WorldWideScience

Sample records for antibaryons

  1. Antibaryonic dark matter

    CERN Document Server

    Gorbunov, D

    2013-01-01

    Assuming existence of (very) heavy fourth generation of quarks and antiquarks we argue that antibaryon composed of the three heavy antiquarks can be light, stable and invisible, hence a good candidate for the Dark matter particle. Such opportunity allows to keep the baryon number conservation for the generation of the visible baryon asymmetry. The dark matter particles traveling through the ordinary matter will annihilate with nucleons inducing proton(neutron)-decay-like events with ~5GeV energy release in outcoming particles.

  2. BASE - The Baryon Antibaryon Symmetry Experiment

    Science.gov (United States)

    Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2015-11-01

    The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δg/g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.

  3. BASE - The Baryon Antibaryon Symmetry Experiment

    CERN Document Server

    Smorra, C; Bojtar, L.; Borchert, M.; Franke, K.A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2015-01-01

    The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton $g$-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle's motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of $\\delta g/g$ 10$^{-9}$ can be achieved. The successful application of this method to the antiproton will represent a factor 1000 improvement in the frac...

  4. Baryon and antibaryon production in lead-lead collisions at 158 A GeV/c

    Science.gov (United States)

    Newmass (NA52) Collaboration; Ambrosini, G.; Arsenescu, R.; Baglin, C.; Beringer, J.; Bohm, C.; Borer, K.; Bussière, A.; Dittus, F.; Elsener, K.; Frei, D.; Gorodetzky, Ph.; Guillaud, J. P.; Hess, P.; Hugentobler, E.; Kabana, S.; Klingenberg, R.; Lindén, T.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pal, T.; Pretzl, K.; Schacher, J.; Selldén, B.; Stoffel, F.; Tuominiemi, J.; Weber, M.; Zhang, Q. P.

    1998-01-01

    We report on baryon and antibaryon as well as K+ and K- production cross sections measured in lead-lead collisions at 158 GeV/c per nucleon. The presented data were taken at zero degree production angle with a minimum bias trigger. The measurements covered a wide range of rapidity 1.4antibaryons have been deduced.

  5. Probing moments of baryon-antibaryon generalized parton distributions at BELLE and FAIR

    CERN Document Server

    Kroll, P

    2013-01-01

    We analyze the time-like processes gamma gamma -> B Bbar and p p-bar -> gamma M at large Mandelstam variables within the handbag approach for which the process amplitudes factorize in hard partonic subprocesses and annihilation form factor. The latter represent moments of baryon-antibaryon generalized parton distributions. Symmetry relations restrict the number of independent annihilation form factors for the ground state baryons drastically. We determine these form factors from the present BELLE data on gamma gamma -> B Bbar with the help of simplifying assumptions. The knowledge of these form factors allow for predictions of p pbar -> gamma M for various mesons which may be probed at FAIR.

  6. Branching Fraction Measurements of psi(2S) Decay to Baryon-Antibaryon Final States

    CERN Document Server

    Pedlar, T K; Huang, G S; Lee, J; Miller, D H; Pavlunin, V; Rangarajan, R; Sanghi, B; Shibata, E I; Shipsey, I P J; Cronin-Hennessy, D; Park, C S; Park, W; Thayer, J B; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Stroynowski, R; Artuso, M; Boulahouache, C; Blusk, S; Dambasuren, E; Dorjkhaidav, O; Mountain, R; Muramatsu, H; Nandakumar, R; Skwarnicki, T; Stone, S; Wang, J C; Csorna, S E; Danko, I; Bonvicini, G; Cinabro, D; Dubrovin, M; McGee, S; Bornheim, A; Lipeles, E; Pappas, S P; Shapiro, A; Sun, W M; Weinstein, A J; Briere, R A; Chen, G P; Ferguson, T; Tatishvili, G T; Vogel, H; Watkins, M E; Adam, N E; Alexander, J P; Berkelman, K; Boisvert, V; Cassel, D G; Duboscq, J E; Ecklund, K M; Ehrlich, R; Galik, R S; Gibbons, L; Gittelman, B; Gray, S W; Hartill, D L; Heltsley, B K; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Magerkurth, A; Mahlke-Krüger, H; Meyer, T O; Mistry, N B; Patterson, J R; Peterson, D; Pivarski, J; Richichi, S J; Riley, D; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Thayer, J G; Urner, D; Wilksen, T; Warburton, A; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Potlia, V; Stöck, H; Yelton, J; Benslama, K; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Lowrey, N; Plager, C; Sedlack, C; Selen, M; Thaler, J J; Williams, J; Edwards, K W; Besson, D; Anderson, S; Frolov, V V; Gong, D T; Kubota, Y; Li, S Z; Poling, R A; Smith, A; Stepaniak, C J; Urheim, J; Metreveli, Z V; Seth, K K; Tomaradze, A G; Zweber, P; Ahmed, S; Alam, M S; Ernst, J; Jian, L; Saleem, M; Wappler, F; Arms, K; Eckhart, E; Gan, K K; Gwon, C; Honscheid, K; Kagan, H; Kass, R; Pedlar, T K; Von Törne, E; Severini, H; Skubic, P L; Dytman, S A; Müller, J A; Nam, S; Savinov, V

    2005-01-01

    Using 3.08 million psi(2S) decays observed in e^+e^- collisions by the CLEO detector, we present the results of a study of the psi(2S) decaying into baryon-antibaryon final states. We report the most precise measurements of the following eight modes: proton-antiproton, lambda-antilambda, Xi^- antiXi^-, Xi^0-antiXi^0 (first observation), Sigma+-antiSigma^+ (first observation), and Sigma^0-antiSigma^0, and place upper limits for the modes, Xi^0*-antiXi^0* and Omega^- antiOmega^-.

  7. Exclusive Baryon-Antibaryon Decays of the chi_cJ Mesons

    CERN Document Server

    Naik, P; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T; Athar, S B; Patel, R; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; Méndez, H; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A

    2008-01-01

    Using a sample of 2.59 \\times 10^7 psi(2S) decays collected by the CLEO--c detector, we present results of a study of chi_{cJ} (J=0,1,2) decays into baryon-antibaryon final states. We present the world's most precise measurements of the chi_cJ -> p-pbar and chi_cJ -> Lambda-Lambdabar branching fractions, and the first measurements of chi_c0 decays to other hyperons. These results illuminate the decay mechanism of the chi_c states.

  8. Probing moments of baryon-antibaryon generalized parton distributions at BELLE and FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, P. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Universitaet Wuppertal, Fachbereich Physik, Wuppertal (Germany); Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany)

    2014-01-15

    We analyze the time-like processes {gamma}{gamma}{yields}BB and p anti p{yields}{gamma}M at large Mandelstam variables within the handbag approach, for which the process amplitudes factorize in hard partonic subprocesses and annihilation form factors. The latter represent moments of baryon-antibaryon generalized parton distributions (GPDs). Symmetry relations restrict the number of independent annihilation form factors for the ground state baryons drastically. We determine these form factors from the present BELLE data on {gamma}{gamma}{yields}BB with the help of simplifying assumptions. The knowledge of these form factors allow for predictions of p anti p{yields}{gamma}M for various mesons which may be probed at FAIR. (orig.)

  9. Strange and non-strange baryon and antibaryon production in sulphur-tungsten and sulphur-sulphur interactions at 200 A Gev/c

    Energy Technology Data Exchange (ETDEWEB)

    Holme, A.K.

    1995-11-01

    The author has studied production of strange and multistrange baryons and antibaryons in central sulphur-tungsten, sulphur-sulphur, and lead-lead interactions at relativistic energies. The spectra of strange baryons and antibaryons provide information about the dynamics of hadronic matter under the extreme conditions realised in these collisions. The particle ratios allow the degree and the nature of the flavour equilibrium to be studied, while the transverse mass distributions provide independent information of the temperatures achieved. 143 refs.

  10. Baryon-antibaryon asymmetry in central rapidity region at LHC with the ALICE experiment

    CERN Document Server

    Broz, Michal

    The Large Hadron Collider (LHC) provided the first proton-proton collisions in the period of November-December 2009. Since then, a large data sample has been recorded by all LHC experiments. This event sample allows us to study more and more exotic particles and events. The ALICE (A Large Ion Collider Experiment) experiment, though designed primarily to study heavy ion collisions, has a rich proton-proton physics program. The characteristic features of ALICE are its very low-momentum cut-off, the low material budget and the excellent particle identification (PID) and vertexing capabilities. In this thesis, I discuss the results from the analysis of proton-proton collisions at the different LHC energies (√s = 900 GeV, 2.76 TeV and 7 TeV). I concentrate on the antibaryon-to-baryon ratio study which is of great importance for description of baryon number transport and it can allow to determine the carrier of the baryon number as well as to give an information on baryon structure itself. In particular, the mult...

  11. Study of ψ(3770 decaying to baryon anti-baryon pairs

    Directory of Open Access Journals (Sweden)

    Li-Gang Xia

    2016-05-01

    Full Text Available To study the decays of ψ(3770 going to baryon anti-baryon pairs (BB¯, all available experiments of measuring the cross sections of e+e−→BB¯ at center-of-mass energy ranging from 3.0 GeV to 3.9 GeV are combined. To relate the baryon octets, a model based on the SU(3 flavor symmetry is used and the SU(3 breaking effects are also considered. Assuming the electric and magnetic form factors are equal (|GE|=|GM|, a global fit including the interference between the QED process and the resonant process is performed. The branching fraction of ψ(3770→BB¯ is determined to be (2.4±0.8±0.3×10−5, (1.7±0.6±0.1×10−5, (4.5±0.9±0.1×10−5, (4.5±0.9±0.1×10−5, (2.0±0.7±0.1×10−5, and (2.0±0.7±0.1×10−5 for B=p,Λ,Σ+,Σ0,Ξ− and Ξ0, respectively, where the first uncertainty is from the global fit and the second uncertainty is the systematic uncertainty due to the assumption |GE|=|GM|. They are at least one order of magnitude larger than a simple scaling of the branching fraction of J/ψ/ψ(3686→BB¯.

  12. Centrality dependence of ?, baryon and antibaryon production in Pb + Pb collisions at 158 A GeV

    Science.gov (United States)

    Kabana, Sonia; NA52 Collaboration; Ambrosini, G.; Arsenescu, R.; Baglin, C.; Beringer, J.; Borer, K.; Bussière, A.; Dittus, F.; Elsener, K.; Gorodetzky, Ph; Guillaud, J. P.; Hess, P.; Kabana, S.; Klingenberg, R.; Lindén, T.; Lohmann, K. D.; Mommsen, R.; Moser, U.; Pretzl, K.; Schacher, J.; Stoffel, F.; Tuominiemi, J.; Weber, M.

    1999-02-01

    We present new results of the CERN experiment NA52 on the centrality dependence of img23.gif, img24.gif, p, d, p and d production yields near zero transverse momentum and at several rapidities, from 64 img25.gif to 4 img25.gif of the total Pb + Pb cross section. Baryon yields increase nearly linearly and img24.gif yields faster than linearly with the number of participating nucleons img28.gif. The antibaryon yields increase less than linearly with img28.gif, indicating absorption. The centrality and rapidity dependence of the img30.gif ratio indicates Coulomb interaction of the pions with the projectile spectator protons. Within the framework of a coalescence model the radius of the particle source has been estimated from the ratios img31.gif and d /¯ img32.gif. The source radii are similar for matter and antimatter and are found to increase with img33.gif.

  13. Correlated Leading Baryon-antibaryon Production in e+e- to ccbar to Lambda_c+ antiLambda_c- X

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari /Bari U.; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G. /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-22

    We present a study of 649 {+-} 35 e{sup +}e{sup -} {yields} c{bar c} events produced at {radical}s {approx} 10.6 GeV containing both a {Lambda}{sub c}{sup +} baryon and a {bar {Lambda}}{sub c}{sup -} antibaryon. The number observed is roughly four times that expected if the leading charmed hadron types are uncorrelated, confirming an observation by the CLEO Collaboration. We find a 2-jet topology in these events but very few additional baryons, demonstrating that the primary c and {bar c} are predominantly contained in a correlated baryon-antibaryon system. In addition to the charmed baryons we observe on average 2.6 {+-} 0.2 charged intermediate mesons, predominantly pions, carrying 65% of the remaining energy.

