WorldWideScience

Sample records for antibioticresistance enzymes aminoglycoside

  1. Crystallographic Studies of Two Bacterial AntibioticResistance Enzymes: Aminoglycoside Phosphotransferase (2')-Ic and GES-1\\beta-lactamase

    Energy Technology Data Exchange (ETDEWEB)

    Brynes, Laura; /Rensselaer Poly.

    2007-10-31

    Guiana Extended-Spectrum-1 (GES-1) and Aminoglycoside phosphotransferase (2')-Ic (APH(2')-Ic) are two bacteria-produced enzymes that essentially perform the same task: they provide resistance to an array of antibiotics. Both enzymes are part of a growing resistance problem in the medical world. In order to overcome the ever-growing arsenal of antibiotic-resistance enzymes, it is necessary to understand the molecular basis of their action. Accurate structures of these proteins have become an invaluable tool to do this. Using protein crystallography techniques and X-ray diffraction, the protein structure of GES-1 bound to imipenem (an inhibitor) has been solved. Also, APH(2')-Ic has been successfully crystallized, but its structure was unable to be solved using molecular replacement using APH(2')-Ib as a search model. The structure of GES-1, with bound imipenem was solved to a resolution of 1.89A, and though the inhibitor is bound with only moderate occupancy, the structure shows crucial interactions inside the active site that render the enzyme unable to complete the hydrolysis of the {beta}-lactam ring. The APH(2')-Ic dataset could not be matched to the model, APH(2')-Ib, with which it shares 25% sequence identity. The structural information gained from GES-1, and future studies using isomorphous replacement to solve the APH(2')-Ic structure can aid directly to the creation of novel drugs to combat both of these classes of resistance enzymes.

  2. Inhibition of Aminoglycoside Acetyltransferase Resistance Enzymes by Metal Salts

    OpenAIRE

    2015-01-01

    Aminoglycosides (AGs) are clinically relevant antibiotics used to treat infections caused by both Gram-negative and Gram-positive bacteria, as well as Mycobacteria. As with all current antibacterial agents, resistance to AGs is an increasing problem. The most common mechanism of resistance to AGs is the presence of AG-modifying enzymes (AMEs) in bacterial cells, with AG acetyltransferases (AACs) being the most prevalent. Recently, it was discovered that Zn2+ metal ions displayed an inhibitory...

  3. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Directory of Open Access Journals (Sweden)

    Abdul Rouf Mir

    2016-01-01

    Full Text Available This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR. Out of 98 isolates, 71 (72.45% isolates were identified as E. coli and the remaining 27 (27.55% as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients.

  4. Identification of Genes Coding Aminoglycoside Modifying Enzymes in E. coli of UTI Patients in India

    Science.gov (United States)

    Bashir, Yasir; Dar, Firdous Ahmad; Sekhar, M.

    2016-01-01

    This study is to probe the pattern of antibiotic resistance against aminoglycosides and its mechanism in E. coli obtained from patients from Chennai, India. Isolation and identification of pathogens were done on MacConkey agar. Antimicrobial sensitivity testing was done by disc diffusion test. The identification of genes encoding aminoglycoside modifying enzymes was done by Polymerase Chain Reaction (PCR). Out of 98 isolates, 71 (72.45%) isolates were identified as E. coli and the remaining 27 (27.55%) as other bacteria. Disc diffusion method results showed a resistance level of 72.15% for streptomycin, 73.4% for gentamicin, 63.26% for neomycin, 57.14% for tobramycin, 47.9% for netilmicin, and 8.16% for amikacin in E. coli. PCR screening showed the presence of four genes, namely, rrs, aacC2, aacA-aphD, and aphA3, in their plasmid DNA. The results point towards the novel mechanism of drug resistance in E. coli from UTI patients in India as they confirm the presence of genes encoding enzymes that cause resistance to aminoglycoside drugs. This could be an alarm for drug prescription to UTI patients. PMID:27403451

  5. Relationship between antimicrobial resistance and aminoglycoside-modifying enzyme gene expressions in Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    SHI Wei-feng; JIANG Jian-ping; MI Zu-huang

    2005-01-01

    Background Acinetobacter baumannii is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by multi-drug resistance Acinetobacter baumannii is very difficult to treat. This study was designed to investigate the antimicrobial resistance characteristics and four resistant gene expressions of aminoglycoside-modifying enzymes including N-acetyltransferases and O-phosphotransferases in Acinetobacter baumannii. Methods Bacterial identification and antimicrobial susceptibility test were performed by PhoenixTM system in 247 strains of Acinetobacter baumannii. Minimal inhibitory concentrations (MICs) of seven aminoglycosides including gentamicin, amikacin, kanamycin, tobramycin, netilmicin, neomycin and streptomycin in 15 strains of multi-drug resistant Acinetobacter baumannii were detected by agar dilution. Four aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer.Results The resistance rates of 247 strains of Acinetobacter baumannii against cefotaxime, levofloxacin, piperacillin, aztreonam, tetracycline, ciprofloxacin and chloramphenicol were more than 50%. Imipenem and meropenem showed high antibacterial activities with resistance rates of 3.2% and 4.1%. MIC50 and MIC90 of gentamicin, amikacin, streptomycin and kanamycin in 15 strains of multi-drug resistant Acinetobacter baumanii were all more than 1024 mg/L, and the resistance rates were 100%, 100%, 100% and 93.3%, respectively. But their resistance rates to tobramycin, netilmicin and neomycin were 86.7%, 93.3% and 46.7%, respectively. Three modifying enzyme genes, including aacC1, aacC2 and aacA4 genes, were found in 15 strains, but aphA6 had not been detected. Their positive rates were 93.3%, 20.0% and 20.0%, respectively. These three genes existed simultaneously in No.19 strain. Nucleotide sequences of aacC1, aacC2 and aacA4 genes shared 100%, 97.9% and 99.7% identities with GenBank genes (AY307113, S68058 and AY

  6. Molecular detection of aminoglycoside-modifying enzyme genes in Acinetobacter baumannii clinical isolates.

    Science.gov (United States)

    Heidary, Mohsen; Salimi Chirani, Alireza; Khoshnood, Saeed; Eslami, Gita; Atyabi, Seyyed Mohammad; Nazem, Habibollah; Fazilati, Mohammad; Hashemi, Ali; Soleimani, Saleh

    2016-12-16

    Acinetobacter baumannii is a major opportunistic pathogen in healthcare settings worldwide. In Iran, there are only few reports on the prevalence of aminoglycoside resistance genes among A. baumannii isolates. The aim of this study was to investigate the existence of aminoglycoside-modifying enzyme (AME) genes from A. baumannii strains collected at a university teaching hospital in Iran. One hundred A. baumannii strains were collected between 2014 and 2015 from hospitalized patients at Loghman Hakim Hospital, Tehran, Iran. Antimicrobial susceptibility was determined by disk diffusion method according to the Clinical and Laboratory Standards Institute recommendations. The DNA was extracted using a kit obtained from Bioneer Co. (Korea) and was used as a template for polymerase chain reaction. The most active antimicrobial agent against these strains was colistin. The rate of extended-spectrum cephalosporin resistance was 97%. The aadA1, aadB, aac(6')-Ib, and aac(3)-IIa genes were found in 85%, 77%, 72%, and 68% of A. baumannii isolates, respectively. This study showed a high prevalence rate of AME genes in A. baumannii. This prevalence rate has explained that further aminoglycoside resistance genes may have role in the resistance of clinical isolates of A. baumannii. Therefore, control and treatment of serious infections caused by this opportunistic pathogen should be given more consideration.

  7. Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.

    Science.gov (United States)

    Smith, Clyde A; Toth, Marta; Bhattacharya, Monolekha; Frase, Hilary; Vakulenko, Sergei B

    2014-06-01

    The bifunctional acetyltransferase(6')-Ie-phosphotransferase(2'')-Ia [AAC(6')-Ie-APH(2'')-Ia] is the most important aminoglycoside-resistance enzyme in Gram-positive bacteria, conferring resistance to almost all known aminoglycoside antibiotics in clinical use. Owing to its importance, this enzyme has been the focus of intensive research since its isolation in the mid-1980s but, despite much effort, structural details of AAC(6')-Ie-APH(2'')-Ia have remained elusive. The structure of the Mg2GDP complex of the APH(2'')-Ia domain of the bifunctional enzyme has now been determined at 2.3 Å resolution. The structure of APH(2'')-Ia is reminiscent of the structures of other aminoglycoside phosphotransferases, having a two-domain architecture with the nucleotide-binding site located at the junction of the two domains. Unlike the previously characterized APH(2'')-IIa and APH(2'')-IVa enzymes, which are capable of utilizing both ATP and GTP as the phosphate donors, APH(2'')-Ia uses GTP exclusively in the phosphorylation of the aminoglycoside antibiotics, and in this regard closely resembles the GTP-dependent APH(2'')-IIIa enzyme. In APH(2'')-Ia this GTP selectivity is governed by the presence of a `gatekeeper' residue, Tyr100, the side chain of which projects into the active site and effectively blocks access to the adenine-binding template. Mutation of this tyrosine residue to a less bulky phenylalanine provides better access for ATP to the NTP-binding template and converts APH(2'')-Ia into a dual-specificity enzyme.

  8. Origin in Acinetobacter guillouiae and dissemination of the aminoglycoside-modifying enzyme Aph(3')-VI.

    Science.gov (United States)

    Yoon, Eun-Jeong; Goussard, Sylvie; Touchon, Marie; Krizova, Lenka; Cerqueira, Gustavo; Murphy, Cheryl; Lambert, Thierry; Grillot-Courvalin, Catherine; Nemec, Alexandr; Courvalin, Patrice

    2014-10-21

    The amikacin resistance gene aphA6 was first detected in the nosocomial pathogen Acinetobacter baumannii and subsequently in other genera. Analysis of 133 whole-genome sequences covering the taxonomic diversity of Acinetobacter spp. detected aphA6 in the chromosome of 2 isolates of A. guillouiae, which is an environmental species, 1 of 8 A. parvus isolates, and 5 of 34 A. baumannii isolates. The gene was also present in 29 out of 36 A. guillouiae isolates screened by PCR, indicating that it is ancestral to this species. The Pnative promoter for aphA6 in A. guillouiae and A. parvus was replaced in A. baumannii by PaphA6, which was generated by use of the insertion sequence ISAba125, which brought a -35 sequence. Study of promoter strength in Escherichia coli and A. baumannii indicated that PaphA6 was four times more potent than Pnative. There was a good correlation between aminoglycoside MICs and aphA6 transcription in A. guillouiae isolates that remained susceptible to amikacin. The marked topology differences of the phylogenetic trees of aphA6 and of the hosts strongly support its recent direct transfer within Acinetobacter spp. and also to evolutionarily remote bacterial genera. Concomitant expression of aphA6 must have occurred because, contrary to the donors, it can confer resistance to the new hosts. Mobilization and expression of aphA6 via composite transposons and the upstream IS-generating hybrid PaphA6, followed by conjugation, seems the most plausible mechanism. This is in agreement with the observation that, in the recipients, aphA6 is carried by conjugative plasmids and flanked by IS that are common in Acinetobacter spp. Our data indicate that resistance genes can also be found in susceptible environmental bacteria. Importance: We speculated that the aphA6 gene for an enzyme that confers resistance to amikacin, the most active aminoglycoside for the treatment of nosocomial infections due to Acinetobacter spp., originated in this genus before

  9. Molecular identification of aminoglycoside-modifying enzymes in clinical isolates of Escherichia coli resistant to amoxicillin/clavulanic acid isolated in Spain.

    Science.gov (United States)

    Fernández-Martínez, Marta; Miró, Elisenda; Ortega, Adriana; Bou, Germán; González-López, Juan José; Oliver, Antonio; Pascual, Alvaro; Cercenado, Emilia; Oteo, Jesús; Martínez-Martínez, Luis; Navarro, Ferran

    2015-08-01

    The activity of eight aminoglycosides (amikacin, apramycin, arbekacin, gentamicin, kanamycin, neomycin, netilmicin and tobramycin) against a collection of 257 amoxicillin/clavulanic acid (AMC)-resistant Escherichia coli isolates was determined by microdilution. Aminoglycoside resistance rates, the prevalence of aminoglycoside-modifying enzyme (AME) genes, the relationship between AME gene detection and resistance phenotype to aminoglycosides, and the association of AME genes with mechanisms of AMC resistance in E. coli isolates in Spain were investigated. Aminoglycoside-resistant isolates were screened for the presence of genes encoding common AMEs [aac(3)-Ia, aac(3)-IIa, aac(3)-IVa, aac(6')-Ib, ant(2″)-Ia, ant(4')-IIa and aph(3')-Ia] or 16S rRNA methylases (armA, rmtB, rmtC and npmA). In total, 105 isolates (40.9%) were resistant to at least one of the aminoglycosides tested. Amikacin, apramycin and arbekacin showed better activity, with MIC90 values of 2mg/L (arbekacin) and 8mg/L (amikacin and apramycin). Kanamycin presented the highest MIC90 (128mg/L). The most common AME gene was aac(6')-Ib (36 strains; 34.3%), followed by aph(3')-Ia (31 strains; 29.5%), ant(2″)-Ia (29 strains; 27.6%) and aac(3)-IIa (23 strains; 21.9%). aac(3)-Ia, aac(3)-IVa, ant(4')-IIa and the four methylases were not detected. The ant(2″)-Ia gene was usually associated with OXA-1 [21/30; 70%], whilst 23/25 (92%) strains producing CTX-M-15 had the aac(6')-Ib gene. The most prevalent AME gene was aac(6')-Ib (18/41; 44%) in nosocomial isolates, whilst ant(2″)-Ia and aph(3')-Ia genes (20/64; 31%) were more frequent in strains of community origin. In 64.6% isolates the phenotypic profile correlated with the presence of commonly encountered AMEs.

  10. 氨基糖苷类修饰酶引起的细菌耐药性机制的研究进展%Deciphering Mechanisms of Aminoglycoside Antibiotics with Enzymes That Cause Resistance to Their Action

    Institute of Scientific and Technical Information of China (English)

    武灵芝; 胡栋; 秦猛

    2013-01-01

    氨基糖苷类抗生素是高效、广谱的杀菌药物.随着在临床的广泛应用,抗生素的抗药性日趋严重,这在很大程度上降低了其临床应用的潜力.其中,最主要的原因就是细菌产生了一系列修饰酶修饰抗生素的特定基团,使其失去药效.细菌产生的修饰酶种类众多,主要包括磷酸化、乙酰化和腺苷化修饰酶.研究发现,一种酶可以修饰多种抗生素,同时,一种抗生素也可以被多种修饰酶修饰.由于修饰酶底物的广谱性,使得细菌的耐药性难以克服.因此,本文就氨基糖苷类修饰酶和抗生素相互作用的热力学和动力学性质进行了详细的论述,试图找出不同修饰酶失活抗生素药物的共同作用机制.这将为设计新的抗生素药物及修饰酶抑制剂、克服细菌的耐药性,提供理论指导和技术支持.%Aminoglycosides are valuable and broad spectrum of bactericidal antibiotics. However, their therapeutic effectiveness has been severely reduced in recent decades due to the emergence of bacterial strains that are insensitive to aminoglycoside action. The most common mode of bacterial resistance to aminoglycoside antibiotics is the enzyme-catalysed chemical modification on the special groups of the drug. Aminoglycoside-modifying enzymes are widely distributed among bacterial pathogens and include O-phosphoryltransferases (kinases), N-acetyltransferases, and O-adenyltransferases. These enzymes can use several aminoglycosides as substrates regardless of size and structural differences among them. Conversely, each aminoglycoside can be a substrate for many different AGMEs. In this review, the authors describe the thermodynamic characterization of aminoglycoside modified enzyme interacted with antibiotics in an effort to define shared aspects of enzyme-aminoglycoside complexes, which provides the necessary tools and understanding to design new drugs to combat antibiotic resistance.

  11. Molecular determinants of affinity for aminoglycoside binding to the aminoglycoside nucleotidyltransferase(2'')-Ia.

    Science.gov (United States)

    Wright, Edward; Serpersu, Engin H

    2006-08-29

    One of the most commonly occurring aminoglycoside resistance enzymes is aminoglycoside 2''-O-nucleotidyltransferase [ANT(2'')]. In the present study molecular determinants of affinity and specificity for aminoglycoside binding to this enzyme are investigated using isothermal titration calorimetry (ITC). Binding of aminoglycosides is enthalpically driven accompanied by negative entropy changes. The presence of metal-nucleotide increases the affinity for all but one of the aminoglycosides studied but has no effect on specificity. The substituents at positions 1, 2', and 6' are important determinants of substrate specificity. An amino group at these positions leads to greater affinity. No correlation is observed between the change in affinity and enthalpy. At the 2' position greater affinity results from a more negative enthalpy for an aminoglycoside containing an amino rather than a hydroxyl at that position. At the 6' position the greater affinity for an aminoglycoside containing an amino substituent results from a less disfavorable entropic contribution. The thermodynamic basis for the change in affinity at position 1 could not be determined because of the weak binding of one of the aminoglycoside substrates, amikacin. The effect of increasing osmotic stress on affinity was used to determine that a net release of approximately four water molecules occurs when tobramycin binds to ANT(2''). No measurable net change in the number of bound water molecules is observed when neomycin binds the enzyme. Data acquired in this work provide the rationale for the ability of ANT(2'') to confer resistance against kanamycins but not neomycins.

  12. DNA-Aptamers Binding Aminoglycoside Antibiotics

    Directory of Open Access Journals (Sweden)

    Nadia Nikolaus

    2014-02-01

    Full Text Available Aptamers are short, single stranded DNA or RNA oligonucleotides that are able to bind specifically and with high affinity to their non-nucleic acid target molecules. This binding reaction enables their application as biorecognition elements in biosensors and assays. As antibiotic residues pose a problem contributing to the emergence of antibiotic-resistant pathogens and thereby reducing the effectiveness of the drug to fight human infections, we selected aptamers targeted against the aminoglycoside antibiotic kanamycin A with the aim of constructing a robust and functional assay that can be used for water analysis. With this work we show that aptamers that were derived from a Capture-SELEX procedure targeting against kanamycin A also display binding to related aminoglycoside antibiotics. The binding patterns differ among all tested aptamers so that there are highly substance specific aptamers and more group specific aptamers binding to a different variety of aminoglycoside antibiotics. Also the region of the aminoglycoside antibiotics responsible for aptamer binding can be estimated. Affinities of the different aptamers for their target substance, kanamycin A, are measured with different approaches and are in the micromolar range. Finally, the proof of principle of an assay for detection of kanamycin A in a real water sample is given.

  13. Evaluation on the Use of β-Lactamase and Aminoglycoside Modifying Enzyme Gene Sequences as Markers for the Early Detection of Antibiotic Resistance Profile of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Victor A. Doss

    2004-01-01

    Full Text Available Pseudomonas aeruginosa is one of the major causes of infections including the hospital acquired (Nosocomial infections. Detection of them and their antibiotic resistance profile by conventional method takes about three days. Recently, DNA based diagnostic methods are being used for the identification of the pathogens. Hence we have tested a rapid and sensitive method using DNA sequences as markers for detecting the presence of three genes coding for the enzymes that inactivate the two most commonly used Anti-pseudomonadal drugs such as β-lactam antibiotics (Penicillin, and its derivatives and Aminoglycosides such as Gentamicin, Tobramycin, Amikacin, Streptomycin. The internal region of these genes were used for designing and synthesizing primers and these primers were used in Polymerase Chain Reaction (PCR to screen for the presence of these genes in the clinical isolates and to label them non-radioactively with Biotin. They in turn were used to detect the presence of the antibiotic resistance genes in the clinical isolates by hybridization. The specificity (ratio of positive results obtained in both methods and the sensitivity (the minimum amount of sample DNA and the labeled probe required for the tests were evaluated.

  14. Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Longenecker, Nevin E.; Oppenheimer, Dan

    1982-01-01

    A study conducted by high school advanced bacteriology students appears to confirm the hypothesis that the incremental administration of antibiotics on several species of bacteria (Escherichia coli, Staphylococcus epidermis, Bacillus sublitus, Bacillus megaterium) will allow for the development of antibiotic-resistant strains. (PEB)

  15. Prevalence of Aminoglycoside Resistance Genes in Acinetobacter baumannii Isolates

    OpenAIRE

    Aliakbarzade, Katayun; Farajnia, Safar; Karimi Nik, Ashraf; Zarei, Farzaneh; Tanomand, Asghar

    2014-01-01

    Background: Acinetobacter baumannii is one of the major causes of nosocomial infections and is resistant to most available antibiotics. Aminoglycosides remain as drugs of choice for treatment of Acinetobacter infections yet resistance to aminoglycosides has increased in the recent years. Objectives: The present study investigated the prevalence of genes encoding aminoglycoside-modifying enzymes in A. baumannii strains isolated from patients of Tabriz city, northwest of Iran. Materials and Met...

  16. Pharmacokinetics of Aminoglycosides

    Institute of Scientific and Technical Information of China (English)

    Lokangu Lombo(Congo); HE Hua

    2004-01-01

    The Pharmacokinetics informations of aminoglycosides, their monograph and clinical Pharmacokinetics parameters are reported in this review. The Aminoglycosides are highly polarity and in reserve for serious infections caused by aerobic gram-negative bacteria and some gram-positive bacteria but their toxicity are major limitations in clinical use.

  17. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Science.gov (United States)

    TEIXEIRA, Bertinellys; RODULFO, Hectorina; CARREÑO, Numirin; GUZMÁN, Militza; SALAZAR, Elsa; DONATO, Marcos DE

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America. PMID:27007556

  18. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA.

    Science.gov (United States)

    Teixeira, Bertinellys; Rodulfo, Hectorina; Carreño, Numirin; Guzmán, Militza; Salazar, Elsa; De Donato, Marcos

    2016-01-01

    The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC), aminoglycoside-adenyltransferases (AAD), and aminoglycoside-phosphotransferases (APH), is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA) were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137) were identified from the Intensive Care Unit (ICU), mainly from discharges (96/137). The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively). Phenotype VI, resistant to these antibiotics, was the most frequent (14/49), followed by phenotype I, resistant to all the aminoglycosides tested (12/49). The aac(6´)-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´)-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  19. Antibiotic-Resistant Gonorrhea (ARG)

    Science.gov (United States)

    ... Twitter STD on Facebook Sexually Transmitted Diseases (STDs) Antibiotic-Resistant Gonorrhea Basic Information Recommend on Facebook Tweet ... Page Surveillance Trends and Treatment Challenges Laboratory Issues Antibiotic resistance (AR) is the ability of bacteria to ...

  20. Riboswitch control of induction of aminoglycoside resistance acetyl and adenyl-transferases.

    Science.gov (United States)

    He, Weizhi; Zhang, Xuhui; Zhang, Jun; Jia, Xu; Zhang, Jing; Sun, Wenxia; Jiang, Hengyi; Chen, Dongrong; Murchie, Alastair I H

    2013-08-01

    The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.

  1. Prospects for circumventing aminoglycoside kinase mediated antibiotic resistance

    Directory of Open Access Journals (Sweden)

    Kun eShi

    2013-06-01

    Full Text Available Aminoglycosides are a class of antibiotics with a broad spectrum of antimicrobial activity. Unfortunately, resistance in clinical isolates is pervasive, rendering many aminoglycosides ineffective. The most widely disseminated means of resistance to this class of antibiotics is inactivation of the drug by aminoglycoside-modifying enzymes (AMEs. There are two principal strategies to overcoming the effects of AMEs. The first approach involves the design of novel aminoglycosides that can evade modification. Although this strategy has yielded a number of superior aminoglycoside variants, their efficacy cannot be sustained in the long term. The second approach entails the development of molecules that interfere with the mechanism of AMEs such that the activity of aminoglycosides is preserved. Although such a molecule has yet to enter clinical development, the search for AME inhibitors has been greatly facilitated by the wealth of structural information amassed in recent years. In particular, aminoglycoside phosphotransferases or kinases (APHs have been studied extensively and crystal structures of a number of APHs with diverse regiospecificity and substrate specificity have been elucidated. In this review, we present a comprehensive overview of the available APH structures and recent progress in APH inhibitor development, with a focus on the structure-guided strategies.

  2. Endotoxemia-mediated inflammation potentiates aminoglycoside-induced ototoxicity

    Science.gov (United States)

    Koo, J.-W.; Quintanilla-Dieck, L.; Jiang, M.; Liu, J.; Urdang, Z. D.; Allensworth, J. J.; Cross, C. P.; Li, H.; Steyger, P. S.

    2015-01-01

    The ototoxic aminoglycoside antibiotics are essential to treat severe bacterial infections, particularly in neonatal intensive care units. Using a bacterial lipopolysaccharide (LPS) experimental model of sepsis, we tested whether LPS-mediated inflammation potentiates cochlear uptake of aminoglycosides and permanent hearing loss in mice. Using confocal microscopy and enzyme-linked immunosorbent assays, we found that low-dose LPS (endotoxemia) greatly increased cochlear concentrations of aminoglycosides and resulted in vasodilation of cochlear capillaries without inducing paracellular flux across the blood-labyrinth barrier (BLB), or elevating serum concentrations of the drug. Additionally, endotoxemia increased expression of both serum and cochlear inflammatory markers. These LPS-induced changes, classically mediated by Toll-like Receptor 4 (TLR4), were attenuated in TLR4-hyporesponsive mice. Multiday dosing with aminoglycosides during chronic endotoxemia induced greater hearing threshold shifts and sensory cell loss compared to mice without endotoxemia. Thus, endotoxemia-mediated inflammation enhanced aminoglycoside trafficking across the BLB, and potentiated aminoglycoside-induced ototoxicity. These data indicate that patients with severe infections are at greater risk of aminoglycoside-induced hearing loss than previously recognized. PMID:26223301

  3. Enzymology of aminoglycoside biosynthesis-deduction from gene clusters.

    Science.gov (United States)

    Wehmeier, Udo F; Piepersberg, Wolfgang

    2009-01-01

    The classical aminoglycosides are, with very few exceptions, typically actinobacterial secondary metabolites with antimicrobial activities all mediated by inhibiting translation on the 30S subunit of the bacterial ribosome. Some chemically related natural products inhibit glucosidases by mimicking oligo-alpha-1,4-glucosides. The biochemistry of the aminoglycoside biosynthetic pathways is still a developing field since none of the pathways has been analyzed to completeness as yet. In this chapter we treat the enzymology of aminoglycoside biosyntheses as far as it becomes apparent from recent investigations based on the availability of DNA sequence data of biosynthetic gene clusters for all major structural classes of these bacterial metabolites. We give a more general overview of the field, including descriptions of some key enzymes in various aminoglycoside pathways, whereas in Chapter 20 provides a detailed account of the better-studied enzymology thus far known for the neomycin and butirosin pathways.

  4. AMINOGLYCOSIDE RESISTANCE GENES IN Pseudomonas aeruginosa ISOLATES FROM CUMANA, VENEZUELA

    Directory of Open Access Journals (Sweden)

    Bertinellys TEIXEIRA

    2016-01-01

    Full Text Available The enzymatic modification of aminoglycosides by aminoglycoside-acetyltransferases (AAC, aminoglycoside-adenyltransferases (AAD, and aminoglycoside-phosphotransferases (APH, is the most common resistance mechanism in P. aeruginosa and these enzymes can be coded on mobile genetic elements that contribute to their dispersion. One hundred and thirty seven P. aeruginosa isolates from the University Hospital, Cumana, Venezuela (HUAPA were evaluated. Antimicrobial susceptibility was determined by the disk diffusion method and theaac, aadB and aph genes were detected by PCR. Most of the P. aeruginosa isolates (33/137 were identified from the Intensive Care Unit (ICU, mainly from discharges (96/137. The frequency of resistant P. aeruginosaisolates was found to be higher for the aminoglycosides tobramycin and amikacin (30.7 and 29.9%, respectively. Phenotype VI, resistant to these antibiotics, was the most frequent (14/49, followed by phenotype I, resistant to all the aminoglycosides tested (12/49. The aac(6´-Ib,aphA1 and aadB genes were the most frequently detected, and the simultaneous presence of several resistance genes in the same isolate was demonstrated. Aminoglycoside resistance in isolates ofP. aeruginosa at the HUAPA is partly due to the presence of the aac(6´-Ib, aphA1 andaadB genes, but the high rates of antimicrobial resistance suggest the existence of several mechanisms acting together. This is the first report of aminoglycoside resistance genes in Venezuela and one of the few in Latin America.

  5. Identification of aminoglycoside resistance genes by Triplex PCR in Enterococcus spp. isolated from ICUs.

    Science.gov (United States)

    Mirnejad, Reza; Sajjadi, Nikta; Masoumi Zavaryani, Sara; Piranfar, Vahhab; Hajihosseini, Maryam; Roshanfekr, Maliheh

    2016-09-01

    Early detection of antibiotic-resistant enterococci is an important part of patient treatment. Therefore, the aim of the present study was to evaluate the resistance patterns and simultaneously identify and characterise the resistance genes in Enterococcus spp. using a triplex polymerase chain reaction (PCR) method. In all, 150 consecutive Enterococcus spp were collected from several hospitals in Tehran (Iran) from January to December 2015. The Enterococcus species were identified by standard phenotypic/biochemical tests and PCR. The antimicrobial resistance patterns were determined using a disk diffusion method. The triplex PCR method was designed to identify gentamicin and other aminoglycoside resistance genes. Among the 150 Enterococcus specimens, 87 cases (58%) were Enterococcus faecalis, and 63 cases (42%) were Enterococcus faecium. The highest frequency of resistance was observed for tetracycline while the lowest was found for vancomycin. Among the identified samples, 56.9% contained the aac(6')-Ie-aph(2'')-Ia gene, 22.2% contained the aph(3')-IIIa gene, and 38.8% contained the ant(4')-?a gene. Eight percent of the isolates contained the three aminoglycoside resistance genes. Data analysis showed that there was a significant correlation between the phenotypic gentamicin resistance and the presence of the aminoglycoside resistance genes (18.9%, p Enterococcus strains had increased aminoglycoside resistance. The direct correlation between resistance genes, such as the aminoglycoside resistance factor, and phenotypic resistance was not significant (p > 0.05).

  6. Immunochemical detection of aminoglycosides in milk and kidney

    NARCIS (Netherlands)

    Haasnoot, W.; Stouten, P.; Cazemier, G.; Lommen, A.; Nouws, J.F.M.; Keukens, H.J.

    1999-01-01

    In 1996, the European Union established provisional maximum residue limits (MRL) for gentamicin, neomycin, streptomycin and dihydrostreptomycin in milli and tissue (0.1-5 mg kg-1). For the detection of these four aminoglycosides, three enzyme linked immunosorbent assays (ELISA) for applications in m

  7. Study on the genes of 16S rRNA methylase and aminoglycoside modifying enzymes in Acinetobacter baumannii%鲍曼不动杆菌16S rRNA甲基化酶与氨基糖苷修饰酶基因检测研究

    Institute of Scientific and Technical Information of China (English)

    刘振茹; 凌保东

    2012-01-01

    目的 了解高水平耐氨基糖营类鲍曼不动杆菌16S rRNA甲基化酶、氨基糖苷修饰酶基因的流行情况.方法 从2008年9月至2011年1月收集的110株鲍曼不动杆菌,琼脂二倍稀释法测定其对6种氨基糖苷类抗生素的药物敏感性,并筛选出对阿米卡星MIC≥256μg/mL的60株鲍曼不动杆菌,PCR法检测7种甲基化酶基因(armA、rmtA-rmtE、NpmA)和3种氨基糖苷修饰酶基因(aac (6′)-Ib、ant(3″)-Ia、aph(3′)-I).结果 鲍曼不动杆菌对氨基糖苷类高水平耐药率较高(46.4%-65.4%),armA、aac(6′)-Ib、ant(3″)-Ia、aph(3′)-I的基因检出率分别为66.7% (40株)、51.7% (31株)、81.7% (49株)、58.3% (35株),其余基因未检出.结论 鲍曼不动杆菌对氨基糖苷类抗生素的高度耐药性与16S rRNA甲基化酶基因及氨基糖苷修饰酶基因有关.%Objective To survey the prevalence of genes encoding 16S rRNA methylase and aminoglycoside modifying enzymes in Acinetobacter baumannii with high-level resistance to aminoglycosides. Methods A total of 110 Acinetobacter baumannii isolates were collected from September 2008 to January 2011 in Northeastern Sichuan. The sensitivity of the isolates to 6 aminoglycosides was determined using agar dilution method. The 16S rRNA methylase genes (armA, rmtA-rmtE, and NpmA) and aminoglycoside modifying enzymes genes (aac (6')-Ib, ant(3")-Ia, aph(3)-I) were analyzed by polymerase chain reaction (PCR) in Acinetobacter baumannii with high-level resistance to amikacin (MIC≥256μg/mL). Results The resistant rates of Acinetobacter baumannii isolates were 46.4%~65.4% to aminoglycosides. The armA, aac (6')-Ib, ant(3")-Ia and aph(3') -/genes were present in 66.7%, 51.7%, 81.7% , and 58.3% of the 60 clinical isolates highly resistant to amikacin (MIC3:256μg/mL), respectively. Conclusions The clinical isolates of Acinetobacter baumannii in Northeastern Sichuan were extensively resistant to most commonly used aminoglycosides. The

  8. Study on genotype of enzymes associated with aminoglycosides resistance in Klebsiella pneumoniae%肺炎克雷伯菌氨基糖苷类耐药相关酶的基因型研究

    Institute of Scientific and Technical Information of China (English)

    梁彩倩; 张永标; 杨晓燕; 符永玫; 冯亚群

    2013-01-01

    目的:了解肺炎克雷伯菌中氨基糖苷类修饰酶(AMEs)和16S rRNA甲基化酶的基因型,及其对氨基糖苷类(AGs)耐药性的影响.方法:采用琼脂稀释法测定阿米卡星、庆大霉素、妥布霉素的最低抑菌浓度(MICs),应用PCR方法扩增AMEs基因aac (3)-Ⅱ,aac(6')-Ⅰb,ant(3")-Ⅰ,ant(2")-Ⅰ,aac (3)-Ⅰ,aac(6')-Ⅱ和16S rRNA甲基化酶基因armA,rmtA,rmtB,rmtC,rmtD,npmA,并对PCR阳性产物进行测序以确定基因型.结果:162株肺炎克雷伯菌中检测到aac (3)-Ⅱ,aac(6')-Ⅰb,ant(3")-Ⅰ,ant(2")-Ⅰ,armA,rmtB基因,阿米卡星、庆大霉素、妥布霉素对同时携带AMEs和16S rRNA甲基化酶基因菌株的MIC50 、MIC90均高于单纯携带AMEs基因菌株.结论:肺炎克雷伯菌中流行AMEs基因aac (3)-Ⅱ,aac(6')-Ⅰb,ant(3")-Ⅰ,ant(2")-Ⅰ和16S rRNA甲基化酶基因armA,rmtB,同时携带AMEs和16S rRNA甲基化酶基因菌株对AGs的耐药性比单纯携带AMEs基因菌株更为明显.%Objective: To explore the genotype of aminoglycoside modifying enzymes ( AMEs) and 16S rRNA methylases in Klebsiella pneumoniae, and the influence on aminoglycosides ( AGs) resistance. Methods: Minimal inhibitory concentrations ( MICs) of amikacin, gentamicin and tobramycin to K. pneumoniae were detected by agar dilution methods. PCR was used to amplify AMEs genes aac (3) -Ⅱ, aac (6′) -Ⅰb, ant (3") -Ⅰ, ant (2") -Ⅰ, aac (3) -Ⅰ, aac (6′) - Ⅱ and 16S rRNA mehtylases genes armA, rmtA, rmtB, rmtC, rmtD, npmA. The PCR positive products were sequenced to identify their genotype. Results: AMEs genes aac (3) - Ⅱ, aac (6′) - Ⅰb, ant (3") -Ⅰ, ant (2") - Ⅰ and 16S rRNA mehtylases genes armA and rmtB were detected among 162 strains of K. pneumoniae. MIC50 and MIC90 of amikacin, gentamicin and tobramycin for the strains harbouring both AMEs and 16S rRNA methylases genes were higher than that of the strains harbouring AMEs genes only. Conclusion: AMEs genes aac (3) - Ⅱ, aac (6′) - Ib, ant (3") -

  9. High Level Aminoglycoside Resistance and Distribution of Aminoglycoside Resistant Genes among Clinical Isolates of Enterococcus Species in Chennai, India

    Directory of Open Access Journals (Sweden)

    Elango Padmasini

    2014-01-01

    Full Text Available Enterococci are nosocomial pathogen with multiple-drug resistance by intrinsic and extrinsic mechanisms. Aminoglycosides along with cell wall inhibitors are given clinically for treating enterococcal infections. 178 enterococcal isolates were analyzed in this study. E. faecalis is identified to be the predominant Enterococcus species, along with E. faecium, E. avium, E. hirae, E. durans, E. dispar and E. gallinarum. High level aminoglycoside resistance (HLAR by MIC for gentamicin (GM, streptomycin (SM and both (GM + SM antibiotics was found to be 42.7%, 29.8%, and 21.9%, respectively. Detection of aminoglycoside modifying enzyme encoding genes (AME in enterococci was identified by multiplex PCR for aac(6′-Ie-aph(2′′-Ia; aph(2′′-Ib; aph(2′′-Ic; aph(2′′-Id and aph(3′-IIIa genes. 38.2% isolates carried aac(6′-Ie-aph(2′′-Ia gene and 40.4% isolates carried aph(3′-IIIa gene. aph(2′′-Ib; aph(2′′-Ic; aph(2′′-Id were not detected among our study isolates. aac(6′-Ie-aph(2′′-Ia and aph(3′-IIIa genes were also observed in HLAR E. durans, E. avium, E. hirae, and E. gallinarum isolates. This indicates that high level aminoglycoside resistance genes are widely disseminated among isolates of enterococci from Chennai.

  10. High level aminoglycoside resistance and distribution of aminoglycoside resistant genes among clinical isolates of Enterococcus species in Chennai, India.

    Science.gov (United States)

    Padmasini, Elango; Padmaraj, R; Ramesh, S Srivani

    2014-01-01

    Enterococci are nosocomial pathogen with multiple-drug resistance by intrinsic and extrinsic mechanisms. Aminoglycosides along with cell wall inhibitors are given clinically for treating enterococcal infections. 178 enterococcal isolates were analyzed in this study. E. faecalis is identified to be the predominant Enterococcus species, along with E. faecium, E. avium, E. hirae, E. durans, E. dispar and E. gallinarum. High level aminoglycoside resistance (HLAR) by MIC for gentamicin (GM), streptomycin (SM) and both (GM + SM) antibiotics was found to be 42.7%, 29.8%, and 21.9%, respectively. Detection of aminoglycoside modifying enzyme encoding genes (AME) in enterococci was identified by multiplex PCR for aac(6')-Ie-aph(2'')-Ia; aph(2'')-Ib; aph(2'')-Ic; aph(2'')-Id and aph(3')-IIIa genes. 38.2% isolates carried aac(6')-Ie-aph(2'')-Ia gene and 40.4% isolates carried aph(3')-IIIa gene. aph(2'')-Ib; aph(2'')-Ic; aph(2'')-Id were not detected among our study isolates. aac(6')-Ie-aph(2'')-Ia and aph(3')-IIIa genes were also observed in HLAR E. durans, E. avium, E. hirae, and E. gallinarum isolates. This indicates that high level aminoglycoside resistance genes are widely disseminated among isolates of enterococci from Chennai.

  11. Antibiotic-Resistant Bacteria Detected in Sewage Spill

    Science.gov (United States)

    ... medlineplus.gov/news/fullstory_160031.html Antibiotic-Resistant Bacteria Detected in Sewage Spill 'People need to be ... News) -- Sewer line breaks can release antibiotic-resistant bacteria that pose a public health threat, a new ...

  12. Crystal structures of antibiotic-bound complexes of aminoglycoside 2''-phosphotransferase IVa highlight the diversity in substrate binding modes among aminoglycoside kinases.

    Science.gov (United States)

    Shi, Kun; Houston, Douglas R; Berghuis, Albert M

    2011-07-19

    Aminoglycoside 2''-phosphotransferase IVa [APH(2'')-IVa] is a member of a family of bacterial enzymes responsible for medically relevant resistance to antibiotics. APH(2'')-IVa confers high-level resistance against several clinically used aminoglycoside antibiotics in various pathogenic Enterococcus species by phosphorylating the drug, thereby preventing it from binding to its ribosomal target and producing a bactericidal effect. We describe here three crystal structures of APH(2'')-IVa, one in its apo form and two in complex with a bound antibiotic, tobramycin and kanamycin A. The apo structure was refined to a resolution of 2.05 Å, and the APH(2'')-IVa structures with tobramycin and kanamycin A bound were refined to resolutions of 1.80 and 2.15 Å, respectively. Comparison among the structures provides insight concerning the substrate selectivity of this enzyme. In particular, conformational changes upon substrate binding, involving rotational shifts of two distinct segments of the enzyme, are observed. These substrate-induced shifts may also rationalize the altered substrate preference of APH(2'')-IVa in comparison to those of other members of the APH(2'') subfamily, which are structurally closely related. Finally, analysis of the interactions between the enzyme and aminoglycoside reveals a distinct binding mode as compared to the intended ribosomal target. The differences in the pattern of interactions can be utilized as a structural basis for the development of improved aminoglycosides that are not susceptible to these resistance factors.

  13. A microcomputer spreadsheet for aminoglycoside kinetics.

    Science.gov (United States)

    Kiacz, B J

    1990-05-01

    Development of an aminoglycoside monitoring program need not entail large capital expenditures for pharmacokinetic software. Microsoft's Excel spreadsheet was used to develop a single compartment, first-order kinetics template for individualized aminoglycoside dosing. The formulas employed may be adapted to virtually any other microcomputer spreadsheet package to provide accurate professional results.

  14. Therapeutic drug monitoring of aminoglycosides in neonates

    NARCIS (Netherlands)

    Touw, Daniël J; Westerman, Elsbeth M; Sprij, Arwen J

    2009-01-01

    The efficacy and toxicity of aminoglycosides show a strong direct positive relationship with blood drug concentrations, therefore, therapy with aminoglycosides in adults is usually guided by therapeutic drug monitoring. Dosing regimens in adults have evolved from multiple daily dosing to extended-in

  15. Solvent reorganization plays a temperature-dependent role in antibiotic selection by a thermostable aminoglycoside nucleotidyltransferase-4'.

    Science.gov (United States)

    Jing, Xiaomin; Serpersu, Engin H

    2014-09-02

    The aminoglycoside nucleotidyltransferase-4' (ANT) is an enzyme that causes resistance to a large number of aminoglycoside antibiotics by nucleotidylation of the 4'-site on these antibiotics. The effect of solvent reorganization on enzyme-ligand interactions was investigated using a thermophilic variant of the enzyme resulting from a single-site mutation (T130K). Data showed that the binding of aminoglycosides to ANT causes exposure of polar groups to solvent. However, solvent reorganization becomes the major contributor to the enthalpy of the formation of enzyme-aminoglycoside complexes only above 20 °C. The change in heat capacity (ΔCp) shows an aminoglycoside-dependent pattern such that it correlates with the affinity of the ligand for the enzyme. Differences in ΔCp values determined in H2O and D2O also correlated with the ligand affinity. The temperature-dependent increase in the offset temperature (Toff), the temperature difference required to observe equal enthalpies in both solvents, is also dependent on the binding affinity of the ligand, and the steepest increase was observed with the tightest binding aminoglycoside, neomycin. Overall, these data, together with earlier observations with a different enzyme, the aminoglycoside N3-acetyltransferase-IIIb [Norris, A. L., and Serpersu, E. H. (2011) Biochemistry 50, 9309], show that solvent reorganization or changes in soft vibrational modes of the protein are interchangeable with respect to the role of being the major contributor to complex formation depending on temperature. These data suggest that such effects may more generally apply to enzyme-ligand interactions, and studies at a single temperature may provide only a part of the whole picture of thermodynamics of enzyme-ligand interactions.

  16. Structure of AadA from Salmonella enterica: a monomeric aminoglycoside (3′′)(9) adenyltransferase

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang [Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala (Sweden); Näsvall, Joakim [Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala (Sweden); Wu, Shiying [Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala (Sweden); Andersson, Dan I. [Uppsala University, Biomedical Center, Box 582, SE-751 23 Uppsala (Sweden); Selmer, Maria, E-mail: maria.selmer@icm.uu.se [Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala (Sweden)

    2015-10-31

    The crystal structure of the aminoglycoside-adenylating enzyme AadA is reported together with functional experiments providing insights into its oligomeric state, ligand binding and catalysis. Aminoglycoside resistance is commonly conferred by enzymatic modification of drugs by aminoglycoside-modifying enzymes such as aminoglycoside nucleotidyltransferases (ANTs). Here, the first crystal structure of an ANT(3′′)(9) adenyltransferase, AadA from Salmonella enterica, is presented. AadA catalyses the magnesium-dependent transfer of adenosine monophosphate from ATP to the two chemically dissimilar drugs streptomycin and spectinomycin. The structure was solved using selenium SAD phasing and refined to 2.5 Å resolution. AadA consists of a nucleotidyltransferase domain and an α-helical bundle domain. AadA crystallizes as a monomer and is a monomer in solution as confirmed by small-angle X-ray scattering, in contrast to structurally similar homodimeric adenylating enzymes such as kanamycin nucleotidyltransferase. Isothermal titration calorimetry experiments show that ATP binding has to occur before binding of the aminoglycoside substrate, and structure analysis suggests that ATP binding repositions the two domains for aminoglycoside binding in the interdomain cleft. Candidate residues for ligand binding and catalysis were subjected to site-directed mutagenesis. In vivo resistance and in vitro binding assays support the role of Glu87 as the catalytic base in adenylation, while Arg192 and Lys205 are shown to be critical for ATP binding.

  17. Enzyme

    Science.gov (United States)

    Enzymes are complex proteins that cause a specific chemical change in all parts of the body. For ... use them. Blood clotting is another example of enzymes at work. Enzymes are needed for all body ...

  18. Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases.

    Science.gov (United States)

    Shi, Kun; Berghuis, Albert M

    2012-04-13

    Enzymatic phosphorylation through a family of enzymes called aminoglycoside O-phosphotransferases (APHs) is a major mechanism by which bacteria confer resistance to aminoglycoside antibiotics. Members of the APH(2″) subfamily are of particular clinical interest because of their prevalence in pathogenic strains and their broad substrate spectra. APH(2″) enzymes display differential preferences between ATP or GTP as the phosphate donor, with aminoglycoside 2″-phosphotransferase IVa (APH(2″)-IVa) being a member that utilizes both nucleotides at comparable efficiencies. We report here four crystal structures of APH(2″)-IVa, two of the wild type enzyme and two of single amino acid mutants, each in complex with either adenosine or guanosine. Together, these structures afford a detailed look at the nucleoside-binding site architecture for this enzyme and reveal key elements that confer dual nucleotide specificity, including a solvent network in the interior of the nucleoside-binding pocket and the conformation of an interdomain linker loop. Steady state kinetic studies, as well as sequence and structural comparisons with members of the APH(2″) subfamily and other aminoglycoside kinases, rationalize the different substrate preferences for these enzymes. Finally, despite poor overall sequence similarity and structural homology, analysis of the nucleoside-binding pocket of APH(2″)-IVa shows a striking resemblance to that of eukaryotic casein kinase 2 (CK2), which also exhibits dual nucleotide specificity. These results, in complement with the multitude of existing inhibitors against CK2, can serve as a structural basis for the design of nucleotide-competitive inhibitors against clinically relevant APH enzymes.

  19. Bacteriophage biosensors for antibiotic-resistant bacteria.

    Science.gov (United States)

    Sorokulova, Irina; Olsen, Eric; Vodyanoy, Vitaly

    2014-03-01

    An increasing number of disease-causing bacteria are resistant to one or more anti-bacterial drugs utilized for therapy. Early and speedy detection of these pathogens is therefore very important. Traditional pathogen detection techniques, that include microbiological and biochemical assays are long and labor-intensive, while antibody or DNA-based methods require substantial sample preparation and purification. Biosensors based on bacteriophages have demonstrated remarkable potential to surmount these restrictions and to offer rapid, efficient and sensitive detection technique for antibiotic-resistant bacteria.

  20. Fitness cost and interference of Arm/Rmt aminoglycoside resistance with the RsmF housekeeping methyltransferases.

    Science.gov (United States)

    Gutierrez, Belen; Escudero, Jose A; San Millan, Alvaro; Hidalgo, Laura; Carrilero, Laura; Ovejero, Cristina M; Santos-Lopez, Alfonso; Thomas-Lopez, Daniel; Gonzalez-Zorn, Bruno

    2012-05-01

    Arm/Rmt methyltransferases have emerged recently in pathogenic bacteria as enzymes that confer high-level resistance to 4,6-disubstituted aminoglycosides through methylation of the G1405 residue in the 16S rRNA (like ArmA and RmtA to -E). In prokaryotes, nucleotide methylations are the most common type of rRNA modification, and they are introduced posttranscriptionally by a variety of site-specific housekeeping enzymes to optimize ribosomal function. Here we show that while the aminoglycoside resistance methyltransferase RmtC methylates G1405, it impedes methylation of the housekeeping methyltransferase RsmF at position C1407, a nucleotide that, like G1405, forms part of the aminoglycoside binding pocket of the 16S rRNA. To understand the origin and consequences of this phenomenon, we constructed a series of in-frame knockout and knock-in mutants of Escherichia coli, corresponding to the genotypes rsmF(+), ΔrsmF, rsmF(+) rmtC(+), and ΔrsmF rmtC(+). When analyzed for the antimicrobial resistance pattern, the ΔrsmF bacteria had a decreased susceptibility to aminoglycosides, including 4,6- and 4,5-deoxystreptamine aminoglycosides, showing that the housekeeping methylation at C1407 is involved in intrinsic aminoglycoside susceptibility in E. coli. Competition experiments between the isogenic E. coli strains showed that, contrary to expectation, acquisition of rmtC does not entail a fitness cost for the bacterium. Finally, matrix-assisted laser desorption ionization (MALDI) mass spectrometry allowed us to determine that RmtC methylates the G1405 residue not only in presence but also in the absence of aminoglycoside antibiotics. Thus, the coupling between housekeeping and acquired methyltransferases subverts the methylation architecture of the 16S rRNA but elicits Arm/Rmt methyltransferases to be selected and retained, posing an important threat to the usefulness of aminoglycosides worldwide.

  1. Electrostatic interactions in aminoglycoside-RNA complexes.

    Science.gov (United States)

    Kulik, Marta; Goral, Anna M; Jasiński, Maciej; Dominiak, Paulina M; Trylska, Joanna

    2015-02-03

    Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.

  2. Aminoglycoside nephrotoxicity: modeling, simulation, and control.

    Science.gov (United States)

    Rougier, Florent; Claude, Daniel; Maurin, Michel; Sedoglavic, Alexandre; Ducher, Michel; Corvaisier, Stéphane; Jelliffe, Roger; Maire, Pascal

    2003-03-01

    The main constraints on the administration of aminoglycosides are the risks of nephrotoxicity and ototoxicity, which can lead to acute, renal, vestibular, and auditory toxicities. In the present study we focused on nephrotoxicity. No reliable predictor of nephrotoxicity has been found to date. We have developed a deterministic model which describes the pharmacokinetic behavior of aminoglycosides (with a two-compartment model), the kinetics of aminoglycoside accumulation in the renal cortex, the effects of aminoglycosides on renal cells, the resulting effects on renal function by tubuloglomerular feedback, and the resulting effects on serum creatinine concentrations. The pharmacokinetic parameter values were estimated by use of the NPEM program. The estimated pharmacodynamic parameter values were obtained after minimization of the least-squares objective function between the measured and the calculated serum creatinine concentrations. A simulation program assessed the influences of the dosage regimens on the occurrence of nephrotoxicity. We have also demonstrated the relevancy of modeling of the circadian rhythm of the renal function. We have shown the ability of the model to fit with 49 observed serum creatinine concentrations for a group of eight patients treated for endocarditis by comparison with 49 calculated serum creatinine concentrations (r(2) = 0.988; P < 0.001). We have found that for the same daily dose, the nephrotoxicity observed with a thrice-daily administration schedule appears more rapidly, induces a greater decrease in renal function, and is more prolonged than those that occur with less frequent administration schedules (for example, once-daily administration). Moreover, for once-daily administration, we have demonstrated that the time of day of administration can influence the incidence of aminoglycoside nephrotoxicity. The lowest level of nephrotoxicity was observed when aminoglycosides were administered at 1:30 p.m. Clinical application of this

  3. Mitochondrial DNA Mutations Associated with Aminoglycoside Ototoxicity

    Institute of Scientific and Technical Information of China (English)

    GUAN Min-Xin

    2006-01-01

    The mitochondrial 12S rRNA has been shown to be the hot spot for mutations associated with both aminoglycoside-induced and non-syndromic hearing loss. Of all the mutations, the homoplasmic A1555G and C1494T mutations at a highly conserved decoding region in the 12S rRNA have been associated with aminoglycoside-induced and non-syndromic hearing loss in many families worldwide. The A1555G or C1494T mutation is expected to form novel 1494C-G1555 or 1494U-A1555 base-pair at the highly conserved A-site of 12S rRNA. These transitions make the secondary structure of this RNA more closely resemble the corresponding region of bacterial 16S rRNA. Thus, the new U - A or G-C pair in 12S rRNA created by the C1494T or A1555G transition facilitates the binding of aminoglycosides, thereby accounting for the fact that the exposure to aminoglycosides can induce or worsen hearing loss in individuals carrying these mutations. Furthermore, the growth defect and impairment of mitochondrial translation were observed in cell lines carrying the A1555G or C1494T mutation in the presence of high concentration of aminoglycosides. In addition, nuclear modifier genes and mitochondrial haplotypes modulate the phenotypic manifestation of the A1555G and C1494T mutations. These observations provide the direct genetic and biochemical evidences that the A1555G or C1494T mutation is a pathogenic mtDNA mutation associated with aminoglycoside-induced and nonsyndromic hearing loss. Therefore, these data have been providing valuable information and technology to predict which individuals are at risk for ototoxicity, to improve the safety of aminoglycoside antibiotic therapy, and eventually to decrease the incidence of deafness.

  4. Chronopharmacokinetics of once daily dosed aminoglycosides in hospitalized infectious patients

    NARCIS (Netherlands)

    van Maarseveen, Erik; Man, Wai Hong; Proost, Johannes; Neef, Cees; Touw, Daniël

    2015-01-01

    BACKGROUND: hospitalized patients with serious infections treated with aminoglycosides are at risk of developing nephrotoxicity. Previous clinical studies have shown that the pharmacokinetics of aminoglycosides in humans follow a circadian rhythm. Therefore, the time of administration could have imp

  5. Chronopharmacokinetics of once daily dosed aminoglycosides in hospitalized infectious patients

    NARCIS (Netherlands)

    van Maarseveen, Erik; Man, Wai Hong; Proost, Johannes; Neef, Cees; Touw, Daniel

    2015-01-01

    Background hospitalized patients with serious infections treated with aminoglycosides are at risk of developing nephrotoxicity. Previous clinical studies have shown that the pharmacokinetics of aminoglycosides in humans follow a circadian rhythm. Therefore, the time of administration could have impo

  6. [PK/PD modeling of aminoglycoside nephrotoxicity].

    Science.gov (United States)

    Rougier, F; Corvaisier, S; Ducher, M; Claude, D; Jelliffe, R W; Maire, P

    2003-06-01

    Aminoglycosides are bactericidial antibiotics with a serum concentration-dependent activity. They are mainly eliminated by the kidneys and the main difficulty arising in clinical use is their uptake by the renal cortex which leads to nephrotoxicity. An ototoxicity is also reported. We propose a PK/PD modelling of aminoglycoside nephrotoxicity which unifies more fourty years of physiological knowledge. This deterministic model successively describes the pharmacokinetics of aminoglycosides, their storage into renal cortex, their effect on renal cells, their consequences on the renal function through tubuloglomerular feedback and the changes in the serum concentrations of creatinine that is considered as a toxicity marker. The simulation of the model displays the leading effect of the shape and daily-time of administration schedule on the search for minimizing toxicity.

  7. Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia.

    Science.gov (United States)

    Caldwell, Shane J; Huang, Yue; Berghuis, Albert M

    2016-06-01

    APH(2″)-Ia is a widely disseminated resistance factor frequently found in clinical isolates of Staphylococcus aureus and pathogenic enterococci, where it is constitutively expressed. APH(2″)-Ia confers high-level resistance to gentamicin and related aminoglycosides through phosphorylation of the antibiotic using guanosine triphosphate (GTP) as phosphate donor. We have determined crystal structures of the APH(2″)-Ia in complex with GTP analogs, guanosine diphosphate, and aminoglycosides. These structures collectively demonstrate that aminoglycoside binding to the GTP-bound kinase drives conformational changes that bring distant regions of the protein into contact. These changes in turn drive a switch of the triphosphate cofactor from an inactive, stabilized conformation to a catalytically competent active conformation. This switch has not been previously reported for antibiotic kinases or for the structurally related eukaryotic protein kinases. This catalytic triphosphate switch presents a means by which the enzyme can curtail wasteful hydrolysis of GTP in the absence of aminoglycosides, providing an evolutionary advantage to this enzyme.

  8. Aminoglycoside resistance rates, phenotypes, and mechanisms of Gram-negative bacteria from infected patients in upper Egypt.

    Directory of Open Access Journals (Sweden)

    Gamal F Gad

    Full Text Available With the re-emergence of older antibiotics as valuable choices for treatment of serious infections, we studied the aminoglycoside resistance of Gram-negative bacteria isolated from patients with ear, urinary tract, skin, and gastrointestinal tract infections at Minia university hospital in Egypt. Escherichia coli (mainly from urinary tract and gastrointestinal tract infections was the most prevalent isolate (28.57%, followed by Pseudomonas aeruginosa (25.7% (mainly from ear discharge and skin infections. Isolates exhibited maximal resistance against streptomycin (83.4%, and minimal resistance against amikacin (17.7% and intermediate degrees of resistance against neomycin, kanamycin, gentamicin, and tobramycin. Resistance to older aminoglycosides was higher than newer aminoglycosides. The most common aminoglycoside resistance phenotype was that of streptomycin resistance, present as a single phenotype or in combination, followed by kanamycin-neomycin as determined by interpretative reading. The resistant Pseudomonas aeruginosa strains were capable of producing aminoglycoside-modifying enzymes and using efflux as mechanisms of resistance. Using checkerboard titration method, the most frequently-observed outcome in combinations of aminoglycosides with β-lactams or quinolones was synergism. The most effective combination was amikacin with ciprofloxacin (100% Synergism, whereas the least effective combination was gentamicin with amoxicillin (53.3% Synergistic, 26.7% additive, and 20% indifferent FIC indices. Whereas the studied combinations were additive and indifferent against few of the tested strains, antagonism was never observed. The high resistance rates to aminoglycosides exhibited by Gram-negative bacteria in this study could be attributed to the selective pressure of aminoglycoside usage which could be controlled by successful implementation of infection control measures.

  9. Aminoglycoside resistance rates, phenotypes, and mechanisms of Gram-negative bacteria from infected patients in upper Egypt.

    Science.gov (United States)

    Gad, Gamal F; Mohamed, Heba A; Ashour, Hossam M

    2011-02-17

    With the re-emergence of older antibiotics as valuable choices for treatment of serious infections, we studied the aminoglycoside resistance of Gram-negative bacteria isolated from patients with ear, urinary tract, skin, and gastrointestinal tract infections at Minia university hospital in Egypt. Escherichia coli (mainly from urinary tract and gastrointestinal tract infections) was the most prevalent isolate (28.57%), followed by Pseudomonas aeruginosa (25.7%) (mainly from ear discharge and skin infections). Isolates exhibited maximal resistance against streptomycin (83.4%), and minimal resistance against amikacin (17.7%) and intermediate degrees of resistance against neomycin, kanamycin, gentamicin, and tobramycin. Resistance to older aminoglycosides was higher than newer aminoglycosides. The most common aminoglycoside resistance phenotype was that of streptomycin resistance, present as a single phenotype or in combination, followed by kanamycin-neomycin as determined by interpretative reading. The resistant Pseudomonas aeruginosa strains were capable of producing aminoglycoside-modifying enzymes and using efflux as mechanisms of resistance. Using checkerboard titration method, the most frequently-observed outcome in combinations of aminoglycosides with β-lactams or quinolones was synergism. The most effective combination was amikacin with ciprofloxacin (100% Synergism), whereas the least effective combination was gentamicin with amoxicillin (53.3% Synergistic, 26.7% additive, and 20% indifferent FIC indices). Whereas the studied combinations were additive and indifferent against few of the tested strains, antagonism was never observed. The high resistance rates to aminoglycosides exhibited by Gram-negative bacteria in this study could be attributed to the selective pressure of aminoglycoside usage which could be controlled by successful implementation of infection control measures.

  10. Antibiotic-Resistant Vibrios in Farmed Shrimp

    Directory of Open Access Journals (Sweden)

    Renata Albuquerque Costa

    2015-01-01

    Full Text Available Antimicrobial susceptibility pattern was determined in 100 strains of Vibrio isolated from the Litopenaeus vannamei shrimp and identified phenotypically. A high antibiotic-resistance index (75% was observed, with the following phenotypic profiles: monoresistance (n=42, cross-resistance to β-lactams (n=20 and multiple resistance (n=13. Plasmid resistance was characterized for penicillin (n=11, penicillin + ampicillin (n = 1, penicillin + aztreonam (n = 1, and ampicillin (n = 1. Resistance to antimicrobial drugs by the other strains (n=86 was possibly mediated by chromosomal genes. The findings of this study support the conclusion that the cultured shrimps can be vehicles of vibrios resistant to β-lactam and tetracycline.

  11. Structural and molecular basis for resistance to aminoglycoside antibiotics by the adenylyltransferase ANT(2″)-Ia.

    Science.gov (United States)

    Cox, Georgina; Stogios, Peter J; Savchenko, Alexei; Wright, Gerard D

    2015-01-01

    The aminoglycosides are highly effective broad-spectrum antimicrobial agents. However, their efficacy is diminished due to enzyme-mediated covalent modification, which reduces affinity of the drug for the target ribosome. One of the most prevalent aminoglycoside resistance enzymes in Gram-negative pathogens is the adenylyltransferase ANT(2″)-Ia, which confers resistance to gentamicin, tobramycin, and kanamycin. Despite the importance of this enzyme in drug resistance, its structure and molecular mechanism have been elusive. This study describes the structural and mechanistic basis for adenylylation of aminoglycosides by the ANT(2″)-Ia enzyme. ANT(2″)-Ia confers resistance by magnesium-dependent transfer of a nucleoside monophosphate (AMP) to the 2″-hydroxyl of aminoglycoside substrates containing a 2-deoxystreptamine core. The catalyzed reaction follows a direct AMP transfer mechanism from ATP to the substrate antibiotic. Central to catalysis is the coordination of two Mg(2+) ions, positioning of the modifiable substrate ring, and the presence of a catalytic base (Asp86). Comparative structural analysis revealed that ANT(2″)-Ia has a two-domain structure with an N-terminal active-site architecture that is conserved among other antibiotic nucleotidyltransferases, including Lnu(A), LinB, ANT(4')-Ia, ANT(4″)-Ib, and ANT(6)-Ia. There is also similarity between the nucleotidyltransferase fold of ANT(2″)-Ia and DNA polymerase β. This similarity is consistent with evolution from a common ancestor, with the nucleotidyltransferase fold having adapted for activity against chemically distinct molecules. IMPORTANCE  : To successfully manage the threat associated with multidrug-resistant infectious diseases, innovative therapeutic strategies need to be developed. One such approach involves the enhancement or potentiation of existing antibiotics against resistant strains of bacteria. The reduction in clinical usefulness of the aminoglycosides is a particular

  12. Impairment of membrane phosphoinositide metabolism by aminoglycoside antibiotics: streptomycin, amikacin, kanamycin, dibekacin, gentamicin and neomycin.

    Science.gov (United States)

    Marche, P; Koutouzov, S; Girard, A

    1983-11-01

    Like many amphiphilic cationic drugs, aminoglycosides are able to produce phospholipidosis, mainly by inhibiting enzymes involved in phospholipid metabolism. Phosphoinositides have been suggested to function as receptors for aminoglycosides. Therefore, we investigated the influence of these drugs upon phosphoinositide metabolism by measuring the 32P-incorporation into the polyphosphoinositides, using the rat erythrocyte membrane as a model. Depending upon the experimental conditions, neomycin induced a decrease and/or an increase in the 32P-labeling of triphosphoinositides (TPI) and of diphosphoinositides (DPI), respectively. These variations were rapid and depended upon the drug concentration. At 0.3 mM, neomycin reversed the distribution of radioactivities associated with DPI and TPI without modifying the total radioactivity incorporated. This drug concentration altered neither the Mg++-activated TPI-specific phosphomonoesterase activity nor the Ca++-activated polyphosphoinositide phosphodiesterase activity. It appears likely that the drug inhibits the DPI-kinase activity, by interacting with DPI and thereby lowering the substrate availability. Over the range of concentrations studied (up to 1-2 mM), gentamicin, kanamycin and dibekacin behave as neomycin. However, their effects could be observed only at drug concentrations higher than those of neomycin. By contrast, streptomycin and amikacin did not alter the 32P-labeling of TPI and of DPI. The order of potency of aminoglycosides for the impairment of the phosphoinositide interconversion was neomycin, gentamicin, dibekacin, kanamycin. A possible relationship between the toxicity of aminoglycosides and their capacity to impair the phosphoinositide metabolism is discussed.

  13. Study of Klebsiella pneumoniae producing extended-spectrum β-lactamases against aminoglycosides

    Institute of Scientific and Technical Information of China (English)

    WEI FENG SHI; SU JIAN WANG; JIAN PING QIN

    2007-01-01

    Klebsiella pneumoniae ( K. pneumoniae) is one of the main gram-negative bacilli in clinical practice. Nosocomial infections caused by K. pneumoniae producing extended-spectrum β-lactamases (ESBLs) are very difficult to treat. This paper investigated the resistant characteristics of K. pneumoniae producing ESBLs and their aminoglycoside-modifying enzyme gene expressions including Nacetyltransferases and O-adenyhransferases. Bacteria identification and ESBLs confirmatory tests were performed by Phoenix TM-100 system. And minimum inhibitory concentrations (MICs) of gentamicin,amikacin, kanamycin, tobramycin, netilmicin and neomycin in 53 K. pneumoniae isolates were detected by agar dilution. In addition, six aminoglycoside-modifying enzyme genes were amplified by polymerase chain reaction (PCR) and verified by DNA sequencer. It was found that imipenem and meropenem against 120 K. pneumoniae isolates produced powerful antimicrobial activities. The resistant rates of gentamicin and amikacin were 55.0% and 46.7%, respectively. Except neomycin,MIC50 and MIC90 of gentamicin, amikacin, kanamycin, tobramycin and netilmicin in 53 K. pneumoniae were all > 128 μg/ml, and the resistant rates were 83.0%, 52.3%, 75.5%, 81. 1% and 69.8%, respectively. However, neomycin was only 39.6%. In addition, five modifying enzyme genes, including aac(3)- Ⅰ , aac(3)-Ⅱ, aac(6′) - Ⅰ b, ant(3″) - Ⅰ, ant(2″) - Ⅰ genes, were found in 53 isoahes except aac (6′)-Ⅱ, and their positive rates were 11.3%, 67.9%, 47.2%,1.9 % and 39.6 %, respectively. It was also confirmed by nucleotide sequence analysis that the above resistant genes shared nearly 100% identities with GenBank published genes. The results obtained in the present study indicated that K. pneumoniae producing ESBLs strains are rapidly spreading in our hospital, and their resistance to aminoglycosides may be associated with aminoglycoside-modifying enzyme gene expressions.

  14. Synergistic ototoxicity due to noise exposure and aminoglycoside antibiotics.

    Science.gov (United States)

    Li, Hongzhe; Steyger, Peter S

    2009-01-01

    Acoustic exposure to high intensity and/or prolonged noise causes temporary or permanent threshold shifts in auditory perception, reflected by reversible or irreversible damage in the cochlea. Aminoglycoside antibiotics, used for treating or preventing life-threatening bacterial infections, also induce cytotoxicity in the cochlea. Combined noise and aminoglycoside exposure, particularly in neonatal intensive care units, can lead to auditory threshold shifts greater than simple summation of the two insults. The synergistic toxicity of acoustic exposure and aminoglycoside antibiotics is not limited to simultaneous exposures. Prior acoustic insult which does not result in permanent threshold shifts potentiates aminoglycoside ototoxicity. In addition, exposure to subdamaging doses of aminoglycosides aggravates noise-induced cochlear damage. The mechanisms by which aminoglycosides cause auditory dysfunction are still being unraveled, but likely include the following: 1) penetration into the endolymphatic fluid of the scala media, 2) permeation of nonselective cation channels on the apical surface of hair cells, and 3) generation of toxic reactive oxygen species and interference with other cellular pathways. Here we discuss the effect of combined noise and aminoglycoside exposure to identify pivotal synergistic events that can potentiate ototoxicity, in addition to a current understanding of aminoglycoside trafficking within the cochlea. Preventing the ototoxic synergy of noise and aminoglycosides is best achieved by using non-ototoxic bactericidal drugs, and by attenuating perceived noise intensity when life-saving aminoglycoside therapy is required.

  15. Aminoglycoside antibiotics and autism: a speculative hypothesis

    Directory of Open Access Journals (Sweden)

    Manev Hari

    2001-10-01

    Full Text Available Abstract Background Recently, it has been suspected that there is a relationship between therapy with some antibiotics and the onset of autism; but even more curious, some children benefited transiently from a subsequent treatment with a different antibiotic. Here, we speculate how aminoglycoside antibiotics might be associated with autism. Presentation We hypothesize that aminoglycoside antibiotics could a trigger the autism syndrome in susceptible infants by causing the stop codon readthrough, i.e., a misreading of the genetic code of a hypothetical critical gene, and/or b improve autism symptoms by correcting the premature stop codon mutation in a hypothetical polymorphic gene linked to autism. Testing Investigate, retrospectively, whether a link exists between aminoglycoside use (which is not extensive in children and the onset of autism symptoms (hypothesis "a", or between amino glycoside use and improvement of these symptoms (hypothesis "b". Whereas a prospective study to test hypothesis "a" is not ethically justifiable, a study could be designed to test hypothesis "b". Implications It should be stressed that at this stage no direct evidence supports our speculative hypothesis and that its main purpose is to initiate development of new ideas that, eventually, would improve our understanding of the pathobiology of autism.

  16. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup

    2013-01-01

    , which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate...... that the aminoglycoside tolerance mediated by the presence of extracellular DNA is not caused by activation of the pmr genes in our P. aeruginosa biofilms but rather by a protective shield effect of the extracellular DNA....

  17. Molecular tools for the characterisation of antibiotic-resistant bacteria

    NARCIS (Netherlands)

    Aarts, H.J.M.; Boumedine, K.S.; Nesme, X.; Cloeckaert, A.

    2001-01-01

    This review will discuss a number of molecular tools which are currently used as well as some innovative approaches for the characterisation of antibiotic-resistant bacterial strains. Various methods involved in the detection and characterisation of genes and mutations associated with antibiotic res

  18. Aminoglycosides resistance in clinical isolates of Staphylococcus aureus from a University Hospital in Bialystok, Poland.

    Directory of Open Access Journals (Sweden)

    Katarzyna Kaczyńska

    2008-06-01

    Full Text Available Staphylococcus aureus obtained from a University Hospital in Poland were characterized in relation to resistance to aminoglycoside antibiotics and the distribution of the genes encoding the most clinically relevant aminoglycoside modifying enzymes (AMEs. Of a total of 118 S. aureus, 45 (38.1% isolates were found to be resistant to at least one of the tested antibiotics. All aminoglycoside resistant isolates except one 44 (97.8% were resistant to kanamycin. The majority of strains 37 (82.2% and 32 (71.1% expressed resistance to neomycin and tobramycin, respectively. Eleven strains (24.4% were resistant to gentamicin or amikacin. All S. aureus strains were sensitive to netilmicin. The most prevalent resistance gene was aac(6'-Ie+aph(2' found in 13 (28.9% strains and 12 (26.7% isolates carried ant(4'-Ia gene, whilst aph(3'-IIIa gene was detected in only 7 (15.6% isolates. Additionally, the ant(6-Ia and str genes were detected in 14 (31.1% and 2 (4.4% strains, respectively. Ten (22.2% strains resistant to amikacin, tobramycin, kanamycin or neomycin did not harbor any of the above-noted genes.

