relationship between reduced velocity and molar fractions for productive enzyme complexes; obtains the mathematical expression of molar fractions for an enzyme with two specific binding sites per molecule; and proposes a useful plot to follow the dependence of enzyme molar fractions with the concentration of one of its ligands. (JN)

  15. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  16. Coexistence of mitochondrial 12S rRNA C1494T and CO1/tRNASer(UCN) G7444A mutations in two Han Chinese pedigrees with aminoglycoside-induced and non-syndromic hearing loss

    International Nuclear Information System (INIS)

    Mutations in mitochondrial DNA are one of the important causes of hearing loss. We report here the clinical, genetic, and molecular characterization of two Han Chinese pedigrees with maternally transmitted aminoglycoside-induced and nonsyndromic bilateral hearing loss. Clinical evaluation revealed the wide range of severity, age-at-onset, and audiometric configuration of hearing impairment in matrilineal relatives in these families. The penetrances of hearing loss in these pedigrees were 20% and 18%, when aminoglycoside-induced deafness was included. When the effect of aminoglycosides was excluded, the penetrances of hearing loss in these seven pedigrees were 10% and 15%. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the presence of the deafness-associated 12S rRNA C1494T and CO1/tRNASer(UCN) G7444A mutations. Their distinct sets of mtDNA polymorphism belonged to Eastern Asian haplogroup C4a1, while other previously identified six Chinese mitochondrial genomes harboring the C1494T mutation belong to haplogroups D5a2, D, R, and F1, respectively. This suggested that the C1494T or G7444A mutation occurred sporadically and multiplied through evolution of the mitochondrial DNA (mtDNA). The absence of functionally significant mutations in tRNA and rRNAs or secondary LHON mutations in their mtDNA suggest that these mtDNA haplogroup-specific variants may not play an important role in the phenotypic expression of the 12S rRNA C1494T and CO1/tRNASer(UCN) G7444A mutations in those Chinese families. However, aminoglycosides and other nuclear modifier genes play a modifying role in the phenotypic manifestation of the C1494T mutation in these Chinese families

  17. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    OpenAIRE

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can; Ou, Qishui

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by ...

  18. Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNASer(UCN) genes in two Chinese families

    International Nuclear Information System (INIS)

    We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNASer(UCN) gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees

  19. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    Directory of Open Access Journals (Sweden)

    Dexi Bi

    Full Text Available Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.

  20. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    Science.gov (United States)

    Bi, Dexi; Xie, Yingzhou; Tai, Cui; Jiang, Xiaofei; Zhang, Jie; Harrison, Ewan M; Jia, Shiru; Deng, Zixin; Rajakumar, Kumar; Ou, Hong-Yu

    2016-01-01

    Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb) carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb) displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa. PMID:26841043

  1. Negative cooperativity in regulatory enzymes.

    Science.gov (United States)

    Levitzki, A; Koshland, D E

    1969-04-01

    Negative cooperativity has been observed in CTP synthetase, an allosteric enzyme which contains a regulatory site. Thus, the same enzyme exhibits negative cooperativity for GTP (an effector) and glutamine (a substrate) and positive cooperativity for ATP and UTP (both substrates). In the process of the delineation of these phenomena, diagnostic procedures for negative cooperativity were developed. Application of these procedures to other enzymes indicates that negative cooperativity is a characteristic of many of them. These findings add strong support for the sequential model of subunit interactions which postulates that ligand-induced conformational changes are responsible for regulatory and cooperative phenomena in enzymes. PMID:5256410

  2. Deubiquitylating enzymes and disease

    Directory of Open Access Journals (Sweden)

    Baker Rohan T

    2008-10-01

    Full Text Available Abstract Deubiquitylating enzymes (DUBs can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin, including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development. Publication history Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  3. 黄芩苷消除鲍曼不动杆菌耐药质粒的实验研究%Experimental Study of Baicalin Curing Antibiotic-Resistant Plasmid in Acinetobacter Baumanii

    Institute of Scientific and Technical Information of China (English)

    汪东海; 陈敏; 姜志强; 王萍; 陈学锋; 徐菊玲

    2012-01-01

    OBJECTIVE To investigate if baicalin was able to cure antibiotic-resistant plasmid in Acinetobacter baumanii. and affect minimum inhibitory concentrations (MIC) of antibiotics to bacteria. METHODS The growth curve of A. baumanii treated with baicalin was detected. 16 strains of A. baumanii, gentamicin(GEN) and ciprofloxacin(CIP) resistance, were treated with baicalin for 20 hours. Before and after baicalin treatment, plasmids of A. baumanii were determined with alkaline lysis method, and MICs of GEN and CIP were measured by agar dilution method. RESULTS Baicalin inhibited the growth of A. baumanii. The plasmid curing rate was 37.5%(6/16) in 16 strains of A. baumanii with plasmids, after the treatment with baicalin (1 mg·mL‐1). In 6 strains of A. baumanii with plasmid cured by baicalin, for medium or low level of GEN-resistance strains, MICs of GEN all decreased to sensitive level; for low level of CIP-resistance strains, MICs of CIP all dropped to sensitive level, and for some medium-level of CIP-resistance strains, M!Cs of CIP also dropped, but still above the resistance level. CONCLUSION Baicalin can eliminate plasmids of A. baumanii with low level of antibiotic-resistance, and make these strains recover the susceptibility to GEN and CIP, which shows an adjuvant treatment method for antibiotic-resistant A. baumanii infections.%目的 探讨黄芩苷能否消除鲍曼不动杆菌质粒,并影响抗菌药物对细菌的最低抑菌浓度(MIC).方法 测定黄芩苷处理的鲍曼不动杆菌生长曲线.16株庆大霉素和环丙沙星双重耐药的鲍曼不动杆菌,经黄芩苷作用20h,分别在处理前和处理后应用碱裂解法检测质粒,琼脂稀释法测定抗菌药物MIC.结果 黄芩苷能抑制鲍曼不动杆菌生长.16株鲍曼不动杆菌耐药株均携带质粒,经1mg·mL-1黄芩苷作用后,质粒消除率为37.5%(6/16).6株经黄芩苷消除质粒的细菌,庆大霉素中度水平或低水平耐药株的MIC值均下降至敏感水平;

  4. Carriage of antibiotic-resistant pneumococci in a cohort of a daycare center Portadores nasofaríngeos de neumococo antibiótico-resistente en niños asistentes a guardería

    Directory of Open Access Journals (Sweden)

    Demóstenes Gómez-Barreto

    2002-01-01

    Full Text Available Objective. To define epidemiologic relationships to determine the prevalence and potential risk factors for nasopharyngeal colonization by antibiotic-resistant pneumococci, their serotypes and their antibiotic susceptibility patterns in children attending a daycare center (DCC. Material and Methods. A prospective cohort study was conducted among children (n=53 attending the DCC at Hospital Infantil de México Federico Gómez, which is staffed by 20 employees. Patients were enrolled in the study during a two-year period from September 1997 to September 1999. All the participants were followed prospectively, swabbing them every four months. The strains recovered were typed and screened for susceptibility to several antibiotics. The daycare records were reviewed also. Odds ratios and fisher's exact test: or chi square test of significance were computed from contingency tables as appropriate. Exact 95% confidence intervals were computed for odds ratios. Data analysis was performed using Epi statistics program version 6.04 a. Results. Pneumococci were recovered from 45/53 of the infants at one or more visits. A total of 178 isolates were carried. The carriage rate was 47%. Only 7 adults acquired pneumococci during the study. Types 6,14,19 and 23 were prevalent and represented 77% of the total. Antibiotic-resistant strains were higher to penicillin and erythromycin. Conclusions. Children were frequent carriers of pneumococci, the rate of carriage was high in infancy and tended to decrease with age. The types commonly carried by children were the same as those causing invasive disease. There is a high proportion of carriers with antibiotic-resistant S. pneumoniae strains. Children who have had frequent antimicrobial courses are at particular risk.Objetivo. Analizar longitudinalmente la dinámica de colonización por Streptococcus pneumoniae, determinar la prevalencia, los factores de riesgo potencial para la colonización nasofaríngea con cepas de

  5. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  6. Enzymic hydrolysis of chlorella cells

    Energy Technology Data Exchange (ETDEWEB)

    Khraptsova, G.I.; Tsaplina, I.A.; Burdenko, L.G.; Khoreva, S.L.; Loginova, L.G.

    1981-01-01

    Treatment of C. ellipsoidea, C. pyrenoidosa, and C. vulgaris with cellulolytic enzymes (from Aspergillus terreus) and pectofoetidin p10x (from A. foetidus) resulted in the degradation and lysis of the algae cells. The cells were more sensitive to cellulase than to pectinase. The combination of both enzymes produced a synergistic effect on cell lysis.

  7. Enzyme catalysis: Evolution made easy

    Science.gov (United States)

    Wee, Eugene J. H.; Trau, Matt

    2014-09-01

    Directed evolution is a powerful tool for the development of improved enzyme catalysts. Now, a method that enables an enzyme, its encoding DNA and a fluorescent reaction product to be encapsulated in a gel bead enables the application of directed evolution in an ultra-high-throughput format.

  8. Enzyme immunoassay for human ferritin

    International Nuclear Information System (INIS)

    We described an enzyme immunoassay with use of β-D-galactosidase for quantitation of ferritin in human serum. The minimum detectable ferritin concentration is 0.25 μg/L of serum, which is comparable to results obtained by radioimmunoassay. The correlation coefficient between values determined by enzyme immunoassay and radioimmunoassay was 0.95

  9. Radiation inactivation of proteolytic enzymes

    International Nuclear Information System (INIS)

    The survey was devoted to generalization of protease inactivation mechanism for different conditions of irradiation and for different kinds of enzymes. The importance of radiation conformation changes and the possible use of radiolytic processes were considered especially. The serine-, SH-, acidic-and metal-contained enzymes were described

  10. Positron emitter labeled enzyme inhibitors

    International Nuclear Information System (INIS)

    This invention involves a new strategy for imagining and mapping enzyme activity in the living human and animal body using positron emitter-labeled suicide enzyme inactivators or inhibitors which become covalently bound to the enzyme as a result of enzymatic catalysis. Two such suicide inactivators for monoamine oxidase have been labeled with carbon-11 and used to map the enzyme subtypes in the living human and animal body using PET. By using positron emission tomography to image the distribution of radioactivity produced by the body penetrating radiation emitted by carbon-11, a map of functionally active monoamine oxidase activity is obtained. Clorgyline and L-deprenyl are suicide enzyme inhibitors and irreversibly inhibit monoamine oxidase. When these inhibitors are labeled with carbon-11 they provide selective probes for monoamine oxidase localization and reactivity in vivo using positron emission tomography

  11. Potentiation of Aminoglycoside Activity in Pseudomonas aeruginosa by Targeting the AmgRS Envelope Stress-Responsive Two-Component System.

    Science.gov (United States)

    Poole, Keith; Gilmour, Christie; Farha, Maya A; Mullen, Erin; Lau, Calvin Ho-Fung; Brown, Eric D

    2016-06-01

    A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-type Pseudomonas aeruginosa identified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent genes htpX and yccA was reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS undermining mexXY expression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance in P. aeruginosa, RIF might be a useful adjuvant in the AG treatment of P. aeruginosa infections. PMID:27021319

  12. BAKERY ENZYMES IN CEREAL TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    Václav Koman

    2012-10-01

    Full Text Available Normal 0 21 false false false SK X-NONE X-NONE Bread is the most common and traditional food in the world. For years, enzymes such as malt and fungal alpha-amylase have been used in bread making. Due to the changes in the baking industry and the ever-increasing demand for more natural products, enzymes have gained real importance in bread-making. If an enzyme is added, it is often destroyed by the heat during the baking process. For generations, enzymes have been used for the improvement of texture and appearance, enhancement of nutritional values and generation of appealing flavours and aromas. Enzymes used in bakery industry constitute nearly one third of the market. The bakery products have undergone radical improvements in quality over the past years in terms of flavour, texture and shelf-life. The the biggest contributor for these improvementsis the usage of enzymes. Present work seeks to systematically describe bakery enzymes, their classification, benefits, usage and chemical reactions in the bread making process.doi:10.5219/193

  13. Determination of aminoglycoside residues in milk and muscle based on a simple and fast extraction procedure followed by liquid chromatography coupled to tandem mass spectrometry and time of flight mass spectrometry.

    Science.gov (United States)

    Arsand, Juliana Bazzan; Jank, Louíse; Martins, Magda Targa; Hoff, Rodrigo Barcellos; Barreto, Fabiano; Pizzolato, Tânia Mara; Sirtori, Carla

    2016-07-01

    Antibiotics are widely used in veterinary medicine mainly for treatment and prevention of diseases. The aminoglycosides are one of the antibiotics classes that have been extensively employed in animal husbandry for the treatment of bacterial infections, but also as growth promotion. The European Union has issued strict Maximum Residue Levels (MRLs) for aminoglycosides in several animal origin products including bovine milk, bovine, swine and poultry muscle. This paper describes a fast and simple analytical method for the determination of ten aminoglycosides (spectinomycin, tobramycin, gentamicin, kanamycin, hygromycin, apramycin, streptomycin, dihydrostreptomycin, amikacin and neomycin) in bovine milk and bovine, swine and poultry muscle. For sample preparation, an extraction method was developed using trichloroacetic acid and clean up with low temperature precipitation and C18 bulk. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was used to carry out quantitative analysis and liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-QTOF-MS) was used to screening purposes. Both methods were validated according to the European Union Commission Directive 2002/657/EC. Good performance characteristics were obtained for recovery, precision, calibration curve, specificity, decision limits (CCα) and detection capabilities (CCβ) in all matrices evaluated. The detection limit (LOD) and quantification limit (LOQ) were ranging from 5 to 100ngg(-1) and 12.5 to 250ngg(-1), respectively. Good linearity (r)-above 0.99-was achieved in concentrations ranging from 0.0 to 2.0×MRL. Recoveries ranged from 36.8% to 98.0% and the coefficient of variation from 0.9 to 20.2%, noting that all curves have been made into their own matrices in order to minimize the matrix effects. The CCβ values obtained in qualitative method were between 25 and 250ngg(-1). The proposed method showed to be simple, easy, and adequate for high-throughput analysis of a large

  14. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function? To...... exist and the two kinds of catalyst can be described by similar tools, nature and human effort have come up with different solutions. This on the other hand implies that new and improved catalysts may be made by learning from nature....

  15. An enzyme with rhamnogalacturonase activity.

    OpenAIRE

    Kovod, L.V.; Dalboge, H; Andersen, L N; Kauppinen, M.; Christgan, S.; Heldt-Hansen, H.P.; Christophersen, C.; Nielsen, P.M.; Voragen, A. G. J.; Schols, H.A.

    1994-01-01

    An enzyme exhibiting rhamnogalacturonase activity, which enzyme: a) is encoded by the DNA sequence shown in SEQ ID No. 1 or a sequence homologous thereto encoding a polypeptide with RGase activity, b) has the amino acid sequence shown in SEQ ID No. 2 or an analogue thereof, c) is reactive with an antibody raised against the enzyme encoded by the DNA sequence shown in SEQ ID No. 1, d) has a pH optimum above pH 5, and/or e) has a relative activity of at least 30t a pH in the range of 5.5-6.5. T...

  16. Synthèse d'analogues d'aminoglycosides par voie chimique et ingénierie métabolique : Application à l'étude des ARN par RMN du fluor

    OpenAIRE

    Lombès, Thomas

    2012-01-01

    Les ARN constituent des cibles thérapeutiques extrêmement intéressantes bien qu'encore assez peu exploitées. En effet, les obstacles pour la conception de ligands spécifiques de ces cibles non traditionnelles, polyanioniques et très flexibles, sont encore loin d'être levés. Les aminoglycosides, utilisés depuis longtemps pour leurs propriétés antibiotiques, sont souvent décrits comme des " ligands universels " d'ARN. Leur structure constitue donc une architecture favorable pour l'élaboration d...

  17. 两个携带线粒体12S rRNA 1494C>T突变的耳聋家系的遗传学特征%Characterization of two Chinese families with aminoglycoside-induced and nonsyndromic hearing loss both carrying a mitochondrial 12S rRNA 1494C>T mutation

    Institute of Scientific and Technical Information of China (English)

    龚莎莎; 管敏鑫; 陈波蓓; 彭光华; 郑静; 张婷; 郑斌娇; 方芳; 张初琴; 吕建新

    2012-01-01

    Objective To evaluate the effect of mitochondrial DNA(mtDNA) secondary mutations,haplotypes,GJB2 gene mutations on phenotype of 1494C > T mutation,and to study the molecular pathogenic mechanism of maternally transmitted aminoglycoside-induced and nonsyndromic hearing loss.Methods Two Chinese Han pedigrees of maternally transmitted aminoglycoside induced and nonsyndromic hearing loss were collected.The two probands and their family members underwent clinical,genetic and molecular evaluations including audiological examinations and mutational analysis of mitochondrial genome and GJB2 gene.Results Clinical evaluation revealed wide range of severity,age-at-onset and audiometric configuration of hearing impairment in matrilineal relatives in both families,for which the penetrance of hearing loss was respectively 42.9 % and 28.6% when aminoglycoside-induced deafness was included.When the effect of aminoglycosides was excluded,the penetrances of hearing loss were 14.3% and 14.3%.Sequence analysis of mitochondrial genomes identified a known 12S rRNA 1494C>T mutation,in addition with distinct sets of mtDNA polymorphisms belonging to Eastern Asian haplogroups C4a1a and B4b1c,respectively.Conclusion Mitochondrial 12S rRNA 1494C>T mutation probably underlie the deafness in both families.Lack of significant mutation in the GJB2 gene ruled out involvement of GJB2 in the phenotypic expression.However,aminoglycosides and other nuclear modifier genes may still modify the phenotype of the 1494C>T mutation in these families.The B4b1c is a newly identified haplogroup in aminoglycoside-induced and nonsyndromic hearing loss family carrying the 1494C>T mutation.The 1494C>T mutation seems to have occurred sporadically through evolution.