  14. Mid-rapidity anti-baryon to baryon ratios in pp collisions at $\\sqrt{s}$ = 0.9, 2.76 and 7 TeV measured by ALICE

    CERN Document Server

    Abbas, Ehab; Adam, Jaroslav; Adamova, Dagmar; Adare, Andrew Marshall; Aggarwal, Madan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agocs, Andras Gabor; Agostinelli, Andrea; Ahammed, Zubayer; Ahmad, Nazeer; Ahmad, Arshad; Ahmed, Ijaz; Ahn, Sul-Ah; Ahn, Sang Un; Aimo, Ilaria; Ajaz, Muhammad; Akindinov, Alexander; Aleksandrov, Dmitry; Alessandro, Bruno; Alici, Andrea; Alkin, Anton; Almaraz Avina, Erick Jonathan; Alme, Johan; Alt, Torsten; Altini, Valerio; Altinpinar, Sedat; Altsybeev, Igor; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anson, Christopher Daniel; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshauser, Harald; Arbor, Nicolas; Arcelli, Silvia; Arend, Andreas; Armesto, Nestor; Arnaldi, Roberta; Aronsson, Tomas Robert; Arsene, Ionut Cristian; Arslandok, Mesut; Asryan, Andzhey; Augustinus, Andre; Averbeck, Ralf Peter; Awes, Terry; Aysto, Juha Heikki; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Ban, Jaroslav; Baral, Rama Chandra; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Barret, Valerie; Bartke, Jerzy Gustaw; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batyunya, Boris; Batzing, Paul Christoph; Baumann, Christoph Heinrich; Bearden, Ian Gardner; Beck, Hans; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bellwied, Rene; Belmont-Moreno, Ernesto; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bergognon, Anais Annick Erica; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhati, Ashok Kumar; Bhom, Jihyun; Bianchi, Nicola; Bianchi, Livio; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Bjelogrlic, Sandro; Blanco, F; Blanco, Francesco; Blau, Dmitry; Blume, Christoph; Boccioli, Marco; Boettger, Stefan; Bogdanov, Alexey; Boggild, Hans; Bogolyubsky, Mikhail; Boldizsar, Laszlo; Bombara, Marek; Book, Julian; Borel, Herve; Borissov, Alexander; Bossu, Francesco; Botje, Michiel; Botta, Elena; Braidot, Ermes; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brun, Rene; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calvo Villar, Ernesto; Camerini, Paolo; Canoa Roman, Veronica; Cara Romeo, Giovanni; Carena, Francesco; Carena, Wisla; Carlin Filho, Nelson; Carminati, Federico; Casanova Diaz, Amaya Ofelia; Castillo Castellanos, Javier Ernesto; Castillo Hernandez, Juan Francisco; Casula, Ester Anna Rita; Catanescu, Vasile; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Cherney, Michael Gerard; Cheshkov, Cvetan; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Chinellato, David; Chochula, Peter; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio; Colella, Domenico; Collu, Alberto; Conesa Balbastre, Gustavo; Conesa del Valle, Zaida; Connors, Megan Elizabeth; Contin, Giacomo; Contreras, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortese, Pietro; Cortes Maldonado, Ismael; Cosentino, Mauro Rogerio; Costa, Filippo; Cotallo, Manuel Enrique; Crescio, Elisabetta; Crochet, Philippe; Cruz Alaniz, Emilia; Cruz Albino, Rigoberto; Cuautle, Eleazar; Cunqueiro, Leticia; Dainese, Andrea; Dang, Ruina; Danu, Andrea; Das, Kushal; Das, Supriya; Das, Debasish; Das, Indranil; Dash, Sadhana; Dash, Ajay Kumar; De, Sudipan; de Barros, Gabriel; De Caro, Annalisa; de Cataldo, Giacinto; de Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; Delagrange, Hugues; Deloff, Andrzej; De Marco, Nora; Denes, Ervin; De Pasquale, Salvatore; Deppman, Airton; D'Erasmo, Ginevra; de Rooij, Raoul Stefan; Diaz Corchero, Miguel Angel; Di Bari, Domenico; Dietel, Thomas; Di Giglio, Carmelo; Di Liberto, Sergio; Di Mauro, Antonio; Di Nezza, Pasquale; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Donigus, Benjamin; Dordic, Olja; Driga, Olga; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Dutta Majumdar, AK; Elia, Domenico; Emschermann, David Philip; Engel, Heiko; Erazmus, Barbara; Erdal, Hege Austrheim; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabris, Daniela; Faivre, Julien; Falchieri, Davide; Fantoni, Alessandra; Fasel, Markus; Fehlker, Dominik; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Fenton-Olsen, Bo; Feofilov, Grigory; Fernandez Tellez, Arturo; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Floratos, Emmanuel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Fusco Girard, Mario; Gaardhoje, Jens Joergen; Gagliardi, Martino; Gago, Alberto; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Garabatos, Jose; Garcia-Solis, Edmundo; Gargiulo, Corrado; Garishvili, Irakli; Gerhard, Jochen; Germain, Marie; Geuna, Claudio; Gheata, Andrei George; Gheata, Mihaela; Ghidini, Bruno; Ghosh, Premomoy; Gianotti, Paola; Girard, Martin Robert; Giubellino, Paolo; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez, Ramon; Gonzalez Ferreiro, Elena; Gonzalez-Trueba, Laura Helena; Gonzalez-Zamora, Pedro; Gorbunov, Sergey; Goswami, Ankita; Gotovac, Sven; Graczykowski, Lukasz Kamil; Grajcarek, Robert; Grelli, Alessandro; Grigoras, Costin; Grigoras, Alina Gabriela; Grigoriev, Vladislav; Grigoryan, Smbat; Grigoryan, Ara; Grinyov, Boris; Grion, Nevio; Gros, Philippe; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Guilbaud, Maxime Rene Joseph; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Han, Byounghee; Hanratty, Luke David; Hansen, Alexander; Harmanova, Zuzana; Harris, John William; Hartig, Matthias; Harton, Austin; Hatzifotiadou, Despoina; Hayashi, Shinichi; Hayrapetyan, Arsen; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Herrmann, Norbert; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hicks, Bernard; Hippolyte, Boris; Hori, Yasuto; Hristov, Peter Zahariev; Hrivnacova, Ivana; Huang, Meidana; Humanic, Thomas; Hwang, Dae Sung; Ichou, Raphaelle; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Incani, Elisa; Innocenti, Pier Giorgio; Innocenti, Gian Michele; Ippolitov, Mikhail; Irfan, Muhammad; Ivan, Cristian George; Ivanov, Marian; Ivanov, Andrey; Ivanov, Vladimir; Ivanytskyi, Oleksii; Jacholkowski, Adam Wlodzimierz; Jacobs, Peter; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Jayarathna, Sandun; Jena, Satyajit; Jha, Deeptanshu Manu; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyung Taik; Jusko, Anton; Kaidalov, Alexei; Kalcher, Sebastian; Kalinak, Peter; Kalliokoski, Tuomo Esa Aukusti; Kalweit, Alexander Philipp; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kazantsev, Andrey; Kebschull, Udo Wolfgang; Keidel, Ralf; Ketzer, Bernhard Franz; Khan, Palash; Khan, Kamal Hussain; Khan, Shuaib Ahmad; Khan, Mohisin Mohammed; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Do Won; Kim, Taesoo; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Beomkyu; Kim, Jin Sook; Kim, Jonghyun; Kim, Dong Jo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Klay, Jennifer Lynn; Klein, Jochen; Klein-Bosing, Christian; Kliemant, Michael; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kohler, Markus; Kollegger, Thorsten; Kolojvari, Anatoly; Kompaniets, Mikhail; Kondratiev, Valery; Kondratyeva, Natalia; Konevskih, Artem; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kramer, Frederick; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Krus, Miroslav; Kryshen, Evgeny; Krzewicki, Mikolaj; Kucera, Vit; Kucheriaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paul; Kulakov, Igor; Kumar, Jitendra; Kurashvili, Podist; Kurepin, A; Kurepin, AB; Kuryakin, Alexey; Kushpil, Svetlana; Kushpil, Vasily; Kvaerno, Henning; Kweon, Min Jung; Kwon, Youngil; Ladron de Guevara, Pedro; Lakomov, Igor; Langoy, Rune; La Pointe, Sarah Louise; Lara, Camilo Ernesto; Lardeux, Antoine Xavier; La Rocca, Paola; Lea, Ramona; Lechman, Mateusz; Lee, Sung Chul; Lee, Graham Richard; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenhardt, Matthieu Laurent; Lenti, Vito; Leon, Hermes; Leoncino, Marco; Leon Monzon, Ildefonso; Levai, Peter; Li, Shuang; Lien, Jorgen; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Loenne, Per-Ivar; Loggins, Vera; Loginov, Vitaly; Lohner, Daniel; Loizides, Constantinos; Loo, Kai Krister; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lovhoiden, Gunnar; Lu, Xianguo; Luettig, Philipp; Lunardon, Marcello; Luo, Jiebin; Luparello, Grazia; Luzzi, Cinzia; Ma, Rongrong; Ma, Ke; Madagodahettige-Don, Dilan Minthaka; Maevskaya, Alla; Mager, Magnus; Mahapatra, Durga Prasad; Maire, Antonin; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Ludmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Mangotra, Lalit Kumar; Manko, Vladislav; Manso, Franck; Manzari, Vito; Mao, Yaxian; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martinengo, Paolo; Martinez, Mario Ivan; Martinez Garcia, Gines; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel; Mazzoni, Alessandra Maria; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Mercado Perez, Jorge; Meres, Michal; Miake, Yasuo; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz; Mitu, Ciprian Mihai; Mizuno, Sanshiro; Mlynarz, Jocelyn; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Monteno, Marco; Montes, Esther; Moon, Taebong; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Nattrass, Christine; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nicassio, Maria; Niculescu, Mihai; Nielsen, Borge Svane; Niida, Takafumi; Nikolaev, Sergey; Nikolic, Vedran; Nikulin, Sergey; Nikulin, Vladimir; Nilsen, Bjorn Steven; Nilsson, Mads Stormo; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Nyanin, Alexandre; Nyatha, Anitha; Nygaard, Casper; Nystrand, Joakim Ingemar; Ochirov, Alexander; Oeschler, Helmut Oskar; Oh, Sun Kun; Oh, Saehanseul; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Ostrowski, Piotr Krystian; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozawa, Kyoichiro; Pachmayer, Yvonne Chiara; Pachr, Milos; Padilla, Fatima; Pagano, Paola; Paic, Guy; Painke, Florian; Pajares, Carlos; Pal, Susanta Kumar; Palaha, Arvinder Singh; Palmeri, Armando; Papikyan, Vardanush; Pappalardo, Giuseppe; Park, Woo Jin; Passfeld, Annika; Patalakha, Dmitri Ivanovich; Paticchio, Vincenzo; Paul, Biswarup; Pavlinov, Alexei; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitri; Perez Lara, Carlos Eugenio; Perrino, Davide; Peryt, Wiktor Stanislaw; Pesci, Alessandro; Pestov, Yury; Petracek, Vojtech; Petran, Michal; Petris, Mariana; Petrov, Plamen Rumenov; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Pitz, Nora; Piyarathna, Danthasinghe; Planinic, Mirko; Ploskon, Mateusz Andrzej; Pluta, Jan Marian; Pocheptsov, Timur; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polak, Karel; Polichtchouk, Boris; Poljak, Nikola; Pop, Amalia; Porteboeuf-Houssais, Sarah; Pospisil, Vladimir; Potukuchi, Baba; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puddu, Giovanna; Punin, Valery; Putis, Marian; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Rademakers, Alphonse; Raiha, Tomi Samuli; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Sudhir; Raniwala, Rashmi; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Rauch, Wolfgang; Rauf, Aamer Wali; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick; Reicher, Martijn; Reidt, Felix; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riccati, Lodovico; Ricci, Renato Angelo; Richert, Tuva; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roed, Ketil; Rogochaya, Elena; Rohr, David; Rohrich, Dieter; Romita, Rosa; Ronchetti, Federico; Rosnet, Philippe; Rossegger, Stefan; Rossi, Andrea; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Rybicki, Andrzej; Sadovsky, Sergey; Safarik, Karel; Sahoo, Raghunath; Sahu, Pradip Kumar; Saini, Jogender; Sakaguchi, Hiroaki; Sakai, Shingo; Sakata, Dosatsu; Salgado, Carlos Albert; Salzwedel, Jai; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Santoro, Romualdo; Sarkamo, Juho Jaako; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Hans Rudolf; Schmidt, Christian Joachim; Schuchmann, Simone; Schukraft, Jurgen; Schuster, Tim; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Patrick Aaron; Scott, Rebecca; Segato, Gianfranco; Selyuzhenkov, Ilya; Senyukov, Serhiy; Seo, Jeewon; Serci, Sergio; Serradilla, Eulogio; Sevcenco, Adrian; Shabetai, Alexandre; Shabratova, Galina; Shahoyan, Ruben; Sharma, Satish; Sharma, Natasha; Sharma, Rohni; Shigaki, Kenta; Shtejer, Katherin; Sibiriak, Yury; Sicking, Eva; Siddhanta, Sabyasachi; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Tinku; Sinha, Bikash; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Skjerdal, Kyrre; Smakal, Radek; Smirnov, Nikolai; Snellings, Raimond; Sogaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Soos, Csaba; Soramel, Francesca; Sputowska, Iwona; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Stolpovskiy, Mikhail; Strmen, Peter; Suaide, Alexandre Alarcon do Passo; Subieta Vasquez, Martin Alfonso; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais; Sultanov, Rishat; Sumbera, Michal; Susa, Tatjana; Symons, Timothy; Szanto de Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej; Takahashi, Jun; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarazona Martinez, Alfonso; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Ter-Minasyan, Astkhik; Terrevoli, Cristina; Thader, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony; Tlusty, David; Toia, Alberica; Torii, Hisayuki; Toscano, Luca; Trubnikov, Victor; Truesdale, David Christopher; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ulery, Jason Glyndwr; Ullaland, Kjetil; Ulrich, Jochen; Uras, Antonio; Urciuoli, Guido Marie; Usai, Gianluca; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Vande Vyvre, Pierre; Van Hoorne, Jacobus Willem; van Leeuwen, Marco; Vannucci, Luigi; Vargas, Aurora Diozcora; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vechernin, Vladimir; Veldhoen, Misha; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Yury; Vinogradov, Alexander; Vinogradov, Leonid; Virgili, Tiziano; Viyogi, Yogendra; Vodopianov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Vladimir; Wan, Renzhuo; Wang, Yifei; Wang, Yaping; Wang, Mengliang; Watanabe, Kengo; Weber, Michael; Wessels, Johannes; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Winn; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Ping; Yang, Hongyan; Yang, Shiming; Yasnopolsky, Stanislav; Yi, JunGyu; Yin, Zhongbao; Yoo, In-Kwon; Yoon, Jongik; Yu, Weilin; Yuan, Xianbao; Yushmanov, Igor; Zaccolo, Valentina; Zach, Cenek; Zampolli, Chiara; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zaviyalov, Nikolai; Zbroszczyk, Hanna Paulina; Zelnicek, Pierre; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Yonghong; Zhang, Xiaoming; Zhou, You; Zhou, Daicui; Zhou, Fengchu; Zhu, Jianlin; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zinovjev, Gennady; Zoccarato, Yannick Denis; Zynovyev, Mykhaylo; Zyzak, Maksym

    2013-01-01

    The ratios of yields of anti-baryons to baryons probes the mechanisms of baryon-number transport. Results for anti-proton/proton, anti-$\\Lambda/\\Lambda$, anti-$\\Xi^{+}/\\Xi^{-}$ and anti-$\\Omega^{+}/\\Omega^{-}$ in pp collisions at $\\sqrt{s}$ = 0.9, 2.76 and 7 TeV, measured with the ALICE detector at the LHC, are reported. Within the experimental uncertainties and ranges covered by our measurement, these ratios are independent of rapidity, transverse momentum and multiplicity for all measured energies. The results are compared to expectations from event generators, such as PYTHIA and HIJING/B, that are used to model the particle production in pp collisions. The energy dependence of anti-proton/proton, anti-$\\Lambda/\\Lambda$, anti-$\\Xi^{+}/\\Xi^{-}$ and anti-$\\Omega^{+}/\\Omega^{-}$, reaching values compatible with unity for $\\sqrt{s}$ = 7 TeV, complement the earlier anti-proton/proton measurement of ALICE. These dependencies can be described by exchanges with the Regge-trajectory intercept of $\\alpha_J$ ≈ 0.5, ...