  19. Molecular characterization of antibiotic-resistant bacteria in contaminated chicken meat sold at supermarkets in Bangkok, Thailand.

    Science.gov (United States)

    Chaisatit, Chaiyaporn; Tribuddharat, Chanwit; Pulsrikarn, Chaiwat; Dejsirilert, Surang

    2012-01-01

    We assessed contamination by antibiotic-resistant bacteria in chicken meat obtained from supermarkets in Bangkok, Thailand. The prevalence of Salmonella enterica and Escherichia coli was 18.7% (14/75) and 53% (106/200), respectively. Most probable number (MPN) analysis showed that 56.7% of the samples (34/60) were in violation of the limit of allowable coliform bacteria in chicken meat, for which the maximum is 46,000 MPN/g. Multidrug-resistant phenotypes of both S. enterica and E. coli were found. The presence of class 1 integrons was demonstrated by polymerase chain reaction (PCR) and dot-blot hybridization. PCR showed that class 1 integrons were present in 42.9% (6/14) and 37.7% (40/106) of S. enterica and E. coli isolates, respectively. Resistance genes identified in this study were aadA2, aadA4, aadA22, and aadA23 (for aminoglycoside resistance); dfrA5 (for trimethoprim resistance), and lnuF (for lincosamide resistance). Four S. enterica isolates underwent multilocus sequence typing and the results were sequence type (ST) 50, ST 96, ST 1543, and ST 1549, which matched well with strains from many countries and reflected an international spread. Our study revealed that class 1 integrons have spread into community sources and might play an important role in horizontal antibiotic resistance gene transfer.

  20. Association of the novel aminoglycoside resistance determinant RmtF with NDM carbapenemase in Enterobacteriaceae isolated in India and the UK

    DEFF Research Database (Denmark)

    Hidalgo, Laura; Hopkins, Katie L; Gutierrez, Belen;

    2013-01-01

    16S rRNA methyltransferases are an emerging mechanism conferring high-level resistance to clinically relevant aminoglycosides and have been associated with important mechanisms such as NDM-1. We sought genes encoding these enzymes in isolates highly resistant (MIC >200 mg/L) to gentamicin and ami...

  1. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens.

    Science.gov (United States)

    Pamer, Eric G

    2016-04-29

    The intestinal microbiota, which is composed of diverse populations of commensal bacterial species, provides resistance against colonization and invasion by pathogens. Antibiotic treatment can damage the intestinal microbiota and, paradoxically, increase susceptibility to infections. Reestablishing microbiota-mediated colonization resistance after antibiotic treatment could markedly reduce infections, particularly those caused by antibiotic-resistant bacteria. Ongoing studies are identifying commensal bacterial species that can be developed into next-generation probiotics to reestablish or enhance colonization resistance. These live medicines are at various stages of discovery, testing, and production and are being subjected to existing regulatory gauntlets for eventual introduction into clinical practice. The development of next-generation probiotics to reestablish colonization resistance and eliminate potential pathogens from the gut is warranted and will reduce health care-associated infections caused by highly antibiotic-resistant bacteria.

  2. Nonparallel nephrotoxicity dose-response curves of aminoglycosides.

    OpenAIRE

    1981-01-01

    Nephrotoxicity comparisons of aminoglycosides in rats, utilizing large multiples of human doses, have indicated an advantage for netilmicin. However, no nephrotoxicity advantage of netilmicin has been demonstrated at the lower doses used in clinics. Some high-dose studies in rats have also suggested that the slope of the nephrotoxicity dose-response curve of netilmicin was less steep than the slopes of other aminoglycosides. Therefore, the slopes of the nephrotoxicity dose-response curves of ...

  3. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  4. Liposome-encapsulated aminoglycosides in pre-clinical and clinical studies

    NARCIS (Netherlands)

    R.M. Schiffelers (Raymond); G. Storm (Gert); I.A.J.M. Bakker-Woudenberg (Irma)

    2001-01-01

    textabstractLiposome-encapsulated amikacin has recently entered clinical trials. The rationale for liposome encapsulation of aminoglycosides is the possibility to increase the therapeutic index of this class of antibiotics by increasing aminoglycoside concentrations at the site of

  5. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria

    Science.gov (United States)

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater- and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hotspot for pr...

  6. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    Science.gov (United States)

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  7. Cymbopogon citratus protects against the renal injury induced by toxic doses of aminoglycosides in rabbits

    Directory of Open Access Journals (Sweden)

    N Ullah

    2013-01-01

    Full Text Available Renal injury is the most common side-effect of aminoglycosides. These antimicrobial drugs are particularly effective against Gram-negative microorganisms. The present study was conducted to investigate the renal protective activity of Cymbopogon citratus in gentamicin-induced nephrotoxicity. Male rabbits were divided into four groups (n=6 including group 1 (0.9% saline treated, group 2 (80 mg/kg/day gentamicin-treated, group 3 (200 mg/kg/day Cymbopogon citratus treated and group 4 (80 mg/kg/day gentamicin and 200 mg/kg/day Cymbopogon citratus treated. Biochemical kidney functioning parameters, urinary enzymes and histopathological examination were performed. The results of the present study showed that simultaneous administration of Cymbopogon citrates and gentamicin significantly protected alteration in body weight, blood urea nitrogen, serum creatinine, creatinine clearance, serum uric acid, serum electrolytes, urinary volume, urinary protein, urinary lactate dehydrogenase and urinary alkaline phosphatase induced by gentamicin. Histological examination of the kidney also suggested the same. It is concluded from the current study that co-administration of Cymbopogon citratus with gentamicin for 3 weeks successfully prevented renal damage associated with aminoglycosides.

  8. Novel Aminoglycoside Resistance Transposons and Transposon-Derived Circular Forms Detected in Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates.

    Science.gov (United States)

    Karah, Nabil; Dwibedi, Chinmay Kumar; Sjöström, Karin; Edquist, Petra; Johansson, Anders; Wai, Sun Nyunt; Uhlin, Bernt Eric

    2016-01-11

    Acinetobacter baumannii has emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates of A. baumannii collected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n = 16) and CC25 (n = 7). Resistance to carbapenems was related to blaOXA-23 (20 isolates), blaOXA-24/40-like (6 isolates), blaOXA-467 (1 isolate), and ISAba1-blaOXA-69 (1 isolate). Ceftazidime resistance was associated with blaPER-7 in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylase armA gene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, ΔTn6279, Ab-ST3-aadB, and different assemblies of Tn6020 and TnaphA6. Importantly, a number of circular forms related to the IS26 or ISAba125 composite transposons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes.

  9. Antibiotic-resistant bacteria: a challenge for the food industry.

    Science.gov (United States)

    Capita, Rosa; Alonso-Calleja, Carlos

    2013-01-01

    Antibiotic-resistant bacteria were first described in the 1940s, but whereas new antibiotics were being discovered at a steady rate, the consequences of this phenomenon were slow to be appreciated. At present, the paucity of new antimicrobials coming into the market has led to the problem of antibiotic resistance fast escalating into a global health crisis. Although the selective pressure exerted by the use of antibiotics (particularly overuse or misuse) has been deemed the major factor in the emergence of bacterial resistance to these antimicrobials, concerns about the role of the food industry have been growing in recent years and have been raised at both national and international levels. The selective pressure exerted by the use of antibiotics (primary production) and biocides (e.g., disinfectants, food and feed preservatives, or decontaminants) is the main driving force behind the selection and spread of antimicrobial resistance throughout the food chain. Genetically modified (GM) crops with antibiotic resistance marker genes, microorganisms added intentionally to the food chain (probiotic or technological) with potentially transferable antimicrobial resistance genes, and food processing technologies used at sub-lethal doses (e.g., alternative non-thermal treatments) are also issues for concern. This paper presents the main trends in antibiotic resistance and antibiotic development in recent decades, as well as their economic and health consequences, current knowledge concerning the generation, dissemination, and mechanisms of antibacterial resistance, progress to date on the possible routes for emergence of resistance throughout the food chain and the role of foods as a vehicle for antibiotic-resistant bacteria. The main approaches to prevention and control of the development, selection, and spread of antibacterial resistance in the food industry are also addressed.

  10. Increase in Antibiotic-Resistant Gram-Negative Bacterial Infections in Febrile Neutropenic Children

    OpenAIRE

    Lee, Joon Hee; Kim, Seul-Ki; Kim, Seong Koo; Han, Seung Beom; Lee, Jae Wook; Lee, Dong-Gun; Chung, Nack-Gyun; Cho, Bin; Jeong, Dae Chul; Kang, Jin Han; Kim, Hack-Ki

    2016-01-01

    Background The incidence of bacteremia caused by Gram-negative bacteria has increased recently in febrile neutropenic patients with the increase of antibiotic-resistant Gram-negative bacterial infections. This study aimed to identify the distribution of causative bacteria and the proportion of antibiotic-resistant bacteria in bacteremia diagnosed in febrile neutropenic children. Materials and Methods The medical records of febrile neutropenic children diagnosed with bacteremia between 2010 an...

  11. Validated spectrofluorimetric method for determination of selected aminoglycosides

    Science.gov (United States)

    Omar, Mahmoud A.; Ahmed, Hytham M.; Hammad, Mohamed A.; Derayea, Sayed M.

    2015-01-01

    New, sensitive, and selective spectrofluorimetric method was developed for determination of three aminoglycoside drugs in different dosage forms, namely; neomycin sulfate (NEO), tobramycin (TOB) and kanamycin sulfate (KAN). The method is based on Hantzsch condensation reaction between the primary amino group of aminoglycosides with acetylacetone and formaldehyde in pH 2.7 yielding highly yellow fluorescent derivatives measured emission (471 nm) and excitation (410 nm) wavelengths. The fluorescence intensity was directly proportional to the concentration over the range 10-60, 40-100 and 5-50 ng/mL for NEO, TOB and KAN respectively. The proposed method was applied successfully for determination of these drugs in their pharmaceutical dosage forms.

  12. Properties of Achromobacter xylosoxidans highly resistant to aminoglycoside antibiotics.

    Science.gov (United States)

    Nakamoto, Sachiko; Goda, Natsumi; Hayabuchi, Tatsuya; Tamaki, Hiroo; Ishida, Ayami; Suzuki, Ayaka; Nakano, Kaori; Yui, Shoko; Katsumata, Yuto; Yamagami, Yuki; Burioka, Naoto; Chikumi, Hiroki; Shimizu, Eiji

    2016-04-01

    We herein discovered a highly resistant clinical isolate of Pseudomonas aeruginosa with MICs to amikacin, gentamicin, and arbekacin of 128 μg/mL or higher in a drug sensitivity survey of 92 strains isolated from the specimens of Yoka hospital patients between January 2009 and October 2010, and Achromobacter xylosoxidans was separated from this P. aeruginosa isolate. The sensitivity of this bacterium to 29 antibiotics was investigated. The MICs of this A. xylosoxidans strain to 9 aminoglycoside antibiotics were: amikacin, gentamicin, arbekacin, streptomycin, kanamycin, neomycin, and spectinomycin, 1,024 μg/mL or ≥ 1,024 μg/mL; netilmicin, 512 μg/mL; and tobramycin, 256 μg/mL. This strain was also resistant to dibekacin. This aminoglycoside antibiotic resistant phenotype is very rare, and we are the first report the emergence of A. xylosoxidans with this characteristic.

  13. Study of the aminoglycoside subsistence phenotype of bacteria residing in the gut of humans and zoo animals

    Directory of Open Access Journals (Sweden)

    Teresita De Jesus eBello Gonzalez

    2016-01-01

    Full Text Available Recent studies indicate that next to antibiotic resistance, bacteria are able to subsist on antibiotics as a carbon source. Here we evaluated the potential of gut bacteria from healthy human volunteers and zoo animals to subsist on antibiotics. Nine gut isolates of Escherichia coli and Cellulosimicrobium spp. displayed increases in colony forming units during incubations in minimal medium with only antibiotics added, i.e. the antibiotic subsistence phenotype. Furthermore, laboratory strains of E. coli and Pseudomonas putida equipped with the aminoglycoside 3’phosphotransferase II gene also displayed the subsistence phenotype on aminoglycosides. In order to address which endogenous genes could be involved in these subsistence phenotypes, the broad-range glycosyl-hydrolase inhibiting iminosugar deoxynojirimycin (DNJ was used. Addition of DNJ to minimal medium containing glucose showed initial growth retardation of resistant E. coli, which was rapidly recovered to normal growth. In contrast, addition of DNJ to minimal medium containing kanamycin arrested resistant E. coli growth, suggesting that glycosyl-hydrolases were involved in the subsistence phenotype. However, antibiotic degradation experiments showed no reduction in kanamycin, even though the number of colony forming units increased. Although antibiotic subsistence phenotypes are readily observed in bacterial species, and are even found in susceptible laboratory strains carrying standard resistance genes, we conclude there is a discrepancy between the observed antibiotic subsistence phenotype and actual antibiotic degradation. Based on these results we can hypothesise that aminoglycoside modifying enzymes might first inactivate the antibiotic (i.e. by acetylation of amino groups, modification of hydroxyl groups by adenylation and phosphorylation respectively, before the subsequent action of catabolic enzymes. Even though we do not dispute that antibiotics could be used as a single carbon

  14. Versatility of Aminoglycosides and Prospects for Their Future

    OpenAIRE

    2003-01-01

    Aminoglycoside antibiotics have had a major impact on our ability to treat bacterial infections for the past half century. Whereas the interest in these versatile antibiotics continues to be high, their clinical utility has been compromised by widespread instances of resistance. The multitude of mechanisms of resistance is disconcerting but also illuminates how nature can manifest resistance when bacteria are confronted by antibiotics. This article reviews the most recent knowledge about the ...

  15. DETERMINATION OF AMINOGLYCOSIDES IN FOOD BY FLUORESCENCE POLARIZATION IMMUNOASSAY

    Directory of Open Access Journals (Sweden)

    FARAFONOVA O.V.

    2015-01-01

    Full Text Available The methodic for quantitative determination of aminoglycoside antibiotics (gentamicin, kanamycin, streptomycin, amikacin, neomycin in food by polarization fluorescent immunoassay (FPIA is developed. The size and structure influence of a fluorescent molecule on a fluorescence polarization degree is analyzed. Affinity constants of antibodies to compounds and tracers were estimated, optimized working concentration of tracers and antibodies that provide the maximum value of analytical signal. Methods were tested in the antibiotics identification in milk, eggs and chicken.

  16. A teratological study of aminoglycoside antibiotic treatment during pregnancy.

    Science.gov (United States)

    Czeizel, A E; Rockenbauer, M; Olsen, J; Sørensen, H T

    2000-01-01

    The aim of this study was to investigate the teratogenicity of aminoglycoside antibiotics, such as parenteral gentamicin, streptomycin, tobramycin and oral neomycin, during pregnancy. Pair analysis of cases with congenital abnormalities and matched healthy controls was carried out. The setting was the population-based dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities, 1980-96. In total, 38,151 pregnant women who had newborn infants without any defects (control group) and 22,865 pregnant women who had foetuses or newborns with congenital abnormalities were included in the study. 38 (0.16%) and 42 (0.11%) pregnant women in the case and control groups, respectively, were treated with the aminoglycosides studied. A teratogenic potential of gentamicin and neomycin was not indicated by a comparison of the occurrence of aminoglycoside antibiotic treatments in the total control group as referent with the figures of different congenital abnormality groups. In addition, the case-control pair analysis during the second-third months of pregnancy did not show a teratogenic risk of gentamicin and neomycin. The conclusion of this study is that treatment with parenteral gentamicin and oral neomycin during pregnancy presents no detectable teratogenic risk to the foetus, when restricted to structural developmental disturbances.

  17. Possible postsynaptic action of aminoglycosides in the frog rectus abdominis.

    Directory of Open Access Journals (Sweden)

    Karataş Y

    2000-04-01

    Full Text Available The present study was undertaken to investigate the postsynaptic effects of aminoglycosides on contractions evoked by acetylcholine (ACh, KCl, electrical field stimulation (EFS and Na(+- and Ca(2+-free Ringer solution with 0.2 mM Na2 EDTA (NaFCaFR in the isolated frog rectus abdominis. Neomycin inhibited contraction elicited by ACh, NaFCaFR, and EFS at the higher frequencies (8 and 10 Hz but not those elicited by KCl and EFS at the lower frequencies (2, 3 and 5 Hz. D-tubocurarine inhibited ACh-induced contractions in a concentration-dependent manner. In addition, drug reduced EFS-evoked contractions to a limited extent. Lower concentrations (10(-5, 5 x 10(-5, 10(-4, 2 x 10(-4 and 3 x 10(-4 M but not higher concentrations (4 x 10(-4 and 5 x 10(-4 M of methoxyverapamil exhibited a concentration-dependent inhibitory action on NaFCaFR-induced contractions. Similar inhibitions of the same type of contraction were displayed by aminoglycosides (neomycin, streptomycin, netilmycin, gentamycin and amikacin. These results suggest that in addition to their antagonistic action on nicotinic receptors in the frog rectus abdominis, aminoglycosides may exert stabilizing effects on some functional components contributing to contractions at the membrane.

  18. Resistance mechanisms of kanamycin-, neomycin-, and streptomycin-producing streptomycetes to aminoglycoside antibiotics.

    Science.gov (United States)

    Hotta, K; Yamamoto, H; Okami, Y; Umezawa, H

    1981-09-01

    Streptomyces kanamyceticus ISP5500, S. fradiae ISP5063 and S. griseus ISP5236, which produce kanamycin, neomycin or streptomycin respectively, were highly resistant to the antibiotics they produced. Polyphenylalanine synthesis in cell free systems was also resistant to the action of the antibiotics. Reciprocal exchange between ribosomes and S150 fractions from the three strains revealed that the S150 fraction of each strain had an enzyme activity that inactivated the appropriate antibiotic whereas the ribosomes were susceptible to the antibiotics. It was concluded that the resistance of the in vitro polyphenylalanine synthesizing systems of these antibiotics was due to the presence of inactivating enzymes. Furthermore, S. fradiae and S. kanamyceticus were highly resistant to aminocyclitol-containing aminoglycoside antibiotics other than those produced by the two strains. In these cases, the inactivating enzymes were found to have a major role in the resistance mechanism. However, the resistance of S. kanamyceticus ISP5500 to streptomycin seems to be due to resistance at the ribosomal level.

  19. Antibiotic-resistant soil bacteria in transgenic plant fields.

    Science.gov (United States)

    Demanèche, Sandrine; Sanguin, Hervé; Poté, John; Navarro, Elisabeth; Bernillon, Dominique; Mavingui, Patrick; Wildi, Walter; Vogel, Timothy M; Simonet, Pascal

    2008-03-11

    Understanding the prevalence and polymorphism of antibiotic resistance genes in soil bacteria and their potential to be transferred horizontally is required to evaluate the likelihood and ecological (and possibly clinical) consequences of the transfer of these genes from transgenic plants to soil bacteria. In this study, we combined culture-dependent and -independent approaches to study the prevalence and diversity of bla genes in soil bacteria and the potential impact that a 10-successive-year culture of the transgenic Bt176 corn, which has a blaTEM marker gene, could have had on the soil bacterial community. The bla gene encoding resistance to ampicillin belongs to the beta-lactam antibiotic family, which is widely used in medicine but is readily compromised by bacterial antibiotic resistance. Our results indicate that soil bacteria are naturally resistant to a broad spectrum of beta-lactam antibiotics, including the third cephalosporin generation, which has a slightly stronger discriminating effect on soil isolates than other cephalosporins. These high resistance levels for a wide range of antibiotics are partly due to the polymorphism of bla genes, which occur frequently among soil bacteria. The blaTEM116 gene of the transgenic corn Bt176 investigated here is among those frequently found, thus reducing any risk of introducing a new bacterial resistance trait from the transgenic material. In addition, no significant differences were observed in bacterial antibiotic-resistance levels between transgenic and nontransgenic corn fields, although the bacterial populations were different.

  20. Purification, Crystallization And Preliminary X-Ray Analysis of Aminoglycoside-2 ''-Phosphotransferase-Ic [APH(2 '')-Ic] From Enterococcus Gallinarum

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, L.J.; /SLAC, SSRL; Badarau, A.; Vakulenko, S.B.; /Notre Dame U.; Smith, C.A.; /SLAC, SSRL

    2009-04-30

    Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2{double_prime}-phosphotransferase-Ic [APH(2{double_prime})-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2{double_prime})-Ic variants were crystallized in the presence of 14-20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris-HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 {angstrom}, {beta} = 108.8{sup o}. X-ray diffraction data were collected to approximately 2.15 {angstrom} resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.

  1. Photodynamic inactivation of antibiotic-resistant bacteria and biofilms by hematoporphyrin monomethyl ether.

    Science.gov (United States)

    Liu, Chengcheng; Hu, Min; Ma, Dandan; Lei, Jin'e; Xu, Jiru

    2016-02-01

    The worldwide increase in bacterial antibiotic resistance has led to a search for alternative antibacterial therapies. A promising approach to killing antibiotic-resistant bacteria is photodynamic antimicrobial chemotherapy, which uses light in combination with a photosensitizer to induce a phototoxic reaction. We evaluated the photodynamic inactivation (PDI) efficiency of hematoporphyrin monomethyl ether (HMME) on antibiotic-resistant bacteria and biofilms. HMME exhibited no significant dark toxicity and provided dose-dependent inactivation of antibiotic-resistant bacteria and biofilms. After incubation with 100-μM HMME and irradiation with 72-J cm(-2) white light, 4.19-7.59 log10 reductions in survival were achieved in planktonic suspension. Antibiotic-resistant strains were as susceptible to PDI in biofilms as in planktonic suspensions, but the inactivation of bacterial cells in biofilms was attenuated. In addition, gram-positive bacterial strains and biofilms were more susceptible than gram-negative strains and biofilms to the PDI effect of HMME. Thus, HMME is a promising photosensitizer for the treatment of infectious diseases caused by antibiotic-resistant bacteria, especially gram-positive bacteria.

  2. Development of antibiotic-resistant strains for the enumeration of foodborne pathogenic bacteria in stored foods.

    Science.gov (United States)

    Blackburn, C D; Davies, A R

    1994-12-01

    Strains of Aeromonas spp., Salmonella enteritidis phage type 4, Salmonella typhimurium, verotoxigenic Escherichia coli O157:H7 (VTEC) and Yersinia enterocolitica resistant to streptomycin, nalidixic acid and a combination of both antibiotics were selected. When compared with the parent strains, most of the antibiotic-resistant strains had slightly slower growth rates at their optimum incubation temperature but the difference was reduced progressively when the temperature was lowered. Some antibiotic-resistant strains had considerably slower growth rates in the presence of the relevant antibiotic and these were not used further. Several agar and impedance media with added streptomycin and nalidixic acid were assessed for the enumeration of the antibiotic-resistant strains in artificially contaminated stored foods. Differential/selective media were required to enumerate low numbers of antibiotic-resistant strains in certain foods. The following agar and impedance media were selected: Aeromonas Agar (Ryan) for Aeromonas spp., Xylose Lysine Agar and Lysine Iron Cysteine Neutral Red Medium for Salmonella, Eosin Methylene Blue Agar and Coliform Medium for VTEC, and Yersinia Selective Agar without selective agents for Yersinia enterocolitica. The agar and impedance media have been used successfully to enumerate antibiotic-resistant strains inoculated into foods and stored at different temperatures.

  3. Aminoglycoside-derived amphiphilic nanoparticles for molecular delivery.

    Science.gov (United States)

    Miryala, Bhavani; Godeshala, Sudhakar; Grandhi, Taraka Sai Pavan; Christensen, Matthew D; Tian, Yanqing; Rege, Kaushal

    2016-10-01

    The development of effective drug carriers can lead to improved outcomes in a variety of disease conditions. Aminoglycosides have been used as antibacterial therapeutics, and are attractive as monomers for the development of polymeric materials in various applications. Here, we describe the development of novel aminoglycoside-derived amphiphilic nanoparticles for drug delivery, with an eye towards ablation of cancer cells. The aminoglycoside paromomycin was first cross-linked with resorcinol diglycidyl ether leading to the formation of a poly (amino ether), PAE. PAE molecules were further derivatized with methoxy-terminated poly(ethylene glycol) or mPEG resulting in the formation of mPEG-PAE polymer, which self-assembled to form nanoparticles. Formation of the mPEG-PAE amphiphile was characterized using (1)H NMR, (13)C NMR, gel permeation chromatography (GPC) and FTIR spectroscopy. Self-assembly of the polymer into nanoparticles was characterized using dynamic light scattering, zeta potential analyses, atomic force microscopy (AFM) and the pyrene fluorescence assay. mPEG-PAE nanoparticles were able to carry significant amounts of doxorubicin (DOX), presumably by means of hydrophobic interactions between the drug and the core. Cell-based studies indicated that mPEG-PAE nanoparticles, loaded with doxorubicin, were able to induce significant loss in viabilities of PC3 human prostate cancer, MDA-MB-231 human breast cancer, and MB49 murine bladder cancer cells; empty nanoparticles resulted in negligible losses of cell viability under the conditions investigated. Taken together, our results indicate that the mPEG-PAE nanoparticle platform is attractive for drug delivery in different applications, including cancer.

  4. Chromosomal mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa isolates from cystic fibrosis patients

    DEFF Research Database (Denmark)

    Islam, S; Oh, H; Jalal, S;

    2009-01-01

    . aeruginosa, were analysed. MexY mRNA overproduction was found in 17/20 isolates collected in 1994 and 1997, and was correlated with decreased susceptibility to aminoglycosides. Alteration of the MexXY-OprM efflux system has been the main mechanism of resistance to aminoglycoside antibiotics in CF P...

  5. Hearing loss and nephrotoxicity treatment in patients with in long-term aminoglycoside tuberculosis

    NARCIS (Netherlands)

    van Altena, R

    2002-01-01

    OBJECTIVE: To investigate the ototoxic and nephrotoxic effects of long-term use of aminoglycosides. DESIGN: Patients treated for tuberculosis with aminoglycosides were evaluated for hearing loss and nephrotoxicity for a minimum of 14 days. RESULTS: Hearing loss of 15 decibels (dB) at two or more fre

  6. A random sequential mechanism of aminoglycoside acetylation by Mycobacterium tuberculosis Eis protein.

    Directory of Open Access Journals (Sweden)

    Oleg V Tsodikov

    Full Text Available An important cause of bacterial resistance to aminoglycoside antibiotics is the enzymatic acetylation of their amino groups by acetyltransferases, which abolishes their binding to and inhibition of the bacterial ribosome. Enhanced intracellular survival (Eis protein from Mycobacterium tuberculosis (Mt is one of such acetyltransferases, whose upregulation was recently established as a cause of resistance to aminoglycosides in clinical cases of drug-resistant tuberculosis. The mechanism of aminoglycoside acetylation by MtEis is not completely understood. A systematic analysis of steady-state kinetics of acetylation of kanamycin A and neomycin B by Eis as a function of concentrations of these aminoglycosides and the acetyl donor, acetyl coenzyme A, reveals that MtEis employs a random-sequential bisubstrate mechanism of acetylation and yields the values of the kinetic parameters of this mechanism. The implications of these mechanistic properties for the design of inhibitors of Eis and other aminoglycoside acetyltransferases are discussed.

  7. Bactericidal effect of bovine lactoferrin, LFcin, LFampin and LFchimera on antibiotic-resistant Staphylococcus aureus and Escherichia coli

    NARCIS (Netherlands)

    Flores-Villaseñor, H.; Canizalez-Román, A.; Reyes-Lopez, M.; Nazmi, K.; de la Garza, M.; Zazueta-Beltrán, J.; León-Sicairos, N.; Bolscher, J.G.M.

    2010-01-01

    Increased prevalence of antibiotic-resistant bacteria has become a major threat to the health sector worldwide due to their virulence, limited therapeutic options and distribution in both hospital and community settings. Discovery and development of new agents to combat antibiotic-resistant bacteria

  8. Coenzyme Q10 protects hair cells against aminoglycoside.

    Directory of Open Access Journals (Sweden)

    Kazuma Sugahara

    Full Text Available It is well known that the production of free radicals is associated with sensory cell death induced by an aminoglycoside. Many researchers have reported that antioxidant reagents protect sensory cells in the inner ear, and coenzyme Q10 (CoQ10 is an antioxidant that is consumed as a health food in many countries. The purpose of this study was to investigate the role of CoQ10 in mammalian vestibular hair cell death induced by aminoglycoside. Cultured utricles of CBA/CaN mice were divided into three groups (control group, neomycin group, and neomycin + CoQ10 group. In the neomycin group, utricles were cultured with neomycin (1 mM to induce hair cell death. In the neomycin + CoQ10 group, utricles were cultured with neomycin and water-soluble CoQ10 (30-0.3 µM. Twenty-four hours after exposure to neomycin, the cultured tissues were fixed, and vestibular hair cells were labeled using an anti-calmodulin antibody. Significantly more hair cells survived in the neomycin + CoQ10 group than in the neomycin group. These data indicate that CoQ10 protects sensory hair cells against neomycin-induced death in the mammalian vestibular epithelium; therefore, CoQ10 may be useful as a protective drug in the inner ear.

  9. The Impact of Aminoglycosides on the Dynamics of Translation Elongation

    Directory of Open Access Journals (Sweden)

    Albert Tsai

    2013-02-01

    Full Text Available Inferring antibiotic mechanisms on translation through static structures has been challenging, as biological systems are highly dynamic. Dynamic single-molecule methods are also limited to few simultaneously measurable parameters. We have circumvented these limitations with a multifaceted approach to investigate three structurally distinct aminoglycosides that bind to the aminoacyl-transfer RNA site (A site in the prokaryotic 30S ribosomal subunit: apramycin, paromomycin, and gentamicin. Using several single-molecule fluorescence measurements combined with structural and biochemical techniques, we observed distinct changes to translational dynamics for each aminoglycoside. While all three drugs effectively inhibit translation elongation, their actions are structurally and mechanistically distinct. Apramycin does not displace A1492 and A1493 at the decoding center, as demonstrated by a solution nuclear magnetic resonance structure, causing only limited miscoding; instead, it primarily blocks translocation. Paromomycin and gentamicin, which displace A1492 and A1493, cause significant miscoding, block intersubunit rotation, and inhibit translocation. Our results show the power of combined dynamics, structural, and biochemical approaches to elucidate the complex mechanisms underlying translation and its inhibition.

  10. Purification, crystallization and preliminary X-ray analysis of aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum

    Energy Technology Data Exchange (ETDEWEB)

    Byrnes, Laura J. [Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025 (United States); Badarau, Adriana; Vakulenko, Sergei B. [Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556 (United States); Smith, Clyde A., E-mail: csmith@slac.stanford.edu [Stanford Synchrotron Radiation Laboratory, Stanford University, Menlo Park, CA 94025 (United States)

    2008-02-01

    APH(2′′)-Ic is an enzyme that is responsible for high-level gentamicin resistance in E. gallinarum isolates. Crystals of the wild-type enzyme and three mutants have been prepared and a complete X-ray diffraction data set was collected to 2.15 Å resolution from an F108L crystal. Bacterial resistance to aminoglycoside antibiotics is primarily the result of deactivation of the drugs. Three families of enzymes are responsible for this activity, with one such family being the aminoglycoside phosphotransferases (APHs). The gene encoding one of these enzymes, aminoglycoside-2′′-phosphotransferase-Ic [APH(2′′)-Ic] from Enterococcus gallinarum, has been cloned and the wild-type protein (comprising 308 amino-acid residues) and three mutants that showed elevated minimum inhibitory concentrations towards gentamicin (F108L, H258L and a double mutant F108L/H258L) were expressed in Escherichia coli and subsequently purified. All APH(2′′)-Ic variants were crystallized in the presence of 14–20%(w/v) PEG 4000, 0.25 M MgCl{sub 2}, 0.1 M Tris–HCl pH 8.5 and 1 mM Mg{sub 2}GTP. The crystals belong to the monoclinic space group C2, with one molecule in the asymmetric unit. The approximate unit-cell parameters are a = 82.4, b = 54.2, c = 77.0 Å, β = 108.8°. X-ray diffraction data were collected to approximately 2.15 Å resolution from an F108L crystal at beamline BL9-2 at SSRL, Stanford, California, USA.

  11. The aminoglycoside resistance methyltransferases from the ArmA/Rmt family operate late in the 30S ribosomal biogenesis pathway.

    Science.gov (United States)

    Zarubica, Tamara; Baker, Matthew R; Wright, H Tonie; Rife, Jason P

    2011-02-01

    Bacterial resistance to 4,6-type aminoglycoside antibiotics, which target the ribosome, has been traced to the ArmA/RmtA family of rRNA methyltransferases. These plasmid-encoded enzymes transfer a methyl group from S-adenosyl-L-methionine to N7 of the buried G1405 in the aminoglycoside binding site of 16S rRNA of the 30S ribosomal subunit. ArmA methylates mature 30S subunits but not 16S rRNA, 50S, or 70S ribosomal subunits or isolated Helix 44 of the 30S subunit. To more fully characterize this family of enzymes, we have investigated the substrate requirements of ArmA and to a lesser extent its ortholog RmtA. We determined the Mg+² dependence of ArmA activity toward the 30S ribosomal subunits and found that the enzyme recognizes both low Mg+² (translationally inactive) and high Mg+² (translationally active) forms of this substrate. We tested the effects of LiCl pretreatment of the 30S subunits, initiation factor 3 (IF3), and gentamicin/kasugamycin resistance methyltransferase (KsgA) on ArmA activity and determined whether in vivo derived pre-30S ribosomal subunits are ArmA methylation substrates. ArmA failed to methylate the 30S subunits generated from LiCl washes above 0.75 M, despite the apparent retention of ribosomal proteins and a fully mature 16S rRNA. From our experiments, we conclude that ArmA is most active toward the 30S ribosomal subunits that are at or very near full maturity, but that it can also recognize more than one form of the 30S subunit.

  12. 头孢拉宗与两种氨基糖苷类抗菌药物联用对11株双产酶阴沟肠杆菌的联合药敏研究%In vitro antibacterial activity of cefbuperazone in combination with two aminoglycosides antibacterials against 11 strains of distocia enzyme Enterobacter cloacae

    Institute of Scientific and Technical Information of China (English)

    孙艳; 王沭; 邵晓迪; 白艳; 王睿

    2013-01-01

      目的:评价头孢拉宗与阿米卡星或异帕米星联用对临床分离的11株产ESBLs和AmpC酶(双产酶)阴沟肠杆菌的体外抗菌效应。方法:采用棋盘法设计,微量肉汤稀释法测定不同浓度组合的抗菌药物对临床分离的11株双产酶阴沟肠杆菌的最低抑菌浓度,并计算联合抑菌指数(fractional inhibitory concentration, FIC),判定联合效应。结果:头孢拉宗与阿米卡星或异帕米星联用后,对11株双产酶阴沟肠杆菌的MIC50比单独应用明显降低。头孢拉宗与阿米卡星联用FIC分布为:FIC≤0.5占27.27%,0.54为0;头孢拉宗与异帕米星联用FIC分布为:FIC≤0.5占27.27%,0.54为0。结论:头孢拉宗与阿米卡星联用对11株双产酶阴沟肠杆菌多数呈协同、部分协同和相加作用,以相加作用为主,无关作用较少,无拮抗作用;头孢拉宗与异帕米星联用对11株双产酶阴沟肠杆菌多数呈部分协同和协同作用,以部分协同作用为主,相加和无关作用作用较少,无拮抗作用。%Objective:To investigate in vitro antibiotic effects of cefbuperazone combined with amikacin or isepamicin against 11 clinical isolates producing ESBLs and AmpC enzyme (distocia enzyme) of Enterobacter cloacae. Methods: Using the checkerboard design and broth microdilution method for the determination of minimum inhibitory concentration and the calculation of combined antibacterial index (FIC) when different concentration combinations of antimicrobial agents were used against Enterobacter cloacae. Results:The values of MIC50 of cefbuperazone in combination with amikacin or isepamicin against 11 strains of distocia enzyme Enterobacter cloacae were significantly reduced. The FIC indexs of cefbuperazone combined with amikacin accounted for 27.27%(less than 0.5), 27.27%(from 0.5 to 1), 36.36%(equal to 1), 9.1%(from 1 to 4), and 0 (more than 4). The FIC indexs of cefbuperazone combined with

  13. Structural Studies of Bacterial Enzymes and their Relation to Antibiotic Resistance Mechanisms - Final Paper

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-27

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β- lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes

  14. Environmental waters as a source of antibiotic-resistant Enterococcus species in Belgrade, Serbia.

    Science.gov (United States)

    Veljović, Katarina; Popović, Nikola; Vidojević, Amarela Terzić; Tolinački, Maja; Mihajlović, Sanja; Jovčić, Branko; Kojić, Milan

    2015-09-01

    Despite the number of studies on antibiotic-resistant enterococci from Serbian clinical settings, there are no data about environmental contamination with these bacteria. Thus, this study investigated the prevalence of antibiotic-resistant enterococci in Belgrade, Serbia. Enterococcus species collected from ten surface water sites, including a lake, two major river systems, and springs, were tested. Among enterococci, we found single (21.7 %), double (17.4 %), and multiple antibiotic resistance patterns (56.3 %). Vancomycin-resistant strains were not found, indicating that their abundance in Belgrade is tightly linked to clinical settings. The multiple drug-resistant strains Enterococcus faecalis, Enterococcus faecium, and Enterococcus mundtii were frequently detected in the lake during the swimming season and in the rivers near industrial zones. We confirmed the presence of ermB, ermC, ant(6)-Ia, tetM, and tetL and mutations in gyrA genes. The phylogenetic analysis of 16S rRNA gene of E. faecium isolates that harbor esp gene classified them into two groups based on high-bootstraps scores in the tree analysis. Pulsed-field gel electrophoresis analysis of antibiotic-resistant enterococci revealed genomic similarity ranging from 75 to 100 %. This study indicates the importance of anthropogenic impact to the spread of antibiotic-resistant enterococci in environmental waters of Belgrade, Serbia.

  15. Prevalence of antibiotic-resistant S.aureus among general practice patients.

    NARCIS (Netherlands)

    Donker, G.A.; Nys, S.; Driessen, C.; Deurenberg, R.H.; Stobberingh, E.E.

    2006-01-01

    Background: Worldwide, the prevalence of antibiotic-resistant Staphylococcus aureus is an increasing problem both inside and outside the hospital. As antibiotic prescription by general practitioners is mainly an empiric therapy, actual data on antibiotic resistance of the microorganisms involved are

  16. Secular Trends in Nosocomial Bloodstream Infections : Antibiotic-Resistant Bacteria Increase the Total Burden of Infection

    NARCIS (Netherlands)

    Ammerlaan, H. S. M.; Harbarth, S.; Buiting, A. G. M.; Crook, D. W.; Fitzpatrick, F.; Hanberger, H.; Herwaldt, L. A.; van Keulen, P. H. J.; Kluytmans, J. A. J. W.; Kola, A.; Kuchenbecker, R. S.; Lingaas, E.; Meessen, N.; Morris-Downes, M. M.; Pottinger, J. M.; Rohner, P.; dos Santos, R. P.; Seifert, H.; Wisplinghoff, H.; Ziesing, S.; Walker, A. S.; Bonten, M. J. M.

    2013-01-01

    Background. It is unknown whether rising incidence rates of nosocomial bloodstream infections (BSIs) caused by antibiotic-resistant bacteria (ARB) replace antibiotic-susceptible bacteria (ASB), leaving the total BSI rate unaffected. Methods. We investigated temporal trends in annual incidence densit

  17. Deciphering the details of RNA aminoglycoside interactions: from atomistic models to biotechnological applications

    Energy Technology Data Exchange (ETDEWEB)

    Ilgu, Muslum [Iowa State Univ., Ames, IA (United States)

    2012-01-01

    A detailed study was done of the neomycin-B RNA aptamer for determining its selectivity and binding ability to both neomycin– and kanamycin-class aminoglycosides. A novel method to increase drug concentrations in cells for more efficiently killing is described. To test the method, a bacterial model system was adopted and several small RNA molecules interacting with aminoglycosides were cloned downstream of T7 RNA polymerase promoter in an expression vector. Then, the growth analysis of E. coli expressing aptamers was observed for 12-hour period. Our analysis indicated that aptamers helped to increase the intracellular concentration of aminoglycosides thereby increasing their efficacy.

  18. Indigenous and acquired modifications in the aminoglycoside binding sites of Pseudomonas aeruginosa rRNAs

    DEFF Research Database (Denmark)

    Gutierrez, Belen; Douthwaite, Stephen Roger; Gonzalez-Zorn, Bruno

    2013-01-01

    Aminoglycoside antibiotics remain the drugs of choice for treatment of Pseudomonas aeruginosa infections, particularly for respiratory complications in cystic-fibrosis patients. Previous studies on other bacteria have shown that aminoglycosides have their primary target within the decoding region......RNA molecules were methylated. The modification status of a virulent clinical strain expressing the acquired methyltransferase RmtD was altered in two important respects: RmtD stoichiometrically modified m (7)G1405 conferring high resistance to the aminoglycoside tobramycin and, in doing so, impeded one...

  19. Study of Pseudomonas Aeroginosa resistance to Penicillines, Cephalosporins and Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Maleknezhad P

    1998-07-01

    Full Text Available Drug therapy and prophylaxy in infectious diseases, from hygienic and economical point of view, are very important. Infections caused by pseudomonas aeroginosa were particularly severe, with high mortality rates. In the recent years pseudomonas aeroginosa continued to cause the most severe, life-thereating infections in burned patients, in spite of the introduction of a wide variety of antibiotics advised specifically for their anti pseudomonal activity. The aim of this study, in which many cases of ps.aeroginosa infections are assessed is to identify the drug resistance of this bacteria to penicillines, cephalosporins and aminoglycosides by antibiotic sensitivity test (disk ager diffusion. Results as percent of resistance to each antibiotic were 89% to carbenicillin, 55% to piperacillin, 89% to mezlocillin, 89.5% to ticarcillin+clavulonic acid, 85% to ceftriaxone, 95% to tobramycin, 5% of all isolates were not sensitive to any antibiotics.

  20. Antifungal amphiphilic aminoglycoside K20: bioactivities and mechanism of action

    Directory of Open Access Journals (Sweden)

    Sanjib K. Shrestha

    2014-12-01

    Full Text Available K20 is a novel amphiphilic antifungal aminoglycoside that is synthetically derived from the antibiotic kanamycin A. Reported here are investigations of K20’s antimicrobial activities, cytotoxicity, and fungicidal mechanism of action. In vitro growth inhibitory activities against a variety of human and plant pathogenic yeasts, filamentous fungi, and bacteria were determined using microbroth dilution assays and time-kill curve analyses, and hemolytic and animal cell cytotoxic activities were determined. Effects on Cryptococcus neoformans H-99 infectivity were determined with a preventive murine lung infection model. The antifungal mechanism of action was studied using intact fungal cells, yeast lipid mutants, and small unilamellar lipid vesicles. K20 exhibited broad-spectrum in vitro antifungal activities but not antibacterial activities. Pulmonary, single dose-administration of K20 reduced C. neoformans lung infection rates 4-fold compared to controls. Hemolysis and half-maximal cytotoxicities of mammalian cells occurred at concentrations that were 10 to 32-fold higher than fungicidal MICs. With fluorescein isothiocyanate, 20 to 25 mg/L K20 caused staining of >95% of C. neoformans and Fusarium graminearum cells and at 31.3 mg/L caused rapid leakage (30 to 80% in 15 min of calcein from preloaded small unilamellar lipid vesicles. K20 appears to be a broad-spectrum fungicide, capable of reducing the infectivity of C. neoformans, and exhibits low hemolytic activity and mammalian cell toxicity. It perturbs the plasma membrane by mechanisms that are lipid modulated. K20 is a novel amphiphilic aminoglycoside amenable to scalable production and a potential lead antifungal for therapeutic and crop protection applications.

  1. OCCURRENCE OF HIGH-LEVEL AMINOGLYCOSIDE RESISTANCE IN ENVIRONMENTAL ISOLATES OF ENTEROCOCCI

    Science.gov (United States)

    High-level resistance fo aminoglycosides was observed in environmental isolates of enterococci. Various aquatic habitats, including agricultural runoff, creeks, rivers, wastewater, and wells, were analyzed. Strains of Enterococcus faecalis, e.faecium, E. gallinarum, and other Ent...

  2. Characterization of a C3 Deoxygenation Pathway Reveals a Key Branch Point in Aminoglycoside Biosynthesis.

    Science.gov (United States)

    Lv, Meinan; Ji, Xinjian; Zhao, Junfeng; Li, Yongzhen; Zhang, Chen; Su, Li; Ding, Wei; Deng, Zixin; Yu, Yi; Zhang, Qi

    2016-05-25

    Apramycin is a clinically interesting aminoglycoside antibiotic (AGA) containing a highly unique bicyclic octose moiety, and this octose is deoxygenated at the C3 position. Although the biosynthetic pathways for most 2-deoxystreptamine-containing AGAs have been well characterized, the pathway for apramycin biosynthesis, including the C3 deoxygenation process, has long remained unknown. Here we report detailed investigation of apramycin biosynthesis by a series of genetic, biochemical and bioinformatical studies. We show that AprD4 is a novel radical S-adenosyl-l-methionine (SAM) enzyme, which uses a noncanonical CX3CX3C motif for binding of a [4Fe-4S] cluster and catalyzes the dehydration of paromamine, a pseudodisaccharide intermediate in apramycin biosynthesis. We also show that AprD3 is an NADPH-dependent reductase that catalyzes the reduction of the dehydrated product from AprD4-catalyzed reaction to generate lividamine, a C3' deoxygenated product of paromamine. AprD4 and AprD3 do not form a tight catalytic complex, as shown by protein complex immunoprecipitation and other assays. The AprD4/AprD3 enzyme system acts on different pseudodisaccharide substrates but does not catalyze the deoxygenation of oxyapramycin, an apramycin analogue containing a C3 hydroxyl group on the octose moiety, suggesting that oxyapramycin and apramycin are partitioned into two parallel pathways at an early biosynthetic stage. Functional dissection of the C6 dehydrogenase AprQ shows the crosstalk between different AGA biosynthetic gene clusters from the apramycin producer Streptomyces tenebrarius, and reveals the remarkable catalytic versatility of AprQ. Our study highlights the intriguing chemistry in apramycin biosynthesis and nature's ingenuity in combinatorial biosynthesis of natural products.

  3. Aminoglycoside-Resistant Mutation of Pseudomonas aeruginosa Defective in Cytochrome c552 and Nitrate Reductase

    OpenAIRE

    Bryan, L E; Nicas, Thalia; Holloway, B W; Crowther, Carol

    1980-01-01

    A gentamicin-resistant mutant of Pseudomonas aeruginosa PAO503 was selected after ethyl methane sulfonate mutagenesis. The strain, P. aeruginosa PAO2401 had increased resistance to all aminoglycosides tested but exhibited no change for other antibiotics. The mutation designated aglA (aminoglycoside resistance) was 50% cotransducible with the 8-min ilvB,C marker on the P. aeruginosa chromosome. It showed a marked reduction in cytochrome c552 and nitrate reductase (Nar) and a change in terminal...

  4. [Determination of the biological activity of aminoglycoside antibiotics on a dry nutrient medium of Soviet manufacture].

    Science.gov (United States)

    Grigor'eva, V M; Andreeva, Z M; Astanina, L N; Shiriaeva, V L; Gridneva, N I

    1981-06-01

    Possible use of the dry nutrient medium manufactured in the USSR for the assay of aminoglycoside antibiotic activity with the agar diffusion method was studied. The optimal conditions for the antibiotic activity assay on this medium were developed. The dry nutrient medium may be used for the activity assay of the aminoglycoside antibiotics, i. e. streptomycin sulfate, dihydrostreptomycin sulfate, neomycin sulfate, monomycin and gentamicin sulfate.

  5. Occurrence and distribution of multiple antibiotic-resistant bacteria of Enterobacteriaceae family in waters of Veraval coast, India

    Digital Repository Service at National Institute of Oceanography (India)

    Maloo, A.; Borade, S.; Dhawde, R.; Gajbhiye, S.N.; Dastager, S.G.

    Current investigation was aimed to the assess occurrence and distribution of multiple antibiotic-resistant bacteria of the Enterobacteriaceae family in surface and bottom waters along the Veraval coast. Comparative prevalence of drug...

  6. Quantifying Cost-Effectiveness of Controlling Nosocomial Spread of Antibiotic-Resistant Bacteria : The Case of MRSA

    NARCIS (Netherlands)

    Wassenberg, Marjan W. M.; de Wit, G. Ardine; van Hout, Ben A.; Bonten, Marc J. M.

    2010-01-01

    Background: The costs and benefits of controlling nosocomial spread of antibiotic-resistant bacteria are unknown. Methods: We developed a mathematical algorithm to determine cost-effectiveness of infection control programs and explored the dynamical interactions between different epidemiological var

  7. Growth suppression of antibiotic-resistant Salmonella typhimurium DT104 by a non-DT104 strain in vitro

    Directory of Open Access Journals (Sweden)

    Ngwai YB

    2006-12-01

    Full Text Available Growth suppression of antibiotic-resistant Salmonella typhimurium DT104 by a non-DT104 strain was investigated in vitro. Chromosomal mutants of eight antibiotic-resistant DT104 strains were generated by sub-culturing on desoxycholate hydrogen sulfide lactose agar containing 25 µg/ml of nalidixic acid. Low counts of each of these mutants (designated as “minority cultures” were inoculated into 24-h cultures of a non-DT104 S. typhimurium strain (designated as “majority culture” to test the ability of the majority culture to suppress the multiplication of the minority culture. Multiplication of small numbers of the antibiotic-resistant DT104 strains was significantly (P < 0.05 prevented when the DT104s were added to 24-h brain heart infusion cultures of the non-DT104 strain. This observation has practical implications for the control of the menacing antibiotic-resistant Salmonella typhimurium DT104.

  8. Toxicity modulation, resistance enzyme evasion, and A-site X-ray structure of broad-spectrum antibacterial neomycin analogs.

    Science.gov (United States)

    Maianti, Juan Pablo; Kanazawa, Hiroki; Dozzo, Paola; Matias, Rowena D; Feeney, Lee Ann; Armstrong, Eliana S; Hildebrandt, Darin J; Kane, Timothy R; Gliedt, Micah J; Goldblum, Adam A; Linsell, Martin S; Aggen, James B; Kondo, Jiro; Hanessian, Stephen

    2014-09-19

    Aminoglycoside antibiotics are pseudosaccharides decorated with ammonium groups that are critical for their potent broad-spectrum antibacterial activity. Despite over three decades of speculation whether or not modulation of pKa is a viable strategy to curtail aminoglycoside kidney toxicity, there is a lack of methods to systematically probe amine-RNA interactions and resultant cytotoxicity trends. This study reports the first series of potent aminoglycoside antibiotics harboring fluorinated N1-hydroxyaminobutyryl acyl (HABA) appendages for which fluorine-RNA contacts are revealed through an X-ray cocrystal structure within the RNA A-site. Cytotoxicity in kidney-derived cells was significantly reduced for the derivative featuring our novel β,β-difluoro-HABA group, which masks one net charge by lowering the pKa without compromising antibacterial potency. This novel side-chain assists in evasion of aminoglycoside-modifying enzymes, and it can be easily transferred to impart these properties onto any number of novel analogs.

  9. Aminoglycoside inhibition of Staphylococcus aureus biofilm formation is nutrient dependent.

    Science.gov (United States)

    Henry-Stanley, Michelle J; Hess, Donavon J; Wells, Carol L

    2014-06-01

    Biofilms represent microbial communities, encased in a self-produced matrix or extracellular polymeric substance. Microbial biofilms are likely responsible for a large proportion of clinically significant infections and the multicellular nature of biofilm existence has been repeatedly associated with antibiotic resistance. Classical in vitro antibiotic-susceptibility testing utilizes artificial growth media and planktonic microbes, but this method may not account for the variability inherent in environments subject to biofilm growth in vivo. Experiments were designed to test the hypothesis that nutrient concentration can modulate the antibiotic susceptibility of Staphylococcus aureus biofilms. Developing S. aureus biofilms initiated on surgical sutures, and in selected experiments planktonic cultures, were incubated for 16 h in 66 % tryptic soy broth, 0.2 % glucose (1× TSBg), supplemented with bactericidal concentrations of gentamicin, streptomycin, ampicillin or vancomycin. In parallel experiments, antibiotics were added to growth medium diluted one-third (1/3× TSBg) or concentrated threefold (3× TSBg). Following incubation, viable bacteria were enumerated from planktonic cultures or suture sonicates, and biofilm biomass was assayed using spectrophotometry. Interestingly, bactericidal concentrations of gentamicin (5 µg gentamicin ml(-1)) and streptomycin (32 µg streptomycin ml(-1)) inhibited biofilm formation in samples incubated in 1/3× or 1× TSBg, but not in samples incubated in 3× TSBg. The nutrient dependence of aminoglycoside susceptibility is not only associated with biofilm formation, as planktonic cultures incubated in 3× TSBg in the presence of gentamicin also showed antibiotic resistance. These findings appeared specific for aminoglycosides because biofilm formation was inhibited in all three growth media supplemented with bactericidal concentrations of the cell wall-active antibiotics, ampicillin and vancomycin. Additional experiments

  10. A Multifunctional Subphthalocyanine Nanosphere for Targeting, Labeling, and Killing of Antibiotic-Resistant Bacteria.

    Science.gov (United States)

    Roy, Indranil; Shetty, Dinesh; Hota, Raghunandan; Baek, Kangkyun; Kim, Jeesu; Kim, Chulhong; Kappert, Sandro; Kim, Kimoon

    2015-12-01

    Developing a material that can combat antibiotic-resistant bacteria, a major global health threat, is an urgent requirement. To tackle this challenge, we synthesized a multifunctional subphthalocyanine (SubPc) polymer nanosphere that has the ability to target, label, and photoinactivate antibiotic-resistant bacteria in a single treatment with more than 99 % efficiency, even with a dose as low as 4.2 J cm(-2) and a loading concentration of 10 nM. The positively charged nanosphere shell composed of covalently linked SubPc units can increase the local concentration of photosensitizers at therapeutic sites. The nanosphere shows superior performance compared to corresponding monomers presumably because of their enhanced water dispersibility, higher efficiency of singlet-oxygen generation, and phototoxicity. In addition, this material is useful in fluorescence labeling of living cells and shows promise in photoacoustic imaging of bacteria in vivo.

  11. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen

    OpenAIRE

    Ana Maria Gonzalez-Villoria; Veronica Valverde-Garduno

    2016-01-01

    Antibiotic-resistant infectious bacteria currently imply a high risk and therefore constitute a strong challenge when treating patients in hospital settings. Characterization of these species and of particular strains is a priority for the establishment of diagnostic tests and preventive procedures. The relevance of Acinetobacter baumannii as a problematic microorganism in inpatient facilities, particularly intensive care units, has increased over time. This review aims to draw attention to (...

  12. Irrigation waters and pipe-based biofilms as sources for antibiotic-resistant bacteria.

    Science.gov (United States)

    Blaustein, Ryan A; Shelton, Daniel R; Van Kessel, Jo Ann S; Karns, Jeffrey S; Stocker, Matthew D; Pachepsky, Yakov A

    2016-01-01

    The presence of antibiotic-resistant bacteria in environmental surface waters has gained recent attention. Wastewater and drinking water distribution systems are known to disseminate antibiotic-resistant bacteria, with the biofilms that form on the inner-surfaces of the pipeline as a hot spot for proliferation and gene exchange. Pipe-based irrigation systems that utilize surface waters may contribute to the dissemination of antibiotic-resistant bacteria in a similar manner. We conducted irrigation events at a perennial stream on a weekly basis for 1 month, and the concentrations of total heterotrophic bacteria, total coliforms, and fecal coliforms, as well as the concentrations of these bacterial groups that were resistant to ampicillin and tetracycline, were monitored at the intake water. Prior to each of the latter three events, residual pipe water was sampled and 6-in. sections of pipeline (coupons) were detached from the system, and biofilm from the inner-wall was removed and analyzed for total protein content and the above bacteria. Isolates of biofilm-associated bacteria were screened for resistance to a panel of seven antibiotics, representing five antibiotic classes. All of the monitored bacteria grew substantially in the residual water between irrigation events, and the biomass of the biofilm steadily increased from week to week. The percentages of biofilm-associated isolates that were resistant to antibiotics on the panel sometimes increased between events. Multiple-drug resistance was observed for all bacterial groups, most often for fecal coliforms, and the distributions of the numbers of antibiotics that the total coliforms and fecal coliforms were resistant to were subject to change from week to week. Results from this study highlight irrigation waters as a potential source for antibiotic-resistant bacteria, which can subsequently become incorporated into and proliferate within irrigation pipe-based biofilms.

  13. Assessment of altered binding specificity of bacteriophage for ciprofloxacin-induced antibiotic-resistant Salmonella Typhimurium.

    Science.gov (United States)

    Kim, Jeongjin; Jo, Ara; Ding, Tian; Lee, Hyeon-Yong; Ahn, Juhee

    2016-08-01

    This study describes a new effort toward understanding the interaction mechanisms between antibiotic-resistant Salmonella Typhimurium and phages. The antibiotic susceptibility, β-lactamase activity, bacterial motility, gene expression, and lytic activity were evaluated in ciprofloxacin-induced antibiotic-sensitive Salmonella Typhimurium (ASST(CIP)) and ciprofloxacin-induced antibiotic-resistant S. Typhimurium (ARST(CIP)), which were compared to the wild-type strains (ASST(WT) and ARST(WT)). The MIC values of ampicillin, norfloxacin, chloramphenicol, and tetracycline were significantly increased to > 512, 16, 16, and 256 μg/ml, respectively, in the ARST(CIP). The lowest and highest extracellular lactamase activities were observed in ASST(WT) (6.85 μmol/min/ml) and ARST(CIP) (48.83 μmol/min/ml), respectively. The acrA, lpfE, and hilA genes were significantly upregulated by more than tenfold in both ASST(CIP) and ARST(CIP). The induction of multiple antibiotic resistance resulted from the increased efflux pump activity (AcrAB-TolC). The highest phage adsorption rates were more than 95 % for ASST(WT), ASST(CIP), and ARST(WT), while the lowest adsorption rate was 52 % for ARST(CIP) at 15 min of infection. The least lytic activity of phage was 20 % against the ARST(CIP), followed by ASST(CIP) (30 %). The adsorption rate of phage against ARST(CIP) was 52 % at 15 min of infection, which resulted in the decrease in lytic activity (12 %). Understanding the interaction of phage and bacteria is essential for the practical application of phage to control and detect antibiotic-resistant bacteria. The results provide useful information for understanding the binding specificity of phages for multiple antibiotic-resistant pathogens.

  14. Multiplex characterization of human pathogens including species and antibiotic-resistance gene identification.

    Science.gov (United States)

    Barisˇ ić, Ivan; Petzka, Josefine; Schoenthaler, Silvia; Vierlinger, Klemens; Noehammer, Christa; Wiesinger-Mayr, Herbert

    2016-01-01

    The efficient medical treatment of infections requires detailed information about the pathogens involved and potential antibiotic-resistance mechanisms. The dramatically increasing incidence of multidrug-resistant bacteria especially highlights the importance of sophisticated diagnostic tests enabling a fast patient-customized therapy. However, the current molecular detection methods are limited to either the detection of species or only a few antibiotic-resistance genes.In this work, we present a human pathogen characterization assay using a rRNA gene microarray identifying 75 species comprising bacteria and fungi. A statistical classifier was developed to facilitate the automated species identification. Additionally, the clinically most important β-lactamases were identified simultaneously in a 100-plex reaction using padlock probes and the same microarray. The specificity and sensitivity of the combined assay was determined using clinical isolates. The detection limit was 10(5) c.f.u. ml(-1), recovering 89 % of the detectable β-lactamase-encoding genes specifically. The total assay time was less than 7 hand the modular character of the antibiotic-resistance detection allows the easy integration of further genetic targets. In summary, we present a fast, highly specific and sensitive multiplex pathogen characterization assay.

  15. Entry of aminoglycosides into renal tubular epithelial cells via endocytosis-dependent and endocytosis-independent pathways.

    Science.gov (United States)

    Nagai, Junya; Takano, Mikihisa

    2014-08-15

    Aminoglycoside antibiotics such as gentamicin and amikacin are well recognized as a clinically important antibiotic class because of their reliable efficacy and low cost. However, the clinical use of aminoglycosides is limited by their nephrotoxicity and ototoxicity. Nephrotoxicity is induced mainly due to high accumulation of the antibiotics in renal proximal tubular cells. Therefore, a lot of studies on characterization of the renal transport system for aminoglycosides so far reported involved various in-vivo and in-vitro techniques. Early studies revealed that aminoglycosides are taken up through adsorptive endocytosis in renal epithelial cells. Subsequently, it was found that megalin, a multiligand endocytic receptor abundantly expressed on the apical side of renal proximal tubular cells, can bind aminoglycosides and that megalin-mediated endocytosis plays a crucial role in renal accumulation of aminoglycosides. Therefore, megalin has been suggested to be a promising molecular target for the prevention of aminoglycoside-induced nephrotoxicity. On the other hand, recently, some reports have indicated that aminoglycosides are transported via a pathway that does not require endocytosis, such as non-selective cation channel-mediated entry, in cultured renal tubular cells as well as cochlear outer hair cells. In this commentary article, we review the cellular transport of aminoglycosides in renal epithelial cells, focusing on endocytosis-dependent and -independent pathways.

  16. Mechanistic studies of copper(II)-aminoglycoside mediated DNA damage and magnesium catalyzed nuclease activity of hammerhead ribozyme

    Science.gov (United States)

    Patwardhan, Anjali A.

    The antibacterial activity of aminoglycosides stems from their high affinity binding to the 16S rRNA in bacteria resulting in inhibition of protein synthesis. Used to treat acute bacterial infections these antibiotics have limited applications due to their high dosage requirements and the emergence of resistant strains. We have synthesized and characterized Cu(II) derivatives of the aminoglycosides, kanamycin A, tobramycin, neamine, kanamycin B, neomycin B, and paromomycin. The first three exhibit preferential and tight binding to Cu(II) as against neomycin B and kanamycin B and paromomycin. EPR of frozen solutions and UV-visible spectroscopy suggest a change in geometry around the Cu(II) but the stabilities of the complexes in water differ. These copper derivatives efficiently cleave plasmid DNA at micromolar concentrations (hydrolytic) and at nanomolar concentrations in the presence co-reactants like hydrogen peroxide or ascorbic acid. Hydrolysis is multi turnover and exhibits Michelis-Menten kinetics with enzyme-like behavior whereas oxidative cleavage is highly specific with C-4' H abstraction resulting in characteristic base propenal and nucleotide base products. Hydroxyl radicals generated are copper based and are generated in close proximity of the substrate. Hammerhead ribozymes are selectively hydrolyzed in the presence of divalent ions with Mg2+ being the metal ion of choice in vivo . Our studies with complex ions like cobalt hexaammine and fac-triamminetriaquochromium(III) establish outer sphere interactions of Mg2+ with the hammerhead in the catalytic site. There are two sets of sites, one structural and one catalytic. Complex ions in the catalytic site and divalent ions in the structural site result in a slow but active hammerhead ribozyme suggesting that the complex ions are not inhibitory, contrary to what was suggested previously.

  17. Environmental and genetic factors affecting mutability to aminoglycoside antibiotics among Escherichia coli K12 strains

    Directory of Open Access Journals (Sweden)

    Monteiro A.C.M.

    2003-01-01

    Full Text Available Environmental and genetic factors affecting the in vitro spontaneous mutation frequencies to aminoglycoside resistance in Escherichia coli K12 were investigated. Spontaneous mutation frequencies to kanamycin resistance were at least 100 fold higher on modified Luria agar (L2 plates, when compared to results obtained in experiments carried out with Nutrient agar (NA plates. In contrast to rifampincin, the increased mutability to kanamycin resistance could not be attributed to a mutator phenotype expressed by DNA repair defective strains. Kanamycin mutant selection windows and mutant preventive concentrations on L2 plates were at least fourfold higher than on NA plates, further demonstrating the role of growth medium composition on the mutability to aminoglycosides. Mutability to kanamycin resistance was increased following addition of sorbitol, suggesting that osmolarity is involved on the spontaneous mutability of E. coli K12 strains to aminoglycosides. The spontaneous mutation rates to kanamycin resistance on both L2 and NA plates were strictly associated with the selective antibiotic concentrations. Moreover, mutants selected at different antibiotic concentrations expressed heterogeneous resistance levels to kanamycin and most of them expressing multiple resistance to all tested aminoglycoside antibiotics (gentamicin, neomycin, amykacin and tobramycin. These results will contribute to a better understanding of the complex nature of aminoglycoside resistance and the emergence of spontaneous resistant mutants among E. coli K12 strains.

  18. Triclosan-Induced Aminoglycoside-Tolerant Listeria monocytogenes Isolates Can Appear as Small-Colony Variants

    DEFF Research Database (Denmark)

    Kastbjerg, Vicky Gaedt; Hein-Kristensen, Line; Gram, Lone

    2014-01-01

    Exposure of the human food-borne pathogen Listeria monocytogenes to sublethal concentrations of triclosan can cause resistance to several aminoglycosides. Aminoglycoside-resistant isolates exhibit two colony morphologies: normal-size and pinpoint colonies. The purposes of the present study were...... to characterize the small colonies of L. monocytogenes and to determine if specific genetic changes could explain the triclosan-induced aminoglycoside resistance in both pinpoint and normal-size isolates. Isolates from the pinpoint colonies grew poorly under aerated conditions, but growth was restored by addition......I and that exposure to triclosan can cause resistance to antibiotics that enters the cell via active transport. Further studies are needed to elucidate if L. monocytogenes pinpoint isolates could have any clinical impact, e.g., in persistent infections....

  19. In vitro effect of levofloxacin and vancomycin combination against high level aminoglycoside-resistant enterococci.

    Science.gov (United States)

    Erdem, Ilknur; Cicek-Senturk, Gonul; Yucesoy-Dede, Behiye; Yuksel-Kocdogan, Funda; Yuksel, Saim; Karagul, Emin

    2004-01-01

    The in vitro effects of levofloxacin and vancomycin in combination were evaluated against high level aminoglycoside-resistant (HLAR) enterococci using chequerboard and time-kill curve techniques. We examined 28 strains of enterococci comprising 17 Enterococcus faecalis, 10 E. faecium and one E. durans. The combination of vancomycin and levofloxacin had indifferent activity against all isolates according to chequerboard microdilution method, but was synergistic for two isolates, one E. faecium and one E. faecalis, using the time-kill curve method. Both strains were levofloxacin resistant and had high level aminoglycoside resistance to gentamicin and streptomycin. Antagonism was not detected in any strain. The results of this study suggested that the combination of vancomycin with levofloxacin does not often show synergistic effect against high level aminoglycoside-resistant enterococci.

  20. The molecular clock: a focus on chronopharmacological strategies for a possible control of aminoglycoside renal toxicity

    Directory of Open Access Journals (Sweden)

    Rebuelto M

    2012-01-01

    Full Text Available Marcela RebueltoFarmacología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, ArgentinaAbstract: Chronotherapy applies biological rhythmicity in order to optimize clinical treatments, relating the dosing time of the drugs to the daily variations of their therapeutic and unwanted side effects due to the fluctuations in physiological processes involved in their pharmacokinetics and/or pharmacodynamics. The goal of chronotherapy is to administer treatments at the time of day that enhances both their effectiveness and tolerance. This review intends to (1 provide the theoretical rationale behind the use of aminoglycosides during extended interval schedule chronotherapy in clinical practice and (2 target the underlying molecular mechanisms of renal toxicity, the main unwanted side effect. Previous reports suggest that aminoglycoside therapy may benefit from a chronopharmacological approach. Temporal variations in the renal blood flow and glomerular filtration rate and several clock-dependent molecular mechanisms contributing to the daily changes in electrolyte and water urinary excretion have been reported. Daily differences in aminoglycoside toxicity and kinetic disposition have been found in laboratory animals and human patients. Nephrotoxicity and renal cortical accumulation are higher when drugs are administered during the rest phase than during the active phase. Active translocation of aminoglycosides into renal cells is mediated by the megalin/cubilin receptor complex located at the luminal epithelial cell membrane. The complex regulation of this endocytic mechanism deserves further study, in order to dilucidate the molecular bases that may be involved in chronotherapeutic strategies developed for minimizing aminoglycoside accumulation in the renal cells, and thus, increasing their tolerance.Keywords: biological rhythms, chronopharmacology, chronotherapeutics, aminoglycosides

  1. Characterization of aminoglycoside resistance and virulence genes among Enterococcus spp. isolated from a hospital in China.

    Science.gov (United States)

    Li, Wanxiang; Li, Jing; Wei, Quhao; Hu, Qingfeng; Lin, Xiaowei; Chen, Mengquan; Ye, Renji; Lv, Huoyang

    2015-03-11

    This study investigated the aminoglycoside resistance phenotypes and genotypes, as well as the prevalence of virulence genes, in Enterococcus species isolated from clinical patients in China. A total of 160 enterococcal isolates from various clinical samples collected from September 2013 to July 2014 were identified to the species level using the VITEK-2 COMPACT system. The antimicrobial susceptibilities of the identified Enterococcus strains were determined by the Kirby-Bauer (K-B) disc diffusion method. PCR-based assays were used to detect the aminoglycoside resistance and virulence genes in all enterococcal isolates. Of 160 Enterococcus isolates, 105 were identified as E. faecium, 35 as E. faecalis, and 20 isolates were classified as "other" Enterococcus species. High-level aminoglycoside resistance (HLAR) for gentamicin, streptomycin, and both antibiotics was identified in 58.8, 50, and 34.4% of strains, respectively. The most common virulence gene (50.6% of isolates) was efaA, followed by asa1 (28.8%). The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(2')-Id, aph(3')-IIIa, and ant(6')-Ia, present in 49.4%, 1.3%, 48.8% and 31.3% of strains, respectively. Overall, E. faecium and E. faecalis were most frequently associated with hospital-acquired enterococcal infections in Zhejiang Province. All aminoglycoside resistance genes, except aph(2'')-Id, were significantly more prevalent in HLAR strains than amongst high level aminoglycoside susceptible (HLAS) strains, while there was no significant difference between HLAR and HLAS strains in regard to the prevalence of virulence genes, apart from esp, therefore, measures should be taken to manage infections caused by multi-drug resistant Enterococcus species.

  2. Aminoglycoside resistance pattern and genetic background in multi-drug resistant acinetobacter baumannii%多药耐药鲍氏不动杆菌氨基糖苷类药物耐药遗传学背景研究

    Institute of Scientific and Technical Information of China (English)

    陈月馨; 周惠芬; 钟育红; 吴润香; 黄烈; 陈智睿

    2011-01-01

    OBJECTIVE To investigate the background of the Aminoglycoside resistance pattern and genetic type in multidrug-resistant Acinetobacter baumannii (MDR-ABA). METHODS From Apr 2009 to Aug 2009, twenty MDRABA strains were isolated from The Third Affiliated Hospital of Sun Yat-sen University. Drug susceptibility test to 10 kinds of antimicrobial agents was detected by K-B disk diffusion tests. Then, resistant genes and genetic markers were analyzed by PCR and verified by DNA sequencing, including 8 kinds of aminoglycoside modifying enzyme genes(aac(3)- Ⅰ ,aac(3)- Ⅱ ,aac(6′)- Ⅰ ad,aac(6′)- Ⅰ b,aac(6′)- Ⅱ ,ant(3″)- Ⅰ ,ant(2″)- Ⅰ , aph(3′)- Ⅰ ),and 6 kinds of 16S rRNA methylase genes (rmtA, rmtB, rmtC, rmtD, armA, npmA). RESULTS A total of 4 kinds of aminoglycoside modifying enzyme genes of MDR-ABA were detected, including aac(3)-Ⅰ , aac(6′)-Ⅰ b, ant (3″)- Ⅰ , aph(3′)- Ⅰ , and 6 kinds of 16S rRNA methylase genes in twenty MDR-ABA strains were not detected.CONCLUSIONS There is a very high positive rate of aminoglycoside modifying enzyme genes in MDR-ABA isolated from inpatients; The aminoglycosides-resistant MDR-ABA is mainly related to aminoglycoside modifying enzyme genes; The mobile genetic element is the main factor for MDR-ABA to acquire aminoglycoside modifying enzyme genes.%目的 了解临床分离的多药耐药鲍氏不动杆菌(MDR-ABA)氨基糖苷类药物耐药遗传学背景.方法 从2009年4-8月中山大学附属第三医院住院患者中分离20株MDR-ABA,用K-B法测定鲍氏不动杆菌对10种抗菌药物的敏感性,采用PCR及序列分析的方法分析氨基糖苷类修饰酶基因.结果 20株MDR-ABA检出aac(3)-Ⅰ、aac(6′)-Ⅰb、ant(3′)-Ⅰ、aph(3′)-Ⅰ4种基因阳性,6种16S rRNA甲基化酶基因未检出.结论 临床分离的MDR-ABA中氨基糖苷类修饰酶基因阳性率较高,MDR-ABA氨基糖苷类抗菌药物耐药主要与氨基糖苷类修饰酶基因有关;通过可移动遗传元

  3. Carriage of antibiotic-resistant pneumococci in a cohort of a daycare center

    Directory of Open Access Journals (Sweden)

    Gómez-Barreto Demóstenes

    2002-01-01

    Full Text Available Objective. To define epidemiologic relationships to determine the prevalence and potential risk factors for nasopharyngeal colonization by antibiotic-resistant pneumococci, their serotypes and their antibiotic susceptibility patterns in children attending a daycare center (DCC. Material and Methods. A prospective cohort study was conducted among children (n=53 attending the DCC at Hospital Infantil de México Federico Gómez, which is staffed by 20 employees. Patients were enrolled in the study during a two-year period from September 1997 to September 1999. All the participants were followed prospectively, swabbing them every four months. The strains recovered were typed and screened for susceptibility to several antibiotics. The daycare records were reviewed also. Odds ratios and fisher's exact test: or chi square test of significance were computed from contingency tables as appropriate. Exact 95% confidence intervals were computed for odds ratios. Data analysis was performed using Epi statistics program version 6.04 a. Results. Pneumococci were recovered from 45/53 of the infants at one or more visits. A total of 178 isolates were carried. The carriage rate was 47%. Only 7 adults acquired pneumococci during the study. Types 6,14,19 and 23 were prevalent and represented 77% of the total. Antibiotic-resistant strains were higher to penicillin and erythromycin. Conclusions. Children were frequent carriers of pneumococci, the rate of carriage was high in infancy and tended to decrease with age. The types commonly carried by children were the same as those causing invasive disease. There is a high proportion of carriers with antibiotic-resistant S. pneumoniae strains. Children who have had frequent antimicrobial courses are at particular risk.