  18. ORGANOPHOSPHATE DEGRADING ENZYMES - PHASE I

    Science.gov (United States)

    Agave BioSystems in collaboration with Carl A. Batt proposes to develop decon-nanoparticles, which will leverage ongoing opportunities in enzyme engineering and the fabrication of functionalized magnetic nanoparticles. Enhanced performance will be engineered into the system t...

  19. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected...... substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocomponent enzymes was investigated by monitoring the release of xylose and arabinose. The results of different...... effects between -xylosidase and the α-L-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ~25 times in 30 minutes. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate...

  20. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  1. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China. PMID:26672358

  2. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug.

    Science.gov (United States)

    Guo, Yu; Wang, Jing; Niu, Guojun; Shui, Wenqing; Sun, Yuna; Zhou, Honggang; Zhang, Yaozhou; Yang, Cheng; Lou, Zhiyong; Rao, Zihe

    2011-05-01

    Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are a type of newly discovered antibioticresistant bacteria. The rapid pandemic spread of NDM-1 bacteria worldwide (spreading to India, Pakistan, Europe, America, and Chinese Taiwan) in less than 2 months characterizes these microbes as a potentially major global health problem. The drug resistance of NDM-1 bacteria is largely due to plasmids containing the blaNDM-1 gene shuttling through bacterial populations. The NDM-1 enzyme encoded by the blaNDM-1 gene hydrolyzes β-lactam antibiotics, allowing the bacteria to escape the action of antibiotics. Although the biological functions and structural features of NDM-1 have been proposed according to results from functional and structural investigation of its homologues, the precise molecular characteristics and mechanism of action of NDM-1 have not been clarified. Here, we report the three-dimensional structure of NDM-1 with two catalytic zinc ions in its active site. Biological and mass spectroscopy results revealed that D-captopril can effectively inhibit the enzymatic activity of NDM-1 by binding to its active site with high binding affinity. The unique features concerning the primary sequence and structural conformation of the active site distinguish NDM-1 from other reported metallo-β-lactamases (MBLs) and implicate its role in wide spectrum drug resistance. We also discuss the molecular mechanism of NDM-1 action and its essential role in the pandemic of drug-resistant NDM-1 bacteria. Our results will provide helpful information for future drug discovery targeting drug resistance caused by NDM-1 and related metallo-β-lactamases. PMID:21637961

  3. Diversity of enterococcal species and characterization of high-level aminoglycoside resistant enterococci of samples of wastewater and surface water in Tunisia.

    Science.gov (United States)

    Ben Said, Leila; Klibi, Naouel; Lozano, Carmen; Dziri, Raoudha; Ben Slama, Karim; Boudabous, Abdellatif; Torres, Carmen

    2015-10-15

    One hundred-fourteen samples of wastewater (n=64) and surface-water (n=50) were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 75% of tested samples in SB media (72% in wastewater; 78% in surface-water), and 85 enterococcal isolates (one/positive-sample) were obtained. Enterococcus faecium was the most prevalent species (63.5%), followed by Enterococcus faecalis (20%), Enterococcus hirae (9.4%), Enterococcus casseliflavus (4.7%), and Enterococcus gallinarum/Enterococcus durans (2.4%). Antibiotic resistance detected among these enterococci was as follows [percentage/detected gene (number isolates)]: kanamycin [29%/aph(3')-IIIa (n=22)], streptomycin [8%/ant(6)-Ia (n=4)], erythromycin [44%/erm(B) (n=34)], tetracycline [18%/tet(M) (n=6)/tet(M)-tet(L) (n=9)], chloramphenicol [2%/cat(A) (n=1)], ciprofloxacin [7%] and trimethoprim-sulfamethoxazole [94%]. High-level-gentamicin resistant (HLR-G) enterococci were recovered from 15 samples in SB-Gen or SB plates [12/64 samples of wastewater (19%) and 3/50 samples of surface-water (6%)]; HLR-G isolates were identified as E. faecium (n=7), E. faecalis (n=6), and E. casseliflavus (n=2). These HLR-G enterococci carried the aac(6')-Ie-aph(2")-Ia and erm(B) genes, in addition to aph(3')-IIIa (n=10), ant(6)-Ia (n=9), tet(M) (n=13), tet(L) (n=8) and cat(A) genes (n=2). Three HLR-G enterococci carried the esp virulence gene. Sequence-types detected among HLR-G enterococci were as follows: E. faecalis (ST480, ST314, ST202, ST55, and the new ones ST531 and ST532) and E. faecium (ST327, ST12, ST296, and the new ones ST985 and ST986). Thirty-two different PFGE patterns were detected among 36 high-level-aminoglycoside-resistant enterococci recovered in water samples. Diverse genetic lineages of HLR-G enterococci were detected in wastewater and surface-water in Tunisia. Water can represent an important source for the

  4. The Kinetics of Enzyme Mixtures

    Directory of Open Access Journals (Sweden)

    Simon Brown

    2014-03-01

    Full Text Available Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1 it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2 even when it is possible, a considerable quantity of high quality data is required.

  5. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  6. Subcellular localization of pituitary enzymes

    Science.gov (United States)

    Smith, R. E.

    1970-01-01

    A cytochemical procedure is reported for identifying subcellular sites of enzymes hydrolyzing beta-naphthylamine substrates, and to study the sites of reaction product localization in cells of various tissues. Investigations using the substrate Leu 4-methoxy-8-naphthylamine, a capture with hexonium pararosaniline, and the final chelation of osmium have identified the hydrolyzing enzyme of rat liver cells; this enzyme localized on cell membranes with intense deposition in the areas of the parcanaliculi. The study of cells in the anterior pituitary of the rat showed the deposition of reaction product on cell membrane; and on the membranes of secretion granules contained within the cell. The deposition of reaction product on the cell membrane however showed no increase or decrease with changes in the physiological state of the gland and release of secretion granules from specific cells.

  7. Micromotors Powered by Enzyme Catalysis.

    Science.gov (United States)

    Dey, Krishna K; Zhao, Xi; Tansi, Benjamin M; Méndez-Ortiz, Wilfredo J; Córdova-Figueroa, Ubaldo M; Golestanian, Ramin; Sen, Ayusman

    2015-12-01

    Active biocompatible systems are of great current interest for their possible applications in drug or antidote delivery at specific locations. Herein, we report the synthesis and study of self-propelled microparticles powered by enzymatic reactions and their directed movement in substrate concentration gradient. Polystyrene microparticles were functionalized with the enzymes urease and catalase using a biotin-streptavidin linkage procedure. The motion of the enzyme-coated particles was studied in the presence of the respective substrates, using optical microscopy and dynamic light scattering analysis. The diffusion of the particles was found to increase in a substrate concentration dependent manner. The directed chemotactic movement of these enzyme-powered motors up the substrate gradient was studied using three-inlet microfluidic channel architecture. PMID:26587897

  8. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria Atividade de extratos vegetais e fitofármacos sobre bactérias resistentes a antibióticos

    Directory of Open Access Journals (Sweden)

    Gislene G. F. Nascimento

    2000-10-01

    Full Text Available The antimicrobial activity of plant extracts and phytochemicals was evaluated with antibiotic susceptible and resistant microorganisms. In addition, the possible synergistic effects when associated with antibiotics were studied. Extracts from the following plants were utilized: Achillea millifolium (yarrow, Caryophyllus aromaticus (clove, Melissa offficinalis (lemon-balm, Ocimun basilucum (basil, Psidium guajava (guava, Punica granatum (pomegranate, Rosmarinus officinalis (rosemary, Salvia officinalis (sage, Syzygyum joabolanum (jambolan and Thymus vulgaris (thyme. The phytochemicals benzoic acid, cinnamic acid, eugenol and farnesol were also utilized. The highest antimicrobial potentials were observed for the extracts of Caryophyllus aromaticus and Syzygyum joabolanum, which inhibited 64.2 and 57.1% of the tested microorganisms, respectively, with higher activity against antibiotic-resistant bacteria (83.3%. Sage and yarrow extracts did not present any antimicrobial activity. Association of antibiotics and plant extracts showed synergistic antibacterial activity against antibiotic-resistant bacteria. The results obtained with Pseudomonas aeruginosa was particularly interesting, since it was inhibited by clove, jambolan, pomegranate and thyme extracts. This inhibition was observed with the individual extracts and when they were used in lower concentrations with ineffective antibiotics.Foi avaliada a atividade antimicrobiana de extratos vegetais e fitofármacos frente a microrganismos sensíveis e resistentes a antibióticos, bem como observado o possível efeito sinérgico da associação entre antibióticos e extratos vegetais. Foram utilizados os extratos de plantas cujo nomes populares são: tomilho, alecrim, cravo-da-Índia, jambolão, erva cidreira, romã, goiaba, sálvia, manjericão e mil-folhas, e ainda os fitofármacos, ácido benzóico, ácido cinâmico, eugenol e farnesol. Na avaliação da atividade antimicrobiana através do m

  9. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  10. Modifying enzyme activity and selectivity by immobilization

    OpenAIRE

    Rodrigues, Rafael C.; Ortiz, Claudia; Berenguer Murcia, Ángel; Torres, Rodrigo; Fernández Lafuente, Roberto

    2013-01-01

    Immobilization of enzymes may produce alterations in their observed activity, specificity or selectivity. Although in many cases an impoverishment of the enzyme properties is observed upon immobilization (caused by the distortion of the enzyme due to the interaction with the support) in some instances such properties may be enhanced by this immobilization. These alterations in enzyme properties are sometimes associated with changes in the enzyme structure. Occasionally, these variations will ...

  11. Udfordringer ved undervisning i enzymer

    DEFF Research Database (Denmark)

    Skriver, Karen; Dandanell, Gert; von Stemann, Jakob Hjorth;

    2015-01-01

    Enzymer er et centralt emne i biokemiundervisning. Det forudsætter og anvender grundlæggende viden inden for og kompetencer i kemi og matematik. Artiklen undersøger hvilke forståelsesvanskeligheder og udfordringer der er knyttet til dette område, såvel som virtuelle øvelsers potentiale i denne...

  12. The enzymes associated with denitrification

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  13. Insolubilized enzymes for food synthesis

    Science.gov (United States)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  14. Aminoglycoside trough levels in neonates

    Directory of Open Access Journals (Sweden)

    Pejović Biljana

    2010-01-01

    Full Text Available Introduction. Drug safety depends on trough levels. Objective. Objective of the study was to measure gentamicin and amikacin trough levels in neonates and to identify risk groups by gestational and postnatal age. Methods. Gentamicin and amikacin were applied according to the clinical practice guidelines. Trough levels (mg/l were deter- mined using fluorescence polarization immunoassay methodology. Target trough levels were <2 mg/l for gentamicin, and <10 mg/l for amikacin. Patients were divided in 3 groups by gestational age: I ≤32, II 33-36, and III ≥37 gestational weeks and, by postnatal age, in 2 groups: ≤7 and >7 days. Results. Out of 163 neonates, 111 were receiving gentamicin and 52 amikacin. Mean amikacin trough level was 7.8±4.8 mg/l and, in group I 10.5±4.9 mg/l, which was above the target range and significantly higher than in group II (LSD, p<0.05. In the amikacin group, 26 patients were 7 and less, and 26 more than 7 days old, without significant differences in trough levels between the groups. In the gentamicin group, 52.3% of neonates had trough values within the target range. Gentamicin trough level in group I was above the trough range, 3.7±1.8, 2.3±1.5 in group II and, 1.8±1.4 mg/l in group III. The difference in trough levels among the groups was highly significant (F=9.015, p<0.001, χ2=17. 576, p<0.001. Further analysis revealed that differences between groups I and II (LSD, p=0.002 and between I and III (LSD, p=0.000 were highly significant. Conclusion. Obtained gentamicin and amikacin trough levels are high. Inverse correlation has been confirmed between trough level and gestational age, with highly significant difference, and the risk group has been identified. There is obviously a need to change the dosing regimen in terms of those with extended intervals, particularly for neonates of the lowest gestational age, along with pharmacokinetic measurements.

  15. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  16. Lignolytic Enzymes Production from Selected Mushrooms

    Directory of Open Access Journals (Sweden)

    H.M. Shantaveera Swamy

    2015-06-01

    Full Text Available In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase. Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.

  17. Lithuanian biochemist builds enzyme empire

    Energy Technology Data Exchange (ETDEWEB)

    Dickman, S.

    1992-09-11

    Vidas Janulaitis is professor of biochemistry at the University of Vilnius, head of the Institute of Applied Enzymology - and creator of one of the world's largest collections of restriction enzymes, with more than 100 on offer. He also appears to be the first successful biotechnology entrepreneur to emerge from the former Soviet Union. This paper shows how Janulaitis managed to rise above the chaos that has accompanied the dismantlement of the Soviet Union to become one of the world's top suppliers of new restriction enzymes - especially given that the venture capitalists who rushed off to make deals with Moscow labs in the early days of perestroika mostly came back disappointed.

  18. Metrological aspects of enzyme production

    Science.gov (United States)

    Kerber, T. M.; Dellamora-Ortiz, G. M.; Pereira-Meirelles, F. V.

    2010-05-01

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies.

  19. Metrological aspects of enzyme production

    International Nuclear Information System (INIS)

    Enzymes are frequently used in biotechnology to carry out specific biological reactions, either in industrial processes or for the production of bioproducts and drugs. Microbial lipases are an important group of biotechnologically valuable enzymes that present widely diversified applications. Lipase production by microorganisms is described in several published papers; however, none of them refer to metrological evaluation and the estimation of the uncertainty in measurement. Moreover, few of them refer to process optimization through experimental design. The objectives of this work were to enhance lipase production in shaken-flasks with Yarrowia lipolytica cells employing experimental design and to evaluate the uncertainty in measurement of lipase activity. The highest lipolytic activity obtained was about three- and fivefold higher than the reported activities of CRMs BCR-693 and BCR-694, respectively. Lipase production by Y. lipolytica cells aiming the classification as certified reference material is recommended after further purification and stability studies

  20. Enzyme recovery using reversed micelles.

    OpenAIRE

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an inner core of water molecules, dispersed in a continuous organic solvent medium. The considerable biotechnological potential of these systems is derived principally from the ability of the water d...

  1. Immobilised enzymes in biorenewable production

    OpenAIRE

    Franssen, M.C.R.; Steunenberg, P.; Scott, E.L.; Zuilhof, H.; Sanders, J.P.M.

    2013-01-01

    Oils, fats, carbohydrates, lignin, and amino acids are all important raw materials for the production of biorenewables. These compounds already play an important role in everyday life in the form of wood, fabrics, starch, paper and rubber. Enzymatic reactions do, in principle, allow the transformation of these raw materials into biorenewables under mild and sustainable conditions. There are a few examples of processes using immobilised enzymes that are already applied on an industrial scale, ...

  2. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  3. Crystal Structure of TDP-Fucosamine Acetyl Transferase (WECD) from Escherichia Coli, an Enzyme Required for Enterobacterial Common Antigen Synthesis

    International Nuclear Information System (INIS)

    Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence →(3)-α-D-Fuc4NAc-(1→4)-β-D-ManNAcA-(1→4)-α-D-GlcNAc-(1→). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structure of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.

  4. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  5. The Application of Enzyme and Yeast

    OpenAIRE

    Zhao, Qing

    2012-01-01

    This bachelor’s thesis concerns the application of enzymes and yeasts for bio-industry. The purpose of this work is to understand the basic knowledge about enzyme and yeast, and meanwhile, to find out their different applications. Through comprehensive study, the knowledge was accumulated which brought a clear understanding for the enzyme structure and yeast microorganism, together with their working principles for the bioprocess. For wood-based industry, the different enzymes used in bi...

  6. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi; Hansen, Per Lyngs; Jakobsen, Ask F.; Bernchou Jensen, Uffe; Jensen, Morten Ø.; Jørgensen, Kent; Kaasgaard, Thomas; Leidy, Chad; Simonsen, Adam Cohen; Peters, Günther H.J.; Weiss, Matthias

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s...

  7. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the...

  8. Immobilization of Enzymes in Polymer Supports.

    Science.gov (United States)

    Conlon, Hugh D.; Walt, David R.