  15. Measurements of $\\psi$ 2S decays to octet baryon-antibaryon pairs

    CERN Document Server

    Ablikim, M; Bai, J Z; Ban, Y; Cai, X; Chen, H F; Chen, H S; Chen, H X; Chen, J C; Jin Chen; Chen, Y B; Chu, Y P; Dai, Y S; Diao, L Y; Deng, Z Y; Dong, Q F; Du, S X; Fang, J; Fanga, S S; Fu, C D; Gao, C S; Gao, Y N; Gu, S D; Gu, Y T; Guo, Y N; Guob, Z J; Harris, F A; He, K L; He, M; Heng, Y K; Hou, J; Hu, H M; Hu, J H; Hu, T; Huang, X T; Ji, X B; Jiang, X S; Jiang, X Y; Jiao, J B; Jin, D P; Jin, S; Lai, Y F; Lic, G; Li, H B; Li, J; Li, R Y; Li, S M; Li, W D; Li, W G; Li, X L; Li, X N; Li, X Q; Liang, Y F; Liao, H B; Liu, B J; Liu, C X; Liu, F; Fang Liu; Liu, H H; Liu, H M; Liud, J; Liu, J B; Liu, J P; Liu, J; Liu, Q; Liu, R G; Liu, Z A; Lou, Y C; Lu, F; Lu, G R; Lu, J G; Luo, C L; Ma, F C; Ma, H L; Mae, L L; Ma, Q M; Mao, Z P; Mo, X H; Nie, J; Olsen, S L; Ping, R G; Qi, N D; Qin, H; Qiu, J F; Ren, Z Y; Rong, G; Shan, L Y; Ruan, X D; Shang, L; Shen, C P; Shen, D L; Shen, X Y; Sheng, H Y; Sun, H S; Sun, S S; Sun, Y Z; Sun, Z J; Tang, X; Tong, G L; Varner, G S; Wangf, D Y; Wang, L; Wang, L L; Wang, L S; Wang, M; Wang, P; Wang, P L; Wang, Y F; Wang, Z; Wang, Z Y; Zheng, W; Wei, C L; Wei, D H; Wiedner, U; Weng, Y; Wu, N; Xia, X M; Xie, X X; Xu, G F; Xu, X P; Xu, Y; Yan, M L; Yang, H X; Yang, Y X; Ye, M H; Ye, Y X; Yu, G W; Yuan, C Z; Yuan, Y; Zang, S L; Zeng, Y; Zhang, B X; Zhang, B Y; Zhang, C C; Zhang, D H; Zhang, H Q; Zhang, H Y; Zhang, J W; Zhang, J Y; Zhang, S H; Zhang, X Y; Yiyun, Z; Zhang, Z X; Zhang, Z P; Zhao, D X; Zhao, J W; Zhao, M G; Zhao, P P; Zhao, W R; Zhaog, Z G; Zheng, H Q; Zheng, J P; Zheng, Z P; Zhou, L; Zhu, K J; Zhu, Q M; Zhu, Y C; Zhu, Y S; Zhu, Z A; Zhuang, B A; Zhuang, X A; Zou, B S; al, et

    2007-01-01

    With a sample of 14 million psi(2S) events collected by the BESII detector at the Beijing Electron Positron Collider (BEPC), the decay channels psi(2S)->p p-bar, Lambda Lambda-bar, Sigma0 Sigma0-bar, Xi Xi-bar are measured, and their branching ratios are determined to be (3.36+-0.09+-0.24)*10E-4, (3.39+-0.20+-0.32)*10E-4, (2.35+-0.36+-0.32)*10E-4, (3.03+-0.40+-0.32)*10E-4, respectively. In the decay psi(2S)->p p-bar, the angular distribution parameter alpha is determined to be 0.82+-0.17+-0.04.

  16. Collider signatures of hylogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2015-02-01

    We consider collider signatures of the hylogenesis—a variant of the antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  17. Collider signatures of Hylogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2014-01-01

    We consider collider signatures of the hylogenesis --- a variant of antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  18. New scenarios for hard-core interactions in a hadron resonance gas

    CERN Document Server

    Satarov, L M; Alba, P; Gorenstein, M I; Stoecker, H

    2016-01-01

    The equation of state of a baryon-symmetric hadronic matter with hard-sphere interactions is studied. It is assumed that mesons are point-like, but baryons and antibaryons have the same hard-core radius rB. Three possibilities are considered: 1) the baryon-baryon and antibaryon-baryon interactions are the same; 2) baryons do not interact with antibaryons; 3) the baryon-antibaryon and meson-(anti)baryon interactions are negligible. By choosing the parameter rB=0.3-0.6 fm, we calculate the nucleon to pion ratio as a function of temperature and perform the fit of hadron yields measured in central Pb+Pb collisions at the bombarding energy Ecm=2.76 TeV per nucleon pair. New nontrivial effects in the interacting hadron resonance gas at temperatures 150-200 MeV are found.

  19. Baryon production in $e^{+}e^{-}$-annihilation at PETRA

    CERN Document Server

    Bartel, Wulfrin; Dittmann, P; Eichler, R; Felst, R; Haidt, Dieter; Krehbiel, H; Meier, K; Naroska, Beate; O'Neill, L H; Steffen, P; Wenninger, Horst; Zhang, Y; Elsen, E E; Helm, M; Petersen, A; Warming, P; Weber, G; Bethke, Siegfried; Drumm, H; Heintze, J; Heinzelmann, G; Hellenbrand, K H; Heuer, R D; Von Krogh, J; Lennert, P; Kawabata, S; Matsumura, H; Nozaki, T; Olsson, J; Rieseberg, H; Wagner, A; Bell, A; Foster, F; Hughes, G; Wriedt, H; Allison, J; Ball, A H; Bamford, G; Barlow, R; Bowdery, C K; Duerdoth, I P; Hassard, J F; King, B T; Loebinger, F K; MacBeth, A A; McCann, H; Mills, H E; Murphy, P G; Prosper, H B; Stephens, K; Clarke, D; Goddard, M C; Marshall, R; Pearce, G F; Kobayashi, T; Komamiya, S; Koshiba, M; Minowa, M; Nozaki, M; Orito, S; Sato, A; Suda, T; Takeda, H; Totsuka, Y; Watanabe, Y; Yamada, S; Yanagisawa, C

    1981-01-01

    Data on p and Lambda production by e/sup +/e/sup -/-annihilation at CM energies between 30 and 36 GeV are presented. Indication for an angular anticorrelation in events with baryon-antibaryon pairs is seen.

  20. Baryon-baryon bound states in a (2+1)-dimensional lattice QCD model

    Science.gov (United States)

    Faria da Veiga, Paulo A.; O'Carroll, Michael; Schor, Ricardo

    2003-08-01

    We consider bound states of two baryons (antibaryons) in lattice QCD in a Euclidean formulation. For simplicity, we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. For a small hopping parameter 0<κ≪1 and large glueball mass, we recently showed the existence of a (anti)baryonlike particle, with an asymptotic mass of the order of -3 ln κ and with an isolated dispersion curve, i.e., an upper gap property persisting up to near the meson-baryon threshold, which is of order -5 ln κ. Here, we show that there is no baryon-baryon (or antibaryon-antibaryon) bound state solution to the Bethe-Salpeter equation up to the two-baryon threshold, which is approximately -6 ln κ.

  1. Multiplicity fluctuation and correlation of identified baryons in quark combination model

    CERN Document Server

    Song, Jun; Wang, Rui-qin; Shao, Feng-lan

    2016-01-01

    The dynamical fluctuation and correlation of multiplicity distributions of identified baryons and antibaryons produced by the hadronization of the bulk quark system are systematically studied in quark combination model. Starting from the most basic dynamics of quark combination which are necessary for multiplicity study, we analyze moments (variance, skewness and kurtosis) of inclusive multiplicity distribution of identified baryons, two-baryon multiplicity correlations, and baryon-antibaryon multiplicity correlations after the hadronization of quark system with given quark number and antiquark number. We obtain a series of interesting findings, e.g., binomial behavior of multiplicity moments, coincide flavor dependent two-baryon correlation and universal baryon-antibaryon correlation, which can be regarded as general features of quark combination. We further take into account correlations and fluctuations of quark numbers before hadronization to study their influence on multiple production of baryons and ant...

  2. Nucleon-decay like signatures of Hylogenesis

    CERN Document Server

    Demidov, S V

    2015-01-01

    We consider nucleon-decay like signatures of the hylogenesis, a variant of antibaryonic dark matter model. For the interaction between visible and dark matter sectors through the neutron portal, we calculate rates of dark matter scatterings off neutron which mimic neutron-decay processes $n\\to \

  3. An investigation of hadronization mechanism at a Z~0 factory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We briefly review the hadronization pictures adopted in the LUND String Fragmentation Model (LSFM),Webber Cluster Fragmentation Model (WCFM) and Quark Combination Model (QCM),respectively.Predictions of hadron multiplicity,baryon to meson ratios and baryon-antibaryon flavor correlations,especially those related to heavy hadrons at a Z 0 factory obtained by LSFM and QCM,are reported.

  4. Multiplicity fluctuation and correlation of identified baryons in a quark combination model

    Science.gov (United States)

    Song, Jun; Li, Hai-hong; Wang, Rui-qin; Shao, Feng-lan

    2017-01-01

    The dynamical multiplicity fluctuations and correlations of identified baryons and antibaryons produced by the hadronization of a bulk quark system are systematically studied in a quark combination model. Starting from the most basic dynamics of the quark combination which is necessary for multiplicity study, we analyze moments (variance, skewness, and kurtosis) of inclusive multiplicity distributions of identified baryons, two-baryon multiplicity correlations, and baryon-antibaryon multiplicity correlations after the hadronization of a quark system with given quark number and antiquark number. We obtain a series of interesting results, e.g., binomial behavior of multiplicity moments, coinciding flavor-dependent two-baryon correlation, and universal baryon-antibaryon correlation, which can be regarded as general features of the quark combination. We further take into account correlations and fluctuations of quark numbers before hadronization and study their influence on multiple production of baryons and antibaryons. We find that quark number fluctuations and flavor conservation lead to a series of important results such as the negative p Ω¯ + multiplicity correlation and universal two-baryon correlations. We also study the influence of resonance decays in order to compare our results with future experimental data in ultrarelativistic heavy ion collisions at the Large Hadron Collider.

  5. Melting hadrons, boiling quarks

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)

    2015-09-15

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)

  6. Melting Hadrons, Boiling Quarks

    CERN Document Server

    Rafelski, Johann

    2015-01-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.

  7. Towards the resolution of the e+e- --> Nbar N puzzle

    CERN Document Server

    Karliner, M M

    2002-01-01

    We discuss the puzzling experimental results on baryon-antibaryon production in e+e- annihilation close to the threshold, in particular the fact that sigma(e+e- --> nbar n) is somewhat greater than sigma(e+e- --> pbar p). We discuss an interpretation in terms of a two-step process, via an intermediate coherent isovector state serving as an intermediary between e+e- and the baryon-antibaryon system. We provide evidence that the isovector channel dominates both e+e- --> pions and from Nbar N annihilation at rest, and show that the observed ratio of sigma(e+e- --> nbar n)/sigma(e+e- --> pbar p) can be understood quantitatively in this picture.

  8. The Probability for matter-Antimatter Segregation Following the Quark-Hadron Transition

    CERN Document Server

    Garfinkle, Moishe

    2010-01-01

    Cosmologists such Sakharov, Alfv\\'en, Klein, Weizs\\"acker, Gamow and Harrison all disregarded the distribution of baryons and antibaryons immediately prior to freeze-out in trying to elucidate the circumstances that explained hadron distribution in the early universe. They simply accepted a uniform distribution: each baryon paired with an antibaryon. Their acceptance of this assumption resulted in theoretical difficulties that could not be overcome. This essay discards this assumption of homogeneity or uniformity. Although this essay does deal with early-universe matters, it is not meant to indicate any involvement in energy distribution functions nor in any symmetry-asymmetry controversies. Cluster formation is strictly geometric. This essay has value as far as problems early cosmologists faced but also should complete the historic record.

  9. Strangeness in Au+Au collisions at √sNN = 130 GeV observed with the STAR detector

    Science.gov (United States)

    Barnby, Lee S.; STAR Collaboration; Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B. D.; Anderson, M.; Averichev, G. S.; Balewski, J.; Barannikova, O.; Barnby, L. S.; Baudot, J.; Bekele, S.; Belaga, V. V.; Bellwied, R.; Berger, J.; Bichsel, H.; Bland, L. C.; Blyth, C. O.; Bonner, B. E.; Boucham, A.; Brandin, A.; Cadman, R. V.; Caines, H.; Calderón de la Barca Sánchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chattopadhyay, S.; Chen, M. L.; Chen, Y.; Chernenko, S. P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J. P.; Cormier, T. M.; Cramer, J. G.; Crawford, H. J.; Deng, W. S.; Derevschikov, A. A.; Didenko, L.; Draper, J. E.; Dunin, V. B.; Dunlop, J. C.; Eckardt, V.; Efimov, L. G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Filimonov, K.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K. J.; Fu, J.; Gagliardi, C. A.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grabski, J.; Grachov, O.; Grigoriev, V.; Guedon, M.; Gushin, E.; Hallman, T. J.; Hardtke, D.; Harris, J. W.; Heffner, M.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G. W.; Horsley, M.; Huang, H. Z.; Humanic, T. J.; Hümmler, H.; Igo, G.; Ishihara, A.; Ivanshin, Yu. I.; Jacobs, P.; Jacobs, W. W.; Janik, M.; Johnson, I.; Jones, P. G.; Judd, E. G.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S. R.; Klyachko, A.; Konstantinov, A. S.; Kotchenda, L.; Kovalenko, A. D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A. I.; Kunde, G. J.; Kunz, C. L.; Kutuev, R. Kh.; Kuznetsov, A. A.; Lakehal-Ayat, L.; Lamont, M. A. C.; Landgraf, J. M.; Lange, S.; Lansdell, C. P.; Lasiuk, B.; Laue, F.; Lebedev, A.; Lednický, R.; Leontiev, V. M.; LeVine, M. J.; Li, Q.; Lindenbaum, S. J.; Lisa, M. A.; Liu, F.; Liu, L.; Liu, Z.; Liu, Q. J.; Ljubicic, T.; Llope, W. J.; Curto, G. Lo; Long, H.; Longacre, R. S.; Lopez-Noriega, M.; Love, W. A.; Lynn, D.; Majka, R.; Margetis, S.; Markert, C.; Martin, L.; Marx, J.; Matis, H. S.; Matulenko, Yu. A.; McShane, T. S.; Meissner, F.; Melnick, Yu.; Meschanin, A.; Messer, M.; Miller, M. L.; Milosevich, Z.; Minaev, N. G.; Mitchell, J.; Moiseenko, V. A.; Moore, C. F.; Morozov, V.; de Moura, M. M.; Munhoz, M. G.; Nelson, J. M.; Nevski, P.; Nikitin, V. A.; Nogach, L. V.; Norman, B.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Okorokov, V.; Oldenburg, M.; Olson, D.; Paic, G.; Pandey, S. U.; Panebratsev, Y.; Panitkin, S. Y.; Pavlinov, A. I.; Pawlak, T.; Perevoztchikov, V.; Peryt, W.; Petrov, V. A.; Pluta, J.; Porile, N.; Porter, J.; Poskanzer, A. M.; Potrebenikova, E.; Prindle, D.; Pruneau, C.; Radomski, S.; Rai, G.; Ravel, O.; Ray, R. L.; Razin, S. V.; Reichhold, D.; Reid, J. G.; Retiere, F.; Ridiger, A.; Ritter, H. G.; Roberts, J. B.; Rogachevski, O. V.; Romero, J. L.; Roy, C.; Rykov, V.; Sakrejda, I.; Sandweiss, J.; Saulys, A. C.; Savin, I.; Schambach, J.; Scharenberg, R. P.; Schmitz, N.; Schroeder, L. S.; Schüttauf, A.; Schweda, K.; Seger, J.; Seliverstov, D.; Seyboth, P.; Shahaliev, E.; Shestermanov, K. E.; Shimanskii, S. S.; Shvetcov, V. S.; Skoro, G.; Smirnov, N.; Snellings, R.; Sorensen, P.; Sowinski, J.; Spinka, H. M.; Srivastava, B.; Stephenson, E. J.; Stock, R.; Stolpovsky, A.; Strikhanov, M.; Stringfellow, B.; Struck, C.; Suaide, A. A. P.; Sugarbaker, E.; Suire, C.; umbera, M.; Symons, T. J. M.; Szanto de Toledo, A.; Szarwas, P.; Tai, A.; Takahashi, J.; Tang, A. H.; Thomas, J. H.; Thompson, M.; Tikhomirov, V.; Tokarev, M.; Tonjes, M. B.; Trainor, T. A.; Trentalange, S.; Tribble, R. E.; Trofimov, V.; Tsai, O.; Turner, K.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; Vander Molen, A. M.; Vasilevski, I. M.; Vasiliev, A. N.; Vigdor, S. E.; Voloshin, S. A.; Wang, F.; Ward, H.; Watson, J. W.; Wells, R.; Wenaus, T.; Westfall, G. D.; Whitten, C., Jr.; Wieman, H.; Willson, R.; Wissink, S. W.; Witt, R.; Wood, J.; Xu, N.; Xu, Z.; Yakutin, A. E.; Yamamoto, E.; Yang, J.; Yepes, P.; Yurevich, V. I.; Zanevski, Y. V.; Zborovský, I.; Zhang, H.; Zhang, W. M.; Zoulkarneev, R.; Zubarev, A. N.