  4. Tracking down antibiotic-resistant Pseudomonas aeruginosa isolates in a wastewater network.

    Directory of Open Access Journals (Sweden)

    Céline Slekovec

    Full Text Available The Pseudomonas aeruginosa-containing wastewater released by hospitals is treated by wastewater treatment plants (WWTPs, generating sludge, which is used as a fertilizer, and effluent, which is discharged into rivers. We evaluated the risk of dissemination of antibiotic-resistant P. aeruginosa (AR-PA from the hospital to the environment via the wastewater network. Over a 10-week period, we sampled weekly 11 points (hospital and urban wastewater, untreated and treated water, sludge of the wastewater network and the river upstream and downstream of the WWTP of a city in eastern France. We quantified the P. aeruginosa load by colony counting. We determined the susceptibility to 16 antibiotics of 225 isolates, which we sorted into three categories (wild-type, antibiotic-resistant and multidrug-resistant. Extended-spectrum β-lactamases (ESBLs and metallo-β-lactamases (MBLs were identified by gene sequencing. All non-wild-type isolates (n = 56 and a similar number of wild-type isolates (n = 54 were genotyped by pulsed-field gel electrophoresis and multilocus sequence typing. Almost all the samples (105/110, 95.5% contained P. aeruginosa, with high loads in hospital wastewater and sludge (≥3×10(6 CFU/l or/kg. Most of the multidrug-resistant isolates belonged to ST235, CC111 and ST395. They were found in hospital wastewater and some produced ESBLs such as PER-1 and MBLs such as IMP-29. The WWTP greatly reduced P. aeruginosa counts in effluent, but the P. aeruginosa load in the river was nonetheless higher downstream than upstream from the WWTP. We conclude that the antibiotic-resistant P. aeruginosa released by hospitals is found in the water downstream from the WWTP and in sludge, constituting a potential risk of environmental contamination.

  5. Stored-product insects carry antibiotic-resistant and potentially virulent enterococci.

    Science.gov (United States)

    Channaiah, Lakshmikantha H; Subramanyam, Bhadriraju; McKinney, Leland J; Zurek, Ludek

    2010-11-01

    A total of 154 enterococcal isolates from 95 stored-product insects collected from a feed mill, a grain storage silo, and a retail store were isolated and identified to the species level using PCR. Enterococcus casseliflavus represented 51% of the total isolates, followed by Enterococcus gallinarum (24%), Enterococcus faecium (14%), Enterococcus faecalis (7%), and Enterococcus hirae (5%). Many isolates were resistant to tetracycline (48%), followed by streptomycin (21%), erythromycin (14%), kanamycin (13%), ciprofloxacin (12%), ampicillin (4%), and chloramphenicol (resistance gene, tetM, was transferable among E. faecalis by conjugation. These data demonstrated that stored-product insects can serve as potential vectors in disseminating antibiotic-resistant and potentially virulent enterococci.

  6. Chaperonin GroEL/GroES Over-Expression Promotes Aminoglycoside Resistance and Reduces Drug Susceptibilities in Escherichia coli Following Exposure to Sublethal Aminoglycoside Doses

    DEFF Research Database (Denmark)

    Goltermann, Lise; Sarusie, Menachem V; Bentin, Thomas

    2016-01-01

    Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short-ter...... mechanism for emergence of antibiotic resistance.......Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antibiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and over-expression sensitize and promote short......-term tolerance, respectively, to this drug class. Here, we show that chaperonin GroEL/GroES over-expression accelerates acquisition of streptomycin resistance and reduces susceptibility to several other antibiotics following sub-lethal streptomycin antibiotic exposure. Chaperonin buffering could provide a novel...

  7. Antibiotic therapy for inducible AmpC β-lactamase-producing Gram-negative bacilli: what are the alternatives to carbapenems, quinolones and aminoglycosides?

    Science.gov (United States)

    Harris, P N A; Ferguson, J K

    2012-10-01

    Some bacteria that possess chromosomally determined AmpC β-lactamases may express these enzymes at a high level following exposure to β-lactams, either by induction or selection for derepressed mutants. This may lead to clinical failure even if an isolate initially tests susceptible in vitro, a phenomenon best characterised by third-generation cephalosporin therapy for Enterobacter bacteraemia or meningitis. Several other Enterobacteriaceae, such as Serratia marcescens, Citrobacter freundii, Providencia spp. and Morganella morganii (often termed the 'ESCPM' group), may also express high levels of AmpC. However, the risk of clinical failure with β-lactams that test susceptible in vitro is less clear in these species than for Enterobacter. Laboratories frequently do not report β-lactam or β-lactamase inhibitor combination drug susceptibilities for ESCPM organisms, encouraging alternative therapy with quinolones, aminoglycosides or carbapenems. However, quinolones and carbapenems present problems with selective pressure for multiresistant organisms, and aminoglycosides with potential toxicity. The risk of emergent AmpC-mediated resistance for non-Enterobacter spp. appears rare in clinical studies. Piperacillin/tazobactam may remain effective and may be less selective for AmpC derepressed mutants than cephalosporins. The potential roles for agents such as cefepime or trimethoprim/sulfamethoxazole are also discussed. Clinical studies that better define optimal treatment for this group of bacteria are required.

  8. Study of acquired aminoglycosides resistance genes in Enterobacter aerogenes%产气肠杆菌氨基糖苷类药物获得性耐药基因研究

    Institute of Scientific and Technical Information of China (English)

    刘鹏; 许小敏; 许兆军

    2014-01-01

    目的:研究医院产气肠杆菌临床分离株氨基糖苷类药物获得性耐药机制,了解该细菌对氨基糖苷类药物的耐药性,为临床资料提供参考依据。方法24株产气肠杆菌分离自2012年1月-2012年12月住院患者,采用VITEK-2 Compact分析系统的药敏卡AST-GN13及K-B法测定抗菌药物的敏感性,聚合酶链反应(PCR)检测6种氨基糖苷类修饰酶基因和两种16SrRNA甲基化酶基因。结果24株产气肠杆菌对头孢替坦100.0%耐药,有16株对头孢曲松的耐药率为66.7%,14株对环丙沙星的耐药率为58.3%;PCR检出氨基糖苷类修饰酶基因 aac(3)-Ⅱ1株,阳性率为4.2%,aac(6′)-Ⅰb 6株阳性率为25.0%,其余4种氨基糖苷类修饰酶基因未检出。结论氨基糖苷类修饰酶基因检出阳性率与产气肠杆菌对氨基糖苷类药物的耐药率基本相符。%OBJECTIVE To study the mechanism of acquired aminoglycosides resistance genes in Enterobacter aero-genes isolated from clinical and understand the drug resistance for the bacterial to aminoglycosides ,so as to provide reference to clinic .METHODS A total of 24 strains of Enterobacter aerogenes were isolated from the inpatients during Jan .2012 to Dec .2012 .The antimicrobial susceptibility was detected by VITEK2-compact assay system card AST-GN13 and K-B tests ;6 kinds of aminoglycoside modifying enzyme genes and 2 16SrRNA methyltrans-ferase genes were detected by polymerase chain reaction (PCR) .RESULTS The 24 strains E .aerogenes were all resistant to cefotetan ,16 strains were resistant to cefatriaxone ,14 strains were resistant to ciprofloxacin ,and the resistance rates were 100% ,66 .7% and 58 .3% ,respectively .Aminoglycoside modifying enzyme gene aac(3)-Ⅱand aac(6′)-Ⅰb were detected in 1 and 6 strains E .aerogenes ,the positive rates were 4 .2% and 25% ,respective-ly .The other 4 kinds of aminoglycoside modifying enzyme genes were not detected

  9. Prior colonization is associated with increased risk of antibiotic-resistant Gram-negative bacteremia in cancer patients☆,☆☆

    Science.gov (United States)

    Kleinberg, Michael; Sorkin, John D.; Netzer, Giora; Johnson, Jennifer K.; Shardell, Michelle; Thom, Kerri A.; Harris, Anthony D.; Roghmann, Mary-Claire

    2015-01-01

    We hypothesized that prior colonization with antibiotic-resistant Gram-negative bacteria is associated with increased risk of subsequent antibiotic-resistant Gram-negative bacteremia among cancer patients. We performed a matched case-control study. Cases were cancer patients with a blood culture positive for antibiotic-resistant Gram-negative bacteria. Controls were cancer patients with a blood culture not positive for antibiotic-resistant Gram-negative bacteria. Prior colonization was defined as any antibiotic-resistant Gram-negative bacteria in surveillance or non-sterile-site cultures obtained 2–365 days before the bacteremia. Thirty-two (37%) of 86 cases and 27 (8%) of 323 matched controls were previously colonized by any antibiotic-resistant Gram-negative bacteria. Prior colonization was strongly associated with antibiotic-resistant Gram-negative bacteremia (odds ratio [OR] 7.2, 95% confidence interval [CI] 3.5–14.7) after controlling for recent treatment with piperacillin-tazobactam (OR 2.5, 95% CI 1.3–4.8). In these patients with suspected bacteremia, prior cultures may predict increased risk of antibiotic-resistant Gram-negative bacteremia. PMID:24582582

  10. Network-assisted investigation of virulence and antibiotic-resistance systems in Pseudomonas aeruginosa

    Science.gov (United States)

    Hwang, Sohyun; Kim, Chan Yeong; Ji, Sun-Gou; Go, Junhyeok; Kim, Hanhae; Yang, Sunmo; Kim, Hye Jin; Cho, Ara; Yoon, Sang Sun; Lee, Insuk

    2016-05-01

    Pseudomonas aeruginosa is a Gram-negative bacterium of clinical significance. Although the genome of PAO1, a prototype strain of P. aeruginosa, has been extensively studied, approximately one-third of the functional genome remains unknown. With the emergence of antibiotic-resistant strains of P. aeruginosa, there is an urgent need to develop novel antibiotic and anti-virulence strategies, which may be facilitated by an approach that explores P. aeruginosa gene function in systems-level models. Here, we present a genome-wide functional network of P. aeruginosa genes, PseudomonasNet, which covers 98% of the coding genome, and a companion web server to generate functional hypotheses using various network-search algorithms. We demonstrate that PseudomonasNet-assisted predictions can effectively identify novel genes involved in virulence and antibiotic resistance. Moreover, an antibiotic-resistance network based on PseudomonasNet reveals that P. aeruginosa has common modular genetic organisations that confer increased or decreased resistance to diverse antibiotics, which accounts for the pervasiveness of cross-resistance across multiple drugs. The same network also suggests that P. aeruginosa has developed mechanism of trade-off in resistance across drugs by altering genetic interactions. Taken together, these results clearly demonstrate the usefulness of a genome-scale functional network to investigate pathogenic systems in P. aeruginosa.

  11. Antibiotic-Resistant Acinetobacter baumannii Increasing Success Remains a Challenge as a Nosocomial Pathogen

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez-Villoria

    2016-01-01

    Full Text Available Antibiotic-resistant infectious bacteria currently imply a high risk and therefore constitute a strong challenge when treating patients in hospital settings. Characterization of these species and of particular strains is a priority for the establishment of diagnostic tests and preventive procedures. The relevance of Acinetobacter baumannii as a problematic microorganism in inpatient facilities, particularly intensive care units, has increased over time. This review aims to draw attention to (i the historical emergence of carbapenem-resistant Acinetobacter baumannii, (ii the current status of surveillance needs in Latin America, and (iii recent data suggesting that A. baumannii continues to spread and evolve in hospital settings. First, we present synopsis of the series of events leading to the discovery and precise identification of this microorganism in hospital settings. Then key events in the acquisition of antibiotic-resistant genes by this microorganism are summarized, highlighting the race between new antibiotic generation and emergence of A. baumannii resistant strains. Here we review the historical development of this species as an infectious threat, the current state of its distribution, and antibiotic resistance characteristics, and we discuss future prospects for its control.

  12. Clonal origin of aminoglycoside-resistant Citrobacter freundii isolates in a Danish county

    DEFF Research Database (Denmark)

    Norskov-Lauritsen, N.; Sandvang, Dorthe; Hedegaard, J.;

    2001-01-01

    During 1997, attention was drawn to an increased frequency of aminoglycoside-resistant Citrobacter freundii in a Danish county, when a total of 24 resistant C. freundii isolates was detected. In this study, 15 such isolates were typed by pulsed-field gel electrophoresis, riboprinting and partial...

  13. A new aspect of aminoglycoside ototoxicity : impairment of cochlear dopamine release

    NARCIS (Netherlands)

    Gáborján, A; Halmos, G; Répássy, G; Vizi, E S

    2001-01-01

    Aminoglycoside ototoxicity is a well-documented process via several pathophysiological pathways. The protective role of cochlear dopamine, released from the lateral olivocochlear efferents, was implicated previously in case of ischemia or acoustic trauma, as it postsynaptically inhibits the effect o

  14. Role of aromatic rings in the molecular recognition of aminoglycoside antibiotics: implications for drug design.

    Science.gov (United States)

    Vacas, Tatiana; Corzana, Francisco; Jiménez-Osés, Gonzalo; González, Carlos; Gómez, Ana M; Bastida, Agatha; Revuelta, Julia; Asensio, Juan Luis

    2010-09-01

    Aminoglycoside antibiotics participate in a large variety of binding processes involving both RNA and proteins. The description, in recent years, of several clinically relevant aminoglycoside/receptor complexes has greatly stimulated the structural-based design of new bioactive derivatives. Unfortunately, design efforts have frequently met with limited success, reflecting our incomplete understanding of the molecular determinants for the antibiotic recognition. Intriguingly, aromatic rings of the protein/RNA receptors seem to be key actors in this process. Indeed, close inspection of the structural information available reveals that they are frequently involved in CH/pi stacking interactions with sugar/aminocyclitol rings of the antibiotic. While the interaction between neutral carbohydrates and aromatic rings has been studied in detail during past decade, little is known about these contacts when they involve densely charged glycosides. Herein we report a detailed experimental and theoretical analysis of the role played by CH/pi stacking interactions in the molecular recognition of aminoglycosides. Our study aims to determine the influence that the antibiotic polycationic character has on the stability, preferred geometry, and dynamics of these particular contacts. With this purpose, different aminoglycoside/aromatic complexes have been selected as model systems. They varied from simple bimolecular interactions to the more stable intramolecular CH/pi contacts present in designed derivatives. The obtained results highlight the key role played by electrostatic forces and the desolvation of charged groups in the molecular recognition of polycationic glycosides and have clear implications for the design of improved antibiotics.

  15. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2015-11-09

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.

  16. Natural bizbenzoquinoline derivatives protect zebrafish lateral line sensory hair cells from aminoglycoside toxicity

    Directory of Open Access Journals (Sweden)

    Matthew eKruger

    2016-03-01

    Full Text Available Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  17. Structural Analysis of a Putative Aminoglycoside N-Acetyltransferase from Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Klimecka, Maria M.; Chruszcz, Maksymilian; Font, Jose; Skarina, Tatiana; Shumilin, Igor; Onopryienko, Olena; Porebski, Przemyslaw J.; Cymborowski, Marcin; Zimmerman, Matthew D.; Hasseman, Jeremy; Glomski, Ian J.; Lebioda, Lukasz; Savchenko, Alexei; Edwards, Aled; Minor, Wladek (SC); (Toronto); (UV)

    2012-02-15

    For the last decade, worldwide efforts for the treatment of anthrax infection have focused on developing effective vaccines. Patients that are already infected are still treated traditionally using different types of standard antimicrobial agents. The most popular are antibiotics such as tetracyclines and fluoroquinolones. While aminoglycosides appear to be less effective antimicrobial agents than other antibiotics, synthetic aminoglycosides have been shown to act as potent inhibitors of anthrax lethal factor and may have potential application as antitoxins. Here, we present a structural analysis of the BA2930 protein, a putative aminoglycoside acetyltransferase, which may be a component of the bacterium's aminoglycoside resistance mechanism. The determined structures revealed details of a fold characteristic only for one other protein structure in the Protein Data Bank, namely, YokD from Bacillus subtilis. Both BA2930 and YokD are members of the Antibiotic-NAT superfamily (PF02522). Sequential and structural analyses showed that residues conserved throughout the Antibiotic-NAT superfamily are responsible for the binding of the cofactor acetyl coenzyme A. The interaction of BA2930 with cofactors was characterized by both crystallographic and binding studies.

  18. 21 CFR 573.130 - Aminoglycoside 3′-phospho- transferase II.

    Science.gov (United States)

    2010-04-01

    ... genetically modified cotton, oilseed rape, and tomatoes in accordance with the following prescribed conditions... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Aminoglycoside 3â²-phospho- transferase II. 573.130 Section 573.130 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND...

  19. 21 CFR 173.170 - Aminoglycoside 3′-phospho-trans-ferase II.

    Science.gov (United States)

    2010-04-01

    ... development of genetically modified cotton, oilseed rape, and tomatoes in accordance with the following... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Aminoglycoside 3â²-phospho-trans-ferase II. 173.170 Section 173.170 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN...

  20. Caspase inhibitors promote vestibular hair cell survival and function after aminoglycoside treatment in vivo

    Science.gov (United States)

    Matsui, Jonathan I.; Haque, Asim; Huss, David; Messana, Elizabeth P.; Alosi, Julie A.; Roberson, David W.; Cotanche, Douglas A.; Dickman, J. David; Warchol, Mark E.

    2003-01-01

    The sensory hair cells of the inner ear undergo apoptosis after acoustic trauma or aminoglycoside antibiotic treatment, causing permanent auditory and vestibular deficits in humans. Previous studies have demonstrated a role for caspase activation in hair cell death and ototoxic injury that can be reduced by concurrent treatment with caspase inhibitors in vitro. In this study, we examined the protective effects of caspase inhibition on hair cell death in vivo after systemic injections of aminoglycosides. In one series of experiments, chickens were implanted with osmotic pumps that administrated the pan-caspase inhibitor z-Val-Ala-Asp(Ome)-fluoromethylketone (zVAD) into inner ear fluids. One day after the surgery, the animals received a 5 d course of treatment with streptomycin, a vestibulotoxic aminoglycoside. Direct infusion of zVAD into the vestibule significantly increased hair cell survival after streptomycin treatment. A second series of experiments determined whether rescued hair cells could function as sensory receptors. Animals treated with streptomycin displayed vestibular system impairment as measured by a greatly reduced vestibulo-ocular response (VOR). In contrast, animals that received concurrent systemic administration of zVAD with streptomycin had both significantly greater hair cell survival and significantly increased VOR responses, as compared with animals treated with streptomycin alone. These findings suggest that inhibiting the activation of caspases promotes the survival of hair cells and protects against vestibular function deficits after aminoglycoside treatment.

  1. Enzymatic method for inactivation of aminoglycosides during measurement of postantibiotic effect

    NARCIS (Netherlands)

    J.G. den Hollander (Jan); J.W. Mouton (Johan); I.A.J.M. Bakker-Woudenberg (Irma); F.P. Vleggaar (Frank); M.P.J. van Goor (Marie-Louise); H.A. Verbrugh (Henri)

    1996-01-01

    textabstractTo determine the postantibiotic effect of aminoglycosides, two methods are currently being used to remove the test drug: repeated washing and dilution. An enzymatic inactivation method of removing gentamicin and tobramycin was developed and compared with the dilution me

  2. Cytosolic Proteome Profiling of Aminoglycosides Resistant Mycobacterium tuberculosis Clinical Isolates Using MALDI-TOF/MS

    Science.gov (United States)

    Sharma, Divakar; Lata, Manju; Singh, Rananjay; Deo, Nirmala; Venkatesan, Krishnamurthy; Bisht, Deepa

    2016-01-01

    Emergence of extensively drug resistant tuberculosis (XDR-TB) is the consequence of the failure of second line TB treatment. Aminoglycosides are the important second line anti-TB drugs used to treat the multi drug resistant tuberculosis (MDR-TB). Main known mechanism of action of aminoglycosides is to inhibit the protein synthesis by inhibiting the normal functioning of ribosome. Primary target of aminoglycosides are the ribosomal RNA and its associated proteins. Various mechanisms have been proposed for aminoglycosides resistance but still some are unsolved. As proteins are involved in most of the biological processes, these act as a potential diagnostic markers and drug targets. In the present study we analyzed the purely cytosolic proteome of amikacin (AK) and kanamycin (KM) resistant Mycobacterium tuberculosis isolates by proteomic and bioinformatic approaches. Twenty protein spots were found to have over expressed in resistant isolates and were identified. Among these Rv3208A, Rv2623, Rv1360, Rv2140c, Rv1636, and Rv2185c are six proteins with unknown functions or undefined role. Docking results showed that AK and KM binds to the conserved domain (DUF, USP-A, Luciferase, PEBP and Polyketidecyclase/dehydrase domain) of these hypothetical proteins and over expression of these proteins might neutralize/modulate the effect of drug molecules. TBPred and GPS-PUP predicted cytoplasmic nature and potential pupylation sites within these identified proteins, respectively. String analysis also suggested that over expressed proteins along with their interactive partners might be involved in aminoglycosides resistance. Cumulative effect of these over expressed proteins could be involved in AK and KM resistance by mitigating the toxicity, repression of drug target and neutralizing affect. These findings need further exploitation for the expansion of newer therapeutics or diagnostic markers against AK and KM resistance so that an extreme condition like XDR-TB can be prevented

  3. Influence of Chicken Manure Fertilization on Antibiotic-Resistant Bacteria in Soil and the Endophytic Bacteria of Pakchoi.

    Science.gov (United States)

    Yang, Qingxiang; Zhang, Hao; Guo, Yuhui; Tian, Tiantian

    2016-01-01

    Animal manure is commonly used as fertilizer for agricultural crops worldwide, even though it is believed to contribute to the spread of antibiotic resistance from animal intestines to the soil environment. However, it is unclear whether and how there is any impact of manure fertilization on populations and community structure of antibiotic-resistant endophytic bacteria (AREB) in plant tissues. To investigate the effect of manure and organic fertilizer on endophytic bacterial communities, pot experiments were performed with pakchoi grown with the following treatments: (1) non-treated; (2) chicken manure-treated and (3) organic fertilizer-treated. Manure or organic fertilizer significantly increased the abundances of total cultivable endophytic bacteria (TCEB) and AREB in pakchoi, and the effect of chicken manure was greater than that of organic fertilizer. Further, 16S rDNA sequencing and the phylogenetic analysis indicated that chicken manure or organic fertilizer application increased the populations of multiple antibiotic-resistant bacteria (MARB) in soil and multiple antibiotic-resistant endophytic bacteria (MAREB) in pakchoi. The identical multiple antibiotic-resistant bacterial populations detected in chicken manure, manure- or organic fertilizer-amended soil and the vegetable endophytic system were Brevundimonas diminuta, Brachybacterium sp. and Bordetella sp., suggesting that MARB from manure could enter and colonize the vegetable tissues through manure fertilization. The fact that some human pathogens with multiple antibiotic resistance were detected in harvested vegetables after growing in manure-amended soil demonstrated a potential threat to human health.

  4. Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment

    DEFF Research Database (Denmark)

    Macià, María D.; Pérez, José L.; Molin, Søren;

    2011-01-01

    Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescent...

  5. Study on the molecular mechanism of aminoglycoside resistance to Acinetobacter Baumannii%鲍曼不动杆菌对氨基糖苷类药物耐药机制研究

    Institute of Scientific and Technical Information of China (English)

    蒯守刚; 黄利华; 裴豪; 王旭; 何琳静; 刘君

    2012-01-01

    目的 研究对氨基糖苷类抗菌药物耐药的鲍曼不动杆菌分子流行病学特征和耐药机制.方法 采用琼脂稀释法检测抗菌药物对鲍曼不动杆菌的最低抑菌浓度(MIC),采用肠杆菌科基因间重复一致性序列(ERIC)-聚合酶链反应(PCR)研究耐药菌株的分子流行病学特征,采用特异性PCR、序列分析和接合试验研究介导耐药的分子机制.结果 临床分离菌株对包括氨基糖苷类抗菌药物在内的多种药物广泛耐药,同源性分析显示属于7个流行克隆型.所有分离菌株均扩增出介导氨基糖苷类抗菌药物耐药的修饰酶和药物"外排泵"基因,部分菌株扩增出甲基化酶基因.结论 修饰酶和甲基化酶介导鲍曼不动杆菌临床分离株对氨基糖苷类药物耐药,药物"外排泵"参与介导耐药机制形成,垂直传播和通过耐药性质粒的水平传递可能是耐药菌株播散的主要方式.%Objective To investigate the molecular epidemiology and mechanism of aminoglycoside resistance to Acinetobacter baumannii isolates. Methods Agar-dilution was carried out to detect the minimum inhibitory concentration (MIC) ,and enterobacterial repetitive intergenic consensus (ERIC)-polymerase chain reaction(PCR) was performed to analyze the molecular epidemiology of aminoglycoside resistance isolates. Specific PCR,DNA sequencing,conjugation experiments were carried to confirm the transmission mechanism . Results All the clinical isolates were resistant to most drugs including aminoglycosides ,and ERIC-PCR showed the isolates belonged to 7 genotypes. Specific PCR and DNA sequencing revealed that all isolates encoded aminoglycoside -modifying enzyme genes,efflux pump gene and methylase gene. Conclusions Producing of aminoglycoside -modifying enzyme and methylase mainly contribute to reduce the susceptibility of aminoglycosides in Acinetobacter baumannii. Efflux pump overexpression may as a cofactor in high-level aminoglycoside resistance

  6. Antibacterial efficacy of lytic bacteriophages against antibiotic-resistant Klebsiella species.

    Science.gov (United States)

    Karamoddini, M Khajeh; Fazli-Bazzaz, B S; Emamipour, F; Ghannad, M Sabouri; Jahanshahi, A R; Saed, N; Sahebkar, A

    2011-07-07

    Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages) appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran). Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation) and solid (double-layer agar plate method; after 24 h of incubation) phases. In each method, three different concentrations of bacteriophages (low: 10(7) PFU/mL) were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  7. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  8. Prevalence of antibiotic-resistant bacteria in three different aquatic environments over three seasons.

    Science.gov (United States)

    Mohanta, Tandra; Goel, Sudha

    2014-08-01

    The objective of this study was to evaluate the impact of urbanization and seasonal changes on the prevalence of antibiotic-resistant bacteria in different aqueous environments. To this end, bacteria were isolated from three different water sources: the River Hooghly in Kolkata, River Kangsabati and groundwater from Kharagpur, West Bengal over three seasons: post-monsoon, winter and summer in 2012-2013. A total of 163 Gram-negative bacteria were isolated from the River Hooghly (n = 138), River Kangsabati (n = 13) and groundwater (n = 12). Antibiotic susceptibility testing was done using 12 antibiotic discs. The percentages of multiple antibiotic-resistant (MAR) bacteria at the three sampling locations were found to be 71.01 % (98/138) for River Hooghly, 15.38 % (2/13) for River Kangsabati and 8.33 % (1/12) for groundwater. Prevalence of MAR bacteria with respect to the three seasons were the following: 73.58 % in post-monsoon, 59.26 % in winter and 53.57 % in summer. Antibiotic resistance index (ARI) was calculated for each location and each season. In general, ARI values for all the River Hooghly samples were >0.2 while those for the River Kangsabati and groundwater in Kharagpur were always resistance in bacteria from the River Hooghly compared to the other two locations. In addition, percentage of MAR and ARI values followed the trend: post-monsoon > winter > summer. This may be due to the additional terrestrial resistants that get swept along with surface runoff during the monsoons.

  9. Bacteriophage therapy for membrane biofouling in membrane bioreactors and antibiotic-resistant bacterial biofilms.

    Science.gov (United States)

    Bhattacharjee, Ananda Shankar; Choi, Jeongdong; Motlagh, Amir Mohaghegh; Mukherji, Sachiyo T; Goel, Ramesh

    2015-08-01

    To demonstrate elimination of bacterial biofilm on membranes to represent wastewater treatment as well as biofilm formed by antibiotic-resistant bacterial (ARB) to signify medical application, an antibiotic-resistant bacterium and its lytic bacteriophage were isolated from a full-scale wastewater treatment plant. Based on gram staining and complete 16 S rDNA sequencing, the isolated bacterium showed a more than 99% homology with Delftia tsuruhatensis, a gram-negative bacterium belonging to β-proteobacteria. The Delftia lytic phage's draft genome revealed the phage to be an N4-like phage with 59.7% G + C content. No transfer RNAs were detected for the phage suggesting that the phage is highly adapted to its host Delftia tsuruhatensis ARB-1 with regard to codon usage, and does not require additional tRNAs of its own. The gene annotation of the Delftia lytic phage found three different components of RNA polymerase (RNAP) in the genome, which is a typical characteristic of N4-like phages. The lytic phage specific to D. tsuruhatensis ARB-1 could successfully remove the biofilm formed by it on a glass slide. The water flux through the membrane of a prototype lab-scale membrane bioreactor decreased from 47 L/h m(2) to ∼15 L/h m(2) over 4 days due to a biofilm formed by D. tsuruhatensis ARB-1. However, the flux increased to 70% of the original after the lytic phage application. Overall, this research demonstrated phage therapy's great potential to solve the problem of membrane biofouling, as well as the problems posed by pathogenic biofilms in external wounds and on medical instruments.

  10. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners.

    Directory of Open Access Journals (Sweden)

    Stephanie M Fingerhuth

    2016-05-01

    Full Text Available The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM and men who have sex with men (MSM. We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months. We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW and 3 (MSM months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread.

  11. Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners.

    Science.gov (United States)

    Fingerhuth, Stephanie M; Bonhoeffer, Sebastian; Low, Nicola; Althaus, Christian L

    2016-05-01

    The sexually transmitted bacterium Neisseria gonorrhoeae has developed resistance to all antibiotic classes that have been used for treatment and strains resistant to multiple antibiotic classes have evolved. In many countries, there is only one antibiotic remaining for empirical N. gonorrhoeae treatment, and antibiotic management to counteract resistance spread is urgently needed. Understanding dynamics and drivers of resistance spread can provide an improved rationale for antibiotic management. In our study, we first used antibiotic resistance surveillance data to estimate the rates at which antibiotic-resistant N. gonorrhoeae spread in two host populations, heterosexual men (HetM) and men who have sex with men (MSM). We found higher rates of spread for MSM (0.86 to 2.38 y-1, mean doubling time: 6 months) compared to HetM (0.24 to 0.86 y-1, mean doubling time: 16 months). We then developed a dynamic transmission model to reproduce the observed dynamics of N. gonorrhoeae transmission in populations of heterosexual men and women (HMW) and MSM. We parameterized the model using sexual behavior data and calibrated it to N. gonorrhoeae prevalence and incidence data. In the model, antibiotic-resistant N. gonorrhoeae spread with a median rate of 0.88 y-1 in HMW and 3.12 y-1 in MSM. These rates correspond to median doubling times of 9 (HMW) and 3 (MSM) months. Assuming no fitness costs, the model shows the difference in the host population's treatment rate rather than the difference in the number of sexual partners explains the differential spread of resistance. As higher treatment rates result in faster spread of antibiotic resistance, treatment recommendations for N. gonorrhoeae should carefully balance prevention of infection and avoidance of resistance spread.

  12. Intracellular polyamine pools, oligopeptide-binding protein A expression, and resistance to aminoglycosides in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Maria BR Acosta

    2005-11-01

    Full Text Available The role of intracellular free polyamine (putrescine and spermidine pools in multiple resistance to aminoglycoside antibiotics was investigated among in vitro selected kanamycin-resistant Escherichia coli J53 mutants expressing diminished oligopeptide-binding protein (OppA levels and/or defective ornithine decarboxylase (ODC activity. The results suggest that diminished OppA content, but not defective ODC activity expression, increased the relative concentration of free spermidine as compared to the wild type strain. Moreover, by adding exogenous polyamines or polyamine synthesis inhibitors to cultures with different mutant strains, a direct relationship between the intracellular OppA levels and resistance to kanamycin was revealed. Collectively these results further suggest a complex relation among OppA expression, aminoglycoside resistance and polyamine metabolism.

  13. Complexation of anionic copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide with aminoglycoside antibiotics

    Science.gov (United States)

    Solovskii, M. V.; Tarabukina, E. B.; Amirova, A. I.; Zakharova, N. V.; Smirnova, M. Yu.; Gavrilova, I. I.

    2014-03-01

    The complexation of aminoglycoside antibiotics neomycin, gentamicin, kanamycin, and amikacin in the form of free bases with carboxyl- and sulfo-containing copolymers of acrylamide and N-(2-hydroxypropyl)methacrylamide (HPMA) in water and water-salt solutions is studied by means of viscometry, equilibrium dialysis, potentiometric titration, and molecular hydrodynamics. Factors influencing the stability of formed copolymer-antibiotic complexes and determinations of their toxicity are established.

  14. An MRPS12 mutation modifies aminoglycoside sensitivity caused by 12S rRNA mutations

    Directory of Open Access Journals (Sweden)

    Sonia eEmperador

    2015-01-01

    Full Text Available Several homoplasmic pathologic mutations in mitochondrial DNA, such as those causing Leber hereditary optic neuropathy or non-syndromic hearing loss, show incomplete penetrance. Therefore, other elements must modify their pathogenicity. Discovery of these modifying factors is not an easy task because in multifactorial diseases conventional genetic approaches may not always be informative.Here, we have taken an evolutionary approach to unmask putative modifying factors for a particular homoplasmic pathologic mutation causing aminoglycoside-induced and non-syndromic hearing loss, the m.1494C>T transition in the mitochondrial DNA. The mutation is located in the decoding site of the mitochondrial ribosomal RNA. We first looked at mammalian species that had fixed the human pathologic mutation. These mutations are called compensated pathogenic deviations because an organism carrying one must also have another that suppresses the deleterious effect of the first. We found that species from the primate family Cercopithecidae (old world monkeys harbor the m.1494T allele even if their auditory function is normal.In humans the m.1494T allele increases the susceptibility to aminoglycosides. However, in primary fibroblasts from a Cercopithecidae species, aminoglycosides do not impair cell growth, respiratory complex IV activity and quantity or the mitochondrial protein synthesis. Interestingly, these species also carry a fixed mutation in the mitochondrial ribosomal protein S12. We show that the expression of this variant in a human m.1494T cell line reduces its susceptibility to aminoglycosides. Because several mutations in this human protein have been described, they may possibly explain the absence of pathologic phenotype in some pedigree members with the most frequent pathologic mutations in mitochondrial ribosomal RNA.

  15. Lipid-Modified Aminoglycoside Derivatives for In Vivo siRNA Delivery

    OpenAIRE

    2013-01-01

    Rationally designed siRNA delivery materials that are enabled by lipid-modified aminoglycosides are demonstrated. Leading materials identified are able to self-assemble with siRNA into well-defined nanoparticles and induce efficient gene knockdown both in vitro and in vivo. Histology studies and liver function tests reveal that no apparent toxicity is caused by these nanoparticles at doses over two orders of magnitude.

  16. Lipid-modified aminoglycoside derivatives for in vivo siRNA delivery.

    Science.gov (United States)

    Zhang, Yunlong; Pelet, Jeisa M; Heller, Daniel A; Dong, Yizhou; Chen, Delai; Gu, Zhen; Joseph, Brian J; Wallas, Jasmine; Anderson, Daniel G

    2013-09-06

    Rationally designed siRNA delivery materials that are enabled by lipid-modified aminoglycosides are demonstrated. Leading materials identified are able to self-assemble with siRNA into well-defined nanoparticles and induce efficient gene knockdown both in vitro and in vivo. Histology studies and liver function tests reveal that no apparent toxicity is caused by these nanoparticles at doses over two orders of magnitude.

  17. Molecular Epidemiology of Aminoglycosides Resistance in Acinetobacter Spp. with Emergence of Multidrug-Resistant Strains

    OpenAIRE

    MH Nazem Shirazi; Gh Shajari; R Kheltabadi Farahani; R Moniri; A Ghasemi

    2010-01-01

    Background: Acinetobacter spp. is characterized as an important nosocomial pathogen and increasing antimicrobial resistance. Our aim was to evaluate antimicrobial susceptibility and aminoglycosides resistance genes of Acinetobacter spp. isolated from hospitalized patients. Methods: Sixty isolates were identified as Acinetobacter species. The isolates were tested for antibiotic resistance by disc diffusion method for 12 antimicrobials. The presence of aphA6, aacC1 aadA1, and aadB genes were de...

  18. Pectic enzymes

    NARCIS (Netherlands)

    Benen, J.A.E.; Voragen, A.G.J.; Visser, J.

    2003-01-01

    The pectic enzymes comprise a diverse group of enzymes. They consist of main-chain depolymerases and esterases active on methyl- and acetylesters of galacturonosyl uronic acid residues. The depolymerizing enzymes comprise hydrolases as wel as lyases

  19. Structure and Function of APH(4)-Ia, a Hygromycin B Resistance Enzyme

    Energy Technology Data Exchange (ETDEWEB)

    Stogios, Peter J.; Shakya, Tushar; Evdokimova, Elena; Savchenko, Alexei; Wright, Gerard D. (Toronto); (McMaster U.)

    2011-11-18

    The aminoglycoside phosphotransferase (APH) APH(4)-Ia is one of two enzymes responsible for bacterial resistance to the atypical aminoglycoside antibiotic hygromycin B (hygB). The crystal structure of APH(4)-Ia enzyme was solved in complex with hygB at 1.95 {angstrom} resolution. The APH(4)-Ia structure adapts a general two-lobe architecture shared by other APH enzymes and eukaryotic kinases, with the active site located at the interdomain cavity. The enzyme forms an extended hydrogen bond network with hygB primarily through polar and acidic side chain groups. Individual alanine substitutions of seven residues involved in hygB binding did not have significant effect on APH(4)-Ia enzymatic activity, indicating that the binding affinity is spread across a distributed network. hygB appeared as the only substrate recognized by APH(4)-Ia among the panel of 14 aminoglycoside compounds. Analysis of the active site architecture and the interaction with the hygB molecule demonstrated several unique features supporting such restricted substrate specificity. Primarily the APH(4)-Ia substrate-binding site contains a cluster of hydrophobic residues that provides a complementary surface to the twisted structure of the substrate. Similar to APH(2{double_prime}) enzymes, the APH(4)-Ia is able to utilize either ATP or GTP for phosphoryl transfer. The defined structural features of APH(4)-Ia interactions with hygB and the promiscuity in regard to ATP or GTP binding could be exploited for the design of novel aminoglycoside antibiotics or inhibitors of this enzyme.

  20. LOWER DOSE OF AMINOGLYCOSIDE OTOTOXIC EXPOSURE CAUSES PRESYNAPTIC ALTERATIONS ASSOICATED WITH HEARING LOSS

    Institute of Scientific and Technical Information of China (English)

    LIU Ke; WANG Xiaoyu; LI Sijun; TANG Siquan; XU Yice; WANG Xuefeng; SUN Jianhe; YANG Weiyan; YANG Shiming

    2014-01-01

    Objective To study presynaptic alternations of cochlear ribbons arising from aminoglycoside ototoxic stimuli in C57BL/6J mice. Methods Animals were injected with low dose gentamicin (100 mg/kg/day) for 14 days, From the 14th to 28th days, the mice were maintained free of gentamicin treatment. Immunohisto-chemistry labeling was employed to trace RIBEYE, a major presynaptic componment of ribbon synapses. RIBEYE/CtBP2 expression levels were assessed and compared with hearing threshold shifts. Auditory func-tion was assessed by auditory brainstem responses. The stereocilia of outer hair cells (OHCs) and IHCs was examined by scanning electron microscopy (SEM). Results Hearing thresholds were elevated with peak hearing loss observed on the 7th day after gentamicin exposure, followed by improvement after the 7th day. RIBEYE/CtBP2 expression directly correlated with observed hearing threshold shifts. Strikingly, we did not see any obvious changes in stereocilia in both OHCs and IHCs until the 28th day. Mild changes in stereocil-ia were only observed in OHCs on the 28th day. Conclusions These findings indicate that presynapse co-chlear ribbons, rather than stereocilia, may be sensitive to aminoglycoside ototoxic exposure in mice cochle-ae. A pattern of RIBEYE/CtBP2 expression changes seems to parallel hearing threshold shifts and suggests presynaptic response properties to lower dosage of aminoglycoside ototoxic stimuli.

  1. [Zebrafish model for the study on drug ototoxicity of aminoglycoside antibiotics].

    Science.gov (United States)

    Zhao, Zhuang; Tong, Jun-Wei; Zhang, Jing-Pu; You, Xue-Fu; Jiang, Jian-Dong; Hu, Chang-Qin

    2011-08-01

    Aminoglycoside antibiotics, due to their strong antibacterial effects and broad antimicrobial spectra, have been very commonly used in clinical practice in the past half century. However, aminoglycoside antibiotics manifest severe ototoxicity and nephrotoxicity, and are one of top factors in hearing loss. In this study, three members of the aminoglycoside antibiotics family, gentamycin, neomycin and streptomycin, were chosen as the representatives to be investigated for their toxicity to the embryonic development and the larva hair cells in zebrafish, and also to their target genes associated with hearing-related genes. The results showed that: (1) the lethal effect of all three drugs demonstrated a significant dependence on concentration, and the severity order of the lethal effect was streptomycin > neomycin > gentamycin; (2) all the three drugs caused the larva trunk bending in resting state at 5 dpf (day past fertilization), probably due to their ototoxicity in the physical imbalance and postural abnormalities; (3) impairment and reducing of the hair cells were observed in all three cases of drug treatment; (4) four genes, eya1, val, otx2 and dlx6a, which play an important role in the development of hearing organs, showed differential and significant decrease of gene expression in a drug concentration-dependent manner. This study for the first time reports the relevance between the expression of hearing genes and the three ototoxic antibiotics and also proved the feasibility of establishing a simple, accurate, intuitive and fast model with zebrafish for the detection of drug ototoxicity.

  2. Enzyme assays.

    Science.gov (United States)

    Reymond, Jean-Louis; Fluxà, Viviana S; Maillard, Noélie

    2009-01-07

    Enzyme assays are analytical tools to visualize enzyme activities. In recent years a large variety of enzyme assays have been developed to assist the discovery and optimization of industrial enzymes, in particular for "white biotechnology" where selective enzymes are used with great success for economically viable, mild and environmentally benign production processes. The present article highlights the aspects of fluorogenic and chromogenic substrates, sensors, and enzyme fingerprinting, which are our particular areas of interest.

  3. A rapid method for detection of five known mutations associated with aminoglycoside-induced deafness

    Directory of Open Access Journals (Sweden)

    Greinwald John H

    2009-01-01

    Full Text Available Abstract Background South Africa has one of the highest incidences of multidrug-resistant tuberculosis (MDR-TB in the world. Concomitantly, aminoglycosides are commonly used in this country as a treatment against MDR-TB. To date, at least five mutations are known to confer susceptibility to aminoglycoside-induced hearing loss. The aim of the present study was to develop a rapid screening method to determine whether these mutations are present in the South African population. Methods A multiplex method using the SNaPshot technique was used to screen for five mutations in the MT-RNR1 gene: A1555G, C1494T, T1095C, 961delT+C(n and A827G. A total of 204 South African control samples, comprising 98 Mixed ancestry and 106 Black individuals were screened for the presence of the five mutations. Results A robust, cost-effective method was developed that detected the presence of all five sequence variants simultaneously. In this pilot study, the A1555G mutation was identified at a frequency of 0.9% in the Black control samples. The 961delT+C(n variant was present in 6.6% of the Black controls and 2% of the Mixed ancestry controls. The T1095C, C1494T and A827G variants were not identified in any of the study participants. Conclusion The frequency of 0.9% for the A1555G mutation in the Black population in South Africa is of concern given the high incidence of MDR-TB in this particular ethnic group. Future larger studies are warranted to determine the true frequencies of the aminoglycoside deafness mutations in the general South African population. The high frequencies of the 961delT+C(n variant observed in the controls suggest that this change is a common non-pathogenic polymorphism. This genetic method facilitates the identification of individuals at high risk of developing hearing loss prior to the start of aminoglycoside therapy. This is important in a low-resource country like South Africa where, despite their adverse side-effects, aminoglycosides will

  4. Genome-scale identification method applied to find cryptic aminoglycoside resistance genes in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Julie M Struble

    Full Text Available BACKGROUND: The ability of bacteria to rapidly evolve resistance to antibiotics is a critical public health problem. Resistance leads to increased disease severity and death rates, as well as imposes pressure towards the discovery and development of new antibiotic therapies. Improving understanding of the evolution and genetic basis of resistance is a fundamental goal in the field of microbiology. RESULTS: We have applied a new genomic method, Scalar Analysis of Library Enrichments (SCALEs, to identify genomic regions that, given increased copy number, may lead to aminoglycoside resistance in Pseudomonas aeruginosa at the genome scale. We report the result of selections on highly representative genomic libraries for three different aminoglycoside antibiotics (amikacin, gentamicin, and tobramycin. At the genome-scale, we show significant (p<0.05 overlap in genes identified for each aminoglycoside evaluated. Among the genomic segments identified, we confirmed increased resistance associated with an increased copy number of several genomic regions, including the ORF of PA5471, recently implicated in MexXY efflux pump related aminoglycoside resistance, PA4943-PA4946 (encoding a probable GTP-binding protein, a predicted host factor I protein, a delta 2-isopentenylpyrophosphate transferase, and DNA mismatch repair protein mutL, PA0960-PA0963 (encoding hypothetical proteins, a probable cold shock protein, a probable DNA-binding stress protein, and aspartyl-tRNA synthetase, a segment of PA4967 (encoding a topoisomerase IV subunit B, as well as a chimeric clone containing two inserts including the ORFs PA0547 and PA2326 (encoding a probable transcriptional regulator and a probable hypothetical protein, respectively. CONCLUSIONS: The studies reported here demonstrate the application of new a genomic method, SCALEs, which can be used to improve understanding of the evolution of antibiotic resistance in P. aeruginosa. In our demonstration studies, we

  5. Nuclear modifier MTO2 modulates the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Xiangyu He

    Full Text Available The phenotypic manifestations of mitochondrial DNA (mtDNA mutations are modulated by mitochondrial DNA haplotypes, nuclear modifier genes and environmental factors. The yeast mitochondrial 15S rRNA C1477G (P(R or P(R 454 mutation corresponds to the human 12S rRNA C1494T and A1555G mutations, which are well known as primary factors for aminoglycoside-induced nonsyndromic deafness. Here we report that the deletion of the nuclear modifier gene MTO2 suppressed the aminoglycoside-sensitivity of mitochondrial 15S rRNA C1477G mutation in Saccharomyces cerevisiae. First, the strain with a single mtDNA C1477G mutation exhibited hypersensitivity to neomycin. Functional assays indicated that the steady-state transcription level of mitochondrial DNA, the mitochondrial respiratory rate, and the membrane potential decreased significantly after neomycin treatment. The impaired mitochondria could not produce sufficient energy to maintain cell viability. Second, when the mto2 null and the mitochondrial C1477G mutations co-existed (mto2(P(R, the oxygen consumption rate in the double mutant decreased markedly compared to that of the control strains (MTO2(P(S, mto2(P(S and MTO2(P(R. The expression levels of the key glycolytic genes HXK2, PFK1 and PYK1 in the mto2(P(R strain were stimulated by neomycin and up-regulated by 89%, 112% and 55%, respectively. The enhanced glycolysis compensated for the respiratory energy deficits, and could be inhibited by the glycolytic enzyme inhibitor. Our findings in yeast will provide a new insight into the pathogenesis of human deafness.

  6. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids

    OpenAIRE

    Jalasvuori, Matti; Friman, Ville-Petri; Nieminen, Anne; Jaana K.H. Bamford; Buckling, Angus

    2011-01-01

    Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple ant...

  7. Comparative analysis of bacterial community and antibiotic-resistant strains in different developmental stages of the housefly (Musca domestica).

    Science.gov (United States)

    Wei, Ting; Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori

    2013-02-01

    The housefly (Musca domestica) is an important host for a variety of bacteria, including some pathogenic and antibiotic-resistant strains. To further investigate the relationship between the housefly and the bacteria it harbors, it is necessary to understand the fate of microorganisms during the larval metamorphosis. The major bacterial communities in three developmental stages of the housefly (maggot, pupa, and adult fly) were investigated by a culture-independent method, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA genes. The bacteria that were identified using DGGE analysis spanned phyla Proteobacteria, Firmicutes, and Bacteroidetes. Changes in the predominant genera were observed during the housefly development. Bacteroides, Koukoulia, and Schineria were detected in maggots, Neisseria in pupae, and Macrococcus, Lactococcus, and Kurthia in adult flies. Antibiotic-resistant bacteria were screened using a selective medium and tested for antibiotic susceptibility. Most resistant isolates from maggots and pupae were classified as Proteus spp., while those from adult flies were much more diverse and spanned 12 genera. Among 20 tested strains across the three stages, 18 were resistant to at least two antibiotics. Overall, we demonstrated that there are changes in the major bacterial communities and antibiotic-resistant strains as the housefly develops.

  8. Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.

    Science.gov (United States)

    Jalasvuori, Matti; Friman, Ville-Petri; Nieminen, Anne; Bamford, Jaana K H; Buckling, Angus

    2011-12-23

    Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in both Escherichia coli and Salmonella enterica in the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction in the frequency of antibiotic-resistant bacteria. The loss of antibiotic resistance in cells initially harbouring RP4 plasmid was shown to result from evolution of phage resistance where bacterial cells expelled their plasmid (and hence the suitable receptor for phages). Phages also selected for a low frequency of plasmid-containing, phage-resistant bacteria, presumably as a result of modification of the plasmid-encoded receptor. However, these double-resistant mutants had a growth cost compared with phage-resistant but antibiotic-susceptible mutants and were unable to conjugate. These results suggest that bacteriophages could play a significant role in restricting the spread of plasmid-encoded antibiotic resistance.

  9. Seasonal variations in bacterial communities and antibiotic-resistant strains associated with green bottle flies (Diptera: Calliphoridae).

    Science.gov (United States)

    Wei, Ting; Ishida, Ryuichi; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-05-01

    Green bottle flies occur frequently around human environments in Japan. Many species of green bottle flies have been studied with regard to their importance in forensic examinations or clinical therapies, but the bacterial communities associated with this group of flies have not been comprehensively investigated. In this research, 454 pyrosequencing was used to reveal the bacterial communities in green bottle flies collected in different seasons. Meanwhile, the bacteria were screened with selective media and tested for antibiotic susceptibility. Samples collected in three different seasons harbored distinctive bacterial communities. The predominant genera associated with green bottles flies were Staphylococcus in spring, Ignatzschineria in summer, and Vagococcus, Dysgonomonas, and an unclassified Acetobacteraceae in autumn. An upward trend in bacterial community diversity was observed from spring to autumn. Changes in climatic conditions could be the cause of these seasonal variations in fly-associated bacterial communities. The species of isolated antibiotic-resistant bacteria also differed across seasons, but it was difficult to correlate seasonal changes in antibiotic-resistant bacteria with changes in whole communities. A number of multiple-antibiotic-resistant bacteria were isolated, and some of these strains were closely affiliated with pathogens such as Enterococcus faecalis and Enterococcus faecium, which could cause serious threats to public health. Overall, this research provided us with information about the composition and seasonality of bacterial communities in green bottle flies, and highlighted the risks of fly-mediated dissemination of antibiotic-resistant pathogens.

  10. Prevalence of Antibiotic-Resistant Fecal Escherichia coli Isolates from Penned Broiler and Scavenging Local Chickens in Arusha, Tanzania.

    Science.gov (United States)

    Rugumisa, Bernadether T; Call, Douglas R; Mwanyika, Gaspary O; Mrutu, Rehema I; Luanda, Catherine M; Lyimo, Beatus M; Subbiah, Murugan; Buza, Joram J

    2016-08-01

    We compared the prevalence of antibiotic-resistant Escherichia coli isolates from household-level producers of broiler (commercial source breeds) and local chickens in the Arusha District of Tanzania. Households were composed of a single dwelling or residence with independent, penned broiler flocks. Free-range, scavenging chickens were mixed breed and loosely associated with individual households. A total of 1,800 E. coli isolates (1,200 from broiler and 600 from scavenging local chickens) from 75 chickens were tested for their susceptibility against 11 antibiotics by using breakpoint assays. Isolates from broiler chickens harbored a higher prevalence of antibiotic-resistant E. coli relative to scavenging local chickens, including sulfamethoxazole (80.3 versus 34%), followed by trimethoprim (69.3 versus 27.7%), tetracycline (56.8 versus 20%), streptomycin (52.7 versus 24.7%), amoxicillin (49.6 versus 17%), ampicillin (49.1 versus 16.8%), ciprofloxacin (21.9 versus 1.7%), and chloramphenicol (1.5 versus 1.2%). Except for resistance to chloramphenicol, scavenging local chickens harbored fewer resistant E. coli isolates (P < 0.05). Broiler chickens harbored more isolates that were resistant to ≥7 antibiotics (P < 0.05). The higher prevalence of antibiotic-resistant E. coli from broiler chickens correlated with the reported therapeutic and prophylactic use of antibiotics in this poultry population. We suggest that improved biosecurity measures and increased vaccination efforts would reduce reliance on antibiotics by these households.

  11. Impacts of urbanization on the prevalence of antibiotic-resistant Escherichia coli in the Chaophraya River and its tributaries.

    Science.gov (United States)

    Honda, Ryo; Watanabe, Toru; Sawaittayotin, Variga; Masago, Yoshifumi; Chulasak, Rungnapa; Tanong, Kulchaya; Chaminda, G Tushara; Wongsila, Krison; Sienglum, Chawala; Sunthonwatthanaphong, Varisara; Poonnotok, Anupong; Chiemchaisri, Wilai; Chiemchaisri, Chart; Furumai, Hiroaki; Yamamoto, Kazuo

    2016-01-01

    River water samples were taken from 32 locations around the basin of Chaophraya River and its four major tributaries in Thailand to investigate resistance ratios of Escherichia coli isolates to eight antibiotic agents of amoxicillin, sulfamethoxazole/trimethoprim, tetracycline, doxytetracycline, ciprofloxacin, levofloxacin, norfloxacin and ofloxacin. Principal component analysis was performed to characterize resistance patterns of the samples. Relevancy of the obtained principal components with urban land use and fecal contamination of the river were examined. The ratio of antibiotic-resistant bacteria is likely to increase when urban land use near the sampling site exceeds a certain ratio. The resistance ratio to fluoroquinolones tends to be high in a highly populated area. Meanwhile, no significant contribution of fecal contamination was found to increase the resistance ratio. These results suggest that an antibiotic-resistance ratio is dependent on conditions of local urbanization rather than the upstream conditions, and that the major sources of antibiotic-resistant bacteria in the Chaophraya River basin are possibly point sources located in the urban area which contains a high ratio of resistant bacteria.

  12. Stimulation of diesel degradation and biosurfactant production by aminoglycosides in a novel oil-degrading bacterium Pseudomonas luteola PRO23

    Directory of Open Access Journals (Sweden)

    Atanasković Iva M.

    2016-01-01

    Full Text Available Bioremediation is promising technology for dealing with oil hydrocarbons contamination. In this research growth kinetics and oil biodegradation efficiency of Pseudomonas luteola PRO23, isolated from crude oil-contaminated soil samples, were investigated under different concentrations (5, 10 and 20 g/L of light and heavy crude oil. More efficient biodegradation and more rapid adaptation and cell growth were obtained in conditions with light oil. The 5 to 10 g/L upgrade of light oil concentration stimulated the microbial growth and the biodegradation efficiency. Further upgrade of light oil concentration and the upgrade of heavy oil concentration both inhibited the microbial growth, as well as biodegradation process. Aminoglycosides stimulated biosurfactant production in P. luteola in the range of sub-inhibitory concentrations (0.3125, 0.625 μg/mL. Aminoglycosides also induced biofilm formation. The production of biosurfactants was the most intense during lag phase and continues until stationary phase. Aminoglycosides also induced changes in P. luteola growth kinetics. In the presence of aminoglycosides this strain degraded 82% of diesel for 96 h. These results indicated that Pseudomonas luteola PRO23 potentially can be used in bioremediation of crude oil-contaminated environments and that aminoglycosides could stimulate this process. [Projekat Ministarstva nauke Republike Srbije, br. TR31080

  13. Defining RNA motif-aminoglycoside interactions via two-dimensional combinatorial screening and structure-activity relationships through sequencing.

    Science.gov (United States)

    Velagapudi, Sai Pradeep; Disney, Matthew D

    2013-10-15

    RNA is an extremely important target for the development of chemical probes of function or small molecule therapeutics. Aminoglycosides are the most well studied class of small molecules to target RNA. However, the RNA motifs outside of the bacterial rRNA A-site that are likely to be bound by these compounds in biological systems is largely unknown. If such information were known, it could allow for aminoglycosides to be exploited to target other RNAs and, in addition, could provide invaluable insights into potential bystander targets of these clinically used drugs. We utilized two-dimensional combinatorial screening (2DCS), a library-versus-library screening approach, to select the motifs displayed in a 3×3 nucleotide internal loop library and in a 6-nucleotide hairpin library that bind with high affinity and selectivity to six aminoglycoside derivatives. The selected RNA motifs were then analyzed using structure-activity relationships through sequencing (StARTS), a statistical approach that defines the privileged RNA motif space that binds a small molecule. StARTS allowed for the facile annotation of the selected RNA motif-aminoglycoside interactions in terms of affinity and selectivity. The interactions selected by 2DCS generally have nanomolar affinities, which is higher affinity than the binding of aminoglycosides to a mimic of their therapeutic target, the bacterial rRNA A-site.

  14. Selection of antibiotic-resistant standard plate count bacteria during water treatment.

    Science.gov (United States)

    Armstrong, J L; Calomiris, J J; Seidler, R J

    1982-08-01

    Standard plate count (SPC) bacteria were isolated from a drinking-water treatment facility and from the river supplying the facility. All isolates were identified and tested for their resistance to six antibiotics to determine if drug-resistant bacteria were selected for as a consequence of water treatment. Among the isolates surviving our test procedures, there was a significant selection (P less than 0.05) of gram-negative SPC organisms resistant to two or more of the test antibiotics. These bacteria were isolated from the flash mix tank, where chlorine, alum, and lime are added to the water. Streptomycin resistance in particular was more frequent in this population as compared with bacteria in the untreated river water (P less than 0.01). SPC bacteria from the clear well, which is a tank holding the finished drinking water at the treatment facility, were also more frequently antibiotic resistant than were the respective river water populations. When 15.8 and 18.2% of the river water bacteria were multiply antibiotic resistant, 57.1 and 43.5%, respectively, of the SPC bacteria in the clear well were multiply antibiotic resistant. Selection for bacteria exhibiting resistance to streptomycin was achieved by chlorinating river water in the laboratory. We concluded that the selective factors operating in the aquatic environment of a water treatment facility can act to increase the proportion of antibiotic-resistant members of the SPC bacterial population in treated drinking water.

  15. The role of surveillance systems in confronting the global crisis of antibiotic-resistant bacteria

    Science.gov (United States)

    Perez, Federico; Villegas, Maria Virginia

    2015-01-01

    Purpose of Review It is widely accepted that infection control, advanced diagnostics, and novel therapeutics are crucial to mitigate the impact of antibiotic-resistant bacteria. The role of global, national and regional surveillance systems as part of the response to the challenge posed by antibiotic resistance is not sufficiently highlighted. We provide an overview of contemporary surveillance programs, with emphasis on Gram-negative bacteria. Recent Findings The World Health Organization and public health agencies in Europe and the United States recently published comprehensive surveillance reports. These highlight the emergence and dissemination of carbapenem-resistant Enterobacteriaceae (CRE) and other multidrug resistant Gram-negative bacteria. In Israel, public health action to control CRE, especially Klebsiella pneumoniae carbapenemase (KPC) producing-Klebsiella pneumoniae, has advanced together with a better understanding of its epidemiology. Surveillance models adapted to the requirements and capacities of each country are in development. Summary Robust surveillance systems are essential to combat antibiotic resistance, and need to emphasize a “One Health” approach. Refinements in surveillance will come from advances in bioinformatics and genomics that permit the integration of global and local information about antibiotic consumption in humans and animals, molecular mechanisms of resistance, and bacterial genotyping. PMID:26098505

  16. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections

    Science.gov (United States)

    Geilich, Benjamin M.; van de Ven, Anne L.; Singleton, Gloria L.; Sepúlveda, Liuda J.; Sridhar, Srinivas; Webster, Thomas J.

    2015-02-01

    The rapidly diminishing number of effective antibiotics that can be used to treat infectious diseases and associated complications in a physician's arsenal is having a drastic impact on human health today. This study explored the development and optimization of a polymersome nanocarrier formed from a biodegradable diblock copolymer to overcome bacterial antibiotic resistance. Here, polymersomes were synthesized containing silver nanoparticles embedded in the hydrophobic compartment, and ampicillin in the hydrophilic compartment. Results showed for the first time that these silver nanoparticle-embedded polymersomes (AgPs) inhibited the growth of Escherichia coli transformed with a gene for ampicillin resistance (bla) in a dose-dependent fashion. Free ampicillin, AgPs without ampicillin, and ampicillin polymersomes without silver nanoparticles had no effect on bacterial growth. The relationship between the silver nanoparticles and ampicillin was determined to be synergistic and produced complete growth inhibition at a silver-to-ampicillin ratio of 1 : 0.64. In this manner, this study introduces a novel nanomaterial that can effectively treat problematic, antibiotic-resistant infections in an improved capacity which should be further examined for a wide range of medical applications.

  17. Artemisia princeps Inhibits Biofilm Formation and Virulence-Factor Expression of Antibiotic-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Na-Young Choi

    2015-01-01

    Full Text Available In this study, we used ethanol extract of A. princeps and investigated its antibacterial effects against MRSA. Ethanol extract of A. princeps significantly inhibited MRSA growth and organic acid production during glucose metabolism at concentrations greater than 1 mg/mL (P < 0.05. MRSA biofilm formation was observed using scanning electron microscopy (SEM and safranin staining. A. princeps extract was found to inhibit MRSA biofilm formation at concentrations higher than 2 mg/mL significantly (P < 0.05. Bactericidal effects of the A. princeps were observed using confocal laser microscopy, which showed that A. princeps was bactericidal in a dose-dependent manner. Using real-time PCR, expression of mecA, an antibiotic-resistance gene of MRSA, was observed, along with that of sea, agrA, and sarA. A. princeps significantly inhibited mecA, sea, agrA, and sarA, mRNA expression at the concentrations greater than 1 mg/mL (P < 0.05. The phytochemical analysis of A. princeps showed a relatively high content of organic acids and glycosides. The results of this study suggest that the ethanol extract of A. princeps may inhibit proliferation, acid production, biofilm formation, and virulence gene expressions of MRSA, which may be related to organic acids and glycosides, the major components in the extract.

  18. The impact of fecal sample processing on prevalence estimates for antibiotic-resistant Escherichia coli.

    Science.gov (United States)

    Omulo, Sylvia; Lofgren, Eric T; Mugoh, Maina; Alando, Moshe; Obiya, Joshua; Kipyegon, Korir; Kikwai, Gilbert; Gumbi, Wilson; Kariuki, Samuel; Call, Douglas R

    2017-05-01

    Investigators often rely on studies of Escherichia coli to characterize the burden of antibiotic resistance in a clinical or community setting. To determine if prevalence estimates for antibiotic resistance are sensitive to sample handling and interpretive criteria, we collected presumptive E. coli isolates (24 or 95 per stool sample) from a community in an urban informal settlement in Kenya. Isolates were tested for susceptibility to nine antibiotics using agar breakpoint assays and results were analyzed using generalized linear mixed models. We observed a 0.1). Prevalence estimates did not differ for five distinct E. coli colony morphologies on MacConkey agar plates (P>0.2). Successive re-plating of samples for up to five consecutive days had little to no impact on prevalence estimates. Finally, culturing E. coli under different conditions (with 5% CO2 or micro-aerobic) did not affect estimates of prevalence. For the conditions tested in these experiments, minor modifications in sample processing protocols are unlikely to bias estimates of the prevalence of antibiotic-resistance for fecal E. coli.

  19. Antibiotic surgical prophylaxis increases nasal carriage of antibiotic-resistant staphylococci.

    Science.gov (United States)

    McMurray, Claire L; Hardy, Katherine J; Verlander, Neville Q; Hawkey, Peter M

    2015-12-01

    Staphylococci are a significant cause of hospital-acquired infection. Nasal carriage of Staphylococcus aureus is an important risk factor for infection in surgical patients and coagulase-negative staphylococci (CNS) are a major cause of prosthetic joint infections. The impact that antibiotic surgical prophylaxis has on the nasal carriage of staphylococci has not been studied. Daily nasal swabs were taken from 63 patients who received antibiotic surgical prophylaxis and 16 patients who received no antibiotics. Total aerobic bacterial count, S. aureus and CNS were enumerated by culture from nasal swabs. Representative isolates were typed by staphylococcal interspersed repeat units (SIRU) typing and PFGE, and MICs to nine antibiotics were determined. After antibiotic administration, there was a reduction in S. aureus counts (median - 2.3 log(10)c.f.u. ml(- 1)) in 64.0 % of S. aureus carriers, compared with only a 0.89 log(10)c.f.u. ml(- 1) reduction in 75.0 % of S. aureus carriers who did not receive antibiotics. A greater increase in the nasal carriage rate of meticillin-resistant CNS was observed after antibiotic surgical prophylaxis compared with hospitalization alone, with increases of 16.4 and 4.6 %, respectively. Antibiotic-resistant S. epidermidis carriage rate increased by 16.6 % after antibiotic administration compared with 7.5 % with hospitalization alone. Antibiotic surgical prophylaxis impacts the nasal carriage of both S. aureus and CNS.

  20. Isolation and characterization of multiply antibiotic-resistant Clostridum perfringens strains from porcine feces.

    Science.gov (United States)

    Rood, J I; Maher, E A; Somers, E B; Campos, E; Duncan, C L

    1978-05-01

    Multiply antibiotic-resistant strains of Clostridium perfringens were isolated from porcine feces. Strains that were resistant to tetracycline, erythromycin, clindamycin, and lincomycin were isolated, but no penicillin- or chloramphenicol-resistant strains were obtained. Typical minimal inhibitory concentrations for resistant strains were 16 to 64 mug of tetracycline per ml, 64 to >128 mug of erythromycin per ml, >/=128 mug of lincomycin per ml, and 16 to 128 mug of clindamycin per ml. Resistance to erythromycin was always associated with resistance to lincomycin and clindamycin. Minimal inhibitory concentrations were determined for 258 strains from six farms that used antibiotics in their feeds and 240 strains from five farms that did not use antibiotics. The results show that 77.9 and 22.7% of the strains from the former farms were resistant to tetracycline and erythromycin-clindamycin-lincomycin, respectively. The comparable data from the latter farms were 25.0 and 0.8%, respectively. Agarose gel electrophoresis failed to reveal a plasmid band that was common to the resistant strains but absent in the susceptible strains. Attempts to transfer tetracycline, erythromycin, and clindamycin resistance from one strain, CW459, were not successful. Antibiotic-susceptible mutants were not isolated from this strain, despite the use of a variety of curing agents.

  1. 16S rRNA甲基化介导的氨基糖苷类耐药%Resistance mechanism against aminoglycosides mediated by 16S rRNA methylation

    Institute of Scientific and Technical Information of China (English)

    张晓文

    2012-01-01

    Aminoglycosid.es have been used for the treatment of a broad range of life -threatening Gram-positive and Grarrmeg-ative bacterial infections. These agents bind to the A site of the 16S rRNA of the bacterial 30S ribosomal subunit and subsequently block its growth through interference with its protein synthesis . 16S rRNA methylation is capable of conferring an extraordinarily high level of resistance against most of the clinically important aminoglycosides . Previous research has shown that this phenomenon is media -ted by some 16S rRNA methylase. Because of the clinical importance of these enzymes , further global dissemination of 16S rRNA methylase genes among pathogenic bacilli will be a cause of great concern in the near future . This article presents an overview on the action mechanism, origin, classification and genetic environment of 16S rRNA methylase.%氨基糖苷类抗生素在治疗革兰阳性和阴性细菌引起的感染中起着重要的作用,可通过与细菌30S核糖体亚基的16S rRNA的A位点结合而阻碍蛋白质的合成.16S rRNA甲基化作用可导致细菌对氨基糖苷类药物高水平耐药,大量研究显示这一现象是由一类16S rRNA甲基化酶所介导的.由于16S rRNA甲基化酶在临床上的重要性,为引起医务人员的重视,文中将从此类酶的作用机制、起源、分类以及基因环境等方面作一综述.

  2. Hepatocyte growth factor mimetic protects lateral line hair cells from aminoglycoside exposure

    Directory of Open Access Journals (Sweden)

    Phillip eUribe

    2015-01-01

    Full Text Available Loss of sensory hair cells from exposure to certain licit drugs (e.g., aminoglycoside antibiotics, platinum-based chemotherapy agents can result in permanent hearing loss. Here we ask if allosteric activation of the hepatocyte growth factor (HGF cascade via Dihexa, a small molecule drug candidate, can protect hair cells from aminoglycoside toxicity. Unlike native HGF, Dihexa is chemically stable and blood-brain barrier permeable. As a synthetic HGF mimetic, it forms a functional ligand by dimerizing with endogenous HGF to activate the HGF receptor and downstream signaling cascades. To evaluate Dihexa as a potential hair cell protectant, we used the larval zebrafish lateral line, which possesses hair cells that are homologous to mammalian inner ear hair cells and show similar responses to toxins. A dose-response relationship for Dihexa protection was established using two ototoxins, neomycin and gentamicin. We found that a Dihexa concentration of 1 µM confers optimal protection from acute treatment with either ototoxin. Pretreatment with Dihexa does not affect the amount of fluorescently tagged gentamicin that enters hair cells, indicating that Dihexa’s protection is likely mediated by intracellular events and not by inhibiting aminoglycoside entry. Dihexa-mediated protection is attenuated by co-treatment with the HGF antagonist 6-AH, further evidence that HGF activation is a component of the observed protection. Additionally, Dihexa’s robust protection is partially attenuated by co-treatment with inhibitors of the downstream HGF targets Akt, TOR and MEK. Addition of an amino group to the N-terminal of Dihexa also attenuates the protective response, suggesting that even small substitutions greatly alter the specificity of Dihexa for its target. Our data suggest that Dihexa confers protection of hair cells through an HGF-mediated mechanism and that Dihexa holds clinical potential for mitigating chemical ototoxicity.

  3. Molecular basis of rare aminoglycoside susceptibility and pathogenesis of Burkholderia pseudomallei clinical isolates from Thailand.