    1986-01-01

    Two experiments in which an enzyme is immobilized onto a polymeric support are described. The experiments (which also demonstrate two different polymer preparations) involve: (1) entrapping an enzyme in an acrylamide polymer; and (2) reacting the amino groups on the enzyme's (esterase) lysine residues with an activated polymer. (JN)

  9. The ENZYME data bank in 1999.

    Science.gov (United States)

    Bairoch, A

    1999-01-01

    The ENZYME data bank is a repository of information related to the nomenclature of enzymes. In recent years it has become an indispensable resource for the development of metabolic databases. The current version contains information on 3704 enzymes. It is available through the ExPASy WWW server (http://www.expasy.ch/). PMID:9847212

  10. The ENZYME data bank in 1995.

    Science.gov (United States)

    Bairoch, A

    1996-01-01

    The ENZYME data bank is a repository of information relative to the nomenclature of enzymes. The current version (October 1995) contains information relevant to 3594 enzymes. It is available from a variety of file and ftp servers as well as through the ExPASy World Wide Web server (http://expasy.hcuge.ch/). PMID:8594586

  11. Curious cases of the enzymes

    OpenAIRE

    Ulusu, Nuriye Nuray

    2015-01-01

    Life as we know it heavily relies on biological catalysis, in fact, in a very nonromantic version of it, life could be considered as a series of chemical reactions, regulated by the guarding principles of thermodynamics. In ancient times, a beating heart was a good sign of vitality, however, to me, it is actually the presence of active enzymes that counts. Though we do not usually pay attention, the history of enzymology is as old as humanity itself, and dates back to the ancient times. This ...

  12. Curious cases of the enzymes

    OpenAIRE

    Ulusu Nuriye Nuray

    2015-01-01

    J Med Biochem 2015; 34 (3) DOI: 10.2478/jomb-2014-0045 UDK 577. 1 : 61 ISSN 1452-8258 J Med Biochem 34: 271–281, 2015 Review article Pregledni ~lanak CURIOUS CASES OF THE ENZYMES NEOBI^NA ISTORIJA ENZIMA Nuriye Nuray Ulusu Koç University, School of Medicine, Sariyer-Istanbul, Turkey Address for correspondence: N. Nuray Ulusu, PhD Koç University School of Medicine Professor of Biochemistry Rumelifeneri Yolu Sarıyer-Istanbul – Turkey Phone: +90 (212)...

  13. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...

  14. Photodynamic inactivation of antibiotic-resistant pathogens

    International Nuclear Information System (INIS)

    Nowadays methicillin-resistant strain Staphylococcus aureus (MRSA) is one of the most widespread multiresistant bacteria. Photodynamic inactivation (PDI) of microorganisms by photosensitizers (PS) may be an effective and alternative therapeutic option against antibiotic resistant bacteria. The effectiveness of new PS cationic porphyrin Zn-TBut4PyP was tested on two strains of S. aureus (MRSA and methicillin-sensitive S. aureus). It is shown that Zn-TBut4PyP has high photodynamic activity against both strains

  15. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  16. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  17. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... in the scientific literature. Reliable mathematical models of such multi-catalytic schemes can exploit the potential benefit of these processes. In this way, the best outcome of the process can be obtained understanding the types of modification that are required for process optimization. An effective evaluation...... of these processes is achieved by applying a methodological framework which provides a systematic way of modeling, a structure, guidance, documentation and support to the modeler. The methodological framework developed here brings many benefits to multienzyme process modeling. This framework identifies generic...

  18. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  19. Cellulose degradation by oxidative enzymes

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  20. Molecular dynamics investigation of the ionic liquid/enzyme interface: application to engineering enzyme surface charge.

    Science.gov (United States)

    Burney, Patrick R; Nordwald, Erik M; Hickman, Katie; Kaar, Joel L; Pfaendtner, Jim

    2015-04-01

    Molecular simulations of the enzymes Candida rugosa lipase and Bos taurus α-chymotrypsin in aqueous ionic liquids 1-butyl-3-methylimidazolium chloride and 1-ethyl-3-methylimidazolium ethyl sulfate were used to study the change in enzyme-solvent interactions induced by modification of the enzyme surface charge. The enzymes were altered by randomly mutating lysine surface residues to glutamate, effectively decreasing the net surface charge by two for each mutation. These mutations resemble succinylation of the enzyme by chemical modification, which has been shown to enhance the stability of both enzymes in ILs. After establishing that the enzymes were stable on the simulated time scales, we focused the analysis on the organization of the ionic liquid substituents about the enzyme surface. Calculated solvent charge densities show that for both enzymes and in both solvents that changing positively charged residues to negative charge does indeed increase the charge density of the solvent near the enzyme surface. The radial distribution of IL constituents with respect to the enzyme reveals decreased interactions with the anion are prevalent in the modified systems when compared to the wild type, which is largely accompanied by an increase in cation contact. Additionally, the radial dependence of the charge density and ion distribution indicates that the effect of altering enzyme charge is confined to short range (≤1 nm) ordering of the IL. Ultimately, these results, which are consistent with that from prior experiments, provide molecular insight into the effect of enzyme surface charge on enzyme stability in ILs. PMID:25641162

  1. Enzymes in Fish and Seafood Processing

    Science.gov (United States)

    Fernandes, Pedro

    2016-01-01

    Enzymes have been used for the production and processing of fish and seafood for several centuries in an empirical manner. In recent decades, a growing trend toward a rational and controlled application of enzymes for such goals has emerged. Underlying such pattern are, among others, the increasingly wider array of enzyme activities and enzyme sources, improved enzyme formulations, and enhanced requirements for cost-effective and environmentally friendly processes. The better use of enzyme action in fish- and seafood-related application has had a significant impact on fish-related industry. Thus, new products have surfaced, product quality has improved, more sustainable processes have been developed, and innovative and reliable analytical techniques have been implemented. Recent development in these fields are presented and discussed, and prospective developments are suggested. PMID:27458583

  2. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    Development of selective biomass upgrading processes is a crucial prerequisite for unfolding the potential of biomass in biorefinery processes. The biorefinery concept designates that different value-added compounds are produced from the same crop or biomass stream. Selectivity with respect to the...... reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules their...... rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...

  3. Rhamnogalacturonan I modifying enzymes: an update

    DEFF Research Database (Denmark)

    Silva, Ines R.; Jers, Carsten; Meyer, Anne S.;

    2016-01-01

    Rhamnogalacturonan I (RGI) modifying enzymes catalyse the degradation of the RGI backbone and encompass enzymes specific for either the α1,2-bond linking galacturonic acid to rhamnose or the α1,4-bond linking rhamnose to galacturonic acid in the RGI backbone. The first microbial enzyme found to be...... able to catalyse the degradation of the RGI backbone, an endo-hydrolase (EC 3.2.1.171) derived from Aspergillus aculeatus, was discovered 25 years ago. Today the group of RGI modifying enzymes encompasses endo- and exo-hydrolases as well as lyases. The RGI hydrolases, EC 3.2.1.171–EC 3.2.1.174, have....... This review brings together the available knowledge of the RGI modifying enzymes and provides a detailed overview of biocatalytic reaction characteristics, classification, structure-function traits, and analyses the protein properties of these enzymes by multiple sequence alignments in neighbour...

  4. Enzyme engineering reaches the boiling point

    OpenAIRE

    Arnold, Frances H.

    1998-01-01

    The boiled enzyme was toppled as a standard enzymology control when researchers in the 1970s started uncovering enzymes that loved the heat (1). Identification of a variety of intrinsically hyperstable enzymes from hyperthermophilic organisms, with optimal growth temperatures of 100°C and above, has piqued academic curiosity (e.g., how do these proteins withstand such ‘‘extreme’’ conditions?) and generated considerable interest for their possible applications in biotechnology (2, 3). The real...

  5. Ethylene-forming enzyme of plants

    Energy Technology Data Exchange (ETDEWEB)

    Serebryanyi, A.M.; Krasheninnikova, G.A.; Vakhnina, L.V. [Semenov Inst. of Chemical Physics, Moscow (Russian Federation)

    1995-07-01

    The properties of ethylene-forming enzyme (EFE) (or 1-amino-cyclopropane-1-carboxylic acid oxidase; ACC-oxidase), the terminal enzyme in the synthesis of one of the main plant phytohormones, are reviewed. The properties of the isolated enzyme differ from those in the cell. There are apparently two forms of EFE in cells, one localized in vacuoles and the other in the cytosol. In cells EFE appears to be associated with membranes. 73 refs.

  6. Recent advances in sulfotransferase enzyme activity assays

    OpenAIRE

    Paul, Priscilla; Suwan, Jiraporn; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Sulfotransferases are enzymes that catalyze the transfer of sulfo groups from a donor, for example 3′-phosphoadenosine 5′-phosphosulfate, to an acceptor, for example the amino or hydroxyl groups of a small molecule, xenobiotic, carbohydrate, or peptide. These enzymes are important targets in the design of novel therapeutics for treatment of a variety of diseases. This review examines assays used for this important class of enzyme, paying particular attention to sulfotransferases acting on car...

  7. PURIFICATION OF GLUTAMINASE ENZYME PRODUCED FROM ERWINIA

    OpenAIRE

    PUSHPINDER PAUL

    2013-01-01

    The purpose of this study was to do Purification of the Glutaminase enzyme produced from free cells of Erwinia species at flask level. Glutaminase can be isolated from a number of sources such as plants, animals and microorganisms. Glutaminase is an important enzyme that serves many functions. It plays a key role in the energy and nitrogen metabolism of mammalian cells. Glutaminase is very important food enzyme used in food industries for flavor enhancement. Glutaminase, in combination with o...

  8. PURIFICATION OF GLUTAMINASE ENZYME PRODUCED FROM ERWINIA

    Directory of Open Access Journals (Sweden)

    PUSHPINDER PAUL

    2013-01-01

    Full Text Available The purpose of this study was to do Purification of the Glutaminase enzyme produced from free cells of Erwinia species at flask level. Glutaminase can be isolated from a number of sources such as plants, animals and microorganisms. Glutaminase is an important enzyme that serves many functions. It plays a key role in the energy and nitrogen metabolism of mammalian cells. Glutaminase is very important food enzyme used in food industries for flavor enhancement. Glutaminase, in combination with or as an alternative to asparaginase could be of great significance in enzyme therapy for cancer especially acute lymphocytic leukemia. Glutaminase enzyme was produced from free cells of Erwinia under optimized conditions such as Temperature, pH, Time, Inducer concentrations etc. After production of Glutaminase enzyme, Partial purification of enzyme was done with Ammonium Sulphate precipitation method. After isolation, the Glutaminase enzyme was purified with Gel filtration Chromatography & Ion Exchange chromatography. After purification by both methods, Purified samples were analyzed for enzyme activity & protein content. Enzyme activity was determined by Nessler's method & protein content was determined by Bradford method. It was found that after purification of crude sample by both methods, Gel Filtration chromatography shows maximum enzyme activity and specific activity than the samples purified with Ion Exchange Chromatography. Also %age recovery (97.59% & purification fold (1.70 obtained was found maximum from the samples purified with Gel Filtration Chromatography. From above results it was concluded that Gel filtration method is Better method for the purification of Glutaminase enzyme than Ion exchange Chromatography.

  9. Highly Efficient Self-Replicating RNA Enzymes

    OpenAIRE

    Robertson, Michael P; Joyce, Gerald F.

    2014-01-01

    An RNA enzyme has been developed that catalyzes the joining of oligonucleotide substrates to form additional copies of itself, undergoing self-replication with exponential growth. The enzyme also can cross-replicate with a partner enzyme, resulting in their mutual exponential growth and enabling self-sustained Darwinian evolution. The opportunity for inventive evolution within this synthetic genetic system depends on the diversity of the evolving population, which is limited by the catalytic ...

  10. Evolutionary trajectories of beta-lactamase CTX-M-1 cluster enzymes: predicting antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Angela Novais

    2010-01-01

    Full Text Available Extended-spectrum beta-lactamases (ESBL constitute a key antibiotic-resistance mechanism affecting Gram-negative bacteria, and also an excellent model for studying evolution in real time. A shift in the epidemiology of ESBLs is being observed, which is characterized by the explosive diversification and increase in frequency of the CTX-M-type beta-lactamases in different settings. This provides a unique opportunity for studying a protein evolutionary radiation by the sequential acquisition of specific mutations enhancing protein efficiency and fitness concomitantly. The existence of driver antibiotic molecules favoring protein divergence has been investigated by combining evolutionary analyses and experimental site-specific mutagenesis. Phylogenetic reconstruction with all the CTX-M variants described so far provided a hypothetical evolutionary scenario showing at least three diversification events. CTX-M-3 was likely the enzyme at the origin of the diversification in the CTX-M-1 cluster, which was coincident with positive selection acting on several amino acid positions. Sixty-three CTX-M-3 derivatives containing all combinations of mutations under positively selected positions were constructed, and their phenotypic efficiency was evaluated. The CTX-M-3 diversification process can only be explained in a complex selective landscape with at least two antibiotics (cefotaxime and ceftazidime, indicating the need to invoke mixtures of selective drivers in order to understand the final evolutionary outcome. Under this hypothesis, we found congruent results between the in silico and in vitro analyses of evolutionary trajectories. Three pathways driving the diversification of CTX-M-3 towards the most complex and efficient variants were identified. Whereas the P167S pathway has limited possibilities of further diversification, the D240G route shows a robust diversification network. In the third route, drift may have played a role in the early stages of

  11. 糖尿病足分离的铜绿假单胞菌对氨基糖苷类抗生素耐药机制探讨%Study on aminoglycoside antibiotics resistance of Pseudomonas aeruginosa isolated from diabetic foot infections

    Institute of Scientific and Technical Information of China (English)

    乌洪芳; 孙茜; 李玉珠; 张敏; 孟玲玲; 李代清

    2015-01-01

    Objective To investigate the clinical features, phenotypes and genotypes of Pseudomonas aeruginosa (PA) strains isolated from patients with diabetic foot infection (DFI) resisting to aminoglycosides antibiotics (AmAn). Methods The clinical profiles of 209 DFI patients hospitalized in the Tianjin Metabolic Diseases Hospital were collected and ana⁃lyzed. Forty-one PA strains were identified, and their antibiotic resistance profiles were obtained. The DNAs of PA isolates were extracted and applied to amplifications for several aminoglycosides modifying enzyme genes, including aac(3′)-Ⅰ, aac (3′)-Ⅱ, aac(6′)-Ⅰb, aac(6′)-Ⅱ, ant(2′′)-Ⅰand ant(3′′)-Ⅰby PCR method. Combining with the clinical features and the antibiotic resistance profiles, the relationship between genotypes and phenotypes of the PA strains was analyzed. Results Gram positive bacteria (G+) were the majority of the pathogen with 51.67%detection rate. The total detection rate of PA was 19.62%, listed as the top one pathogenic bacterium among gram negative bacteria (47.67%). There was significant difference in the ratio of ulcer area≥4 cm2 between PA group and non-PA group and G+group. There were significantly higher inci⁃dence rate of ischemic ulcer and osteomyelitis in PA group than those of G+group. There were higher clinical characteristics and ulcer depth (SAD) score, and increased hypersensitive C-reactive protein in PA group than those of G+ group. There were 30 strains of PA being resistant to AmAn (73.17%). The predominant drug resistance gene to AmAn was ant(3′′)-Ⅰ(65.85%), and aac(3′)-Ⅰgene was not found from all PA isolates. Conclusion The detection rate of PA isolated from DFI patients was higher, and patients were with the characteristics of larger, deeper and severe ischemia of ulcer area. The phe⁃nomenon of PA resistant to AmAn was more serious, and ant(3′′)-Ⅰgene identified from PA isolates was the most common resistance gene identified to Am

  12. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  13. Modified kinetics of enzymes interacting with nanoparticles

    Science.gov (United States)

    Díaz, Sebastián. A.; Breger, Joyce C.; Malanoski, Anthony; Claussen, Jonathan C.; Walper, Scott A.; Ancona, Mario G.; Brown, Carl W.; Stewart, Michael H.; Oh, Eunkeu; Susumu, Kimihiro; Medintz, Igor L.

    2015-08-01

    Enzymes are important players in multiple applications, be it bioremediation, biosynthesis, or as reporters. The business of catalysis and inhibition of enzymes is a multibillion dollar industry and understanding the kinetics of commercial enzymes can have a large impact on how these systems are optimized. Recent advances in nanotechnology have opened up the field of nanoparticle (NP) and enzyme conjugates and two principal architectures for NP conjugate systems have been developed. In the first example the enzyme is bound to the NP in a persistent manner, here we find that key factors such as directed enzyme conjugation allow for enhanced kinetics. Through controlled comparative experiments we begin to tease out specific mechanisms that may account for the enhancement. The second system is based on dynamic interactions of the enzymes with the NP. The enzyme substrate is bound to the NP and the enzyme is free in solution. Here again we find that there are many variables , such as substrate positioning and NP selection, that modify the kinetics.

  14. Trehalase: a new pollen enzyme.

    Science.gov (United States)

    Gussin, A E; McCormack, J H; Waung, L Y; Gluckin, D S

    1969-08-01

    Pollen from 5 plant species (Lycopersicon pimpinellifolium Mill., Hermerocallis minor Mill., Galtonia condicans Decne., Camellia japonica L., and Lathyrus odoratus L.) representing 4 families germinated well in media containing trehalose as the sole carbon source. Data are presented indicating that pollen metabolized this disaccharide for germination and subsequent pollen-tube growth; the sugar was not merely an osmoregulator. An inhibitor of trehalase activity depressed germination in trehalose but not in sucrose. Phloridzin dihydrate, an inhibitor of glucose transport, depressed germination in both disaccharides. Biochemical tests demonstrated that a pollen extract was capable of hydrolyzing trehalose to its constituent glucose monomers. Heat inactivation experiments confirmed the presence of a distinct trehalase having a rigid specificity for its substrate. By this method, trehalase activity was completely distinguishable from the activities of other alpha- and beta-glucosidases and beta-galactosidases. Localization data indicated that the enzyme diffused from intact grains and was probably soluble. The presence of its substrate could not be demonstrated in pollen or in stigmatic or stylar tissues. PMID:5379538

  15. The aminoglycoside resistance methyltransferase Sgm impedes RsmF methylation at an adjacent rRNA nucleotide in the ribosomal A site

    DEFF Research Database (Denmark)

    Cubrilo, Sonja; Babić, Fedora; Douthwaite, Stephen;

    2009-01-01

    methylated nucleotides including m(4)Cm1402 and m(5)C1407. Modification at m(5)C1407 by the methyltransferase RsmF is impeded as Sgm gains access to its adjacent G1405 target on the 30S ribosomal subunit. An Sgm mutant (G135A), which is impaired in S-adenosylmethionine binding and confers lower resistance......Ribosome-targeting antibiotics block protein synthesis by binding at functionally important regions of the bacterial rRNA. Resistance is often conferred by addition of a methyl group at the antibiotic binding site within an rRNA region that is already highly modified with several nucleotide...... methylations. In bacterial rRNA, each methylation requires its own specific methyltransferase enzyme, and this raises the question as to how an extra methyltransferase conferring antibiotic resistance can be accommodated and how it can gain access to its nucleotide target within a short and functionally...