    2002-07-01

    The STAR detector has made a variety of measurements of strange and other hadronic species in Au+Au collisions at √sNN = 130 GeV. A comparison of kaon and pion production enables an examination of the systematics of strangeness production with energy by comparing them to lower energy collisions. Anti-baryon to baryon ratios indicate a much reduced net-baryon density and transverse momentum spectra show that a picture of transverse expansion seems appropriate.

  10. Melting Hadrons, Boiling Quarks

    OpenAIRE

    Rafelski, Johann

    2015-01-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustra...

  11. Search for the QCD critical point at SPS energies

    CERN Document Server

    Anticic, T; Barna, D; Bartke, J; Betev, L; Bialkowska, H; Blume, C; Boimska, B; Botje, M; Bracinik, J; Buncic, P; Cerny, V; Christakoglou, P; Chung, P; Chvala, O; Cramer, J G; Csato, P; Dinkelaker, P; Eckardt, V; Fodor, Z; Foka, P; Friese, V; Gal, J; Gazdzicki, M; Genchev, V; Gladysz, E; Grebieszkow, K; Hegyi, S; Hohne, C; Kadija, K; Karev, A; Kikola, D; Kolesnikov, V I; Kornas, E; Korus, R; Kowalski, M; Kreps, M; Laszlo, A; Lacey, R; van Leeuwen, M; Levai, P; Litov, L; Lungwitz, B; Makariev, M; Malakhov, A I; Mateev, M; Melkumov, G L; Mischke, A; Mitrovski, M; Mrowczynski, St; Nicolic, V; Palla, G; Panagiotou, A D; Petridis, A; Peryt, W; Pikna, M; Pluta, J; Prindle, D; Puhlhofer, F; Renfordt, R; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Schmitz, N; Schuster, T; Seyboth, P; Sikler, F; Sitar, B; Skrzypczak, E; Slodkowski, M; Stefanek, G; Stock, R; Strabel, C; Strobele, H; Susa, T; Szentpetery, I; Sziklai, J; Szuba, M; Szymanski, P; Trubnikov, V; Utvic, M; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranic, D; Wlodarczyk, Z; Wojtaszek-Szwarc, A; Yoo, I K; Abgrall, N; Aduszkiewicz, A; Andrieu, B; Anticic, T; Antoniou, N; Argyriades, J; Asryan, A G; Baatar, B; Blondel, A; Blumer, J; Boldizsar, L; Bravar, A; Brzychczyk, J; Bubak, A; Bunyatov, S A; Choi, K.-U; Christakoglou, P; Chung, P; Cleymans, J; Derkach, D A; Diakonos, F; Dominik, W; Dumarchez, J; Engel, R; Ereditato, A; Feofilov, G A; Fodor, Z; Ferrero, A; Gazdzicki, M; Golubeva, M; Grebieszkow, K; Grzeszczuk, A; Guber, F; Hasegawa, T; Haungs, A; Igolkin, S; Ivanov, A S; Ivashkin, A; Kadija, K; Katrynska, N; Kielczewska, D; Kikola, D; Kisiel, J; Kobayashi, T; Kolesnikov, V I; Kolev, D; Kolevatov, R S; Kondratiev, V P; Kowalski, S; Kurepin, A; Lacey, R; Laszlo, A; Lyubushkin, V V; Majka, Z; Malakhov, A I; Marchionni, A; Marcinek, A; Maris, I; Matveev, V; Melkumov, G L; Meregaglia, A; Messina, M; Mijakowski, P; Mitrovski, M; Montaruli, T; Mrowczynski, St; Murphy, S; Nakadaira, T; Naumenko, P A; Nikolic, V; Nishikawa, K; Palczewski, T; Palla, G; Panagiotou, A D; Peryt, W; Planeta, R; Pluta, J; Popov, B A; Posiadala, M; Przewlocki, P; Rauch, W; Ravonel, M; Renfordt, R; Rohrich, D; Rondio, E; Rossi, B; Roth, M; Rubbia, A; Rybczynski, M; Sadovsky, A; Sakashita, K; Schuster, T; Sekiguchi, T; Seyboth, P; Shibata, M; Sissakian, A N; Skrzypczak, E; Slodkowski, M; Sorin, A S; Staszel, P; Stefanek, G; Stepaniak, J; Strabel, C; Stroebele, H; Susa, T; Szentpetery, I; Szuba, M; Tada, M; Taranenko, A; Tsenov, R; Ulrich, R; Unger, M; Vassiliou, M; Vechernin, V V; Vesztergombi, G; Wlodarczyk, Z; Wojtaszek-Szwarc, A; Zipper, W

    2009-01-01

    Lattice QCD calculations locate the QCD critical point at energies accessible at the CERN Super Proton Synchrotron (SPS). We present average transverse momentum and multiplicity fluctuations, as well as baryon and anti-baryon transverse mass spectra which are expected to be sensitive to effects of the critical point. The future CP search strategy of the NA61/SHINE experiment at the SPS is also discussed.

  12. First Charm Hadroproduction Results from SELEX

    CERN Document Server

    Russ, J

    1998-01-01

    The SELEX experiment (E781) at Fermilab is a 3-stage magnetic spectrometer for the high statistics study of charm hadroproduction out to large x_F using 600 GeV Sigma^-, p and pi beams. The main features of the spectrometer are: high precision silicon vertex system, broad-coverage particle identification with TRD and RICH, 3-stage lead glass photon detector. Preliminary results on differences in hadroproduction characteristics of charm mesons and Lambda_c^+ for x_F>0.3 are reported. For baryon beams there is a striking asymmetry in the production of baryons compared to antibaryons. Leading particle effects for all incident hadrons are discussed.

  13. Baryon Number Violation and String Topologies

    CERN Document Server

    Sjöstrand, Torbjörn

    2003-01-01

    In supersymmetric scenarios with broken R-parity, baryon number violating sparticle decays become possible. In order to search for such decays, a good understanding of expected event properties is essential. We here develop a complete framework that allows detailed studies. Special attention is given to the hadronization phase, wherein the baryon number violating vertex is associated with the appearance of a junction in the colour confinement field. This allows us to tell where to look for the extra (anti)baryon directly associated with the baryon number violating decay.

  14. The Impact of Particle Production on Gravitational Baryogenesis

    CERN Document Server

    Lima, J A S

    2016-01-01

    Baryogenesis driven by curvature effects is investigated by taking into account gravitationally induced particle production in the very early Universe. In our scenario, the baryon asymmetry is generated dynamically during an inflationary epoch powered by ultra-relativistic particles. The adiabatic particle production rate provides both the needed negative pressure to accelerate the radiation dominated Universe and a non-zero chemical potential which distinguishes baryons and anti-baryons thereby producing a baryon asymmetry in agreement with the observed value. Reciprocally, the present day asymmetry may be used to determine the inflationary scale at early times. Successful gravitational baryogenesis is dynamically generated for many different choices of the relevant model parameters.

  15. The impact of particle production on gravitational baryogenesis

    Science.gov (United States)

    Lima, J. A. S.; Singleton, D.

    2016-11-01

    Baryogenesis driven by curvature effects is investigated by taking into account gravitationally induced particle production in the very early Universe. In our scenario, the baryon asymmetry is generated dynamically during an inflationary epoch powered by ultra-relativistic particles. The adiabatic particle production rate provides both the needed negative pressure to accelerate the radiation dominated Universe and a non-zero chemical potential which distinguishes baryons and anti-baryons thereby producing a baryon asymmetry in agreement with the observed value. Reciprocally, the present day asymmetry may be used to determine the inflationary scale at early times. Successful gravitational baryogenesis is dynamically generated for many different choices of the relevant model parameters.

  16. decays to baryons

    Indian Academy of Sciences (India)

    Torsten Leddig

    2012-11-01

    From inclusive measurements, it is known that about 7% of all mesons decay into final states with baryons. In these decays, some striking features become visible compared to mesonic decays. The largest branching fractions come with quite moderate multiplicities of 3–4 hadrons. We note that two-body decays to baryons are suppressed relative to three- and four-body decays. In most of these analyses, the invariant baryon–antibaryon mass shows an enhancement near the threshold. We propose a phenomenological interpretation of this quite common feature of hadronization to baryons.

  17. Confining Bond Rearrangement in the Random Center Vortex Model

    CERN Document Server

    Altarawneh, Derar; Engelhardt, Michael

    2015-01-01

    We present static meson-meson and baryon--anti-baryon potentials in Z(2) and Z(3) random center vortex models for the infrared sector of Yang-Mills theory, i.e., hypercubic lattice models of random vortex world-surfaces. In particular, we calculate Polyakov loop correlators of two static mesons resp. (anti-)baryons in a center vortex background and observe that their expectation values follow the minimal area law and show bond rearrangement behavior. The static meson-meson and baryon--anti-baryon potentials are compared with theoretical predictions and lattice QCD simulations.

  18. First Observation of the Decay D_s^+ to proton anti-neutron

    CERN Document Server

    Athar, S B; Yelton, J; Rubin, P; Eisenstein, B I; Karliner, I; Mehrabyan, S; Lowrey, N; Selen, M; White, E J; Wiss, J; Mitchell, R E; Shepherd, M R; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Poling, R; Scott, A W; Zweber, P; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A G; Libby, J; Powell, A; Wilkinson, G; Ecklund, K M; Love, W; Savinov, V; López, A; Méndez, H; Ramírez, J; Ge, J Y; Miller, D H; Shipsey, I P J; Xin, B; Adams, G S; Anderson, M; Cummings, J P; Danko, I; Hu, D; Moziak, B; Napolitano, J; He, Q; Insler, J; Muramatsu, H; Park, C S; Thorndike, E H; Yang, F; Artuso, M; Blusk, S; Khalil, S; Li, J; Mountain, R; Nisar, S; Randrianarivony, K; Sultana, N; Skwarnicki, T; Stone, S; Wang, J C; Zhang, L M; Bonvicini, G; Cinabro, D; Dubrovin, M; Lincoln, A; Naik, P; Rademacker, J; Asner, D M; Edwards, K W; Reed, J; Briere, R A; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Alexander, J P; Cassel, D G; Duboscq, J E; Ehrlich, R; Fields, L; Gibbons, L; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hunt, J M; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Ledoux, J; Mahlke-Krüger, H; Mohapatra, D; Onyisi, P U E; Patterson, J R; Peterson, D; Riley, D; Ryd, A; Sadoff, A J; Shi, X; Stroiney, S; Sun, W M; Wilksen, T

    2008-01-01

    Using e^+e^- -> D_s^*+ D_s^- data collected near the peak D_s production energy, E_cm=4170 MeV, with the CLEO-c detector, we present the first observation of the decay D_s^+ -> proton anti-neutron. We measure a branching fraction B(D_s^+ -> p anti-n = (1.30 +- 0.36 +0.12 -0.16) x 10^-3. This is the first observation of a charmed meson decaying into a baryon-antibaryon final state.

  19. Baryon instability search in large detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moscoso, L. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. d`Astrophysique, de la Physique des Particules, de la Physique Nucleaire et de l`Instrumentation Associee

    1996-08-01

    Nucleon decay appears as a consequence of models trying to explain the baryon-antibaryon asymmetry. This has motivated 15 years ago many underground experiments devoted to the search of proton and neutron decay. A very large number of decay channels have been investigated and no evidence has been found yielding lower limits on lifetime which rule out the minimal SU(5) Grand Unified Theory predictions and put severe constraints on more complicated models. Next generation experiments like Super-Kamiokande, which is starting to take data now, ICARUS, whose a 600 ton prototype is under construction, will be sensitive to more complicated models predicting larger lifetimes. (author). 16 refs.

  20. Study of the production of strange and multi-strange particles in lead-lead interactions at the CERN SPS the NA57 experiment

    CERN Document Server

    Antinori, Federico; Barbera, R; Bloodworth, Ian J; Botje, M; Caliandro, R; Campbell, M; Cantatore, E; Carena, W; Carrer, N; De Haas, A P; Di Bari, D; Di Liberto, S; Divià, R; Elia, D; Evans, D; Fanebust, K; Fedorisin, J; Feofilov, G A; Fini, R A; Ftácnik, J; Ghidini, B; Grella, G; Gulino, M; Helstrup, H; Holme, A K; Jacholkowski, A; Jones, G T; Jovanovic, P; Jusko, A; Kamermans, R; Kinson, J B; Klempt, W; Knudson, K; Kocper, B; Kolojvari, A A; Králik, I; Kuijer, P; Lenti, V; Lietava, R; Løvhøiden, G; Lupták, M; Manzari, V; Mazzoni, M A; Martinská, G; Meddi, F; Michalon, A; Michalon-Mentzer, M E; Morando, M; Muigg, D; Nappi, E; Navach, F; Norman, P I; Palmeri, A; Pappalardo, G S; Pastircák, B; Pisút, J; Pisútová, N; Posa, F; Quercigh, Emanuele; Riggi, F; Röhrich, D; Romano, G; Safarík, K; Sándor, L; Schillings, E; Sené, M; Sené, R; Segato, G F; Snoeys, W; Staroba, P; Thompson, M; Tomasicchio, G; Torrieri, G D; Tulina, T A; Tveter, T S; Urbán, J; Valiev, F F; Van den Brink, A; Van de Ven, P; Van de Vyvre, P; van Eijndhoven, N; Vannucci, Luigi; Vascotto, Alessandro; Villalobos Baillie, O; Vinogradov, I; Virgili, T; Votruba, M F; Vrláková, J; Závada, P

    2001-01-01

    The NA57 experiment studies the production of strange and multi- strange baryons and antibaryons in ultrarelativistic nucleus-nucleus collisions at the SPS. The main aim of NA57 is to investigate the behaviour of the enhancement of the production of particles with strangeness |s|=1,2,3 in nucleus-nucleus collisions at the variation of the energy and of the centrality of the collision defined, e.g. as the number of participant nucleons. We shall recall the main features of the experimental set-up, and we shall illustrate the collected data samples and the status of their analysis.

  1. XcJ Decays into B(B-) in Quark-Pair Creation Model

    Institute of Scientific and Technical Information of China (English)

    PING Rong-Gang; JIANG Huan-Qing

    2004-01-01

    A quark pair creation model is introduced to study the XcJ exclusive decays into baryon-antibaryon pairs.The decay widths for processes XcJ → BB- ( J = 0, 2; B = A, ∑0, E-) are evaluated phenomenologicaily with an explicit inclusion of the properties for outgoing baryons described by wave functions in the naive quark model. The results show that states XcJ (J = 0, 2) decay into A pair with a larger branching ratio than into p(p-) pair.