    Directory of Open Access Journals (Sweden)

    Lily A Trunck

    Full Text Available BACKGROUND: Burkholderia pseudomallei is intrinsically resistant to aminoglycosides and macrolides, mostly due to AmrAB-OprA efflux pump expression. We investigated the molecular mechanisms of aminoglycoside susceptibility exhibited by Thai strains 708a, 2188a, and 3799a. METHODOLOGY/PRINCIPAL FINDINGS: qRT-PCR revealed absence of amrB transcripts in 708a and greatly reduced levels in 2188a and 3799a. Serial passage on increasing gentamicin concentrations yielded 2188a and 3799a mutants that became simultaneously resistant to other aminoglycosides and macrolides, whereas such mutants could not be obtained with 708a. Transcript analysis showed that the resistance of the 2188a and 3799a mutants was due to upregulation of amrAB-oprA expression by unknown mechanism(s. Use of a PCR walking strategy revealed that the amrAB-oprA operon was missing in 708a and that this loss was associated with deletion of more than 70 kb of genetic material. Rescue of the amrAB-oprB region from a 708a fosmid library and sequencing showed the presence of a large chromosome 1 deletion (131 kb and 141 kb compared to strains K96243 and 1710b, respectively. This deletion not only removed the amrAB-oprA operon, but also the entire gene clusters for malleobactin and cobalamin synthesis. Other genes deleted included the anaerobic arginine deiminase pathway, putative type 1 fimbriae and secreted chitinase. Whole genome sequencing and PCR analysis confirmed absence of these genes from 708a. Despite missing several putative virulence genes, 708a was fully virulent in a murine melioidosis model. CONCLUSIONS/SIGNIFICANCE: Strain 708a may be a natural candidate for genetic manipulation experiments that use Select Agent compliant antibiotics for selection and validates the use of laboratory-constructed Delta(amrAB-oprA mutants in such experiments.

  4. Phytochemical screening and synergistic interactions between aminoglycosides, selected antibiotics and extracts from the bryophyte Octoblepharum albidum Hedw (Calymperaceae

    Directory of Open Access Journals (Sweden)

    Vidal C.A.S.

    2012-01-01

    Full Text Available This work is the first to describe the modulation of antibiotic activity of the bryophyte Octoblepharum albidum Hedw extract. The antibacterial activity of ethanolic extract of O. albidum (EEOa, alone and in association with aminoglycosides, was determined against six bacterial strains by a microdilution test. The results showed a similar inhibitory activity of EEOa against Escherichia coli ATCC 25922 and Klebsiella pneumoniae ATCC 33018 (MICs 512 μg/mL. The synergistic effect of the extracts and aminoglycosides was also verified. The most pronounced effects were obtained with EEOa + gentamicin against E. coli and EEOa + kanamycin against K. pneumoniae with MICs reduction (128 to 32 μg/mL. The data from this study are indicative of the antibacterial activity of the bryophyte O. albidum extracts and its potential in modifying the resistance of aminoglycosides analyzed.

  5. Berberine is a novel type efflux inhibitor which attenuates the MexXY-mediated aminoglycoside resistance in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Yuji Morita

    2016-08-01

    Full Text Available The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake or Phellodendri Cortex (the bark of Phellodendron chinense Schneider markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g. amikacin in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime, macrolides (erythromycin, and lincosamides (lincomycin demonstrated using a pseudomonad lacking the 4 other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN, a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important.

  6. Berberine Is a Novel Type Efflux Inhibitor Which Attenuates the MexXY-Mediated Aminoglycoside Resistance in Pseudomonas aeruginosa

    Science.gov (United States)

    Morita, Yuji; Nakashima, Ken-ichi; Nishino, Kunihiko; Kotani, Kenta; Tomida, Junko; Inoue, Makoto; Kawamura, Yoshiaki

    2016-01-01

    The emergence and spread of multidrug-resistant P. aeruginosa infections is of great concern, as very few agents are effective against strains of this species. Methanolic extracts from the Coptidis Rhizoma (the rhizomes of Coptis japonica var. major Satake) or Phellodendri Cortex (the bark of Phellodendron chinense Schneider) markedly reduced resistance to anti-pseudomonal aminoglycosides (e.g., amikacin) in multidrug-resistant P. aeruginosa strains. Berberine, the most abundant benzylisoquinoline alkaloid in the two extracts, reduced aminoglycoside resistance of P. aeruginosa via a mechanism that required the MexXY multidrug efflux system; berberine also reduced aminoglycoside MICs in Achromobacter xylosoxidans and Burkholderia cepacia, two species that harbor intrinsic multidrug efflux systems very similar to the MexXY. Furthermore this compound inhibited MexXY-dependent antibiotic resistance of other classes including cephalosporins (cefepime), macrolides (erythromycin), and lincosamides (lincomycin) demonstrated using a pseudomonad lacking the four other major Mex pumps. Although phenylalanine-arginine beta-naphthylamide (PAβN), a well-known efflux inhibitor, antagonized aminoglycoside in a MexXY-dependent manner, a lower concentration of berberine was sufficient to reduce amikacin resistance of P. aeruginosa in the presence of PAβN. Moreover, berberine enhanced the synergistic effects of amikacin and piperacillin (and vice versa) in multidrug-resistant P. aeruginosa strains. Thus, berberine appears to be a novel type inhibitor of the MexXY-dependent aminoglycoside efflux in P. aeruginosa. As aminoglycosides are molecules of choice to treat severe infections the clinical impact is potentially important. PMID:27547203

  7. Influence of very short patch mismatch repair on SOS inducing lesions after aminoglycoside treatment in Escherichia coli.

    Science.gov (United States)

    Baharoglu, Zeynep; Mazel, Didier

    2014-01-01

    Low concentrations of aminoglycosides induce the SOS response in Vibrio cholerae but not in Escherichia coli. In order to determine whether a specific factor present in E. coli prevents this induction, we developed a genetic screen where only SOS inducing mutants are viable. We identified the vsr gene coding for the Vsr protein of the very short patch mismatch repair (VSPR) pathway. The effect of mismatch repair (MMR) mutants was also studied. We propose that lesions formed upon aminoglycoside treatment are preferentially repaired by VSPR without SOS induction in E. coli and by MMR when VSPR is impaired.

  8. Isolated deafness following recovery from neurologic injury and adult respiratory distress syndrome. A sequela of intercurrent aminoglycoside and diuretic use.

    Science.gov (United States)

    Lynn, A M; Redding, G J; Morray, J P; Tyler, D C

    1985-05-01

    We report two children who survived neurologic injury (near-drowning and Reye's syndrome) and adult respiratory distress syndrome and who required prolonged ventilatory support. Follow-up examination in both children showed steady neurologic recovery, but five months following discharge from their acute illness, profound hearing loss was diagnosed in both children. A review of the literature is reported and the hypothesis that combined aminoglycoside antibiotic and loop diuretic therapy caused the hearing loss is presented. Recommendation is made for audiologic assessment within six months of recovery from critical illness of pediatric patients in whom therapy has included loop diuretic and aminoglycoside antibiotic therapy.

  9. Carriage of antibiotic-resistant enteric bacteria varies among sites in Galapagos reptiles.

    Science.gov (United States)

    Wheeler, Emily; Hong, Pei-Ying; Bedon, Lenin Cruz; Mackie, Roderick I

    2012-01-01

    Increased overlap between humans and wildlife populations has increased the risk for novel disease emergence. Detecting contacts with a high risk for transmission of pathogens requires the identification of dependable measures of microbial exchange. We evaluated antibiotic resistance as a molecular marker for the intensity of human-wildlife microbial connectivity in the Galápagos Islands. We isolated Escherichia coli and Salmonella enterica from the feces of land iguanas (Conolophus sp.), marine iguanas (Amblyrhynchus cristatus), giant tortoises (Geochelone nigra), and seawater, and tested these bacteria with the use of the disk diffusion method for resistance to 10 antibiotics. Antibiotic-resistant bacteria were found in reptile feces from two tourism sites (Isla Plaza Sur and La Galapaguera on Isla San Cristóbal) and from seawater close to a public use beach near Puerto Baquerizo Moreno on Isla San Cristóbal. No resistance was detected at two protected beaches on more isolated islands (El Miedo on Isla Santa Fe and Cape Douglas on Isla Fernandina) and at a coastal tourism site (La Lobería on Isla San Cristóbal). Eighteen E. coli isolates from three locations, all sites relatively proximate to a port town, were resistant to ampicillin, doxycycline, tetracycline, and trimethoprin/sulfamethoxazole. In contrast, only five S. enterica isolates showed a mild decrease in susceptibility to doxycycline and tetracycline from these same sites (i.e., an intermediate resistance phenotype), but no clinical resistance was detected in this bacterial species. These findings suggest that reptiles living in closer proximity to humans potentially have higher exposure to bacteria of human origin; however, it is not clear from this study to what extent this potential exposure translates to ongoing exchange of bacterial strains or genetic traits. Resistance patterns and bacterial exchange in this system warrant further investigation to understand better how human associations

  10. Aquaculture can promote the presence and spread of antibiotic-resistant Enterococci in marine sediments.

    Directory of Open Access Journals (Sweden)

    Andrea Di Cesare

    Full Text Available Aquaculture is an expanding activity worldwide. However its rapid growth can affect the aquatic environment through release of large amounts of chemicals, including antibiotics. Moreover, the presence of organic matter and bacteria of different origin can favor gene transfer and recombination. Whereas the consequences of such activities on environmental microbiota are well explored, little is known of their effects on allochthonous and potentially pathogenic bacteria, such as enterococci. Sediments from three sampling stations (two inside and one outside collected in a fish farm in the Adriatic Sea were examined for enterococcal abundance and antibiotic resistance traits using the membrane filter technique and an improved quantitative PCR. Strains were tested for susceptibility to tetracycline, erythromycin, ampicillin and gentamicin; samples were directly screened for selected tetracycline [tet(M, tet(L, tet(O] and macrolide [erm(A, erm(B and mef] resistance genes by newly-developed multiplex PCRs. The abundance of benthic enterococci was higher inside than outside the farm. All isolates were susceptible to the four antimicrobials tested, although direct PCR evidenced tet(M and tet(L in sediment samples from all stations. Direct multiplex PCR of sediment samples cultured in rich broth supplemented with antibiotic (tetracycline, erythromycin, ampicillin or gentamicin highlighted changes in resistance gene profiles, with amplification of previously undetected tet(O, erm(B and mef genes and an increase in benthic enterococcal abundance after incubation in the presence of ampicillin and gentamicin. Despite being limited to a single farm, these data indicate that aquaculture may influence the abundance and spread of benthic enterococci and that farm sediments can be reservoirs of dormant antibiotic-resistant bacteria, including enterococci, which can rapidly revive in presence of new inputs of organic matter. This reservoir may constitute an

  11. Genotypic and phenotypic characteristics of aminoglycoside-resistant Mycobacterium tuberculosis isolates in Latvia.

    Science.gov (United States)

    Bauskenieks, Matiss; Pole, Ilva; Skenders, Girts; Jansone, Inta; Broka, Lonija; Nodieva, Anda; Ozere, Iveta; Kalvisa, Adrija; Ranka, Renate; Baumanis, Viesturs

    2015-03-01

    Mutations causing resistance to aminoglycosides, such as kanamycin (KAN), amikacin (AMK), and streptomycin, are not completely understood. In this study, polymorphisms of aminoglycoside resistance influencing genes such as rrs, eis, rpsL, and gidB in 41 drug-resistant and 17 pan-sensitive Mycobacterium tuberculosis clinical isolates in Latvia were analyzed. Mutation A1400G in rrs gene was detected in 92% isolates with high resistance level to KAN and diverse MIC level to AMK. Mutations in promoter region of eis were detected in 80% isolates with low-level MIC of KAN. The association of K43R mutation in rpsL gene, a mutation in the rrs gene at position 513, and various polymorphisms in gidB gene with distinct genetic lineages of M. tuberculosis was observed. The results of this study suggest that association of different controversial mutations of M. tuberculosis genes to the drug resistance phenotype should be done in respect to genetic lineages.

  12. Description and validation of coupling high performance liquid chromatography with resonance Rayleigh scattering in aminoglycosides determination

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Lei [Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing (China); Peng Jingdong, E-mail: hxpengjd@swu.edu.cn [Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing (China); Tang Jinxia; Yuan Binfang; He Rongxing; Xiao Ying [Chemistry and Chemical Engineering, Southwest University, 400715 Chongqing (China)

    2011-11-14

    Graphical abstract: Theoretical and experimental analysis had proved that aminoglycosides reacted with Congo red to form binary compounds simultaneously, which led to a novel HPLC-RRS strategy being applied in substances which are not fluorescing and not UV absorbed. Highlights: {yields} A novel HPLC-RRS strategy was shown in this study. {yields} Theoretical and experimental analysis had proved the feasibility of this method. {yields} Because of its specificity, no interference from the matrix was observed. {yields} The analytes in biological matrix were all well resolved without any interference. {yields} It provided new insights for analytes lack of useful spectroscopic and electrochemical properties. - Abstract: In view of the fact that many substances generally exhibit very little ultraviolet absorbance and the absence of native fluorescence, a new strategy with simple instrumentation and excellent analytical performance combining high performance liquid chromatography (HPLC) with resonance Rayleigh scattering (RRS) was developed. It was validated for the quantification of aminoglycosides (AGs). This fact was also carefully calculated by quantum chemistry. However, the sensitivity was probably limited by the volume of flow-through cell. Therefore, the result calls for a suitable one to ensure optimal RRS signal. Interestingly, when serum or urine samples of analytes were analyzed by this method, they were all well resolved without any interference, which would hold a new perspective to be applied in the determination of substances in biological matrix.

  13. Aminoglycosides prevent and dissociate the aggregation of platelets in patients with EDTA-dependent pseudothrombocytopenia.

    Science.gov (United States)

    Sakurai, S; Shiojima, I; Tanigawa, T; Nakahara, K

    1997-12-01

    Although EDTA-dependent pseudothrombocytopenia (EDTA-PTCP) is of practical importance because failure to recognize this clinical entity may result in misdiagnosis and subsequent mismanagement of the patients, the pathophysiological nature of EDTA-PTCP remains unknown. To develop an effective way to evaluate the platelet counts in patients with EDTA-PTCP, we introduced aminoglycosides-supplemented anticoagulating agents. When kanamycin was pre-supplemented with EDTA for anticoagulating blood samples from EDTA-PTCP patients there was no significant change in the platelet counts and the morphology of blood cells after 150 min of incubation at room temperature. Furthermore, when kanamycin was added to EDTA-anticoagulated blood samples from EDTA-PTCP patients within 30 min after blood withdrawal, rapid dissociation of platelets without apparent morphological changes of blood cells was observed, and complete blood cell counts as well as the histogram patterns were almost the same as those examined immediately after blood sampling. The dissociation of aggregated platelets was also detected when other antibiotics were used, although it was associated with some extent of morphological changes of blood cells. These findings indicate that the supplementation of aminoglycosides either before or after blood sampling is a useful method for the diagnosis EDTA-PTCP and for the evaluation of platelet counts in patients with EDTA-PTCP.

  14. Extended-Interval Aminoglycoside Use in Cystic Fibrosis Exacerbation in Children and Young Adults

    Science.gov (United States)

    Safi, Khalid H.; Damiani, Justina M.; Sturza, Julie; Nasr, Samya Z.

    2016-01-01

    This is a prospective quality improvement project for patients with cystic fibrosis who are 5 years of age and older who were admitted for intravenous antibiotic administration as part of treatment of cystic fibrosis exacerbation. The goal of this project was to compare the pharmacokinetics of once-daily versus thrice-daily aminoglycoside use when treating cystic fibrosis exacerbation in different age groups. Of the total of 119 patient encounters, 82.4% were started on once-daily dosing, and the remainder were started on thrice-daily dosing. Patients with pharmacokinetics allowing the continuation of once-daily dosing differed from patients who required a switch to thrice-daily dosing in terms of baseline forced expiratory volume in 1 second, forced expiratory flow from 25% to 75% of vital capacity, age, and body mass index (BMI) but were similar in BMI percentiles. The once-daily dosing group had higher mean 18-hour level, higher mean half-life, higher mean area under the curve, and lower mean elimination constant. This study showed that aminoglycoside clearance is higher in younger children. PMID:27336007

  15. Two-dimensional solid-phase extraction strategy for the selective enrichment of aminoglycosides in milk.

    Science.gov (United States)

    Shen, Aijin; Wei, Jie; Yan, Jingyu; Jin, Gaowa; Ding, Junjie; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao

    2016-12-19

    An orthogonal two-dimensional solid-phase extraction strategy was established for the selective enrichment of three aminoglycosides including spectinomycin, streptomycin, and dihydrostreptomycin in milk. A reversed-phase liquid chromatography material (C18 ) and a weak cation-exchange material (TGA) were integrated in a single solid-phase extraction cartridge. The feasibility of two-dimensional clean-up procedure that experienced two-step adsorption, two-step rinsing, and two-step elution was systematically investigated. Based on the orthogonality of reversed-phase and weak cation-exchange procedures, the two-dimensional solid-phase extraction strategy could minimize the interference from the hydrophobic matrix existing in traditional reversed-phase solid-phase extraction. In addition, high ionic strength in the extracts could be effectively removed before the second dimension of weak cation-exchange solid-phase extraction. Combined with liquid chromatography and tandem mass spectrometry, the optimized procedure was validated according to the European Union Commission directive 2002/657/EC. A good performance was achieved in terms of linearity, recovery, precision, decision limit, and detection capability in milk. Finally, the optimized two-dimensional clean-up procedure incorporated with liquid chromatography and tandem mass spectrometry was successfully applied to the rapid monitoring of aminoglycoside residues in milk.

  16. Temporal bone studies of the human peripheral vestibular system. Aminoglycoside ototoxicity.

    Science.gov (United States)

    Tsuji, K; Velázquez-Villaseñor, L; Rauch, S D; Glynn, R J; Wall, C; Merchant, S N

    2000-05-01

    Quantitative assessments of vestibular hair cells and Scarpa's ganglion cells were performed on 17 temporal bones from 10 individuals who had well-documented clinical evidence of aminoglycoside ototoxicity (streptomycin, kanamycin, and neomycin). Assessment of vestibular hair cells was performed by Nomarski (differential interference contrast) microscopy. Hair cell counts were expressed as densities (number of cells per 0.01 mm2 surface area of the sensory epithelium). The results were compared with age-matched normal data. Streptomycin caused a significant loss of both type I and type II hair cells in all 5 vestibular sense organs. In comparing the ototoxic effect on type I versus type II hair cells, there was greater type I hair cell loss for all 3 cristae, but not for the maculae. The vestibular ototoxic effects of kanamycin appeared to be similar to those of streptomycin, but the small sample size precluded definitive conclusions from being made. Neomycin did not cause loss of vestibular hair cells. Within the limits of this study (maximum postototoxicity survival time of 12 months), there was no significant loss of Scarpa's ganglion cells for any of the 3 drugs. The findings have implications in several clinical areas, including the correlation of vestibular test results to pathological findings, the rehabilitation of patients with vestibular ototoxicity, the use of aminoglycosides to treat Meniere's disease, and the development of a vestibular prosthesis.

  17. [High level of aminoglycoside resistance among Enterococcus faecalis and Enterococcus faecium strains].

    Science.gov (United States)

    Kozuszko, Sylwia; Białucha, Agata; Bogiel, Tomasz; Gospodarek, Eugenia

    2011-01-01

    Enterococcus sp. strains are believed as important reason of serious nosocomial infections currently. These infections are cured by using combination of beta-lactams and aminoglycosides for their treatment. Enterococcus sp. resistant to high-level doses of aminoglycosides, beta-lactams and vancomycin are responsible for therapeutic failure. The aim of our study was to evaluate the incidence of isolation and susceptibility to antibiotics of HLAR Enterococcus sp. strains isolated between 2007 and 2010 from the patients of University Hospital No. 1 of dr A. Jurasz Collegium Medicum of L. Rydygier in Bydgoszcz Nicolaus Copernicus University in Toruń. Amongst 6137 Enterococcus sp. strains 1124 (18,3%) presented HLAR phenotype; 53,1% of them was identified as E. faecalis and 46,9% as E. faecium. The highest percentage of all examined strains was isolated from the patients of different surgery clinics, Intensive Care Units, and Pediatrics, Hematology and Oncology Clinic. HLAR and HLSR phenotypes were noted in E. faecalis, for 45,7% and 27,5% strains, in E. faecium - 29,8% and 9,5%, respectively. HLGR phenotype was presented twice more often in E. faecium than E. faecalis. Highest percentages of E. faecium resistant to glycopeptides and rifampicin were observed when compared with E. faecalis. The highest percentages of strains intermediate, resistant to vancomycin and resistant to glycopeptides were noted for E. faecium strains with phenotypes HLAR, HLGR and HLSR.

  18. Audiologic monitoring of multi-drug resistant tuberculosis patients on aminoglycoside treatment with long term follow-up

    Directory of Open Access Journals (Sweden)

    Sarkar Malay

    2007-11-01

    Full Text Available Abstract Background Multi-drug resistant tuberculosis has emerged as a significant problem with the resurfacing of tuberculosis and thus the need to use the second line drugs with the resultant increased incidence of adverse effects. We discuss the effect of second line aminoglycoside anti-tubercular drugs on the hearing status of MDR-TB patients. Methods Sixty four patients were put on second line aminoglycoside anti-TB drugs. These were divided into three groups: group I, 34 patients using amikacin, group II, 26 patients using kanamycin and group III, 4 patients using capreomycin. Results Of these, 18.75% of the patients developed sensorineural hearing loss involving higher frequencies while 6.25% had involvement of speech frequencies also. All patients were seen again approximately one year after aminoglycoside discontinuation and all hearing losses were permanent with no threshold improvement. Conclusion Aminoglycosides used in MDR-TB patients may result in irreversible hearing loss involving higher frequencies and can become a hearing handicap as speech frequencies are also involved in some of the patients thus underlining the need for regular audiologic evaluation in patients of MDR-TB during the treatment.

  19. IncHI2 Plasmids Are Predominant in Antibiotic-Resistant Salmonella Isolates

    Science.gov (United States)

    Chen, Wenyao; Fang, Tingzi; Zhou, Xiujuan; Zhang, Daofeng; Shi, Xianming; Shi, Chunlei

    2016-01-01

    The wide usage of antibiotics contributes to the increase in the prevalence of antibiotic-resistant Salmonella. Plasmids play a critical role in horizontal transfer of antibiotic resistance markers in Salmonella. This study aimed to screen and characterize plasmid profiles responsible for antibiotic resistance in Salmonella and ultimately to clarify the molecular mechanism of transferable plasmid-mediated antibiotic resistance. A total of 226 Salmonella isolates were examined for antimicrobial susceptibility by a disk diffusion method. Thirty-two isolates (14.2%) were resistant to at least one antibiotic. The presence of plasmid-mediated quinolone resistance (PMQR) genes and β-lactamase genes were established by PCR amplification. PCR-based replicon typing revealed that these 32 isolates represented seven plasmid incompatibility groups (IncP, HI2, A/C, FIIs, FIA, FIB, and I1), and the IncHI2 (59.4%) was predominant. Antibiotic resistance markers located on plasmids were identified through plasmid curing. Fifteen phenotypic variants were obtained with the curing efficiency of 46.9% (15/32). The cured plasmids mainly belong to the HI2 incompatibility group. The elimination of IncHI2 plasmids correlated with the loss of β-lactamase genes (blaOXA-1 and blaTEM-1) and PMQR genes (qnrA and aac(6′)-Ib-cr). Both IncHI2 and IncI1 plasmids in a S. enterica serovar Indiana isolate SJTUF 10584 were lost by curing. The blaCMY -2-carrying plasmid pS10584 from SJTUF 10584 was fully sequenced. Sequence analysis revealed that it possessed a plasmid scaffold typical for IncI1 plasmids with the unique genetic arrangement of IS1294-ΔISEcp1-blaCMY -2-blc-sugE-ΔecnR inserted into the colicin gene cia. These data suggested that IncHI2 was the major plasmid lineage contributing to the dissemination of antibiotic resistance in Salmonella and the activity of multiple mobile genetic elements may contribute to antibiotic resistance evolution and dissemination between different plasmid

  20. Advanced treatment of urban wastewater by UV radiation: Effect on antibiotics and antibiotic-resistant E. coli strains.

    Science.gov (United States)

    Rizzo, Luigi; Fiorentino, Antonino; Anselmo, Antonella

    2013-06-01

    Urban wastewater treatment plant (UWWTP) effluents are among the possible sources of antibiotics and antibiotic-resistant bacteria (ARB) spread into the environment. In this work, the effect of UV radiation on antibiotic-resistant Escherichia coli (E. coli) strains was compared with that of chlorination process. Under the investigated conditions, UV disinfection process resulted in a total inactivation after 60min of irradiation (1.25×10(4)μWscm(-2)) compared to 120min chlorine contact time (initial chlorine dose of 2mgL(-1)). Moreover, no change in E. coli strains' resistance to amoxicillin (AMX) (minimum inhibiting concentration (MIC)>256mgL(-1)) and sulfamethoxazole (SMZ) (MIC>1024mgL(-1)) could be observed after UV treatment, while the treatment affected resistance of the lower resistance strain to ciprofloxacin (CPX) (MIC decreased by 33% and 50% after 60 and 120min, respectively). Contrarily, chlorination process did not affect antibiotic resistance of the investigated E. coli strains. Finally, the effect of UV radiation on the mixture of three antibiotics was also investigated and photodegradation data fit quite well pseudo first order kinetic models with t1/2 values of 14, 20 and 25min for CPX, AMX and SMZ, respectively. According to these results, conventional disinfection processes may not be effective in the inactivation of ARB, and the simultaneous release of ARB and antibiotics at sub-lethal concentrations into UWWTP effluent may promote the development of resistance among bacteria in receiving water.

  1. Inactivation/reactivation of antibiotic-resistant bacteria by a novel UVA/LED/TiO2 system.

    Science.gov (United States)

    Xiong, Pei; Hu, Jiangyong

    2013-09-01

    In this study, an effective photocatalytic disinfection system was established using the newly emerged high power UVA/LED lamp. Crystallizing dish coated with TiO2 was prepared by 32-times impregnation-drying processes, and served as the supporting container for water samples. This study focused on the application of this UVA/LED system for the photocatalytic disinfection of selected antibiotic-resistant bacteria, Escherichia coli ATCC 700891. The disinfection performances were studied under various light intensities and illumination modes. Results show that higher light intensity could reach more significant inactivation of E. coli ATCC 700891. With the same UV dose, log-removal of antibiotic-resistant bacteria decreased with circle time in the studied range, while increased with duty circle. A "residual disinfecting effect" was found in the following dark period for bacteria collected at different phases of photocatalytic process. Residual disinfecting effect was found not significant for bacteria with 30 min periodic illumination. While residual disinfecting effect could kill almost all bacteria after 90 min UV periodic illumination within the following 240 min dark period.

  2. Impact of kanamycin on melanogenesis and antioxidant enzymes activity in melanocytes--an in vitro study.

    Science.gov (United States)

    Wrześniok, Dorota; Otręba, Michał; Beberok, Artur; Buszman, Ewa

    2013-12-01

    Aminoglycosides, broad spectrum aminoglycoside antibiotics, are used in various infections therapy due to their good antimicrobial characteristics. However, their adverse effects such as nephrotoxicity and auditory ototoxicity, as well as some toxic effects directed to pigmented tissues, complicate the use of these agents. This study was undertaken to investigate the effect of aminoglycoside antibiotic-kanamycin on viability, melanogenesis and antioxidant enzymes activity in cultured human normal melanocytes (HEMa-LP). It has been demonstrated that kanamycin induces concentration-dependent loss in melanocytes viability. The value of EC50 was found to be ~6.0 mM. Kanamycin suppressed melanin biosynthesis: antibiotic was shown to inhibit cellular tyrosinase activity and to reduce melanin content in normal human melanocytes. Significant changes in the cellular antioxidant enzymes: SOD, CAT and GPx were stated in melanocytes exposed to kanamycin. Moreover, it was observed that kanamycin caused depletion of antioxidant defense sytem. It is concluded that the inhibitory effect of kanamycin on melanogenesis and not sufficient antioxidant defense mechanism in melanocytes in vitro may explain the potential mechanisms of undesirable side effects of this drug directed to pigmented tissues in vivo.

  3. Chaperonin GroEL/GroES over-expression promotes multi-drug resistance in E. coli following exposure to aminoglycoside antibiotics

    Directory of Open Access Journals (Sweden)

    Lise eGoltermann

    2016-01-01

    Full Text Available Antibiotic resistance is an increasing challenge to modern healthcare. Aminoglycoside antiobiotics cause translation corruption and protein misfolding and aggregation in Escherichia coli. We previously showed that chaperonin GroEL/GroES depletion and overexpression sensitize and promote short-term tolerance, respectively, to this drug class. Here we show that chaperonin GroEL/GroES over-expression accelerates acquisition of aminoglycoside resistance and multi-drug resistance following sub-lethal aminoglycoside antibiotic exposure. Chaperonin buffering could provide a novel mechanism for antibiotic resistance and multi-drug resistance development.

  4. Rapid and liquid-based selection of genetic switches using nucleoside kinase fused with aminoglycoside phosphotransferase.

    Directory of Open Access Journals (Sweden)

    Masahiro Tominaga

    Full Text Available The evolutionary design of genetic switches and circuits requires iterative rounds of positive (ON- and negative (OFF- selection. We previously reported a rapid OFF selection system based on the kinase activity of herpes simplex virus thymidine kinase (hsvTK on the artificial mutator nucleoside dP. By fusing hsvTK with the kanamycin resistance marker aminoglycoside-(3'-phosphotransferase (APH, we established a novel selector system for genetic switches. Due to the bactericidal nature of kanamycin and nucleoside-based lethal mutagenesis, both positive and negative selection could be completed within several hours. Using this new selector system, we isolated a series of homoserine lactone-inducible genetic switches with different expression efficiencies from libraries of the Vibrio fischeri lux promoter in two days, using only liquid handling.

  5. Study of the Interference between Plectranthus Species Essential Oils from Brazil and Aminoglycosides.

    Science.gov (United States)

    Galvão Rodrigues, Fabíola Fernandes; Costa, José Galberto Martins; Rodrigues, Fábio Fernandes Galvao; Campos, Adriana Rolim

    2013-01-01

    Plectranthus is one of the most representative genera of Lamiaceae family. In this study, the essential oils from Plectranthus amboinicus, Plectranthus ornatus, and Plectranthus barbatus were investigated for their chemical composition and antimicrobial and modulatory activities. The major components found were carvacrol (54.4%-P. amboinicus) and eugenol (22.9%-P. ornatus e 25.1%-P. barbatus). In vitro antimicrobial activity was conducted against Escherichia coli, Proteus vulgaris, Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus aureus (multiresistant) using microdilution method. The results of bioassay showed that all strains were sensitive to the oils, except P. aeruginosa that was resistant to P. amboinicus and P. ornatus. A synergistic effect of all essential oils combined with the aminoglycosides was demonstrated. These results show that P. amboinicus, P. ornatus, and P. barbatus inhibit the growth of pathogenic microorganism, and besides this they present antibiotic modifying activity, providing a new perspective against the problem of bacterial resistance to antibiotics.

  6. Distribution of innate efflux-mediated aminoglycoside resistance among different Achromobacter species

    Directory of Open Access Journals (Sweden)

    J. Bador

    2016-03-01

    Full Text Available Achromobacter spp. are emerging respiratory pathogens in cystic fibrosis patients. Since 2013 the genus Achromobacter includes 15 species for which innate antibiotic resistance is unknown. Previously the AxyXY-OprZ efflux system has been described to confer aminoglycoside (AG resistance in A. xylosoxidans. Nevertheless, some Achromobacter spp. strains are susceptible to AG. This study including 49 Achromobacter isolates reveals that AG resistance is correlated with different Achromobacter spp. It is noteworthy that the axyXY-oprZ operon is detected only in AG-resistant species, including the most frequently encountered in cystic fibrosis patients: A. xylosoxidans, A. ruhlandii, A. dolens and A. insuavis.

  7. In vitro susceptibility pattern of acinetobacter species to commonly used cephalosporins, quinolones, and aminoglycosides

    Directory of Open Access Journals (Sweden)

    Prashanth K

    2004-01-01

    Full Text Available PURPOSE: Acinetobacter spp. is an emerging important nosocomial pathogen. Clinical isolates of this genus are often resistant to many antibiotics. The in vitro susceptibility of Acinetobacter isolates obtained from patients were tested for currently used antibiotics. In addition, the study aimed at biotyping of Acinetobacter baumannii. METHODS: A total of 66 isolates were phenotypically characterised through a large panel of 25 carbon assimilation tests and susceptibility through disc diffusion method with 10 antimicrobial agents were tested. MICs were determined only for second line broad-spectrum drugs such as cefotaxime, ceftazidime, amikacin, ciprofloxacin, and ofloxacin using NCCLS guidelines. RESULTS: Multiple drug resistance (MDR was only witnessed in A. baumannii and not in other Acinetobacter species. Aminoglycosides such as amikacin, netilmicin were most active against the MDR isolates tested (60% susceptibility. Ceftazidime was more active than cefotaxime. MDR A. baumannii strains were susceptible only to amikacin, netilmicin and ceftadizime. Ciprofloxacin had poor activity irrespective of isolates belonging to different DNA groups tested (58% resistance overall, 79% among A. baumannii. Strains of Biotypes 6 and 19 of A. baumannii showed broader resistance than those of biotype 10 and others. CONCLUSIONS: Strains of A. baumannii from patients in our hospital, were generally more resistant to quinolones, -lactam antibiotics, first and second generation cephalosporins and partially resistant to third generation cephalosporins and aminoglycosides. The strains belonging to other DNA groups of Acinetobacter were comparatively less resistant than A.baumannii, except ciprofloxacin. This study suggests that, a combination therapy, using a third generation cephalosporin and amikacin, would be best choice for treating Acinetobacter infections.

  8. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission. I. Presynaptic considerations.

    Science.gov (United States)

    Fiekers, J F

    1983-06-01

    The effects of two aminoglycoside antibiotics, streptomycin and neomycin, were studied in voltage-clamped transected twitch fibers of the costocutaneous muscles of garter snakes (species Thamnophis). The concentration-dependent effects of each antibiotic were quantitated by measuring miniature end-plate currents (mepcs) and evoked end-plate currents (epcs) in a single fiber before and in the presence of a wide range of concentrations of each antibiotic. The amplitude and the kinetics of these currents were studied and estimates of the quantal content of evoked transmitter release determined by the direct method of mean ratios, epc/mepc. A distinct separation was obtained between the concentrations of each antibiotic which demonstrated either pre- or postsynaptic actions. Both streptomycin and neomycin produced a concentration-dependent reduction in epc amplitude at concentrations which did not reduce mepc amplitude. Thus, the primary site of action for these antibiotics was considered of presynaptic origin. Streptomycin was approximately one-tenth as active as neomycin in reducing quantal release of acetylcholine. The marked depression in epc amplitude and quantal content produced by high concentrations of each antibiotic were reversed by elevating the external calcium concentration. Double logarithmic plots of the relationship between external calcium concentration and epc amplitude yielded a slope of approximately 3.8 in control physiological solution. In the presence of blocking concentrations of each antibiotic, increasing the external calcium concentration caused a parallel shift to the right of this relationship. These results suggest that the major mechanism for the neuromuscular depression produced by these aminoglycoside antibiotics is a competitive antagonism with calcium for a common presynaptic site required for evoked transmitter release.

  9. Investigation on the Mechanism of Exacerbation of Myasthenia Gravis by Aminoglycoside Antibiotics in Mouse Model

    Institute of Scientific and Technical Information of China (English)

    LIU Changqin; HU Fang

    2005-01-01

    Summary: To investigate the underlying mechanism of the exacerbation of myasthenia gravis by aminoglycoside antibiotics. C57/BL6 mice were immunized with acetylcholine receptor (AChR), extracted from electric organ of Narcine timilei according to Xu Haopeng's methods, in complete Fruend's adjuvant (CFA) to establish experimental autoimmune myasthenia gravis (EAMG). EAMG mice were divided randomly into 5 groups: MG group, NS group and three antibiotics groups. The clinical symptom scores of mice were evaluated on d7 after the last immunization and d14 of antibiotics treatment. Repetitive nerve stimulation (RNS) was performed and the levels of anti-AChR antibody (AChR-Ab) were tested at the same time. The mean clinical symptom grades of gentamycin group (1.312, 2.067), amikacin group (1.111, 1.889) and etimicin group (1.263, 1.632) were significantly higher than those of MG group (1.000, 1.200) (P<0.05). The positive rates of RNS of three antibiotics groups were 69.23 %, 58.82 % and 63.16 % respectively, which were significantly higher than those of MG group and NS group (40.00 %, 40.00 %, P<0.05). The AChR-Ab level in serum and the expression of AChR on neuromuscular junction (NMJ) of mice in three antibiotics groups were also higher than those of MG group. Our results indicated that aminoglycoside antibiotics could aggravate the symptom of myasthenia gravis. The exacerbation of myasthenia gravis by these antibiotics probably involves competitively restraining the release of acetylcholine from presynaptic membrane, impairing the depolarization of postsynaptic membrane, depressing the irritability of myocyte membrane around the end-plate membrane and consequently leading to the blockade of neuromuscular junction.

  10. Factors impacting the aminoglycoside-induced UGA stop codon readthrough in selenoprotein translation.

    Science.gov (United States)

    Martitz, Janine; Hofmann, Peter Josef; Johannes, Jörg; Köhrle, Josef; Schomburg, Lutz; Renko, Kostja

    2016-09-01

    Aminoglycosides (AG) are oligosaccharide antibiotics that interfere with the small ribosomal subunit in aerobic, Gram-negative bacteria, causing pathogen-destructing error rates in their protein biosynthesis. Aminoglycosides also induce mRNA misinterpretation in eukaryotic cells, especially of the UGA (Opal)-stop codon, albeit to a lower extent. UGA recoding is essentially required for the incorporation of selenocysteine (Sec) into growing selenoproteins during translation. Selenocysteine incorporation requires the presence of a selenoprotein-specific stem-loop structure within the 3'-untranslated region of the mRNA, the so-called Sec-insertion sequence (SECIS) element. Interestingly, selenoprotein genes differ in their SECIS-element sequence and in their UGA base context. We hypothesized that the SECIS-element and the specific codon context synergize in controlling the effects of AG on stop codon readthrough. To this end, the SECIS-elements of glutathione peroxidase 1, glutathione peroxidase 4 and selenoprotein P transcripts were cloned into a reporter system and analyzed in combination with different UGA codon contexts. Our results indicate that a cytosine in position 4 (directly downstream of UGA) confers strongest effects on both the Se- and AG-dependent readthrough. Overall selenoprotein biosynthesis rate depends on the Se-status, AG concentration and the specific SECIS-element present in the transcript. These findings help to get a better understanding for the susceptibility of different transcripts towards AG-mediated interference with the biosynthesis of functional Se-containing selenoproteins, and highlight the importance of the Se-status for successful selenoprotein biosynthesis under antibiotic therapy.

  11. Aminoglycoside-Resistant Bacteria and Rational Selection for Antibiotic-Producing Strain%细菌对氨基糖苷类抗生素的耐药性与抗生素产生菌的推理选育

    Institute of Scientific and Technical Information of China (English)

    陈代杰; 李燕

    2001-01-01

    The mechanisms of aminoglycoside-resistant bacteria including inactive enzymes and ribosome or ribosomal protein modification are briefly reviewed. The rational selection for antibiotic-produ-cing strain according to its resistant mechanisms is also discussed.%简要阐述氨基糖苷类抗生素耐药菌通过产生各种钝化酶来修饰活性分子的耐药机制,以及由抗生素作用靶位核糖体或核蛋白发生改变产生的耐药机制。同时,对抗生素产生菌的耐药机制以及利用这些机制进行抗生素产生菌推理选育也作了介绍。

  12. No evidence for transmission of antibiotic-resistant Escherichia coli strains from humans to wild western lowland gorillas in Lopé National Park, Gabon.

    Science.gov (United States)

    Benavides, Julio Andre; Godreuil, Sylvain; Bodenham, Rebecca; Ratiarison, Sandra; Devos, Céline; Petretto, Marie-Odile; Raymond, Michel; Escobar-Páramo, Patricia

    2012-06-01

    The intensification of human activities within the habitats of wild animals is increasing the risk of interspecies disease transmission. This risk is particularly important for great apes, given their close phylogenetic relationship with humans. Areas of high human density or intense research and ecotourism activities expose apes to a high risk of disease spillover from humans. Is this risk lower in areas of low human density? We determined the prevalence of Escherichia coli antibiotic-resistant isolates in a population of the critically endangered western lowland gorilla (Gorilla gorilla gorilla) and other wild mammals in Lopé National Park (LNP), Gabon, and we tested whether the observed pattern could be explained by bacterial transmission from humans and domestic animals into wildlife populations. Our results show a high prevalence of antibiotic-resistant bacterial isolates in humans and low levels in gorillas and other wildlife. The significant differences in the genetic background of the resistant bacteria isolated from humans and gorillas suggest that transmission is low or does not occur between these two species. These findings indicate that the presence of antibiotic-resistant strains in wildlife do not imply direct bacteria transmission from humans. Thus, in areas of low human density, human-wildlife E. coli transmission seems to be low. The presence of antibiotic-resistant isolates in gorillas may be better explained by other mechanisms for resistance acquisition, such as horizontal gene exchange among bacteria or naturally acquired resistance.

  13. Effects of therapeutical and reduced levels of antibiotics on the fraction of antibiotic-resistant strains of Escherichia coli in the chicken gut

    NARCIS (Netherlands)

    van der Horst, M.A.; Fabri, T.H.; Schuurmans, J.M.; Koenders, B.B.; Brul, S.; ter Kuile, B.H.

    2013-01-01

    Development of antibiotic resistance in the microbiota of farm animals and spread of antibiotic-resistant bacteria in the agricultural sector not only threaten veterinary use of antibiotics, but jeopardize human health care as well. The effects of exposure to antibiotics on spread and development of

  14. Dispersal of antibiotic-resistant high-risk clones by hospital networks : changing the patient direction can make all the difference

    NARCIS (Netherlands)

    Donker, T.; Wallinga, J.; Grundmann, H.

    2014-01-01

    Background: Patients who seek treatment in hospitals can introduce high-risk clones of hospital-acquired, antibiotic-resistant pathogens from previous admissions. In this manner, different healthcare institutions become linked epidemiologically. All links combined form the national patient referral

  15. Prevalence of antibiotic-resistant E. coli in retail chicken: comparing conventional, organic, kosher, and raised without antibiotics [v2; ref status: indexed, http://f1000r.es/1pu

    Directory of Open Access Journals (Sweden)

    Jack M Millman

    2013-09-01

    Full Text Available Retail poultry products are known sources of antibiotic-resistant Escherichia coli, a major human health concern. Consumers have a range of choices for poultry, including conventional, organic, kosher, and raised without antibiotics (RWA – designations that are perceived to indicate differences in quality and safety. However, whether these categories vary in the frequency of contamination with antibiotic-resistant E. coli is unknown. We examined the occurrence of antibiotic-resistant E. coli on raw chicken marketed as conventional, organic, kosher and RWA. From April – June 2012, we purchased 213 samples of raw chicken from 15 locations in the New York City metropolitan area. We screened E. coli isolates from each sample for resistance to 12 common antibiotics. Although the organic and RWA labels restrict the use of antibiotics, the frequency of antibiotic-resistant E. coli tended to be only slightly lower for RWA, and organic chicken was statistically indistinguishable from conventional products that have no restrictions. Kosher chicken had the highest frequency of antibiotic-resistant E. coli, nearly twice that of conventional products, a result that belies the historical roots of kosher as a means to ensure food safety. These results indicate that production methods influence the frequency of antibiotic-resistant E. coli on poultry products available to consumers. Future research to identify the specific practices that cause the high frequency of antibiotic-resistant E. coli in kosher chicken could promote efforts to reduce consumer exposure to this potential pathogen.

  16. Characterization of a Bacteriophage-Derived Murein Peptidase for Elimination of Antibiotic-Resistant Staphylococcus aureus.

    Science.gov (United States)

    Keary, Ruth; Sanz-Gaitero, Marta; van Raaij, Mark J; O'Mahony, Jim; Fenton, Mark; McAuliffe, Olivia; Hill, Colin; Ross, R Paul; Coffey, Aidan

    2016-01-01

    Staphylococcus aureus is a major cause of infection in humans and animals, causing a wide variety of diseases, from local inflammations to fatal sepsis. The bacterium is commonly multi-drug resistant and thus many front-line antibiotics have been rendered ineffective for treating such infections. Research on murein/peptidoglycan hydrolases, derived from bacterial viruses (bacteriophages), has demonstrated that such proteins are attractive candidates for development as novel antibacterial agents for combatting Gram-positive pathogens. Here we review the research produced to-date on the bacteriophage-derived CHAPK murein peptidase. Initially, we sequenced and annotated the genome of anti-staphylococcal bacteriophage K and cloned the gene for the bacteriophage endolysin, a murein hydrolase which plays a role in cell killing during the bacteriophage life cycle. An highly active domain of the enzyme, a cysteine, histidine-dependent amido hydrolase/peptidase (CHAPK), was cloned, overexpressed in E. coli and purified. This CHAPK enzyme was demonstrated to rapidly lyse several strains of methicillin resistant S. aureus and both disrupted and prevented the formation of a staphylococcal biofilm. The staphylolytic activity of the peptidase was demonstrated in vivo using a mouse model, without adverse effects on the animals. The crystal structure of the enzyme was elucidated, revealing a calcium ion close to the active site. Site-directed mutagenesis indicated that this calcium ion is involved in the catalytic mechanism of the enzyme. The crystal structure of this enzyme is a valuable source of information for efficient engineering of this and similar CHAP-domain-containing proteins. Overall, the data collected to date on CHAPK has demonstrated its strong potential as a novel therapeutic candidate for treatment of staphylococcal infections and has provided us with insight into the fundamental enzymatic mechanisms of CHAP domain-containing peptidoglycan hydrolases.

  17. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in Southcentral Alaska is associated with urban environments

    Directory of Open Access Journals (Sweden)

    Clara Atterby

    2016-09-01

    Full Text Available Background: Antibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp. at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats. Methods: Escherichia coli was cultured (n=115 isolates from fecal samples of gulls (n=160 collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula. Results: Screening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC], in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected. Conclusion: Our findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health.

  18. Antibiotic-resistant fecal bacteria, antibiotics, and mercury in surface waters of Oakland County, Michigan, 2005-2006

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Crowley, Suzanne L.; Hardigan, Nicole

    2007-01-01

    Water samples collected from 20 stream sites in Oakland and Macomb Counties, Mich., were analyzed to learn more about the occurrence of cephalosporin-resistant Escherichia coli (E. coli) and vancomycin-resistant enterococci (VRE) and the co-occurrence of antibiotics and mercury in area streams. Fecal indicator bacteria concentrations exceeded the Michigan recreational water-quality standard of 300 E. coli colony forming units (CFU) per 100 milliliters of water in 19 of 35 stream-water samples collected in Oakland County. A gene commonly associated with enterococci from humans was detected in samples from Paint Creek at Rochester and Evans Ditch at Southfield, indicating that human fecal waste is a possible source of fecal contamination at these sites. E. coli resistant to the cephalosporin antibiotics (cefoxitin and/ or ceftriaxone) were found at all sites on at least one occasion. The highest percentages of E. coli isolates resistant to cefoxitin and ceftriaxone were 71 percent (Clinton River at Auburn Hills) and 19 percent (Sashabaw Creek near Drayton Plains), respectively. Cephalosporin-resistant E. coli was detected more frequently in samples from intensively urbanized or industrialized areas than in samples from less urbanized areas. VRE were not detected in any sample collected in this study. Multiple antibiotics (azithromycin, erythromycin, ofloxacin, sulfamethoxazole, and trimethoprim) were detected in water samples from the Clinton River at Auburn Hills, and tylosin (an antibiotic used in veterinary medicine and livestock production that belongs to the macrolide group, along with erythromycin) was detected in one water sample from Paint Creek at Rochester. Concentrations of total mercury were as high as 19.8 nanograms per liter (Evans Ditch at Southfield). There was no relation among percentage of antibiotic-resistant bacteria and measured concentrations of antibiotics or mercury in the water. Genetic elements capable of exchanging multiple antibiotic-resistance

  19. Ablation of mixed lineage kinase 3 (Mlk3) does not inhibit ototoxicity induced by acoustic trauma or aminoglycoside exposure.

    Science.gov (United States)

    Polesskaya, Oksana; Cunningham, Lisa L; Francis, Shimon P; Luebke, Anne E; Zhu, Xiaoxia; Collins, David; Vasilyeva, Olga N; Sahler, Julie; Desmet, Emily A; Gelbard, Harris A; Maggirwar, Sanjay B; Walton, Joseph P; Frisina, Robert D; Dewhurst, Stephen

    2010-12-01

    Jun N-terminal kinase (JNK) is activated in cochlear hair cells following acoustic trauma or exposure to aminoglycoside antibiotics. Blockade of JNK activation using mixed lineage kinase (MLK) inhibitors prevents hearing loss and hair cell death following these stresses. Since current pharmacologic inhibitors of MLKs block multiple members of this kinase family, we examined the contribution of the major neuronal family member (MLK3) to stress-induced ototoxicity, usingMlk3(-/-) mice. Immunohistochemical staining revealed that MLK3 is expressed in cochlear hair cells of C57/BL6 mice (but not in Mlk3(-/-) animals). After exposure to acoustic trauma there was no significant difference in DPOAE and ABR values betweenMlk3(-/-) and wild-type mice at 48 h following exposure or 2 weeks later. Susceptibility of hair cells to aminoglycoside toxicity was tested by exposing explanted utricles to gentamicin. Gentamicin-induced hair cell death was equivalent in utricles from wild-type and Mlk3(-/-) mice. Blockade of JNK activation with the pharmacologic inhibitor SP600125 attenuated cell death in utricles from both wild-type and Mlk3(-/-) mice. These data show that MLK3 ablation does not protect against hair cell death following acoustic trauma or exposure to aminoglycoside antibiotics, suggesting that MLK3 is not the major upstream regulator of JNK-mediated hair cell death following these stresses. Rather, other MLK family members such as MLK1, which is also expressed in cochlea, may have a previously unappreciated role in noise- and aminoglycoside-induced ototoxicity.

  20. Prevalence of resistance to aminoglycosides and fluoroquinolones among Pseudomonas aeruginosa strains in a University Hospital in Northeastern Poland.

    Science.gov (United States)

    Michalska, Anna Diana; Sacha, Pawel Tomasz; Ojdana, Dominika; Wieczorek, Anna; Tryniszewska, Elzbieta

    2014-01-01

    The present study was conducted to investigate the prevalence of genes encoding resistance to aminoglycosides and fluoroquinolones among twenty-five Pseudomonas aeruginosa isolated between 2002 and 2009. In PCR, following genes were detected: ant(2″)-Ia in 9 (36.0%), aac(6')-Ib in 7 (28.0%), qnrB in 5 (20.0%), aph(3″)-Ib in 2 (8.0%) of isolates.

  1. Ribosomes of the extremely thermophilic eubacterium Thermotoga maritima are uniquely insensitive to the miscoding-inducing action of aminoglycoside antibiotics.

    OpenAIRE

    1988-01-01

    Poly(U)- and poly(UG)-programmed cell-free systems were developed from the extreme thermophilic, anaerobic eubacterium Thermotoga maritima, and their susceptibility to aminoglycoside and other antibiotics was assayed at a temperature (75 degrees C) close to the physiological optimum (80 degrees C) for cell growth and in vitro polypeptide synthesis, using a Bacillus stearothermophilus system as the reference. The synthetic capacity of the Thermotoga assay mixture was abolished by the eubacteri...

  2. Frequency of Aminoglycoside-Resistance Genes in Methicillin-Resistant Staphylococcus aureus (MRSA) Isolates from Hospitalized Patients

    Science.gov (United States)

    Mahdiyoun, Seyed Mohsen; Kazemian, Hossein; Ahanjan, Mohammad; Houri, Hamidreza; Goudarzi, Mehdi

    2016-01-01

    Background Staphylococcus aureus is one of the most important causative agents in community- and hospital-acquired infections. Aminoglycosides are powerful bactericidal drugs that are often used in combination with beta-lactams or glycopeptides to treat staphylococcal infections. Objectives The main objective of the present study was to determine the prevalence of aminoglycoside resistance among methicillin-resistant Staphylococcus aureus (MRSA) isolates in hospitalized patients in Sari and Tehran, Iran. Methods In this study, 174 MRSA strains isolated from different clinical samples, such as blood, sputum, tracheal exudates, bronchus, pleura, urine, wounds, and catheters, were collected from hospitalized patients in Tehran and Sari during 2014. Antibiotic susceptibility testing was performed against nine antibiotics with the Kirby-Bauer disk diffusion method according to CLSI guidelines. The MRSA strains were examined with oxacillin and cefoxitin disks. MRSA was then validated by detection of the mecA gene. PCR was used to evaluate the prevalence of the aminoglycoside-resistance genes aac (6’)-Ie/aph (2”), aph (3’)-IIIa, and ant (4’) among the MRSA isolates. Results The results of drug susceptibility testing showed that the highest rate of resistance was against erythromycin in Tehran (84.4%) and gentamicin (71.7%) in Sari. All isolates were sensitive to vancomycin, and all strains harbored the mecA gene. The aac (6’)-Ie/aph (2”), aph (3’)-IIIa, and ant (4’)-Ia genes were detected among 134 (77%), 119 (68.4%), and 122 (70.1%) of the isolates, respectively. Conclusions The present study showed a high prevalence of aminoglycoside-resistance genes among MRSA isolates in two cities in Iran.

  3. Activation of PI3K signaling prevents aminoglycoside-induced hair cell death in the murine cochlea

    Directory of Open Access Journals (Sweden)

    Azadeh Jadali

    2016-06-01

    Full Text Available Loss of sensory hair cells of the inner ear due to aminoglycoside exposure is a major cause of hearing loss. Using an immortalized multipotent otic progenitor (iMOP cell line, specific signaling pathways that promote otic cell survival were identified. Of the signaling pathways identified, the PI3K pathway emerged as a strong candidate for promoting hair cell survival. In aging animals, components for active PI3K signaling are present but decrease in hair cells. In this study, we determined whether activated PI3K signaling in hair cells promotes survival. To activate PI3K signaling in hair cells, we used a small molecule inhibitor of PTEN or genetically ablated PTEN using a conditional knockout animal. Hair cell survival was challenged by addition of gentamicin to cochlear cultures. Hair cells with activated PI3K signaling were more resistant to aminoglycoside-induced hair cell death. These results indicate that increased PI3K signaling in hair cells promote survival and the PI3K signaling pathway is a target for preventing aminoglycoside-induced hearing loss.

  4. Understanding the origins of bacterial resistance to aminoglycosides through molecular dynamics mutational study of the ribosomal A-site.

    Directory of Open Access Journals (Sweden)

    Julia Romanowska

    2011-07-01

    Full Text Available Paromomycin is an aminoglycosidic antibiotic that targets the RNA of the bacterial small ribosomal subunit. It binds in the A-site, which is one of the three tRNA binding sites, and affects translational fidelity by stabilizing two adenines (A1492 and A1493 in the flipped-out state. Experiments have shown that various mutations in the A-site result in bacterial resistance to aminoglycosides. In this study, we performed multiple molecular dynamics simulations of the mutated A-site RNA fragment in explicit solvent to analyze changes in the physicochemical features of the A-site that were introduced by substitutions of specific bases. The simulations were conducted for free RNA and in complex with paromomycin. We found that the specific mutations affect the shape and dynamics of the binding cleft as well as significantly alter its electrostatic properties. The most pronounced changes were observed in the U1406C∶U1495A mutant, where important hydrogen bonds between the RNA and paromomycin were disrupted. The present study aims to clarify the underlying physicochemical mechanisms of bacterial resistance to aminoglycosides due to target mutations.

  5. Termite usage associated with antibiotic therapy: enhancement of aminoglycoside antibiotic activity by natural products of Nasutitermes corniger (Motschulsky 1855

    Directory of Open Access Journals (Sweden)

    Almeida-Filho Geraldo G

    2009-09-01

    Full Text Available Abstract Background Several species from Insecta are used as remedies. Among these species, the termite Nasutitermes corniger is commonly used in traditional medicine in Northeast Brazil. The present work tests the modifying antibiotic activity of Nasutitermes corniger, a termite used in folk medicine in Northeastern region of Brazil. Methods Chlorpromazine and decocts of N. corniger were collected from two different plant species used in the traditional medicine were tested for their antimicrobial activity against strains of Escherichia coli resistant to aminoglycosides. The growth of two bacterial strains of E. coli was tested using decocts and chlorpromazine alone or associeted with aminogycosides. Results The MIC and MBC values were ≥1024 μg/ml for both strains of E. coli assayed. A significant synergism was observed between both decocts and chlorpromazine when assyed with neomycin. This synergism with neomycin indicates the involvement of an efflux system in the resistance to this aminoglycoside. Conclusion Therefore it is suggested that natural products from N. corniger could be used as a source of zoo-derived natural products with modifying antibiotic activity to aminoglycosides, being a new weapon against the bacterial resistance to antibiotics.

  6. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo.

    Science.gov (United States)

    Cunningham-Oakes, Edward; Soren, Odel; Moussa, Caroline; Rathor, Getika; Liu, Yingjun; Coates, Anthony; Hu, Yanmin

    2015-01-01

    Infections caused by methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA) is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin, and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI) showed that NDGA when combined with gentamicin, neomycin, or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

  7. Nordihydroguaiaretic acid enhances the activities of aminoglycosides against methicillin- sensitive and resistant Staphylococcus aureus in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Edward eCunningham-Oakes

    2015-10-01

    Full Text Available Infections caused by methicillin-sensitive (MSSA and methicillin-resistant Staphylococcus aureus (MRSA are prevalent. MRSA infections are difficult to treat and there are no new classes of antibiotics produced to the market to treat infections caused by the resistant bacteria. Therefore, using antibiotic enhancers to rescue existing classes of antibiotics is an attractive strategy. Nordihydroguaiaretic acid (NDGA is an antioxidant compound found in extracts from plant Larrea Tridentata. It exhibits antimicrobial activity and may target bacterial cell membrane. Combination efficacies of NDGA with many classes of antibiotics were examined by chequerboard method against 200 clinical isolates of MRSA and MSSA. NDGA in combination with gentamicin, neomycin and tobramycin was examined by time-kill assays. The synergistic combinations of NDGA and aminoglycosides were tested in vivo using a murine skin infection model. Calculations of the fractional inhibitory concentration index (FICI showed that NDGA when combined with gentamicin, neomycin or tobramycin displayed synergistic activities in more than 97% of MSSA and MRSA, respectively. Time kill analysis demonstrated that NDGA significantly augmented the activities of these aminoglycosides against MRSA and MSSA in vitro and in murine skin infection model. The enhanced activity of NDGA resides on its ability to damage bacterial cell membrane leading to accumulation of the antibiotics inside bacterial cells. We demonstrated that NDGA strongly revived the therapeutic potencies of aminoglycosides in vitro and in vivo. This combinational strategy could contribute major clinical implications to treat antibiotic resistant bacterial infections.

  8. Calorimetric and spectroscopic studies of aminoglycoside binding to AT-rich DNA triple helices

    Science.gov (United States)

    Xi, Hongjuan; Kumar, Sunil; Dosen-Micovic, Ljiljana; Arya, Dev P.

    2013-01-01

    Calorimetric and fluorescence techniques were used to characterize the binding of aminoglycosides-neomycin, paromomycin, and ribostamycin, with 5′-dA12-x-dT12-x-dT12-3′ intramolecular DNA triplex (x = hexaethylene glycol) and poly(dA).2poly(dT) triplex. Our results demonstrate the following features: (1) UV thermal analysis reveals that the Tm for triplex decreases with increasing pH value in the presence of neomycin, while the Tm for the duplex remains unchanged. (2) The binding affinity of neomycin decreases with increased pH, although there is an increase in observed binding enthalpy. (3) ITC studies conducted in two buffers (sodium cacodylate and MOPS) yield the number of protonated drug amino groups (Δn) as 0.29 and 0.40 for neomycin and paromomycin interaction with 5′-dA12-x-dT12-x-dT12-3′, respectively. (4) The specific heat capacity change (ΔCp) determined by ITC studies is negative, with more negative values at lower salt concentrations. From 100 mM to 250 mM KCl, the ΔCp ranges from −402 to −60 cal/(mol K) for neomycin. At pH 5.5, a more positive ΔCp is observed, with a value of −98 cal/(mol K) at 100 mM KCl. ΔCp is not significantly affected by ionic strength. (5) Salt dependence studies reveal that there are at least three amino groups of neomycin participating in the electrostatic interactions with the triplex. (6) FID studies using thiazole orange were used to derive the AC50 (aminoglycoside concentration needed to displace 50% of the dye from the triplex) values. Neomycin shows a seven fold higher affinity than paromomycin and eleven fold higher affinity than ribostamycin at pH 6.8. (7) Modeling studies, consistent with UV and ITC results, show the importance of an additional positive charge in triplex recognition by neomycin. The modeling and thermodynamic studies indicate that neomycin binding to the DNA triplex depends upon significant contributions from charge as well as shape complementarity of the drug to the DNA triplex

  9. Food Enzymes

    Science.gov (United States)

    McBroom, Rachel; Oliver-Hoyo, Maria T.

    2007-01-01

    Many students view biology and chemistry as two unrelated, separate sciences; how these courses are generally taught in high schools may do little to change that impression. The study of enzymes provide a great opportunity for both biology and chemistry teachers to share with students the interdisciplinary nature of science. This article describes…

  10. Enzyme immunoassay

    DEFF Research Database (Denmark)

    Feldt-Rasmussen, B; Dinesen, B; Deckert, M

    1985-01-01

    An enzyme linked immunoadsorbent assay for urinary albumin using commercially available reagents is described. The assay range is 2.5-120 micrograms/l. When samples are analysed in two standard dilutions, the assayable albumin concentration range is 2.5-240 mg/l, covering the clinical range from...

  11. Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish

    Directory of Open Access Journals (Sweden)

    Tamara M. Stawicki

    2016-07-01

    Full Text Available Hair cells possess a single primary cilium, called the kinocilium, early in development. While the kinocilium is lost in auditory hair cells of most species it is maintained in vestibular hair cells. It has generally been believed that the primary role of the kinocilium and cilia-associated genes in hair cells is in the establishment of the polarity of actin-based stereocilia, the hair cell mechanotransduction apparatus. Through genetic screening and testing of candidate genes in zebrafish (Danio rerio we have found that mutations in multiple cilia genes implicated in intraflagellar transport (dync2h1, wdr35, ift88, and traf3ip, and the ciliary transition zone (cc2d2a, mks1, and cep290 lead to resistance to aminoglycoside-induced hair cell death. These genes appear to have differing roles in hair cells, as mutations in intraflagellar transport genes, but not transition zone genes, lead to defects in kinocilia formation and processes dependent upon hair cell mechanotransduction activity. These mutants highlight a novel role of cilia-associated genes in hair cells, and provide powerful tools for further study.

  12. Cilia-Associated Genes Play Differing Roles in Aminoglycoside-Induced Hair Cell Death in Zebrafish.

    Science.gov (United States)

    Stawicki, Tamara M; Hernandez, Liana; Esterberg, Robert; Linbo, Tor; Owens, Kelly N; Shah, Arish N; Thapa, Nihal; Roberts, Brock; Moens, Cecilia B; Rubel, Edwin W; Raible, David W

    2016-01-01

    Hair cells possess a single primary cilium, called the kinocilium, early in development. While the kinocilium is lost in auditory hair cells of most species it is maintained in vestibular hair cells. It has generally been believed that the primary role of the kinocilium and cilia-associated genes in hair cells is in the establishment of the polarity of actin-based stereocilia, the hair cell mechanotransduction apparatus. Through genetic screening and testing of candidate genes in zebrafish (Danio rerio) we have found that mutations in multiple cilia genes implicated in intraflagellar transport (dync2h1, wdr35, ift88, and traf3ip), and the ciliary transition zone (cc2d2a, mks1, and cep290) lead to resistance to aminoglycoside-induced hair cell death. These genes appear to have differing roles in hair cells, as mutations in intraflagellar transport genes, but not transition zone genes, lead to defects in kinocilia formation and processes dependent upon hair cell mechanotransduction activity. These mutants highlight a novel role of cilia-associated genes in hair cells, and provide powerful tools for further study.

  13. Mutations in eukaryotic 18S ribosomal RNA affect translational fidelity and resistance to aminoglycoside antibiotics.

    Science.gov (United States)

    Chernoff, Y O; Vincent, A; Liebman, S W

    1994-02-15

    Mutations have been created in the Saccharomyces cerevisiae 18S rRNA gene that correspond to those known to be involved in the control of translational fidelity or antibiotic resistance in prokaryotes. Yeast strains, in which essentially all chromosomal rDNA repeats are deleted and all cellular rRNAs are encoded by plasmid, have been constructed that contain only mutant 18S rRNA. In Escherichia coli, a C-->U substitution at position 912 of the small subunit rRNA causes streptomycin resistance. Eukaryotes normally carry U at the corresponding position and are naturally resistant to streptomycin. We show that a U-->C transition (rdn-4) at this position of the yeast 18S rRNA gene decreases resistance to streptomycin. The rdn-4 mutation also increases resistance to paromomycin and G-418, and inhibits nonsense suppression induced by paromomycin. The same phenotypes, as well as a slow growth phenotype, are also associated with rdn-2, whose prokaryotic counterpart, 517 G-->A, manifests itself as a suppressor rather than an antisuppressor. Neither rdn-2- nor rdn-4-related phenotypes could be detected in the presence of the normal level of wild-type rDNA repeats. Our data demonstrate that eukaryotic rRNA is involved in the control of translational fidelity, and indicate that rRNA features important for interactions with aminoglycosides have been conserved throughout evolution.

  14. Effects of the aminoglycoside antibiotics, streptomycin and neomycin, on neuromuscular transmission. II. Postsynaptic considerations.

    Science.gov (United States)

    Fiekers, J F

    1983-06-01

    The postsynaptic effects of two aminoglycoside antibiotics, streptomycin and neomycin, were studied on miniature end-plate currents (mepcs) and acetylcholine-induced end-plate current fluctuations in voltage-clamped costocutaneous muscles of the garter snake (species Thamnophis). Neomycin decreased the amplitude of mepcs and accelerated the time constants of mepc decay in a concentration-dependent manner without altering the single exponential nature of mepc decay. Neomycin also produced a voltage- and concentration-dependent nonlinearity in the current/voltage relationship. The relationship between the time constants of mepc decay and membrane potential was progressively reduced with increasing concentrations of neomycin. A concentration-dependent reduction in single channel conductance and channel lifetime was also obtained with neomycin. In contrast, streptomycin, in concentrations up to 5 X 10(-5) M, did not significantly alter either mepc amplitude, the time constant of mepc decay, the relationship between the mepc decay time constant and membrane potential or the lifetime and conductance of single end-plate channels. In very high concentrations (greater than 1 mM) streptomycin decreased mepc amplitude and prolonged mepc decay at hyperpolarized membrane potentials. The results suggest that neomycin interacts with the ionic channels of the acetylcholine receptor in their open configuration, whereas streptomycin acts primarily by blocking the receptor. The significant differences in the molecular actions of these two antibiotics may provide an explanation for the observed differences in the character and reversal of the neuromuscular block produced by these antibiotics.

  15. Study of the Interference between Plectranthus Species Essential Oils from Brazil and Aminoglycosides

    Directory of Open Access Journals (Sweden)

    Fabíola Fernandes Galvão Rodrigues

    2013-01-01

    Full Text Available Plectranthus is one of the most representative genera of Lamiaceae family. In this study, the essential oils from Plectranthus amboinicus, Plectranthus ornatus, and Plectranthus barbatus were investigated for their chemical composition and antimicrobial and modulatory activities. The major components found were carvacrol (54.4%—P. amboinicus and eugenol (22.9%—P. ornatus e 25.1%—P. barbatus. In vitro antimicrobial activity was conducted against Escherichia coli, Proteus vulgaris, Bacillus cereus, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus aureus (multiresistant using microdilution method. The results of bioassay showed that all strains were sensitive to the oils, except P. aeruginosa that was resistant to P. amboinicus and P. ornatus. A synergistic effect of all essential oils combined with the aminoglycosides was demonstrated. These results show that P. amboinicus, P. ornatus, and P. barbatus inhibit the growth of pathogenic microorganism, and besides this they present antibiotic modifying activity, providing a new perspective against the problem of bacterial resistance to antibiotics.

  16. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Purdy Drew, Kirstin R.; Sanders, Lori K.; Culumber, Zachary W.; Zribi, Olena; Wong, Gerard C.L.; (UIUC)

    2009-06-17

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  17. Cationic Amphiphiles Increase Activity of Aminoglycoside Antibiotic Tobramycin in the Presence of Airway Polyelectrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Drew, K.R.Purdy; Sanders, L.K.; Culumber, Z.W.; Zribi, O.; Wong, G.C.L.

    2009-05-21

    It is empirically known that anionic polyelectrolytes present in cystic fibrosis (CF) airways due to bacterial infection significantly decrease the activity of cationic antimicrobials via electrostatic binding. In this work, we use synchrotron small-angle X-ray scattering to investigate the interaction between tobramycin, an aminoglycoside antibiotic commonly administered to CF patients via inhalation, with DNA, which is found in high concentrations in the CF airway. We find that interactions between DNA and tobramycin are significantly modified by the presence of mixtures of amphiphilic molecules. We measure a hierarchy of self-assembled structures formed between tobramycin, DNA, and the amphiphile mixtures and show how interactions between these components can be controlled. Results indicate that mixtures of cationic and negative curvature amphiphiles optimized for DNA binding via charge matching and curvature matching can competitively displace bound tobramycin from DNA and thereby drastically suppress tobramycin-DNA binding and resultant antimicrobial inactivation. Growth inhibition assays confirm the increased activity of tobramycin in the presence of DNA with the addition of the amphiphiles. These results suggest that optimized cationic amphiphile solutions have the potential to enhance antimicrobial function in highly infected environments that contain increased concentrations of anionic inflammatory polymers.

  18. A renal-targeted triptolide aminoglycoside (TPAG) conjugate for lowering systemic toxicities of triptolide.

    Science.gov (United States)

    Qi, Bowen; Wang, Xinyi; Zhou, Yangyang; Han, Qiao; He, Ling; Gong, Tao; Sun, Xun; Fu, Yao; Zhang, Zhirong

    2015-06-01

    Triptolide (TP), a naturally derived compound, is proven effective in the treatment of nephritis and chronic allograft nephropathy. However, the severe multiorgan toxicity greatly limited it from further clinic use. 2-Glucosamine was demonstrated as a potential targeting ligand that could specifically interact with megalin receptors highly expressed in renal proximal tubules. In this study, 2-glucosamine was employed as a glycosyl donor while triptolide the acceptor to afford a nonhydrolyzable triptolide derivative-triptolide aminoglycoside (TPAG). The kidney-targeting efficiency, pharmacodynamic properties and safety of TPAG were thus evaluated. TPAG displayed 6.94-fold of AUC(0-t, kidney) and 13.96-fold of MRT(0-t, kidney) compared to TP. Additionally, TPAG presented improved protective effect against renal ischemia/reperfusion injury. Compared to TP's multiorgan toxicity, TPAG showed minimum toxicity toward the kidney and genital systems, and greatly lowered toxicity in the liver and immune systems. In sum, our study presented an alternative structure modification of triptolide with improved safety and efficacy profiles.

  19. Highly sensitive spectrofluorimetric method for determination of certain aminoglycosides in pharmaceutical formulations and human plasma.

    Science.gov (United States)

    Omar, Mahmoud A; Nagy, Dalia M; Hammad, Mohamed A; Aly, Alshymaa A

    2013-06-01

    A simple, reliable, highly sensitive and selective spectrofluorimetric method has been developed for determination of certain aminoglycosides namely amikacin sulfate, tobramycin, neomycin sulfate, gentamicin sulfate, kanamycin sulfate and streptomycin sulfate. The method is based on the formation of a charge transfer complexes between these drugs and safranin in buffer solution of pH 8. The formed complexes were quantitatively extracted with chloroform under the optimized experimental conditions. These complexes showed an excitation maxima at 519-524 nm and emission maxima at 545-570 nm. The calibration plots were constructed over the range of 4-60 pg mL(-1) for amikacin, 4-50 pg mL(-1) for gentamicin, neomycin and kanamycin, 4-40 pg mL(-1) for streptomycin and 5-50 pg mL(-1) for tobramycin. The proposed method was successfully applied to the analysis of the cited drugs in dosage forms. The proposed method was validated according to ICH and USP guidelines with respect to specificity, linearity, accuracy, precision and robustness. The high sensitivity of the proposed method allowed determination of amikacin and gentamicin in spiked and real human plasma.