  16. Endotoxin contamination of enzyme conjugates used in enzyme-linked immunosorbent assays.

    OpenAIRE

    Bryant, R. E.; Chamovitz, B N; Morse, S A; Apicella, M A; Morthland, V H

    1983-01-01

    The specificity of the enzyme-linked immunosorbent assay(s) is thought to depend on the specificity of the antibody used in the assay system. Therefore, the association of broadly reactive antigens like endotoxin with enzyme conjugates or other enzyme-linked immunosorbent assay reagents has the potential of altering the specificity of reactions in the enzyme-linked immunosorbent assay. Using the Limulus amoebocyte lysate assay, we demonstrated that commercially prepared conjugates of goat ant...

  17. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  18. Enzyme Reactions and Acceptability of Plant Foods.

    Science.gov (United States)

    Palmer, James K.

    1984-01-01

    Provides an overview of enzyme reactions which contribute to the character and acceptability of plant foods. A detailed discussion of polyphenoloxidase is also provided as an example of an enzyme which can markedly affect the character and acceptability of such foods. (JN)

  19. Immobilization to prevent enzyme incompatibility with proteases

    NARCIS (Netherlands)

    Vossenberg, P.; Beeftink, H.H.; Cohen Stuart, M.A.; Tramper, J.

    2011-01-01

    Enzyme incompatibility is a problem in multi-enzyme processes that involve a non-specific protease, such as Alcalase. An example is the one-pot enzymatic synthesis of peptides catalyzed by a lipase and a protease. The incompatibility between lipase B from Candida antarctica (CalB) and Alcalase was s

  20. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  1. Cobalamin- and Corrinoid-Dependent Enzymes

    OpenAIRE

    Matthews, Rowena G.

    2009-01-01

    This chapter will review the literature on cobalamin- and corrinoid-containing enzymes. These enzymes fall into two broad classes, those using methylcobalamin or related methylcorrinoids as prosthetic groups and catalyzing methyltransfer reactions, and those using adenosylcobalamin as the prosthetic group and catalyzing the generation of substrate radicals that in turn undergo rearrangements and/or eliminations.

  2. Application of radiopolymerization for immobilization of enzymes

    International Nuclear Information System (INIS)

    Hydrophilic glass-forming monomers were used in an application of irradiation technology for the immobilization of cellulase and cellobiase. Experiments to observe the effect of additives such as silicates and polyethylene glycol in the enzyme entrapment are reported on. In all cases, enzymatic activity was maintained for more than fifteen batch enzyme reactions. (Author)

  3. A toy quantum analog of enzymes

    CERN Document Server

    Svetlichny, George

    2015-01-01

    We present a quantum system incorporating qualitative aspects of enzyme action in which the possibility of quantum superposition of several conformations of the enzyme-substrate complex is investigated. We present numerical results showing quantum effects that transcend the case of a statistical mixture of conformations.

  4. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  5. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  6. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto;

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3, and...

  7. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    article presents a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance...

  8. Cytochrome P450 enzyme systems in fungi

    NARCIS (Netherlands)

    Brink, H.M. van den; Gorcom, R.F.M. van; Hondel, C.A.M.J.J. van den; Punt, P.J.

    1998-01-01

    The involvement of cytochrome P450 enzymes in many complex fungal bioconversion processes has been characterized in recent years. Accordingly, there is now considerable scientific interest in fungal cytochrome P450 enzyme systems. In contrast to S. cerevisiae, where surprisingly few P450 genes have

  9. Enzyme adsorption at solid-liquid interfaces.

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while lipases ena

  10. Enzyme Activity of Cenococcum geophilum Isolates on Enzyme-specific Solid Media

    OpenAIRE

    Obase, Keisuke; Lee, Sang Yong; Chun, Kun Woo; Lee, Jong Kyu

    2011-01-01

    Enzyme activities of Cenococcum geophilum isolates were examined on enzyme-specific solid media. Deoxyribonuclease, phosphatase, and urease were detected in all isolates, whereas cellulase was not detected in any of the isolates. Variations in enzyme activities of amylase, caseinolysis, gelatinase, lipase, and ribonuclease were observed among isolates.

  11. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda

    2011-07-01

    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  12. Evaluation of pressure tuning of enzymes

    DEFF Research Database (Denmark)

    Naghshineh, Mahsa

    The current industrial technique of pectin production is based on relatively harsh chemical process,which does not allow pectin to be extracted entirely with no damage to its structure. It is also not an environmentally friendly method due to acid usage, production of large amounts of waste and...... high energy consumption. Therefore, searching for an environmentally friendly method of pectin extraction is a task for science and industry. Employment of hydrolytic enzymes may represent a green approach to obtain intact pectin polymer. However, the low stability/activity of enzymes, and low polymer...... yield of enzymatic extraction limits the application of enzyme in pectin production. There is evidence that emerging technology of high hydrostatic pressure processing can result in stabilization and activation of some enzymes. Therefore, the use of high hydrostatic pressure in combination with enzyme...

  13. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all...... enzymes can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence of the...

  14. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  15. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment. PMID:26661585

  16. Evaluation of thermostable enzymes for bioethanol processing

    DEFF Research Database (Denmark)

    Skovgaard, Pernille Anastasia

    of fermentable sugars (glucose) as cellulose is tightly linked to hemicellulose and lignin. Lignocellulose is disrupted during pretreatment, but to degrade cellulose to single sugars, lignocellulolytic enzymes such as cellulases and hemicellulases are needed. Lignocellulolytic enzymes are costly for...... the ioethanol production, but the expenses can be reduced by using thermostable enzymes, which are known for their increased stability and inhibitor olerance. However, the advantage of using thermostable enzymes has not been studied thoroughly and more knowledge is needed for development of bioethanol...... processes. Enzymes are added to the bioethanol process after pretreatment. For an efficient sugar and ethanol yield, the solids content of biomass is normally increased, which results in highly viscous slurries that are difficult to mix. Therefore, the first enzymatic challenge is to ensure rapid reduction...

  17. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.;

    2007-01-01

    A systematic overview is presented of the literature that reports the antifouling (AF) protection of underwater structures via the action of enzymes. The overall aim of this review is to assess the state of the art of enzymatic AF technology, and to highlight the obstacles that have to be overcome...... for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling...... refers to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An...

  18. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic.

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J M; van Hest, Jan C M

    2016-08-14

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. PMID:27407020

  19. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase. PMID:26621459

  20. Enzyme immobilization by means of ultrafiltration techniques.

    Science.gov (United States)

    Scardi, V; Cantarella, M; Gianfreda, L; Palescandolo, R; Alfani, F; Greco, G

    1980-01-01

    Unstirred, plane membrane, ultrafiltration cells have been used as enzymatic reactor units. Because of the concentration polarization phenomena which take place in the system, at steady-state the enzyme is confined (dynamically immobilized) within an extremely narrow region upstream the ultrafiltration membrane. Correspondingly its concentration attains fairly high values. Kinetic studies have been therefore performed under quite unusual experimental conditions in order to better approximate local enzyme concentration levels in immobilized enzyme systems. Studies have been also carried out on the kinetics of enzyme deactivation in the continuous presence of substrate and reaction products. Once the enzyme concentration profile is completely developed, further injection into the system of suitable amounts of an inert proteic macromolecule (albumin polymers) gives rise to the formation of a gel layer onto the ultrafiltration membrane within which the enzyme is entrapped (statically immobilized). The effect of this immobilization technique has been studied as far as the kinetics of the main reaction, the substrate mass transfer resistances and the enzyme stability are concerned. The rejective properties of such gel layers towards enzymatic molecules have been exploited in producing multilayer, multi-enzymatic reactors. PMID:7417597

  1. Expression of lignocellulolytic enzymes in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Mellitzer Andrea

    2012-05-01

    Full Text Available Abstract Background Sustainable utilization of plant biomass as renewable source for fuels and chemical building blocks requires a complex mixture of diverse enzymes, including hydrolases which comprise the largest class of lignocellulolytic enzymes. These enzymes need to be available in large amounts at a low price to allow sustainable and economic biotechnological processes. Over the past years Pichia pastoris has become an attractive host for the cost-efficient production and engineering of heterologous (eukaryotic proteins due to several advantages. Results In this paper codon optimized genes and synthetic alcohol oxidase 1 promoter variants were used to generate Pichia pastoris strains which individually expressed cellobiohydrolase 1, cellobiohydrolase 2 and beta-mannanase from Trichoderma reesei and xylanase A from Thermomyces lanuginosus. For three of these enzymes we could develop strains capable of secreting gram quantities of enzyme per liter in fed-batch cultivations. Additionally, we compared our achieved yields of secreted enzymes and the corresponding activities to literature data. Conclusion In our experiments we could clearly show the importance of gene optimization and strain characterization for successfully improving secretion levels. We also present a basic guideline how to correctly interpret the interplay of promoter strength and gene dosage for a successful improvement of the secretory production of lignocellulolytic enzymes in Pichia pastoris.

  2. Data mining of enzymes using specific peptides

    Directory of Open Access Journals (Sweden)

    Lavi Yair

    2009-12-01

    Full Text Available Abstract Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs that are unique to specific branches of the Enzyme Commission (EC functional classification. We devise the Data Mining of Enzymes (DME methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes and true-negatives (non-enzymes, depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence. DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative

  3. Modeling amperometric biosensors based on allosteric enzymes

    Directory of Open Access Journals (Sweden)

    Liutauras Ričkus

    2013-09-01

    Full Text Available Computational modeling of a biosensor with allosteric enzyme layer was investigated in this study. The operation of the biosensor is modeled using non-stationary reaction-diffusion equations. The model involves three regions: the allosteric enzyme layer where the allosteric enzyme reactions as well as then mass transport by diffusion take place, the diffusion region where the mass transport by diffusion and non-enzymatic reactions take place and the convective region in which the analyte concentration is maintained constant. The biosensor response on dependency substrate concentration, cooperativity coefficient and the diffusion layer thickness on the same parameters have been studied.

  4. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s......PLA2), are only activated at the interface between water and membrane surfaces, where they lead to a break-down of the lipid molecules into lysolipids and free fatty acids. The activation is critically dependent on the physical properties of the lipid-membrane substrate. A topical review is given of...

  5. Dimeric assembly of enterocyte brush border enzymes

    DEFF Research Database (Denmark)

    Danielsen, E M

    1994-01-01

    appearance of the liposome-reconstituted enzyme [Norén et al. (1986) J. Biol. Chem. 261, 12306-12309], showing only the inner, membrane-anchored domains of the monomers to be in close contact with one another while the outer domains are far apart. In contrast to the other brush border enzymes studied......The noncovalent, dimeric assembly of small intestinal brush border enzymes was studied by sedimentation analysis in density gradients of extracts of pulse-labeled pig jejunal mucosal explants. Like aminopeptidase N (EC 3.4.11.2), sucrase-isomaltase (EC 3.2.1.48-10), aminopeptidase A (EC 3...

  6. Process for preparing multilayer enzyme coating on a fiber

    Science.gov (United States)

    Kim, Jungbae; Kwak, Ja Hun; Grate, Jay W.

    2009-11-03

    A process for preparing high stability, high activity biocatalytic materials is disclosed and processes for using the same. The process involves coating of a material or fiber with enzymes and enzyme aggregate providing a material or fiber with high biocatalytic activity and stability useful in heterogeneous environments. In one illustrative approach, enzyme "seeds" are covalently attached to polymer nanofibers followed by treatment with a reagent that crosslinks additional enzyme molecules to the seed enzymes forming enzyme aggregates thereby improving biocatalytic activity due to increased enzyme loading and enzyme stability. This approach creates a useful new biocatalytic immobilized enzyme system with potential applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  7. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  8. Potato Peroxidase for the Study of Enzyme Properties.

    Science.gov (United States)

    Shamaefsky, Brian R.

    1993-01-01

    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)

  9. Determination of enzyme thermal parameters for rational enzyme engineering and environmental/evolutionary studies.

    Science.gov (United States)

    Lee, Charles K; Monk, Colin R; Daniel, Roy M

    2013-01-01

    Of the two independent processes by which enzymes lose activity with increasing temperature, irreversible thermal inactivation and rapid reversible equilibration with an inactive form, the latter is only describable by the Equilibrium Model. Any investigation of the effect of temperature upon enzymes, a mandatory step in rational enzyme engineering and study of enzyme temperature adaptation, thus requires determining the enzymes' thermodynamic parameters as defined by the Equilibrium Model. The necessary data for this procedure can be collected by carrying out multiple isothermal enzyme assays at 3-5°C intervals over a suitable temperature range. If the collected data meet requirements for V max determination (i.e., if the enzyme kinetics are "ideal"), then the enzyme's Equilibrium Model parameters (ΔH eq, T eq, ΔG (‡) cat, and ΔG (‡) inact) can be determined using a freely available iterative model-fitting software package designed for this purpose.Although "ideal" enzyme reactions are required for determination of all four Equilibrium Model parameters, ΔH eq, T eq, and ΔG (‡) cat can be determined from initial (zero-time) rates for most nonideal enzyme reactions, with substrate saturation being the only requirement. PMID:23504427

  10. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g

  11. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  12. Supramolecular Tectonics for Enzyme-like Reagents

    Institute of Scientific and Technical Information of China (English)

    MAO; LuYuan

    2001-01-01

    The enzyme-likes and bioactive species were closely related with the life phenomena and served as the reagent of bioassy1,2. In present works, the flow cytometry (FCM) and rapid-scanning stopped-flow (RSSF) spectroscopy combine with the stopped-flow difference UV/Vis spectra, FT-IR and other methods of assay, being used to study the biomimetic reaction and enzyme mimic. Based on catalytic kinetics of enzyme reaction3,4, the reaction mechanisms of the enzyme-likes had been studied and some new methods of kinetic determination were proposed. The study and methods not only provided the basic theoretical models for the life science, but also widened the application fields of biomimetic and analytical chemistry. The main contents of our works and the supramolecular models can be described as follows:  ……

  13. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio

    2014-01-01

    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  14. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  15. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    Science.gov (United States)

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  16. An enzyme immunoassay for plasma betamethasone

    International Nuclear Information System (INIS)

    A sensitive enzyme immunoassay for plasma betamethasone was developed using betamethasone-3-(O-carboxymethyl)oxime-beta-D-galactosidase conjugate as a labelled antigen and 4-methylumbelliferyl-beta-D-galactoside as a fluorescence substrate. The performances of the enzyme immunoassay were compared with that of a radioimmunoassay using 3H-betamethasone and the same antiserum. The minimal detectable level for the enzyme immunoassay was 0.15 pg/tube or 0.15 ng/ml of plasma, which was remarkably more sensitive than the radioimmunoassay level of 10 pg/tube or 2 ng/ml of plasma. The specificity was sufficient, in particular, the cross reactivity of cortisol as 0.008%. However, the precision of the enzyme immunoassay was inferior to that of the radioimmunoassay

  17. An enzyme immunoassay for plasma betamethasone

    Energy Technology Data Exchange (ETDEWEB)

    Kominami, G.; Yamauchi, A.; Ishihara, S.; Kono, M.

    1981-03-01

    A sensitive enzyme immunoassay for plasma betamethasone was developed using betamethasone-3-(O-carboxymethyl)oxime-beta-D-galactosidase conjugate as a labelled antigen and 4-methylumbelliferyl-beta-D-galactoside as a fluorescence substrate. The performances of the enzyme immunoassay were compared with that of a radioimmunoassay using /sup 3/H-betamethasone and the same antiserum. The minimal detectable level for the enzyme immunoassay was 0.15 pg/tube or 0.15 ng/ml of plasma, which was remarkably more sensitive than the radioimmunoassay level of 10 pg/tube or 2 ng/ml of plasma. The specificity was sufficient, in particular, the cross reactivity of cortisol as 0.008%. However, the precision of the enzyme immunoassay was inferior to that of the radioimmunoassay.

  18. ZnO-Based Amperometric Enzyme Biosensors

    Directory of Open Access Journals (Sweden)

    Helong Jiang

    2010-02-01

    Full Text Available Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol, respectively. Moreover, recent developments in enzyme electrochemical biosensors based on ZnO nanomaterials are reviewed with an emphasis on the fabrications and features of ZnO, approaches for biosensor construction (e.g., modified electrodes and enzyme immobilization and biosensor performances.