  2. Study of High Energy Nucleus-Nucleus Interactions Using the $\\Omega^{'}$ Spectrometer Equipped with a Multiparticle High $p_{T}$ Detector

    CERN Multimedia

    2002-01-01

    The experiment is looking for new physics in 200~GeV/c per nucleon sulphur-tungsten collisions in the $\\Omega$' spectrometer. In particular, we are looking for a quark gluon plasma signature in the increase of the production rate of strange and multistrange baryons and antibaryons. In view of the large number of secondaries, we are using a special detector arrangement, called a ``butterfly system'', which has a large acceptance for particles with 2.2~$\\leq$~ $y _{l}ab $ ~$\\leq$~3.2 and $p _{T} $ ~$>$~0.6 ~GeV/c and is insensitive to all the other particles.

  3. Rapidity dependence of coalescence in Au Au collisions at \\sqrt{s_{NN}} = 200\\,GeV

    Science.gov (United States)

    Nygaard, Casper; BRAHMS Collaboration

    2007-08-01

    The coalescence of protons and neutrons into deuterons is sensitive to the spacetime extent of the baryon freeze-out region. Several experiments have measured the coalescence parameter, B2, at mid-rapidity. BRAHMS has extended these measurements to forward rapidities and thus studied the longitudinal dependence of the freeze-out volume. At \\sqrt{s_{NN}}= 200\\,GeV near mid-rapidity the coalescence parameter is the same for baryons and anti-baryons and similar in magnitude to lower energy results. We also find that B2 remains constant from y = 0 to y = 3.2.

  4. Light Lepton Number Violating Sneutrinos and the Baryon Number of the Universe

    CERN Document Server

    Klapdor-Kleingrothaus, H V; Kuzmin, V A; Kolb, St.

    2000-01-01

    Recent results of neutrino oscillation experiments point to a nonvanishing neutrino mass. Neutrino mass models favour Majorana-type neutrinos. In such circumstances it is natural that the supersymmetric counterpart of the neutrino, the sneutrino, bears also lepton number violating properties. On the other hand, the fact that the universe exhibits an asymmetry in the baryon and antibaryon numbers poses constraints on the extent of lepton number violation in the light sneutrino sector. From the requirement that the Baryon Asymmetry of the Universe should not be washed out by sneutrino induced lepton number violating interactions we find that the mass splitting of the light sneutrino states is restricted to be very small.

  5. Baryon Form Factors at Threshold

    Energy Technology Data Exchange (ETDEWEB)

    Baldini Ferroli, Rinaldo [Museo Storico della Fisica e Centro Studi e Ricerche ' E. Fermi' , Rome (Italy); INFN, Laboratori Nazionali di Frascati, Frascati (Italy); Pacetti, Simone [INFN and Dipartimento di Fisica, Universita di Perugia, Perugia (Italy)

    2012-04-15

    An extensive study of the e{sup +}e{sup -}{yields}pp{sup Macron }BABAR cross section data is presented. Two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e.: |G{sup p}(4M{sub p}{sup 2})|=1, as a pointlike fermion, and the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -} {yields} baryon-antibaryon cross sections show a similar behavior near threshold.

  6. No Sommerfeld resummation factor in e{sup +}e{sup -}{yields}p anti p ?

    Energy Technology Data Exchange (ETDEWEB)

    Baldini Ferroli, R. [Museo Storico della Fisica e Centro Studi e Ricerche ' ' E. Fermi' ' , Rome (Italy); Laboratori Nazionali di Frascati, INFN, Frascati (Italy); Pacetti, S. [Universita di Perugia, Dipartimento di Fisica, Perugia (Italy); INFN, Perugia (Italy); Zallo, A. [Laboratori Nazionali di Frascati, INFN, Frascati (Italy)

    2012-03-15

    The Sommerfeld rescattering formula is compared to the e{sup +}e{sup -}{yields}p anti p BABAR data at threshold and above. While there is the expected Coulomb enhancement at threshold, two unexpected outcomes have been found: the modulus of the proton form factor is normalized to one at threshold, i.e. vertical stroke G {sup p} (4M{sub p}{sup 2}) vertical stroke = 1, as a pointlike fermion, and, moreover, data show that the resummation factor in the Sommerfeld formula is not needed. Other e{sup +}e{sup -}{yields} baryon-antibaryon cross-sections show similar behavior near threshold. (orig.)

  7. Midrapidity hyperon production in pp and pA collisions from low to LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Arakelyan, G.H. [Yerevan Physics Institute, A.Alikhanyan National Scientific Laboratory, Yerevan (Armenia); Merino, C. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas, Facultade de Fisica y Instituto Galego de Fisica de Altas Enerxias (IGFAE), Galiza (Spain); Shabelski, Yu.M. [NCR Kurchatov Institute, Petersburg Nuclear Physics Institute, St. Petersburg (Russian Federation)

    2016-01-15

    The experimental data on p, Λ, Ξ{sup -}, Ω{sup -} -baryons and the corresponding antibaryons spectra obtained by different collaborations are compared with the results of the calculations performed into the frame of the quark-gluon string model. The contribution of string junction diffusion and the inelastic screening corrections are accounted for in the theoretical calculations. The predictions of the quark-gluon string model both for pp and pA collisions are extended up to the LHC energies. (orig.)

  8. Antimatter and Matter Production in Heavy Ion Collisions at CERN (The NEWMASS Experiment NA52)

    CERN Document Server

    Ambrosini, G; Baglin, C; Beck, H P; Borer, K; Bussière, A; Elsener, K; Gorodetzky, P; Guillaud, J P; Hess, P O; Kabana, S; Klingenberg, R; Lehmann, G; Lindén, T; Lohmann, K D; Mommsen, R K; Moser, U; Pretzl, Klaus P; Schacher, J; Spiwoks, R; Stoffel, F; Tuominiemi, Jorma; Weber, M; Gorodetzky, Ph.

    2000-01-01

    Besides the dedicated search for strangelets NA52 measures light (anti)particle and (anti)nuclei production over a wide range of rapidity. Compared to previous runs the statistics has been increased in the 1998 run by more than one order of magnitude for negatively charged objects at different spectrometer rigidities. Together with previous data taking at a rigidity of -20 GeV/c we obtained 10^6 antiprotons 10^3 antideuterons and two antihelium3 without centrality requirements. We measured nuclei and antinuclei (p,d,antiprotons, antideuterons) near midrapidity covering an impact parameter range of b=2-12 fm. Our results strongly indicate that nuclei and antinuclei are mainly produced via the coalescence mechanism. However the centrality dependence of the antibaryon to baryon ratios show that antibaryons are diminished due to annihilation and breakup reactions in the hadron dense environment. The volume of the particle source extracted from coalescence models agrees with results from pion interferometry for an...

  9. Baryogenesis via Hawking-like Radiation in the FRW Space-time

    CERN Document Server

    Modak, Sujoy K

    2014-01-01

    We present a phenomenological model for baryogenesis based on particle creation in the Friedman-Robertson-Walker (FRW) space-time. This study is a continuation of our proposal that Hawking-like radiation in FRW space-time explains several physical aspects of the early Universe including inflation. In this model we study a coupling between the FRW space-time, in the form of the derivative of the Ricci scalar, and the $B-L$ current, $J^{\\mu} _{B-L}$, which leads to a different chemical potential between baryons and anti-baryons resulting in an excess of baryons over anti-baryons with the right order of magnitude. In this model the generation of baryon asymmetry, in principle, occurs over the entire history of the Universe starting from the beginning of the radiation phase. However, in practice, almost the entire contribution to the baryon asymmetry only comes from the very beginning of the Universe and is negligible thereafter. There is a free parameter in our model which can be interpreted as defining the boun...

  10. Meson-baryon bound states in a (2+1)-dimensional strongly coupled lattice QCD model

    Science.gov (United States)

    Neto, Antônio Francisco

    2004-08-01

    We consider bound states of a meson and a baryon (meson and antibaryon) in lattice QCD in a Euclidean formulation. For simplicity, considering the + parity sector we analyze an SU(3) theory with a single flavor in 2+1 dimensions and two-dimensional Dirac matrices. We work in the strong coupling regime, i.e., in a region of parameters such that the hopping parameter κ is sufficiently small and κ≫g-20, where g-20 is the pure gauge coupling. There is a meson (baryon) particle with asymptotic mass -2 ln κ (-3 ln κ) and an isolated dispersion curve. Here, in a ladder approximation, we show that there is no meson baryon (or meson-antibaryon) bound state solution to the Bethe-Salpeter equation up to the meson-baryon threshold (˜-5 ln κ). The absence of such a bound state is an effect of a spatial range-one repulsive potential that is local in space at order κ3, i.e., the leading order in the hopping parameter κ.

  11. Study of B-Meson Decays to Final States with a Single Charm Baryon

    Energy Technology Data Exchange (ETDEWEB)

    Majewski, Stephanie A. [Stanford Univ., CA (United States)

    2007-08-01

    A study of B-meson decays to final states with a single charm baryon is presented based on data recorded by the BABAR detector at the Stanford Linear Accelerator Center. Although the B meson is the lightest bottom-flavored meson, it is heavy enough to decay to a baryon made of three quarks and an antibaryon made of three antiquarks. By studying the baryonic weak decays of the B meson, we can investigate baryon production mechanisms in heavy meson decays. In particular, we measure the rates of the decays B- → Λ+c$\\bar{p}$π- and $\\bar{B}$0 → Λ+c$\\bar{p}$. Comparing these rates, we confirm an observed trend in baryonic B decays that the decay with the lower energy release, B- → Λ+c$\\bar{p}$π-, is favored over $\\bar{B}$0 → Λ+c$\\bar{p}$. The dynamics of the baryon-antibaryon+c$\\bar{p}$) system in the three-body decay also provide insight into baryon-antibaryon production mechanisms. The B- → Λ+c$\\bar{p}$π- system is a laboratory for searches for excited #c baryon states; we observe the resonant decays B- → Σc(2455) 0$\\bar{p}$ and B- → Σc(2800) 0$\\bar{p}$. This is the first observation of the decay B- → Σc(2800) 0$\\bar{p}$; however, the mass of the observed #c(2800)0 state is inconsistent with previous measurements. Finally, we examine the angular distribution of the B- → Σc(2455) 0$\\bar{p}$ decays and measure the spin of the B- → Σc(2455) 0$\\bar{p}$ baryon to be J = 1/2, as predicted by the quark model.

  12. Axion field and the quark nugget's formation at the QCD phase transition

    Science.gov (United States)

    Liang, Xunyu; Zhitnitsky, Ariel

    2016-10-01

    We study a testable dark-matter (DM) model outside of the standard weakly interacting massive particle paradigm in which the observed ratio Ωdark≃Ωvisible for visible and dark-matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible) are formed at the QCD phase transition and both are proportional to ΛQCD. Instead of the conventional "baryogenesis" mechanism, we advocate a paradigm when the "baryogenesis" is actually a charge separation process which always occurs in the presence of the C P odd axion field a (x ). In this scenario, the global baryon number of the Universe remains zero, while the unobserved antibaryon charge is hidden in the form of heavy nuggets, similar to Witten's strangelets and compromise the DM of the Universe. In the present work, we study in great detail a possible formation mechanism of such macroscopically large heavy objects. We argue that the nuggets will be inevitably produced during the QCD phase transition as a result of Kibble-Zurek mechanism on formation of the topological defects during a phase transition. Relevant topological defects in our scenario are the closed bubbles made of the NDW=1 axion domain walls. These bubbles, in general, accrete the baryon (or antibaryon) charge, which eventually results in the formation of the nuggets and antinuggets carrying a huge baryon (antibaryon) charge. A typical size and the baryon charge of these macroscopically large objects are mainly determined by the axion mass ma. However, the main consequence of the model, Ωdark≈Ωvisible, is insensitive to the axion mass which may assume any value within the observationally allowed window 10-6 eV ≲ma≲10-3 eV . We also estimate the baryon-to-entropy ratio η ≡nB/nγ˜10-10 within this scenario. Finally, we comment on implications of these results to the axion search experiments, including the microwave cavity and the Orpheus experiments.

  13. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  14. \\pi N transition distribution amplitudes: their symmetries and constraints from chiral dynamics

    CERN Document Server

    Pire, Bernard; Szymanowski, Lech

    2011-01-01

    Baryon to meson Transition Distribution Amplitudes (TDAs) extend the concept of generalized parton distributions. Baryon to meson TDAs appear as building blocks in the colinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a meson and a lepton pair. We study general properties of these objects following from the underlying symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the Mellin moments in longitudinal momentum fractions. We present a detailed account of isotopic and permutation symmetry properties of nucleon to pion (\\pi N) TDAs. This restricts the number of independent leading twist \\pi N TDAs to eight functions providing description of all isotopic channels. Using chiral symmetry and the crossing relation between \\pi N TDAs and \\pi N generalized distribution amplitudes we establ...

  15. Mid-rapidity anti-proton to proton ratio from Au+Au collisions at $ \\sqrt{s_{NN}} = 130$ GeV

    CERN Document Server

    Adler, C; Allgower, C; Anderson, M; Averichev, G S; Balewski, J T; Barannikova, O Yu; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R R; Boucham, A; Brandin, A B; Caines, H; Calderón de la Barca-Sanchez, M; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; De Mello, M; Deng, W S; Derevshchikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Ferguson, M I; Finch, E; Fisyak, Yu; Flierl, D; Foley, Kenneth J; Gagunashvili, N D; Gans, J; Germain, M; Geurts, F J M; Ghazikhanian, V; Grabski, J; Grachov, O A; Greiner, D E; Grigoriev, V; Gushin, E M; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G; Ishihara, A; Ivanshin, Yu I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Khodinov, A; Kisiel, A; Klay, J L; Klein, S R; Klyachko, A A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Krämer, M; Kravtsov, P; Krüger, K; Kuhn, C; Kulikov, A V; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lamas-Valverde, J; Lamont, M A C; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T J; Leontiev, V M; Leszczynski, P; Le Vine, M J; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; Lo Curto, G; Long, H; Longacre, R S; López-Noriega, M; Love, W A; Lynn, D; Madansky, L; Majka, R; Maliszewski, A; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Yu A; McShane, T S; Melnik, Yu M; Meshchanin, A P; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; De Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, Grazyna Janina; Ogawa, A; Ogilvie, C A; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Yu A; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevozchikov, V; Peryt, W; Petrov, V; Pinganaud, W; Platner, E D; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E V; Prindle, D J; Pruneau, C A; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D M; Reid, J; Retière, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Roy, C; Russ, D; Rykov, V L; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I A; Schambach, J; Scharenberg, R P; Schmitz, N; Schröder, L S; Schüttauf, A; Seger, J E; Seliverstov, D M; Seyboth, P; Shestermanov, K E; Shimansky, S S; Shvetcov, V S; Skoro, G P; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, Reinhard; Stolpovsky, A; Strikhanov, M N; Stringfellow, B C; Ströbele, H; Struck, C; Suaide, A A P; Sugarbaker, E R; Suire, C; Symons, T J M; Szanto de Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T S; Underwood, D G; Van Buren, G; Van der Molen, A M; Vanyashin, A V; Vasilevski, I M; Vasilev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Wells, R; Wenaus, T J; Westfall, G D; Whitten, C; Wieman, H H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevsky, Yu V; Zhang, J; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-01-01

    We report results on the ratio of mid-rapidity anti-proton to proton yields in Au+Au collisions at $\\rts = 130$ GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of $|y|<0.5$ and 0.4 $anti-baryons is still present.