  20. Synergistic interaction of PMAP-36 and PRW4 with aminoglycoside antibiotics and their antibacterial mechanism.

    Science.gov (United States)

    Wang, Zeyun; Zhang, Licong; Wang, Jue; Wei, Dandan; Shi, Baoming; Shan, Anshan

    2014-12-01

    The antimicrobial peptide PMAP-36 is a highly cationic and amphipathic α-helical peptide. PRW4 is a truncated analog that replaces paired lysine residues with tryptophan along the N-terminal and deletes the C-terminal hydrophobic tail of PMAP-36. Studies on the two peptides have already been performed. However, whether there is a synergistic effect with antibiotics has not been investigated, and the study of the antibacterial mechanism of the peptides is inadequate. In this study, antibiotic-peptide combinations were tested against Escherichia coli ATCC 25922 and Staphylococcus aureus ATCC 29213, and the confocal laser scanning microscopy (LSCM) and DNA gel retardation were measured. The results indicated synergy between the peptides and gentamicin when tested against E. coli [fractional lethal concentration (FLC) peptides and gentamicin against S. aureus (0.5 peptides against E. coli and S. aureus (1 DNA binding suggest that PMAP-36 was able to translocate across the bacterial membranes and interact with intracellular DNA, but PRW4 presented no DNA-binding ability. These results indicate that the combination of PMAP-36 and PRW4 with aminoglycosides may provide useful information for clinical application, and the antibacterial mechanism of peptides likely does not solely involve cytoplasmic-membrane permeabilization.

  1. Modeling RNA-ligand interactions: the Rev-binding element RNA-aminoglycoside complex.

    Science.gov (United States)

    Leclerc, F; Cedergren, R

    1998-01-15

    An approach to the modeling of ligand-RNA complexes has been developed by combining three-dimensional structure-activity relationship (3D-SAR) computations with a docking protocol. The ability of 3D-SAR to predict bound conformations of flexible ligands was first assessed by attempting to reconstruct the known, bound conformations of phenyloxazolines complexed with human rhinovirus 14 (HRV14) RNA. Subsequently, the same 3D-SAR analysis was applied to the identification of bound conformations of aminoglycosides which associate with the Rev-binding element (RBE) RNA. Bound conformations were identified by parsing ligand conformational data sets with pharmacophores determined by the 3D-SAR analysis. These "bioactive" structures were docked to the receptor RNA, and optimization of the complex was undertaken by extensive searching of ligand conformational space coupled with molecular dynamics computations. The similarity between the bound conformations of the ligand from the 3D-SAR analysis and those found in the docking protocol suggests that this methodology is valid for the prediction of bound ligand conformations and the modeling of the structure of the ligand-RNA complexes.

  2. Alkylating enzymes.

    Science.gov (United States)

    Wessjohann, Ludger A; Keim, Jeanette; Weigel, Benjamin; Dippe, Martin

    2013-04-01

    Chemospecific and regiospecific modifications of natural products by methyl, prenyl, or C-glycosyl moieties are a challenging and cumbersome task in organic synthesis. Because of the availability of an increasing number of stable and selective transferases and cofactor regeneration processes, enzyme-assisted strategies turn out to be promising alternatives to classical synthesis. Two categories of alkylating enzymes become increasingly relevant for applications: firstly prenyltransferases and terpene synthases (including terpene cyclases), which are used in the production of terpenoids such as artemisinin, or meroterpenoids like alkylated phenolics and indoles, and secondly methyltransferases, which modify flavonoids and alkaloids to yield products with a specific methylation pattern such as 7-O-methylaromadendrin and scopolamine.

  3. Identification of genes involved in low aminoglycoside-induced SOS response in Vibrio cholerae: a role for transcription stalling and Mfd helicase.

    Science.gov (United States)

    Baharoglu, Zeynep; Babosan, Anamaria; Mazel, Didier

    2014-02-01

    Sub-inhibitory concentrations (sub-MIC) of antibiotics play a very important role in selection and development of resistances. Unlike Escherichia coli, Vibrio cholerae induces its SOS response in presence of sub-MIC aminoglycosides. A role for oxidized guanine residues was observed, but the mechanisms of this induction remained unclear. To select for V. cholerae mutants that do not induce low aminoglycoside-mediated SOS induction, we developed a genetic screen that renders induction of SOS lethal. We identified genes involved in this pathway using two strategies, inactivation by transposition and gene overexpression. Interestingly, we obtained mutants inactivated for the expression of proteins known to destabilize the RNA polymerase complex. Reconstruction of the corresponding mutants confirmed their specific involvement in induction of SOS by low aminoglycoside concentrations. We propose that DNA lesions formed on aminoglycoside treatment are repaired through the formation of single-stranded DNA intermediates, inducing SOS. Inactivation of functions that dislodge RNA polymerase leads to prolonged stalling on these lesions, which hampers SOS induction and repair and reduces viability under antibiotic stress. The importance of these mechanisms is illustrated by a reduction of aminoglycoside sub-MIC. Our results point to a central role for transcription blocking at DNA lesions in SOS induction, so far underestimated.

  4. Aminoglycoside ototoxicity in three murine strains and effects on NKCC1 of stria vascularis

    Institute of Scientific and Technical Information of China (English)

    CHU Han-qi; XIONG Hao; Zhou Xiao-qin; HAN Fang; WU Zhen-gong; ZHANG Ping; HUANG Xiao-wen; CUI Yong-hua

    2006-01-01

    Background After establishing a murine model of aminoglycoside antibiotic (AmAn) induced ototoxicity, the sensitivity of AmAn induced ototoxicity in three murine strains and the effect of kanamycin on the expression of Na-K-2C1 cotransporter-1 (NKCC 1) in stria vascularis were investigated.Methods C57BL/6J, CBA/CaJ, NKCC1+/- mice (24 of each strain) were randomly divided into four experimental groups: A: kanamycin alone; B: kanamycin plus 2,3-dihydroxybenzoate; C: 2,3-dihydroxybenzoate alone; and D: control group. Mice were injected with kanamycin or/and 2,3-dihydroxybenzoate twice daily for 14 days. Auditory brainstem response (ABR) was measured and morphology of cochlea delineated with succinate dehydrogenase staining. Expression of NKCC1 in stria vascularis was detected immunohistochemically.Results All three strains in groups A and B developed significant ABR threshold shifts (P<0.01), which were accompanied by outer hair cell loss. NKCC 1 expression in stria vascularis was the weakest in group A (A cf D,P<0.01) and the strongest in groups C and D (P<0.05). CBA/CaJ mice had the highest sensitivity to AmAn.Conclusions Administration of kanamycin established AmAn induced ototoxicity. Kanamycin inhibited the expression of NKCC1 in stria vascularis. 2, 3-dihydroxybenzoate attenuated AmAn induced ototoxicitypossibly by enhancing the expression of NKCC1. Age related hearing loss did not show additional sensitivity to AmAn induced ototoxicity in murine model.

  5. Extended-Interval Dosing of Aminoglycosides in Pediatrics: A Narrative Review

    Directory of Open Access Journals (Sweden)

    Ebrahim Salehifar

    2015-07-01

    Full Text Available Aminoglycosides (AGs are frequently used in pediatric settings, especially for empiric treatment of early-onset neonatal sepsis. Although AGs are used for several decades, the optimum method of administration and their dosing schemes needs more clarification. The risks of ototoxicity and nephrotoxicity, two main toxicities associated with AGs, have been contributed to the peak and trough plasma levels, respectively. One approach to decrease these potential toxicities of AGs is to administer higher doses with a prolonged interval, named extended-interval dosing (EID. Post-antibiotic effect (PAE and concentration-dependent killing of AGs provide rational basis for the efficacy of EID. PAE refers to the extended bactericidal activity of AGs against many Gram-negative organisms after the drug was removed by metabolism. One concern is that the higher initial peak concentration with EID may be accompanied with more toxicities, especially ototoxicity. It was demonstrated that due to saturation of binding site of AGs in renal and cochlear tissues, transiently higher concentration of AGs does not cause additional nephrotoxicity or ototoxicity. Experience and clinical evidence regarding EID in pediatrics is suboptimal. In this review, we presented the rational and studies focusing on EID in pediatric setting. The overall finding of trials is that in pediatric setting, EID is a safe and effective dosing method. The risk of serum drug concentration outside the therapeutic range is lower in neonates treated with EID, leading to less need of therapeutic drug monitoring (TDM with EID. Moreover, there are evidences supporting lower chance of bacterial resistance with EID compared with traditional dosing approach.

  6. Highly stable, protein capped gold nanoparticles as effective drug delivery vehicles for amino-glycosidic antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Lori; Kora, Aruna Jyothi; Arunachalam, J., E-mail: aruncccm@gmail.com

    2012-08-01

    A method for the production of highly stable gold nanoparticles (Au NP) was optimized using sodium borohydride as reducing agent and bovine serum albumin as capping agent. The synthesized nanoparticles were characterized using UV-visible spectroscopy, transmission electron microscopy, X-ray diffraction (XRD) and dynamic light scattering techniques. The formation of gold nanoparticles was confirmed from the appearance of pink colour and an absorption maximum at 532 nm. These protein capped nanoparticles exhibited excellent stability towards pH modification and electrolyte addition. The produced nanoparticles were found to be spherical in shape, nearly monodispersed and with an average particle size of 7.8 {+-} 1.7 nm. Crystalline nature of the nanoparticles in face centered cubic structure is confirmed from the selected-area electron diffraction and XRD patterns. The nanoparticles were functionalized with various amino-glycosidic antibiotics for utilizing them as drug delivery vehicles. Using Fourier transform infrared spectroscopy, the possible functional groups of antibiotics bound to the nanoparticle surface have been examined. These drug loaded nanoparticle solutions were tested for their antibacterial activity against Gram-negative and Gram-positive bacterial strains, by well diffusion assay. The antibiotic conjugated Au NP exhibited enhanced antibacterial activity, compared to pure antibiotic at the same concentration. Being protein capped and highly stable, these gold nanoparticles can act as effective carriers for drugs and might have considerable applications in the field of infection prevention and therapeutics. - Highlights: Black-Right-Pointing-Pointer Method for NaBH{sub 4} reduced and BSA capped gold nanoparticle was standardized. Black-Right-Pointing-Pointer Nanoparticles were spherical and nearly monodispersed with a size of 7.8 nm. Black-Right-Pointing-Pointer Nanoparticles are extremely stable towards pH modification and electrolyte addition. Black

  7. Comparison of the incidence of pathogenic and antibiotic-resistant Escherichia coli strains in adult cattle and veal calf slaughterhouse effluents highlighted different risks for public health.

    Science.gov (United States)

    Um, Maryse Michèle; Barraud, Olivier; Kérourédan, Monique; Gaschet, Margaux; Stalder, Thibault; Oswald, Eric; Dagot, Christophe; Ploy, Marie-Cecile; Brugère, Hubert; Bibbal, Delphine

    2016-01-01

    The goal of this study was to investigate the involvement of bovine slaughterhouse effluents and biosolids in the risk of environmental dissemination of pathogenic and antibiotic-resistant Escherichia coli. Several samples were collected from one adult cattle and one veal calf slaughterhouse wastewater treatment plant (WWTP). The treatment process had no impact on the percentage of Shiga toxin-producing E. coli (STEC) and on the percentage of atypical enteropathogenic E. coli (aEPEC). A STEC O157:H7 was isolated from the thickened sludge of the adult cattle slaughterhouse. As thickened sludge is intended to be spread on agricultural lands, the detection of this pathogenic strain is a public health issue. The percentage of antibiotic-resistant E. coli was 5.0% and 87.5% in wastewater from the adult cattle and the veal calf slaughterhouse, respectively. These percentages were not significantly different after treatment. Integron-bearing E. coli isolates were only detected in the veal calf slaughterhouse WWTP with percentages above 50.0% for all sampling points whatever the step of the treatment process. Taken together, these findings highlighted the fact that different public health risks might be associated with adult cattle or veal calf slaughterhouses regarding the dissemination of pathogenic and antibiotic-resistant E. coli isolates into the environment.

  8. Molecular design and genetic optimization of antimicrobial peptides containing unnatural amino acids against antibiotic-resistant bacterial infections.

    Science.gov (United States)

    He, Yongkang; He, Xiaofeng

    2016-09-01

    Antimicrobial peptides (AMPs) have been the focus of intense research towards the finding of a viable alternative to current small-molecule antibiotics, owing to their commonly observed and naturally occurring resistance against pathogens. However, natural peptides have many problems such as low bioavailability and high allergenicity that largely limit the clinical applications of AMPs. In the present study, an integrative protocol that combined chemoinformatics modeling, molecular dynamics simulations, and in vitro susceptibility test was described to design AMPs containing unnatural amino acids (AMP-UAAs). To fulfill this, a large panel of synthetic AMPs with determined activity was collected and used to perform quantitative structure-activity relationship (QSAR) modeling. The obtained QSAR predictors were then employed to direct genetic algorithm (GA)-based optimization of AMP-UAA population, to which a number of commercially available, structurally diverse unnatural amino acids were introduced during the optimization process. Subsequently, several designed AMP-UAAs were confirmed to have high antibacterial potency against two antibiotic-resistant strains, i.e. multidrug-resistant Pseudomonas aeruginosa (MDRPA) and methicillin-resistant Staphylococcus aureus (MRSA), with minimum inhibitory concentration (MIC) < 10 μg/ml. Structural dynamics characterizations revealed that the most potent AMP-UAA peptide is an amphipathic helix that can spontaneously embed into an artificial lipid bilayer and exhibits a strong destructuring tendency associated with the embedding process. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 746-756, 2016.

  9. Cultivation and qPCR Detection of Pathogenic and Antibiotic-Resistant Bacterial Establishment in Naive Broiler Houses.

    Science.gov (United States)

    Brooks, J P; McLaughlin, M R; Adeli, A; Miles, D M

    2016-05-01

    Conventional commercial broiler production involves the rearing of more than 20,000 broilers in a single confined space for approximately 6.5 wk. This environment is known for harboring pathogens and antibiotic-resistant bacteria, but studies have focused on previously established houses with mature litter microbial populations. In the current study, a set of three naive houses were followed from inception through 11 broiler flocks and monitored for ambient climatic conditions, bacterial pathogens, and antibiotic resistance. Within the first 3 wk of the first flock cycle, 100% of litter samples were positive for and , whereas was cultivation negative but PCR positive. Antibiotic resistance genes were ubiquitously distributed throughout the litter within the first flock, approaching 10 to 10 genomic units g. Preflock litter levels were approximately 10 CFU g for heterotrophic plate count bacteria, whereas midflock levels were >10 colony forming units (CFU) g; other indicators demonstrated similar increases. The influence of intrahouse sample location was minor. In all likelihood, given that preflock levels were negative for pathogens and antibiotic resistance genes and 4 to 5 Log lower than flock levels for indicators, incoming birds most likely provided the colonizing microbiome, although other sources were not ruled out. Most bacterial groups experienced a cyclical pattern of litter contamination seen in other studies, whereas microbial stabilization required approximately four flocks. This study represents a first-of-its-kind view into the time required for bacterial pathogens and antibiotic resistance to colonize and establish in naive broiler houses.

  10. Potential use of Bacillus thuringiensis bacteriocins to control antibiotic-resistant bacteria associated with mastitis in dairy goats.

    Science.gov (United States)

    Gutiérrez-Chávez, A J; Martínez-Ortega, E A; Valencia-Posadas, M; León-Galván, M F; de la Fuente-Salcido, N M; Bideshi, D K; Barboza-Corona, J E

    2016-01-01

    Mastitis caused by microbial infections in dairy goats reduces milk yield, modifies milk composition, and potentially contributes to morbidity in herds and consumers of dairy products. Microorganisms associated with mastitis in dairy goats are commonly controlled with antibiotics, but it is known that continued use of these chemical agents promotes antibiotic resistance among bacterial populations. Recently, it has been shown that bacteriocins of Bacillus thuringiensis inhibit growth of food-borne pathogens and also bacteria associated with bovine mastitis. However, there is no report on their ability to inhibit microorganisms linked to mastitis in dairy goats. In this study, using 16S rDNA and ITS regions of rDNA, we identified nine bacterial isolates and an encapsulated yeast associated with mastitis in dairy goats. Enterococcus durans, Brevibacillus sp., and Staphylococcus epidermidis 2 were resistant to, respectively, 75, ~67, ~42, and ~42 % of the antibiotics screened. In addition, 60 % of the bacterial isolates were resistant to penicillin, ampicillin, vancomycin, and dicloxacillin. Importantly, 60 % of the isolates were inhibited by the bacteriocins, but S. epidermidis 1, Enterobacter sp., Escherichia vulneris, and Cryptococcus neoformans were not susceptible to these antimicrobial peptides. Using Brevibacillus sp. and Staphylococcus chromogenes as indicator bacteria, we show that peptides of ~10 kDa that correspond to the molecular mass of bacteriocins used in this study are responsible for the inhibitory activity. Our results demonstrate that multiple antibiotic-resistant bacteria associated with subclinical mastitis in dairy goats from Guanajuato, Mexico, are susceptible to bacteriocins produced by B. thuringiensis.

  11. A novel Erm monomethyltransferase in antibiotic-resistant isolates of Mannheimia haemolytica and Pasteurella multocida.

    Science.gov (United States)

    Desmolaize, Benoit; Rose, Simon; Warrass, Ralf; Douthwaite, Stephen

    2011-04-01

    Mannheimia haemolytica and Pasteurella multocida are aetiological agents commonly associated with respiratory tract infections in cattle. Recent isolates of these pathogens have been shown to be resistant to macrolides and other ribosome-targeting antibiotics. Direct analysis of the 23S rRNAs by mass spectrometry revealed that nucleotide A2058 is monomethylated, consistent with a Type I erm phenotype conferring macrolide-lincosamide resistance. The erm resistance determinant was identified by full genome sequencing of isolates. The sequence of this resistance determinant, now termed erm(42), has diverged greatly from all previously characterized erm genes, explaining why it has remained undetected in PCR screening surveys. The sequence of erm(42) is, however, completely conserved in six independent M. haemolytica and P. multocida isolates, suggesting relatively recent gene transfer between these species. Furthermore, the composition of neighbouring chromosomal sequences indicates that erm(42) was acquired from other members of the Pasteurellaceae. Expression of recombinant erm(42) in Escherichia coli demonstrated that the enzyme retains its properties as a monomethyltransferase without any dimethyltransferase activity. Erm(42) is a novel addition to the Erm family: it is phylogenetically distant from the other Erm family members and it is unique in being a bona fide monomethyltransferase that is disseminated between bacterial pathogens.

  12. Early transcriptional response to aminoglycoside antibiotic suggests alternate pathways leading to apoptosis of sensory hair cells in the mouse inner ear

    Directory of Open Access Journals (Sweden)

    Neil eSegil

    2015-05-01

    Full Text Available Aminoglycoside antibiotics are the drug of choice for treating many bacterial infections, but their administration results in hearing loss in nearly one fourth of the patients who receive them. Several biochemical pathways have been implicated in aminoglycoside antibiotic ototoxicity; however, little is known about how hair cells respond to aminoglycoside antibiotics at the transcriptome level. Here we have investigated the genome-wide response to the aminoglycoside antibiotic gentamicin. Using organotypic cultures of the perinatal organ of Corti, we performed RNA sequencing using cDNA libraries obtained from FACS-purified hair cells. Within 3 hours of gentamicin treatment, the messenger RNA level of more than three thousand genes in hair cells changed significantly. Bioinformatic analysis of these changes highlighted several known signal transduction pathways, including the JNK pathway and the NF-κB pathway, in addition to genes involved in the stress response, apoptosis, cell cycle control, and DNA damage repair. In contrast, only 698 genes, mainly involved in cell cycle and metabolite biosynthetic processes, were significantly affected in the non-hair cell population. The gene expression profiles of hair cells in response to gentamicin share a considerable similarity with those previously observed in gentamicin-induced nephrotoxicity. Our findings suggest that previously observed early responses to gentamicin in hair cells in specific signaling pathways are reflected in changes in gene expression. Additionally, the observed changes in gene expression of cell cycle regulatory genes indicate a disruption of the postmitotic state, which may suggest an alternative pathway regulating gentamicin-induced hair cell death. This work provides a more comprehensive view of aminoglycoside antibiotic ototoxicity, and thus contribute to identifying potential pathways or therapeutic targets to alleviate this important side effect of aminoglycoside

  13. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT(3")-II, is horizontally transferred among Acinetobacter spp. by homologous recombination

    Science.gov (United States)

    Zhang, Gang; Leclercq, Sébastien Olivier; Tian, Jingjing; Wang, Chao; Ai, Guomin; Liu, Shuangjiang

    2017-01-01

    The emergence and spread of antibiotic resistance among Acinetobacter spp. have been investigated extensively. Most studies focused on the multiple antibiotic resistance genes located on plasmids or genomic resistance islands. On the other hand, the mechanisms controlling intrinsic resistance are still not well understood. In this study, we identified the novel subclass of aminoglycoside nucleotidyltransferase ANT(3")-II in Acinetobacter spp., which comprised numerous variants distributed among three main clades. All members of this subclass can inactivate streptomycin and spectinomycin. The three ant(3")-II genes, encoding for the three ANT(3")-II clades, are widely distributed in the genus Acinetobacter and always located in the same conserved genomic region. According to their prevalence, these genes are intrinsic in Acinetobacter baumannii, Acinetobacter pittii, and Acinetobacter gyllenbergii. We also demonstrated that the ant(3")-II genes are located in a homologous recombination hotspot and were recurrently transferred among Acinetobacter species. In conclusion, our findings demonstrated a novel mechanism of natural resistance in Acinetobacter spp., identified a novel subclass of aminoglycoside nucleotidyltransferase and provided new insight into the evolutionary history of intrinsic resistance genes. PMID:28152054

  14. COMBINATIONAL ADMINISTRATION OF AMINOGLYCOSIDES AND LOOP DIURETICS AS AN EFFICIENT STRATEGY TO ESTABLISH DEAFNESS MODELS IN RATS

    Institute of Scientific and Technical Information of China (English)

    CONG Tao; LIU Riyuan; YUAN Shuolong; XU Liangwei; YANG Shiming

    2014-01-01

    It is known that aminoglycoside antibiotics can damage the vestibular and auditory sensory epithelia, and the loop diuretics can enhance the ototoxic effect of aminoglycosides. Previous studies on the synergistic effect of these two types of drugs have used mice, guinea pigs and cats, but not rats. The aim of this study was to determine this synergistic effects in rat cochleae. Rats received intravenous injections of different doses of furosemide and/or intramuscular injections of kanamycin sulfate. Au-ditory brainstem response (ABR), scanning electron microscopy (SEM) and immunocytochemistry were used to determine the effects of drug administration. In the group receiving combined administration of furosemide and kanamycin, the ABR thresh-old showed significant elevation 3 days after drug administration, greater than single drug administration. The hair cells showed various degrees of injury from the apical turn to the basal turn of the cochlea and from the outer hair cells to the inner hair cells. Neuron fibers of the hair cells showed significant loss 7 days after the drug administration, but the number of spiral ganglia did not decrease and supporting cells showed no signs of injury. Our study suggest that combined administration of fu-rosemide and kanamycin has an synergistic ototoxic effect, and can result in hair cell loss and hearing loss in rats.

  15. Antinociceptive potency of aminoglycoside antibiotics and magnesium chloride: a comparative study on models of phasic and incisional pain in rats

    Directory of Open Access Journals (Sweden)

    W.A. Prado

    2002-03-01

    Full Text Available A close relationship exists between calcium concentration in the central nervous system and nociceptive processing. Aminoglycoside antibiotics and magnesium interact with N- and P/Q-type voltage-operated calcium channels. In the present study we compare the antinociceptive potency of intrathecal administration of aminoglycoside antibiotics and magnesium chloride in the tail-flick test and on incisional pain in rats, taken as models of phasic and persistent post-surgical pain, respectively. The order of potency in the tail-flick test was gentamicin (ED50 = 3.34 µg; confidence limits 2.65 and 4.2 > streptomycin (5.68 µg; 3.76 and 8.57 = neomycin (9.22 µg; 6.98 and 12.17 > magnesium (19.49 µg; 11.46 and 33.13. The order of potency to reduce incisional pain was gentamicin (ED50 = 2.06 µg; confidence limits 1.46 and 2.9 > streptomycin (47.86 µg; 26.3 and 87.1 = neomycin (83.17 µg; 51.6 and 133.9. The dose-response curves for each test did not deviate significantly from parallelism. We conclude that neomycin and streptomycin are more potent against phasic pain than against persistent pain, whereas gentamicin is equipotent against both types of pain. Magnesium was less potent than the antibiotics and effective in the tail-flick test only.

  16. Antinociceptive potency of aminoglycoside antibiotics and magnesium chloride: a comparative study on models of phasic and incisional pain in rats.

    Science.gov (United States)

    Prado, W A; Machado Filho, E B

    2002-03-01

    A close relationship exists between calcium concentration in the central nervous system and nociceptive processing. Aminoglycoside antibiotics and magnesium interact with N- and P/Q-type voltage-operated calcium channels. In the present study we compare the antinociceptive potency of intrathecal administration of aminoglycoside antibiotics and magnesium chloride in the tail-flick test and on incisional pain in rats, taken as models of phasic and persistent post-surgical pain, respectively. The order of potency in the tail-flick test was gentamicin (ED50 = 3.34 microg; confidence limits 2.65 and 4.2) > streptomycin (5.68 microg; 3.76 and 8.57) = neomycin (9.22 microg; 6.98 and 12.17) > magnesium (19.49 microg; 11.46 and 33.13). The order of potency to reduce incisional pain was gentamicin (ED50 = 2.06 microg; confidence limits 1.46 and 2.9) > streptomycin (47.86 microg; 26.3 and 87.1) = neomycin (83.17 microg; 51.6 and 133.9). The dose-response curves for each test did not deviate significantly from parallelism. We conclude that neomycin and streptomycin are more potent against phasic pain than against persistent pain, whereas gentamicin is equipotent against both types of pain. Magnesium was less potent than the antibiotics and effective in the tail-flick test only.

  17. A novel method to depurate β-lactam antibiotic residues by administration of a broad-spectrum β-lactamase enzyme in fish tissues

    Directory of Open Access Journals (Sweden)

    Young-Sik Choe

    2016-12-01

    Full Text Available Abstract As a novel strategy to remove β-lactam antibiotic residues from fish tissues, utilization of β-lactamase, enzyme that normally degrades β-lactam structure-containing drugs, was explored. The enzyme (TEM-52 selectively degraded β-lactam antibiotics but was completely inactive against tetracycline-, quinolone-, macrolide-, or aminoglycoside-structured antibacterials. After simultaneous administration of the enzyme with cefazolin (a β-lactam antibiotic to the carp, significantly lowered tissue cefazolin levels were observed. It was confirmed that the enzyme successfully reached the general circulation after intraperitoneal administration, as the carp serum obtained after enzyme injection could also degrade cefazolin ex vivo. These results suggest that antibiotics-degrading enzymes can be good candidates for antibiotic residue depuration.

  18. Effect of subtherapeutic administration of antibiotics on the prevalence of antibiotic-resistant Escherichia coli bacteria in feedlot cattle.

    Science.gov (United States)

    Alexander, T W; Yanke, L J; Topp, E; Olson, M E; Read, R R; Morck, D W; McAllister, T A

    2008-07-01

    Antibiotic-resistant Escherichia coli in 300 feedlot steers receiving subtherapeutic levels of antibiotics was investigated through the collection of 3,300 fecal samples over a 314-day period. Antibiotics were selected based on the commonality of use in the industry and included chlortetracycline plus sulfamethazine (TET-SUL), chlortetracycline (TET), virginiamycin, monensin, tylosin, or no antibiotic supplementation (control). Steers were initially fed a barley silage-based diet, followed by transition to a barley grain-based diet. Despite not being administered antibiotics prior to arrival at the feedlot, the prevalences of steers shedding TET- and ampicillin (AMP)-resistant E. coli were >40 and <30%, respectively. Inclusion of TET-SUL in the diet increased the prevalence of steers shedding TET- and AMP-resistant E. coli and the percentage of TET- and AMP-resistant E. coli in the total generic E. coli population. Irrespective of treatment, the prevalence of steers shedding TET-resistant E. coli was higher in animals fed grain-based compared to silage-based diets. All steers shed TET-resistant E. coli at least once during the experiment. A total of 7,184 isolates were analyzed for MIC of antibiotics. Across antibiotic treatments, 1,009 (13.9%), 7 (0.1%), and 3,413 (47.1%) E. coli isolates were resistant to AMP, gentamicin, or TET, respectively. In addition, 131 (1.8%) and 143 (2.0%) isolates exhibited potential resistance to extended-spectrum beta-lactamases, as indicated by either ceftazidime or cefpodoxime resistance. No isolates were resistant to ciprofloxacin. The findings of the present study indicated that subtherapeutic administration of tetracycline in combination with sulfamethazine increased the prevalence of tetracycline- and AMP-resistant E. coli in cattle. However, resistance to antibiotics may be related to additional environmental factors such as diet.

  19. Diversity and dynamics of antibiotic-resistant bacteria in cheese as determined by PCR denaturing gradient gel electrophoresis.

    Science.gov (United States)

    Flórez, Ana Belén; Mayo, Baltasar

    2015-12-01

    This work reports the composition and succession of tetracycline- and erythromycin-resistant bacterial communities in a model cheese, monitored by polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE). Bacterial 16S rRNA genes were examined using this technique to detect structural changes in the cheese microbiota over manufacturing and ripening. Total bacterial genomic DNA, used as a template, was extracted from cultivable bacteria grown without and with tetracycline or erythromycin (both at 25 μg ml(-1)) on a non-selective medium used for enumeration of total and viable cells (Plate Count agar with Milk; PCA-M), and from those grown on selective and/or differential agar media used for counting various bacterial groups; i.e., lactic acid bacteria (de Man, Rogosa and Sharpe agar; MRSA), micrococci and staphylococci (Baird-Parker agar; BPA), and enterobacteria (Violet Red Bile Glucose agar; VRBGA). Large numbers of tetracycline- and erythromycin-resistant bacteria were detected in cheese samples at all stages of ripening. Counts of antibiotic-resistant bacteria varied widely depending on the microbial group and the point of sampling. In general, resistant bacteria were 0.5-1.0 Log10 units fewer in number than the corresponding susceptible bacteria. The PCR-DGGE profiles obtained with DNA isolated from the plates for total bacteria and the different bacterial groups suggested Escherichia coli, Lactococcus lactis, Enterococcus faecalis and Staphylococcus spp. as the microbial types resistant to both antibiotics tested. This study shows the suitability of the PCR-DGGE technique for rapidly identifying and tracking antibiotic resistant populations in cheese and, by extension, in other foods.

  20. Increased prevalence of antibiotic-resistant E. coli in gulls sampled in southcentral Alaska is associated with urban environments

    Science.gov (United States)

    Atterby, Clara; Ramey, Andrew M.; Gustafsson Hall, Gabriel; Jarhult, Josef; Borjesson, Stefan; Bonnedahl, Jonas

    2016-01-01

    BackgroundAntibiotic-resistant bacteria pose challenges to healthcare delivery systems globally; however, limited information is available regarding the prevalence and spread of such bacteria in the environment. The aim of this study was to compare the prevalence of antibiotic-resistant bacteria in large-bodied gulls (Larus spp.) at urban and remote locations in Southcentral Alaska to gain inference into the association between antibiotic resistance in wildlife and anthropogenically influenced habitats.MethodsEscherichia coli was cultured (n=115 isolates) from fecal samples of gulls (n=160) collected from a remote location, Middleton Island, and a more urban setting on the Kenai Peninsula.ResultsScreening of E. coli from fecal samples collected from glaucous-winged gulls (Larus glaucescens) at Middleton Island revealed 8% of isolates were resistant to one or more antibiotics and 2% of the isolates were resistant to three or more antibiotics. In contrast, 55% of E. coli isolates derived from fecal samples collected from large-bodied gulls (i.e. glaucous, herring [Larus argentatus], and potentially hybrid gulls) on the Kenai Peninsula were resistant to one or more antibiotics and 22% were resistant to three or more antibiotics. In addition, total of 16% of the gull samples from locations on the Kenai Peninsula harbored extended-spectrum cephalosporin-resistant E. coli isolates (extended-spectrum beta-lactamases [ESBL] and plasmid-encoded AmpC [pAmpC]), in contrast to Middleton Island where no ESBL- or pAmpC-producing isolates were detected.ConclusionOur findings indicate that increased prevalence of antibiotic resistance is associated with urban environments in Southcentral Alaska and presumably influenced by anthropogenic impacts. Further investigation is warranted to assess how migratory birds may maintain and spread antimicrobial-resistant bacteria of relevance to human and animal health.

  1. Countermeasures to Antibiotics Crisis: a Global Priority List of Antibiotic-Resistant Bacteria for Research and Development of New Antibiotics

    Directory of Open Access Journals (Sweden)

    Editorial

    2017-03-01

    Full Text Available On 27 Feb., 2017, the World Health Organization (WHO announced the first list of important antibiotic-resistant bacteria (http://www.who.int/mediacentre/news/releases/2017/bacteria-antibiotics-needed/en/, which tremendously threat human-being’s health. This list included 12 kinds of bacteria that were categorized into three priority tiers: Critical, High and Medium. In the first tier, Critical, three Gram negative bacteria were included: Acinetobacter baumannii with carbapenem-resistant, Pseudomonas aeruginosa with carbapenem-resistant; and Enterobacteriaceae with carbapenem-resistant, the third generation cephalosporin-resistant. In the second tier, High, six bacteria were suggested: Enterococcus faecium with vancomycin-resistant, Staphylococcus aureus with methicillin-resistant, vancomycin intermediate and resistant, Helicobacter pylori with clarithromycin-resistant, Campylobacter with fluoroquinolone-resistant, Salmonella spp. with fluoroquinolone-resistant, Neisseria gonorrhoeae with the third generation cephalosporin-resistant, fluoroquinolone-resistant. In the third tier, Medium, three bacteria were listed: Streptococcus pneumonia with penicillin-non-susceptible, Haemophilus influenza with ampicillin-resistant, and Shigella spp. with fluoroquinolone-resistant. This list was proposed by an expert panel, chaired by Dr. E. Tacconelli from Infectious Diseases, DZIF Center, Tübingen University, Germany and Dr. N. Magrini from EMP Department of WHO. This proposal recommended some key steps to countermeasure the challenges posed by multi-drug- and extensively drug-resistant bacteria, including research and development of new classes of antibiotics for the paediatric population, for preventing cross- and co-resistance to existing classes of antibiotics, and for oral formulations for community-acquired diseases with a high morbidity burden. This list will guide our future research and development of new antibiotics in future.

  2. A preliminary report on the susceptibility to aminoglycosides of Escherichia coli isolated from the community-acquired urinary tract infections in adults in south-east Poland

    Directory of Open Access Journals (Sweden)

    Fidecka-Skwarzynska Magdalena

    2015-03-01

    Full Text Available World-wide, urinary tract infections (UTIs are an important clinical problem. In such, the most frequently isolated uropathogen is Escherichia coli. In the treatment of uncomplicated UTIs, e.g. cystitis, the widely used antibiotics are nitrofurantoin, trimethoprim/sulfamethoxazole, fosfomycin trometamol or ciprofloxacin, while the treatment of pyelonephritis requires the usage of antibiotics with a broader spectrum of activity, such as cephalosporins of the 3rd and 4th generation, aminoglycosides or even carbapenems. The aim of this study was to assess the susceptibility to aminoglycosides (such as amikacin, gentamicin, netilmicin and tobramycin of E. coli isolated from UTIs in adult community patients living in Lubelszczyzna. We found that all of the 86 strains of E. coli encountered were susceptible to amikacin. Moreover, the prevalence of susceptibility to tobramycin, gentamicin or netilmicin among the tested strains was found to be 89,5%, 90,7% or 94,2%, respectively. The data obtained in the present study shows the high susceptibility to aminoglycosides of E. coli isolated from the community-acquired UTIS in adults. These data, together with that derived from current literature, indicate that aminoglycosides, when employed in combination therapy with other antibiotics, may still be very useful group of antibacterial agents in the treatment of UTI’s in Poland.

  3. Monobactam and aminoglycoside combination therapy against metallo-beta-lactamase-producing multidrug-resistant Pseudomonas aeruginosa screened using a 'break-point checkerboard plate'.

    Science.gov (United States)

    Araoka, Hideki; Baba, Masaru; Takagi, Shinsuke; Matsuno, Naofumi; Ishiwata, Kazuya; Nakano, Nobuaki; Tsuji, Masanori; Yamamoto, Hisashi; Seo, Sachiko; Asano-Mori, Yuki; Uchida, Naoyuki; Masuoka, Kazuhiro; Wake, Atsushi; Taniguchi, Shuichi; Yoneyama, Akiko

    2010-03-01

    Metallo-beta-lactamase-producing multidrug-resistant Pseudomonas aeruginosa (MDR P. aeruginosa) is a cause of life-threatening infections. With parenteral colistin not available in Japan, we treated MDR P. aeruginosa sepsis with monobactam and aminoglycoside combination therapy, with screening using a 'break-point checkerboard plate'.

  4. Persistence of antibiotic-resistant and -sensitive Proteus mirabilis strains in the digestive tract of the housefly (Musca domestica) and green bottle flies (Calliphoridae).

    Science.gov (United States)

    Wei, Ting; Miyanaga, Kazuhiko; Tanji, Yasunori

    2014-10-01

    Synanthropic flies have been implicated in the rapid dissemination of antibiotic-resistant bacteria and resistance determinants in the biosphere. These flies stably harbor a considerable number of bacteria that exhibit resistance to various antibiotics, but the mechanisms underlying this phenomenon remain unclear. In this study, we investigated the persistence of antibiotic-resistant bacteria in the digestive tract of houseflies and green bottle flies, using Proteus mirabilis as a model microorganism. One resistant strain carried the blaTEM and aphA1 genes, and another carried a plasmid containing qnrD gene. Quantitative PCR and 454 pyrosequencing were used to monitor the relative abundance of the Proteus strains, as well as potential changes in the overall structure of the whole bacterial community incurred by the artificial induction of Proteus cultures. Both antibiotic-resistant and -sensitive P. mirabilis strains persisted in the fly digestive tract for at least 3 days, and there was no significant difference in the relative abundance of resistant and sensitive strains despite the lower growth rate of resistant strains when cultured in vitro. Therefore, conditions in the fly digestive tract may allow resistant strains to survive the competition with sensitive strains in the absence of antibiotic selective pressure. The composition of the fly-associated bacterial community changed over time, but the contribution of the artificially introduced P. mirabilis strains to these changes was not clear. In order to explain these changes, it will be necessary to obtain more information about bacterial interspecies antagonism in the fly digestive tract.

  5. HIGH-LEVEL AMINOGLYCOSIDE RESISTANCE ENTEROCOCCUS SPP IN A TERTIARY CARE HOSPITAL IN MEXICO

    Directory of Open Access Journals (Sweden)

    Silvia Giono Cerezo

    2005-01-01

    Full Text Available Enterococcus is one important cause hospital-acquired infections. High levels of resistance for aminoglycosides (HLAR as gentamicin (HLGR and streptomycin (HLSR in Enterococcus isolates in a tertiary clinical care in Mexico City were studied. Identified using Microscan® system. Resistance to ampicillin, streptomycin, gentamicin and vancomycin according to NCCLS. HLGR and HLSR were confirmed using disks. 91 strains were isolated and identified from clinical samples from January 1998 to January 1999. Two species were identified. 83 (91.2 % E. faecalis and 8/91 (8.8 % were E. faecium. E. faecalis in urine samples were 67/91 (73.6%. Neither showed vancomycin or ampicillin resistance; 1/8 E. faecium was ampicillin resistant. 30/83 (36% E. faecalis and 3/8 E. faecium were gentamicin resistant; while 39/83 (47.0% E. faecalis and 4/8(50% E. faecium were streptomycin resistant. 14/83 (16% E. faecalis, 3/8 E. faecium showed sensitive pattern for gentamicin and streptomycin. None strains were -lactamases producer. E. faecalis 12/83 (14.4% were HLGR and 28/83 (33.7% were HLSR. E. faecium. 2/8 were HLGR and 2/8 were HLSR. HLAR 33/83 (39.7% were E. faecalis and 3/8(37.5% were E. faecium isolated from urine. E. faecalis was more frequent than E. faecium and show that HLAR in Enterococci is high and could be a serious problem if spread as nosocomial infection. RESUMEN: Enterococcus es una causa importante de infección intrahospitalaria. Se determinaron los niveles altos de resistencia para aminoglucósidos(HLAR, gentamicina (HLGR y estreptomicina (HLSR en Enterococcus aislados de diversos casos clínicos en un hospital de tercer nivel en México, D.F. La identificación se realizó usando el sistema de Microscan® y la resistencia a ampicilina, estreptomicina, gentamicina, vancomicina, HLGR y HLSR de acuerdo a la NCCLS. 91 cepas fueron aisladas de muestras clínicas de Enero de 1998 a Enero 1999, se identificaron dos especies. 83 (91.2% E. faecalis y 8/91 (8

  6. Enzyme detection by microfluidics

    DEFF Research Database (Denmark)

    2013-01-01

    Microfluidic-implemented methods of detecting an enzyme, in particular a DNA-modifying enzyme, are provided, as well as methods for detecting a cell, or a microorganism expressing said enzyme. The enzyme is detected by providing a nucleic acid substrate, which is specifically targeted...... by that enzyme...

  7. Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction

    DEFF Research Database (Denmark)

    Recht, M I; Douthwaite, S; Dahlquist, K D

    1999-01-01

    Decoding of genetic information occurs upon interaction of an mRNA codon-tRNA anticodon complex with the small subunit of the ribosome. The ribosomal decoding region is associated with highly conserved sequences near the 3' end of 16 S rRNA. The decoding process is perturbed by the aminoglycoside...... of universally conserved nucleotides at 1406 to 1408 and 1494 to 1495 in the decoding region of plasmid-encoded bacterial 16 S rRNA. Phenotypic changes range from the benign effect of U1406-->A or A1408-->G substitutions, to the highly deleterious 1406G and 1495 mutations that assemble into 30 S subunits...... but are defective in forming functional ribosomes. Changes in the local conformation of the decoding region caused by these mutations were identified by chemical probing of isolated 30 S subunits. Ribosomes containing 16 S rRNA with mutations at positions 1408, 1407+1494, or 1495 had reduced affinity...

  8. Sulfonamide-Based Inhibitors of Aminoglycoside Acetyltransferase Eis Abolish Resistance to Kanamycin in Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Garzan, Atefeh; Willby, Melisa J.; Green, Keith D.; Gajadeera, Chathurada S.; Hou, Caixia; Tsodikov, Oleg V.; Posey, James E.; Garneau-Tsodikova, Sylvie

    2016-12-08

    A two-drug combination therapy where one drug targets an offending cell and the other targets a resistance mechanism to the first drug is a time-tested, yet underexploited approach to combat or prevent drug resistance. By high-throughput screening, we identified a sulfonamide scaffold that served as a pharmacophore to generate inhibitors of Mycobacterium tuberculosis acetyltransferase Eis, whose upregulation causes resistance to the aminoglycoside (AG) antibiotic kanamycin A (KAN) in Mycobacterium tuberculosis. Rational systematic derivatization of this scaffold to maximize Eis inhibition and abolish the Eis-mediated KAN resistance of M. tuberculosis yielded several highly potent agents. A crystal structure of Eis in complex with one of the most potent inhibitors revealed that the inhibitor bound Eis in the AG-binding pocket held by a conformationally malleable region of Eis (residues 28–37) bearing key hydrophobic residues. These Eis inhibitors are promising leads for preclinical development of innovative AG combination therapies against resistant TB.

  9. Elevated Liver Enzymes

    Science.gov (United States)

    Symptoms Elevated liver enzymes By Mayo Clinic Staff Elevated liver enzymes may indicate inflammation or damage to cells in the liver. Inflamed or ... than normal amounts of certain chemicals, including liver enzymes, into the bloodstream, which can result in elevated ...

  10. Evolutionary Origin and Conserved Structural Building Blocks of Riboswitches and Ribosomal RNAs: Riboswitches as Probable Target Sites for Aminoglycosides Interaction

    Directory of Open Access Journals (Sweden)

    Elnaz Mehdizadeh Aghdam

    2014-05-01

    Full Text Available Purpose: Riboswitches, as noncoding RNA sequences, control gene expression through direct ligand binding. Sporadic reports on the structural relation of riboswitches with ribosomal RNAs (rRNA, raises an interest in possible similarity between riboswitches and rRNAs evolutionary origins. Since aminoglycoside antibiotics affect microbial cells through binding to functional sites of the bacterial rRNA, finding any conformational and functional relation between riboswitches/rRNAs is utmost important in both of medicinal and basic research. Methods: Analysis of the riboswitches structures were carried out using bioinformatics and computational tools. The possible functional similarity of riboswitches with rRNAs was evaluated based on the affinity of paromomycin antibiotic (targeting “A site” of 16S rRNA to riboswitches via docking method. Results: There was high structural similarity between riboswitches and rRNAs, but not any particular sequence based similarity between them was found. The building blocks including "hairpin loop containing UUU", "peptidyl transferase center conserved hairpin A loop"," helix 45" and "S2 (G8 hairpin" as high identical rRNA motifs were detected in all kinds of riboswitches. Surprisingly, binding energies of paromomycin with different riboswitches are considerably better than the binding energy of paromomycin with “16S rRNA A site”. Therefore the high affinity of paromomycin to bind riboswitches in comparison with rRNA “A site” suggests a new insight about riboswitches as possible targets for aminoglycoside antibiotics. Conclusion: These findings are considered as a possible supporting evidence for evolutionary origin of riboswitches/rRNAs and also their role in the exertion of antibiotics effects to design new drugs based on the concomitant effects via rRNA/riboswitches.

  11. Aminoglycoside-induced hair cell death of inner ear organs causes functional deficits in adult zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Phillip M Uribe

    Full Text Available Aminoglycoside antibiotics, like gentamicin, kill inner ear sensory hair cells in a variety of species including chickens, mice, and humans. The zebrafish (Danio rerio has been used to study hair cell cytotoxicity in the lateral line organs of larval and adult animals. Little is known about whether aminoglycosides kill the hair cells within the inner ear of adult zebrafish. We report here the ototoxic effects of gentamicin on hair cells in the saccule, the putative hearing organ, and utricle of zebrafish. First, adult zebrafish received a single 30 mg/kg intraperitoneal injection of fluorescently-tagged gentamicin (GTTR to determine the distribution of gentamicin within inner ear sensory epithelia. After 4 hours, GTTR was observed in hair cells throughout the saccular and utriclar sensory epithelia. To assess the ototoxic effects of gentamicin, adult zebrafish received a single 250 mg/kg intraperitoneal injection of gentamicin and, 24 hours later, auditory evoked potential recordings (AEPs revealed significant shifts in auditory thresholds compared to untreated controls. Zebrafish were then euthanized, the inner ear fixed, and labeled for apoptotic cells (TUNEL reaction, and the stereociliary bundles of hair cells labeled with fluorescently-tagged phalloidin. Whole mounts of the saccule and utricle were imaged and cells counted. There were significantly more TUNEL-labeled cells found in both organs 4 hours after gentamicin injection compared to vehicle-injected controls. As expected, significantly fewer hair cell bundles were found along the rostral-caudal axis of the saccule and in the extrastriolar and striolar regions of the utricle in gentamicin-treated animals compared to untreated controls. Therefore, as in other species, gentamicin causes significant inner ear sensory hair cell death and auditory dysfunction in zebrafish.

  12. A non-sequence-specific requirement for SMN protein activity: the role of aminoglycosides in inducing elevated SMN protein levels.

    Science.gov (United States)

    Wolstencroft, Elizabeth C; Mattis, Virginia; Bajer, Anna A; Young, Philip J; Lorson, Christian L

    2005-05-01

    Spinal muscular atrophy (SMA) is caused by homozygous loss of the survival motor neuron (SMN1) gene. In virtually all SMA patients, a nearly identical copy gene is present, SMN2. SMN2 cannot fully compensate for the loss of SMN1 because the majority of transcripts derived from SMN2 lack a critical exon (exon 7), resulting in a dysfunctional SMN protein. Therefore, the critical distinction between a functional and a dysfunctional SMN protein is the inclusion or the exclusion of the exon 7 encoded peptide. To determine the role of the 16 amino acids encoded by SMN exon 7, a panel of synthetic mutations were transiently expressed in SMA patient fibroblasts and HeLa cells. Consistent with previous reports, the protein encoded by SMN exons 1-6 was primarily restricted to the nucleus. However, a variety of heterologous sequences fused to the C-terminus of SMN exons 1-6 allowed mutant SMN proteins to properly distribute to the cytoplasm and to the nuclear gems. These data demonstrate that the SMN exon 7 sequence is not specifically required, rather this region functions as a non-specific 'tail' that facilitates proper localization. Therefore, a possible means to restore additional activity to the SMNDelta7 protein could be to induce a longer C-terminus by suppressing recognition of the native stop codon. To address this possibility, aminoglycosides were examined for their ability to restore detectable levels of SMN protein in SMA patient fibroblasts. Aminoglycosides can suppress the accurate identification of translation termination codons in eukaryotic cells. Consistent with this, treatment of SMA patient fibroblasts with tobramycin and amikacin resulted in a quantitative increase in SMN-positive gems and an overall increase in detectable SMN protein. Taken together, this work describes the role of the critical exon 7 region and identifies a possible alternative approach for therapeutic intervention.

  13. Adeno-associated virus-mediated Bcl-xL prevents aminoglycoside-induced hearing loss in mice

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-he; KE Xiao-mei; QIN Yong; GU Zhi-ping; XIAO Shui-fang

    2007-01-01

    Background Recent studies showed that aminoglycosides destroyed the cochlear cells and induced ototoxicity by producing reactive oxygen species, including free radicals in the mitochondria, damaging the membrane of mitochondria and resulting in apoptotic cell death. Bcl-xL is a well characterized anti-apoptotic member of the Bcl-2 family. The aim of this study was to determine the potential cochlear protective effect of Bcl-xL as a therapeutic agent in the murine model of aminoglycoside ototoxicity.Methods Serotype 2 of adeno-associated virus (AAV2) as a vector encoding the mouse Bcl-xL gene was injected into mice cochleae prior to injection of kanamycin. Bcl-xL expression in vitro and in vivo was examined with Western blotting and immunohistochemistry separately. Cochlear dissection and auditory steady state responses were checked to evaluate the cochlear structure and function.Results The animals in the AAV2-Bcl-xL/kanamycin group displayed better auditory steady state responses hearing thresholds and cochlear structure than those in the artificial perilymph/kanamycin or AAV2-enhanced humanized green fluorescent protein/kanamycin control group at all tested frequencies. The auditory steady state responses hearing thresholds and cochlear structure in the inoculated side were better than that in the contralateral side.Conclusions AAV2-Bcl-xL afforded significant preservation of the cochlear hair cells against ototoxic insults and protected the cochlear function. AAV2-mediated Bcl-xL might be an approach with respect to potential therapeutic application in the cochlear degeneration.

  14. Involvement of aph(3‘-IIa in the formation of mosaic aminoglycoside resistance genes in natural environments

    Directory of Open Access Journals (Sweden)

    Markus eWoegerbauer

    2015-05-01

    Full Text Available Intragenic recombination leading to mosaic gene formation is known to alter resistance profiles for particular genes and bacterial species. Few studies have examined to what extent aminoglycoside resistance genes undergo intragenic recombination.We screened the GenBank database for mosaic gene formation in homologs of the aph(3’-IIa (nptII gene. APH(3’-IIa inactivates important aminoglycoside antibiotics. The gene is widely used as a selectable marker in biotechnology and enters the environment via laboratory discharges and the release of transgenic organisms. Such releases may provide opportunities for recombination in competent environmental bacteria.The retrieved GenBank sequences were grouped in 3 datasets comprising river water samples, duck pathogens and full-length variants from various bacterial genomes and plasmids. Analysis for recombination in these datasets was performed with the Recombination Detection Program, RDP4, and the Genetic Algorithm for Recombination Detection, GARD.From a total of 89 homologous sequences, 83% showed 99% - 100% sequence identity with aph(3’-IIa originally described as part of transposon Tn5. Fifty one were unique sequence variants eligible for recombination analysis. Only a single recombination event was identified with high confidence and indicated the involvement of aph(3’-IIa in the formation of a mosaic gene located on a plasmid of environmental origin in the multi-resistant isolate Pseudomonas aeruginosa PA96. The available data suggest that aph(3’-IIa is not an archetypical mosaic gene as the divergence between the described sequence variants and the number of detectable recombination events is low. This is in contrast to the numerous mosaic alleles reported for certain penicillin or tetracycline resistance determinants.

  15. Prevalence of plasmid-mediated quinolone resistance and aminoglycoside resistance determinants among carbapeneme non-susceptible Enterobacter cloacae.

    Directory of Open Access Journals (Sweden)

    Shifeng Huang

    Full Text Available BACKGROUND: Simultaneous resistance to aminoglycosides and fluoroquinolones in carbapeneme non-susceptible (CNS isolates will inevitably create problems. The present study was performed to characterize the prevalence of the plasmid-mediated quinolone resistance determinants (QRDs and aminoglycoside resistance determinants (ARDs among the CNS Enterobacter cloacae (E. cloacae isolates in a Chinese teaching hospital, and to acquire their molecular epidemiological characteristics. METHODS: The β-lactamases genes (including class A carbapenemase genes bla(KPC and bla(SME, metallo-β-lactamase genes (MBLs bla(IMP, bla(VIM and bla(NDM, and extended spectrum β-lactamases (ESBLs,bla(CTX-M, bla(TEM and bla(SHV, QRDs (including qnrA, qnrB, qnrS and aac(6'-Ib-cr and ARDs (including aac(6'-Ib, armA and rmtB of these 35 isolates were determined by PCR and sequenced bidirectionally. The clonal relatedness was investigated by pulsed-field gel electrophoresis (PFGE. RESULTS: Of the 35 isolates, 9 (25.7% harbored a carbapenemase gene; 23 (65.7% carried ESBLs; 24 (68.6% were QRD positive; and 27 (77.1% were ARD positive. Among the 5 bla(IMP-8 positive strains, 4 (80% contained both ESBL and QRD genes, and all the 5 (100% harbored ARD genes. Of the 23 ESBLs positive isolates, 6 (26.1% were carbapenemase positive, 14 (60.9% were QRD positive, and 18 (78.3% were ARD positive. PFGE revealed genetic diversity among the 35 isolates, indicating that the high prevalence of CNS E. cloacae isolates was not caused by clonal dissemination. CONCLUSION: QRD and ARD genes were highly prevalent among the CNS E. cloacae isolates. Multiple resistant genes were co-expressed in the same isolates. The CNS E. cloacae isolate co-expressing bla(NDM-1, bla(IMP-26, qnrA1 and qnrS1 was first reported.

  16. Characterization of carbapenemases, extended spectrum β-lactamases, quinolone resistance and aminoglycoside resistance determinants in carbapenem-non-susceptible Escherichia coli from a teaching hospital in Chongqing, Southwest China.

    Science.gov (United States)

    Zhang, Chuanming; Xu, Xiuyu; Pu, Shuli; Huang, Shifeng; Sun, Jide; Yang, Shuangshuang; Zhang, Liping

    2014-10-01

    Carbapenem-resistant Escherichiacoli isolates harboring carbapenemases or combining an extended-spectrum β-lactamase (ESBL) enzyme with loss of porins present an increasingly urgent clinical danger. Combined resistance to aminoglycosides and fluoroquinolones in carbapeneme non-susceptible (CNS) isolates will inevitably create problems. In the current study, we characterized the carbapenemases and ESBLs, and the prevalence of quinolone resistance determinants and aminoglycoside resistance determinants in carbapenem-non-susceptible (CNS) E.coli isolates from a teaching hospital in Chongqing, Southwest China in 2012. Thirty non-duplicated CNS E.coli isolates were screened via antimicrobial susceptibility testing, and the drug resistance profiles of the 30 strains were analyzed. Carbapenemase genes blaKPC-2, ESBL genes including blaCTX-M-3, blaCTX-M-14, blaCTX-M-55 and blaTEM, ARD genes including aac(6')-Ib, armA and rmtB, and QRD genes including qnrA, qnrB, qnrC, qnrD, qnrS and aac(6')-Ib-cr were identified and clonal relatedness was investigated by pulsed-field gel electrophoresis. Of the 30 isolates, 2 (6.7%) harbored carbapenemase gene blaKPC-2; 29 (96.7%) carried ESBLs; 20 (66.7%) were QRD positive; and 11 (36.7%) were ARD positive. Between the two blaKPC-2 positive strains, one contained ESBL, QRD and ARD genes, while the other expressed ESBL genes but was negative for both QRD and ARD genes. Of the 29 ESBLs positive isolates, 2 (6.9%) were carbapenemase positive, 19 (65.5%) were QRD positive, and 11 (37.9%) were ARD positive. PFGE revealed genetic diversity among the 30 isolates, indicating that the high prevalence of CNS E. coli isolates was not caused by clonal dissemination. Production of ESBLs was associated with the carbapenem resistance and QRD genes were highly prevalent among the CNS E. coli isolates. Multiple resistant genes were co-expressed in the same isolates. This is the first report of a multidrug resistant carbapenem-non-susceptible E.coli co

  17. Toward an Alternative Therapeutic Approach for Skin Infections: Antagonistic Activity of Lactobacilli Against Antibiotic-Resistant Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Hafez, Mohamed M; Maghrabi, Ibrahim A; Zaki, Noha M

    2013-09-01

    The wide spread of antimicrobial resistance has urged the need of alternative therapeutic approach. In this context, probiotic lactobacilli have been reported for the prevention and treatment of many gastrointestinal and urogenital infections. However, very little is known about their antagonistic activity against skin pathogens. Accordingly, the present study aimed to investigate the potential of lactobacilli to interfere with pathogenesis features of two antibiotic-resistant skin pathogens, namely methicillin-resistant Staphylococcus aureus and multiple-resistant Pseudomonas aeruginosa. A total of 49 lactobacilli were recovered, identified and tested for their antagonistic activities against the aforementioned pathogens. Of these, eight isolates were capable of blocking the adherence of pathogens to mammalian cells independent of the skin pathogen tested or model adopted. Moreover, three Lactobacillus isolates (LRA4, LC2 and LR5) effectively prevented the pathogen internalization into epithelial cells in addition to potentiating phagocyte-mediated pathogen killing. Interestingly, the lactobacilli LC2, LF9 and LRA4 markedly inhibited the growth of P. aeruginosa and S. aureus isolates in coculture experiments. Besides, the lactobacilli LRA4, LC2, LR5 and LF9 have counteracted pathogen cytotoxicity. Taken together, the present study revealed some inhibitory activities of lactobacilli against two antibiotic-resistant skin pathogens. Moreover, it revealed two lactobacilli, namely LC2 and LRA4, with antagonistic capacity against different virulence determinants of skin pathogens. These lactobacilli are considered promising probiotic candidates that may represent an alternative therapeutic approach for skin infections.

  18. Phenotypic and genome-wide analysis of an antibiotic-resistant small colony variant (SCV of Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Qing Wei

    Full Text Available BACKGROUND: Small colony variants (SCVs are slow-growing bacteria, which often show increased resistance to antibiotics and cause latent or recurrent infections. It is therefore important to understand the mechanisms at the basis of this phenotypic switch. METHODOLOGY/PRINCIPAL FINDINGS: One SCV (termed PAO-SCV was isolated, showing high resistance to gentamicin and to the cephalosporine cefotaxime. PAO-SCV was prone to reversion as evidenced by emergence of large colonies with a frequency of 10(-5 on media without antibiotics while it was stably maintained in presence of gentamicin. PAO-SCV showed a delayed growth, defective motility, and strongly reduced levels of the quorum sensing Pseudomonas quinolone signal (PQS. Whole genome expression analysis further suggested a multi-layered antibiotic resistance mechanism, including simultaneous over-expression of two drug efflux pumps (MexAB-OprM, MexXY-OprM, the LPS modification operon arnBCADTEF, and the PhoP-PhoQ two-component system. Conversely, the genes for the synthesis of PQS were strongly down-regulated in PAO-SCV. Finally, genomic analysis revealed the presence of mutations in phoP and phoQ genes as well as in the mexZ gene encoding a repressor of the mexXY and mexAB-oprM genes. Only one mutation occurred only in REV, at nucleotide 1020 of the tufA gene, a paralog of tufB, both encoding the elongation factor Tu, causing a change of the rarely used aspartic acid codon GAU to the more common GAC, possibly causing an increase of tufA mRNA translation. High expression of phoP and phoQ was confirmed for the SCV variant while the revertant showed expression levels reduced to wild-type levels. CONCLUSIONS: By combining data coming from phenotypic, gene expression and proteome analysis, we could demonstrate that resistance to aminoglycosides in one SCV mutant is multifactorial including overexpression of efflux mechanisms, LPS modification and is accompanied by a drastic down-regulation of the

  19. Evaluation of Antibacterial Activity of Aminoglycosides and Modulating the Essential Oil of Cymbopogon citratus (DC. Stapf

    Directory of Open Access Journals (Sweden)

    Saulo R. TINTINO

    2014-05-01

    Full Text Available  Several works demonstrated the importance of the study of natural products as an alternative source for new antimicrobial drugs or for modulators for these ones. In this point, the aim of this was to investigate the antibacterial activity and the possible interactions between the essential oil of Cymbopogon citratus alone and in association with aminoglycosides against standard and clinically isolated strains of multidrug-resistant bacteria such as S. aureus, E. coli and P. aeruginosa by microdilution method. The results indicated a synergism between the antibiotics and the essential oil with a subinhibitory concentration (MIC/8, reducing the minimal inhibitory concentration (MIC sixteen times against the multidrug-resistant strains of S. aureus 358, E. coli 27 and P. aeruginosa 143, but none modulatory activity was observed against P. aeruginosa 78 and P. aeruginosa 91 strains. By our results, can be concluded that the essential oil of Cymbopogon citratus can be an interesting source of natural products with antibacterial and/or modulatory antibiotic activitieAVALIAÇÃO DA ATIVIDADE ANTIBACTERIANA E MODULADORA DE AMINOGLICOSÍDEOS DO ÓLEO ESSENCIAL DE Cymbopogon citratus (DC. STAPFVários trabalhos vêm demonstrando a importância do estudo de produtos naturais como fonte alternativa para novos antimicrobianos ou que venham potencializar os já existentes. Neste contexto este trabalho teve como objetivo investigar a atividade antibacteriana e as possíveis interações entre o óleo essencial de Cymbopogon citratus combinados a aminoglicosídeos frente a linhagens padrões e multirresistentes de S. aureus, E. coli e de P. aeruginosa provenientes de isolados clínicos. Um ensaio de microdiluição foi realizado para verificar a atividade antibacteriana e as possíveis interacções entre o produto natural e os antibióticos, utilizando uma concentração sub-inibitória. Através dos resultados foi constatado a interferência sinérgica dos

  20. Detection of aminoglycoside resistance gene in Escherichia coli isolates from ducks and its dissemination mechanism%鸭源大肠杆菌氨基糖苷类耐药基因的检测与传播扩散机制

    Institute of Scientific and Technical Information of China (English)

    陈燕杰; 裴亚玲; 吴华; 潘玉善; 刘建华; 苑丽; 杜向党; 孟春萍; 胡功政

    2013-01-01

    The aim was to elucidate the molecular mechanisms of resistance of E. coli isolates from duck against amin-oglycosides and the dissemination mechanism of this resistance. Broth microdilution method was applied to investigate the drug-resistant phenotypes of E. coli isolates (n=27) from ducks, and the aminoglycoside resistance genes including aminoglycoside-modifying enzyme genes and 16S rRNA methylase genes in these isolates were detected by PCR and sequencing. Through plas-mid conjugation, characteristics of resistance gene transfer were observed. The method of gene cloning was used to investigate the genetic environment of the rmlB gene. The results indicated that 23, 19, 19, and 18 of 27 isolates were resistant to apra-mycin, gentamicin, amikacin and neomycin, with resistance rates of 85. 2% , 70. 4% , 70. 4% , and 66. 7% , respectively. The rmlB gene were detected in 13 of 27 E. coli isolates and both rmrB and aac(3)-IV genes were found in 6 strains. All five transconjugants were obtained and seriously resistant to apramycin, gentamicin, amikacin and neomycin (MIC≥128 μg/mL) and positive for rmtB gene. Resistances to aminoglycoside antibiotics and cross-resistance in E. coli isolates from ducks were very serious. The rmtB gene was responsible for the resistance to aminoglycoside antibiotics in the tested strains and the horizontal transfer of this resistance may mainly be mediated by plasmid conjugation.%目的 探索鸭源大肠杆菌对氨基糖苷类耐药及耐药传播的分子机制.方法 用微量稀释法测定鸭源大肠杆菌对氨基糖苷类药物的耐药表型,用PCR和DNA测序方法检测多种氨基糖苷修饰酶基因和质粒介导的16S甲基化酶基因,通过质粒接合试验分析有关耐药基因和耐药性的质粒接合传递特点,并采用基因克隆方法研究rmtB的基因环境.结果 27株分离菌中,有23株、19株、19株和18株分别对安普霉素、庆大霉素、阿米卡星和新霉

  1. Restoration of APC gene function in colorectal cancer cells by aminoglycoside- and macrolide-induced read-through of premature termination codons.

    Science.gov (United States)

    Zilberberg, Alona; Lahav, Lital; Rosin-Arbesfeld, Rina

    2010-04-01

    Adenomatous polyposis coli (APC) is a multifunctional tumour suppressor protein that negatively regulates the Wnt signalling pathway. The APC gene is ubiquitously expressed in tissues and organs, including the large intestine and central nervous system. The majority of patients with sporadic and hereditary colorectal cancer have mutations in the gene encoding APC. Approximately 30% of these mutations are single nucleotide changes that result in premature stop codons (nonsense mutations). A potential therapeutic approach for treatment of this subset of patients is the use of aminoglycosides and macrolides that induce nonsense mutation read-through and restore levels of full-length protein. We have used reporter plasmids and colorectal cancer cell lines to demonstrate that several aminoglycosides and tylosin, a member of the macrolide family, induced read-through of nonsense mutations in the APC gene. In xenograft experiments and in the Apc(Min/+) mouse model, these compounds ameliorated the tumorigenic clinical symptoms caused by nonsense mutations in the APC gene.

  2. Intrinsic resistance to aminoglycosides in Enterococcus faecium is conferred by the 16S rRNA m5C1404-specific methyltransferase EfmM

    DEFF Research Database (Denmark)

    Galimand, Marc; Schmitt, Emmanuelle; Panvert, Michel;

    2011-01-01

    confers resistance to these drugs. The EfmM protein shows significant sequence similarity to E. coli RsmF (previously called YebU), which is a 5-methylcytidine (m(5)C) methyltransferase modifying 16S rRNA nucleotide C1407. The target for EfmM is shown by mass spectrometry to be a neighboring 16S r......RNA nucleotide at C1404. EfmM uses the methyl group donor S-adenosyl-L-methionine to catalyze formation of m(5)C1404 on the 30S ribosomal subunit, whereas naked 16S rRNA and the 70S ribosome are not substrates. Addition of the 5-methyl to C1404 sterically hinders aminoglycoside binding. Crystallographic......Aminoglycosides are ribosome-targeting antibiotics and a major drug group of choice in the treatment of serious enterococcal infections. Here we show that aminoglycoside resistance in Enterococcus faecium strain CIP 54-32 is conferred by the chromosomal gene efmM, encoding the E. faecium...

  3. Validation and nephrotoxicity of a simplified once-daily aminoglycoside dosing schedule and guidelines for monitoring therapy.

    Science.gov (United States)

    Prins, J M; Weverling, G J; de Blok, K; van Ketel, R J; Speelman, P

    1996-11-01

    There is no established dosing schedule for once-daily aminoglycoside dosing regimens, and accepted guidelines for monitoring therapy are lacking. We derived a simplified schedule from the Hull and Sarubbi (J. H. Hull and F. A. Sarubbi, Ann. Intern. Med. 85:183-189, 1976) nomogram, for which efficacy and safety in a once-daily dosing regimen were previously demonstrated, and prospectively followed serum aminoglycoside levels in patients. The standard treatment was gentamicin or tobramycin at 4 mg/kg of body weight given intravenously once daily. When the renal function was decreased, the daily dose was reduced, as follows: for an estimated creatinine clearance of between 50 and 80 ml/min, the daily dose was 3.25 mg/kg, for an estimated creatinine clearance of between 30 and 50 ml/min, the daily dose was 2.5 mg/kg, and for an estimated creatinine clearance of below 30 ml/min, the daily dose was 2 mg/kg. A total of 221 patients were studied (184 received gentamicin and 37 received tobramycin). First trough levels above 2 mg/liter were recorded in 11% of the patients, and they all had a baseline creatinine clearance below 50 ml/min, or a substantial decrease in clearance between enrollment and the day that the trough level was obtained. A peak level below 6 mg/liter was recorded in 6% of the patients, and half of them received the lowest daily dose. Twenty-five of the 179 evaluable patients (14%; 95% confidence interval, 9 to 19%) fulfilled the criteria for nephrotoxicity. In a multiple regression analysis, the duration of treatment and the use of other nephrotoxic antibiotics or high-dose furosemide, but not trough levels, were significant risk factors. Since the meaning of low peak levels is unclear and since most studies with multiple daily regimens confirm the lack of an association between trough levels and toxicity, we believe that monitoring of serum drug levels can be restricted to monitoring of trough levels in patients with a creatinine clearance below 50 ml

  4. Mechanism of clinical antibiotic-resistant Acinetobacter baumannii%鲍曼不动杆菌对临床抗菌药物耐药机制

    Institute of Scientific and Technical Information of China (English)

    赵媛媛; 阎锡新

    2010-01-01

    Acinetobacter baumannii is one of the most common pathogens in nosocomial infection.In recent years,multi-drug resistant and pan-drug resistant Acinetobacter baumannii have been increasing,which seriously threatens clinical therapy. This article reviews the clinical antibiotic-resistant mechanisms of Acinetobacter baumannii.%鲍曼不动杆菌是医院感染最常见的病原菌之一.近年来,多重耐药及泛耐药鲍曼不动杆菌感染日渐增多,对临床构成严重威胁.本文就鲍曼不动杆菌对临床主要使用的抗菌药物的耐药机制作一综述.

  5. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment

    Science.gov (United States)

    Ternent, Lucy; Dyson, Rosemary J.; Krachler, Anne-Marie; Jabbari, Sara

    2015-01-01

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention. PMID:25701634

  6. Bacterial fitness shapes the population dynamics of antibiotic-resistant and -susceptible bacteria in a model of combined antibiotic and anti-virulence treatment.

    Science.gov (United States)

    Ternent, Lucy; Dyson, Rosemary J; Krachler, Anne-Marie; Jabbari, Sara

    2015-05-07

    Bacterial resistance to antibiotic treatment is a huge concern: introduction of any new antibiotic is shortly followed by the emergence of resistant bacterial isolates in the clinic. This issue is compounded by a severe lack of new antibiotics reaching the market. The significant rise in clinical resistance to antibiotics is especially problematic in nosocomial infections, where already vulnerable patients may fail to respond to treatment, causing even greater health concern. A recent focus has been on the development of anti-virulence drugs as a second line of defence in the treatment of antibiotic-resistant infections. This treatment, which weakens bacteria by reducing their virulence rather than killing them, should allow infections to be cleared through the body׳s natural defence mechanisms. In this way there should be little to no selective pressure exerted on the organism and, as such, a predominantly resistant population should be less likely to emerge. However, before the likelihood of resistance to these novel drugs emerging can be predicted, we must first establish whether such drugs can actually be effective. Many believe that anti-virulence drugs would not be powerful enough to clear existing infections, restricting their potential application to prophylaxis. We have developed a mathematical model that provides a theoretical framework to reveal the circumstances under which anti-virulence drugs may or may not be successful. We demonstrate that by harnessing and combining the advantages of antibiotics with those provided by anti-virulence drugs, given infection-specific parameters, it is possible to identify treatment strategies that would efficiently clear bacterial infections, while preventing the emergence of antibiotic-resistant subpopulations. Our findings strongly support the continuation of research into anti-virulence drugs and demonstrate that their applicability may reach beyond infection prevention.

  7. Selected Essential Oils as Antifungal Agents Against Antibiotic-Resistant Candida spp.: In Vitro Study on Clinical and Food-Borne Isolates.