  19. Enzymes improve ECF bleaching of pulp

    OpenAIRE

    Lachenal, D.; Bajpai, P. K.; S P Mishra; Sharma, N.; Anand, A; Bajpai, P.

    2006-01-01

    The delignification efficiency of different laccase enzymes was examined on the eucalyptus Kraft pulp. The laccase enzyme from Trametes versicolor showing the highest delignification efficiency was selected and used in the elemental chlorine-free bleaching sequence for improving the pulp bleachability. An appreciable reduction in chlorine dioxide consumption was also obtained. Further reduction in chlorine dioxide consumption was obtained when the same laccase treated pulp was subjected to an...

  20. Enzymes as catalysts in polymer chemistry

    OpenAIRE

    Sinigoi, Loris

    2011-01-01

    The use of enzymes in synthetic chemistry is attracting the interest of many researchers thanks to their extraordinary efficiency under mild conditions, high stereo- regio- and chemoselectivity and low environmental impact. Their application in the field of polymer chemistry has provided new synthetic strategies for useful polymers. The advantages coming from the use of enzymes are mainly: i) the possibility to synthesize polymers with novel properties and difficult to produce by conventional...

  1. Measuring enzyme activity in single cells

    OpenAIRE

    Kovarik, Michelle L.; Allbritton, Nancy L.

    2011-01-01

    Seemingly identical cells can differ in their biochemical state, function and fate, and this variability plays an increasingly recognized role in organism-level outcomes. Cellular heterogeneity arises in part from variation in enzyme activity, which results from interplay between biological noise and multiple cellular processes. As a result, single-cell assays of enzyme activity, particularly those that measure product formation directly, are crucial. Recent innovations have yielded a range o...

  2. Computer-based studies on enzyme catalysis

    OpenAIRE

    de Ridder, L.

    2000-01-01

    Theoretical simulations are becoming increasingly important for our understanding of how enzymes work. The aim of the research presented in this thesis is to contribute to this development by applying various computational methods to three enzymes of theβ-ketoadipate pathway, and to validate the models obtained by means of quantitative structure-activity relationships (QSAR). The models and the resulting QSARs provide valuable mechanistic information about the relevant (rate-limiting) steps i...

  3. Controlling reaction specificity in pyridoxal phosphate enzymes

    OpenAIRE

    Michael D Toney

    2011-01-01

    Pyridoxal 5'-phosphate enzymes are ubiquitous in the nitrogen metabolism of all organisms. They catalyze a wide variety of reactions including racemization, transamination, decarboxylation, elimination, retro-aldol cleavage, Claisen condensation, and others on substrates containing an amino group, most commonly α-amino acids. The wide variety of reactions catalyzed by PLP enzymes is enabled by the ability of the covalent aldimine intermediate formed between substrate and PLP to stabilize carb...

  4. Microbial Enzymes: Tools for Biotechnological Processes

    OpenAIRE

    Jose L. Adrio; Demain, Arnold L.

    2014-01-01

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity an...

  5. Protein engineering of enzymes for process applications

    DEFF Research Database (Denmark)

    Woodley, John M

    2013-01-01

    Scientific progress in the field of enzyme modification today enables the opportunity to tune a given biocatalyst for a specific industrial application. Much work has been focused on extending the substrate repertoire and altering selectivity. Nevertheless, it is clear that many new forthcoming...... opportunities will be targeted on modification to enable process application. This article discusses the challenges involved in enzyme modification focused on process requirements, such as the need to fulfill reaction thermodynamics, specific activity under the required conditions, kinetics at required...

  6. Enzyme-driven mechanisms in biocorrosion

    OpenAIRE

    Basséguy, Régine

    2007-01-01

    Objectives (abstract of presentation): Recent works carried out in our team concerning enzymes and biocorrosion are presented at the meeting. For aerobic conditions, the direct catalysis of the reduction of oxygen on steel by enzymes or porphyrin was proved and a local electrochemical analysis technique (SVET) was developed to visualize the localization of the catalysis. On anaerobic conditions, the influence of phosphate species and other weak acids on the water reduction on steel was shown....

  7. Controlled enzyme catalyzed heteropolysaccharide degradation:Xylans

    OpenAIRE

    Rasmussen, Louise Enggaard; Meyer, Anne S.

    2011-01-01

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocompo...

  8. Computer Aided Enzyme Design and Catalytic Concepts

    OpenAIRE

    Frushicheva, Maria P.; Mills, Matthew J. L.; Schopf, Patrick; Singh, Manoj K.; Warshel, Arieh

    2014-01-01

    Gaining a deeper understanding of enzyme catalysis is of great practical and fundamental importance. Over the years it has become clear that despite advances made in experimental mutational studies, a quantitative understanding of enzyme catalysis will not be possible without the use of computer modeling approaches. While we believe that electrostatic preorganization is by far the most important catalytic factor, convincing the wider scientific community of this may require the demonstration ...

  9. Computationally designed libraries for rapid enzyme stabilization

    OpenAIRE

    Wijma, Hein J.; Floor, Robert J.; Jekel, Peter A.; Baker, David; Marrink, Siewert J.; Janssen, Dick B.

    2014-01-01

    The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants of the mesostable enzyme limonene epoxide hydrolase. First, point mutations were selected if they significantly improved the predicted free energy of protein folding. Disulfide bonds were designed u...

  10. Enzymes: The possibility of production and applications

    OpenAIRE

    Petronijević Živomir B.

    2003-01-01

    Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price dec...

  11. Semisupervised Gaussian Process for Automated Enzyme Search.

    Science.gov (United States)

    Mellor, Joseph; Grigoras, Ioana; Carbonell, Pablo; Faulon, Jean-Loup

    2016-06-17

    Synthetic biology is today harnessing the design of novel and greener biosynthesis routes for the production of added-value chemicals and natural products. The design of novel pathways often requires a detailed selection of enzyme sequences to import into the chassis at each of the reaction steps. To address such design requirements in an automated way, we present here a tool for exploring the space of enzymatic reactions. Given a reaction and an enzyme the tool provides a probability estimate that the enzyme catalyzes the reaction. Our tool first considers the similarity of a reaction to known biochemical reactions with respect to signatures around their reaction centers. Signatures are defined based on chemical transformation rules by using extended connectivity fingerprint descriptors. A semisupervised Gaussian process model associated with the similar known reactions then provides the probability estimate. The Gaussian process model uses information about both the reaction and the enzyme in providing the estimate. These estimates were validated experimentally by the application of the Gaussian process model to a newly identified metabolite in Escherichia coli in order to search for the enzymes catalyzing its associated reactions. Furthermore, we show with several pathway design examples how such ability to assign probability estimates to enzymatic reactions provides the potential to assist in bioengineering applications, providing experimental validation to our proposed approach. To the best of our knowledge, the proposed approach is the first application of Gaussian processes dealing with biological sequences and chemicals, the use of a semisupervised Gaussian process framework is also novel in the context of machine learning applied to bioinformatics. However, the ability of an enzyme to catalyze a reaction depends on the affinity between the substrates of the reaction and the enzyme. This affinity is generally quantified by the Michaelis constant KM

  12. Enzyme Scouring of Cotton Fabrics: A Review

    OpenAIRE

    Mojsov, Kiro

    2012-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. Due to the ever-growing costs for water and energy worldwide investigations are carriedout to substitute conventional chemical textile processes by environment-friendly andeconomically attractive bioprocesses using enzymes. Enzymes are used in a broad range of processes in the textileindustry: scouring, bleachclean-up, desizing, denim abrasion andpolishing. The conventional scourin...

  13. Enzymes in textile industry: a review

    OpenAIRE

    Mojsov, Kiro

    2014-01-01

    Textile processing is a growing industry that traditionally has used a lot of water, energy and harsh chemicals. Due to the ever-growing costs for water and energy worldwide investigations are carried out to substitute conventional chemical textile processes by environment-friendly and economically attractive bioprocesses using enzymes. The enzymes used in the textile field are amylases, catalase, and laccase which are used to removing the starch, degrading excess hydrogen peroxide, bleaching...

  14. Lignolytic Enzymes Production from Selected Mushrooms

    OpenAIRE

    H.M. Shantaveera Swamy; Ramalingappa

    2015-01-01

    In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninoly...

  15. Industrial Fungal Enzymes: An Occupational Allergen Perspective

    OpenAIRE

    Green, Brett J.; Beezhold, Donald H.

    2011-01-01

    Occupational exposure to high-molecular-weight allergens is a risk factor for the development and pathogenesis of IgE-mediated respiratory disease. In some occupational environments, workers are at an increased risk of exposure to fungal enzymes used in industrial production. Fungal enzymes have been associated with adverse health effects in the work place, in particular in baking occupations. Exposure-response relationships have been demonstrated, and atopic workers directly handling fungal ...

  16. Enzyme conductometric biosensor for maltose determination

    OpenAIRE

    Dzyadevych S. V.; Soldatkin O. O.; Saiapina O. Y.; Pyeshkova V. M.

    2009-01-01

    Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase) immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1...

  17. ZnO-Based Amperometric Enzyme Biosensors

    OpenAIRE

    Helong Jiang; Baoping Wang; Xiaobing Zhang; Zhiwei Zhao; Wei Lei

    2010-01-01

    Nanostructured ZnO with its unique properties could provide a suitable microenvironment for immobilization of enzymes while retaining their biological activity, and thus lead to an expanded use of this nanomaterial for the construction of electrochemical biosensors with enhanced analytical performance. ZnO-based enzyme electrochemical biosensors are summarized in several tables for an easy overview according to the target biosensing analyte (glucose, hydrogen peroxide, phenol and cholesterol)...

  18. Nanodevices for the immobilization of therapeutic enzymes.

    Science.gov (United States)

    Bosio, Valeria E; Islan, Germán A; Martínez, Yanina N; Durán, Nelson; Castro, Guillermo R

    2016-06-01

    Therapeutic enzymes are one of the most promising applications of this century in the field of pharmaceutics. Biocatalyst properties can be improved by enzyme immobilization on nano-objects, thereby increasing stability and reusability and also enhancing the targeting to specific tissues and cells. Therapeutic biocatalyst-nanodevice complexes will provide new tools for the diagnosis and treatment of old and newly emerging pathologies. Among the advantages of this approach are the wide span and diverse range of possible materials and biocatalysts that promise to make the matrix-enzyme combination a unique modality for therapeutic delivery. This review focuses on the most significant techniques and nanomaterials used for enzyme immobilization such as metallic superparamagnetic, silica, and polymeric and single-enzyme nanoparticles. Finally, a review of the application of these nanodevices to different pathologies and modes of administration is presented. In short, since therapeutic enzymes constitute a highly promising alternative for treating a variety of pathologies more effectively, this review is aimed at providing the comprehensive summary needed to understand and improve this burgeoning area. PMID:25641329

  19. Enzyme activity in the crowded milieu.

    Directory of Open Access Journals (Sweden)

    Tobias Vöpel

    Full Text Available The cytosol of a cell is a concentrated milieu of a variety of different molecules, including small molecules (salts and metabolites and macromolecules such as nucleic acids, polysaccharides, proteins and large macromolecular complexes. Macromolecular crowding in the cytosolic environment is proposed to influence various properties of proteins, including substrate binding affinity and enzymatic activity. Here we chose to use the synthetic crowding agent Ficoll, which is commonly used to mimic cytosolic crowding conditions to study the crowding effect on the catalytic properties of glycolytic enzymes, namely phosphoglycerate kinase, glyceraldehyde 3-phosphate dehydrogenase, and acylphosphatase. We determined the kinetic parameters of these enzymes in the absence and in the presence of the crowding agent. We found that the Michaelis constant, K(m, and the catalytic turnover number, k(cat, of these enzymes are not perturbed by the presence of the crowding agent Ficoll. Our results support earlier findings which suggested that the Michaelis constant of certain enzymes evolved in consonance with the substrate concentration in the cell to allow effective enzyme function in bidirectional pathways. This conclusion is further supported by the analysis of nine other enzymes for which the K(m values in the presence and absence of crowding agents have been measured.

  20. Enzymes for Enhanced Oil Recovery (EOR)

    Energy Technology Data Exchange (ETDEWEB)

    Nasiri, Hamidreza

    2011-04-15

    Primary oil recovery by reservoir pressure depletion and secondary oil recovery by waterflooding usually result in poor displacement efficiency. As a consequence there is always some trapped oil remaining in oil reservoirs. Oil entrapment is a result of complex interactions between viscous, gravity and capillary forces. Improving recovery from hydrocarbon fields typically involves altering the relative importance of the viscous and capillary forces. The potential of many EOR methods depends on their influence on fluid/rock interactions related to wettability and fluid/fluid interactions reflected in IFT. If the method has the potential to change the interactions favorably, it may be considered for further investigation, i.e. core flooding experiment, pilot and reservoir implementation. Enzyme-proteins can be introduced as an enhanced oil recovery method to improve waterflood performance by affecting interactions at the oil-water-rock interfaces. An important part of this thesis was to investigate how selected enzymes may influence wettability and capillary forces in a crude oil-brine-rock system, and thus possibly contribute to enhanced oil recovery. To investigate further by which mechanisms selected enzyme-proteins may contribute to enhance oil recovery, groups of enzymes with different properties and catalytic functions, known to be interfacially active, were chosen to cover a wide range of possible effects. These groups include (1) Greenzyme (GZ) which is a commercial EOR enzyme and consists of enzymes and stabilizers (surfactants), (2) The Zonase group consists of two types of pure enzyme, Zonase1 and Zonase2 which are protease enzymes and whose catalytic functions are to hydrolyze (breakdown) peptide bonds, (3) The Novozyme (NZ) group consists of three types of pure enzyme, NZ2, NZ3 and NZ6 which are esterase enzymes and whose catalytic functions are to hydrolyze ester bonds, and (4) Alpha-Lactalbumin ( -La) which is an important whey protein. The effect of

  1. Immobilization of enzyme on a polymer surface

    Science.gov (United States)

    Shen, Lei; Cheng, Kenneth Chun Kuen; Schroeder, McKenna; Yang, Pei; Marsh, E. Neil G.; Lahann, Joerg; Chen, Zhan

    2016-06-01

    We successfully immobilized enzymes onto polymer surfaces via covalent bonds between cysteine groups of the enzyme and dibromomaleimide functionalities present at the polymer surface. In this work, we used nitroreductase (NfsB) as a model enzyme molecule. The polymers were prepared by chemical vapor deposition (CVD) polymerization, resulting in surfaces with dibromomaleimide groups. NfsB variants were engineered so that each NfsB molecule only has one cysteine group on the enzyme surface. Two different NfsB constructs were studied, with cysteines at the positions of H360 and V424, respectively. A combination of sum frequency generation (SFG) vibrational and attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopies were used to deduce the orientation of the immobilized enzymes on the surface. It was found that the orientation of the immobilized enzymes is controlled by the position of the cysteine residue in the protein. The NfsB H360C construct exhibited a similar orientational behavior on the polymer surface as compared to that on the self-assembled monolayer surface, but the NsfB V424C construct showed markedly different orientations on the two surfaces.

  2. A structural view of the antibiotic degradation enzyme NDM-1 from a superbug

    OpenAIRE

    Guo, Yu; Wang, Jing; Niu, Guojun; Shui, Wenqing; Sun, Yuna; Zhou, Honggang; Zhang, Yaozhou; Yang, Cheng; Lou, Zhiyong; Rao, Zihe

    2011-01-01

    Gram-negative Enterobacteriaceae with resistance to carbapenem conferred by New Delhi metallo-β-lactamase 1 (NDM-1) are a type of newly discovered antibioticresistant bacteria. The rapid pandemic spread of NDM-1 bacteria worldwide (spreading to India, Pakistan, Europe, America, and Chinese Taiwan) in less than 2 months characterizes these microbes as a potentially major global health problem. The drug resistance of NDM-1 bacteria is largely due to plasmids containing the blaNDM-1 gene shuttli...

  3. Evolutionary Trajectories of Beta-Lactamase CTX-M-1 Cluster Enzymes: Predicting Antibiotic Resistance

    OpenAIRE

    Angela Novais; Iñaki Comas; Fernando Baquero; Rafael Cantón; Coque, Teresa M.; Andrés Moya; Fernando González-Candelas; Juan-Carlos Galán

    2010-01-01

    Extended-spectrum beta-lactamases (ESBL) constitute a key antibiotic-resistance mechanism affecting Gram-negative bacteria, and also an excellent model for studying evolution in real time. A shift in the epidemiology of ESBLs is being observed, which is characterized by the explosive diversification and increase in frequency of the CTX-M-type beta-lactamases in different settings. This provides a unique opportunity for studying a protein evolutionary radiation by the sequential acquisition of...

  4. The aminoglycoside antibiotic kanamycin damages DNA bases in Escherichia coli: caffeine potentiates the DNA-damaging effects of kanamycin while suppressing cell killing by ciprofloxacin in Escherichia coli and Bacillus anthracis.