  16. Midrapidity antiproton-to-proton ratio from Au+Au collisions at sqrt [s(NN)]=130 GeV.

    Science.gov (United States)

    Adler, C; Ahammed, Z; Allgower, C; Anderson, M; Averichev, G S; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Bekele, S; Belaga, V V; Bellwied, R; Berger, J; Bichsel, H; Bland, L C; Blyth, C O; Bonner, B E; Bossingham, R; Boucham, A; Brandin, A; Caines, H; de la Barca Sánchez, M C; Cardenas, A; Carroll, J; Castillo, J; Castro, M; Cebra, D; Chattopadhyay, S; Chen, M L; Chen, Y; Chernenko, S P; Cherney, M; Chikanian, A; Choi, B; Christie, W; Coffin, J P; Conin, L; Cormier, T M; Cramer, J G; Crawford, H J; DeMello, M; Deng, W S; Derevschikov, A A; Didenko, L; Draper, J E; Dunin, V B; Dunlop, J C; Eckardt, V; Efimov, L G; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Fachini, P; Ferguson, M I; Finch, E; Fisyak, Y; Flierl, D; Foley, K J; Gagunashvili, N; Gans, J; Germain, M; Geurts, F; Ghazikhanian, V; Grabski, J; Grachov, O; Greiner, D; Grigoriev, V; Gushin, E; Hallman, T J; Hardtke, D; Harris, J W; Heffner, M; Heppelmann, S; Herston, T; Hippolyte, B; Hirsch, A; Hjort, E; Hoffmann, G W; Horsley, M; Huang, H Z; Humanic, T J; Hümmler, H; Igo, G J; Ishihara, A; Ivanshin, Y I; Jacobs, P; Jacobs, W W; Janik, M; Johnson, I; Jones, P G; Judd, E; Kaneta, M; Kaplan, M; Keane, D; Khodinov, A; Kisiel, A; Klay, J; Klein, S R; Klyachko, A; Konstantinov, A S; Kotchenda, L; Kovalenko, A D; Kramer, M; Kravtsov, P; Krueger, K; Kuhn, C; Kulikov, A I; Kunde, G J; Kunz, C L; Kutuev, R K; Kuznetsov, A A; Lamas-Valverde, J; Lamont, M A; Landgraf, J M; Lange, S; Lansdell, C P; Lasiuk, B; Laue, F; Lebedev, A; LeCompte, T; Leontiev, V M; Leszczynski, P; LeVine, M J; Li, Q; Li, Q; Lindenbaum, S J; Lisa, M A; Ljubicic, T; Llope, W J; LoCurto, G; Long, H; Longacre, R S; Lopez-Noriega, M; Love, W A; Lynn, D; Madansky, L; Majka, R; Maliszewski, A; Margetis, S; Martin, L; Marx, J; Matis, H S; Matulenko, Y A; McShane, T S; Melnick, Y; Meschanin, A; Milosevich, Z; Minaev, N G; Mitchell, J; Moiseenko, V A; Moltz, D; Moore, C F; Morozov, V; de Moura, M M; Munhoz, M G; Mutchler, G S; Nelson, J M; Nevski, P; Nikitin, V A; Nogach, L V; Norman, B; Nurushev, S B; Nystrand, J; Odyniec, G; Ogawa, A; Ogilvie, C A; Oldenburg, M; Olson, D; Paic, G; Pandey, S U; Panebratsev, Y; Panitkin, S Y; Pavlinov, A I; Pawlak, T; Perevoztchikov, V; Peryt, W; Petrov, V A; Pinganaud, W; Platner, E; Pluta, J; Porile, N; Porter, J; Poskanzer, A M; Potrebenikova, E; Prindle, D; Pruneau, C; Radomski, S; Rai, G; Ravel, O; Ray, R L; Razin, S V; Reichhold, D; Reid, J; Retiere, F; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevski, O V; Roy, C; Russ, D; Rykov, V; Sakrejda, I; Sandweiss, J; Saulys, A C; Savin, I; Schambach, J; Scharenberg, R P; Schmitz, N; Schroeder, L S; Schüttauf, A; Seger, J; Seliverstov, D; Seyboth, P; Shestermanov, K E; Shimanskii, S S; Shvetcov, V S; Skoro, G; Smirnov, N; Snellings, R; Sowinski, J; Spinka, H M; Srivastava, B; Stephenson, E J; Stock, R; Stolpovsky, A; Strikhanov, M; Stringfellow, B; Stroebele, H; Struck, C; Suaide, A A; Sugarbaker, E; Suire, C; Symons, T J; Szanto de Toledo, A; Szarwas, P; Takahashi, J; Tang, A H; Thomas, J H; Tikhomirov, V; Trainor, T; Trentalange, S; Tokarev, M; Tonjes, M B; Trofimov, V; Tsai, O; Turner, K; Ullrich, T; Underwood, D G; Van Buren, G; VanderMolen, A M; Vanyashin, A; Vasilevski, I M; Vasiliev, A N; Vigdor, S E; Voloshin, S A; Wang, F; Ward, H; Wells, R; Wenaus, T; Westfall, G D; Whitten, C; Wieman, H; Willson, R; Wissink, S W; Witt, R; Xu, N; Xu, Z; Yakutin, A E; Yamamoto, E; Yang, J; Yepes, P; Yokosawa, A; Yurevich, V I; Zanevski, Y V; Zhang, J; Zhang, W M; Zoulkarneev, R; Zubarev, A N

    2001-05-21

    We report results on the ratio of midrapidity antiproton-to-proton yields in Au+Au collisions at sqrt[s(NN)] = 130 GeV per nucleon pair as measured by the STAR experiment at RHIC. Within the rapidity and transverse momentum range of /y/<0.5 and 0.4antibaryons is still present.

  17. The PANDA experiment at FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Destefanis, M.

    2013-12-15

    The PANDA (antiProton ANnihilation at DArmstadt) experiment is one of the major projects in preparation at the upcoming FAIR facility in Darmstadt, Germany. It will study interactions between antiprotons and protons or nuclei in the momentum range from 1.5 GeV/c to 15 GeV/c. The PANDA scientific program will address a wide range of topics, all aiming at improving our understanding of the strong interaction and hadron structure. The PANDA detector is a general-purpose spectrometer that will collect high quality and high statistics data in the fields of meson spectroscopy, baryon-antibaryon production, baryon spectroscopy, hypernuclear physics, hadron properties in the nuclear medium, and nucleon structure. This paper reviews some of the main physics topics of the experiment, together with a presentation of the detector.

  18. Antiproton production and antideuteron production limits in relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dover, C.B. [Brookhaven National Laboratory, Upton, New York 11973 (United States); Huang, H.Z.; Van Buren, G. [University of California at Los Angeles, Los Angeles, California 90095 (United States); Barish, K.N. [University of California at Riverside, Riverside, California 92521 (United States); Fadem, B.; Hill, J.C.; Hoversten, R.; Lajoie, J.G.; Libby, B.; Wohn, F.K. [Iowa State University, Ames, Iowa 50011 (United States); Rabin, M.S. [University of Massachusetts, Amherst, Massachusetts 01003 (United States); Haridas, P.; Pless, I.A. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Armstrong, T.A.; Smith, G.A.; Toothacker, W.S. [Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Davies, R.; Hirsch, A.S.; Porile, N.T.; Rimai, A.; Scharenberg, R.P.; Tincknell, M.L. [Purdue University, West Lafayette, Indiana 47907 (United States); Lainis, T. [United States Military Academy, West Point, New York 10996 (United States); Greene, S.V.; Miller, T.E.; Reid, J.D.; Rose, A. [Vanderbilt University, Nashville, Tennessee 37235 (United States); Bennett, S.J.; Cormier, T.M.; Fachini, P.; Li, Q.; Munhoz, M.G.; Pruneau, C.A. [Wayne State University, Detroit, Michigan 48201 (United States); Batsoulli, S.; Chikanian, A.; Coe, S.D.; Finch, L.E.; George, N.K.; Kumar, B.S.; Majka, R.D.; Nagle, J.L.; Pope, J.K.; Rotondo, F.S.; Sandweiss, J.; Slaughter, A.J.; Xu, Z. [Yale University, New Haven, Connecticut 06520 (United States)

    1999-05-01

    We present results from Experiment 864 for antiproton production and antideuteron limits in Au + Pb collisions at 11.5 GeV/c per nucleon. We have measured invariant multiplicities for antiprotons for rapidities 1.4{lt}y{lt}2.4 at low transverse momentum as a function of collision geometry. When compared with the results from Experiment 878 our measurements suggest a significant contribution to the measured antiproton yield from the decay of strange antibaryons. We have also searched for antideuterons and see no statistically significant signal. Thus, we set upper limits on the production at approximately 3{times}10{sup {minus}7} per 10{percent} highest multiplicity Au+Pb interaction. {copyright} {ital 1999} {ital The American Physical Society}

  19. Antiproton-proton Annihilation Into Two Mesons: The Role Of Relativistic Distortion

    CERN Document Server

    El-Bennich, B O

    2004-01-01

    The more than a decade old data on differential cross sections and analyzing powers in antiproton-proton annihilation into two pions (or two kaons), measured at the Low Energy Antiproton Ring (LEAR) of CERN, have stimulated several theoretical investigations. A characteristic feature of the data are the large variations of the scattering observables as a function of the scattering angle and of the laboratory energy already below 100 MeV. Amplitude analyzes reproduce the data with few partial waves (J ≤ 4) and one concludes that the annihilation process is very short- ranged and of the order of the nucleon size. Nonetheless, early models, using either baryonic or quark degrees of freedom, give rise to an even shorter antibaryon-baryon interaction failing to produce substantial higher (J ≥ 2) partial wave amplitudes and consequently to adequately describe the LEAR data. In this thesis, we systematically consider improvements within the framework of quark-line diagrams. We first derive various quar...

  20. Touch BASE

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    In a recent Nature article (see here), the BASE collaboration reported the most precise comparison of the charge-to-mass ratio of the proton to its antimatter equivalent, the antiproton. This result is just the beginning and many more challenges lie ahead.   CERN's AD Hall, where the BASE experiment is set-up. The Baryon Antibaryon Symmetry Experiment (BASE) was approved in June 2013 and was ready to take data in August 2014. During these 14 months, the BASE collaboration worked hard to set up its four cryogenic Penning traps, which are the heart of the whole experiment. As their name indicates, these magnetic devices are used to trap antiparticles – antiprotons coming from the Antiproton Decelerator – and particles of matter – negative hydrogen ions produced in the system by interaction with a degrader that slows the antiprotons down, allowing scientists to perform their measurements. “We had very little time to set up the wh...

  1. Fast Equilibration of Hadrons in an Expanding Fireball

    CERN Document Server

    Noronha-Hostler, J; Shovkovy, I A

    2007-01-01

    Due to long chemical equilibration times within standard hadronic reactions during the hadron gas phase in relativistic heavy ion collisions it has been suggested that the hadrons are "born" into equilibrium after the quark gluon plasma phase. Here we develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of baryon anti-baryon pairs (as well as kaon anti-kaon pairs) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the kaons and baryons as well as the bath of pions and Hagedorn resonances can indeed quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Moreover, a comparison of our results to $(B+\\bar{B})/\\pi^{+}$ and $K/\\pi^{+}$ ratios at RHIC, indeed, shows a close match.

  2. Random-walk baryogenesis via primordial black holes

    CERN Document Server

    Semiz, İbrahim

    2016-01-01

    Gravitation violates baryon number $B$: A star has a huge amount of it, while a black hole forming from the star has none. Consider primordial black holes before the hadronic annihiliation in the early universe, encountering and absorbing baryons and antibaryons: Each such absorption changes $B$ of the universe by one unit, up or down. But the absorption events are $uncorrelated$ $and$ $random$, hence they amount to a random walk in $B$-space, leading to the expectation of a net $|B|$ at the end. While the scale of this effect is most uncertain, it must exist. We explore some ramifications, including the change of net $|B|$ with expansion, connection with universe topology, and possible observational signatures.

  3. A new high sensitivity search for neutron-antineutron oscillations at the ESS

    CERN Document Server

    Milstead, David

    2015-01-01

    A sensitive search for neutron-antineutron oscillations can provide a unique probe of some of the central questions in particle physics and cosmology: the energy scale and mechanism for baryon number violation, the origin of the baryon-antibaryon asymmetry of the universe, and the mechanism for neutrino mass generation. A remarkable opportunity has emerged to search for such oscillations with the construction of the European Spallation Source (ESS). A collaboration has been formed which has proposed a search at the ESS, which would provide a sensitivity to the oscillation probability which is three orders of magnitude greater than that achieved at an ILL experiment at which the present best limit on free neutron-antineutron oscillations was obtained.

  4. On the Feasibility of a Stop NLSP in Gravitino Dark Matter Scenarios

    CERN Document Server

    Díaz-Cruz, J L; Olive, K A; Santoso, Y; Ellis, John; Olive, Keith A.; Santoso, Yudi

    2007-01-01

    We analyze the possibility that the lighter stop {\\tilde t_1} could be the next-to-lightest supersymmetric particle (NLSP) in models where the gravitino is the lightest supersymmetric particle (LSP). We do not find any possibility for a stop NLSP in the constrained MSSM with universal input soft supersymmetry-breaking masses at the GUT scale (CMSSM), but do find small allowed regions in models with non-universal Higgs masses (NUHM). We discuss the cosmological evolution of stop hadrons. Most {\\tilde t_1}qq `sbaryons' and the corresponding `antisbaryons' annihilate with conventional antibaryons and baryons into {\\tilde t_1}{\\bar q} `mesinos' and the corresponding `antimesinos', respectively, shortly after the quark-hadron transition in the early Universe, and most mesinos and antimesinos subsequently annihilate. As a result, insufficient metastable charged stop hadrons survive to alter Big Bang nucleosynthesis.

  5. Strangeness in strongly interacting matter

    CERN Document Server

    Greiner, C

    2002-01-01

    This talk is devoted to review the field of strangeness production in (ultra-)relativistic heavy ion collisions within our present theoretical understanding. Historically there have been (at least) three major ideas for the interest in the production of strange hadronic particles: (1) mass modification of the kaons in a (baryon-)dense environment; (2) (early) K+ - production probes the nuclear equation of state (EoS); (3) enhanced strangeness production especially in the (multi-)strange (anti-)baryon channels as a signal of quark gluon plasma (QGP) formation. As a guideline for the discussion I employ the extensive experience with microscopic hadronic transport models. In addition, I elaborate on the recent idea of antihyperon production solely by means of multi-mesonic fusion-type reactions.

  6. Proton-lambda correlation functions at the LHC with account for residual correlations

    CERN Document Server

    Shapoval, V M; Naboka, V Yu

    2015-01-01

    The theoretical analysis of $\\bar{p}-\\Lambda \\oplus p-\\bar{\\Lambda}$ correlation function in 10% most central Au+Au collisions at RHIC energy $\\sqrt{s_{NN}}=200$ GeV shows that the contribution of residual correlations is the necessary factor to obtain a satisfactory description of the experimental data. A neglecting of the residual correlation effect, leads to unrealistically low source radius, about 2 times smaller than the corresponding value for $p-\\Lambda \\oplus \\bar{p}-\\bar{\\Lambda}$ case, when one fits the experimental correlation function within Lednicky-Lyuboshitz analytical model. Recently an approach accounting effectively for residual correlations for the baryon-antibaryon correlation function was proposed, and a good RHIC data description was reached with the source radius extracted from the hydrokinetic model (HKM). The $\\bar{p}-\\Lambda$ scattering length, as well as the parameters characterizing the residual correlation effect --- annihilation dip amplitude and its inverse width --- were extrac...