    Science.gov (United States)

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina; Maroszyńska, Marta

    2017-01-01

    Candida spp. cause significant health problems, inducing various types of superficial and deep-seated mycoses in humans. As a result of the increasing antibiotic resistance among pathogenic yeasts, the interest in alternative agents of antifungal activity is growing. This study evaluated the antimicrobial activity of selected essential oils (EOs) against Candida clinical and food-borne strains, including antibiotic-resistant isolates, in relation to yeast cell surface hydrophobicity (CSH). Candida strains showed different range of susceptibility to tea tree, thyme, peppermint, and clove oils, and peppermint oil demonstrated the lowest anticandidal activity with minimal inhibitory concentrations (MICs) of 0.03-8.0% v/v. MIC values for thyme and clove oils ranged from 0.03% to 0.25% v/v, and for tea tree oil-from 0.12% to 2.0% v/v. The exception was Candida tropicalis food-borne strain, the growth of which was inhibited after application of EOs at concentration of 8% v/v. Due to diverse yeast susceptibility to EOs, isolates were divided into five clusters in a principal component analysis model, each containing both clinical and food-borne strains. Hydrophobic properties of yeast were also diversified, and 37% of clinical and 50% of food-borne strains exhibited high hydrophobicity. The study indicates high homology of clinical and food-borne Candida isolates in relation to their susceptibility to anticandidal agents and hydrophobic properties. The susceptibility of yeasts to EOs could be partially related to their CSH. High antifungal activity of examined EOs, also against antibiotic-resistant isolates, indicates their usefulness as agents preventing the development of Candida strains of different origin.

  8. Vancomycin and High Level Aminoglycoside Resistance in Enterococcus spp. in a Tertiary Health Care Centre: A Therapeutic Concern

    Directory of Open Access Journals (Sweden)

    Seema Mittal

    2016-01-01

    Full Text Available Aims. This study was aimed at knowing the prevalence of vancomycin and high level aminoglycoside resistance in enterococcal strains among clinical samples. Study Design. It was an investigational study. Place and Duration of Study. It was conducted on 100 Enterococcus isolates, in the Department of Microbiology, Pt. BDS PGIMS, Rohtak, over a period of six months from July to December 2014. Methodology. Clinical specimens including urine, pus, blood, semen, vaginal swab, and throat swab were processed and Enterococcus isolates were identified by standard protocols. Antibiotic sensitivity testing of enterococci was performed using Kirby-Bauer disc diffusion method. Results. High level gentamicin resistance (HLGR was more common in urine samples (41.5% followed by blood (36% samples. High level streptomycin resistance (HLSR was more common in pus samples (52.6% followed by blood samples (36%. Resistance to vancomycin was maximum in blood isolates. Conclusion. Enterococci resistant to multiple antimicrobial agents have been recognized. Thus, it is crucial for laboratories to provide accurate antimicrobial resistance patterns for enterococci so that effective therapy and infection control measures can be initiated.

  9. Validation of a Strategy for Cancer Therapy: Delivering Aminoglycoside Drugs to Mitochondria in HeLa Cells.

    Science.gov (United States)

    Abe, Jiro; Yamada, Yuma; Harashima, Hideyoshi

    2016-02-01

    Mitochondria in human cancer cells have been implicated in cancer cell proliferation, invasion, metastasis, and even drug-resistance mechanisms, making them a potential target organelle for the treatment of human malignancies. Gentamicin (GM), an aminoglycoside drug (AG), is a small molecule that functions as an antibiotic and has ototoxic and nephrotoxic characteristics. Thus, the delivery of GM to mitochondria in cancer cells would be an innovative anticancer therapeutic strategy. In this study, we attempted mitochondrial delivery of GM in HeLa cells derived from a human cervical cancer. For the mitochondrial delivery, we used MITO-Porter, a liposomal nanocarrier for mitochondrial delivery via membrane fusion. We first encapsulated GM in the aqueous phase of the carrier to construct GM-MITO-Porter. Flow cytometry analysis and fluorescent microscopy observations permitted us to confirm that the GM-MITO-Porter was efficiently taken up by HeLa cells and accumulated in mitochondria, whereas naked GM was not taken up by the cells. Moreover, cell viability assays using HeLa cells showed that the GM-MITO-Porter induced strong cytotoxic effects related to mitochondrial disorder. This finding is the first report of the mitochondrial delivery of an AG to cancer cells for cancer therapeutic strategy.

  10. Enzyme inhibition by iminosugars

    DEFF Research Database (Denmark)

    López, Óscar; Qing, Feng-Ling; Pedersen, Christian Marcus

    2013-01-01

    Imino- and azasugar glycosidase inhibitors display pH dependant inhibition reflecting that both the inhibitor and the enzyme active site have groups that change protonation state with pH. With the enzyme having two acidic groups and the inhibitor one basic group, enzyme-inhibitor complexes...

  11. 氨基糖苷类耐药的肠杆菌科细菌16SrRNA甲基化酶基因研究%Research on 16S rRNA methylase in aminoglycoside-resistant Enterobacteriaceae

    Institute of Scientific and Technical Information of China (English)

    吴琼; 韩立中; 孙景勇; 倪语星; 陈敏

    2014-01-01

    目的:探讨临床分离的对氨基糖苷类耐药的肠杆菌科细菌产16S rRNA甲基化酶状况,分析其分子流行趋势及其耐药性形成和传播的机制。方法采用纸片扩散法筛选庆大霉素和/或阿米卡星耐药的肠杆菌科细菌;采用聚合酶链反应(PCR)扩增16S rRNA甲基化酶基因、氨基糖苷修饰酶基因、β-内酰胺酶基因;采用质粒接合试验验证16S rRNA甲基化酶的转移性;应用脉冲场凝胶电泳(PFGE)对16S rRNA甲基化酶基因阳性菌株进行分型。结果201株对庆大霉素和/或阿米卡星耐药的肠杆菌科细菌中共检出38株16S rRNA甲基化酶阳性株(armA基因16株,rmtB基因22株)。其中30株可通过接合试验将耐药质粒转移至受体菌。blaCTX-M-14、blaTEM-1和 blaSHV-12可连同armA或rmtB分别转移到11、20和7个接合子中。肺炎克雷伯菌、大肠埃希菌和阴沟肠杆菌分别被PFGE分为4、21和1个型别。结论本研究分离的肠杆菌科细菌16S rRNA甲基化酶以armA和rmtB为主要流行型别,且后者分离率较高。该甲基化酶可导致氨基糖苷类高水平耐药,而且酶编码基因位于质粒上,具有转移性,β-内酰胺酶基因和氟喹诺酮耐药决定因子可随之一同转移。%Objective To investigate the molecular epidemiological characterization and the drug resistance and prevalence mechanism of 16S rRNA methylase in aminoglycoside-resistant Enterobacteriaceae isolated clinically. Methods Gentamicin-and or amikacin-resistant Enterobacteriaceae were screened by disc diffusion method.16S rRNA methylase genes,aminoglycoside modification enzyme genes and beta-lactamase genes were amplified by polymerase chain reaction(PCR).The conjugal transfer of aminoglycoside-resistant determination was performed.Pulsed-field gel electrophoresis (PFGE)was carried out to analyze genotyping.Results A total of 16 armA gene and 22 rmtB gene 16S rRNA methylase positive isolates were

  12. Mechanism of resistance and detection of resistance genes to aminoglycoside among avian Escherichia coli strains from Shandong province%山东地区禽源致病性大肠杆菌氨基糖苷类药物耐药性及耐药基因的检测

    Institute of Scientific and Technical Information of China (English)

    孙慧; 雷战; 邹金峰; 魏宗; 王鑫; 谢之景; 姜世金

    2011-01-01

    In order to study the prevalent of aminoglycoside modifying enzymes and 16S rRNA methylases among avian Escherichia coli Strains from Shandong province,a total of 224 strains were tested by K-B(Kirby-Bauer) method to analyze the aminoglycoside susceptibility,by micro-dilution method to evaluate the MICs to gentamicin and amikacin and by PCR to examine the modifying enzyme genes and the 16S rRNA methylase genes which mediated high level resistance to aminoglycosides.The results indicated that the resistant incidence rates were exhibited to streptomycin(84.4%),gentamicin(57.1%),kanamycin(55.8%),neomycin(46.9%) and amikacin(40.2%);the present ratio of ant(3'')-Ia,aac(6')-Ib and aph(3')-Ⅱa were 49.6%,25.0% and 22.8% respectively.All of the three genes of 16S rRNA methylase were negative in low-level resistance,and RmtB was the high rate gene of 16S rRNA methylase with 53.1% positive rate among 49 strains of high level resistance to aminoglycosides.Seventy-five strains were detected with at least two genes and only one strain with four genes at the same time.The results revealed that the aminoglycoside modifying enzymes and 16S rRNA methylases were prevalent in avian Escherichia coli strains,and there were the highest coincidence between the resistance to aminoglycoside and the detection rate of the resistance genes.%采用K-B纸片法对224株大肠杆菌进行5种氨基糖苷类药物的药敏试验,采用微量肉汤稀释法进行庆大霉素和阿米卡星最低抑菌浓度(MIC)的测定,三重PCR法检测全部菌株氨基糖苷类钝化酶基因ant(3’’)-Ia、aac(6’)-Ib和aph(3’)-Ⅱa,普通PCR法检测16S甲基化酶基因。结果显示:山东省禽源大肠杆菌对链霉素、庆大霉素、卡那霉素、新霉素和阿米卡星的耐药率分别为84.4%、57.1%、55.8%、46.9%和40.2%;3种钝化酶基因ant(3’’)-Ia、aac(6’)和Ib、aph(3’)-Ⅱa的检出率依次为49

  13. Enzyme kinetics of conjugating enzymes: PAPS sulfotransferase.

    Science.gov (United States)

    James, Margaret O

    2014-01-01

    The sulfotransferase (SULT) enzymes catalyze the formation of sulfate esters or sulfamates from substrates that contain hydroxy or amine groups, utilizing 3'-phosphoadenosyl-5'-phosphosulfate (PAPS) as the donor of the sulfonic group. The rate of product formation depends on the concentrations of PAPS and substrate as well as the sulfotransferase enzyme; thus, if PAPS is held constant while varying substrate concentration (or vice versa), the kinetic constants derived are apparent constants. When studied over a narrow range of substrate concentrations, classic Michaelis-Menten kinetics can be observed with many SULT enzymes and most substrates. Some SULT enzymes exhibit positive or negative cooperativity during conversion of substrate to product, and the kinetics fit the Hill plot. A characteristic feature of most sulfotransferase-catalyzed reactions is that, when studied over a wide range of substrate concentrations, the rate of product formation initially increases as substrate concentration increases, then decreases at high substrate concentrations, i.e., they exhibit substrate inhibition or partial substrate inhibition. This chapter gives an introduction to sulfotransferases, including a historical note, the nomenclature, a description of the function of SULTs with different types of substrates, presentation of examples of enzyme kinetics with SULTs, and a discussion of what is known about mechanisms of substrate inhibition in the sulfotransferases.

  14. Kinetics of kill of bacterial conjunctivitis isolates with moxifloxacin, a fluoroquinolone, compared with the aminoglycosides tobramycin and gentamicin

    Directory of Open Access Journals (Sweden)

    Rudolph S Wagner

    2010-01-01

    Full Text Available Rudolph S Wagner1, David B Granet2, Steven J Lichtenstein3, Tiffany Jamison4, Joseph J Dajcs4, Robert D Gross5, Paul Cockrum41New Jersey Medical School, Newark, NJ, USA; 2Ratner Children’s Eye Center, University of California – San Diego, La Jolla, CA, USA; 3University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA; 4Alcon Research, Ltd, Fort Worth, TX, USA; 5Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, USAPurpose: To compare the kinetics and speed of kill of Streptococcus pneumoniae and Haemophilus influenzae on exposure to three topical ophthalmic antibiotic solutions.Materials and methods: Bacterial conjunctivitis isolates of S. pneumoniae and H. influenzae were exposed to 1:1000 dilutions of moxifloxacin 0.5%, tobramycin 0.3%, gentamicin 0.3%, and water (control. At 15, 30, 60, 120, and 180 minutes after exposure, aliquots were collected, cells were cultured, and viable cell counts were determined using standard microbiological methods.Results: Moxifloxacin achieved 99.9% kill (3-log reduction at approximately 2 hours for S. pneumoniae and at 15 minutes for H. influenzae. Tobramycin and gentamicin did not achieve 3-log reduction of S. pneumoniae during the 180-minute study period. An increase in bacterial growth was noted for these isolates. Gentamicin took more than 120 minutes to achieve the 3-log reduction of H. influenzae and tobramycin did not reach the 3-log reduction of this pathogen during the 180-minute study period.Conclusion: Moxifloxacin killed S. pneumoniae and H. influenzae in vitro faster than tobramycin and gentamicin, suggesting its potential clinical benefit as a first-line treatment for bacterial conjunctivitis to minimize patient symptoms and to limit the contagiousness of the disease.Keywords: kinetics of kill, bacterial conjunctivitis, in vitro, Streptococcus pneumoniae, Haemophilus influenzae, fluoroquinolones, aminoglycosides

  15. The aminoglycosides modulate the acid-sensing ionic channel currents in dorsal root ganglion neurons from the rat.

    Science.gov (United States)

    Garza, Aníbal; López-Ramírez, Omar; Vega, Rosario; Soto, Enrique

    2010-02-01

    Acid-sensing ionic channels (ASICs) have been shown to have a significant role in a growing number of physiological and pathological processes, such as nociception, synaptic transmission and plasticity, mechanosensation, and acidosis-induced neuronal injury. The discovery of pharmacological agents targeting ASICs has significant therapeutic potential and use as a research tool. In our work, we studied the action of transient perfusion (5-15 s) of aminoglycosides (AGs) (streptomycin and neomycin) on the proton-gated ionic currents in dorsal root ganglion (DRG) neurons of the rat and in human embryonic kidney (HEK)-293 cells. In DRG neurons, streptomycin and neomycin (30 microM) produced a significant, concentration-dependent, and reversible reduction in the amplitude of the proton-gated current, and a slowing of the desensitization rate of the ASIC current. Gentamycin (30 microM) also showed a significant reversible action on the ASIC currents. The curves of the pH effect for streptomycin and neomycin indicated that their effect was not significantly affected by pH. In HEK-293 cells, streptomycin (30 microM) produced a significant reduction in the amplitude of the proton-gated current. Neomycin and gentamycin had no significant action. Reduction of extracellular Ca(2+) concentration produced a significant increase in the action of streptomycin and neomycin on the desensitization time course of ASIC currents. These results indicate that ASICs are molecular targets for AGs, which may contribute to the understanding of their actions on excitable cells. Moreover, AGs may constitute a source to develop novel molecules with a greater affinity, specificity, and selectivity for the different ASIC subunits.

  16. RpoS plays a central role in the SOS induction by sub-lethal aminoglycoside concentrations in Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Zeynep Baharoglu

    Full Text Available Bacteria encounter sub-inhibitory concentrations of antibiotics in various niches, where these low doses play a key role for antibiotic resistance selection. However, the physiological effects of these sub-lethal concentrations and their observed connection to the cellular mechanisms generating genetic diversification are still poorly understood. It is known that, unlike for the model bacterium Escherichia coli, sub-minimal inhibitory concentrations (sub-MIC of aminoglycosides (AGs induce the SOS response in Vibrio cholerae. SOS is induced upon DNA damage, and since AGs do not directly target DNA, we addressed two issues in this study: how sub-MIC AGs induce SOS in V. cholerae and why they do not do so in E. coli. We found that when bacteria are grown with tobramycin at a concentration 100-fold below the MIC, intracellular reactive oxygen species strongly increase in V. cholerae but not in E. coli. Using flow cytometry and gfp fusions with the SOS regulated promoter of intIA, we followed AG-dependent SOS induction. Testing the different mutation repair pathways, we found that over-expression of the base excision repair (BER pathway protein MutY relieved this SOS induction in V. cholerae, suggesting a role for oxidized guanine in AG-mediated indirect DNA damage. As a corollary, we established that a BER pathway deficient E. coli strain induces SOS in response to sub-MIC AGs. We finally demonstrate that the RpoS general stress regulator prevents oxidative stress-mediated DNA damage formation in E. coli. We further show that AG-mediated SOS induction is conserved among the distantly related Gram negative pathogens Klebsiella pneumoniae and Photorhabdus luminescens, suggesting that E. coli is more of an exception than a paradigm for the physiological response to antibiotics sub-MIC.

  17. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets.

    Science.gov (United States)

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.

  18. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    LI TaiShan; LIU ShaoPu; LIU ZhongFang; HU XiaoLi; ZHANG LiPing

    2009-01-01

    CdTe nanocrystals (CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate. The product was detected by transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive spectroscopy (EDS), fluorescence spectra, ultraviolet-visible spectra and X-ray diffraction (XRD). The CdTe NCs are of cubic structure and the average size is about 5 nm. The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light. The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm. CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator. The resonance Rayleigh scattering (RRS) of CdTe NCs in the aqueous solution was investigated. The maximum scattering peak was located at about 554 nm. The interactions of CdTe NCs with amikacin sulfate (AS) and micronomicin sulfate (MS) were in-vestigated respectively. The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed. It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs. Under optimum conditions, there are linear relationships between quenching intensity (F0-F), intensity of RRS (1-10) and concentration of AS and MS. The detection limits (3σ) of AS and MS are re-spectively 3.4 ng.mL-1 and 2.6 ng.mL-1 by the fluorescence quenching method, and 15.2 ng.mL-1 and 14.0 ng.mL-1 by the RRS method. The methods have high sensitivity, thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  19. Enzymes for improved biomass conversion

    Science.gov (United States)

    Brunecky, Roman; Himmel, Michael E.

    2016-02-02

    Disclosed herein are enzymes and combinations of the enzymes useful for the hydrolysis of cellulose and the conversion of biomass. Methods of degrading cellulose and biomass using enzymes and cocktails of enzymes are also disclosed.

  20. Unhairing with enzymes

    OpenAIRE

    Crispim, A.; Mota, M.

    2003-01-01

    The use of enzymes in the leather industry is increasing and their application is being widened to include operations such as de-greasing, unhairing and other wet-end operations. Enzymes can also be used to assist with recycling leather wastes as well as to avoid pollution. The present work is devoted to illustrate the potential application of enzymes in unhairing without hair destruction. Enzymatic unhairing is based upon the weakening of the epidermis basal layer to which the hair is at...

  1. Microbial amylolytic enzymes.

    Science.gov (United States)

    Vihinen, M; Mäntsälä, P

    1989-01-01

    Starch-degrading, amylolytic enzymes are widely distributed among microbes. Several activities are required to hydrolyze starch to its glucose units. These enzymes include alpha-amylase, beta-amylase, glucoamylase, alpha-glucosidase, pullulan-degrading enzymes, exoacting enzymes yielding alpha-type endproducts, and cyclodextrin glycosyltransferase. Properties of these enzymes vary and are somewhat linked to the environmental circumstances of the producing organisms. Features of the enzymes, their action patterns, physicochemical properties, occurrence, genetics, and results obtained from cloning of the genes are described. Among all the amylolytic enzymes, the genetics of alpha-amylase in Bacillus subtilis are best known. Alpha-Amylase production in B. subtilis is regulated by several genetic elements, many of which have synergistic effects. Genes encoding enzymes from all the amylolytic enzyme groups dealt with here have been cloned, and the sequences have been found to contain some highly conserved regions thought to be essential for their action and/or structure. Glucoamylase appears usually in several forms, which seem to be the results of a variety of mechanisms, including heterogeneous glycosylation, limited proteolysis, multiple modes of mRNA splicing, and the presence of several structural genes.

  2. Adenylate-forming enzymes

    Science.gov (United States)

    Schmelz, Stefan; Naismith, James H.

    2012-01-01

    Thioesters, amides and esters are common chemical building blocks in a wide array of natural products. The formation of these bonds can be catalyzed in a variety of ways. For chemists, the use of an activating group is a common strategy and adenylate enzymes are exemplars of this approach. Adenylating enzymes activate the otherwise unreactive carboxylic acid by transforming the normal hydroxyl leaving group into adenosine monophosphate. Recently there have been a number of studies of such enzymes and in this review we suggest a new classification scheme. The review highlights the diversity in enzyme fold, active site architecture and metal coordination that has evolved to catalyze this particular reaction. PMID:19836944

  3. Aminoglycoside antibiotics for NIH category II chronic bacterial prostatitis: A single-cohort study with one-year follow-up.

    Science.gov (United States)

    Magri, Vittorio; Montanari, Emanuele; Marras, Emanuela; Perletti, Gianpaolo

    2016-10-01

    Although fluoroquinolones are first-line agents for the treatment of National Institutes of Health (NIH) category II chronic bacterial prostatitis (CBP), therapy with these agents is not always feasible due to the increasing worldwide resistance of causative uropathogens. New therapeutic options are urgently required, as drugs such as β-lactam antibiotics distribute poorly to prostatic sites of infection and trimethoprim therapy is often unfeasible due to high resistance rates. The present study aimed to analyze the efficacy of aminoglycosides, administered to a cohort of 78 patients affected by fluoroquinolone-resistant CBP, or excluded from fluoroquinolone therapy due to various contraindications. Patients received netilmicin (4.5 mg/kg, once-daily, intramuscular), combined or not with a β-lactam antibiotic, for 4 weeks. Follow-up visits were scheduled 6 and 12 months after the end of treatment. Fifty-five out of 70 patients (78.6%) showed eradication of the causative pathogen, and a significant reduction of the NIH-Chronic Prostatitis Symptom Index (NIH-CPSI) total score from a baseline median value of 21 to 14 at the end of therapy, and to 9 and 8 at 6-month and 12-month follow-up assessments, respectively. The pain, voiding and quality of life subdomains of the NIH-CPSI decreased accordingly. In 15 patients showing persistence of infection, NIH-CPSI total and subdomain scores did not decrease at the end of therapy. Additional clinical parameters, such as the urinary peak flow rate, percentage voided bladder, serum prostate-specific antigen concentration, International Prostate Symptom Score and prostate volume improved significantly only in the group of patients in which the infection was eradicated. Therapy was well tolerated, and genetic testing for deafness-predisposing mitochondrial mutations allowed safer administration of aminoglycosides. These results suggest that aminoglycosides may become a therapeutic alternative for the treatment of CBP. These

  4. Validation of a quantitative and confirmatory method for residue analysis of aminoglycoside antibiotics in poultry, bovine, equine and swine kidney through liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Almeida, M P; Rezende, C P; Souza, L F; Brito, R B

    2012-01-01

    The use of aminoglycoside antibiotics in food animals is approved in Brazil. Accordingly, Brazilian food safety legislation sets maximum levels for these drugs in tissues from these animals in an effort to guarantee that food safety is not compromised. Aiming to monitor the levels of these drugs in tissues from food animals, the validation of a quantitative, confirmatory method for the detection of residues of 10 aminoglycosides antibiotics in poultry, swine, equine and bovine kidney, with extraction using a solid phase and detection and quantification by LC-MS/MS was performed. The procedure is an adaptation of the US Department of Agriculture, Food Safety and Inspection Service (USDA-FSIS) qualitative method, with the inclusion of additional clean-up and quantification at lower levels, which proved more efficient. Extraction was performed using a phosphate buffer containing trifluoroacetic acid followed by neutralization, purification on a cationic exchange SPE cartridge, with elution with methanol/acetic acid, evaporation, and dilution in ion-pair solvent. The method was validated according to the criteria and requirements of the European Commission Decision 2002/657/EC, showing selectivity with no matrix interference. Linearity was established for all analytes using the method of weighted minimum squares. CCα and CCβ varied between 1036 and 12,293 µg kg(-1), and between 1073 and 14,588 µg kg(-1), respectively. The limits of quantification varied between 27 and 688 µg kg(-1). The values of recovery for all analytes in poultry kidney, fortified in the range of 500-1500 µg kg(-1), were higher than 90%, and the relative standard deviations were lower than 15%, except spectinomycin (21.8%). Uncertainty was estimated using a simplified methodology of 'bottom-up' and 'top-down' strategies. The results showed that this method is effective for the quantification and confirmation of aminoglycoside residues and could be used by the Brazilian programme of residue

  5. Ex vivo treatment with a novel synthetic aminoglycoside NB54 in primary fibroblasts from Rett syndrome patients suppresses MECP2 nonsense mutations.

    Directory of Open Access Journals (Sweden)

    Manuela Vecsler

    Full Text Available BACKGROUND: Nonsense mutations in the X-linked methyl CpG-binding protein 2 (MECP2 comprise a significant proportion of causative MECP2 mutations in Rett syndrome (RTT. Naturally occurring aminoglycosides, such as gentamicin, have been shown to enable partial suppression of nonsense mutations related to several human genetic disorders, however, their clinical applicability has been compromised by parallel findings of severe toxic effects. Recently developed synthetic NB aminoglycosides have demonstrated significantly improved effects compared to gentamicin evident in substantially higher suppression and reduced acute toxicity in vitro. RESULTS: We performed comparative study of suppression effects of the novel NB54 and gentamicin on three MECP2 nonsense mutations (R294X, R270X and R168X common in RTT, using ex vivo treatment of primary fibroblasts from RTT patients harboring these mutations and testing for the C-terminal containing full-length MeCP2. We observed that NB54 induces dose-dependent suppression of MECP2 nonsense mutations more efficiently than gentamicin, which was evident at concentrations as low as 50 µg/ml. NB54 read-through activity was mutation specific, with maximal full-length MeCP2 recovery in R168X (38%, R270X (27% and R294X (18%. In addition, the recovered MeCP2 was translocated to the cell nucleus and moreover led to parallel increase in one of the most important MeCP2 downstream effectors, the brain derived neurotrophic factor (BDNF. CONCLUSION: Our findings suggest that NB54 may induce restoration of the potentially functional MeCP2 in primary RTT fibroblasts and encourage further studies of NB54 and other rationally designed aminoglycoside derivatives as potential therapeutic agents for nonsense MECP2 mutations in RTT.

  6. Aminoglycoside antibiotics for NIH category II chronic bacterial prostatitis: A single-cohort study with one-year follow-up

    Science.gov (United States)

    Magri, Vittorio; Montanari, Emanuele; Marras, Emanuela; Perletti, Gianpaolo

    2016-01-01

    Although fluoroquinolones are first-line agents for the treatment of National Institutes of Health (NIH) category II chronic bacterial prostatitis (CBP), therapy with these agents is not always feasible due to the increasing worldwide resistance of causative uropathogens. New therapeutic options are urgently required, as drugs such as β-lactam antibiotics distribute poorly to prostatic sites of infection and trimethoprim therapy is often unfeasible due to high resistance rates. The present study aimed to analyze the efficacy of aminoglycosides, administered to a cohort of 78 patients affected by fluoroquinolone-resistant CBP, or excluded from fluoroquinolone therapy due to various contraindications. Patients received netilmicin (4.5 mg/kg, once-daily, intramuscular), combined or not with a β-lactam antibiotic, for 4 weeks. Follow-up visits were scheduled 6 and 12 months after the end of treatment. Fifty-five out of 70 patients (78.6%) showed eradication of the causative pathogen, and a significant reduction of the NIH-Chronic Prostatitis Symptom Index (NIH-CPSI) total score from a baseline median value of 21 to 14 at the end of therapy, and to 9 and 8 at 6-month and 12-month follow-up assessments, respectively. The pain, voiding and quality of life subdomains of the NIH-CPSI decreased accordingly. In 15 patients showing persistence of infection, NIH-CPSI total and subdomain scores did not decrease at the end of therapy. Additional clinical parameters, such as the urinary peak flow rate, percentage voided bladder, serum prostate-specific antigen concentration, International Prostate Symptom Score and prostate volume improved significantly only in the group of patients in which the infection was eradicated. Therapy was well tolerated, and genetic testing for deafness-predisposing mitochondrial mutations allowed safer administration of aminoglycosides. These results suggest that aminoglycosides may become a therapeutic alternative for the treatment of CBP. These

  7. Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Hu, Yanmin; Liu, Alexander; Vaudrey, James; Vaiciunaite, Brigita; Moigboi, Christiana; McTavish, Sharla M; Kearns, Angela; Coates, Anthony

    2015-01-01

    Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101) and MRSA (n = 115). Minimum inhibitory concentrations (MIC) were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI), plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin) displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin) in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA infections. We

  8. Combinations of β-lactam or aminoglycoside antibiotics with plectasin are synergistic against methicillin-sensitive and methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Yanmin Hu

    Full Text Available Bacterial infections remain the leading killer worldwide which is worsened by the continuous emergence of antibiotic resistance. In particular, methicillin-sensitive (MSSA and methicillin-resistant Staphylococcus aureus (MRSA are prevalent and the latter can be difficult to treat. The traditional strategy of novel therapeutic drug development inevitably leads to emergence of resistant strains, rendering the new drugs ineffective. Therefore, rejuvenating the therapeutic potentials of existing antibiotics offers an attractive novel strategy. Plectasin, a defensin antimicrobial peptide, potentiates the activities of other antibiotics such as β-lactams, aminoglycosides and glycopeptides against MSSA and MRSA. We performed in vitro and in vivo investigations to test against genetically diverse clinical isolates of MSSA (n = 101 and MRSA (n = 115. Minimum inhibitory concentrations (MIC were determined by the broth microdilution method. The effects of combining plectasin with β-lactams, aminoglycosides and glycopeptides were examined using the chequerboard method and time kill curves. A murine neutropenic thigh model and a murine peritoneal infection model were used to test the effect of combination in vivo. Determined by factional inhibitory concentration index (FICI, plectasin in combination with aminoglycosides (gentamicin, neomycin or amikacin displayed synergistic effects in 76-78% of MSSA and MRSA. A similar synergistic response was observed when plectasin was combined with β-lactams (penicillin, amoxicillin or flucloxacillin in 87-89% of MSSA and MRSA. Interestingly, no such interaction was observed when plectasin was paired with vancomycin. Time kill analysis also demonstrated significant synergistic activities when plectasin was combined with amoxicillin, gentamicin or neomycin. In the murine models, plectasin at doses as low as 8 mg/kg augmented the activities of amoxicillin and gentamicin in successful treatment of MSSA and MRSA

  9. Salmonella enterica Serovar Typhimurium blaPER-1-Carrying Plasmid pSTI1 Encodes an Extended-Spectrum Aminoglycoside 6′-N-Acetyltransferase of Type Ib

    OpenAIRE

    Casin, Isabelle; Hanau-Berçot, Beatrice; Podglajen, Isabelle; Vahaboglu, Haluk; Collatz, Ekkehard

    2003-01-01

    We have studied the aminoglycoside resistance gene, which confers high levels of resistance to both amikacin and gentamicin, that is carried by plasmid pSTI1 in the PER-1 β-lactamase-producing strain of Salmonella enterica serovar Typhimurium previously isolated in Turkey. This gene, called aac(6′)-Ib11, was found in a class 1 integron and codes for a protein of 188 amino acids, a fusion product between the N-terminal moiety (8 amino acids) of the signal peptide of the β-lactamase OXA-1 and t...

  10. Innate aminoglycoside resistance of Achromobacter xylosoxidans is due to AxyXY-OprZ, an RND-type multidrug efflux pump.

    Science.gov (United States)

    Bador, Julien; Amoureux, Lucie; Blanc, Emmanuel; Neuwirth, Catherine

    2013-01-01

    Achromobacter xylosoxidans is an innately multidrug-resistant pathogen which is emerging in cystic fibrosis (CF) patients. We characterized a new resistance-nodulation-cell division (RND)-type multidrug efflux pump, AxyXY-OprZ. This system is responsible for the intrinsic high-level resistance of A. xylosoxidans to aminoglycosides (tobramycin, amikacin, and gentamicin). Furthermore, it can extrude cefepime, carbapenems, some fluoroquinolones, tetracyclines, and erythromycin. Some of the AxyXY-OprZ substrates are major components widely used to treat pulmonary infections in CF patients.

  11. Magnetically responsive enzyme powders

    Energy Technology Data Exchange (ETDEWEB)

    Pospiskova, Kristyna, E-mail: kristyna.pospiskova@upol.cz [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Safarik, Ivo, E-mail: ivosaf@yahoo.com [Regional Centre of Advanced Technologies and Materials, Palacky University, Slechtitelu 11, 783 71 Olomouc (Czech Republic); Department of Nanobiotechnology, Institute of Nanobiology and Structural Biology of GCRC, Na Sadkach 7, 370 05 Ceske Budejovice (Czech Republic)

    2015-04-15

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (−20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties. - Highlights: • Cross-linked enzyme powders were prepared in various liquid media. • Insoluble enzymes were magnetized using iron oxides particles. • Magnetic iron oxides particles were prepared by microwave-assisted synthesis. • Magnetic modification was performed under low (freezing) temperature. • Cross-linked powdered trypsin and lipase can be used repeatedly for reaction.

  12. 大肠埃希菌氨基糖苷类药物获得性耐药机制探讨%Investigation of acquired resistant genes to aminoglycosides of Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    黄东标; 周茂亮; 李嫦珍; 陈江平; 胡晓燕

    2011-01-01

    目的:调查耐药大肠埃希菌分离株中氨基糖昔类修饰酶基因和16S rRNA甲基化酶基因的情况.方法:收集浙江省磐安县人民医院2009年6月-2010年6月临床分离的耐药大肠埃希菌共20株,采用聚合酶链反应(PCR)方法分析6种AMEs基因和2种16S rRNA甲基化酶基因.结果:20株耐药大肠埃希菌共检出3种氨基糖苷类修饰酶基因aac(6')-Ib4株、ant(3")-I1株和aadA5 10株,1种16S rRNA甲基化酶基因rmtB 2株.4株sac(6')-IbPCR阳性产物测序比对后确认1株为aac(6')-Ib型和3株为aac(6')-Ib-cr型.结论:本文在浙江省中部地区首次查出氨基糖苷类修饰酶aac(6')-Ib-cr f和16S rRNA甲基化酶rmtB型.产氨基糖苷类修饰酶基因、16S rRNA甲基化酶基因与氨基糖苷类药物耐药性相关.%Objective :To investigate the distribution of aminoglycoside modifying enzyme genes(AMEs) and 16S rRNA methylase genes in drug - resistant of Escherichia coli. Methods: From June 2009 to June 2010, 20 strains of drug - resistant E. coli were collected from Pan'an Hospital. Then, 6 kinds of AMEs (aac(3) - Ⅰ , aac(3) - Ⅱ , aac(6') - Ⅰ b, ant(3") - Ⅰ , aadA5, aph(3') - Ⅰ ) and 2 kinds of 16S rRNA methylase genes (armA, rmtB) were analyzed by PCR. Results: In 20 strains of E. coli, 10 strains, 4 strains, 2 strains, and 1 strain were detected to carry aadA5, aac(6') - Ⅰ b, rmtB, and ant(3") - Ⅰ respectively. After verificated by DNA sequencing, 4 PCR positive products of aac(6') - Ⅰ b were confirmed as 1 strain of aac (6') - Ⅰ b and 3 strains of aac(6') - Ⅰ b-cr. Conclusion: It's the first report that AMEs aac(6') - Ⅰ b-cr and 16S rRNA methylase gene rmtB were detected in central region of Zhejiang. AMEs and 16S rRNA methylase genes play a role in resistance to aminoglycosides.

  13. Artificial Enzymes, "Chemzymes"

    DEFF Research Database (Denmark)

    Bjerre, Jeannette; Rousseau, Cyril Andre Raphaël; Pedersen, Lavinia Georgeta M;

    2008-01-01

    Enzymes have fascinated scientists since their discovery and, over some decades, one aim in organic chemistry has been the creation of molecules that mimic the active sites of enzymes and promote catalysis. Nevertheless, even today, there are relatively few examples of enzyme models...... that successfully perform Michaelis-Menten catalysis under enzymatic conditions (i.e., aqueous medium, neutral pH, ambient temperature) and for those that do, very high rate accelerations are seldomly seen. This review will provide a brief summary of the recent developments in artificial enzymes, so called...... "Chemzymes", based on cyclodextrins and other molecules. Only the chemzymes that have shown enzyme-like activity that has been quantified by different methods will be mentioned. This review will summarize the work done in the field of artificial glycosidases, oxidases, epoxidases, and esterases, as well...

  14. Effects of therapeutical and reduced levels of antibiotics on the fraction of antibiotic-resistant strains of Escherichia coli in the chicken gut.

    Science.gov (United States)

    van der Horst, Michael A; Fabri, Teun H; Schuurmans, J Merijn; Koenders, Belinda B; Brul, Stanley; ter Kuile, Benno H

    2013-01-01

    Development of antibiotic resistance in the microbiota of farm animals and spread of antibiotic-resistant bacteria in the agricultural sector not only threaten veterinary use of antibiotics, but jeopardize human health care as well. The effects of exposure to antibiotics on spread and development of antibiotic resistance in Escherichia coli from the chicken gut were studied. Groups of 15 pullets each were exposed under strictly controlled conditions to a 2-day course of amoxicillin, oxytetracycline, or enrofloxacin, added to the drinking water either at full therapeutic dose, 75% of that, or at the carry-over level of 2.5%. During treatment and for 12 days afterwards, the minimal inhibitory concentration (MIC) for the applied antibiotics of E. coli strains isolated from cloacal swabs was measured. The full therapeutic dose yielded the highest percentage of resistant strains during and immediately after exposure. After 12 days without antibiotics, only strains from chickens that were given amoxicillin were significantly more often resistant than the untreated control. Strains isolated from pullets exposed to carry-over concentrations were only for a few days more often resistant than those from the control. These results suggest that, if chickens must be treated with antibiotics, a short intensive therapy is preferable. Even short-term exposure to carry-over levels of antibiotics can be a risk for public health, as also under those circumstances some selection for resistance takes place.

  15. CRISPR/Cas9-Mediated Re-Sensitization of Antibiotic-Resistant Escherichia coli Harboring Extended-Spectrum β-Lactamases.

    Science.gov (United States)

    Kim, Jun-Seob; Cho, Da-Hyeong; Park, Myeongseo; Chung, Woo-Jae; Shin, Dongwoo; Ko, Kwan Soo; Kweon, Dae-Hyuk

    2016-02-01

    Recently, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR/Cas9) system, a genome editing technology, was shown to be versatile in treating several antibiotic-resistant bacteria. In the present study, we applied the CRISPR/ Cas9 technology to kill extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. ESBL bacteria are mostly multidrug resistant (MDR), and have plasmid-mediated antibiotic resistance genes that can be easily transferred to other members of the bacterial community by horizontal gene transfer. To restore sensitivity to antibiotics in these bacteria, we searched for a CRISPR/Cas9 target sequence that was conserved among >1,000 ESBL mutants. There was only one target sequence for each TEM- and SHV-type ESBL, with each of these sequences found in ~200 ESBL strains of each type. Furthermore, we showed that these target sequences can be exploited to re-sensitize MDR cells in which resistance is mediated by genes that are not the target of the CRISPR/Cas9 system, but by genes that are present on the same plasmid as target genes. We believe our Re-Sensitization to Antibiotics from Resistance (ReSAFR) technology, which enhances the practical value of the CRISPR/Cas9 system, will be an effective method of treatment against plasmid-carrying MDR bacteria.

  16. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    Science.gov (United States)

    Gohar, Maha Kamal; Atta, Amal Hassan

    2016-01-01

    Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems. PMID:27725834

  17. Impact of Some Ecological Factors on Fecal Contamination of Drinking Water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig City, Egypt

    Directory of Open Access Journals (Sweden)

    Ahmed Elsadek Fakhr

    2016-01-01

    Full Text Available Fecal contamination of drinking water is a major health problem which accounts for many cases of diarrhea mainly in infants and foreigners. This contamination is a complex interaction of many parameters. Antibiotic resistance among bacterial isolates complicates the problem. The study was done to identify fecal contamination of drinking water by Diarrheagenic Antibiotic-Resistant Escherichia coli in Zagazig city and to trace reasons for such contamination, three hundred potable water samples were investigated for E. coli existence. Locations of E. coli positive samples were investigated in relation to population density, water source, and type of water pipe. Sixteen E. coli strains were isolated. Antibiotic sensitivity was done and enterotoxigenic, enteropathogenic, and enterohaemorrhagic virulence genes were investigated by PCR. Probability of fecal contamination correlated with higher population density, with increased distance from Zagazig water plant, and with asbestos cement water pipes. Resistance to at least one antimicrobial drug was found in all isolates. Virulence genes were detected in a rate of 26.27%, 13.13%, 20%, 6.67%, and 33.33% for LT, ST, stx1, stx2, and eae genes, respectively. This relatively high frequency of fecal contamination points towards the high risk of developing diarrhea by antibiotic resistant DEC in low socioeconomic communities particularly with old fashion distribution systems.

  18. Cotton cellulose: enzyme adsorption and enzymic hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Beltrame, P.L.; Carniti, P.; Focher, B.; Marzetti, A.; Cattaneo, M.

    1982-01-01

    The adsorption of a crude cellulase complex from Trichoderma viride on variously pretreated cotton cellulose samples was studied in the framework of the Langmuir approach at 2-8 degrees. The saturation amount of adsorbed enzyme was related to the susceptibility of the substrates to hydrolysis. In every case the adsorption process was faster by 2-3 orders of magnitude than the hydrolysis step to give end products. For ZnCl/sub 2/-treated cotton cellulose the Langmuir parameters correlated fairly well with the value of the Michaelis constant, measured for its enzymic hydrolysis, and the adsorptive complex was indistinguishable from the complex of the Michaelis-Menten model for the hydrolysis.

  19. Special characteristics of fluorescence and resonance Rayleigh scattering for cadmium telluride nanocrystal aqueous solution and its interactions with aminoglycoside antibiotics

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    CdTe nanocrystals(CdTe NCs) were achieved by reaction of CdCl2 with KHTe solution and were capped with sodium mercaptoacetate.The product was detected by transmission electron microscopy(TEM),high-resolution transmission electron microscopy(HRTEM),energy dispersive spectroscopy(EDS),fluorescence spectra,ultraviolet-visible spectra and X-ray diffraction(XRD).The CdTe NCs are of cubic structure and the average size is about 5 nm.The fluorescence quantum yield of CdTe NCs aqueous solution increased from 37% to 97% after 20 d under room light.The maximum λem of fluorescence changed from 543 nm to 510 nm and the blue shift was 33 nm.CdTe NCs aqueous solution can be steady for at least 10 months at 4℃ in a refrigerator.The resonance Rayleigh scattering(RRS) of CdTe NCs in the aqueous solution was investigated.The maximum scattering peak was located at about 554 nm.The interactions of CdTe NCs with amikacin sulfate(AS) and micronomicin sulfate(MS) were investigated respectively.The effects of AS and MS on fluorescence and RRS of CdTe NCs were analyzed.It was found that AS and MS quenched the photoluminescence of CdTe NCs and enhanced RRS of CdTe NCs.Under optimum conditions,there are linear relationships between quenching intensity(F0-F),intensity of RRS(I-I0) and concentration of AS and MS.The detection limits(3б) of AS and MS are respectively 3.4 ng·mL-1 and 2.6 ng·mL-1 by the fluorescence quenching method,and 15.2 ng·mL-1 and 14.0 ng·mL-1 by the RRS method.The methods have high sensitivity,thus CdTe NCs may be used as fluorescence probes and RRS probes for the detection of aminoglycoside antibiotics.

  20. A nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistance genes in Enterococcus species

    Directory of Open Access Journals (Sweden)

    Ravichandran Manickam

    2007-12-01

    Full Text Available Abstract Background Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2–5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE. This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR, multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene. Results Unique and specific primer pairs were designed to amplify the 8 genes. The specificity of the primers was confirmed by DNA sequencing of the nanoplex PCR products and BLAST analysis. The sensitivity and specificity of V-BiA-RE nanoplex PCR assay was evaluated against the conventional culture method. The analytical sensitivity of the assay was found to be 1 ng at the DNA level while the analytical specificity was evaluated with 43 reference enterococci and non-enterococcal strains and was found to be 100%. The diagnostic accuracy was determined using 159 clinical specimens, which showed that 97% of the clinical isolates belonged to E. faecalis, of which 26% showed the HLGR genotype, but none were vancomycin resistant. The presence of an internal control in the V-BiA-RE nanoplex PCR assay helped us to rule out false negative cases. Conclusion The nanoplex PCR assay is robust and can give results within 4 hours about the 8 genes that are essential for the identification of the most common Enterococcus spp. and their antibiotic sensitivity pattern. The PCR assay

  1. Analysis of 76 veterinary pharmaceuticals from 13 classes including aminoglycosides in bovine muscle by hydrophilic interaction liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Dasenaki, Marilena E; Michali, Christina S; Thomaidis, Nikolaos S

    2016-06-24

    A multiresidue/multiclass method for the simultaneous determination of 76 veterinary drugs and pharmaceuticals in bovine muscle tissue has been developed and validated according to the requirements of European Commission Decision 2002/657/EC. The analytes belong in 13 different classes, including aminoglycoside antibiotics, whose different physicochemical properties (extremely polar character) render their simultaneous determination with other veterinary drugs quite problematic. The method combines a two-step extraction procedure (extraction with acetonitrile followed by an acidic aqueous buffer extraction) with hydrophilic interaction liquid chromatography-tandem mass spectrometry (HILIC-MS/MS) determination, allowing confirmation and quantification in a single chromatographic run. Further cleanup with solid phase extraction was performed using polymeric SPE cartridges. A thorough ionization study of aminoglycosides was performed in order to increase their sensitivity and significant differences in the abundance of the precursor ions of the analytes were revealed, depending on the composition of the mobile phase tested. Further gradient elution optimization and injection solvent optimization were performed for all target analytes.The method was validated according to the European Commission Decision 2002/657. Quantitative analysis was performed by means of standard addition calibration. Recoveries varied from 37.4% (bromhexine) to 106% (kanamycin) in the lowest validation level and 82% of the compounds showed recovery >70%. Detection capability (CCβ) varied from 2.4 (salinomycin) to 1302 (apramycin) μgkg(-1).

  2. Enzyme molecules as nanomotors.

    Science.gov (United States)

    Sengupta, Samudra; Dey, Krishna K; Muddana, Hari S; Tabouillot, Tristan; Ibele, Michael E; Butler, Peter J; Sen, Ayusman

    2013-01-30

    Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.

  3. mtDNA mutations, hearing loss and aminoglycoside treatment in Mexicans Mutações em DNA mitocondrial, hipoacusia e tratamento de mexicanos com aminoglicosídeos

    Directory of Open Access Journals (Sweden)

    G Meza

    2011-10-01

    Full Text Available Streptomycin and aminoglycoside derivatives are commonly used to treat tuberculosis and other stubborn infections; these drugs may alter auditory and/or vestibular function. Mutations in mitochondrial DNA have been associated with hypersensitivity to aminoglycosides; no studies have been conducted in Mexicans, which are very prone to such alterations because aminoglycosides have been prescribed carelessly for many years, irrespective of the ailment to be treated. AIM: We investigated "hot spot" mutations described previously as causing inner ear alterations. METHODS: Hot spot mutations at the 12S rRNA gene and the tRNA Serine (UCN gene were screened by PCR-RFLP and sequencing in 65 subjects undergoing audiological and vestibular testing. STUDY DESIGN: Experimental. RESULTS: 32 individuals had healthy auditory and vestibular function, whereas 33 subjects had auditory affections. We found none of the previously reported mutations related to aminoglycoside hypersensitivity, or non-syndromic hearing loss. Two hearing-impaired patients that had been treated with streptomycin had the T1189C variant of the mitochondrial 12S rRNA region. CONCLUSION: Mutations related to hearing loss in other ethnic backgrounds were not found in Mexicans. However, the T1189C variant is possibly a putative mutation related to aminoglycoside hypersensitivity and was present in 2 patients.Derivados de aminoglicosídeos e estreptomicina são comumente utilizados para tratar tuberculose e outras infecções mais resistentes; esses medicamentos podem alterar a função vestibular e/ou auditiva. Mutações no DNA mitocondrial têm sido associadas à hipersensibilidade a aminoglicosídeos; não há estudos conduzidos com mexicanos, que são muito predispostos a tais alterações, uma vez que aminoglicosídeos têm sido exageradamente prescritos há anos, sem associações à doença sendo tratada. OBJETIVO: investigamos mutações "hot spot" previamente descritas como causas de

  4. Enzymic lactose hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.J.; Brand, J.C.

    1980-01-01

    Acid or enzymic hydrolysis can be used to hydrolyze lactose. Advantages of both are compared and details of enzymic hydrolysis using yeast or fungal enzymes given. The new scheme outlined involves recycling lactase. Because lactose and lactase react to ultrafiltration (UF) membranes differently separation is possible. Milk or milk products are ultrafiltered to separate a concentrate from a lactose-rich permeate which is treated with lactase in a reactor until hydrolysis reaches a required level. The lactase can be removed by UF as it does not permeate the membrane, and it is recycled back to the reactor. Permeate from the second UF stage may or may not be recombined with the concentrate from the first stage to produce a low lactose product (analysis of a typical low-lactose dried whole milk is given). Batch or continuous processes are explained and a batch process without enzyme recovery is discussed. (Refs. 4).

  5. Enzymes in Analytical Chemistry.

    Science.gov (United States)

    Fishman, Myer M.

    1980-01-01

    Presents tabular information concerning recent research in the field of enzymes in analytic chemistry, with methods, substrate or reaction catalyzed, assay, comments and references listed. The table refers to 128 references. Also listed are 13 general citations. (CS)

  6. Membrane Assisted Enzyme Fractionation

    DEFF Research Database (Denmark)

    Yuan, Linfeng

    . In this thesis, separations using crossflow elecro-membrane filtration (EMF) of amino acids, bovine serum albumin (BSA) and industrial enzymes from Novozymes were performed. The main objective of this study was to investigate the technological feasibility of EMF in the application of industrial enzyme...... fractionation, such as removal of a side activity from the main enzyme activity. As a proof-of-concept, amino acids were used as model solution to test the feasibility of EMF in the application of amphoteric molecule separation. A single amino acid was used to illustrate the effect of an electric field...... on the separation performance were very small in the investigated range. The mass transport of each enzyme can be well explained by the Extended-Nernst-Planck equation. Better separation was observed at lower feed concentration, higher solution pH in the investigated range and with a polysulfone (PS) MF membrane...

  7. Overproduction of ligninolytic enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Elisashvili, Vladimir; Kachlishvili, Eva; Torok, Tamas

    2014-06-17

    Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.

  8. RNA-modifying enzymes.

    Science.gov (United States)

    Ferré-D'Amaré, Adrian R

    2003-02-01

    A bewildering number of post-transcriptional modifications are introduced into cellular RNAs by enzymes that are often conserved among archaea, bacteria and eukaryotes. The modifications range from those with well-understood functions, such as tRNA aminoacylation, to widespread but more mysterious ones, such as pseudouridylation. Recent structure determinations have included two types of RNA nucleobase modifying enzyme: pseudouridine synthases and tRNA guanine transglycosylases.

  9. Quorum quenching enzymes and their application in degrading signal molecules to block quorum sensing-dependent infection.

    Science.gov (United States)

    Chen, Fang; Gao, Yuxin; Chen, Xiaoyi; Yu, Zhimin; Li, Xianzhen

    2013-08-26

    With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.

  10. Quorum Quenching Enzymes and Their Application in Degrading Signal Molecules to Block Quorum Sensing-Dependent Infection

    Directory of Open Access Journals (Sweden)

    Xianzhen Li

    2013-08-01

    Full Text Available With the emergence of antibiotic-resistant strains of bacteria, the available options for treating bacterial infections have become very limited, and the search for a novel general antibacterial therapy has received much greater attention. Quorum quenching can be used to control disease in a quorum sensing system by triggering the pathogenic phenotype. The interference with the quorum sensing system by the quorum quenching enzyme is a potential strategy for replacing traditional antibiotics because the quorum quenching strategy does not aim to kill the pathogen or limit cell growth but to shut down the expression of the pathogenic gene. Quorum quenching enzymes have been identified in quorum sensing and non-quorum sensing microbes, including lactonase, acylase, oxidoreductase and paraoxonase. Lactonase is widely conserved in a range of bacterial species and has variable substrate spectra. The existence of quorum quenching enzymes in the quorum sensing microbes can attenuate their quorum sensing, leading to blocking unnecessary gene expression and pathogenic phenotypes. In this review, we discuss the physiological function of quorum quenching enzymes in bacterial infection and elucidate the enzymatic protection in quorum sensing systems for host diseases and their application in resistance against microbial diseases.

  11. 多重耐药鲍曼不动杆菌16S rRNA甲基化酶研究进展%Advances in studying 16S rRNA methylation enzymes in multiple drug-resistant Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    刘振茹; 凌保东

    2011-01-01

    Aminoglycoside antibiotics play an important role in the treatment of infections caused by Acinetobacter baumannii. The mechanisms of resistance to this class of antibiotics include mainly the production of aminoglycoside-modifying enzymes, the lack or reduction of expression of certain outer membrane proteins, the increased expression of active drug efflux pumps and the alterations of the ribosome-binding sites. The involvement of 16S rRNA methylation enzymes encoded by plasmids belongs to a newly-identified drug resistance mechanism frequently observed in multidrug-resistant Acinetobacter baumannii isolated in recent years and this often leads to high levels of aminoglycoside resistance. This review focuses on the research progress in 16S rRNA methylation enzymes of multidrug-resistant Acinetobacter baumannii such as the diversity of these enzymes and their role in aminoglycoside resistance.%氨基糖苷类抗生素在治疗鲍曼不动杆菌引起的感染中起着重要的作用.而鲍曼不动杆菌对该类抗生素的耐药机制主要包括产氨基糖苷修饰酶,外膜孔蛋白表达缺失,药物外排泵的表达和核糖体结合位点的改变等.质粒介导的16S rRNA甲基化酶是近年在多重耐药鲍曼不动杆菌中发现的一种新的耐药机制,可导致对氨基糖苷类抗生素的高水平耐药.本文就细菌rRNA的修饰作用、16S rRNA甲基化酶的发现、耐药与传播机制、耐药菌的流行、多重耐药鲍曼不动杆菌16S rRNA甲基化酶基[因的研究进展等方面作一综述.

  12. EpideMiology and control measures of outBreaks due to Antibiotic-Resistant orGanisms in EurOpe (EMBARGO): a systematic review protocol

    Science.gov (United States)

    Nithya, Babu Rajendran; Gladstone, Beryl Primrose; Rodríguez-Baño, Jesús; Sifakis, Frangiscos; Voss, Andreas; Carmeli, Yehuda; Burkert, Francesco Robert; Gkolia, Panagiota; Tacconelli, Evelina

    2017-01-01

    Introduction Improving our understanding of outbreaks due to antibiotic-resistant bacteria (ARB) and their control is critical in the current public health scenario. The threat of outbreaks due to ARB requires multifaceted efforts. However, a global overview of epidemiological characteristics of outbreaks due to ARB and effective infection control measures is missing. In this paper, we describe the protocol of a systematic review aimed at mapping and characterising the epidemiological aspects of outbreaks due to ARB and infection control measures in European countries. Methods and analysis The databases MEDLINE, Web of Knowledge and Cochrane library will be searched using a 3-step search strategy. Selection of articles for inclusion will be performed by 2 reviewers using predefined eligibility criteria. All study designs will be included if they report an outbreak and define the microbiological methods used for microorganism identification. The target bacteria will be methicillin-resistant and vancomycin-resistant Staphylococcus aureus, vancomycin-resistant Enterococcus, ceftazidime-resistant and carbapenem-resistant Acinetobacter baumannii, ceftazidime-resistant and carbapenem-resistant Pseudomonas aeruginosa, ciprofloxacin-resistant Escherichia coli, extended-spectrum β-lactamase-producing E. coli and Klebsiella pneumoniae, carbapenem-resistant and carbapenamase-producing Enterobacteriaceae. Data will be extracted using a tailored pilot tested form and the quality of reporting will be assessed using the ORION (Outbreak Reports and Intervention Studies Of Nosocomial infections) tool. Data will be synthesised and reported by the type of ARB, setting and country. Infection control measures and bundles of measures will be described. The effectiveness will be reported as defined by the authors. Regression analysis will be used to define independent factors associated with outbreaks' control. Heterogeneity between studies will be assessed by forest plots and I

  13. Persistence of antibiotic resistance: evaluation of a probiotic approach using antibiotic-sensitive Megasphaera elsdenii strains to prevent colonization of swine by antibiotic-resistant strains.

    Science.gov (United States)

    Stanton, Thad B; Humphrey, Samuel B

    2011-10-01

    Megasphaera elsdenii is a lactate-fermenting, obligately anaerobic bacterium commonly present in the gastrointestinal tracts of mammals, including humans. Swine M. elsdenii strains were previously shown to have high levels of tetracycline resistance (MIC=64 to >256 μg/ml) and to carry mosaic (recombinant) tetracycline resistance genes. Baby pigs inherit intestinal microbiota from the mother sow. In these investigations we addressed two questions. When do M. elsdenii strains from the sow colonize baby pigs? Can five antibiotic-sensitive M. elsdenii strains administered intragastrically to newborn pigs affect natural colonization of the piglets by antibiotic-resistant (AR) M. elsdenii strains from the mother? M. elsdenii natural colonization of newborn pigs was undetectable (pigs became colonized (4 × 10(5) to 2 × 10(8) CFU/g feces). In a separate study, 61% (76/125) of M. elsdenii isolates from a gravid sow never exposed to antibiotics were resistant to chlortetracycline, ampicillin, or tylosin. The inoculation of the sow's offspring with mixtures of M. elsdenii antibiotic-sensitive strains prevented colonization of the offspring by maternal AR strains until at least 11 days postweaning. At 25 and 53 days postweaning, however, AR strains predominated. Antibiotic susceptibility phenotypes and single nucleotide polymorphism (SNP)-based identities of M. elsdenii isolated from sow and offspring were unexpectedly diverse. These results suggest that dosing newborn piglets with M. elsdenii antibiotic-sensitive strains delays but does not prevent colonization by maternal resistant strains. M. elsdenii subspecies diversity offers an explanation for the persistence of resistant strains in the absence of antibiotic selection.

  14. Decellularized human amniotic membrane: more is needed for an efficient dressing for protection of burns against antibiotic-resistant bacteria isolated from burn patients.

    Science.gov (United States)

    Gholipourmalekabadi, M; Bandehpour, M; Mozafari, M; Hashemi, A; Ghanbarian, H; Sameni, M; Salimi, M; Gholami, M; Samadikuchaksaraei, A

    2015-11-01

    Human amniotic membranes (HAMs) have attracted the attention of burn surgeons for decades due to favorable properties such as their antibacterial activity and promising support of cell proliferation. On the other hand, as a major implication in the health of burn patients, the prevalence of bacteria resistant to multiple antibiotics is increasing due to overuse of antibiotics. The aim of this study was to investigate whether HAMs (both fresh and acellular) are an effective antibacterial agent against antibiotic-resistant bacteria isolated from burn patients. Therefore, a HAM was decellularized and tested for its antibacterial activity. Decellularization of the tissue was confirmed by hematoxylin and eosin (H&E) and 4,6-diamidino-2-phenylindole (DAPI) staining. In addition, the cyto-biocompatibility of the acellular HAM was proven by the cell viability test (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide, MTT) and scanning electron microscopy (SEM). The resistant bacteria were isolated from burns, identified, and tested for their susceptibility to antibiotics using both the antibiogram and polymerase chain reaction (PCR) techniques. Among the isolated bacteria, three blaIMP gene-positive Pseudomonas aeruginosa strains were chosen for their high resistance to the tested antibiotics. The antibacterial activity of the HAM was also tested for Klebsiella pneumoniae (American Type Culture Collection (ATCC) 700603) as a resistant ATCC bacterium; Staphylococcus aureus (mecA positive); and three standard strains of ATCC bacteria including Escherichia coli (ATCC 25922), Pseudomonas aeruginosa (ATCC 27833), and S. aureus (ATCC 25923). Antibacterial assay revealed that only the latter three bacteria were susceptible to the HAM. All the data obtained from this study suggest that an alternative strategy is required to complement HAM grafting in order to fully protect burns from nosocomial infections.

  15. Red cell enzymes.

    Science.gov (United States)

    Paniker, N V

    1975-03-01

    As compared to other cells of the body, the mammalian red cell has one of the simplest structural organizations. As a result, this cell has been extensively used in studies involving the structure, function, and integrity of cell membranes as well as cytoplasmic events. Additionally, the metabolic activities of the red blood cell are also relatively simple. During the past quarter century or so, an ocean of knowledge has been gathered on various aspects of red cell metabolism and function. The fields of enzymes, hemoglobin, membrane, and metabolic products comprise the major portion of this knowledge. These advances have made valuable contributions to biochemistry and medicine. Despite these favorable aspects of this simple, anucleated cell, it must be conceded that our knowledge about the red cell is far from complete. We are still in the dark concerning the mechanism involved in several aspects of its membrane, hemoglobin, enzymes, and a large number of other constituents. For example, a large number of enzymes with known catalytic activity but with unknown function have eluded investigators despite active pursuit. This review will be a consolidation of our present knowledge of human red cell enzymes, with particular reference to their usefulness in the diagnosis and therapy of disease. Owing to the multitude of publications by prominent investigators on each of the approximately 50 enzymes discussed in this review, it was impossible to cite a majority of them.

  16. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-01-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C → U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics. PMID:26465508

  17. Random-walk enzymes

    Science.gov (United States)

    Mak, Chi H.; Pham, Phuong; Afif, Samir A.; Goodman, Myron F.

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C →U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  18. Random-walk enzymes.

    Science.gov (United States)

    Mak, Chi H; Pham, Phuong; Afif, Samir A; Goodman, Myron F

    2015-09-01

    Enzymes that rely on random walk to search for substrate targets in a heterogeneously dispersed medium can leave behind complex spatial profiles of their catalyzed conversions. The catalytic signatures of these random-walk enzymes are the result of two coupled stochastic processes: scanning and catalysis. Here we develop analytical models to understand the conversion profiles produced by these enzymes, comparing an intrusive model, in which scanning and catalysis are tightly coupled, against a loosely coupled passive model. Diagrammatic theory and path-integral solutions of these models revealed clearly distinct predictions. Comparison to experimental data from catalyzed deaminations deposited on single-stranded DNA by the enzyme activation-induced deoxycytidine deaminase (AID) demonstrates that catalysis and diffusion are strongly intertwined, where the chemical conversions give rise to new stochastic trajectories that were absent if the substrate DNA was homogeneous. The C→U deamination profiles in both analytical predictions and experiments exhibit a strong contextual dependence, where the conversion rate of each target site is strongly contingent on the identities of other surrounding targets, with the intrusive model showing an excellent fit to the data. These methods can be applied to deduce sequence-dependent catalytic signatures of other DNA modification enzymes, with potential applications to cancer, gene regulation, and epigenetics.

  19. Enzyme recycling in lignocellulosic biorefineries

    DEFF Research Database (Denmark)

    Jørgensen, Henning; Pinelo, Manuel

    2017-01-01

    platform. Cellulases are the most important enzymes required in this process, but the complex nature of lignocellulose requires several other enzymes (hemicellulases and auxiliary enzymes) for efficient hydrolysis. Enzyme recycling increases the catalytic productivity of the enzymes by reusing them...... upscaled and tested in industrial settings, mainly because of many difficulties with recycling of enzymes from the complex lignocellulose hydrolyzate at industrially relevant conditions, i.e., high solids loadings. The challenges are associated with the large number of different enzymes required...... for efficient hydrolysis, enzyme stability, and the detrimental interaction between enzyme and lignin. This review provides a comprehensive overview of the various methods for enzyme recovery and recycling, for example recycling of free enzymes, readsorption to fresh material, recycling of solids, membrane...

  20. Entropy and Enzyme Catalysis.

    Science.gov (United States)

    Åqvist, Johan; Kazemi, Masoud; Isaksen, Geir Villy; Brandsdal, Bjørn Olav

    2017-02-21

    The role played by entropy for the enormous rate enhancement achieved by enzymes has been debated for many decades. There are, for example, several confirmed cases where the activation free energy is reduced by around 10 kcal/mol due to entropic effects, corresponding to a rate enhancement of ∼10(7) compared to the uncatalyzed reaction. However, despite substantial efforts from both the experimental and theoretical side, no real consensus has been reached regarding the origin of such large entropic contributions to enzyme catalysis. Another remarkable instance of entropic effects is found in enzymes that are adapted by evolution to work at low temperatures, near the freezing point of water. These cold-adapted enzymes invariably show a more negative entropy and a lower enthalpy of activation than their mesophilic orthologs, which counteracts the exponential damping of reaction rates at lower temperature. The structural origin of this universal phenomenon has, however, remained elusive. The basic problem with connecting macroscopic thermodynamic quantities, such as activation entropy and enthalpy derived from Arrhenius plots, to the 3D protein structure is that the underlying detailed (microscopic) energetics is essentially inaccessible to experiment. Moreover, attempts to calculate entropy contributions by computer simulations have mostly focused only on substrate entropies, which do not provide the full picture. We have recently devised a new approach for accessing thermodynamic activation parameters of both enzyme and solution reactions from computer simulations, which turns out to be very successful. This method is analogous to the experimental Arrhenius plots and directly evaluates the temperature dependence of calculated reaction free energy profiles. Hence, by extensive molecular dynamics simulations and calculations of up to thousands of independent free energy profiles, we are able to extract activation parameters with sufficient precision for making

  1. Angiotensin-converting enzyme

    DEFF Research Database (Denmark)

    Sørensen, P G; Rømer, F K; Cortes, D

    1984-01-01

    In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical or radiolog......In order to evaluate bleomycin-associated lung damage in humans, lung function parameters and serum levels of the endothelial-bound angiotensin-converting enzyme (ACE) were determined by serial measurements in 11 patients who were treated for testicular cancer. None developed clinical...

  2. Mitochondrial DNA A1555G mutation screening using a testing kit method and its significance in preventing aminoglycoside-related hearing loss

    Institute of Scientific and Technical Information of China (English)

    LIU Xin; YANG Weiyan; HAN Dongyi; JIN Zhengce; GUAN Minxin; DAI Pu; HUANG Deliang; YUAN Huijun; LI Weiming; YU Fei; ZHANG Xin; KANG Dongyang; CAO Juyang

    2006-01-01

    To report a new screening method for mitochondrial DNA 1555A→G mutation and the results of genotype analysis in 19 maternal inherited deafness pedigrees. Method Five hundred and forty-six non-syndromic neuro-sensory hearing loss patients were tested for 1555A→G mutation using a new compact testing kit, which allows clear distinction between wild type and 1555 A→G mutated mtDNAs. Results Nineteen subjects among the 546 patients (3.48%) were found to carry mtDNA A1555G mutation. The results were confirmed by sequencing in an ABI 3100 Avant sequencer. Conclusions Maternal inherited deafness families are a frequently seen in outpatient group. The detection ofmtDNA 1555 A→G mutation with a low cost, ready to use detection kit is needed and suitable in China for large scale screening and preventive testing before usage of aminoglycoside antibiotics.

  3. Detection of high-level aminoglycoside resistant pattern of Enterococci isolated from urine samples at a tertiary care hospital in Bengaluru

    Directory of Open Access Journals (Sweden)

    Smeeta Huidrom

    2016-01-01

    Full Text Available Aims: Enterococcus species are major nosocomial pathogens and they most commonly cause urinary tract infections (UTIs, exhibiting vancomycin and high-level aminoglycoside resistance (HLAR with increasing frequency, resulting in high mortality of patients with serious enterococcal infections. Detection of resistance is thus of paramount importance. The present study aims to detect and determine the HLAR pattern of Enterococci isolated from urine samples of patients diagnosed with UTI at our hospital. Materials and Methods: This study was carried out at a tertiary care hospital in Bengaluru for a period of 1 year from January 2013 to December 2013. A total of 105 enterococcal strains were isolated from urine samples and speciated as per the scheme of Facklam and Collins. Antibiotic susceptibility was determined for various drugs by Kirby–Bauer disc diffusion method. The results were interpreted as per the Clinical and Laboratory Standards Institute (CLSI guidelines. Results: Ninety-three of the 105 (88.6% isolates showed high-level resistance to gentamicin and/or streptomycin. Combined resistance to both the aminoglycosides, high level gentamicin and streptomycin (HLAR, was seen only in Enterococcus faecalis 20/105 (19.04%. Of the two isolates of Enterococcus faecium, 1 (50% was seen to be resistant to high level gentamicin. The HLAR E. faecalis and E. faecium isolates also showed concordant resistance to multiple antibiotics including vancomycin. Conclusion: This study highlights the need to screen for HLAR in patients suffering from enterococcal infections. Routine screening for HLAR is important to limit the spread of resistance and to have a surveillance program.

  4. Rapid analysis of aminoglycoside antibiotics in bovine tissues using disposable pipette extraction and ultrahigh performance liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Lehotay, Steven J; Mastovska, Katerina; Lightfield, Alan R; Nuñez, Alberto; Dutko, Terry; Ng, Chilton; Bluhm, Louis

    2013-10-25

    A high-throughput qualitative screening and identification method for 9 aminoglycosides of regulatory interest has been developed, validated, and implemented for bovine kidney, liver, and muscle tissues. The method involves extraction at previously validated conditions, cleanup using disposable pipette extraction, and analysis by a 3 min ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method. The drug analytes include neomycin, streptomycin, dihydrosptreptomycin, and spectinomycin, which have residue tolerances in bovine in the US, and kanamicin, gentamicin, apramycin, amikacin, and hygromycin, which do not have US tolerances established in bovine tissues. Tobramycin was used as an internal standard. An additional drug, paromomycin also was validated in the method, but it was dropped during implementation due to conversion of neomycin into paromomycin. Proposed fragmentation patterns for the monitored ions of each analyte were elucidated with the aid of high resolution MS using a quadrupole-time-of-flight instrument. Recoveries from spiking experiments at regulatory levels of concern showed that all analytes averaged 70-120% recoveries in all tissues, except hygromycin averaged 61% recovery. Lowest calibrated levels were as low as 0.005 μg/g in matrix extracts, which approximately corresponded to the limit of detection for screening purposes. Drug identifications at levels <0.05 μg/g were made in spiked and/or real samples for all analytes and tissues tested. Analyses of 60 samples from 20 slaughtered cattle previously screened positive for aminoglycosides showed that this method worked well in practice. The UHPLC-MS/MS method has several advantages compared to the previous microbial inhibition screening assay, especially for distinguishing individual drugs from a mixture and improving identification of gentamicin in tissue samples.

  5. The surface science of enzymes

    DEFF Research Database (Denmark)

    Rod, Thomas Holm; Nørskov, Jens Kehlet

    2002-01-01

    One of the largest challenges to science in the coming years is to find the relation between enzyme structure and function. Can we predict which reactions an enzyme catalyzes from knowledge of its structure-or from its amino acid sequence? Can we use that knowledge to modify enzyme function......? To solve these problems we must understand in some detail how enzymes interact with reactants from its surroundings. These interactions take place at the surface of the enzyme and the question of enzyme function can be viewed as the surface science of enzymes. In this article we discuss how to describe...... catalysis by enzymes, and in particular the analogies between enzyme catalyzed reactions and surface catalyzed reactions. We do this by discussing two concrete examples of reactions catalyzed both in nature (by enzymes) and in industrial reactors (by inorganic materials), and show that although analogies...

  6. Amperometric Enzyme Electrodes

    Science.gov (United States)

    1989-12-01

    form of carbon (glascy carbon, graphite, reticulated vitreous carbon, carbon paste, fiber or foil). Carbon is favored for enzyme immoblization...interference from spurious electroactive species in blood, t proprietary multilayer membranie that includes a cellulose acetate memirane and a Nucleopore

  7. Computational enzyme design

    Science.gov (United States)

    Bolon, Daniel N.

    2002-08-01

    The long-term objective of computational enzyme design is the ability to generate efficient protein catalysts for any chemical reaction. This thesis develops and experimentally validates a general computational approach for the design of enzymes with novel function. In order to include catalytic mechanism in protein design, a high-energy state (HES) rotamer (side chain representation) was constructed. In this rotamer, substrate atoms are in a HES. In addition, at least one amino acid side chain is positioned to interact favorably with substrate atoms in their HES and facilitate the reaction. Including an amino acid side chain in the HES rotamer automatically positions substrate relative to a protein scaffold and allows protein design algorithms to search for sequences capable of interacting favorably with the substrate. Because chemical similarity exists between the transition state and the high-energy state, optimizing the protein sequence to interact favorably with the HES rotamer should lead to transition state stabilization. In addition, the HES rotamer model focuses the subsequent computational active site design on a relevant phase space where an amino acid is capable of interacting in a catalytically active geometry with substrate. Using a HES rotamer model of the histidine mediated nucleophilic hydrolysis of p-nitrophenyl acetate, the catalytically inert 108 residue E. coli thioredoxin as a scaffold, and the ORBIT protein design software to compute sequences, an active site scan identified two promising active site designs. Experimentally, both candidate ?protozymes? demonstrated catalytic activity significantly above background. In addition, the rate enhancement of one of these ?protozymes? was the same order of magnitude as the first catalytic antibodies. Because polar groups are frequently buried at enzyme-substrate interfaces, improved modeling of buried polar interactions may benefit enzyme design. By studying native protein structures, rules have been

  8. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness.