    Science.gov (United States)

    Kang, Tina Manzhu; Yuan, Jessica; Nguyen, Angelyn; Becket, Elinne; Yang, Hanjing; Miller, Jeffrey H

    2012-06-01

    The distribution of mutants in the Keio collection of Escherichia coli gene knockout mutants that display increased sensitivity to the aminoglycosides kanamycin and neomycin indicates that damaged bases resulting from antibiotic action can lead to cell death. Strains lacking one of a number of glycosylases (e.g., AlkA, YzaB, Ogt, KsgA) or other specific repair proteins (AlkB, PhrB, SmbC) are more sensitive to these antibiotics. Mutants lacking AlkB display the strongest sensitivity among the glycosylase- or direct lesion removal-deficient strains. This perhaps suggests the involvement of ethenoadenine adducts, resulting from reactive oxygen species and lipid peroxidation, since AlkB removes this lesion. Other sensitivities displayed by mutants lacking UvrA, polymerase V (Pol V), or components of double-strand break repair indicate that kanamycin results in damaged base pairs that need to be removed or replicated past in order to avoid double-strand breaks that saturate the cellular repair capacity. Caffeine enhances the sensitivities of these repair-deficient strains to kanamycin and neomycin. The gene knockout mutants that display increased sensitivity to caffeine (dnaQ, holC, holD, and priA knockout mutants) indicate that caffeine blocks DNA replication, ultimately leading to double-strand breaks that require recombinational repair by functions encoded by recA, recB, and recC, among others. Additionally, caffeine partially protects cells of both Escherichia coli and Bacillus anthracis from killing by the widely used fluoroquinolone antibiotic ciprofloxacin. PMID:22391551

  5. Characterization of class 1 integrons associated with R-plasmids in clinical Aeromonas salmonicida isolates from various geographical areas

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Bruun, Morten Sichlau; Larsen, J.L.;

    2001-01-01

    Class 1 integrons were found in 26 of 40 antibiotic-resistant isolates of the fish pathogen Aeromonas salmonicida from Northern Europe and North America. Three different dhfr genes, conferring trimethoprim resistance, and one ant(3 " )1a aminoglycoside resistance gene were identified as gene...

  6. Bio-inspired enzyme entrapment and cross-linking approaches as alternative tools for enzyme immobilization

    OpenAIRE

    Ardao Palacios, Inés; Demarche, Philippe; Nair, Rakesh; Agathos, Spiros N.; International Workshop on New and Synthetic Bioproduction Systems

    2012-01-01

    Enzyme immobilization has contributed to the widespread use of enzymes as catalysts in many industrial applications mainly due to stability enhancement and easy reuse of the catalysts, which contributes to a reduction of the process costs. However, enzyme immobilization still suffers from different operational constraints, such as activity losses during immobilization and mass-transfer limitations. Novel immobilization techniques with the goal of overcoming these limitations are increasingly ...

  7. Nature's inordinate fondness for metabolic enzymes: why metabolic enzyme loci are so frequently targets of selection.

    Science.gov (United States)

    Marden, James H

    2013-12-01

    Metabolic enzyme loci were some of the first genes accessible for molecular evolution and ecology research. New technologies now make the whole genome, transcriptome or proteome readily accessible, allowing unbiased scans for loci exhibiting significant differences in allele frequency or expression level and associated with phenotypes and/or responses to natural selection. With surprising frequency and in many cases in proportions greater than chance relative to other genes, glycolysis and TCA cycle enzyme loci appear among the genes with significant associations in these studies. Hence, there is an ongoing need to understand the basis for fitness effects of metabolic enzyme polymorphisms. Allele-specific effects on the binding affinity and catalytic rate of individual enzymes are well known, but often of uncertain significance because metabolic control theory and in vivo studies indicate that many individual metabolic enzymes do not affect pathway flux rate. I review research, so far little used in evolutionary biology, showing that metabolic enzyme substrates affect signalling pathways that regulate cell and organismal biology, and that these enzymes have moonlighting functions. To date there is little knowledge of how alleles in natural populations affect these phenotypes. I discuss an example in which alleles of a TCA enzyme locus associate with differences in a signalling pathway and development, organismal performance, and ecological dynamics. Ultimately, understanding how metabolic enzyme polymorphisms map to phenotypes and fitness remains a compelling and ongoing need for gaining robust knowledge of ecological and evolutionary processes. PMID:24106889

  8. Hierarchically Nanoporous Bioactive Glasses for High Efficiency Immobilization of Enzymes

    DEFF Research Database (Denmark)

    He, W.; Min, D.D.; Zhang, X.D.;

    2014-01-01

    provide a simple, cost-effective way to enhance catalytic activity of directly immobilized enzyme. Its unique chemical surface properties and hierarchical meso/macroporous structures lead to highly efficient catalytic performances of the directly immobilized enzymes. The enzyme molecules were...... spontaneously entrapped into the highly curved macropores (200–500 nm) via multipoint metal ion binding in electrical double layers. Hence, the enzyme activity and enzyme loading were enhanced, the cost of enzyme use was reduced, showing higher thermal and storage stabilities than free enzyme. The reactant...... with advanced properties is expected to be utilized as a solid support for any enzyme for bioconversion, bioremediation, biosensors and drugs....

  9. Functional representation of enzymes by specific peptides.

    Directory of Open Access Journals (Sweden)

    Vered Kunik

    2007-08-01

    Full Text Available Predicting the function of a protein from its sequence is a long-standing goal of bioinformatic research. While sequence similarity is the most popular tool used for this purpose, sequence motifs may also subserve this goal. Here we develop a motif-based method consisting of applying an unsupervised motif extraction algorithm (MEX to all enzyme sequences, and filtering the results by the four-level classification hierarchy of the Enzyme Commission (EC. The resulting motifs serve as specific peptides (SPs, appearing on single branches of the EC. In contrast to previous motif-based methods, the new method does not require any preprocessing by multiple sequence alignment, nor does it rely on over-representation of motifs within EC branches. The SPs obtained comprise on average 8.4 +/- 4.5 amino acids, and specify the functions of 93% of all enzymes, which is much higher than the coverage of 63% provided by ProSite motifs. The SP classification thus compares favorably with previous function annotation methods and successfully demonstrates an added value in extreme cases where sequence similarity fails. Interestingly, SPs cover most of the annotated active and binding site amino acids, and occur in active-site neighboring 3-D pockets in a highly statistically significant manner. The latter are assumed to have strong biological relevance to the activity of the enzyme. Further filtering of SPs by biological functional annotations results in reduced small subsets of SPs that possess very large enzyme coverage. Overall, SPs both form a very useful tool for enzyme functional classification and bear responsibility for the catalytic biological function carried out by enzymes.

  10. Trametes suaveolens as ligninolytic enzyme producer

    Directory of Open Access Journals (Sweden)

    Knežević Aleksandar

    2013-01-01

    Full Text Available Species of the genus Trametes represent one of the most efficient lignin-degraders which can be attributed to a well developed ligninolytic enzyme system. Current trends are screening of ability of new species to produce these enzymes, as well as the optimization of conditions for their overproduction. Therefore, the aim of the study was to evaluate the potential of T. suaveolens to synthesize laccase and Mn-oxidizing peroxidases during fermentation of the selected plant raw materials. Level of enzyme activities was measured on 7, 10 and 14th day of submersion, as well as the solid-state fermentation of wheat straw and oak sawdust in the presence of NH4NO3 in previously determined optimal nitrogen concentration of 25 mM. The enzyme activity was determined spectrophotometrically using ABTS and phenol red as the substrates. The highest level of laccase activity (1087.1 U/L was noted after 7 days of wheat straw solid-state fermentation, while during the submerged cultivation the production of the enzyme was not noted. Submerged cultivation in oak sawdust-enriched medium was the optimal for activity of Mn-dependent peroxidase (1767.7 U/L on day 14 and Mn-independent peroxidase (1113.7 U/L on day 7. Introduction of T. suaveolens to produce ligninolytic enzyme represented the base for further study, as well as the determination of relation between enzyme activity and rate of lignin degradation. It could lead to greater possibility of fungal species selection with high delignification capacity, which could take participation in sustainable production of food, feed, fibres, and energy, environmentally friendly pollution prevention, and bioremediation.

  11. Enzyme and microbial sensors for environmental monitoring

    Science.gov (United States)

    Wollenberger, U.; Neumann, B.; Scheller, Frieder W.

    1993-03-01

    Biosensors employing the biocatalyst on a different level of integration have been developed for monitoring environmental pollution. These probes range from laboratory specimen to commercial detectors applied to analyzers. This paper presents a selection of recent developments on amperometric enzyme and microbial biosensors. A monoenzymatic bulk type carbon electrode is described for biosensing organic hydroperoxides in aqueous solutions. Here, peroxidase is immobilized within the electrode body and the direct electron transfer between electrode and enzyme is measured. Both, reversible and irreversible inhibitors of acetylcholinesterase have been quantified by using a kinetically controlled acetylcholine enzyme sequence electrode. The inhibitory effect of pesticides such as butoxycarboxime, dimethoate, and trichlorfon could be quantified within 6 min in micrometers olar concentrations. Different multi-enzyme electrodes have been developed for the determination of inorganic phosphate. These sensors represent examples of sequentially acting enzymes in combination with enzymatic analyte recycling. Using this type of amplification nanomolar concentrations could be measured. A very fast responding microbial sensor for biological oxygen demand has been developed by immobilizing Trichosporon cutaneum onto an oxygen electrode. With this whole cell sensor waste water can be assayed with a sample frequency of 20 per hour and a working stability of more than 30 days.

  12. Soil Enzyme Activities with Greenhouse Subsurface Irrigation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yu-Long; WANG Yao-Sheng

    2006-01-01

    Various environmental conditions determine soil enzyme activities, which are important indicators for changes of soil microbial activity, soil fertility, and land quality. The effect of subsurface irrigation scheduling on activities of three soil enzymes (phosphatase, urease, and catalase) was studied at five depths (0-10, 10-20, 20-30, 30-40, and 40-60 cm) of a tomato greenhouse soil. Irrigation was scheduled when soil water condition reached the maximum allowable depletion(MAD) designed for different treatments (-10, -16, -25, -40, and -63 kPa). Results showed that soil enzyme activities had significant responses to the irrigation scheduling during the period of subsurface irrigation. The neutral phosphatase activity and the catalase activity were found to generally increase with more frequent irrigation (MAD of -10 and -16kPa). This suggested that a higher level of water content favored an increase in activity of these two enzymes. In contrast,the urease activity decreased under irrigation, with less effect for MAD of -40 and -63 kPa. This implied that relatively wet soil conditions were conducive to retention of urea N, but relatively dry soil conditions could result in increasing loss of urea N. Further, this study revealed that soil enzyme activities could be alternative natural bio-sensors for the effect of irrigation on soil biochemical reactions and could help optimize irrigation management of greenhouse crop production.

  13. Structure/function relationships in cellulolytic enzymes

    Institute of Scientific and Technical Information of China (English)

    Marc Claeyssens

    2004-01-01

    @@ Cellulose and hemicellulose (mostly xylan), together with lignin, are the major polymeric constituents of plant cell walls and from the largest reservoir of fixed carbon in nature. The enzymatic hydrolysis of polymeric substances by extracellular enzymes, such as cellulases, hemicellulases and laccases, is preferred to chemical depolymerisation to avoid the production of toxic by-products and waste that are expensive to treat. The monosaccharides released through enzymatic hydrolysis can subsequently be microbially converted to commercial commodities, such as bio-ethanol (fuel extender) or microbial protein as feed supplements. The individual depolymerisering enzymes used, such as cellulases,xylanases and laccases, also have industrial application in (i) biobleaching in the paper and pulp industry, (ii) improvement of animal feed (poultry and ruminants) digestibility in feed industries, and (iii) dough rheology and bread volume in the baking process, and beer viscosity and filtration velocity during brewing. The cloning of the genes, coding for several xylan degrading enzymes, and their expression in Baker' s yeast (Saccharomyces cerevisiae) and filamentous fungi (Aspergillus species)opened the possibility to study the pure enzymes, without contaminating activity.Trichoderma reesei produces several of these enzymes and detailed information on their specificity,synergies and structure/activity relationships is known. An overview will be presented.

  14. Analysis of slow-binding enzyme inhibitors at elevated enzyme concentrations.

    Science.gov (United States)

    Perdicakis, Basil; Montgomery, Heather J; Guillemette, J Guy; Jervis, Eric

    2005-02-15

    The improvement in the characterization of slow-binding inhibitors achieved by performing experiments at elevated enzyme concentrations is presented. In particular, the characterization of slow-binding inhibitors conforming to a two-step mode of inhibition with a steady-state dissociation constant that is much lower than the initial dissociation constant with enzyme is discussed. For these systems, inhibition is rapid and low steady-state product concentrations are produced at saturating inhibitor concentrations. By working at elevated enzyme concentrations, improved signal-to-noise ratios are achieved and data may be collected at saturating inhibitor levels. Numerical simulations confirmed that improved parameter estimates are obtained and useful data to discern the mechanism of slow-binding inhibition are produced by working at elevated enzyme concentrations. The saturation kinetics that were unobservable in two previous studies of an enzyme inhibitor system were measured by performing experiments at an elevated enzyme concentration. These results indicate that consideration of the quality of the data acquired using a particular assay is an important factor when selecting the enzyme concentration at which to perform experiments used to characterize the class of enzyme inhibitors examined herein. PMID:15691501

  15. Development of enzymes and enzyme systems by genetic engineering to convert biomass to sugars

    Science.gov (United States)

    TITLE Development of Enzymes and Enzyme Systems by Genetic Engineering to Convert Biomass to Sugars ABSTRACT Plant cellulosic material is one of the most viable renewable resources for the world’s fuel and chemical feedstock needs. Currently ethanol derived from corn starch is the most common li...

  16. Inhibitors of alanine racemase enzyme: a review.

    Science.gov (United States)

    Azam, Mohammed Afzal; Jayaram, Unni

    2016-08-01

    Alanine racemase is a fold type III PLP-dependent amino acid racemase enzyme catalysing the conversion of l-alanine to d-alanine utilised by bacterial cell wall for peptidoglycan synthesis. As there are no known homologs in humans, it is considered as an excellent antibacterial drug target. The standard inhibitors of this enzyme include O-carbamyl-d-serine, d-cycloserine, chlorovinyl glycine, alaphosphin, etc. d-Cycloserine is indicated for pulmonary and extra pulmonary tuberculosis but therapeutic use of drug is limited due to its severe toxic effects. Toxic effects due to off-target affinities of cycloserine and other substrate analogs have prompted new research efforts to identify alanine racemase inhibitors that are not substrate analogs. In this review, an updated status of known inhibitors of alanine racemase enzyme has been provided which will serve as a rich source of structural information and will be helpful in generating selective and potent inhibitor of alanine racemase. PMID:26024289

  17. Enzyme conductometric biosensor for maltose determination

    Directory of Open Access Journals (Sweden)

    Dzyadevych S. V.

    2009-08-01

    Full Text Available Aim. To develop enzyme conductometric biosensor for maltose determination. Methods. A conductometric transducer consisting of two gold pairs of electrodes was applied. Three-enzyme membrane (glucose oxidase, mutarotase, -glucosidase immobilized on the surface of the conductometric transducer was used as a bioselective element. Results. A linear range of maltose conductometric biosensor was from 0,002 mM to 1 mM for glucose and maltose detection. The time of maltose analysis in solution was 1–2 minutes. The dependence of biosensor responses to substrate on pH, ionic strength, and buffer capacity of work solution was studied. The data of biosensor selectivity are presented. The developed conductometric biosensor is characterized by high operational stability and signal reproducibility. Conclusion. The enzyme conductometric biosensor for maltose determination has been developed. The analytical characteristics of the maltose biosensor were investigated. The proposed method could be used in food industry to control and optimize production.

  18. Novel Industrial Enzymes from Uncultured Arctic Microorganisms

    DEFF Research Database (Denmark)

    Vester, Jan Kjølhede

    reduce the risk of contaminations. Cold- and alkaline-active enzymes can be found in microorganisms adapted to living in natural environments with these conditions, which are extremely rare but found in the unique ikaite columns from SW Greenland (4-6 °C, pH >10). It is estimated that less than 1% of the......Many industrial and biotechnological processes make use of cold-active enzymes or could benefit from the use, as the reduced temperature can be beneficial in multiple ways. Such processes may save energy and production costs, improve hygiene, maintain taste and other organoleptic properties, and...... on the diversity of microorganisms from the ikaite columns as well as bioprospecting for enzyme activities using both culture dependent and independent methods. Two cold-active β-galactosidases and one extremely cold-active α-amylase, all related to Clostridia, were characterized in more details....

  19. Arabinogalactan proteins: focus on carbohydrate active enzymes

    Directory of Open Access Journals (Sweden)

    Eva eKnoch

    2014-06-01

    Full Text Available Arabinogalactan proteins (AGPs are a highly diverse class of cell surface proteoglycans that are commonly found in most plant species. AGPs play important roles in many cellular processes during plant development, such as reproduction, cell proliferation, pattern formation and growth, and in plant-microbe interaction. However, little is known about the molecular mechanisms of their function. Numerous studies using monoclonal antibodies that recognize different AGP glycan epitopes have shown the appearance of a slightly altered AGP glycan in a specific stage of development in plant cells. Therefore, it is anticipated that the biosynthesis and degradation of AGP glycan is tightly regulated during development. Until recently, however, little was known about the enzymes involved in the metabolism of AGP glycans. In this review, we summarize recent discoveries of carbohydrate active enzymes (CAZy; http://www.cazy.org/ involved in the biosynthesis and degradation of AGP glycans, and we discuss the biological role of these enzymes in plant development.