  7. Violation of energy-per-hadron scaling in a resonance matter

    CERN Document Server

    Bravina, L V; Fuchs, C; Lu, Z D; Zabrodin, E E; Faessler, Amand

    2002-01-01

    Yields of hadrons, their average masses and energies per hadron at the stage of chemical freeze-out in (ultra)relativistic heavy-ion collisions are analyzed within the statistical model. The violation of the scaling / = 1 GeV observed in Au+Au collisions at $\\sqrt{s}$ = 130 AGeV is linked to the formation of resonance-rich matter with a considerable fraction of baryons and antibaryons. The rise of the energy-per-hadron ratio in baryon-dominated matter is discussed. A violation of the scaling condition is predicted for a very central zone of heavy-ion collisions at energies around 40 AGeV.

  8. (Anti-)strangeness production in heavy-ion collisions

    CERN Document Server

    Moreau, Pierre; Ko, Che-Ming; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    The production and dynamics of strange and antistrange hadrons in heavy-ion reactions from $\\sqrt{s_{NN}} \\approx$ 3 GeV to 200 GeV is analyzed within the Parton-Hadron-String-Dynamics (PHSD) transport model. The PHSD results for strange baryon and antibaryon production are roughly consistent with the experimental data starting from upper SPS energies. Nevertheless, hadronic final state flavor-exchange reactions are important for the actual abundances, in particular at large rapidities where hadronic dynamics, parton fragmentation and string decay dominate. A striking disagreement between the PHSD results and the available data persists, however, for bombarding energies below $\\sqrt{s_{NN}} \\approx$ 8 GeV where the strangeness production is significantly underestimated as in earlier HSD studies. This finding implies that the strangeness enhancement seen experimentally at FAIR/NICA energies cannot be attributed to a deconfinement phase transition or crossover but probably involves the approximate restoration o...

  9. Baryon asymmetry from primordial black holes

    CERN Document Server

    Hamada, Yuta

    2016-01-01

    We propose a new scenario of the baryogenesis from primordial black holes (PBH). Assuming presence of a microscopic baryon (or lepton) number violation and a CP violating operator such as $\\partial_\\alpha F(\\mathcal{R_{....}} ) J^\\alpha$ where $F(\\mathcal{R_{....}})$ is a scalar function of the Riemann tensor, time evolution of an evaporating black hole generates baryonic (leptonic) chemical potential at the horizon; consequently PBH enumerates asymmetric Hawking radiation between baryons (leptons) and anti-baryons (leptons). Though the operator is higher dimensional and largely suppressed by a high mass scale $M_*$, we show that sufficient amount of asymmetry can be generated for wide range of parameters of the PBH mass $M_{\\rm PBH}$, its abundance $\\Omega_{\\rm PBH}$, and the scale $M_*$.

  10. Nuclear fragmentation induced by low-energy antiprotons within a microscopic transport approach

    CERN Document Server

    Feng, Zhao-Qing

    2016-01-01

    Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the nuclear fragmentation induced by low-energy antiprotons has been investigated thoroughly. A coalescence approach is developed for constructing the primary fragments in phase space. The secondary decay process of the fragments is described by the well-known statistical code. It is found that the localized energy released in antibaryon-baryon annihilation is deposited in a nucleus mainly via pion-nucleon collisions, which leads to the emissions of pre-equilibrium particles, fission, evaporation of nucleons and light fragments etc. The strangeness exchange reactions dominate the hyperon production. The averaged mass loss increases with the mass number of target nucleus. A bump structure in the domain of intermediate mass for heavy targets appears owing to the contribution of fission fragments.

  11. Observation and study of bottom-meson decays to a charm meson, a proton-antiproton pair, and pions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Tae Min [Univ. of California, Santa Barbara, CA (United States)

    2010-04-27

    Bottom-meson decays with baryons show two unusual features—the branching fractions are enhanced for multibody decays and the baryon-antibaryon subsystem recoils against the other decay products—and their reasons are not yet well understood. Moreover, measurements using explicit reconstruction techniques constitute only about 1% out of about 8% of such decays. This Dissertation reports the study of ten bottom-meson decays (labeled 0– 9) to a proton-antiproton pair, a charm meson, and a system of up to two pions, using the BABAR Experiment’s 455×106 BB pairs produced with the PEP-II asymmetric-energy e+e- collider at the Stanford Linear Accelerator Center.

  12. Characterization of a solid deuterium converter for ultra-cold neutrons (UCN) in the framework of the Mini-D{sub 2} project at the FRM-II reactor in Munich

    Energy Technology Data Exchange (ETDEWEB)

    Tortorella, D.

    2007-02-07

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particles physic. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates in experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the axial-vector coupling constant (g{sub A}), the neutron lifetime ({tau}{sub n}) or in search of quantum effect of gravity. In this work are presented several contributions in the framework of the Mini-D2 project, an innovative strong UCN source under construction at the FRM-II reactor in Munich. An important component of this facility, the solid deuterium UCN converter, is one subject of the thesis. (orig.)

  13. Microgravity Electron Electric Dipole Moment Experiment with a Cold Atom Beam

    Science.gov (United States)

    Gould, Harvey

    2003-01-01

    New physics beyond the Standard Model: The small CP violation contained in the Standard Model is insufficient to account for the baryon/antibaryon asymmetry in the universe. New sources of CP violation are provided by extensions to the Standard Model. They contain CP-violating phases that couple directly to leptons and from which a large electron electric dipole moment (EDM) may be generated. Observation of an electron EDM would be proof of a Standard Model extension because the Standard Model only allows an electron EDM of less than 10(exppp -57) C-m (S.I. units; 1 C-m = 1.6 x 10(exp -21) e-cm). A null result, however, constrains models and improving the limit tightens constraints, further restricting the models.

  14. Hadronic Freeze-Out in A+A Collisions meets the Lattice QCD Parton-Hadron Transition Line

    CERN Document Server

    Stock, R; Bleicher, M; Kollegger, T; Schuster, T; Steinheimer, J

    2013-01-01

    We analyze hadrochemical freeze-out in central Pb+Pb collisions at CERN SPS and LHC energies. Employing the UrQMD hybrid transport model we study the effects of the final hadron/resonance expansion phase on the hadron multiplicities established at hadronization. The bulk meson yields freeze out directly at hadronization whereas the baryon-antibaryon sector is subject to significant alterations, due to annihilation and regeneration processes. We quantify the latter changes by survival factors for each species which are applied to modify the statistical model predictions for the data. The modified SM analysis recovers the hadronization points, which coincide with the recent lattice QCD predictions of the parton-hadron transition line at finite baryochemical potential.

  15. $cp$ invariance study of $j/\\psi\\to\\lambda\\bar\\lambda$ and $\\lambda$ nonleptonic decays in helicity frame

    CERN Document Server

    Zhong, Bin

    2015-01-01

    We present the joint helicity amplitudes for $J/\\psi \\to \\Lambda \\bar{\\Lambda}$, $\\Lambda(\\bar\\Lambda)$ decays to different final states in the helicity frame. Two observables to search for $CP$ violation in $J/\\psi\\to\\Lambda\\bar\\Lambda$ can be expressed with the information of helicity angles of baryon and antibaryon. Four decay parameters of $\\Lambda$ and $\\bar\\Lambda$, namely, $\\alpha_-,\\alpha_+,\\alpha_0$ and $\\bar\\alpha_0$, can be obtained with the joint helicity amplitude equations by the likelihood fit method. With the data sample of $10^{10}$ $J/\\psi$ decays accumulated by BESIII, the precision of the measurements is estimated to be about $10^{-3}$.

  16. Entropy production in chemically non-equilibrium quark-gluon plasma created in central Pb+Pb collisions at LHC energies

    CERN Document Server

    Vovchenko, V; Satarov, L M; Mishustin, I N; Csernai, L P; Kisel, I; Stoecker, H

    2016-01-01

    We study the possibility that partonic matter produced at early stage of ultrarelativistic heavy-ion collisions is out of chemical equilibrium. It is assumed that initially this matter is mostly composed of gluons, but quarks and antiquarks are produced at later times. The dynamical evolution of partonic system is described by the Bjorken-like ideal hydrodynamics with a time dependent quark fugacity. The results of this model are compared with those obtained by assuming the complete chemical equilibrium of partons already at the initial stage. It is shown that in a chemically non-equilibrium scenario the entropy gradually increases, and about 25% of the total final entropy is generated during the hydrodynamic evolution of deconfined matter. We argue that the (anti)quark suppression included in this approach may be responsible for reduced (anti)baryon to meson ratios observed in heavy-ion collisions at LHC energies.

  17. Production of fragments and hyperfragments in antiproton-nucleus collisions

    Science.gov (United States)

    Feng, Zhao-Qing

    2016-04-01

    The formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport model. Production of strange particles in the antiproton-induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange, and inelastic scattering in antibaryon-baryon, baryon-baryon, and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space. The hyperfragments are formed within the narrower rapidities. It has the advantage of producing heavier hyperfragments and hypernuclides with strangeness s =-2 (double-Λ fragments) and s =1 (Λ ¯ fragments) in antiproton-induced reactions.

  18. Nuclear fragmentation induced by low-energy antiprotons within a microscopic transport approach

    Science.gov (United States)

    Feng, Zhao-Qing

    2016-12-01

    Within the framework of the Lanzhou quantum molecular-dynamics transport model, the nuclear fragmentation induced by low-energy antiprotons has been investigated thoroughly. A coalescence approach is developed for constructing the primary fragments in phase space. The secondary decay process of the fragments is described by a well-known statistical code. It is found that the localized energy released in antibaryon-baryon annihilation is deposited in a nucleus mainly via pion-nucleon collisions, which leads to the emissions of pre-equilibrium particles, fission, evaporation of nucleons, light fragments, etc. The strangeness exchange reactions dominate the hyperon production. The averaged mass loss increases with the mass number of target nucleus. A bump structure in the domain of intermediate mass for heavy targets appears owing to the contribution of fission fragments.

  19. Strangeness production and hypernucleus formation in antiproton induced reactions

    CERN Document Server

    Feng, Zhao-Qing

    2015-01-01

    Formation mechanism of fragments with strangeness in collisions of antiprotons on nuclei has been investigated within the Lanzhou quantum molecular dynamics (LQMD) transport approach combined with a statistical model (GEMINI) for describing the decays of excited fragments. Production of strange particles in the antiproton induced nuclear reactions is modeled within the LQMD model, in which all possible reaction channels such as elastic scattering, annihilation, charge exchange and inelastic scattering in antibaryon-baryon, baryon-baryon and meson-baryon collisions have been included. A coalescence approach is developed for constructing hyperfragments in phase space after de-excitation of nucleonic fragments. The combined approach could describe the production of fragments in low-energy antiproton induced reactions. Hyperfragments are formed within the narrower rapidities and lower kinetic energies. It has advantage to produce heavier hyperfragments and hypernuclides with strangeness s=-2 (double-$\\Lambda$ fra...

  20. Thermal analysis of hadron multiplicities from RQMD

    CERN Document Server

    Sollfrank, J; Sorge, H; Xu, N

    1999-01-01

    Some questions arising in the application of the thermal model to hadron production in heavy ion collisions are studied. We do so by applying the thermal model of hadron production to particle yields calculated by the microscopic transport model RQMD(v2.3). We study the bias of incomplete information about the final hadronic state on the extraction of thermal parameters.It is found that the subset of particles measured typically in the experiments looks more thermal than the complete set of stable particles. The hadrons which show the largest deviations from thermal behaviour in RQMD(v2.3) are the multi-strange baryons and anti-baryons. We also looked on the influence of rapidity cuts on the extraction of thermal parameters and found that they lead to different thermal parameters and larger disagreement between the RQMD yields and the thermal model.

  1. Antideuterons in cosmic rays: sources and discovery potential

    CERN Document Server

    Herms, Johannes; Vittino, Andrea; Wild, Sebastian

    2016-01-01

    Antibaryons are produced in our Galaxy in collisions of high energy cosmic rays with the interstellar medium and in old supernova remnants, and possibly, in exotic sources such as primordial black hole evaporation or dark matter annihilations and decays. The search for signals from exotic sources in antiproton data is hampered by large backgrounds from spallation which, within theoretical errors, can solely account for the current data. Due to the higher energy threshold for antideuteron production, which translates into a suppression of the low energy flux from spallations, antideuteron searches have been proposed as a probe for exotic sources. We perform in this paper a comprehensive analysis of the antideuteron fluxes at the Earth expected from known and hypothetical sources in our Galaxy, and we calculate their maximal values consistent with current antiproton data from AMS-02. We find that supernova remnants generate a negligible flux, whereas primordial black hole evaporation and dark matter annihilatio...

  2. Baryogenesis via Hawking-like radiation in the FRW space-time

    Energy Technology Data Exchange (ETDEWEB)

    Modak, Sujoy K. [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); Singleton, Douglas [Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico City, Distrito Federal (Mexico); California State University, Department of Physics, Fresno, CA (United States)

    2015-05-15

    We present a phenomenological model for baryogenesis based on particle creation in the Friedman-Robertson-Walker (FRW) space-time. This study is a continuation of our proposal that Hawking-like radiation in FRW space-time explains several physical aspects of the early Universe including inflation. In this model we study a coupling between the FRW space-time, in the form of the derivative of the Ricci scalar, and the B-L current, J{sub B-L}{sup μ}, which leads to a different chemical potential between baryons and anti-baryons, resulting in an excess of baryons over anti-baryons with the right order of magnitude. In this model the generation of baryon asymmetry, in principle, occurs over the entire history of the Universe, starting from the beginning of the radiation phase. However, in practice, almost the entire contribution to the baryon asymmetry only comes from the very beginning of the Universe and is negligible thereafter. There is a free parameter in our model which can be interpreted as defining the boundary between the unknown quantum gravity regime and the inflation/baryogenesis regime covered by our model. When this parameter is adjusted to give the observed value of baryon asymmetry we get a higher than usual energy scale for our inflation model which, however, may be in line with the Grand Unified Theory scale for inflation in view of the BICEP2 and Planck results. In addition our model provides the correct temperature for the CMB photons at the time of decoupling. (orig.)