    Science.gov (United States)

    Bar-Even, Arren; Milo, Ron; Noor, Elad; Tawfik, Dan S

    2015-08-18

    The pioneering model of Henri, Michaelis, and Menten was based on the fast equilibrium assumption: the substrate binds its enzyme reversibly, and substrate dissociation is much faster than product formation. Here, we examine this assumption from a somewhat different point of view, asking what fraction of enzyme-substrate complexes are futile, i.e., result in dissociation rather than product formation. In Knowles' notion of a "perfect" enzyme, all encounters of the enzyme with its substrate result in conversion to product. Thus, the perfect enzyme's catalytic efficiency, kcat/KM, is constrained by only the diffusion on-rate, and the fraction of futile encounters (defined as φ) approaches zero. The available data on >1000 different enzymes suggest that for ≥90% of enzymes φ > 0.99 and for the "average enzyme" φ ≥ 0.9999; namely, <1 of 10(4) encounters is productive. Thus, the "fast equilibrium" assumption holds for the vast majority of enzymes. We discuss possible molecular origins for the dominance of futile encounters, including the coexistence of multiple sub-states of an enzyme's active site (enzyme floppiness) and/or its substrate. Floppiness relates to the inherent flexibility of proteins, but also to conflicting demands, or trade-offs, between rate acceleration (the rate-determining chemical step) and catalytic turnover, or between turnover rate and accuracy. The study of futile encounters and active-site floppiness may contribute to a better understanding of enzyme catalysis, enzyme evolution, and improved enzyme design.

  9. Halophilic adaptation of enzymes.

    Science.gov (United States)

    Madern, D; Ebel, C; Zaccai, G

    2000-04-01

    It is now clear that the understanding of halophilic adaptation at a molecular level requires a strategy of complementary experiments, combining molecular biology, biochemistry, and cellular approaches with physical chemistry and thermodynamics. In this review, after a discussion of the definition and composition of halophilic enzymes, the effects of salt on their activity, solubility, and stability are reviewed. We then describe how thermodynamic observations, such as parameters pertaining to solvent-protein interactions or enzyme-unfolding kinetics, depend strongly on solvent composition and reveal the important role played by water and ion binding to halophilic proteins. The three high-resolution crystal structures now available for halophilic proteins are analyzed in terms of haloadaptation, and finally cellular response to salt stress is discussed briefly.

  10. The effects of N-acylhomoserine lactones, β-lactam antibiotics and adenosine on biofilm formation in the multi-β-lactam antibiotic-resistant bacterium Acidovorax sp. strain MR-S7.

    Science.gov (United States)

    Kusada, Hiroyuki; Hanada, Satoshi; Kamagata, Yoichi; Kimura, Nobutada

    2014-07-01

    Bacteria in the natural ecosystem frequently live as adherent communities called biofilms. Some chemical compounds are known to affect biofilm formation. We investigated the effect of exogenous small molecules, N-acylhomoserine lactones (AHLs), β-lactam antibiotics, and adenosine, on biofilm formation in the β-lactam antibiotic-resistant bacterium Acidovorax sp. strain MR-S7. Biofilm formation was induced by the addition of various types of AHL isomers and β-lactam antibiotics, whereas the addition of adenosine strongly interfered with the biofilm formation. A gene (macP) encoding adenosine deaminase (that converts adenosine to inosine controlling intracellular adenosine concentration) was successfully cloned from MR-S7 genome and heterologously expressed in Escherichia coli. The purified MacP protein clearly catalyzed the deamination of adenosine to produce inosine. A transcriptional analysis revealed that biofilm-inducing molecules, an AHL and a β-lactam antibiotic, strongly induced not only biofilm formation but also adenosine deaminase gene expression, suggesting that an elaborate gene regulation network for biofilm formation is present in the β-lactam antibiotic-resistant bacterium studied here.

  11. Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest.

    Science.gov (United States)

    Rahube, Teddie O; Marti, Romain; Scott, Andrew; Tien, Yuan-Ching; Murray, Roger; Sabourin, Lyne; Zhang, Yun; Duenk, Peter; Lapen, David R; Topp, Edward

    2014-11-01

    The consumption of crops fertilized with human waste represents a potential route of exposure to antibiotic-resistant fecal bacteria. The present study evaluated the abundance of bacteria and antibiotic resistance genes by using both culture-dependent and molecular methods. Various vegetables (lettuce, carrots, radish, and tomatoes) were sown into field plots fertilized inorganically or with class B biosolids or untreated municipal sewage sludge and harvested when of marketable quality. Analysis of viable pathogenic bacteria or antibiotic-resistant coliform bacteria by plate counts did not reveal significant treatment effects of fertilization with class B biosolids or untreated sewage sludge on the vegetables. Numerous targeted genes associated with antibiotic resistance and mobile genetic elements were detected by PCR in soil and on vegetables at harvest from plots that received no organic amendment. However, in the season of application, vegetables harvested from plots treated with either material carried gene targets not detected in the absence of amendment. Several gene targets evaluated by using quantitative PCR (qPCR) were considerably more abundant on vegetables harvested from sewage sludge-treated plots than on vegetables from control plots in the season of application, whereas vegetables harvested the following year revealed no treatment effect. Overall, the results of the present study suggest that producing vegetable crops in ground fertilized with human waste without appropriate delay or pretreatment will result in an additional burden of antibiotic resistance genes on harvested crops. Managing human exposure to antibiotic resistance genes carried in human waste must be undertaken through judicious agricultural practice.

  12. Treating Wastewater With Immobilized Enzymes

    Science.gov (United States)

    Jolly, Clifford D.

    1991-01-01

    Experiments show enzymes are immobilized on supporting materials to make biocatalyst beds for treatment of wastewater. With suitable combination of enzymes, concentrations of various inorganic and organic contaminants, including ammonia and urea, reduced significantly.

  13. Prevalence of 16S rRNA methylase, modifying enzyme, and extended-spectrum beta-lactamase genes among Acinetobacter baumannii isolates.

    Science.gov (United States)

    Liu, Zhenru; Ling, Baodong; Zhou, Liming

    2015-08-01

    Multidrug-resistant Acinetobacter baumannii has become a worldwide problem, and methylation of 16S rRNA has recently emerged as a new mechanism of resistance to aminoglycosides, which is mediated by a newly recognized group of 16S rRNA methylases. 16S rRNA methylase confers a high-level resistance to all 4,6-substituted deoxystreptamine aminoglycosides that are currently used in clinical practice. Some of the A. baumannii isolates have been found to coproduce extended-spectrum beta-lactamases (ESBLs), contributing to their multidrug resistance. The aim of this study was to detect the determinants of the 16S rRNA methylase genes armA, rmtA, rmtB, rmtC, rmtD, rmtE, and npmA, the modifying enzyme genes aac(6')-Ib, ant(3″)-Ia, aph(3')-I, and the extended-spectrum beta-lactamase genes bla(TEM), bla(SHV), and bla(CTX-M-3) among A. baumannii isolates in northeastern Sichuan, China. Minimum inhibitory concentrations (MICs) of 21 different antimicrobial agents against the A. baumannii isolates were determined. The clinical isolates showed a high level of resistance (MIC≧256 μg/ml) to aminoglycosides, which ranged from 50·1 to 83·8%. The resistances to meropenem and imipenem, two of the beta-lactam antibiotics and the most active antibiotics against A. baumannii, were 9·1 and 8·2%, respectively. Among 60 amikacin-resistant isolates, only the 16S rRNA methylase gene armA was found to be prevalent (66·7%), but the other 16S rRNA methylase genes rmtA, rmtB, rmtC, rmtD, rmtE, and npmA were not detected. The prevalences of the modifying enzyme genes aac (6')-Ib, ant (3″)-Ia, and aph (3')-I were 51·7, 81·7, and 58·3%, respectively, which are different from a previous study in which the occurrences of these genes were 3, 64, and 72%, respectively. Among the 40 isolates that were armA-positive, the prevalences of bla(TEM), bla(SHV), and bla(CTX-M-3) genes were detected for the first time in China, and their occurrences were 45, 65, and 52·5%, respectively. In all, A

  14. The Catalytic Function of Enzymes.

    Science.gov (United States)

    Splittgerber, Allan G.

    1985-01-01

    Discusses: structure of the enzyme molecule; active site; reaction mechanism; transition state; factors affecting enzyme reaction rates, concentration of enzyme; concentration of substrate; product concentration; temperature effects and pH effects; factors causing a lowering of activation energy; proximity and orientation effects; substrate strain…

  15. Kinetic Measurements for Enzyme Immobilization.

    Science.gov (United States)

    Cooney, Michael J

    2017-01-01

    Enzyme kinetics is the study of the chemical reactions that are catalyzed by enzymes, with a focus on their reaction rates. The study of an enzyme's kinetics considers the various stages of activity, reveals the catalytic mechanism of this enzyme, correlates its value to assay conditions, and describes how a drug or a poison might inhibit the enzyme. Victor Henri initially reported that enzyme reactions were initiated by a bond between the enzyme and the substrate. By 1910, Michaelis and Menten were advancing their work by studying the kinetics of an enzyme saccharase which catalyzes the hydrolysis of sucrose into glucose and fructose. They published their analysis and ever since the Michaelis-Menten equation has been used as the standard to describe the kinetics of many enzymes. Unfortunately, soluble enzymes must generally be immobilized to be reused for long times in industrial reactors. In addition, other critical enzyme properties have to be improved like stability, activity, inhibition by reaction products, and selectivity towards nonnatural substrates. Immobilization is by far the chosen process to achieve these goals.Although the Michaelis-Menten approach has been regularly adapted to the analysis of immobilized enzyme activity, its applicability to the immobilized state is limited by the barriers the immobilization matrix places upon the measurement of compounds that are used to model enzyme kinetics. That being said, the estimated value of the Michaelis-Menten coefficients (e.g., V max, K M) can be used to evaluate effects of immobilization on enzyme activity in the immobilized state when applied in a controlled manner. In this review enzyme activity and kinetics are discussed in the context of the immobilized state, and a few novel protocols are presented that address some of the unique constraints imposed by the immobilization barrier.

  16. Preliminary survey of antibiotic-resistant fecal indicator bacteria and pathogenic Escherichia coli from river-water samples collected in Oakland County, Michigan, 2003

    Science.gov (United States)

    Fogarty, Lisa R.; Duris, Joseph W.; Aichele, Stephen S.

    2005-01-01

    detected in bacteria from multiple sites in Oakland County but not detected in bacteria from the reference sites. Integrons capable of transferring resistance were detected in isolates from the River Rouge and Clinton River. E. faecium and E. faecalis identified in samples collected from Kearsley Creek and Evans Ditch were resistant to high levels of vancomycin and carried transferable genes responsible for resistance. Several sites in Oakland County had indicators of pathogenic E. coli in August and (or) September 2003. Two samples from the Clinton River in August tested positive for all three E. coli O157 tests. Both the August and September samples from one River Rouge site were positive for the immunological and molecular assay for E. coli O157. A combination of virulence genes commonly associated with human illness was detected at five sites in August and seven sites in September. Antibiotic-resistance profiles of clinical concern along with genes capable of transferring the resistance were found at several sites throughout Oakland County; samples from many of these sites also contained potentially pathogenic E. coli.

  17. High-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium causing invasive infection: Twelve-year surveillance in the Minami Ibaraki Area.

    Science.gov (United States)

    Osuka, Hanako; Nakajima, Jun; Oishi, Tsuyoshi; Funayama, Yasunori; Ebihara, Tsugio; Ishikawa, Hiroichi; Saito, Kazuto; Koganemaru, Hiroshi; Hitomi, Shigemi

    2016-01-01

    We examined prevalence of high-level aminoglycoside resistance (HLAR) in Enterococcus faecalis and Enterococcus faecium causing invasive infection in the Minami Ibaraki Area. Ten strains of both species each, recovered from the blood or the cerebrospinal fluid between 2003 and 2014, were randomly selected every year. High-level resistance to gentamicin (HLR-GM) and streptomycin (HLR-SM) was detected in 34% (41 of 120 strains) and 18% (21) of E. faecalis and 9% (11) and 39% (48) of E. faecium, respectively. In comparisons of the proportions among three four-year periods, HLR-SM among E. faecium was significantly lower in the 2011-2014 period. All strains with HLR-GM were positive for the aac(6')-Ie-aph(2″)-Ia gene. The ant(6')-Ia gene was detected in all with HLR-SM except for one E. faecalis strain. The present study showed that prevalence of HLR-GM among E. faecalis and E. faecium causing invasive infection in this area was nearly equivalent to that described in previous studies in Japan and that proportions of strains with HLAR did not vary during the study period except for that of HLR-SM among E. faecium.

  18. A Site-Specific Integrative Plasmid Found in Pseudomonas aeruginosa Clinical Isolate HS87 along with A Plasmid Carrying an Aminoglycoside-Resistant Gene.

    Directory of Open Access Journals (Sweden)

    Dexi Bi

    Full Text Available Plasmids play critical roles in bacterial fitness and evolution of Pseudomonas aeruginosa. Here two plasmids found in a drug-resistant P. aeruginosa clinical isolate HS87 were completely sequenced. The pHS87b plasmid (11.2 kb carries phage-related genes and function-unknown genes. Notably, pHS87b encodes an integrase and has an adjacent tRNAThr-associated attachment site. A corresponding integrated form of pHS87b at the tRNAThr locus was identified on the chromosome of P. aeruginosa, showing that pHS87b is able to site-specifically integrate into the 3'-end of the tRNAThr gene. The pHS87a plasmid (26.8 kb displays a plastic structure containing a putative replication module, stability factors and a variable region. The RepA of pHS87a shows significant similarity to the replication proteins of pPT23A-family plasmids. pHS87a carries a transposon Tn6049, a truncated insertion sequence ΔIS1071 and a Tn402-like class 1 integron which contains an aacA4 cassette that may confer aminoglycoside resistance. Thus, pHS87b is a site-specific integrative plasmid whereas pHS87a is a plastic antibiotic resistance plasmid. The two native plasmids may promote the fitness and evolution of P. aeruginosa.

  19. Resonance Rayleigh scattering and resonance non-linear scattering method for the determination of aminoglycoside antibiotics with water solubility CdS quantum dots as probe

    Science.gov (United States)

    Liu, Zhengwen; Liu, Shaopu; Wang, Lei; Peng, Juanjuan; He, Youqiu

    2009-09-01

    In pH 6.6 Britton-Robinson buffer medium, the CdS quantum dots capped by thioglycolic acid could react with aminoglycoside (AGs) antibiotics such as neomycin sulfate (NEO) and streptomycin sulfate (STP) to form the large aggregates by virtue of electrostatic attraction and the hydrophobic force, which resulted in a great enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering such as second-order scattering (SOS) and frequency doubling scattering (FDS). The maximum scattering peak was located at 310 nm for RRS, 568 nm for SOS and 390 nm for FDS, respectively. The enhancements of scattering intensity (Δ I) were directly proportional to the concentration of AGs in a certain ranges. A new method for the determination of trace NEO and STP using CdS quantum dots probe was developed. The detection limits (3 σ) were 1.7 ng mL -1 (NEO) and 4.4 ng mL -1 (STP) by RRS method, were 5.2 ng mL -1 (NEO) and 20.9 ng mL -1 (STP) by SOS method and were 4.4 ng mL -1 (NEO) and 25.7 ng mL -1 (STP) by FDS method, respectively. The sensitivity of RRS method was the highest. The optimum conditions and influence factors were investigated. In addition, the reaction mechanism was discussed.

  20. Aminoglycosides block the Kv3.1 potassium channel and reduce the ability of inferior colliculus neurons to fire at high frequencies.

    Science.gov (United States)

    Liu, Si-Qiong J; Kaczmarek, Leonard K

    2005-03-01

    The Kv3.1 potassium channel is expressed at high levels in auditory nuclei and contributes to the ability of auditory neurons to fire at high frequencies. We have tested the effects of streptomycin, an agent that produces progressive hearing loss, on the firing properties of inferior colliculus neurons and on Kv3.1 currents in transfected cells. We found that in inferior colliculus neurons, intracellular streptomycin decreased the current density of a high threshold, noninactivating outward current and reduced the rate of repolarization of action potentials and the ability of these neurons to fire at high frequencies. Furthermore, potassium current in CHO cells transfected with the Kv3.1 gene was reduced by 50% when cells were cultured in the presence of streptomycin or when streptomycin was introduced intracellularly in the pipette solution. In the presence of intracellular streptomycin, the activation rate of Kv3.1 current increased and inhibition by extracellular TEA become voltage-dependent. The data indicate that streptomycin inhibits Kv3.1 currents by inducing a conformational change in the Kv3.1 channel. The hearing loss caused by aminoglycoside antibiotics may be partially mediated by their inhibition of Kv3.1 current in auditory neurons.

  1. Measuring the Enzyme Activity of Arabidopsis Deubiquitylating Enzymes.

    Science.gov (United States)

    Kalinowska, Kamila; Nagel, Marie-Kristin; Isono, Erika

    2016-01-01

    Deubiquitylating enzymes, or DUBs, are important regulators of ubiquitin homeostasis and substrate stability, though the molecular mechanisms of most of the DUBs in plants are not yet understood. As different ubiquitin chain types are implicated in different biological pathways, it is important to analyze the enzyme characteristic for studying a DUB. Quantitative analysis of DUB activity is also important to determine enzyme kinetics and the influence of DUB binding proteins on the enzyme activity. Here, we show methods to analyze DUB activity using immunodetection, Coomassie Brilliant Blue staining, and fluorescence measurement that can be useful for understanding the basic characteristic of DUBs.

  2. 噬菌体治疗耐药性幽门螺杆菌的研究进展%Advances of phage therapy in antibiotic-resistant Helicobacter pylori infection

    Institute of Scientific and Technical Information of China (English)

    熊婧; 白杨

    2011-01-01

    幽门螺杆菌感染是胃癌重要致病因子.目前,幽门螺杆菌对抗生素耐药情况日趋普遍.噬菌体治疗作为一种生物疗法在治疗幽门螺杆菌方面有极大的潜力.本文就噬菌体治疗耐药性幽门螺杆菌的现状及趋势进行综述.%Helicobacter pylori (H. pylori) infection is one of the most important risk factors leading to gastric cancer.To date, it has been more and more popular that H. pylori is resistant to antibiotics. Phage therapy has a great advantages in control of H. pylori infection. In this article, we will review the advance of phage therapy in antibiotic-resistant H.pylori infection.

  3. Enzyme Molecules in Solitary Confinement

    Directory of Open Access Journals (Sweden)

    Raphaela B. Liebherr

    2014-09-01

    Full Text Available Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  4. Enzyme molecules in solitary confinement.

    Science.gov (United States)

    Liebherr, Raphaela B; Gorris, Hans H

    2014-09-12

    Large arrays of homogeneous microwells each defining a femtoliter volume are a versatile platform for monitoring the substrate turnover of many individual enzyme molecules in parallel. The high degree of parallelization enables the analysis of a statistically representative enzyme population. Enclosing individual enzyme molecules in microwells does not require any surface immobilization step and enables the kinetic investigation of enzymes free in solution. This review describes various microwell array formats and explores their applications for the detection and investigation of single enzyme molecules. The development of new fabrication techniques and sensitive detection methods drives the field of single molecule enzymology. Here, we introduce recent progress in single enzyme molecule analysis in microwell arrays and discuss the challenges and opportunities.

  5. Heat Stable Enzymes from Thermophiles

    Science.gov (United States)

    1998-02-01

    ultrafiltration and microfiltration that might be suitable. These utilize hollow fiber membranes manufactured in such a manner that they are free of...words) Alkaline phosphatase is widely used in the military and civilian sectors . Commercially available enzyme from calf intestine is the weak link in...widely used enzymes with numerous uses in both the military and civilian sectors . The commercially available enzyme from calf intestine breaks down

  6. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  7. Multi-enzyme Process Modeling

    DEFF Research Database (Denmark)

    Andrade Santacoloma, Paloma de Gracia

    The subject of this thesis is to develop a methodological framework that can systematically guide mathematical model building for better understanding of multi-enzyme processes. In this way, opportunities for process improvements can be identified by analyzing simulations of either existing...... are affected (in a positive or negative way) by the presence of the other enzymes and compounds in the media. In this thesis the concept of multi-enzyme in-pot term is adopted for processes that are carried out by the combination of enzymes in a single reactor and implemented at pilot or industrial scale...

  8. Digestive Enzyme Replacement Therapy: Pancreatic Enzymes and Lactase.

    Science.gov (United States)

    Felicilda-Reynaldo, Rhea Faye D; Kenneally, Maria

    2016-01-01

    Maldigestion occurs when digestive enzymes are lacking to help break complex food components into absorbable nutrients within the gastrointestinal tract. Education is needed to help patients manage the intricacies of digestive enzyme replacement therapies and ensure their effectiveness in reducing symptoms of maldigestion.

  9. [The rise of enzyme engineering in China].

    Science.gov (United States)

    Li, Gaoxiang

    2015-06-01

    Enzyme engineering is an important part of the modern biotechnology. Industrial biocatalysis is considered the third wave of biotechnology following pharmaceutical and agricultural waves. In 25 years, China has made a mighty advances in enzyme engineering research. This review focuses on enzyme genomics, enzyme proteomics, biosynthesis, microbial conversion and biosensors in the Chinese enzyme engineering symposiums and advances in enzyme preparation industry in China.

  10. Deubiquitylating enzymes and disease

    Directory of Open Access Journals (Sweden)

    Baker Rohan T

    2008-10-01

    Full Text Available Abstract Deubiquitylating enzymes (DUBs can hydrolyze a peptide, amide, ester or thiolester bond at the C-terminus of UBIQ (ubiquitin, including the post-translationally formed branched peptide bonds in mono- or multi-ubiquitylated conjugates. DUBs thus have the potential to regulate any UBIQ-mediated cellular process, the two best characterized being proteolysis and protein trafficking. Mammals contain some 80–90 DUBs in five different subfamilies, only a handful of which have been characterized with respect to the proteins that they interact with and deubiquitylate. Several other DUBs have been implicated in various disease processes in which they are changed by mutation, have altered expression levels, and/or form part of regulatory complexes. Specific examples of DUB involvement in various diseases are presented. While no specific drugs targeting DUBs have yet been described, sufficient functional and structural information has accumulated in some cases to allow their rapid development. Publication history Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com.

  11. Computational enzyme design: transitioning from catalytic proteins to enzymes.

    Science.gov (United States)

    Mak, Wai Shun; Siegel, Justin B

    2014-08-01

    The widespread interest in enzymes stem from their ability to catalyze chemical reactions under mild and ecologically friendly conditions with unparalleled catalytic proficiencies. While thousands of naturally occurring enzymes have been identified and characterized, there are still numerous important applications for which there are no biological catalysts capable of performing the desired chemical transformation. In order to engineer enzymes for which there is no natural starting point, efforts using a combination of quantum chemistry and force-field based protein molecular modeling have led to the design of novel proteins capable of catalyzing chemical reactions not catalyzed by naturally occurring enzymes. Here we discuss the current status and potential avenues to pursue as the field of computational enzyme design moves forward.

  12. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    DEFF Research Database (Denmark)

    Biran, Suzan; Bach, Poul; Simonsen, Ole

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care...... particles. However, enzymes may loose a significant part of their activity over a time period of several weeks. Possible causes of inactivation of enzymes in a granule may be related to the release of hydrogen peroxide from the bleaching chemicals in a moisture-containing atmosphere, humidity, autolysis...... and humidity by bubbling nitrogen gas through their corresponding solutions. An enzyme column, acting as a plug-flow reactor, was exposed to known concentrations of H2O2 (g) and humidity in a thermally stabilized chamber. Samples were analyzed for adsorptive behavior and residual enzyme activity. Since...

  13. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds

    DEFF Research Database (Denmark)

    Baggesen, Dorte Lau; Aarestrup, Frank Møller

    1998-01-01

    A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S...... electrophoresis (PFGE) using the restriction enzyme Xba I, Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance...

  14. [Development and application of indirect competitive enzyme immunoassay for detection of neomycin in milk].

    Science.gov (United States)

    Burkin, M A; Gal'vidis, I A

    2011-01-01

    As a result of immunization of rabbits with neomycin B (N M) conjugated to periodate-oxidized transferrin, polyclonal antibodies were generated and used to develop an indirect competitive enzyme-linked immunosorbent assay (ELISA) of NM. Several heterologous conjugates, namely, glutaraldehyde (GA)-polymerized NM, gelatin-ribostamycin (sp), and gelatin-NM (ga) were used as coating antigens in different ELISA variants for quantification of NM in milk. These variants were characterized by different dynamic ranges and detection limits of 1.0, 0.1, and 0.01 ng/ml, respectively. Maximum residue level (MRL) of this antibiotic in milk accepted in the EU can be detected without any special pretreatment at a 100-fold sample dilution in the least sensitive assay variant. The mean recovery rate from NM-spiked milk containing 1.5-10% fat was 111.7% and ranged from 84 to 125.2%. We found that 57 of 106 tested milk samples contained NM at concentrations higher than 100 ng/ml. In ten percent of cases (11/1 06), the residual level of this antibiotic was greater than 500 ng/ml. In one case, the M RL was exceeded (1690 ng/ml). The assay developed in this study is specific shows no cross-reactivity with other veterinary aminoglycosides, has a good sensitivity reserve, and can serve as an effective tool to monitor the NM content in milk stuff.

  15. Enzymic hydrolysis of chlorella cells

    Energy Technology Data Exchange (ETDEWEB)

    Khraptsova, G.I.; Tsaplina, I.A.; Burdenko, L.G.; Khoreva, S.L.; Loginova, L.G.

    1981-01-01

    Treatment of C. ellipsoidea, C. pyrenoidosa, and C. vulgaris with cellulolytic enzymes (from Aspergillus terreus) and pectofoetidin p10x (from A. foetidus) resulted in the degradation and lysis of the algae cells. The cells were more sensitive to cellulase than to pectinase. The combination of both enzymes produced a synergistic effect on cell lysis.

  16. Phage lytic enzymes: a history

    Institute of Scientific and Technical Information of China (English)

    David; Trudil

    2015-01-01

    There are many recent studies regarding the efficacy of bacteriophage-related lytic enzymes: the enzymes of ‘bacteria-eaters’ or viruses that infect bacteria. By degrading the cell wall of the targeted bacteria, these lytic enzymes have been shown to efficiently lyse Gram-positive bacteria without affecting normal flora and non-related bacteria. Recent studies have suggested approaches for lysing Gram-negative bacteria as well(Briersa Y, et al., 2014). These enzymes include: phage-lysozyme, endolysin, lysozyme, lysin, phage lysin, phage lytic enzymes, phageassociated enzymes, enzybiotics, muralysin, muramidase, virolysin and designations such as Ply, PAE and others. Bacteriophages are viruses that kill bacteria, do not contribute to antimicrobial resistance, are easy to develop, inexpensive to manufacture and safe for humans, animals and the environment. The current focus on lytic enzymes has been on their use as anti-infectives in humans and more recently in agricultural research models. The initial translational application of lytic enzymes, however, was not associated with treating or preventing a specifi c disease but rather as an extraction method to be incorporated in a rapid bacterial detection assay(Bernstein D, 1997).The current review traces the translational history of phage lytic enzymes–from their initial discovery in 1986 for the rapid detection of group A streptococcus in clinical specimens to evolving applications in the detection and prevention of disease in humans and in agriculture.

  17. Statistical Mechanics of Allosteric Enzymes.

    Science.gov (United States)

    Einav, Tal; Mazutis, Linas; Phillips, Rob

    2016-07-07

    The concept of allostery in which macromolecules switch between two different conformations is a central theme in biological processes ranging from gene regulation to cell signaling to enzymology. Allosteric enzymes pervade metabolic processes, yet a simple and unified treatment of the effects of allostery in enzymes has been lacking. In this work, we take a step toward this goal by modeling allosteric enzymes and their interaction with two key molecular players-allosteric regulators and competitive inhibitors. We then apply this model to characterize existing data on enzyme activity, comment on how enzyme parameters (such as substrate binding affinity) can be experimentally tuned, and make novel predictions on how to control phenomena such as substrate inhibition.

  18. Moonlighting enzymes in parasitic protozoa.

    Science.gov (United States)

    Collingridge, Peter W; Brown, Robert W B; Ginger, Michael L

    2010-08-01

    Enzymes moonlight in a non-enzymatic capacity in a diverse variety of cellular processes. The discovery of these non-enzymatic functions is generally unexpected, and moonlighting enzymes are known in both prokaryotes and eukaryotes. Importantly, this unexpected multi-functionality indicates that caution might be needed on some occasions in interpreting phenotypes that result from the deletion or gene-silencing of some enzymes, including some of the best known enzymes from classic intermediary metabolism. Here, we provide an overview of enzyme moonlighting in parasitic protists. Unequivocal and putative examples of moonlighting are discussed, together with the possibility that the unusual biological characteristics of some parasites either limit opportunities for moonlighting to arise or perhaps contribute to the evolution of novel proteins with clear metabolic ancestry.

  19. Exploring the possibilities of capacitively coupled contactless conductivity detection in combination with liquid chromatography for the analysis of polar compounds using aminoglycosides as test case.

    Science.gov (United States)

    Jankovics, Péter; Chopra, Shruti; El-Attug, Mohamed N; Cabooter, Deirdre; Wolfs, Kris; Noszál, Béla; Van Schepdael, Ann; Adams, Erwin

    2015-08-10

    The analysis of highly polar (often charged) compounds which lack a strong UV absorbing chromophore is really challenging. Despite the numerous analytical methods published, the demand for a simple, robust and cheap technique for their analysis still persists. Here, reversed phase (RP) liquid chromatography (LC) with capacitively coupled contactless conductivity detection (C(4)D) was explored for the first time as a possible method for separation and detection of various aminoglycoside (AMG) antibiotics which were taken as typical test compounds: tobramycin (TOB), spectinomycin, streptomycin, amikacin, kanamycin A and kanamycin B. C(4)D was performed using a commercially available as well as a laboratory made cell. As ion-pairing reagents (IPR) four perfluorinated carboxylic acids were used: pentafluoropropionic acid, heptafluorobutyric acid, nonafluoropentanoic acid (NFPA) and pentadecafluorooctanoic acid (PDFOA). 0.125 mM NFPA-acetonitrile (ACN) (90:10) or 0.125 mM PDFOA-ACN (70:30) as mobile phases were suitable to detect TOB with reasonable retention times. However, NFPA was preferred for practical reasons. Its applicable concentration range in the mobile phase was strongly restricted by loss of chromatographic performance at lower levels and excessive background conductivity at higher levels. Overall repeatability and robustness of the method were rather poor which was explained by the relatively low IPR levels. Selectivity between the tested AMGs was mainly influenced by the number of protonated amino groups per molecule making it impossible to separate compounds of equal net charges. Problems encountered with gradient elution, hydrophilic interaction liquid chromatography (HILIC) and separation at high pH without IPRs are also discussed.

  20. Comparative Evaluation of Sloppy Molecular Beacon and Dual-Labeled Probe Melting Temperature Assays to Identify Mutations in Mycobacterium tuberculosis Resulting in Rifampin, Fluoroquinolone and Aminoglycoside Resistance.

    Directory of Open Access Journals (Sweden)

    Sandy S Roh

    Full Text Available Several molecular assays to detect resistance to Rifampin, the Fluoroquinolones, and Aminoglycosides in Mycobacterium tuberculosis (M. tuberculosis have been recently described. A systematic approach for comparing these assays in the laboratory is needed in order to determine the relative advantage of each assay and to decide which ones should be advanced to evaluation. We performed an analytic comparison of a Sloppy Molecular Beacon (SMB melting temperature (Tm assay and a Dual labeled probe (DLP Tm assay. Both assays targeted the M. tuberculosis rpoB, gyrA, rrs genes and the eis promoter region. The sensitivity and specificity to detect mutations, analytic limit of detection (LOD and the detection of heteroresistance were tested using a panel of 56 clinical DNA samples from drug resistant M. tuberculosis strains. Both SMB and DLP assays detected 29/29 (100% samples with rpoB RRDR mutations and 3/3 (100% samples with eis promoter mutations correctly. The SMB assay detected all 17/17 gyrA mutants and 22/22 rrs mutants, while the DLP assay detected 16/17 (94% gyrA mutants and 12/22 (55% rrs mutants. Both assays showed comparable LODs for detecting rpoB and eis mutations; however, the SMB assay LODs were at least two logs better for detecting wild type and mutants in gyrA and rrs targets. The SMB assay was also moderately better at detecting heteroresistance. In summary, both assays appeared to be promising methods to detect drug resistance associated mutations in M. tuberculosis; however, the relative advantage of each assay varied under each test condition.

  1. Beneficial antimicrobial effect of the addition of an aminoglycoside to a β-lactam antibiotic in an E. coli porcine intensive care severe sepsis model.

    Directory of Open Access Journals (Sweden)

    Paul Skorup

    Full Text Available This study aimed to determine whether the addition of an aminoglycoside to a ß-lactam antibiotic increases the antimicrobial effect during the early phase of Gram-negative severe sepsis/septic shock. A porcine model was selected that considered each animal's individual blood bactericidal capacity. Escherichia coli, susceptible to both antibiotics, was given to healthy pigs intravenously during 3 h. At 2 h, the animals were randomized to a 20-min infusion with either cefuroxime alone (n = 9, a combination of cefuroxime+tobramycin (n = 9, or saline (control, n = 9. Blood samples were collected hourly for cultures and quantitative polymerase chain reaction (PCR. Bacterial growth in the organs after 6 h was chosen as the primary endpoint. A blood sample was obtained at baseline before start of bacterial infusion for ex vivo investigation of the blood bactericidal capacity. At 1 h after the administration of the antibiotics, a second blood sample was taken for ex vivo investigation of the antibiotic-induced blood killing activity. All animals developed severe sepsis/septic shock. Blood cultures and PCR rapidly became negative after completed bacterial infusion. Antibiotic-induced blood killing activity was significantly greater in the combination group than in the cefuroxime group (p<0.001. Growth of bacteria in the spleen was reduced in the two antibiotic groups compared with the controls (p<0.01; no difference was noted between the two antibiotic groups. Bacterial growth in the liver was significantly less in the combination group than in the cefuroxime group (p<0.05. High blood bactericidal capacity at baseline was associated with decreased growth in the blood and spleen (p<0.05. The addition of tobramycin to cefuroxime results in increased antibiotic-induced blood killing activity and less bacteria in the liver than cefuroxime alone. Individual blood bactericidal capacity may have a significant effect on antimicrobial outcome.

  2. Study on risk factors for nosocomial infections caused by high-level aminoglycoside-resistant Enterococcus and aminoglycoside resistance-related genes%耐氨基苷类高水平肠球菌医院感染的危险因素及氨基糖苷类耐药相关基因研究

    Institute of Scientific and Technical Information of China (English)

    范建中; 周田美; 董晓勤; 王贤军

    2012-01-01

    目的 了解耐氨基糖苷类高水平肠球菌(HLAR)的耐药性和医院感染的危险因素,研究HLAR氨基糖苷类耐药相关基因类型分布.方法 采用全自动微生物鉴定仪VITEK-AMS对857株肠球菌属进行鉴定及抗菌药物敏感性检测;PCR法检测HLAR氨基糖苷类耐药相关基因,并对PCR结果进行测序分析.结果 肠球菌属中HLAR占50.4%,利奈唑胺、万古霉素和替考拉宁对HLAR的抗菌作用最好,但有3株屎肠球菌对万古霉素和替考拉宁耐药,粪肠球菌对氯霉素和四环素的耐药率高于屎肠球菌,而屎肠球菌对其他常用抗菌药物的耐药率明显高于粪肠球菌,粪肠球菌和屎肠球菌的耐药谱明显不同,aac(6')-Ie-aph(2〃)-Ia基因为耐庆大霉素高水平肠球菌(HLGR)的主要耐药基因,占HLGR的88.0%,严重的基础疾病、侵入性操作和头孢三代抗菌药物和激素的应用是肠球菌属医院感染的常见危险因素.结论 HLAR已成为医院感染的重要耐药菌,HLGR产生的主要机制是aac(6')-Ie-aph(2〃)-Ia基因介导对庆大霉素高水平耐药,控制常见医院感染危险因素,合理使用抗菌药物,可减少HLAR医院感染的发生.%OBJECTIVE To explore the antibiotic resistance and risk factors for nosocomial infections caused by high-level aminoglycoside-resistant (HLAR) Enterococcus, and investigate the genotypes related to high-level aminoglycoside resistance. METHODS A total of 857 strains of Enterococcus were identified and analyzed for their antimicrobial susceptibility by VITEK-AMS. The aminoglycoside resistance-related genes were detected by PCR. The sequencing analysis of PCR products was performed. RESULTS A total of 50. 4% of Enterococcus isolates were HLAR Enterococcus. Linezolid, vancomycin and teicoplanin were mostly effective against HLAR Enterococcus, but there were three isolates resistant to vancomycin and teicoplanin. The resistance rates to chloramphenicol and tetracycline of E. Faecium were

  3. Stability of Enzymes in Granular Enzyme Products for Laundry Detergents

    OpenAIRE

    Biran, Suzan; Jensen, Anker Degn; Kiil, Søren; Bach, Poul; Simonsen, Ole

    2010-01-01

    Enzymes have long been of interest to the detergent industry due to their ability to improve the cleaning efficiency of synthetic detergents, contribute to shortening washing times, and reduce energy and water consumption, provision of environmentally friendlier wash water effluents and fabric care. However, incorporating enzymes in detergent formulations gives rise to numerous practical problems due to their incompatibility with and stability against various detergent components. In powdered...

  4. 两个携带线粒体12S rRNA 1494C>T突变的耳聋家系的遗传学特征%Characterization of two Chinese families with aminoglycoside-induced and nonsyndromic hearing loss both carrying a mitochondrial 12S rRNA 1494C>T mutation

    Institute of Scientific and Technical Information of China (English)

    龚莎莎; 管敏鑫; 陈波蓓; 彭光华; 郑静; 张婷; 郑斌娇; 方芳; 张初琴; 吕建新

    2012-01-01

    Objective To evaluate the effect of mitochondrial DNA(mtDNA) secondary mutations,haplotypes,GJB2 gene mutations on phenotype of 1494C > T mutation,and to study the molecular pathogenic mechanism of maternally transmitted aminoglycoside-induced and nonsyndromic hearing loss.Methods Two Chinese Han pedigrees of maternally transmitted aminoglycoside induced and nonsyndromic hearing loss were collected.The two probands and their family members underwent clinical,genetic and molecular evaluations including audiological examinations and mutational analysis of mitochondrial genome and GJB2 gene.Results Clinical evaluation revealed wide range of severity,age-at-onset and audiometric configuration of hearing impairment in matrilineal relatives in both families,for which the penetrance of hearing loss was respectively 42.9 % and 28.6% when aminoglycoside-induced deafness was included.When the effect of aminoglycosides was excluded,the penetrances of hearing loss were 14.3% and 14.3%.Sequence analysis of mitochondrial genomes identified a known 12S rRNA 1494C>T mutation,in addition with distinct sets of mtDNA polymorphisms belonging to Eastern Asian haplogroups C4a1a and B4b1c,respectively.Conclusion Mitochondrial 12S rRNA 1494C>T mutation probably underlie the deafness in both families.Lack of significant mutation in the GJB2 gene ruled out involvement of GJB2 in the phenotypic expression.However,aminoglycosides and other nuclear modifier genes may still modify the phenotype of the 1494C>T mutation in these families.The B4b1c is a newly identified haplogroup in aminoglycoside-induced and nonsyndromic hearing loss family carrying the 1494C>T mutation.The 1494C>T mutation seems to have occurred sporadically through evolution.

  5. Carriage of antibiotic-resistant pneumococci in a cohort of a daycare center Portadores nasofaríngeos de neumococo antibiótico-resistente en niños asistentes a guardería

    Directory of Open Access Journals (Sweden)

    Demóstenes Gómez-Barreto

    2002-01-01

    Full Text Available Objective. To define epidemiologic relationships to determine the prevalence and potential risk factors for nasopharyngeal colonization by antibiotic-resistant pneumococci, their serotypes and their antibiotic susceptibility patterns in children attending a daycare center (DCC. Material and Methods. A prospective cohort study was conducted among children (n=53 attending the DCC at Hospital Infantil de México Federico Gómez, which is staffed by 20 employees. Patients were enrolled in the study during a two-year period from September 1997 to September 1999. All the participants were followed prospectively, swabbing them every four months. The strains recovered were typed and screened for susceptibility to several antibiotics. The daycare records were reviewed also. Odds ratios and fisher's exact test: or chi square test of significance were computed from contingency tables as appropriate. Exact 95% confidence intervals were computed for odds ratios. Data analysis was performed using Epi statistics program version 6.04 a. Results. Pneumococci were recovered from 45/53 of the infants at one or more visits. A total of 178 isolates were carried. The carriage rate was 47%. Only 7 adults acquired pneumococci during the study. Types 6,14,19 and 23 were prevalent and represented 77% of the total. Antibiotic-resistant strains were higher to penicillin and erythromycin. Conclusions. Children were frequent carriers of pneumococci, the rate of carriage was high in infancy and tended to decrease with age. The types commonly carried by children were the same as those causing invasive disease. There is a high proportion of carriers with antibiotic-resistant S. pneumoniae strains. Children who have had frequent antimicrobial courses are at particular risk.Objetivo. Analizar longitudinalmente la dinámica de colonización por Streptococcus pneumoniae, determinar la prevalencia, los factores de riesgo potencial para la colonización nasofaríngea con cepas de

  6. Photosynthetic fuel for heterologous enzymes

    DEFF Research Database (Denmark)

    Mellor, Silas Busck; Vavitsas, Konstantinos; Nielsen, Agnieszka Janina Zygadlo

    2017-01-01

    , competition from native pathways and inefficient electron transfer rates present major obstacles, which limit the productivity of heterologous reactions coupled to photosynthesis. We discuss specific approaches to address these bottlenecks and ensure high productivity of such enzymes in a photosynthetic...... of reducing power. Recent work on the metabolic engineering of photosynthetic organisms has shown that the electron carriers such as ferredoxin and flavodoxin can be used to couple heterologous enzymes to photosynthetic reducing power. Because these proteins have a plethora of interaction partners and rely...... on electrostatically steered complex formation, they form productive electron transfer complexes with non-native enzymes. A handful of examples demonstrate channeling of photosynthetic electrons to drive the activity of heterologous enzymes, and these focus mainly on hydrogenases and cytochrome P450s. However...

  7. GRE Enzymes for Vector Analysis

    Data.gov (United States)

    U.S. Environmental Protection Agency — Microbial enzyme data that were collected during the 2004-2006 EMAP-GRE program. These data were then used by Moorhead et al (2016) in their ecoenzyme vector...

  8. Controlled enzyme catalyzed heteropolysaccharide degradation

    DEFF Research Database (Denmark)

    Rasmussen, Louise Enggaard

    The work presented in this PhD thesis has provided a better understanding of the enzyme kinetics and quantitative phenomena of the hydrolysis of xylan substrates by selected pure enzyme preparations. Furthermore, the options for producing specific substituted xylooligosaccharides from selected...... substrates by specific xylanase treatment have been examined. The kinetics of the enzymatic degradation of water-extractable wheat arabinoxylan (WE-AX) during designed treatments with selected monocomponent enzymes was investigated by monitoring the release of xylose and arabinose. The results of different...... between -xylosidase and the α-L-arabinofuranosidases on the xylose release were low as compared to the effect of xylanase addition with β-xylosidase, which increased the xylose release by ~25 times in 30 minutes. At equimolar addition levels of the four enzymes, the xylanase activity was thus rate...

  9. Enzymes: principles and biotechnological applications.

    Science.gov (United States)

    Robinson, Peter K

    2015-01-01

    Enzymes are biological catalysts (also known as biocatalysts) that speed up biochemical reactions in living organisms, and which can be extracted from cells and then used to catalyse a wide range of commercially important processes. This chapter covers the basic principles of enzymology, such as classification, structure, kinetics and inhibition, and also provides an overview of industrial applications. In addition, techniques for the purification of enzymes are discussed.

  10. Spread of invasive Spanish Staphylococcus aureus spa-type t067 associated with a high prevalence of the aminoglycoside-modifying enzyme gene ant(4')-Ia and the efflux pump genes msrA/msrB

    NARCIS (Netherlands)

    Perez-Vazquez, Maria; Vindel, Ana; Marcos, Carmen; Oteo, Jesus; Cuevas, Oscar; Trincado, Pilar; Bautista, Veronica; Grundmann, Hajo; Campos, Jose

    2009-01-01

    We carried out a nationwide study aimed at the determination of the molecular epidemiology and antibiotic resistance mechanisms of invasive Staphylococcus aureus in 21 Spanish hospitals. The distributions of molecular markers, including antibiotic resistance genes, were investigated in 203 S. aureus

  11. 阴沟肠杆菌耐药性及氨基糖苷类修饰酶基因研究%Drug-resistance of Enterobacter cloacae and Its Genes Encoding Aminoglycosides Modifying Enzymes

    Institute of Scientific and Technical Information of China (English)

    黄和赞; 张国强; 张文庆; 毛一鸣

    2009-01-01

    目的 了解阴沟肠杆菌(ECL)耐药性及AMEs基因携带状况,为临床治疗及控制医院感染提供依据.方法 临床标本分离132株ECL经VITEK-32细菌鉴定仪鉴定,采用K-B纸片法进行药敏试验,再用三维试验检测ESBLs和AmpC酶,PCR检测AMEs基因并序列分析.结果 132株ECL对IMP和MER无耐药,AMK,LVX、FEP、CFS和CIP耐药率增高,分别为21.2%、35.6%、37.9%、46.2%和48.5%,其他耐药率为50.0%~87.7%,呈多药耐药性;45株产ESBLs占34.1%,27株产AmpC酶占20.5%,11株同时产ESBLs和AmpC酶占8.3%,49株均未检出产ESBLs、AmpC酶占37.1%,有7株CTX、CAZ表型耐药,ESBLs检测为阴性,采用PCR检测携带有TEM、SHV耐药基因;AMEs基因检出率62.1%其中以aac(6')-Ⅰ b为主,检出率为51.5%,aac(3)-Ⅰ、aac(3)-Ⅱ、aac(6')-Ⅱ、ant(3")-Ⅰ、ant(2")-Ⅰ、aph(3')-Ⅵ分别为15.9%、12.9%、18.9%、37.1%、6.8%、9.8%,携带>2种AMEs基因89.0%,有5株表型耐药,未检出AMEs基因.结论 临床分离ECL严重耐药并呈多药耐药性;产ESBLs、AmpC酶及AMEs基因携带率高,是导致细菌耐药的主要原因.

  12. Engineering Cellulase Enzymes for Bioenergy

    Science.gov (United States)

    Atreya, Meera Elizabeth

    Sustainable energy sources, such as biofuels, offer increasingly important alternatives to fossil fuels that contribute less to global climate change. The energy contained within cellulosic biofuels derives from sunlight energy stored in the form of carbon-carbon bonds comprising sugars such as glucose. Second-generation biofuels are produced from lignocellulosic biomass feedstocks, including agricultural waste products and non-food crops like Miscanthus, that contain lignin and the polysaccharides hemicellulose and cellulose. Cellulose is the most abundant biological material on Earth; it is a polymer of glucose and a structural component of plant cell walls. Accessing the sugar is challenging, as the crystalline structure of cellulose resists degradation; biochemical and thermochemical means can be used to depolymerize cellulose. Cellulase enzymes catalyze the biochemical depolymerization of cellulose into glucose. Glucose can be used as a carbon source for growth of a biofuel-producing microorganism. When it converts glucose to a hydrocarbon fuel, this microbe completes the biofuels process of transforming sunlight energy into accessible, chemical energy capable of replacing non-renewable transportation fuels. Due to strong intermolecular interactions between polymer chains, cellulose is significantly more challenging to depolymerize than starch, a more accessible polymer of glucose utilized in first-generation biofuels processes (often derived from corn). While most mammals cannot digest cellulose (dietary fiber), certain fungi and bacteria produce cellulase enzymes capable of hydrolyzing it. These organisms secrete a wide variety of glycoside hydrolase and other classes of enzymes that work in concert. Because cellulase enzymes are slow-acting and expensive to produce, my aim has been to improve the properties of these enzymes as a means to make a cellulosic biofuels process possible that is more efficient and, consequently, more economical than current

  13. Heavy enzymes--experimental and computational insights in enzyme dynamics.

    Science.gov (United States)

    Swiderek, Katarzyna; Ruiz-Pernía, J Javier; Moliner, Vicent; Tuñón, Iñaki

    2014-08-01

    The role of protein motions in the chemical step of enzyme-catalyzed reactions is the subject of an open debate in the scientific literature. The systematic use of isotopically substituted enzymes has been revealed as a useful tool to quantify the role of these motions. According to the Born-Oppenheimer approximation, changing the mass of the protein does not change the forces acting on the system but alters the frequencies of the protein motions, which in turn can affect the rate constant. Experimental and theoretical studies carried out in this field are presented in this article and discussed in the framework of Transition State Theory.

  14. The Kinetics of Enzyme Mixtures

    Directory of Open Access Journals (Sweden)

    Simon Brown

    2014-03-01

    Full Text Available Even purified enzyme preparations are often heterogeneous. For example, preparations of aspartate aminotransferase or cytochrome oxidase can consist of several different forms of the enzyme. For this reason we consider how different the kinetics of the reactions catalysed by a mixture of forms of an enzyme must be to provide some indication of the characteristics of the species present. Based on the standard Michaelis-Menten model, we show that if the Michaelis constants (Km of two isoforms differ by a factor of at least 20 the steady-state kinetics can be used to characterise the mixture. However, even if heterogeneity is reflected in the kinetic data, the proportions of the different forms of the enzyme cannot be estimated from the kinetic data alone. Consequently, the heterogeneity of enzyme preparations is rarely reflected in measurements of their steady-state kinetics unless the species present have significantly different kinetic properties. This has two implications: (1 it is difficult, but not impossible, to detect molecular heterogeneity using kinetic data and (2 even when it is possible, a considerable quantity of high quality data is required.

  15. Enzymes in CO2 Capture

    DEFF Research Database (Denmark)

    Fosbøl, Philip Loldrup; Gladis, Arne; Thomsen, Kaj

    of carbon capture is the application of enzymes for acceleration of typically slow ternary amines or inorganic carbonates. There is a hidden potential to revive currently infeasible amines which have an interesting low energy consumption for regeneration but too slow kinetics for viable CO2 capture. The aim......The enzyme Carbonic Anhydrase (CA) can accelerate the absorption rate of CO2 into aqueous solutions by several-fold. It exist in almost all living organisms and catalyses different important processes like CO2 transport, respiration and the acid-base balances. A new technology in the field...... of this work is to discuss the measurements of kinetic properties for CA promoted CO2 capture solvent systems. The development of a rate-based model for enzymes will be discussed showing the principles of implementation and the results on using a well-known ternary amine for CO2 capture. Conclusions...

  16. Characterisation of recently emerged multiple antibiotic-resistant Salmonella enterica serovar typhimurium DT104 and other multiresistant phage types from Danish pig herds.

    Science.gov (United States)

    Baggesen, D L; Aarestrup, F M

    1998-07-25

    A total of 670 isolates of Salmonella enterica were isolated from Danish pig herds, phage typed and tested for susceptibility to amoxycillin + clavulanate, ampicillin, colistin, enrofloxacin, gentamicin, neomycin, spectinomycin, streptomycin, tetracyclines, and trimethoprim + sulphadiazine. S enterica serovar typhimurium (S typhimurium) isolates resistant to ampicillin, streptomycin and tetracycline and three isolates of S typhimurium DT104, two from 1994 and one from 1995, were further tested for resistance against chloramphenicol and sulphonamide and analysed by pulsed-field gel electrophoresis (PFGE) using the restriction enzyme Xba I. Overall, 66 per cent of the 670 isolates were sensitive to all the antimicrobial agents tested. Eleven isolates of S typhimurium were resistant to ampicillin, streptomycin and tetracycline and also resistant to other antibiotics in different resistance patterns. Seven different multiresistant clones were identified. The most common clones were four isolates of DT104 and three isolates of DT193. Two of the three S typhimurium DT104 from 1994 and 1995 were sensitive to all the antimicrobials tested whereas the remaining isolate from 1994 was resistant to spectinomycin, streptomycin and sulphonamides. All three isolates showed PFGF profiles identical to the four multiresistant DT104 isolates. Compared with most other countries antimicrobial resistance among S enterica isolated from Danish pig herds is uncommon. However, several different multiresistant clones were found.

  17. Aminoglycoside resistance in Haemophilus influenzae.

    Science.gov (United States)

    Gomez-Lus, R; Vergara, Y

    1995-04-01

    From September 1, 1990 to December 31, 1993 a total of 425 Haemophilus influenzae strains from clinical specimens were isolated in the Microbiology Laboratory of the Zaragoza University Hospital. Of these strains, 16 (33.33%) were resistant to kanamycin, neomycin, paromomycin, lividomycin and streptomycin. Demonstration of APH (3')-I activity by the phosphocellulose paper binding assay, based on the incorporation of radiolabel into lividomycin was sixfold greater than into butirosin. Two DNA probes were prepared to screen for the genes encoding APH(3') activity in kanamycin-resistant H. influenzae. Homology was observed between the aphA1 DNA probe and total cellular DNA from all 16 APH(3')-I producers. On the other hand, streptomycin-resistance was not through metabolic modification of the antibiotic.

  18. Biochemical Characterization of Mycobacterium tuberculosis DNA Repair Enzymes – Nfo, XthA and Nei2

    Directory of Open Access Journals (Sweden)

    Sailau Abeldenov

    2014-01-01

    Full Text Available Introduction: Tuberculosis (TB is a human disease caused by Mycobacterium tuberculosis (Mtb. Treatment of TB requires long-term courses of multi-drug therapies to eliminate subpopulations of bacteria, which sometimes persist against antibiotics. Therefore, understanding of the mechanism of Mtb antibiotic-resistance is extremely important. During infection, Mtb overcomes a variety of body defense mechanisms, including treatment with the reactive species of oxygen and nitrogen. The bases in DNA molecule are susceptible to the damages caused by reactive forms of intermediate compounds of oxygen and nitrogen. Most of this damage is repaired by the base excision repair (BER pathway. In this study, we aimed to biochemically characterize three Mtb DNA repair enzymes of BER pathway. Methods: XthA, nfo, and nei genes were identified in mycobacteria by homology search of genomic sequences available in the GenBank database. We used standard methods of genetic engineering  to clone and sequence Mtb genes, which coded Nfo, XthA and Nei2 repair enzymes. The protein products of Mtb genes were expressed and purified in Escherichia coli using affinity tags. The enzymatic activity of purified Nfo, XthA, and Nei2 proteins were measured using radioactively labeled DNA substrates containing various modified residues. Results: The genes end (Rv0670, xthA (Rv0427c, and nei (Rv3297 were PCR amplified using genomic DNA of Mtb H37Rv with primers that contain specific restriction sites. The amplified products were inserted into pET28c(+ expression vector in such a way that the recombinant proteins contain C-terminal histidine tags. The plasmid constructs were verified by sequencing and then transformed into the Escherichia coli BL21 (DE3 strain. Purification of recombinant proteins was performed using Ni2+ ions immobilized affinity column, coupled with the fast performance liquid chromatography machine AKTA. Identification of the isolated proteins was performed by

  19. Taking the Mystery Out of Enzymes.

    Science.gov (United States)

    DeYoung, H. Garrett

    1984-01-01

    Discusses structure and function of enzymes, design of new enzymes and enzyme substitutes, and enzyme uses in industry, medicine, and wastewater treatment. The latter is a low-cost method which can remove as much as 99 percent of toxic substances found in many industrial wastewater streams. (JN)

  20. Insolubilized enzymes for food synthesis

    Science.gov (United States)

    Marshall, D. L.

    1972-01-01

    Cellulose matrix with numerous enzyme-coated silica particles of colloidal size permanently bound at various sites within matrix was produced that has high activity and possesses requisite physical characteristics for filtration or column operations. Product also allows coupling step in synthesis of edible food to proceed under mild conditions.

  1. Kathepsine C : Een allosterisch enzyme

    NARCIS (Netherlands)

    Gorter, Jeannette

    1969-01-01

    In chapter I an introduction into allosteric systems is given. In chapter II is a detailed method is described for the applica of Gly-Phe--p. nitroanilide (GPNA) as a substrate for the activity assay of the lysosomal enzyme cathepsin C. It is an allosteric which is activated by Cl-, Br-, 1-, CNS-, N

  2. Rapid-Equilibrium Enzyme Kinetics

    Science.gov (United States)

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  3. Enzyme nanoassemblies for biomass conversion

    Science.gov (United States)

    Biomass represents a vast resource for the production of the world’s fuel and chemical feedstock needs. The use of enzymes to effect these bioconversions offers an alternative that is potentially more specific and environmentally-friendly than harsher chemical methodologies. Some species of anaero...

  4. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    immobilized artificial membrane chromatography and lysophospholipid micellar electrokinetic chromatography . J. Chromatogr. A 1998, 810, 95-103. 50...Journal of Liquid Chromatography and Related Technologies. Air Force Research Laboratory Materials and Manufacturing Directorate Airbase...immobilized enzyme reactors (IMERs) can also be integrated directly to further analytical methods such as liquid chromatography or mass spectrometry.[6] In

  5. Enzyme recovery using reversed micelles.

    NARCIS (Netherlands)

    Dekker, M.

    1990-01-01

    The objective of this study was to develop a liquid-liquid extraction process for the recovery of extracellular enzymes. The potentials of reaching this goal by using reversed micelles in an organic solvent have been investigated.Reversed micelles are aggregates of surfactant molecules containing an

  6. The enzymes associated with denitrification

    Science.gov (United States)

    Hochstein, L. I.; Tomlinson, G. A.

    1988-01-01

    The enzymes involved in the reduction of nitrogenous oxides are thought to be intermediates in denitrification processes. This review examines the roles of nitrate reductase, nitrite reductases, nitric oxide reductase, mechanisms of N-N bond formation, and nitrous oxide reductases.

  7. Virulence-Associated Enzymes of Cryptococcus neoformans

    OpenAIRE

    2015-01-01

    Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review f...

  8. Thermodynamics of Enzyme-Catalyzed Reactions Database

    Science.gov (United States)

    SRD 74 Thermodynamics of Enzyme-Catalyzed Reactions Database (Web, free access)   The Thermodynamics of Enzyme-Catalyzed Reactions Database contains thermodynamic data on enzyme-catalyzed reactions that have been recently published in the Journal of Physical and Chemical Reference Data (JPCRD). For each reaction the following information is provided: the reference for the data, the reaction studied, the name of the enzyme used and its Enzyme Commission number, the method of measurement, the data and an evaluation thereof.

  9. Engineering cytochrome p450 enzymes.

    Science.gov (United States)

    Gillam, Elizabeth M J

    2008-01-01

    The last 20 years have seen the widespread and routine application of methods in molecular biology such as molecular cloning, recombinant protein expression, and the polymerase chain reaction. This has had implications not only for the study of toxicological mechanisms but also for the exploitation of enzymes involved in xenobiotic clearance. The engineering of P450s has been performed with several purposes. The first and most fundamental has been to enable successful recombinant expression in host systems such as bacteria. This in turn has led to efforts to solubilize the proteins as a prerequisite to crystallization and structure determination. Lagging behind has been the engineering of enzyme activity, hampered in part by our still-meager comprehension of fundamental structure-function relationships in P450s. However, the emerging technique of directed evolution holds promise in delivering both engineered enzymes for use in biocatalysis and incidental improvements in our understanding of sequence-structure and sequence-function relationships, provided that data mining can extract the fundamental correlations underpinning the data. From the very first studies on recombinant P450s, efforts were directed toward constructing fusions between P450s and redox partners in the hope of generating more efficient enzymes. While this aim has been allowed to lie fallow for some time, this area merits further investigation as does the development of surface-displayed P450 systems for biocatalytic and biosensor applications. The final application of engineered P450s will require other aspects of their biology to be addressed, such as tolerance to heat, solvents, and high substrate and product concentrations. The most important application of these enzymes in toxicology in the near future is likely to be the biocatalytic generation of drug metabolites for the pharmaceutical industry. Further tailoring will be necessary for specific toxicological applications, such as in

  10. Platelet enzyme abnormalities in leukemias

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-01-01

    Full Text Available Aim of the Study: The aim of this study was to evaluate platelet enzyme activity in cases of leukemia. Materials and Methods: Platelet enzymes glucose-6-phosphate dehydrogenase (G6PD, pyruvate kinase (PK and hexokinase (HK were studied in 47 patients of acute and chronic leukemia patients, 16 patients with acute myeloid leukemia (AML(13 relapse, three in remission, 12 patients with acute lymphocytic leukemia (ALL (five in relapse, seven in remission, 19 patients with chronic myeloid leukemia (CML. Results: The platelet G6PD activity was significantly low in cases of AML, ALL and also in CML. G6PD activity was normalized during AML remission. G6PD activity, although persistently low during ALL remission, increased significantly to near-normal during remission (P < 0.05 as compared with relapse (P < 0.01. Platelet PK activity was high during AML relapse (P < 0.05, which was normalized during remission. Platelet HK however was found to be decreased during all remission (P < 0.05. There was a significant positive correlation between G6PD and PK in cases of AML (P < 0.001 but not in ALL and CML. G6PD activity did not correlate with HK activity in any of the leukemic groups. A significant positive correlation was however seen between PK and HK activity in cases of ALL remission (P < 0.01 and CML (P < 0.05. Conclusions: Both red cell and platelet enzymes were studied in 36 leukemic patients and there was no statistically significant correlation between red cell and platelet enzymes. Platelet enzyme defect in leukemias suggests the inherent abnormality in megakaryopoiesis and would explain the functional platelet defects in leukemias.

  11. Enzymes involved in triglyceride hydrolysis.

    Science.gov (United States)

    Taskinen, M R; Kuusi, T

    1987-08-01

    The lipolytic enzymes LPL and HL play important roles in the metabolism of lipoproteins and participate in lipoprotein interconversions. LPL was originally recognized to be the key enzyme in the hydrolysis of chylomicrons and triglyceride, but it also turned out to be one determinant of HDL concentration in plasma. When LPL activity is high, chylomicrons and VLDL are rapidly removed from circulation and a concomitant rise of the HDL2 occurs. In contrast, low LPL activity impedes the removal of triglyceride-rich particles, resulting in the elevation of serum triglycerides and a decrease of HDL (HDL2). Concordant changes of this kind in LPL and HDL2 are induced by many physiological and pathological perturbations. Finally, the operation of LPL is also essential for the conversion of VLDL to LDL. This apparently clear-cut role of LPL in lipoprotein interconversions is contrasted with the enigmatic actions of HL. The enzyme was originally thought to participate in the catalyses of chylomicron and VLDL remnants generated in the LPL reaction. However, substantial in vitro and in vivo data indicate that HL is a key enzyme in the degradation of plasma HDL (HDL2) in a manner which opposes LPL. A scheme is presented for the complementary actions of the two enzymes in plasma HDL metabolism. In addition, recent studies have attributed a role to HL in the catabolism of triglyceride-rich lipoproteins, particularly those containing apo E. However, this function becomes clinically important only under conditions where the capacity of the LPL-mediated removal system is exceeded. Such a situation may arise when the input of triglyceride-rich particles (chylomicrons and/or VLDL) is excessive or LPL activity is decreased or absent.

  12. 7 CFR 58.436 - Rennet, pepsin, other milk clotting enzymes and flavor enzymes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Rennet, pepsin, other milk clotting enzymes and flavor enzymes. 58.436 Section 58.436 Agriculture Regulations of the Department of Agriculture (Continued... clotting enzymes and flavor enzymes. Enzyme preparations used in the manufacture of cheese shall be...

  13. Enzyme technology: Key to selective biorefining

    DEFF Research Database (Denmark)

    Meyer, Anne S.

    2014-01-01

    to the reaction is a unique trait of enzyme catalysis. Since enzyme selectivity means that a specific reaction is catalysed between particular species to produce definite products, enzymes are particularly fit for converting specific compounds in mixed biomass streams. Since enzymes are protein molecules...... their rational use in biorefinery processes requires an understanding of the basic features of enzymes and reaction traits with respect to specificity, kinetics, reaction optima, stability and structure-function relations – we are now at a stage where it is possible to use nature’s enzyme structures as starting...... point and then improve the functional traits by targeted mutation of the protein. The talk will display some of our recent hypotheses related to enzyme action, recently obtained results within knowledge-based enzyme improvements as well as cast light on research methods used in optimizing enzyme...

  14. Antibacterial activity of plant extracts and phytochemicals on antibiotic-resistant bacteria Atividade de extratos vegetais e fitofármacos sobre bactérias resistentes a antibióticos

    Directory of Open Access Journals (Sweden)

    Gislene G. F. Nascimento

    2000-10-01

    Full Text Available The antimicrobial activity of plant extracts and phytochemicals was evaluated with antibiotic susceptible and resistant microorganisms. In addition, the possible synergistic effects when associated with antibiotics were studied. Extracts from the following plants were utilized: Achillea millifolium (yarrow, Caryophyllus aromaticus (clove, Melissa offficinalis (lemon-balm, Ocimun basilucum (basil, Psidium guajava (guava, Punica granatum (pomegranate, Rosmarinus officinalis (rosemary, Salvia officinalis (sage, Syzygyum joabolanum (jambolan and Thymus vulgaris (thyme. The phytochemicals benzoic acid, cinnamic acid, eugenol and farnesol were also utilized. The highest antimicrobial potentials were observed for the extracts of Caryophyllus aromaticus and Syzygyum joabolanum, which inhibited 64.2 and 57.1% of the tested microorganisms, respectively, with higher activity against antibiotic-resistant bacteria (83.3%. Sage and yarrow extracts did not present any antimicrobial activity. Association of antibiotics and plant extracts showed synergistic antibacterial activity against antibiotic-resistant bacteria. The results obtained with Pseudomonas aeruginosa was particularly interesting, since it was inhibited by clove, jambolan, pomegranate and thyme extracts. This inhibition was observed with the individual extracts and when they were used in lower concentrations with ineffective antibiotics.Foi avaliada a atividade antimicrobiana de extratos vegetais e fitofármacos frente a microrganismos sensíveis e resistentes a antibióticos, bem como observado o possível efeito sinérgico da associação entre antibióticos e extratos vegetais. Foram utilizados os extratos de plantas cujo nomes populares são: tomilho, alecrim, cravo-da-Índia, jambolão, erva cidreira, romã, goiaba, sálvia, manjericão e mil-folhas, e ainda os fitofármacos, ácido benzóico, ácido cinâmico, eugenol e farnesol. Na avaliação da atividade antimicrobiana através do m

  15. 多重耐药鲍曼不动杆菌携带碳青霉烯类水解酶基因情况的研究%Hydrolysis enzyme of carbapenems carrying in multidrug-resistant Acinetobacter baumannii

    Institute of Scientific and Technical Information of China (English)

    严春; 钱定良; 詹爱霞; 李克诚

    2011-01-01

    Objective To understand the carriage of Metal B-lactamase (IMP, VIM), KPC enzyme, OXA-23 type hydrolysis enzyme in multidrug-resistant Acinetobacter baumannii in our hospital and explore the effect of these hydrolysis enzyme in carbapenems antibiotic-resistant bacteria. Methods By using Whonet 5.4, the distribution and drug susceptibility data of multidrug-resistant Acinetobacter baumannii were analyzed. By designing the specific primers, IMP, VIM, KPC and OXA - 23 genes were amplified by PCR and their products were analyzed by agarose electrophoresis. Results OXA - 23 gene was detected in 58 of 70 strains of multidrug-resistant Acinetobacter baumannii, the positive rate was 82. 86%. No IMP,VIM and KPC genes were detected. Conclusion OXA -23 type hydrolysis enzyme was an important factor to cause the common clinical carbapenems antibiotic-resistance of Acinetobacter baumannii in our hospital.%目的 研究浙江省瑞安市人民医院多重耐药鲍曼不动杆菌中金属β-内酰胺酶(IMP、VIM)、KPC酶、OXA-23型水解酶基因的携带情况,探讨各种碳青霉烯类水解酶在多重耐药鲍曼不动杆菌中的作用.方法 采用Whonet 5.4软件分析多重耐药鲍曼不动杆菌的标本类型和病区分布,以及药敏资料;设计特异性引物,用PCR方法扩增IMP、VIM、KPC和OXA-23特异基因,并用琼脂糖电泳分析其产物.结果 70株多重耐药鲍曼不动杆菌均未检测到IMP、VIM及KPC基因,其中58株亚胺培南耐药菌株均携带OXA-23基因,阳性率为82.86%.结论 OXA-23型水解酶是造成瑞安市人民医院鲍曼不动杆菌对临床常用碳青霉烯类抗生素耐药的主要原因.

  16. Finding homes for orphan enzymes

    Directory of Open Access Journals (Sweden)

    Frank M. Raushel

    2016-12-01

    Full Text Available The rate at which new genes are being sequenced greatly exceeds our ability to correctly annotate the functional properties of the corresponding proteins. Annotations based primarily on sequence identity to experimentally characterized proteins are often misleading because closely related sequences may have different functions, while highly divergent sequences may have identical functions. Our understanding of the principles that dictate the catalytic properties of enzymes, based on protein sequence alone, is often insufficient to correctly annotate proteins of unknown function. To address these problems, we are working to develop a comprehensive strategy for the functional annotation of newly sequenced genes using a combination of structural biology, bioinformatics, computational biology, and molecular enzymology. The power of this multidisciplinary approach for discovering new reactions catalyzed by uncharacterized enzymes has been tested using the amidohydrolase superfamily as a model system.

  17. Enzyme dynamics from NMR spectroscopy.

    Science.gov (United States)

    Palmer, Arthur G

    2015-02-17

    CONSPECTUS: Biological activities of enzymes, including regulation or coordination of mechanistic stages preceding or following the chemical step, may depend upon kinetic or equilibrium changes in protein conformations. Exchange of more open or flexible conformational states with more closed or constrained states can influence inhibition, allosteric regulation, substrate recognition, formation of the Michaelis complex, side reactions, and product release. NMR spectroscopy has long been applied to the study of conformational dynamic processes in enzymes because these phenomena can be characterized over multiple time scales with atomic site resolution. Laboratory-frame spin-relaxation measurements, sensitive to reorientational motions on picosecond-nanosecond time scales, and rotating-frame relaxation-dispersion measurements, sensitive to chemical exchange processes on microsecond-millisecond time scales, provide information on both conformational distributions and kinetics. This Account reviews NMR spin relaxation studies of the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations of the bacterial ribonuclease H enzymes show that the handle region, one of three loop regions that interact with substrates, interconverts between two conformations. Comparison of these conformations with the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed state is inhibitory to binding. The large population of the closed conformation in T. thermophilus ribonuclease H contributes to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized a

  18. Antibiotic-resistant Escherichia coli bacteria, including strains with genes encoding the extended-spectrum beta-lactamase and QnrS, in waterbirds on the Baltic Sea Coast of Poland.

    Science.gov (United States)

    Literak, Ivan; Dolejska, Monika; Janoszowska, Dagmar; Hrusakova, Jolana; Meissner, Wlodzimierz; Rzyska, Hanna; Bzoma, Szymon; Cizek, Alois

    2010-12-01

    Individual cloacal swabs of mallards (Anas platyrhynchos) and of herring gulls (Larus argentatus), as well as samples of waterbird feces obtained in 2008 and 2009, were cultivated for Escherichia coli. Isolates of E. coli were tested for susceptibilities to 12 antimicrobial agents by the disk diffusion method. Moreover, the samples were subcultivated on MacConkey agar (MCA) containing cefotaxime (2 mg liter(-1)) to detect E. coli with extended-spectrum beta-lactamase (ESBL) and subsequently on MCA supplemented with ciprofloxacin (0.05 mg liter(-1)) and MCA with nalidixic acid (20 mg liter(-1)) to isolate fluoroquinolone-resistant E. coli. PCR was used to detect specific antibiotic resistance genes. We found 9 E. coli isolates producing ESBL with bla genes: bla(CTX-M-1) (6 isolates), bla(CTX-M-9) plus bla(TEM-1b) (1 isolate), bla(CTX-M-15) plus bla(OXA-1) (1 isolate), and bla(SHV-12) (1 isolate). In the isolate with bla(CTX-M-15), the gene aac(6)-Ib-cr was also detected. The bla genes were harbored by transferable plasmids of the IncN and IncI1 groups. Nine quinolone-resistant E. coli isolates with qnrS genes were found and characterized. The gene qnrS was associated with a Tn3-like transposon on the IncX1 plasmid together with bla(TEM-1) in two isolates. The gene qnrS was also harbored by conjugative plasmids of the IncN and IncX2 groups. Even if populations of wild birds are not directly influenced by antibiotic practice, we have demonstrated that antibiotic-resistant E. coli strains, including strains with various ESBL and qnrS genes, are found in the feces of wild birds on the coast of the Baltic Sea in Poland.