  20. EPR study of some irradiated food enzymes

    International Nuclear Information System (INIS)

    The EPR spectra of three types of amylases (microbial and fungal α-amylase E.C. 3.2.1.1; gluco-amylase E.C. 3.2.1.3) and one type of pectinase irradiated with gamma-rays and 7 MeV electrons are presented and discussed. For all enzymes, a positive correlation (r = 0.991 to 0.994) between the EPR signal amplitude and absorbed dose has been observed, while, between EPR spectra amplitudes and enzyme in vitro activity, in terms of enzymatic activity a negative correlation (r = -0.987 to -0.995), has been noticed. These facts recommend that enzyme damage during irradiation can be monitored by means of the free radicals detected by EPR spectroscopy. (author)

  1. Enzyme Computation - Computing the Way Proteins Do

    Directory of Open Access Journals (Sweden)

    Jaime-Alberto Parra-Plaza

    2013-08-01

    Full Text Available It is presented enzyme computation, a computational paradigm based on the molecular activity inside the biological cells, particularly in the capacity of proteins to represent information, of enzymes to transform that information, and of genes to produce both elements according to the dynamic requirements of a given system. The paradigm explodes the rich computational possibilities offered by metabolic pathways and genetic regulatory networks and translates those possibilities into a distributed computational space made up of active agents which communicate through the mechanism of message passing. Enzyme computation has been tested in diverse problems, such as image processing, species classification, symbolic regression, and constraints satisfaction. Also, given its distributed nature, an implementation in dynamical reconfigurable hardware has been possible.

  2. Engineering of pectinolytic enzymes for enhanced thermostability

    DEFF Research Database (Denmark)

    Larsen, Dorte Møller

    Conversion of waste materials into valuable compounds is promising concerning transformation of byproduct streams such as sugar beet and potato pulp. In order to obtain those compounds with reduced energy consumption, carbohydrate active enzymes can be used as catalysts. Sugar beet and potato pulp...... consist of pectin that can be converted into beneficial polymeric and oligomeric carbohydrates requiring enzymes such as pectin lyases, rhamnogalacturonan I (RGI) lyases, polygalacturonases and galactanases. Enzymatic conversion of such pectinaceous biomasses at high temperatures is advantageous as it...... gives rise to lower substrate viscosity, easier mixing, higher substrate solubility and lowers the risk of contamination. The overall objective of this thesis was to discover enzymes for degradation of RGI structures in pectin and further engineer for enhanced thermostability. The hypotheses were that...

  3. Hydrolytic enzyme activity in landfilled refuse

    Energy Technology Data Exchange (ETDEWEB)

    Palmisano, A.C.; Schwab, B.S.; Maruscik, D.A. (Environmental Safety Dept., Procter and Gamble Co., Ivorydale Technical Center, Cincinnati, OH (United States))

    1993-03-01

    Extracellular hydrolytic enzyme activity was assayed in 28 refuse samples excavated from 14 bore holes in Fesh Kills Landfill, Staten Island, N.Y. Esterases, proteases and amylases were present in all of the samples. Enzyme screening assays utilizing the APIZYM test system showed the incidence of enzymes in the order: Specific phosphatases>esterases>glycosyl hydrolases. Measurement of cellulase by the cellulose-azure test detected activity in two out of 28 samples. Analysis for cellulase activity using the cellulose-azure test on refuse samples from landfills in Naples, Florida, and Tucson, Arizona, also showed a limited distribution of cellulases. Mineralization of [[sup 14]C]cellulose, an independent measure of cellulase activity, ranged from <5 to 23% in a 4-week incubation, which supports a highly variable cellulolytic activity in landfilled refuse. (orig.).

  4. Enzyme activity in dialkyl phosphate ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, M.F.; Dunn, J.; Li, L.-L.; Handley-Pendleton, J. M.; van der lelie, D.; Wishart, J. F.

    2011-12-01

    The activity of four metagenomic enzymes and an enzyme cloned from the straw mushroom, Volvariellavolvacea were studied in the following ionic liquids, 1,3-dimethylimidazolium dimethyl phosphate, [mmim][dmp], 1-ethyl-3-methylimidazolium dimethyl phosphate, [emim][dmp], 1-ethyl-3-methylimidazolium diethyl phosphate, [emim][dep] and 1-ethyl-3-methylimidazolium acetate, [emim][OAc]. Activity was determined by analyzing the hydrolysis of para-nitrobenzene carbohydrate derivatives. In general, the enzymes were most active in the dimethyl phosphate ionic liquids, followed by acetate. Generally speaking, activity decreased sharply for concentrations of [emim][dep] above 10% v/v, while the other ionic liquids showed less impact on activity up to 20% v/v.

  5. Nanoparticles for Use in Enzyme Assays.

    Science.gov (United States)

    Kim, Young-Pil; Kim, Hak-Sung

    2016-02-01

    Nanoparticles (NPs) have created new ways to enhance the performance of classical biosensors in analytical sciences. NPs with unprecedented physiochemical properties can serve both as excellent carriers of bioreceptors and as signal enhancers, leading to improved assay platforms with high sensitivity and selectivity. Because enzymes play central roles in many cellular functions, specific and precise assays of their functions are of great significance in medical science and biotechnology. Here we review recent advances in NP-based biosensors and their use in enzyme assays. With fast and specific responses to enzyme-mediated reactions, NPs transduce and amplify the initial responses into various types of signals, such as electrochemical, optical and magnetic ones. Translation of their potential should lead to functionalized NPs finding wide applications in diagnostics, drug development and biotechnology. PMID:26662229

  6. Extracting enzyme processivity from kinetic assays

    Science.gov (United States)

    Barel, Itay; Reich, Norbert O.; Brown, Frank L. H.

    2015-12-01

    A steady-state analysis for the catalytic turnover of molecules containing two substrate sites is presented. A broad class of Markovian dynamic models, motivated by the action of DNA modifying enzymes and the rich variety of translocation mechanisms associated with these systems (e.g., sliding, hopping, intersegmental transfer, etc.), is considered. The modeling suggests an elementary and general method of data analysis, which enables the extraction of the enzyme's processivity directly and unambiguously from experimental data. This analysis is not limited to the initial velocity regime. The predictions are validated both against detailed numerical models and by revisiting published experimental data for EcoRI endonuclease acting on DNA.

  7. Translational control of an intestinal microvillar enzyme

    DEFF Research Database (Denmark)

    Danielsen, E M; Cowell, G M; Sjöström, H;

    1986-01-01

    The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only...... about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained...

  8. Immobilized enzyme reactor chromatography: Optimization of protein retention and enzyme activity in monolithic silica stationary phases

    Energy Technology Data Exchange (ETDEWEB)

    Besanger, Travis R. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada); Hodgson, Richard J. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada); Green, James R.A. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada); Brennan, John D. [Department of Chemistry, McMaster University, 1280 Main St. West, Hamilton, Ont. L8S 4M1 (Canada)]. E-mail: brennanj@mcmaster.ca

    2006-03-30

    Our group recently reported on the application of protein-doped monolithic silica columns for immobilized enzyme reactor chromatography, which allowed screening of enzyme inhibitors present in mixtures using mass spectrometry for detection. The enzyme was immobilized by entrapment within a bimodal meso/macroporous silica material prepared by a biocompatible sol-gel processing route. While such columns proved to be useful for applications such as screening of protein-ligand interactions, significant amounts of entrapped proteins leached from the columns owing to the high proportion of macropores within the materials. Herein, we describe a detailed study of factors affecting the morphology of protein-doped bioaffinity columns and demonstrate that specific pH values and concentrations of poly(ethylene glycol) can be used to prepare essentially mesoporous columns that retain over 80% of initially loaded enzyme in an active and accessible form and yet still retain sufficient porosity to allow pressure-driven flow in the low {mu}L/min range. Using the enzyme {gamma}-glutamyl transpeptidase ({gamma}-GT), we further evaluated the catalytic constants of the enzyme entrapped in capillary columns with different silica morphologies as a function of flowrate and backpressure using the enzyme reactor assay mode. It was found that the apparent activity of the enzyme was highest in mesoporous columns that retained high levels of enzyme. In such columns, enzyme activity increased by {approx}2-fold with increases in both flowrate (from 250 to 1000 nL/min) and backpressure generated (from 500 to 2100 psi) during the chromatographic activity assay owing to increases in k {sub cat} and decreases in K {sub M}, switching from diffusion controlled to reaction controlled conditions at ca. 2000 psi. These results suggest that columns with minimal macropore volumes (<5%) are advantageous for the entrapment of soluble proteins for bioaffinity and bioreactor chromatography.

  9. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which...

  10. 21 CFR 864.9400 - Stabilized enzyme solution.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Stabilized enzyme solution. 864.9400 Section 864... and Blood Products § 864.9400 Stabilized enzyme solution. (a) Identification. A stabilized enzyme... enzyme solutions include papain, bromelin, ficin, and trypsin. (b) Classification. Class II...

  11. 21 CFR 862.2500 - Enzyme analyzer for clinical use.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme analyzer for clinical use. 862.2500 Section... Instruments § 862.2500 Enzyme analyzer for clinical use. (a) Identification. An enzyme analyzer for clinical use is a device intended to measure enzymes in plasma or serum by nonkinetic or kinetic measurement...

  12. Regulation of Enzyme Activity through Interactions with Nanoparticles

    OpenAIRE

    Bin Zhang; Bing Yan; Zhaochun Wu

    2009-01-01

    The structure and function of an enzyme can be altered by nanoparticles (NPs). The interaction between enzyme and NPs is governed by the key properties of NPs, such as structure, size, surface chemistry, charge and surface shape. Recent representative studies on the NP-enzyme interactions and the regulation of enzyme activity by NPs with different size, composition and surface modification are reviewed.

  13. Seeing & Feeling How Enzymes Work Using Tangible Models

    Science.gov (United States)

    Lau, Kwok-chi

    2013-01-01

    This article presents a tangible model used to help students tackle some misconceptions about enzyme actions, particularly the induced-fit model, enzyme-substrate complementarity, and enzyme inhibition. The model can simulate how substrates induce a change in the shape of the active site and the role of attraction force during enzyme-substrate…

  14. 21 CFR 173.150 - Milk-clotting enzymes, microbial.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Milk-clotting enzymes, microbial. 173.150 Section... HUMAN CONSUMPTION Enzyme Preparations and Microorganisms § 173.150 Milk-clotting enzymes, microbial. Milk-clotting enzyme produced by pure-culture fermentation process may be safely used in the...

  15. Lipolytic Enzymes Involved in the Virulence of Human Pathogenic Fungi

    OpenAIRE

    Park, Minji; Do, Eunsoo; Jung, Won Hee

    2013-01-01

    Pathogenic microbes secrete various enzymes with lipolytic activities to facilitate their survival within the host. Lipolytic enzymes include extracellular lipases and phospholipases, and several lines of evidence have suggested that these enzymes contribute to the virulence of pathogenic fungi. Candida albicans and Cryptococcus neoformans are the most commonly isolated human fungal pathogens, and several biochemical and molecular approaches have identified their extracellular lipolytic enzym...

  16. Encapsulation of Biocatalysts (Cell/Enzyme) with High Retaining Activity

    OpenAIRE

    Liu, Tao

    2015-01-01

    Enzymes are always considered as great gifts from nature since they are holding brilliant properties, including high activity, selectivity and specificity. Nowadays, a variety of enzymes have been applied to many industry processes. However, challenges are still needed to be addressed while applying enzymes. It is worth to point out that enzymes are sensitive to the change of ambient conditions. Most of enzymes are unstable and work under certain sort of temperature and pH conditions. Since e...

  17. Mimicking respiratory phosphorylation using purified enzymes.

    Science.gov (United States)

    von Ballmoos, Christoph; Biner, Olivier; Nilsson, Tobias; Brzezinski, Peter

    2016-04-01

    The enzymes of oxidative phosphorylation is a striking example of the functional association of multiple enzyme complexes, working together to form ATP from cellular reducing equivalents. These complexes, such as cytochrome c oxidase or the ATP synthase, are typically investigated individually and therefore, their functional interplay is not well understood. Here, we present methodology that allows the co-reconstitution of purified terminal oxidases and ATP synthases in synthetic liposomes. The enzymes are functionally coupled via proton translocation where upon addition of reducing equivalents the oxidase creates and maintains a transmembrane electrochemical proton gradient that energizes the synthesis of ATP by the F1F0 ATP synthase. The method has been tested with the ATP synthases from Escherichia coli and spinach chloroplasts, and with the quinol and cytochrome c oxidases from E. coli and Rhodobacter sphaeroides, respectively. Unlike in experiments with the ATP synthase reconstituted alone, the setup allows in vitro ATP synthesis under steady state conditions, with rates up to 90 ATP×s(-1)×enzyme(-1). We have also used the novel system to study the phenomenon of "mild uncoupling" as observed in mitochondria upon addition of low concentrations of ionophores (e.g. FCCP, SF6847) and the recoupling effect of 6-ketocholestanol. While we could reproduce the described effects, our data with the in vitro system does not support the idea of a direct interaction between a mitochondrial protein and the uncoupling agents as proposed earlier. PMID:26707617

  18. Modelling Fungal Fermentations for Enzyme Production

    DEFF Research Database (Denmark)

    Albæk, Mads Orla; Gernaey, Krist; Hansen, Morten S.;

    We have developed a process model of fungal fed-batch fermentations for enzyme production. In these processes, oxygen transfer rate is limiting and controls the substrate feeding rate. The model has been shown to describe cultivations of both Aspergillus oryzae and Trichoderma reesei strains in 550...

  19. A Comprehensive Enzyme Kinetic Exercise for Biochemistry

    Science.gov (United States)

    Barton, Janice S.

    2011-01-01

    This article describes a comprehensive treatment of experimental enzyme kinetics strongly coupled to electronic data acquisition and use of spreadsheets to organize data and perform linear and nonlinear least-squares analyses, all in a manner that promotes development of important reasoning skills. Kinetic parameters are obtained for the stable…

  20. Angiotensin converting enzyme inhibitor induced hyperkalaemic paralysis

    OpenAIRE

    Dutta., D; Fischler, M; McClung, A

    2001-01-01

    Secondary hyperkalaemic paralysis is a rare condition often mimicking the Guillain-Barré syndrome. There have been a few case reports of hyperkalaemia caused by renal failure, trauma, and drugs where the presentation has been with muscle weakness. A case of hyperkalaemic paralysis caused by an angiotensin converting enzyme inhibitor is reported.


Keywords: hyperkalaemia; paralysis; ACE inhibitors

  1. Enzyme Specific Activity in Functionalized Nanoporous Supports

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Chenghong; Soares, Thereza A.; Shin, Yongsoon; Liu, Jun; Ackerman, Eric J.

    2008-03-26

    Enzyme specific activity can be increased or decreased to a large extent by changing protein loading density in functionalized nanoporous support, where organophosphorus hydrolase can display a constructive orientation and thus leave a completely open entrance for substrate even at higher protein loading density, but glucose oxidase can not.

  2. Enzyme specific activity in functionalized nanoporous supports

    Energy Technology Data Exchange (ETDEWEB)

    Lei Chenghong; Soares, Thereza A; Shin, Yongsoon; Liu Jun; Ackerman, Eric J [Pacific Northwest National Laboratory, PO Box 999, Richland, WA 99352 (United States)], E-mail: Eric.Ackerman@pnl.gov

    2008-03-26

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (P{sub LD}) in functionalized nanoporous supports so that the enzyme immobilization efficiency (I{sub e}, defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH{sub 2}- and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing P{sub LD}. With decreasing P{sub LD}, I{sub e} of GOX in FMS increased from<35% to>150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing P{sub LD}. With increasing P{sub LD}, the corresponding I{sub e} of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high P{sub LD}, consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high P{sub LD} and may promote a more favorable confinement environment that enhances the OPH activity.

  3. Sugarcane bagasse hydrolysis using yeast cellulolytic enzymes.

    Science.gov (United States)

    Souza, Angelica Cristina de; Carvalho, Fernanda Paula; Silva e Batista, Cristina Ferreira; Schwan, Rosane Freitas; Dias, Disney Ribeiro

    2013-10-28

    Ethanol fuel production from lignocellulosic biomass is emerging as one of the most important technologies for sustainable development. To use this biomass, it is necessary to circumvent the physical and chemical barriers presented by the cohesive combination of the main biomass components, which hinders the hydrolysis of cellulose and hemicellulose into fermentable sugars. This study evaluated the hydrolytic capacity of enzymes produced by yeasts, isolated from the soils of the Brazilian Cerrado biome (savannah) and the Amazon region, on sugarcane bagasse pre-treated with H2SO4. Among the 103 and 214 yeast isolates from the Minas Gerais Cerrado and the Amazon regions, 18 (17.47%) and 11 (5.14%) isolates, respectively, were cellulase-producing. Cryptococcus laurentii was prevalent and produced significant β- glucosidase levels, which were higher than the endo- and exoglucanase activities. In natura sugarcane bagasse was pre-treated with 2% H2SO4 for 30 min at 150oC. Subsequently, the obtained fibrous residue was subjected to hydrolysis using the Cryptococcus laurentii yeast enzyme extract for 72 h. This enzyme extract promoted the conversion of approximately 32% of the cellulose, of which 2.4% was glucose, after the enzymatic hydrolysis reaction, suggesting that C. laurentii is a good β-glucosidase producer. The results presented in this study highlight the importance of isolating microbial strains that produce enzymes of biotechnological interest, given their extensive application in biofuel production. PMID:23851270

  4. Lignocellulose-Degrading Enzymes in Soils

    Czech Academy of Sciences Publication Activity Database

    Baldrian, Petr; Šnajdr, Jaroslav

    Heidelberg, Dordrecht, NY : Springer, 2011 - (Shukla, G.; Varma, A.), s. 167-186 ISBN 978-3-642-14225-3 R&D Projects: GA MŠk LC06066; GA MZe QH72216 Institutional research plan: CEZ:AV0Z50200510 Keywords : Saprotrophic fungi * soil ecology * enzymes Subject RIV: EE - Microbiology, Virology

  5. Synthetic Applications of Nitrile-Converting Enzymes

    Czech Academy of Sciences Publication Activity Database

    Martínková, Ludmila; Mylerová, Veronika

    2003-01-01

    Roč. 7, - (2003), s. 1279-1295. ISSN 1385-2728 R&D Projects: GA AV ČR IAA4020213 Institutional research plan: CEZ:AV0Z5020903 Keywords : nitrile * converting * enzymes Subject RIV: EE - Microbiology, Virology Impact factor: 2.521, year: 2003

  6. Nanostructure enzyme assemblies for biomass conversion

    Science.gov (United States)

    Biomass represents a vast resource for production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaerobic ...