  19. Substrate mediated enzyme prodrug therapy.

    Directory of Open Access Journals (Sweden)

    Betina Fejerskov

    Full Text Available In this report, we detail Substrate Mediated Enzyme Prodrug Therapy (SMEPT as a novel approach in drug delivery which relies on enzyme-functionalized cell culture substrates to achieve a localized conversion of benign prodrug(s into active therapeutics with subsequent delivery to adhering cells or adjacent tissues. For proof-of-concept SMEPT, we use surface adhered micro-structured physical hydrogels based on poly(vinyl alcohol, β-glucuronidase enzyme and glucuronide prodrugs. We demonstrate enzymatic activity mediated by the assembled hydrogel samples and illustrate arms of control over rate of release of model fluorescent cargo. SMEPT was not impaired by adhering cells and afforded facile time - and dose - dependent uptake of the in situ generated fluorescent cargo by hepatic cells, HepG2. With the use of a glucuronide derivative of an anticancer drug, SN-38, SMEPT afforded a decrease in cell viability to a level similar to that achieved using parent drug. Finally, dose response was achieved using SMEPT and administration of judiciously chosen concentration of SN-38 glucuronide prodrug thus revealing external control over drug delivery using drug eluting surface. We believe that this highly adaptable concept will find use in diverse biomedical applications, specifically surface mediated drug delivery and tissue engineering.

  20. Characterization of CIM monoliths as enzyme reactors.

    Science.gov (United States)

    Vodopivec, Martina; Podgornik, Ales; Berovic, Marin; Strancar, Ales

    2003-09-25

    The immobilization of the enzymes citrate lyase, malate dehydrogenase, isocitrate dehydrogenase and lactate dehydrogenase to CIM monolithic supports was performed. The long-term stability, reproducibility, and linear response range of the immobilized enzyme reactors were investigated along with the determination of the kinetic behavior of the enzymes immobilized on the CIM monoliths. The Michaelis-Menten constant K(m) and the turnover number k(3) of the immobilized enzymes were found to be flow-unaffected. Furthermore, the K(m) values of the soluble and immobilized enzyme were found to be comparable. Both facts indicate the absence of a diffusional limitation in immobilized CIM enzyme reactors.

  1. Lignolytic Enzymes Production from Selected Mushrooms

    Directory of Open Access Journals (Sweden)

    H.M. Shantaveera Swamy

    2015-06-01

    Full Text Available In this paper, ligninase enzymes produced by selected mushrooms have been reported. We collected mushrooms from Western Ghats, most of them were edible food. Thirty samples isolated were tested using a plate assay through direct agar plate assay by using ABTS, decolourisation containing the fifteen isolates were able to decolourise the dye, indicating a lignin-degrading ability. Spectrophotometric enzyme assays from all selected isolates were carried out to examine the production of Ligninolytic enzymes (Laccase, lignin peroxidase and manganese peroxidase. Ten selected isolates produced all three kinds of enzymes tested. Lignolytic enzymes are groups of enzymes these are actively involved in bioremediation.

  2. A DNA tweezer-actuated enzyme nanoreactor.

    Science.gov (United States)

    Liu, Minghui; Fu, Jinglin; Hejesen, Christian; Yang, Yuhe; Woodbury, Neal W; Gothelf, Kurt; Liu, Yan; Yan, Hao

    2013-01-01

    The functions of regulatory enzymes are essential to modulating cellular pathways. Here we report a tweezer-like DNA nanodevice to actuate the activity of an enzyme/cofactor pair. A dehydrogenase and NAD(+) cofactor are attached to different arms of the DNA tweezer structure and actuation of enzymatic function is achieved by switching the tweezers between open and closed states. The enzyme/cofactor pair is spatially separated in the open state with inhibited enzyme function, whereas in the closed state, enzyme is activated by the close proximity of the two molecules. The conformational state of the DNA tweezer is controlled by the addition of specific oligonucleotides that serve as the thermodynamic driver (fuel) to trigger the change. Using this approach, several cycles of externally controlled enzyme inhibition and activation are successfully demonstrated. This principle of responsive enzyme nanodevices may be used to regulate other types of enzymes and to introduce feedback or feed-forward control loops.

  3. Editorial: Special Issue — Enzyme Immobilization

    Directory of Open Access Journals (Sweden)

    Roberto Fernandez-Lafuente

    2014-12-01

    Full Text Available Immobilization of enzymes and proteins is a requirement for many industrial enzyme applications, as this facilitates enzyme recovery and reuse. Bearing in mind this necessity, the coupling of immobilization to the improvement of other enzyme features has been pursued by many researchers, and nowadays immobilization is recognized as a tool to improve not only stability, but also enzyme selectivity, specificity, resistance to inhibition or chemical modifiers, etc. To achieve these overall improvements of enzymes’ properties via immobilization, it is necessary to both develop new immobilization systems suitable for these purposes, and to achieve a deeper knowledge of the mechanisms of interaction between enzymes and activated solids. That way, immobilization of enzymes, far being an old-fashioned methodology to just reuse these expensive biocatalysts, is a tool of continuous interest that requires a continuous effort to be exploited in all its potential. This special issue collects 23 papers reporting advances in the field of immobilization of enzymes.[...

  4. Extracellular enzyme kinetics scale with resource availability

    Science.gov (United States)

    Microbial community metabolism relies on external digestion, mediated by extracellular enzymes that break down complex organic matter into molecules small enough for cells to assimilate. We analyzed the kinetics of 40 extracellular enzymes that mediate the degradation and assimi...

  5. Activation of thiamin diphosphate in enzymes.

    Science.gov (United States)

    Hübner, G; Tittmann, K; Killenberg-Jabs, M; Schäffner, J; Spinka, M; Neef, H; Kern, D; Kern, G; Schneider, G; Wikner, C; Ghisla, S

    1998-06-29

    Activation of the coenzyme ThDP was studied by measuring the kinetics of deprotonation at the C2 carbon of thiamin diphosphate in the enzymes pyruvate decarboxylase, transketolase, pyruvate dehydrogenase complex, pyruvate oxidase, in site-specific mutant enzymes and in enzyme complexes containing coenzyme analogues by proton/deuterium exchange detected by 1H-NMR spectroscopy. The respective deprotonation rate constant is above the catalytic constant in all enzymes investigated. The fast deprotonation requires the presence of an activator in pyruvate decarboxylase from yeast, showing the allosteric regulation of this enzyme to be accomplished by an increase in the C2-H dissociation rate of the enzyme-bound thiamin diphosphate. The data of the thiamin diphosphate analogues and of the mutant enzymes show the N1' atom and the 4'-NH2 group to be essential for the activation of the coenzyme and a conserved glutamate involved in the proton abstraction mechanism of the enzyme-bound thiamin diphosphate.

  6. Determining Enzyme Activity by Radial Diffusion

    Science.gov (United States)

    Davis, Bill D.

    1977-01-01

    Discusses advantages of radial diffusion assay in determining presence of enzyme and/or rough approximation of amount of enzyme activities. Procedures are included for the preparation of starch-agar plates, and the application and determination of enzyme. Techniques using plant materials (homogenates, tissues, ungerminated embryos, and seedlings)…

  7. 21 CFR 864.4400 - Enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Enzyme preparations. 864.4400 Section 864.4400...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Specimen Preparation Reagents § 864.4400 Enzyme preparations. (a) Identification. Enzyme preparations are products that are used in the...

  8. Curious cases of the enzymes

    OpenAIRE

    Ulusu Nuriye Nuray

    2015-01-01

    J Med Biochem 2015; 34 (3) DOI: 10.2478/jomb-2014-0045 UDK 577. 1 : 61 ISSN 1452-8258 J Med Biochem 34: 271–281, 2015 Review article Pregledni ~lanak CURIOUS CASES OF THE ENZYMES NEOBI^NA ISTORIJA ENZIMA Nuriye Nuray Ulusu Koç University, School of Medicine, Sariyer-Istanbul, Turkey Address for correspondence: N. Nuray Ulusu, PhD Koç University School of Medicine Professor of Biochemistry Rumelifeneri Yolu Sarıyer-Istanbul – Turkey Phone: +90 (212)...

  9. Enzyme Analysis to Determine Glucose Content

    Science.gov (United States)

    Carpenter, Charles; Ward, Robert E.

    Enzyme analysis is used for many purposes in food science and technology. Enzyme activity is used to indicate adequate processing, to assess enzyme preparations, and to measure constituents of foods that are enzyme substrates. In this experiment, the glucose content of corn syrup solids is determined using the enzymes, glucose oxidase and peroxidase. Glucose oxidase catalyzes the oxidation of glucose to form hydrogen peroxide (H2O2), which then reacts with a dye in the presence of peroxidase to give a stable colored product.

  10. Consumer attitudes to enzymes in food production

    DEFF Research Database (Denmark)

    Søndergaard, Helle Alsted; Grunert, Klaus G.; Scholderer, Joachim

    2005-01-01

    The use of enzymes in food production has potential benefits for both food manufacturers and consumers. A central question is how consumers react to new ways of producing foods with enzymes. This study investigates the formation of consumer attitudes to different enzyme production methods in three...... European countries. Results show that consumers are most positive towards non-GM enzyme production methods. The enzyme production method is by far the most important factor for the formation of buying intentions compared to price and benefits. Results also show that environmental concern and attitudes...

  11. Direct Electron Transfer of Enzymes in a Biologically Assembled Conductive Nanomesh Enzyme Platform.

    Science.gov (United States)

    Lee, Seung-Woo; Lee, Ki-Young; Song, Yong-Won; Choi, Won Kook; Chang, Joonyeon; Yi, Hyunjung

    2016-02-24

    Nondestructive assembly of a nanostructured enzyme platform is developed in combination of the specific biomolecular attraction and electrostatic coupling for highly efficient direct electron transfer (DET) of enzymes with unprecedented applicability and versatility. The biologically assembled conductive nanomesh enzyme platform enables DET-based flexible integrated biosensors and DET of eight different enzyme with various catalytic activities.

  12. DNA-Based Enzyme Reactors and Systems

    Directory of Open Access Journals (Sweden)

    Veikko Linko

    2016-07-01

    Full Text Available During recent years, the possibility to create custom biocompatible nanoshapes using DNA as a building material has rapidly emerged. Further, these rationally designed DNA structures could be exploited in positioning pivotal molecules, such as enzymes, with nanometer-level precision. This feature could be used in the fabrication of artificial biochemical machinery that is able to mimic the complex reactions found in living cells. Currently, DNA-enzyme hybrids can be used to control (multi-enzyme cascade reactions and to regulate the enzyme functions and the reaction pathways. Moreover, sophisticated DNA structures can be utilized in encapsulating active enzymes and delivering the molecular cargo into cells. In this review, we focus on the latest enzyme systems based on novel DNA nanostructures: enzyme reactors, regulatory devices and carriers that can find uses in various biotechnological and nanomedical applications.

  13. Enzyme extraction by ultrasound from sludge flocs

    Institute of Scientific and Technical Information of China (English)

    YU Guanghui; HE Pinjing; SHAO Liming; ZHU Yishu

    2009-01-01

    Enzymes play essential roles in the biological processes of sludge treatment. In this article, the ultrasound method to extract enzymes from sludge flocs was presented. Results showed that using ultrasound method at 20 kHz could extract more types of enzymes than that ultrasound at 40 kHz and ethylenediamine tetraacetic acid (EDTA) methods. The optimum parameters of ultrasound extraction at 20 kHz were duration of 10 min and power of 480 W. Under the condition, ultrasound could break the cells and extract both the extracellular and intercellular enzymes. Ultrasound power was apparently more susceptive to enzyme extraction than duration, suggesting that the control of power during ultrasound extraction was more important than that of duration. The Pearson correlation analysis between enzyme activities and cation contents revealed that the different types of enzymes had distinct cation binding characteristics.

  14. Accumulation of antibiotics and heavy metals in meat duck deep litter and their role in persistence of antibiotic-resistant Escherichia coli in different flocks on one duck farm.

    Science.gov (United States)

    Lin, Y; Zhao, W; Shi, Z D; Gu, H R; Zhang, X T; Ji, X; Zou, X T; Gong, J S; Yao, W

    2016-10-14

    Meat duck deep litter is considered to be an ideal environment for the evolution of bacterial antibiotic resistance if it is under poor management. The aim of this study was to characterize the accumulation of antibiotics and heavy metals in the deep litter and their role in the persistence of antibiotic resistance of Escherichia coli, and evaluate the service life of the deep litter. Samples were collected from initial, middle, and final stages of deep litter within 3 barns (zero, 4, and 8 rounds of meat duck fattening, d 34) and 9 flocks, with known consumption of antibiotics in the controlled trail. The feed and litter levels of consumed antibiotics and heavy metals were measured. E. coli (n = 147) was isolated and typed by Eric-PCR and the phylogenetic grouping technique, while minimal inhibitory concentrations of antibiotics and heavy metals were measured. This study confirmed the continuous accumulation of doxycycline and many heavy metals in the deep litter. The population of resistant certain bacteria to doxycycline (16 mg/L, 100 mg/L) or ofloxacin (8 g/mL, 50 g/mL) increased in the used deep litter (rounds 4 and 8). E. coli isolated from the 3 stages of sampling were highly resistant to ampicillin, tetracycline, florfenicol, and doxycycline. Increased resistance to ceftiofur, enrofloxacin, ofloxacin, and gentamicin were seen in the isolates from the final stage of deep litter. In addition, the percentage of isolates tolerant to zinc, copper, and cadmium and the numbers of Group-B2 isolates all increased in the used deep litter, and the isolates of each stage belonged predominantly to commensal groups. The antibiotic resistance of isolates with identical Eric-PCR patterns had improved from round 4 to 8, and differences still existed in the resistance profiles of isolates with identical Eric-PCR patterns from different barns of the same round. This study concluded that deep litter could be suitable for the evolution of bacterial antibiotic-resistance

  15. Analysis of antibiotic-resistant gene mecA and pathogenic genes in Staphylococcus aureus%金黄色葡萄球菌耐药基因及致病毒素基因的研究

    Institute of Scientific and Technical Information of China (English)

    王凤玲; 刘静; 杨青

    2009-01-01

    目的 研究金葡菌耐药基因及致病因子中毒休克综合征毒素-Ⅰ(TSST-Ⅰ)基因和杀白细胞毒素 (PVL) 基因的分布特征.方法 收集临床分离的74株金葡菌,PCR法检测毒素基因TSST-Ⅰ、PVL和mecA耐药基因.结果 74株金葡菌 PCR法对其行mecA基因检测,检出率为55.4% (41/74).PVL阳性菌株的分离率为29.7%(22/74),PVL阳性的MRSA为15株(15/41,36.6%), PVL阳性的MSSA为7株(7/33,21.2%),差异无统计学意义(P>0.05).TSST-Ⅰ基因检出率为6.8%, MSSA中未检出TSST-Ⅰ基因.结论 MRSA呈多重耐药性,易造成医院内暴发流行,携带PVL和TSST-Ⅰ的金葡菌其致病力更强,应加强医院感染控制,防止其播散流行.%Objective To investigate the antibiotic-resistant gene mecA and the prevalence of Panton-Valentine leukocidin (PVL) gene, toxic shock syndrome toxin (TSST-Ⅰ) gene in S. aureus. Methods A total of 74 S. aureus were collected from clinical specimens. The mecA, PVL and TSST-Ⅰ genes were detected by PCR.Results PVL gene was identified in 22 S. aureus isolates. The prevalence of PVL was 29.7% in S. aureus, 36.6% in MRSA and 21.2% in MSSA. The difference was not statistically significant (P>0.05). The prevalence of MRSA was 55.4% in 74 S. aureus. The prevalence of TSST-Ⅰ gene was 6.8%. TSST-Ⅰ gene was not detected in MSSA.Conclusions MRSA strains show highly resistant to antibiotics. PVL- and TSST-Ⅰ-positive S. aureus are more pathogenic.

  16. Chaos in an enzyme reaction.

    Science.gov (United States)

    Olsen, L F; Degn, H

    1977-05-12

    Dynamic systems are usually thought to have either monotonic or periodic behaviour. Although the possibility of other types of behaviour has been recognised for many years, the existence of non-monotonic, non-periodic behaviour in dynamic systems has been firmly established only recently. It is termed chaotic behaviour. A review on the rapidly expanding literature on chaos in discrete model systems described by difference equations has been published by May. Rössler, on the other hand, has discussed a few published works on systems of differential equations with chaotic solutions, and he has proposed a three-component chemical model system which he argues has chaotic solutions [figure see text]. The argument is based on a theorem by Li and Yorke. Here we report the finding of chaotic behaviour as an experimental result in an enzyme system (peroxidase). Like Rössler we base our identification of chaos on the theorem by Li and Yorke.

  17. Encapsulation of Enzymes and Peptides

    Science.gov (United States)

    Meesters, Gabrie M. H.

    A large part of formulated peptides and proteins, e.g., enzymes used as food ingredients, are formulated in a liquid form. Often, they are dissolved in water to which glycerol or sorbitol is added to reduce the water activity of the liquid, thus reducing the change of microbial growth. Still, there are reasons to formulate them in a solid form. Often, these reasons are stability, since a dry formulation is often much better than liquid formulations, and less transportation cost, since less mass is transported if one gets rid of the liquid; however, most of the times, the reason is that the product is mixed with a solid powder. Here, a liquid addition would lead to lump formation.

  18. CELLULOSE DEGRADATION BY OXIDATIVE ENZYMES

    Directory of Open Access Journals (Sweden)

    Maria Dimarogona

    2012-09-01

    Full Text Available Enzymatic degradation of plant biomass has attracted intensive research interest for the production of economically viable biofuels. Here we present an overview of the recent findings on biocatalysts implicated in the oxidative cleavage of cellulose, including polysaccharide monooxygenases (PMOs or LPMOs which stands for lytic PMOs, cellobiose dehydrogenases (CDHs and members of carbohydrate-binding module family 33 (CBM33. PMOs, a novel class of enzymes previously termed GH61s, boost the efficiency of common cellulases resulting in increased hydrolysis yields while lowering the protein loading needed. They act on the crystalline part of cellulose by generating oxidized and non-oxidized chain ends. An external electron donor is required for boosting the activity of PMOs. We discuss recent findings concerning their mechanism of action and identify issues and questions to be addressed in the future.

  19. Ethanologenic Enzymes of Zymomonas mobilis

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, Lonnie O' Neal

    1999-03-01

    Zymomonas mobilis is a unique microorganism in being both obligately fermentative and utilizing a Entner-Doudoroff pathway for glycolysis. Glycolytic flux in this organism is readily measured as evolved carbon dioxide, ethanol, or glucose consumed and exceeds 1 {micro}mole glucose/min per mg cell protein. To support this rapid glycolysis, approximately 50% of cytoplasmic protein is devoted to the 13 glycolytic and fermentative enzymes which constitute this central catabolic pathway. Only 1 ATP (net) is produced from each glucose metabolized. During the past grant period, we have completed the characterization of 11 of the 13 glycolytic genes from Z. mobilis together with complementary but separate DOE-fimded research by a former post-dot and collaborator, Dr. Tyrrell Conway. Research funded in my lab by DOE, Division of Energy Biosciences can be divided into three sections: A. Fundamental studies; B. Applied studies and utility; and C. Miscellaneous investigations.

  20. Stabilized enzymes in continuous gas phase reactions

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fangxiao; LeJeune, K.; Yang, Zhen [Univ. of Pittsburgh, PA (United States)] [and others

    1995-12-01

    We are assessing the utility of enzymes to catalyze reactions in a continuous gas phase reactor. First, alcohol dehydrogenase has been used to oxidize an unsaturated alcohol, 3-methyl-2-buten-1-ol (UOL), to the corresponding unsaturated aldehyde, 3-methyl-2-butenal (UAL). Cofactor NAD{sup +} was regenerated by concomitant acetone reduction to isopropyl alcohol. Second, organophosphorus hydrolase (OPH) has been used to hydrolyze pesticide vapors. In order to control enzyme hydration level, enzyme water adsorption isotherms at different temperature have been studied. Huttig`s isotherm model has been found suitable to describe adsorption behavior. The influence of enzyme hydration level, enzyme loading on glass beads, reaction temperature and flow rate on enzymatic reaction rate and biocatalyst stability were investigated. Reaction kinetics were studied and a kinetic model was proposed. We will also report our attempts to further stabilize enzymes for use in gas reactions by incorporating them into polymer matrices.

  1. Production of Enzymes from Marine Actinobacteria.

    Science.gov (United States)

    Zhao, X Q; Xu, X N; Chen, L Y

    Marine actinobacteria are well recognized for their capabilities to produce valuable natural products, which have great potential for applications in medical, agricultural, and fine chemical industries. In addition to producing unique enzymes responsible for biosynthesis of natural products, many marine actinobacteria also produce hydrolytic enzymes which are able to degrade various biopolymers, such as cellulose, xylan, and chitin. These enzymes are important to produce biofuels and biochemicals of interest from renewable biomass. In this chapter, the recent reports of novel enzymes produced by marine actinobacteria are reviewed, and advanced technologies that can be applied to search for novel marine enzymes as well as for improved enzyme production by marine actinobacteria are summarized, which include ribosome engineering, genome mining, as well as synthetic biology studies.

  2. Prediction of Wild-type Enzyme Characteristics

    DEFF Research Database (Denmark)

    Geertz-Hansen, Henrik Marcus

    of biotechnology, including enzyme discovery and characterization. This work presents two articles on sequence-based discovery and functional annotation of enzymes in environmental samples, and two articles on analysis and prediction of enzyme thermostability and cofactor requirements. The first article presents...... a sequence-based approach to discovery of proteolytic enzymes in metagenomes obtained from the Polar oceans. We show that microorganisms living in these extreme environments of constant low temperature harbour genes encoding novel proteolytic enzymes with potential industrial relevance. The second article...... presents a web server for the processing and annotation of functional metagenomics sequencing data, tailored to meet the requirements of non-bioinformaticians. The third article presents analyses of the molecular determinants of enzyme thermostability, and a feature-based prediction method of the melting...

  3. Operating windows for enzyme enhanced PCCC

    DEFF Research Database (Denmark)

    Deslauriers, Maria Gundersen; Gladis, Arne; Fosbøl, Philip Loldrup

    2017-01-01

    Today, enzyme enhanced carbon capture and storage (CCS) is gaining interest, since it can enable the use of energy efficient solvents, and thus potentially reduce the carbon footprint of CCS. However, a limitation of this technology is the high temperatures encountered in the stripper column, which...... can deactivate the enzymes. One solution to this challenge is the use of ultrafiltration to retain the enzyme in the absorber unit. In this report, a base case of a CCS facility is used to model the impact of such membranes for use in a full scale CCS commercial plant. The base case has an approximate...... capture capacity of 1 MTonn CO2/year, and is here operated for one year continuously. This publication compares soluble enzymes dissolved in a capture solvent with and without the use of ultrafiltration membranes. The membranes used here have an enzyme retention of 90%, 99% and 99.9%. Enzyme retention...

  4. Collateral sensitivity of antibiotic-resistant microbes.

    Science.gov (United States)

    Pál, Csaba; Papp, Balázs; Lázár, Viktória

    2015-07-01

    Understanding how evolution of microbial resistance towards a given antibiotic influences susceptibility to other drugs is a challenge of profound importance. By combining laboratory evolution, genome sequencing, and functional analyses, recent works have charted the map of evolutionary trade-offs between antibiotics and have explored the underlying molecular mechanisms. Strikingly, mutations that caused multidrug resistance in bacteria simultaneously enhanced sensitivity to many other unrelated drugs (collateral sensitivity). Here, we explore how this emerging research sheds new light on resistance mechanisms and the way it could be exploited for the development of alternative antimicrobial strategies.

  5. Antibiotic-Resistant Bacteria: There is Hope.

    Science.gov (United States)

    Offner, Susan

    1998-01-01

    Argues that reduction in the use of antibiotics would enable antibiotic-sensitive bacteria to flourish. Presents an activity designed to show students how a small, seemingly unimportant difference in doubling time can, over a period of time, make an enormous difference in population size. (DDR)

  6. ENZYME RESISTANCE OF GENETICALLY MODIFIED STARCH POTATOES

    Directory of Open Access Journals (Sweden)

    A. Sh. Mannapova

    2015-01-01

    Full Text Available Here in this article the justification of expediency of enzyme resistant starch use in therapeutic food products is presented . Enzyme resistant starch is capable to resist to enzymatic hydrolysis in a small intestine of a person, has a low glycemic index, leads to decrease of postprandial concentration of glucose, cholesterol, triglycerides in blood and insulin reaction, to improvement of sensitivity of all organism to insulin, to increase in sense of fulness and to reduction of adjournment of fats. Resistant starch makes bifidogenшс impact on microflora of a intestine of the person, leads to increase of a quantity of lactobacillus and bifidobacterium and to increased production of butyric acid in a large intestine. In this regard the enzyme resistant starch is an important component in food for prevention and curing of human diseases such as diabetes, obesity, colitis, a cancer of large and direct intestine. One method is specified by authors for imitation of starch digestion in a human body. This method is based on the definition of an enzyme resistance of starch in vitro by its hydrolysis to glucose with application of a glucoamylase and digestive enzyme preparation Pancreatin. This method is used in researches of an enzyme resistance of starch, of genetically modified potato, high amylose corn starch Hi-Maize 1043 and HYLON VII (National Starch Food Innovation, USA, amylopectin and amylose. It is shown that the enzyme resistance of the starch emitted from genetically modified potatoes conforms to the enzyme resistance of the high amylose corn starch “Hi-Maize 1043 and HYLON VII starch”, (National Starch Food Innovation, the USA relating to the II type of enzyme resistant starch. It is established that amylopectin doesn't have the enzyme resistant properties. The results of researches are presented. They allow us to make the following conclusion: amylose in comparison with amylopectin possesses higher enzyme resistance and gives to

  7. Conductometric transducers for enzyme-based biosensors.

    Science.gov (United States)

    Mikkelsen, S R; Rechnitz, G A

    1989-08-01

    The use of alternating current conductometric transducers in biosensing devices has been investigated for urea and D-amino acid sensors using the enzyme systems urease and D-amino acid oxidase/catalase. Transducers with copper and platinum electrodes were constructed and characterized, and two enzyme immobilization methods were tested. Detection limits of 1 x 10(-6)M and linear ranges of 2 orders of magnitude were routinely achieved for these model sensors with enzymes covalently immobilized on collagen films.

  8. Peptide-modified surfaces for enzyme immobilization.

    Directory of Open Access Journals (Sweden)

    Jinglin Fu

    Full Text Available BACKGROUND: Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity. METHODOLOGY/PRINCIPAL FINDINGS: A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation. CONCLUSIONS/SIGNIFICANCE: A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.

  9. The mechanisms of Excited states in enzymes

    DEFF Research Database (Denmark)

    Petersen, Frederic Nicolas Rønne; Bohr, Henrik

    2010-01-01

    Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes.......Enzyme catalysis is studied on the basis of excited state processes, which are of electronic, vibrational and thermal nature. The ways of achieving the excited state, such as photo-absorption and ligand binding, are discussed and exemplified by various cases of enzymes....

  10. Substrate analogues for isoprenoid enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Stremler, K.E.

    1987-01-01

    Diphosphonate analogues of geranyl diphosphate, resistant to degradation by phosphatases, were found to be alternate substrates for the reaction with farnesyl diphosphate synthetase isolated from avian liver. The difluoromethane analogue was shown to be the better alternate substrate, in agreement with solvolysis results which indicate that the electronegativity of the difluoromethylene unit more closely approximates that of the normal bridging oxygen. The usefulness of the C/sub 10/ difluoro analogue, for detecting low levels of isoprenoid enzymes in the presence of high levels of phosphatase activity, was demonstrated with a cell-free preparation from lemon peel. A series of C/sub 5/ through C/sub 15/ homoallylic and allylic diphosphonates, as well as two 5'-nucleotide diphosphonates, was prepared in high overall yield using the activation-displacement sequence. Radiolabeled samples of several of the allylic diphosphonates were prepared with tritium located at C1. A series of geraniols, stereospecifically deuterated at C1, was prepared. The enantiomeric purities and absolute configurations were determined by derivatization as the mandelate esters for analysis by /sup 1/H NMR. The stereochemistry of the activation-displacement sequence was examined using C1-deuterated substrates.

  11. Evolutionary Trajectories of Beta-Lactamase CTX-M-1 Cluster Enzymes: Predicting Antibiotic Resistance

    Science.gov (United States)

    Novais, Ângela; Comas, Iñaki; Baquero, Fernando; Cantón, Rafael; Coque, Teresa M.; Moya, Andrés; González-Candelas, Fernando; Galán, Juan-Carlos

    2010-01-01

    Extended-spectrum beta-lactamases (ESBL) constitute a key antibiotic-resistance mechanism affecting Gram-negative bacteria, and also an excellent model for studying evolution in real time. A shift in the epidemiology of ESBLs is being observed, which is characterized by the explosive diversification and increase in frequency of the CTX-M-type β-lactamases in different settings. This provides a unique opportunity for studying a protein evolutionary radiation by the sequential acquisition of specific mutations enhancing protein efficiency and fitness concomitantly. The existence of driver antibiotic molecules favoring protein divergence has been investigated by combining evolutionary analyses and experimental site-specific mutagenesis. Phylogenetic reconstruction with all the CTX-M variants described so far provided a hypothetical evolutionary scenario showing at least three diversification events. CTX-M-3 was likely the enzyme at the origin of the diversification in the CTX-M-1 cluster, which was coincident with positive selection acting on several amino acid positions. Sixty-three CTX-M-3 derivatives containing all combinations of mutations under positively selected positions were constructed, and their phenotypic efficiency was evaluated. The CTX-M-3 diversification process can only be explained in a complex selective landscape with at least two antibiotics (cefotaxime and ceftazidime), indicating the need to invoke mixtures of selective drivers in order to understand the final evolutionary outcome. Under this hypothesis, we found congruent results between the in silico and in vitro analyses of evolutionary trajectories. Three pathways driving the diversification of CTX-M-3 towards the most complex and efficient variants were identified. Whereas the P167S pathway has limited possibilities of further diversification, the D240G route shows a robust diversification network. In the third route, drift may have played a role in the early stages of CTX-M-3 evolution

  12. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes

    Science.gov (United States)

    McMillan, Duncan G. G.; Marritt, Sophie J.; Kemp, Gemma L.; Gordon-Brown, Piers; Butt, Julea N.; Jeuken, Lars J. C.

    2014-01-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes. PMID:24634538

  13. The Impact of Enzyme Orientation and Electrode Topology on the Catalytic Activity of Adsorbed Redox Enzymes.

    Science.gov (United States)

    McMillan, Duncan G G; Marritt, Sophie J; Kemp, Gemma L; Gordon-Brown, Piers; Butt, Julea N; Jeuken, Lars J C

    2013-11-01

    It is well established that the structural details of electrodes and their interaction with adsorbed enzyme influences the interfacial electron transfer rate. However, for nanostructured electrodes, it is likely that the structure also impacts on substrate flux near the adsorbed enzymes and thus catalytic activity. Furthermore, for enzymes converting macro-molecular substrates it is possible that the enzyme orientation determines the nature of interactions between the adsorbed enzyme and substrate and therefore catalytic rates. In essence the electrode may impede substrate access to the active site of the enzyme. We have tested these possibilities through studies of the catalytic performance of two enzymes adsorbed on topologically distinct electrode materials. Escherichia coli NrfA, a nitrite reductase, was adsorbed on mesoporous, nanocrystalline SnO2 electrodes. CymA from Shewanella oneidensis MR-1 reduces menaquinone-7 within 200 nm sized liposomes and this reaction was studied with the enzyme adsorbed on SAM modified ultra-flat gold electrodes.

  14. Distribution of drug inactive enzyme genes in bacterial isolates and mechanism of its induction and inhibition%细菌药物钝化酶基因分布及其表达诱导与抑制机制的研究

    Institute of Scientific and Technical Information of China (English)

    吴亦斐; 孙爱华; 赵金方; 葛玉梅; 严杰

    2013-01-01

    目的:了解临床常见病原菌药物钝化酶基因及其优势基因携带模式,抗生素诱导药物钝化酶基因表达上调的作用及其与细菌组氨酸激酶的关系.方法:采用PCR和测序法,了解金黄色葡萄球菌、大肠埃希菌、肺炎克雷伯菌、鲍曼不动杆菌、阴沟肠杆菌临床菌株携带的β-内酰胺类、氨基糖苷类、大环内酯类钝化酶基因.采用实时荧光定量RT-PCR,了解抗生素诱导及组氨酸激酶阻断剂氯氰碘柳胺抑制药物钝化酶基因表达的作用.结果:63株大肠埃希菌中检出4种β-内酰胺类、2种氨基糖苷类和1种大环内酯类钝化酶基因,优势基因携带模式为[TEM+CTX-M]+aac(3)-Ⅱ+ mphA 16株(25.4%)和[TEM+CTX-M]+aac (6’)-Ⅰb13株(20.6%).24株金黄色葡萄球菌中检出2种β-内酰胺类、3种氨基糖苷类钝化酶基因,优势基因携带模式为aph (3')(41.7%)或aac(6)-Ⅰ e-aph(2)-Ⅰ a(25.0%).28株肺炎克雷伯菌中检出4种β-内酰胺酶、2种氨基糖苷类钝化酶基因,优势基因携带模式为[TEM +SHV]+[aac(6’)-Ⅰ b+aac(3)-Ⅱ](28.6%)和[TEM+SHV]+[aac (6')-Ⅰ b+aac(3)-Ⅱ]+mphA(17.8%).鲍曼不动杆菌和阴沟肠杆菌也以携带两类或三类药物钝化酶基因为优势模式.1/4 MIC青霉素、头胞噻肟和链霉素,能诱导3种β-内酰胺类和4种氨基糖苷类钝化酶基因表达显著上调(P<0.05),该诱导作用可被氯氰碘柳胺所抑制(P<0.05).结论:上述临床常见病原菌多携带多类药物钝化酶基因并存在不同的优势基因携带模式.低浓度抗生素可能诱导药物钝化酶基因表达上调,但可被组氨酸激酶阻断剂所抑制.%Objective; To determine the distribution and the predominant gene carrying model of drug inactive enzyme genes in bacterial isolates,and the mechanism of its induction and inhibition. Methods; The β-lactam, aminoglycosides and macrolides inactive enzyme genes were detected by PCR and sequencing in S. aureus, E. coli

  15. Electrospray Ion Trap Mass Spectrometry and Chromatographic Behavior of the FDNB-Derivatized Products of Eight Aminoglycoside Antibiotics%8种氨基糖苷类抗生素FDNB衍生化产物的电喷雾离子阱质谱及色谱行为研究

    Institute of Scientific and Technical Information of China (English)

    周茂金; 梅如冰; 苏美英

    2011-01-01

    目的 采用电喷雾离子阱质谱(ESI-MSn)法研究8种氨基糖苷类抗生素2,4-二硝基氟苯(FDNB)衍生化产物的质谱裂解规律及色谱行为.方法 分别取氨基糖苷类抗生素FDNB衍生化产物溶液,将其直接导入ESI离子源进行分析.结果 在正离子检测方式下,各化合物在二级质谱分析时,均可发生A环与B环之间的糖苷键断裂,生成脱去A环的碎片离子;在三级质谱分析时,进一步发生B环与C环之间的糖苷键断裂,生成脱去B环或C环的碎片离子.新霉素B由4个环组成,在三级质谱分析时,其衍生化产物发生B环与C环之间的糖苷键断裂,主要生成脱去B环的碎片离子;在四级质谱分析中,进一步生成脱去C环或D环的碎片离子.结论 通过LC-MS/MS和HPLC-UV分析获得了氨基糖苷类抗生素FDNB衍生化产物的色谱行为信息,为该类药物分析方法(HPLC-UV和LC-MS/MS)的建立和结构解析提供依据.%OBJECTIVE To study the dissociation pathways and chromatographic behavior of FDNB-derivatized products of eight aminoglycoside antibiotics. METHODS The solution of FDNB-derivatized products of eight aminoglycoside antibiotics was injected onto the electrospray ion resource to elucidate their structurs. RESULTS The FDNB-derivatized products of eight aminoglycoside antibiotics except neomycin B produced prominent fragmentation ions by loss of A-ring in MS2 full scan mode. In MS3 full scan mode, the abundant fragmentation ions were produced from the two-stage fragmentation ions by loss of C-ring or B-ring, separately. The FDNB-derivatized product of neomycin B demonstrated a prominent fragmentation ion at m/z 643 by loss of B-ring from the ion at m/z 1 119 in MS3 full scan mode. In MS4 full scan mode, the abundant fragmentation ions at m/z 493 and m/z 151 were formed from the fragmentation ion at m/z 643 by loss of C-ring or D-ring, separately. The chromatographic behaviors of the FDNB-derivatized products of eight aminoglycoside

  16. Enzyme Activity Experiments Using a Simple Spectrophotometer

    Science.gov (United States)

    Hurlbut, Jeffrey A.; And Others

    1977-01-01

    Experimental procedures for studying enzyme activity using a Spectronic 20 spectrophotometer are described. The experiments demonstrate the effect of pH, temperature, and inhibitors on enzyme activity and allow the determination of Km, Vmax, and Kcat. These procedures are designed for teaching large lower-level biochemistry classes. (MR)

  17. Loop 7 of E2 enzymes

    DEFF Research Database (Denmark)

    Papaleo, Elena; Casiraghi, Nicola; Arrigoni, Alberto;

    2012-01-01

    The ubiquitin (Ub) system controls almost every aspect of eukaryotic cell biology. Protein ubiquitination depends on the sequential action of three classes of enzymes (E1, E2 and E3). E2 Ub-conjugating enzymes have a central role in the ubiquitination pathway, interacting with both E1 and E3...

  18. Biosilica-Immobilized Enzymes for Biocatalysis (Preprint)

    Science.gov (United States)

    2007-08-01

    Manufacture of glucose syrups and starch modification Maltogenic alpha- amylase Improves shelf life of bread Lipoxygenase Used for bleaching and...Table 1) [1-3]. Table I: Examples of enzymes catalysis in common household items Enzyme Application Lipases, Amylases , Proteases, Cellulases...paper manufacturing Phytases Improves nutritional value of animal feeds Lipases, Acylase Drug products and pharmaceutical intermediates Amylase

  19. The use of enzymes for beer brewing

    NARCIS (Netherlands)

    Donkelaar, van Laura H.G.; Mostert, Joost; Zisopoulos, Filippos K.; Boom, Remko M.; Goot, van der Atze Jan

    2016-01-01

    The exergetic performance of beer produced by the conventional malting and brewing process is compared with that of beer produced using an enzyme-assisted process. The aim is to estimate if the use of an exogenous enzyme formulation reduces the environmental impact of the overall brewing process. Th

  20. Tryptophan catabolizing enzymes – party of three

    Directory of Open Access Journals (Sweden)

    Helen J Ball

    2014-10-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO and tryptophan 2,3-dioxygenase (TDO are tryptophan-degrading enzymes that have independently evolved to catalyze the first step in tryptophan catabolism via the kynurenine pathway. The depletion of tryptophan and formation of kynurenine pathway metabolites modulates the activity of the mammalian immune, reproductive and central nervous systems. IDO and TDO enzymes can have overlapping or distinct functions depending on their expression patterns. The expression of TDO and IDO enzymes in mammals differs not only by tissue/cellular localization but also by their induction by distinct stimuli. To add to the complexity, these genes also have undergone duplications in some organisms leading to multiple isoforms of IDO or TDO. For example, many vertebrates, including all mammals, have acquired two IDO genes via gene duplication, although the IDO1-like gene has been lost in some lower vertebrate lineages. Gene duplications can allow the homologs to diverge and acquire different properties to the original gene. There is evidence for IDO enzymes having differing enzymatic characteristics, signaling properties and biological functions. This review analyses the evolutionary convergence of IDO and TDO enzymes as tryptophan-catabolizing enzymes and the divergent evolution of IDO homologs to generate an enzyme family with diverse characteristics not possessed by TDO enzymes, with an emphasis on the immune system.

  1. Restriction Enzyme Mapping: A Simple Student Practical.

    Science.gov (United States)

    Higgins, Stephen J.; And Others

    1990-01-01

    An experiment that uses the recombinant plasmid pX1108 to illustrate restriction mapping is described. The experiment involves three restriction enzymes and employs single and double restriction enzyme digestions. A list of needed materials, procedures, safety precautions, results, and discussion are included. (KR)

  2. Enzyme adsorption at solid-liquid interfaces.

    NARCIS (Netherlands)

    Duinhoven, S.

    1992-01-01

    Enzymes are proteins with the capacity of catalysing various reactions. Nowadays two types of enzymes, proteases and lipases, are available for use in detergent formulations for household and industrial laundry washing. Proteases are capable of catalysing the hydrolysis of proteins while lipases ena

  3. GENETICS AND BIOCHEMISTRY OF DEHALOGENATING ENZYMES

    NARCIS (Netherlands)

    JANSSEN, DB; PRIES, F; VANDERPLOEG, [No Value; Ploeg, Jan R. van der

    1994-01-01

    Microorganisms that can utilize halogenated compounds as a growth substrate generally produce enzymes whose function is carbon-halogen bond cleavage. Based on substrate range, reaction type and gene sequences, the dehalogenating enzymes can be classified in different groups, including hydrolytic deh

  4. Illustrating Enzyme Inhibition Using Gibbs Energy Profiles

    Science.gov (United States)

    Bearne, Stephen L.

    2012-01-01

    Gibbs energy profiles have great utility as teaching and learning tools because they present students with a visual representation of the energy changes that occur during enzyme catalysis. Unfortunately, most textbooks divorce discussions of traditional kinetic topics, such as enzyme inhibition, from discussions of these same topics in terms of…

  5. Biocatalytic material comprising multilayer enzyme coated fiber

    Science.gov (United States)

    Kim, Jungbae [Richland, WA; Kwak, Ja Hun [Richland, WA; Grate, Jay W [West Richland, WA

    2009-11-03

    The present invention relates generally to high stability, high activity biocatalytic materials and processes for using the same. The materials comprise enzyme aggregate coatings having high biocatalytic activity and stability useful in heterogeneous environment. These new materials provide a new biocatalytic immobilized enzyme system with applications in bioconversion, bioremediation, biosensors, and biofuel cells.

  6. A toy quantum analog of enzymes

    CERN Document Server

    Svetlichny, George

    2015-01-01

    We present a quantum system incorporating qualitative aspects of enzyme action in which the possibility of quantum superposition of several conformations of the enzyme-substrate complex is investigated. We present numerical results showing quantum effects that transcend the case of a statistical mixture of conformations.

  7. Enzyme Catalysis and the Gibbs Energy

    Science.gov (United States)

    Ault, Addison

    2009-01-01

    Gibbs-energy profiles are often introduced during the first semester of organic chemistry, but are less often presented in connection with enzyme-catalyzed reactions. In this article I show how the Gibbs-energy profile corresponds to the characteristic kinetics of a simple enzyme-catalyzed reaction. (Contains 1 figure and 1 note.)

  8. Orphan enzymes in ether lipid metabolism.

    Science.gov (United States)

    Watschinger, Katrin; Werner, Ernst R

    2013-01-01

    Ether lipids are an emerging class of lipids which have so far not been investigated and understood in every detail. They have important roles as membrane components of e.g. lens, brain and testis, and as mediators such as platelet-activating factor. The metabolic enzymes for biosynthesis and degradation have been investigated to some extent. As most involved enzymes are integral membrane proteins they are tricky to handle in biochemical protocols. The sequence of some ether lipid metabolising enzymes has only recently been reported and other sequences still remain obscure. Defined enzymes without assigned sequence are known as orphan enzymes. One of these enzymes with uncharacterised sequence is plasmanylethanolamine desaturase, a key enzyme for the biosynthesis of one of the most abundant phospholipids in our body, the plasmalogens. This review aims to briefly summarise known functions of ether lipids, give an overview on their metabolism including the most prominent members, platelet-activating factor and the plasmalogens. A special focus is set on the description of orphan enzymes in ether lipid metabolism and on the successful strategies how four previous orphans have recently been assigned a sequence. Only one of these four was characterised by classical protein purification and sequencing, whereas the other three required alternative strategies such as bioinformatic candidate gene selection and recombinant expression or development of an inhibitor and multidimensional metabolic profiling.

  9. Computer-based studies on enzyme catalysis

    NARCIS (Netherlands)

    Ridder, L.

    2000-01-01

    Theoretical simulations are becoming increasingly important for our understanding of how enzymes work. The aim of the research presented in this thesis is to contribute to this development by applying various computational methods to three enzymes of theβ-ketoadipate pathway, and to validate the mod

  10. Enzyme activity assay of glycoprotein enzymes based on a boronate affinity molecularly imprinted 96-well microplate.

    Science.gov (United States)

    Bi, Xiaodong; Liu, Zhen

    2014-12-16

    Enzyme activity assay is an important method in clinical diagnostics. However, conventional enzyme activity assay suffers from apparent interference from the sample matrix. Herein, we present a new format of enzyme activity assay that can effectively eliminate the effects of the sample matrix. The key is a 96-well microplate modified with molecularly imprinted polymer (MIP) prepared according to a newly proposed method called boronate affinity-based oriented surface imprinting. Alkaline phosphatase (ALP), a glycoprotein enzyme that has been routinely used as an indicator for several diseases in clinical tests, was taken as a representative target enzyme. The prepared MIP exhibited strong affinity toward the template enzyme (with a dissociation constant of 10(-10) M) as well as superb tolerance for interference. Thus, the enzyme molecules in a complicated sample matrix could be specifically captured and cleaned up for enzyme activity assay, which eliminated the interference from the sample matrix. On the other hand, because the boronate affinity MIP could well retain the enzymatic activity of glycoprotein enzymes, the enzyme captured by the MIP was directly used for activity assay. Thus, additional assay time and possible enzyme or activity loss due to an enzyme release step required by other methods were avoided. Assay of ALP in human serum was successfully demonstrated, suggesting a promising prospect of the proposed method in real-world applications.

  11. Fungal enzymes in the attine ant symbiosis

    DEFF Research Database (Denmark)

    de Fine Licht, Henrik Hjarvard; Schiøtt, Morten; Boomsma, Jacobus Jan

    the more basal attine genera use substrates such as flowers, plant debris, small twigs, insect feces and insect carcasses. This diverse array of fungal substrates across the attine lineage implies that the symbiotic fungus needs different enzymes to break down the plant material that the ants provide...... or different efficiencies of enzyme function. Fungal enzymes that degrade plant cell walls may have functionally co-evolved with the ants in this scenario. We explore this hypothesis with direct measurements of enzyme activity in fungus gardens in 12 species across 8 genera spanning the entire phylogeny...... and diversity of life-styles within the attine clade. We find significant differences in enzyme activity between different genera and life-styles of the ants. How these findings relate to attine ant coevolution and crop optimization are discussed....

  12. Production of cellulolytic enzymes from ascomycetes

    DEFF Research Database (Denmark)

    Hansen, Gustav Hammerich; Lübeck, Mette; Frisvad, Jens Christian;

    2015-01-01

    Optimizing production of cellulose degrading enzymes is of great interest in order to increase the feasibility of constructing biorefinery facilities for a sustainable supply of energy and chemical products. The ascomycete phylum has a large potential for the production of cellulolytic enzymes....... Although numerous enzymatic profiles have already been unraveled, the research has been covering only a limited number of species and genera, thus leaving many ascomycetes to be analyzed. Such analysis requires choosing appropriate media and cultivation methods that ensure enzyme profiles with high...... specificities and activities. However, the choice of media, cultivation methods and enzyme assays highly affect the enzyme activity profile observed. This review provides an overview of enzymatic profiles for several ascomycetes covering phylogenetically distinct genera and species. The profiles of cellulose...

  13. Enzyme-immobilized microfluidic process reactors.

    Science.gov (United States)

    Asanomi, Yuya; Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki

    2011-07-19

    Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  14. Enzyme-Immobilized Microfluidic Process Reactors

    Directory of Open Access Journals (Sweden)

    Hideaki Maeda

    2011-07-01

    Full Text Available Microreaction technology, which is an interdisciplinary science and engineering area, has been the focus of different fields of research in the past few years. Several microreactors have been developed. Enzymes are a type of catalyst, which are useful in the production of substance in an environmentally friendly way, and they also have high potential for analytical applications. However, not many enzymatic processes have been commercialized, because of problems in stability of the enzymes, cost, and efficiency of the reactions. Thus, there have been demands for innovation in process engineering, particularly for enzymatic reactions, and microreaction devices represent important tools for the development of enzyme processes. In this review, we summarize the recent advances of microchannel reaction technologies especially for enzyme immobilized microreactors. We discuss the manufacturing process of microreaction devices and the advantages of microreactors compared to conventional reaction devices. Fundamental techniques for enzyme immobilized microreactors and important applications of this multidisciplinary technology are also included in our topics.

  15. Enhanced Oil Recovery with Application of Enzymes

    DEFF Research Database (Denmark)

    Khusainova, Alsu

    Enzymes have recently been reported as effective enhanced oil recovery (EOR) agents. Both laboratory and field tests demonstrated significant increase in the ultimate oil production. Up to16% of additional oil was produced in the laboratory conditions and up to 269 barrels of additional oil per day...... were recovered in the field applications. The following mechanisms were claimed to be responsible for the enhancement of the oil production due to enzymes: wettability improvement of the rock surface; formation of the emulsions; reduction of oil viscosity; and removal of high molecular weight paraffins....... However, the positive effect of enzymes on oil recovery is not that obvious. In most of the studies commercial enzyme products composed of enzymes, surfactants and stabilisers were used. Application of such samples makes it difficult to assign a positive EOR effect to a certain compound, as several...

  16. Enzyme-based antifouling coatings: a review

    DEFF Research Database (Denmark)

    Olsen, Stefan Møller; Pedersen, Leif Toudal; Laursen, M.H.

    2007-01-01

    for successful development of enzymatic AF coatings. The approaches described in the literature are divided into direct and indirect enzymatic AF, depending on the intended action of the enzymes. Direct antifouling is used when the enzymes themselves are active antifoulants. Indirect antifouling refers...... to the use of enzymes to release an active biocide with AF activity. For direct AF, several patents have been granted, and a commercial product has been launched. However, the achievement of an efficient broad-spectrum AF coating based on a single or a few enzymes has not yet been achieved. An indirect AF...... coating is not yet available commercially. The technology is mainly limited by the instability of substrate supply, whether the substrates are found in the surrounding seawater or in the coating itself. Legislative issues regarding which part(s) of an enzyme system should be regarded as biocidal...

  17. Directed Evolution of Enzymes for Industrial Biocatalysis.

    Science.gov (United States)

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment.

  18. Electro-ultrafiltration of industrial enzyme solutions

    DEFF Research Database (Denmark)

    Enevoldsen, Ann Dorrit; Hansen, Erik Børresen; Jonsson, Gunnar Eigil

    2007-01-01

    To reduce the problems with fouling and concentration polarization during crossflow ultrafiltration of industrial enzyme solutions an electric field is applied across the membrane. The filtration performance during electro-ultrafiltration (EUF) has been tested with several enzymes. Results show...... that EUF is an effective method to filter high concentrated solutions at low crossfiow. The flux improved 3-7 times for enzymes with a significant surface charge at an electric field strength of 1600V/m compared to conventional UF. The greatest improvement is observed at high concentration. Not all enzymes...... can be filtered with EUF, mainly due to a low surface charge and impurities in the feed solution. Using a pulsed electric field did not improve the flux compared to a constant field. Gel electrophoresis experiments of the enzymes appear to be a useful method for estimating the influence...

  19. Enzyme stereospecificity as a powerful tool in searching for new enzymes.

    Science.gov (United States)

    Skarydová, Lucie; Skarka, Adam; Solich, Petr; Wsól, Vladimír

    2010-07-01

    Chirality is a ubiquitous feature present in all biological systems that plays a very important role in many processes. Drug metabolism is one of these and is the subject of this review. Chiral drugs can be metabolized without changes in their chiral characteristics, but also their biotransformation may give rise to a new chiral center. On the other hand, prochiral drugs are always metabolized to chiral metabolites. The ratio of formed enantiomers/diastereoisomers is the constant known as enzyme stereospecificity, and this is as important a characteristic for each enzyme-substrate pair as is the Michaelis constant. Drugs are often substrates for multiple biotransformation enzymes, and all enzymes involved may metabolize a chiral or prochiral drug with different stereospecificity so that variant enantiomer ratios are achieved. Enzyme stereospecificity of whole cell fraction is the sum of the stereospecificities of all enzymes participating in metabolism of a substrate. Differing stereospecificities in the metabolism of a drug between whole cell fraction and enzymes point to the contribution of other enzymes. Using several drugs as examples, this review shows that enzyme stereospecificity can serve as a powerful tool in searching for new biotransformation enzymes. Although it is not often used in this way, it is clear that this is possible. There are today drugs with well-known chiral metabolism, but, inasmuch as many xenobiotics are poorly characterized in terms of chiral metabolism, enzyme stereospecificity could be widely utilized in researching such substances.

  20. Ostensible enzyme promiscuity: alkene cleavage by peroxidases.

    Science.gov (United States)

    Mutti, Francesco G; Lara, Miguel; Kroutil, Markus; Kroutil, Wolfgang

    2010-12-17

    Enzyme promiscuity is generally accepted as the ability of an enzyme to catalyse alternate chemical reactions besides the 'natural' one. In this paper peroxidases were shown to catalyse the cleavage of a C=C double bond adjacent to an aromatic moiety for selected substrates at the expense of molecular oxygen at an acidic pH. It was clearly shown that the reaction occurs due to the presence of the enzyme; furthermore, the reactivity was clearly linked to the hemin moiety of the peroxidase. Comparison of the transformations catalysed by peroxidase and by hemin chloride revealed that these two reactions proceed equally fast; additional experiments confirmed that the peptide backbone was not obligatory for the reaction and only a single functional group of the enzyme was required, namely in this case the prosthetic group (hemin). Consequently, we propose to define such a promiscuous activity as 'ostensible enzyme promiscuity'. Thus, we call an activity that is catalysed by an enzyme 'ostensible enzyme promiscuity' if the reactivity can be tracked back to a single catalytic site, which on its own can already perform the reaction equally well in the absence of the peptide backbone.

  1. A survey of orphan enzyme activities

    Directory of Open Access Journals (Sweden)

    Pouliot Yannick

    2007-07-01

    Full Text Available Abstract Background Using computational database searches, we have demonstrated previously that no gene sequences could be found for at least 36% of enzyme activities that have been assigned an Enzyme Commission number. Here we present a follow-up literature-based survey involving a statistically significant sample of such "orphan" activities. The survey was intended to determine whether sequences for these enzyme activities are truly unknown, or whether these sequences are absent from the public sequence databases but can be found in the literature. Results We demonstrate that for ~80% of sampled orphans, the absence of sequence data is bona fide. Our analyses further substantiate the notion that many of these enzyme activities play biologically important roles. Conclusion This survey points toward significant scientific cost of having such a large fraction of characterized enzyme activities disconnected from sequence data. It also suggests that a larger effort, beginning with a comprehensive survey of all putative orphan activities, would resolve nearly 300 artifactual orphans and reconnect a wealth of enzyme research with modern genomics. For these reasons, we propose that a systematic effort to identify the cognate genes of orphan enzymes be undertaken.

  2. Metagenomics as a Tool for Enzyme Discovery: Hydrolytic Enzymes from Marine-Related Metagenomes.

    Science.gov (United States)

    Popovic, Ana; Tchigvintsev, Anatoly; Tran, Hai; Chernikova, Tatyana N; Golyshina, Olga V; Yakimov, Michail M; Golyshin, Peter N; Yakunin, Alexander F

    2015-01-01

    This chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions. Metagenomes also represent a huge reservoir of novel enzymes for applications in biocatalysis, biofuels, and bioremediation. Here we present the results of enzyme discovery for four enzyme activities, of particular industrial or environmental interest, including esterase/lipase, glycosyl hydrolase, protease and dehalogenase.

  3. Abeta-degrading enzymes in Alzheimer's disease.

    Science.gov (United States)

    Miners, James Scott; Baig, Shabnam; Palmer, Jennifer; Palmer, Laura E; Kehoe, Patrick G; Love, Seth

    2008-04-01

    In Alzheimer's disease (AD) Abeta accumulates because of imbalance between the production of Abeta and its removal from the brain. There is increasing evidence that in most sporadic forms of AD, the accumulation of Abeta is partly, if not in some cases solely, because of defects in its removal--mediated through a combination of diffusion along perivascular extracellular matrix, transport across vessel walls into the blood stream and enzymatic degradation. Multiple enzymes within the central nervous system (CNS) are capable of degrading Abeta. Most are produced by neurons or glia, but some are expressed in the cerebral vasculature, where reduced Abeta-degrading activity may contribute to the development of cerebral amyloid angiopathy (CAA). Neprilysin and insulin-degrading enzyme (IDE), which have been most extensively studied, are expressed both neuronally and within the vasculature. The levels of both of these enzymes are reduced in AD although the correlation with enzyme activity is still not entirely clear. Other enzymes shown capable of degrading Abetain vitro or in animal studies include plasmin; endothelin-converting enzymes ECE-1 and -2; matrix metalloproteinases MMP-2, -3 and -9; and angiotensin-converting enzyme (ACE). The levels of plasmin and plasminogen activators (uPA and tPA) and ECE-2 are reported to be reduced in AD. Reductions in neprilysin, IDE and plasmin in AD have been associated with possession of APOEepsilon4. We found no change in the level or activity of MMP-2, -3 or -9 in AD. The level and activity of ACE are increased, the level being directly related to Abeta plaque load. Up-regulation of some Abeta-degrading enzymes may initially compensate for declining activity of others, but as age, genetic factors and diseases such as hypertension and diabetes diminish the effectiveness of other Abeta-clearance pathways, reductions in the activity of particular Abeta-degrading enzymes may become critical, leading to the development of AD and CAA.

  4. Activation of interfacial enzymes at membrane surfaces

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Andresen, Thomas Lars; Halperin, Avi;

    2006-01-01

    A host of water-soluble enzymes are active at membrane surfaces and in association with membranes. Some of these enzymes are involved in signalling and in modification and remodelling of the membranes. A special class of enzymes, the phospholipases, and in particular secretory phospholipase A2 (s......PLA2), are only activated at the interface between water and membrane surfaces, where they lead to a break-down of the lipid molecules into lysolipids and free fatty acids. The activation is critically dependent on the physical properties of the lipid-membrane substrate. A topical review is given...

  5. Immobilized enzyme studies in a microscale bioreactor.

    Science.gov (United States)

    Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B

    2004-01-01

    Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.

  6. Development of Enzyme-Containing Functional Nanoparticles

    Science.gov (United States)

    2012-08-01

    absorbed) roentgen shake slug torr (nm Hg , 0° C) 1.000 000 X E -10 1.013 25 X E +2 1.000 000 X E +2 1.000 000 X E -28 1.054 350 X E +3 4 .184 000...nanoparticles, containing no enzyme, after particle synthesis to demonstrate that the adsorption of the enzyme or the presence of nanoparticles was not the...thermo-responsive nanoparticle nor enzyme adsorption onto the surface of the nanoparticle were responsible for artificially increasing enzymatic

  7. Data mining of enzymes using specific peptides

    Directory of Open Access Journals (Sweden)

    Lavi Yair

    2009-12-01

    Full Text Available Abstract Background Predicting the function of a protein from its sequence is a long-standing challenge of bioinformatic research, typically addressed using either sequence-similarity or sequence-motifs. We employ the novel motif method that consists of Specific Peptides (SPs that are unique to specific branches of the Enzyme Commission (EC functional classification. We devise the Data Mining of Enzymes (DME methodology that allows for searching SPs on arbitrary proteins, determining from its sequence whether a protein is an enzyme and what the enzyme's EC classification is. Results We extract novel SP sets from Swiss-Prot enzyme data. Using a training set of July 2006, and test sets of July 2008, we find that the predictive power of SPs, both for true-positives (enzymes and true-negatives (non-enzymes, depends on the coverage length of all SP matches (the number of amino-acids matched on the protein sequence. DME is quite different from BLAST. Comparing the two on an enzyme test set of July 2008, we find that DME has lower recall. On the other hand, DME can provide predictions for proteins regarded by BLAST as having low homologies with known enzymes, thus supplying complementary information. We test our method on a set of proteins belonging to 10 bacteria, dated July 2008, establishing the usefulness of the coverage-length cutoff to determine true-negatives. Moreover, sifting through our predictions we find that some of them have been substantiated by Swiss-Prot annotations by July 2009. Finally we extract, for production purposes, a novel SP set trained on all Swiss-Prot enzymes as of July 2009. This new set increases considerably the recall of DME. The new SP set is being applied to three metagenomes: Sargasso Sea with over 1,000,000 proteins, producing predictions of over 220,000 enzymes, and two human gut metagenomes. The outcome of these analyses can be characterized by the enzymatic profile of the metagenomes, describing the relative

  8. Potato Peroxidase for the Study of Enzyme Properties.

    Science.gov (United States)

    Shamaefsky, Brian R.

    1993-01-01

    Explains how the surface of a freshly sliced potato can be used for a variety of enzyme action experiments including the influence of pH on enzyme action, the enzyme denaturation potential of boiling water, the inhibition of enzymes by heavy metals, and the effects of salt concentration on enzyme effectiveness. (PR)

  9. 氨基甙类药物对内淋巴积水豚鼠前庭及耳蜗功能的影响%Effect of Aminoglycoside on Vestibular and Cochlear Functions in Guinea Pigs with Endolymphatic Hydrops

    Institute of Scientific and Technical Information of China (English)

    李漫娜; 殷善开; 黄艳艳; 张茂椿

    2001-01-01

    目的探讨氨基甙类药物对内淋巴积水豚鼠前庭及耳蜗功能的影响。方法8只内淋巴积水模型豚鼠全身应用链霉素,观察给药前后豚鼠行为学、眼震电图(ENG),听性脑干反应(ABR),畸变产物耳声发射(DPOAE)及形态学变化。结果给药后未出现头偏斜、走路不稳等前庭功能紊乱的行为征象,连续给药第10天、停药后第7天摆动幅度90°,停药后第21天,摆动幅度为90°、120°时积水侧眼震反应降低的幅度明显大于对照耳(P<0.05)。停药后第7天,积水耳给药前后ABR阈值升高的幅度同对照耳相比差异有显著性意义(P<0.05),积水耳升高的幅度大,其余各测试点差异无显著性意义。结论本研究结果表明积水耳的前庭及耳蜗对氨基甙类药物的敏感性较正常耳高,但本研究的给药方案对耳蜗功能无显著性影响。%Objective To investigate the effect of aminoglycosides onvestibular and cochlear functions in guinea pigs with endolymphatic hydrops(ELH).Methods Streptomycin sulfate was injected subcutaneously into eight guinea pigs with ELH. General behaviour was observed after injection. Electronystagmography(ENG), auditory hrainstem responses(ABRs) and distortion product otoacoustic emissions(DPOAEs) were recorded for up to 31 days.Results No signs of vvstibular disturbance were observed after application of streptomycin. Reduction of nystagmic responses on hydropic ears was found more significant compared with the control ears on the 10th day of injection(Pendular amplitude:90°) and on the 7th day (90°),21th day(90°,120°) after the termination of durg.administration respectively.The amplitudes of ABRs thresholds elevation on the hydropic ears were statistically significant with the contralateral ears on the 71th day after ending drug administration(P<0.05). No difference was found on other day . Histologic examination revealed reduction of the degree of ELH in the coclea and cells in

  10. The Effect of AmrB on Aeromonas hydrophila Aminoglycosides Resistance%AmrB 对嗜水气单胞菌氨基糖苷类抗生素耐药性的影响

    Institute of Scientific and Technical Information of China (English)

    张丹凤; 陈国平; 张国广; 黄家福; 华秀婷; 陈阳

    2013-01-01

      AmrB is a crucial member of drug efflux pump. Investigating the relationship between AmrB and the aminoglycosides resistance of Aeromonas hydrophila is supposed to be important for understanding the mechanism of its drug resistance. amrB gene was cloned to pET-28a vector and confirmed by double digestion and sequencing, thus obtained amrB-pET-28a. amrB-pET-28a/ BL21 was induced by IPTG to obtain AmrB protein then purified by Ni resin. New Zealand rabbit was immunized by AmrB to get AmrB serum with a titer of 1 ∶ 6 400. Kanamycin, streptomycin and gentamycin resistant strains of Aeromonas hydrophila AH1 were screened by 10 serial culture with 1 / 2 MIC of corresponding antibiotic. Western blotting was performed to analyze the expression of AmrB in drug resistant strains. After analysis of Western blotting by Phoretix 1D software and SPSS software, the expression of AmrB in kanamycin, streptomycin and gentamycin resistant strains was significantly 2. 16,2. 65 and 2. 13 folds higher than control strain, respectively. AmrB plays an important role in the aminoglycosides resistance of Aeromonas hydrophila AH1, which may offer an opportunity to further explore the molecular mechanisms within.%  AmrB 是药物外排系统的重要成员,探讨 AmrB 与嗜水气单胞菌氨基糖苷类抗生素耐药性的关系,对研究嗜水气单胞菌耐药机制有重要意义。将 amrB 基因克隆至 pET-28a 载体上,双酶切和测序验证得到重组质粒 amrB-pET-28a。对 amrB-pET-28a/ BL21进行诱导表达和镍柱纯化,制备得到效价为1∶6400的兔抗 AmrB抗血清。诱导获得嗜水气单胞菌 AH1卡那霉素、链霉素和庆大霉素耐药菌株,Western blotting 分析 AmrB 在耐药菌株中的表达量。 Phoretix 1D 和 SPSS 分析表明,AmrB 的表达量在卡那霉素、链霉素和庆大霉素耐药菌株中显著地高于对照菌嗜水气单胞菌 AH1,分别是对照的2.16、2.65和2.13倍,提示 AmrB 在嗜水气单胞菌对氨基糖苷

  11. PURIFICATION OF CATALASE ENZYME FROM PLEUROTUS OSTREATUS

    Directory of Open Access Journals (Sweden)

    Susmitha.S

    2014-03-01

    Full Text Available The oyster mushroom Pleurotus ostreatus is the most commonly cultivated mushroom, and are effective for antitumor, antibacterial, anti viral and hematological agents and in immune modulating treatments. Several compounds from oyster mushrooms, potentially beneficial for human health have been isolated and studied. The aim of this research is to purify an enzyme catalase from Pleurotus ostreatus through Sephadox G-75 column, its molecular weight was determined by polyacrylamide gel electrophoresis and the catalase enzyme stability were observed at various temperature and different pH condition. Under denaturing conditions, polyacrylamide gel electrophoresis revealed dissociation of a major component of molecular weight 62,000 kDa, which constituted 90% of the total protein of the stained gel, suggesting that the native enzyme is tetrameric. The optimum temperature and pH for the purified enzyme catalase from Pleurotus ostreatus enzymatic reaction were 30°C and pH 7.5.

  12. Enzymes: The possibility of production and applications

    Directory of Open Access Journals (Sweden)

    Petronijević Živomir B.

    2003-01-01

    Full Text Available Enzymes are biological catalysts with increasing application in the food pharmaceutical, cosmetic, textile and chemical industry. They are also important as reagents in chemical analysis, leather fabrications and as targets for the design of new drugs. Keeping in mind the growing need to replace classical chemical processes by alternative ones, because of ever growing environmental pollution, it is important that enzyme and other biotechnological processes are economical. Therefore, price decrease and stability and enzyme preparation efficiency increase are required more and more. This paper presents a short review of methods for yield increase and the improvement of the quality of enzyme products as commercial products, as well as a review of the possibilities of their application.

  13. Supramolecular Tectonics for Enzyme-like Reagents

    Institute of Scientific and Technical Information of China (English)

    MAO; LuYuan

    2001-01-01

    The enzyme-likes and bioactive species were closely related with the life phenomena and served as the reagent of bioassy1,2. In present works, the flow cytometry (FCM) and rapid-scanning stopped-flow (RSSF) spectroscopy combine with the stopped-flow difference UV/Vis spectra, FT-IR and other methods of assay, being used to study the biomimetic reaction and enzyme mimic. Based on catalytic kinetics of enzyme reaction3,4, the reaction mechanisms of the enzyme-likes had been studied and some new methods of kinetic determination were proposed. The study and methods not only provided the basic theoretical models for the life science, but also widened the application fields of biomimetic and analytical chemistry. The main contents of our works and the supramolecular models can be described as follows:  ……

  14. How thiamine diphosphate is activated in enzymes.

    Science.gov (United States)

    Kern, D; Kern, G; Neef, H; Tittmann, K; Killenberg-Jabs, M; Wikner, C; Schneider, G; Hübner, G

    1997-01-03

    The controversial question of how thiamine diphosphate, the biologically active form of vitamin B1, is activated in different enzymes has been addressed. Activation of the coenzyme was studied by measuring thermodynamics and kinetics of deprotonation at the carbon in the 2-position (C2) of thiamine diphosphate in the enzymes pyruvate decarboxylase and transketolase by use of nuclear magnetic resonance spectroscopy, proton/deuterium exchange, coenzyme analogs, and site-specific mutant enzymes. Interaction of a glutamate with the nitrogen in the 1'-position in the pyrimidine ring activated the 4'-amino group to act as an efficient proton acceptor for the C2 proton. The protein component accelerated the deprotonation of the C2 atom by several orders of magnitude, beyond the rate of the overall enzyme reaction. Therefore, the earlier proposed concerted mechanism or stabilization of a C2 carbanion can be excluded.

  15. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    Energy Technology Data Exchange (ETDEWEB)

    Siuti, Piro [ORNL; Retterer, Scott T [ORNL; Choi, Chang Kyoung [Michigan Technological University; Doktycz, Mitchel John [ORNL

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  16. Archaeal Enzymes and Applications in Industrial Biocatalysts.

    Science.gov (United States)

    Littlechild, Jennifer A

    2015-01-01

    Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in "extreme" conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  17. Microbial Enzymes: Tools for Biotechnological Processes

    Directory of Open Access Journals (Sweden)

    Jose L. Adrio

    2014-01-01

    Full Text Available Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  18. Archaeal Enzymes and Applications in Industrial Biocatalysts

    Directory of Open Access Journals (Sweden)

    Jennifer A. Littlechild

    2015-01-01

    Full Text Available Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.

  19. Microbial enzymes: tools for biotechnological processes.

    Science.gov (United States)

    Adrio, Jose L; Demain, Arnold L

    2014-01-16

    Microbial enzymes are of great importance in the development of industrial bioprocesses. Current applications are focused on many different markets including pulp and paper, leather, detergents and textiles, pharmaceuticals, chemical, food and beverages, biofuels, animal feed and personal care, among others. Today there is a need for new, improved or/and more versatile enzymes in order to develop more novel, sustainable and economically competitive production processes. Microbial diversity and modern molecular techniques, such as metagenomics and genomics, are being used to discover new microbial enzymes whose catalytic properties can be improved/modified by different strategies based on rational, semi-rational and random directed evolution. Most industrial enzymes are recombinant forms produced in bacteria and fungi.

  20. Highly efficient enzyme encapsulation in a protein nanocage: towards enzyme catalysis in a cellular nanocompartment mimic

    Science.gov (United States)

    Schoonen, Lise; Nolte, Roeland J. M.; van Hest, Jan C. M.

    2016-07-01

    The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions.The study of enzyme behavior in small nanocompartments is crucial for the understanding of biocatalytic processes in the cellular environment. We have developed an enzymatic conjugation strategy to attach a model enzyme to the interior of a cowpea chlorotic mottle virus capsid. It is shown that with this methodology high encapsulation efficiencies can be achieved. Additionally, we demonstrate that the encapsulation does not affect the enzyme performance in terms of a decreased activity or a hampered substrate diffusion. Finally, it is shown that the encapsulated enzymes are protected against proteases. We believe that our strategy can be used to study enzyme kinetics in an environment that approaches physiological conditions. Electronic supplementary information (ESI) available: Experimental procedures for the cloning, expression, and purification of all proteins, as well as supplementary figures and calculations. See DOI: 10.1039/c6nr04181g