  7. Sertraline-induced pseudocholinesterase enzyme deficiency

    Directory of Open Access Journals (Sweden)

    Beyazit Zencirci

    2010-11-01

    Full Text Available Beyazit ZencirciMOSTAS Private Health Hospital, Department of Anesthesiology, Kahramanmaras, TurkeyAbstract: A 47-year-old Turkish male was scheduled for laparoscopic cholecystectomy under general anesthesia. The patient had 2 operations 28 and 19 years ago under general anesthesia. It was learned that the patient was administered succinylcholine during both of these previous operations and that he did not have a history of prolonged recovery or postoperative apnea. The patient had been using sertraline for 3 years before the operation. Pseudocholinesterase is a drug-metabolizing enzyme responsible for hydrolysis of the muscle-relaxant drugs mivacurium and succinylcholine. Deficiency of this enzyme from any cause can lead to prolonged apnea and paralysis following administration of mivacurium and succinylcholine. The diagnosis of pseudocholinesterase enzyme deficiency can be made after careful clinic supervision and peripheral nerve stimulator monitoring. A decrease in the activity of pseudocholinesterase enzyme and a decline in the block effect over time will help verify the diagnosis. Our patient’s plasma cholinesterase was found to have low activity. Instead of pharmacological interventions that may further complicate the situation in such cases, the preferred course of action should be to wait until the block effect declines with the help of sedation and mechanical ventilation. In our case, the prolonged block deteriorated in the course of time before any complications developed.Keywords: mivacurium, pseudocholinesterase deficiency, sertraline

  8. Dynamics of Radical-Mediated Enzyme Catalyses

    Science.gov (United States)

    Warncke, Kurt

    1997-11-01

    An emergent class of enzymes harnesses the extreme reactivity of electron-deficient free radical species to perform some of the most difficult reactions in biology. The regio- and stereo-selectivity achieved by these enzymes defies long-held ideas that radical reactions are non-specific. The common primary step in these catalyses is metal- or metallocenter-assisted generation of an electron-deficient organic "initiator radical". The initiator radical abstracts a hydrogen atom from the substrate, opening a new reaction channel for rearrangement to the product. Our aim is to elucidate the detailed molecular mechanisms of the radical pair separation and radical rearrangement steps. Radical pair separation and substrate radical rearrangement are tracked by using time-resolved (10-7 to 10-3 s) techniques of pulsed-electron paramagnetic resonance spectroscopy (FT-EPR, ESEEM). Synchronous time-evolution of the reactions is attained by triggering with a visible laser pulse. Transient non-Boltzmann population of the states of the spin-coupled systems, and resultant electron spin polarization, facilitates study at or near room temperature under conditions where the enzymes are operative. The systems examined include ethanolamine deaminase, a vitamin B12 coenzyme-dependent enzyme, ribonucleotide reductase and photosynthetic reaction centers. The electronic and nuclear structural and kinetic information obtained from the pulsed-EPR studies is used to address how the initiator radicals are stabilized against deleterious recombination with the metal, and to distinguish the participation of concerted versus sequential rearrangement pathways.

  9. Enzyme replacement therapy for alpha-mannosidosis

    DEFF Research Database (Denmark)

    Borgwardt, Line Gutte; Dali, Christine I.; Fogh, J;

    2013-01-01

    Alpha-mannosidosis (OMIM 248500) is a rare lysosomal storage disease (LSD) caused by alpha-mannosidase deficiency. Manifestations include intellectual disabilities, facial characteristics and hearing impairment. A recombinant human alpha-mannosidase (rhLAMAN) has been developed for weekly intrave...... intravenous enzyme replacement therapy (ERT). We present the preliminary data after 12 months of treatment....

  10. Enzyme specific activity in functionalized nanoporous supports

    International Nuclear Information System (INIS)

    Here we reveal that enzyme specific activity can be increased substantially by changing the protein loading density (PLD) in functionalized nanoporous supports so that the enzyme immobilization efficiency (Ie, defined as the ratio of the specific activity of the immobilized enzyme to the specific activity of the free enzyme in solution) can be much higher than 100%. A net negatively charged glucose oxidase (GOX) and a net positively charged organophosphorus hydrolase (OPH) were entrapped spontaneously in NH2- and HOOC-functionalized mesoporous silica (300 A, FMS) respectively. The specific activity of GOX entrapped in FMS increased with decreasing PLD. With decreasing PLD, Ie of GOX in FMS increased from150%. Unlike GOX, OPH in HOOC-FMS showed increased specific activity with increasing PLD. With increasing PLD, the corresponding Ie of OPH in FMS increased from 100% to>200%. A protein structure-based analysis of the protein surface charges directing the electrostatic interaction-based orientation of the protein molecules in FMS demonstrates that substrate access to GOX molecules in FMS is limited at high PLD, consequently lowering the GOX specific activity. In contrast, substrate access to OPH molecules in FMS remains open at high PLD and may promote a more favorable confinement environment that enhances the OPH activity

  11. Hyaluronidases--a group of neglected enzymes.

    OpenAIRE

    Kreil, G

    1995-01-01

    Hyaluronan is an important constituent of the extracellular matrix. This polysaccharide can be hydrolyzed by various hyaluronidases that are widely distributed in nature. The structure of some bacterial and animal enzymes of this type has recently been elucidated. It could be shown that the hyaluronidases from bee and hornet venom and the PH-20 hyaluronidase present on mammalian spermatozoa are homologous proteins.

  12. Spraying enzymes in microemulsions of AOT in nonpolar organic solvents for fabrication of enzyme electrodes.

    Science.gov (United States)

    Shipovskov, Stepan; Trofimova, Daria; Saprykin, Eduard; Christenson, Andreas; Ruzgas, Tautgirdas; Levashov, Andrey V; Ferapontova, Elena E

    2005-11-01

    A new technique suitable for automated, large-scale fabrication of enzyme electrodes by air-spraying enzymes in organic inks is presented. Model oxidoreductases, tyrosinase (Tyr) and glucose oxidase (GOx), were adapted to octane-based ink by entrapment in a system of reverse micelles (RM) of surfactant AOT in octane to separate and stabilize the catalytically active forms of the enzymes in nonpolar organic media. Nonpolar caoutchouk polymer was also used to create a kind of "dry micelles" at the electrode/solution interface. Enzyme/RM/polymer-containing organic inks were air-brushed onto conductive supports and were subsequently covered by sprayed Nafion membranes. The air-brushed enzyme electrodes exhibited relevant bioelectrocatalytic activity toward catechol and glucose, with a linear detection range of 0.1-100 microM catechol and 0.5-7 mM glucose; the sensitivities were 2.41 A M(-1) cm(-2) and 2.98 mA M(-1) cm(-2) for Tyr and GOx electrodes, respectively. The proposed technique of air-brushing enzymes in organic inks enables automated construction of disposable enzyme electrodes of various designs on a mass-production scale. PMID:16255612

  13. Effect of irradiation on immobilized enzymes compared with that on enzymes in solution

    International Nuclear Information System (INIS)

    Glucose oxidase and catalase were immobilized by attaching them to nylon fibers that had been treated with triethyloxonium-tetrafluoroborate, diaminohexane and glutaraldialdehyde according to Morris, Campell and Hornby (1975). This method assures that the enzymes are bound to a side chain of the polyamide structure. Enzyme activity (as measured by the O2-uptake and by microcalorimetry) was found to be unchanged after 2 years. The apparent Ksub(m)-constants of the immobilized enzymes with glucose were the same as those for enzymes in solution. GOD and catalase immobilized in poly(acrylamide) gel had the same Ksub(m)-value. Despite the high stability during storage, the radiation induced inactivation of enzymes immobilized on gel or chromosorb, an inorganic carrier, was of the same order of magnitude as that of the dissolved enzymes. The enzymes bound to nylon fibers showed a higher radiation sensitivity. This might have been caused by an additional attack on the binding site of the carrier. (orig.)

  14. Comparative gene expression of intestinal metabolizing enzymes.

    Science.gov (United States)

    Shin, Ho-Chul; Kim, Hye-Ryoung; Cho, Hee-Jung; Yi, Hee; Cho, Soo-Min; Lee, Dong-Goo; Abd El-Aty, A M; Kim, Jin-Suk; Sun, Duxin; Amidon, Gordon L

    2009-11-01

    The purpose of this study was to compare the expression profiles of drug-metabolizing enzymes in the intestine of mouse, rat and human. Total RNA was isolated from the duodenum and the mRNA expression was measured using Affymetrix GeneChip oligonucleotide arrays. Detected genes from the intestine of mouse, rat and human were ca. 60% of 22690 sequences, 40% of 8739 and 47% of 12559, respectively. Total genes of metabolizing enzymes subjected in this study were 95, 33 and 68 genes in mouse, rat and human, respectively. Of phase I enzymes, the mouse exhibited abundant gene expressions for Cyp3a25, Cyp4v3, Cyp2d26, followed by Cyp2b20, Cyp2c65 and Cyp4f14, whereas, the rat showed higher expression profiles of Cyp3a9, Cyp2b19, Cyp4f1, Cyp17a1, Cyp2d18, Cyp27a1 and Cyp4f6. However, the highly expressed P450 enzymes were CYP3A4, CYP3A5, CYP4F3, CYP2C18, CYP2C9, CYP2D6, CYP3A7, CYP11B1 and CYP2B6 in the human. For phase II enzymes, glucuronosyltransferase Ugt1a6, glutathione S-transferases Gstp1, Gstm3 and Gsta2, sulfotransferase Sult1b1 and acyltransferase Dgat1 were highly expressed in the mouse. The rat revealed predominant expression of glucuronosyltransferases Ugt1a1 and Ugt1a7, sulfotransferase Sult1b1, acetyltransferase Dlat and acyltransferase Dgat1. On the other hand, in human, glucuronosyltransferases UGT2B15 and UGT2B17, glutathione S-transferases MGST3, GSTP1, GSTA2 and GSTM4, sulfotransferases ST1A3 and SULT1A2, acetyltransferases SAT1 and CRAT, and acyltransferase AGPAT2 were dominantly detected. Therefore, current data indicated substantial interspecies differences in the pattern of intestinal gene expression both for P450 enzymes and phase II drug-metabolizing enzymes. This genomic database is expected to improve our understanding of interspecies variations in estimating intestinal prehepatic clearance of oral drugs. PMID:19746353

  15. Mitochondrial COX2 G7598A Mutation May Have a Modifying Role in the Phenotypic Manifestation of Aminoglycoside Antibiotic-Induced Deafness Associated with 12S rRNA A1555G Mutation in a Han Chinese Pedigree

    Science.gov (United States)

    Chen, Tianbin; Liu, Qicai; Jiang, Ling; Liu, Can

    2013-01-01

    Recent studies suggest that certain mitochondrial haplogroup markers and some specific variants in mitochondrial haplogroup may also influence the phenotypic expression of particular mitochondrial disorders. In this report, the clinical, genetic, and molecular characterization were identified in a Chinese pedigree with the aminoglycoside antibiotic (AmAn)-induced deafness and nonsyndromic hearing loss (NSHL). The pathogenic gene responsible for this hereditary NSHL pedigree was determined by Microarray chip, which possessed the nine NSHL hot-spot mutations, including GJB2 (35delG, 176dell6bp, 235de1C, and 299delAT), GJB3 (538C>T), SLC26A4 (IVS7-2A>G and 2168A>G), and mitochondrial DNA (mtDNA) 12S rRNA (C1494T and A1555G). Only the homoplasmic A1555G mutation was detected, which was confirmed by direct sequencing. Also, real-time amplification refractory mutation system quantitative polymerase chain reaction methodology was performed to calculate the A1555G mutation load. The proband's complete mtDNA genome were amplified and direct sequencing was performed to determine the mitochondrial haplogroup and private mutations. The proband's mitochondrial haplogroup belonges to M7b1 and a private mutation MTCOX2 G7598A (p.Ala 5 Thr) is found. Phylogenetic analysis of COX2 polypeptide sequences demonstrates that the alanine residue is relatively conserved, but owing to the missense mutation (p.Ala 5 Thr), its side chain hydrophobicity will be changed, and what is more, as it is adjacent to a glutamine residue, which is highly conserved and hydrophilic, in an evolutionary stable domain; G7598A (p.Ala 5 Thr) may alter the protein secondary structure and physiological function of COX2 and, thus, aggravate the mitochondrial dysfunction conferred by the A1555G mutation. Furthermore, the G7598A mutation is absent in 100 unrelated healthy controls; therefore, G7598A (p.Ala 5 Thr) in the mitochondrial haplogoup M7b1 may have a modifying role, enhancing its penetrance and severity

  16. Non-homologous isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution

    Directory of Open Access Journals (Sweden)

    Wolf Yuri I

    2010-04-01

    Full Text Available Abstract Background Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (nonhomologous relationships between proteins. Results We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress. Conclusions These results indicate that at least some of the non-homologous isofunctional enzymes were recruited relatively recently from enzyme families that are active against related substrates and are sufficiently flexible to accommodate changes in substrate specificity. Reviewers This article was reviewed by Andrei

  17. Immobilization of enzymes onto carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Prlainović Nevena Ž.

    2011-01-01

    Full Text Available The discovery of carbon nanotubes (CNTs has opened a new door in nanotechnology. With their high surface area, unique electronic, thermal and mechanical properties, CNTs have been widely used as carriers for protein immobilization. In fact, carbon nanotubes present ideal support system without diffusional limitations, and also have the possibility of surface covalent functionalization. It is usually the oxidation process that introduces carboxylic acid groups. Enzymes and other proteins could be adsorbed or covalently attached onto carbon nanotubes. Adsorption of enzyme is a very simple and inexpensive immobilization method and there are no chemical changes of the protein. It has also been found that this technique does not alter structure and unique properties of nanotubes. However, a major problem in process designing is relatively low stability of immobilized protein and desorption from the carrier. On the other hand, while covalent immobilization provides durable attachment the oxidation process can reduce mechanical and electronic properties of carbon nanotubes. It can also affect the active site of enzyme and cause the loss of enzyme activity. Bioimmobilization studies have showed that there are strong interactions between carbon nanotubes surface and protein. The retention of enzyme structure and activity is critical for their application and it is of fundamental interest to understand the nature of these interactions. Atomic force microscopy (AFM, transmission electron microscopy (TEM, scanning electron microscopy (SEM and circular dichroism (CD spectroscopy provide an insight into the structural changes that occur during the immobilization. The aim of this paper is to summarize progress of protein immobilization onto carbon nanotubes.

  18. Direct detection of digestive enzymes in planktonic rotifers using enzyme-labelled fluorescence (ELF)

    Czech Academy of Sciences Publication Activity Database

    Štrojsová, M.; Vrba, Jaroslav

    2005-01-01

    Roč. 56, č. 2 (2005), s. 189-195. ISSN 1323-1650. [Symposium for European Freshwater Sciences /4./. Krakow, 22.08.2005-26.08.2005] R&D Projects: GA AV ČR(CZ) IAA6017202 Institutional research plan: CEZ:AV0Z60170517 Keywords : rotifers * digestive enzymes * enzyme-labelled-fluorescence method Subject RIV: DA - Hydrology ; Limnology Impact factor: 1.478, year: 2005

  19. Heterofunctional Supports in Enzyme Immobilization: From Traditional Immobilization Protocols to Opportunities in Tuning Enzyme Properties

    OpenAIRE

    Barbosa, Oveimar; Torres, Rodrigo; Ortiz, Claudia; Berenguer Murcia, Ángel; Rafael C. Rodrigues; Fernández Lafuente, Roberto

    2013-01-01

    A heterofunctional support for enzyme immobilization may be defined as that which possesses several distinct functionalities on its surface able to interact with a protein. We will focus on those supports in which a final covalent attachment between the enzyme and the support is achieved. Heterofunctionality sometimes has been featured in very old immobilization techniques, even though in many instances it has been overlooked, giving rise to some misunderstandings. In this respect, glutaralde...

  20. Production of an extracellular polyethylene-degrading enzyme(s) by Streptomyces species.

    OpenAIRE

    Pometto, A L; Lee, B T; Johnson, K. E.

    1992-01-01

    Extracellular culture concentrates were prepared from Streptomyces viridosporus T7A, Streptomyces badius 252, and Streptomyces setonii 75Vi2 shake flask cultures. Ten-day-heat-treated (70 degrees C) starch-polyethylene degradable plastic films were incubated with shaking with active or inactive enzyme for 3 weeks (37 degrees C). Active enzyme illustrated changes in the films' Fourier transform infrared spectra, mechanical properties, and polyethylene molecular weight distributions.