  3. Universal Parametrization of Thermal Photon Production in Hadronic Matter

    Science.gov (United States)

    Heffernan, Matthew; Hohler, Paul; Rapp, Ralf

    2014-09-01

    As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of thermal photon production largely within an unprecedented 20% of the calculated values from the spectral function, a significant reduction in error from available parametrizations. The contribution of photons and dileptons from pion-pion bremsstrahlung is evaluated for the importance of its contribution. The functional form, coupled with the comparison to the bremsstrahlung production of thermal photons, will provide a baseline for guiding future studies. As the production of photons and dileptons from high-energy collisions is able to provide information on the high temperature and high density phases of nuclear matter, an improved and universal parametrization of the rather involved microscopic calculations is key to honing the theory behind this production. We focus on photon emission rates from hadronic many-body calculations of the in-medium rho spectral function, which includes the effects of baryons and antibaryons. Across a range of temperatures from 0.1 to 0.18 GeV and baryon chemical potentials from 0 to 0.4 GeV, a parametrization of thermal photon rates for energies from 0.2 to 5 GeV is numerically determined through the use of nested fitting methods. This provides a fully functional description of

  4. 13th Workshop on What Comes Beyond the Standard Models

    CERN Document Server

    Nielsen, Holger Bech; Lukman, Dragan; What Comes Beyond the Standard Models

    2010-01-01

    1. Noncommutativity and Topology within Lattice Field Theories 2. The Construction of Quantum Field Operators 3. The Bargmann-Wigner Formalism for Spin 2 Fields 4. New Light on Dark Matter from the LHC 5. Extra Dimensional Metric Reversal Symmetry and its Prospect... 6. Masses and Mixing Matrices of Families within SU(3) Flavor Symmetry ... 7. Dark Atoms of the Universe: OHe Nuclear Physics, 8. Can the Matter-Antimatter Asymmetry be Easier to Understand Within the "Spin-charge-family-theory", .. 9. Mass Matrices of Twice Four Families of Quarks and Leptons, ...in the "Spin-charge-family-theory" 10. Bohmian Quantum Mechanics or What Comes Before the Standard Model 11. Backward Causation in Complex Action Model ... 12. Is the Prediction of the "Spin-charge-family-theory" in Disagreement with the XENON100..? 13. Masses and Mixing Matrices of Families of Quarks and Leptons Within the "Spin-charge-family-theory" 14. Can the Stable Fifth Family of the "Spin-charge-family-theory" ...Form the Fifth Antibaryon Cluster...

  5. New experiment to gain unparalleled insight into antimatter

    CERN Multimedia

    Katarina Anthony

    2013-01-01

    At last week’s Research Board meeting, the Baryon Antibaryon Symmetry Experiment (BASE) was approved for installation at CERN. The experiment will be diving into the search for matter-antimatter asymmetry, as it aims to take ultra-high precision measurements of the antiproton magnetic moment.   CERN's AD Hall: the new home of the BASE double Penning trap set-up. The BASE collaboration will be setting up shop in the AD Hall this September with its first CERN-based experimental set-up. Using the novel double-Penning trap set-up developed at the University of Mainz, GSI Darmstadt and the Max Plank Institute for Nuclear Physics (Germany), the BASE team will be able to measure the antiproton magnetic moment with hitherto unreachable part-per-billion precision. “We constructed the first double-Penning trap at our companion facility in Germany, and made the first ever direct observations of single spin flips of a single proton,” explains Stefan Ulmer from RIKE...

  6. Observation of an Exotic S = -2, Q = -2 Baryon Resonance in Proton-Proton Collisions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Behler, M; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-01

    Results of resonance searches in the Xi- pi-, Xi- pi+, antiXi+ pi- and antiXi+ pi+ invariant mass spectra in proton-proton collisions at sqrt{s}=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi- pi- baryon resonance with mass of 1.862+/-0.002 GeV/c^2 and width below the detector resolution of about 0.018 GeV/c^2. The significance is estimated to be 4.0 sigma. This state is a candidate for the hypothetical exotic Xi_(3/2)^-- baryon with S = -2, I = 3/2 and a quark content of (d s d s ubar). At the same mass a peak is observed in the Xi- pi+ spectrum which is a candidate for the Xi_(3/2)^0 member of this isospin quartet with a quark content of (d s u s dbar). The corresponding antibaryon spectra also show enhancements at the same invariant mass.

  7. Evidence for an exotic S=-2, Q=-2 baryon resonance in proton-proton collisions at the CERN SPS

    CERN Document Server

    Alt, C; Baatar, B; Barna, D; Bartke, Jerzy; Betev, L; Bialkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncic, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gazdzicki, M; Georgopoulos, G; Gladysz-Dziadus, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; Van Leeuwen, M; Lévai, Peter; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczynski, S; Palla, G K; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R E; Retyk, W; Roland, C; Roland, G; Rybczynski, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitár, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, Maria; Veres, G I; Vesztergombi, G; Vranic, D; Wetzler, A; Wlodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-01

    Results of resonance searches in the Xi /sup -/ pi /sup -/, Xi /sup - / pi /sup +/, Xi /sup +/ pi /sup -/, and Xi /sup +/ pi /sup +/ invariant mass spectra in proton-proton collisions at square root s =17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi /sup -/ pi /sup -/ baryon resonance with mass of 1.862+or-0.002 GeV/c/sup 2/ and width below the detector resolution of about 0.018 GeV/c/sup 2/. The significance is estimated to be above 4.2 sigma . This state is a candidate for the hypothetical exotic Xi /sub 3/2//sup --/ baryon with S=-2, I=/sup 3///sub 2/, and a quark content of (dsdsu). At the same mass, a peak is observed in the Xi /sup -/ pi /sup +/ spectrum which is a candidate for the Xi /sub 3/2//sup 0/ member of this isospin quartet with a quark content of (dsusd). The corresponding antibaryon spectra also show enhancements at the same invariant mass. (21 refs).

  8. Jet Hadronization via Recombination of Parton Showers in Vacuum and in Medium

    Science.gov (United States)

    Fries, Rainer J.; Han, Kyongchol; Ko, Che Ming

    2016-12-01

    We introduce a hadronization algorithm for jet parton showers based on a hybrid approach involving recombination of quarks and fragmentation of strings. The algorithm can be applied to parton showers from a shower Monte Carlo generator at the end of their perturbative evolution. The algorithm forces gluon decays and then evaluates the recombination probabilities for quark-antiquark pairs into mesons and (anti)quark triplets into (anti)baryons. We employ a Wigner phase space formulation based on the assumption of harmonic oscillator wave functions for stable hadrons and resonances. Partons too isolated in phase space to find recombination partners are connected by QCD strings to other quarks. Fragmentation of those remnant strings and the decay of all hadron resonances complete the hadronization process. We find that our model applied to parton showers from the PYTHIA Monte Carlo event generator leads to results very similar to pure Lund string fragmentation. We suggest that our algorithm can be readily generalized to jets embedded in quark-gluon plasma by adding sampled thermal partons from the phase transition hypersurface. The recombination of thermal partons and shower partons leads to an enhancement of pions and protons at intermediate momentum at both RHIC and LHC.

  9. Universal Parametrization of Thermal Photon Rates in Hadronic Matter

    CERN Document Server

    Heffernan, Matthew; Rapp, Ralf

    2014-01-01

    Electromagnetic (EM) radiation off strongly interacting matter created in high-energy heavy-ion collisions (HICs) encodes information on the high-temperature phases of nuclear matter. Microscopic calculations of thermal EM emission rates are usually rather involved and not readily accessible to broad applications in models of the fireball evolution which are required to compare to experimental data. An accurate and universal parametrization of the microscopic calculations is thus key to honing the theory behind the EM spectra. Here we provide such a parametrization for photon emission rates from hadronic matter, including the contributions from in-medium rho mesons (which incorporate effects from anti-/baryons), as well as Bremsstrahlung from pi-pi scattering. Individual parametrizations for each contribution are numerically determined through nested fitting functions for photon energies from 0.2 to 5 GeV in chemically equilibrated matter of temperatures 100-180 MeV and baryon chemical potentials 0-400 MeV. S...

  10. Newtonian and general relativistic contribution of gravity to surface tension of strange stars

    CERN Document Server

    Bagchi, M; Dey, M; Dey, J; Bhowmick, S; Bagchi, Manjari; Sinha, Monika; Dey, Mira; Dey, Jishnu; Bhowmick, Siddhartha

    2005-01-01

    Surface tension (S) is due to the inward force experienced by particles at the surface and usually gravitation does not play an important role in this force. But in compact stars the gravitational force on the particles is very large and S is found to depend not only on the interactions in the strange quark matter, but also on the structure of the star, i.e. on its mass and radius. Indeed, it has been claimed recently that 511 keV photons observed by the space probe INTEGRAL from the galactic bulge may be due to electron-positron annihilation, and their source may be the positron cloud outside of an antiquark star. Such stars, if they exist, may also go a long way towards explaining away the antibaryon deficit of the universe. For that to happen S must be high enough to allow for survival of quark/antiquark stars born in early stages of the formation of the universe. High value of S may also assist explanation of delayed gamma-ray burst after a supernova explosion, as conversion from normal matter to strange ...

  11. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  12. Precision measurement of the mass difference between light nuclei and anti-nuclei

    CERN Document Server

    Adam, Jaroslav; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahmed, Ijaz; Ahn, Sang Un; Aimo, Ilaria; Aiola, Salvatore; Ajaz, Muhammad; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Aronsson, Tomas; Arsene, Ionut Cristian; Arslandok, Mesut; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Ball, Markus; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Behera, Nirbhay Kumar; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Saikat; Bjelogrlic, Sandro; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botje, Michiel; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Erazmus, Barbara Ewa; Erhardt, Filip; Eschweiler, Dominic; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Hanratty, Luke David; Hansen, Alexander; Harris, John William; Hartmann, Helvi; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ionita, Costin; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Kamal; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kohler, Markus Konrad; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kouzinopoulos, Charalampos; Kovalenko, Vladimir; Kowalski, Marek; Kox, Serge; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Krelina, Michal; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kucheryaev, Yury; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kulakov, Igor; Kumar, Jitendra; Lokesh, Kumar; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehnert, Joerg Walter; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loggins, Vera Renee; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Lu, Xianguo; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manceau, Loic Henri Antoine; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martashvili, Irakli; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Muller, Hans; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Murray, Sean; Musa, Luciano; Musinsky, Jan; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Paul, Biswarup; Pawlak, Tomasz Jan; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Razazi, Vahedeh; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reicher, Martijn; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sanchez Castro, Xitzel; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Santagati, Gianluca; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seeder, Karin Soraya; Seger, Janet Elizabeth; Sekiguchi, Yuko; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Steinpreis, Matthew Donald; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Takahashi, Jun; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Vala, Martin; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Wang, Yifei; Watanabe, Daisuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yamaguchi, Yorito; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasnopolskiy, Stanislav; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zhu, Xiangrong; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2015-01-01

    The measurement of the mass differences for systems bound by the strong force has reached a very high precision with protons and anti-protons. The extension of such measurement from (anti-)baryons to (anti-)nuclei allows one to probe any difference in the interactions between nucleons and anti-nucleons encoded in the (anti-)nuclei masses. This force is a remnant of the underlying strong interaction among quarks and gluons and can be described by effective theories, but cannot yet be directly derived from quantum chromodynamics. Here we report a measurement of the difference between the ratios of the mass and charge of deuterons (d) and anti-deuterons ($\\bar{d}$), and $^{3}{\\rm He}$ and $^3\\overline{\\rm He}$ nuclei carried out with the ALICE (A Large Ion Collider Experiment) detector in Pb-Pb collisions at a centre-of-mass energy per nucleon pair of 2.76 TeV. Our direct measurement of the mass-over-charge differences confirm CPT invariance to an unprecedented precision in the sector of light nuclei. This funda...

  13. Pseudo-critical enhancement of thermal photons in relativistic heavy-ion collisions?

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van, E-mail: hees@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, D-60438 Frankfurt (Germany); Institute for Theoretical Physics, Max-von-Laue-Straße 1, D-60438 Frankfurt (Germany); He, Min [Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094 (China); Rapp, Ralf [Cyclotron Institute and Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843-3366 (United States)

    2015-01-15

    We compute the spectra and elliptic flow of thermal photons emitted in ultrarelativistic heavy-ion collisions (URHICs) at RHIC and LHC. The thermal emission rates are taken from complete leading-order rates for the QGP and hadronic many-body calculations including baryons and antibaryons, as well as meson-exchange reactions (including Bremsstrahlung). We first update previous thermal fireball calculations by implementing a lattice-QCD based equation of state and extend them to compare to recent LHC data. We then scrutinize the space–time evolution of Au–Au collisions at RHIC by employing an ideal hydrodynamic model constrained by bulk- and multistrange-hadron spectra and elliptic flow, including a non-vanishing initial flow. We systematically compare the evolutions of temperature, radial flow, azimuthal anisotropy and four-volume, and exhibit the temperature profile of thermal photon radiation. Based on these insights, we put forward a scenario with a “pseudo-critical enhancement” of thermal emission rates, and investigate its impact on RHIC and LHC direct photon data.

  14. Research in Theoretical High Energy Nuclear Physics at the University of Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann [Univ. of Arizona, Tucson, AZ (United States). Dept. of Physics

    2016-03-28

    In the past decade (2004-2015) we addressed the quest for the understanding of how quark confinement works, how it can be dissolved in a limited space-time domain, and what this means: i) for the paradigm of the laws of physics of present day; and, ii) for our understanding of cosmology. The focus of our in laboratory matter formation work has been centered on the understanding of the less frequently produced hadronic particles (e.g. strange antibaryons, charmed and beauty hadrons, massive resonances, charmonium, Bc). We have developed a public analysis tool, SHARE (Statistical HAdronization with REsonances) which allows a precise model description of experimental particle yield and fluctuation data. We have developed a charm recombination model to allow for off-equilibrium rate of charmonium production. We have developed methods and techniques which allowed us to study the hadron resonance yield evolution by kinetic theory. We explored entropy, strangeness and charm as signature of QGP addressing the wide range of reaction energy for AGS, SPS, RHIC and LHC energy range. In analysis of experimental data, we obtained both statistical parameters as well as physical properties of the hadron source. The following pages present listings of our primary writing on these questions. The abstracts are included in lieu of more detailed discussion of our research accomplishments in each of the publications.

  15. External meeting - Geneva University: Proposal to measure the muon electric dipole moment with a compact storage ring at PSI

    CERN Multimedia

    2007-01-01

    GENEVA UNIVERSITY ECOLE DE PHYSIQUE Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet 1211 GENEVE 4 ? Tél : 022 379 62 73 - Fax: 022 379 69 92 Wednesday 16th May  2007 PARTICLE PHYSICS SEMINAR at 17:00 - Stückelberg Auditorium Proposal to measure the muon electric dipole moment with a compact storage ring at PSI by Dr. Thomas Schietinger, PSI - Villigen In the Standard Model, lepton electric dipole moments (EDM) arise from the CP-violating phase in the CKM matrix at the three-loop level only, resulting in values that are many orders of magnitude below the sensitivity of current and future experiments. Lepton EDMs therefore offer an excellent opportunity to discover unambiguous evidence for new CP-violating phases, as called for by the baryon-antibaryon asymmetry of the universe. The muon EDM is one of the least constrained fundamental properties in elementary particle physics. We propose to utilize the large available flux of polarized muons at PSI to search for a muon EDM ...

  16. Strangeness enhancement at the hadronic chemical freeze-out

    CERN Document Server

    Sagun, V V; Bugaev, K A; Cleymans, J; Ivanytskyi, A I; Mishustin, I N; Nikonov, E G

    2014-01-01

    The chemical freeze-out of hadrons created in the high energy nuclear collisions is studied within the realistic version of the hadron resonance gas model. The chemical non-equilibrium of strange particles is accounted via the usual $\\gamma_{s}$ factor which gives us an opportunity to perform a high quality fit with $\\chi^2/dof \\simeq 63.5/55 \\simeq 1.15$ of the hadronic multiplicity ratios measured from the low AGS to the highest RHIC energies. In contrast to previous findings, at low energies we observe the strangeness enhancement instead of a suppression. In addition, the performed $\\gamma_{s}$ fit allows us to achieve the highest quality of the Strangeness Horn description with $\\chi^2/dof=3.3/14$. For the first time the top point of the Strangeness Horn is perfectly reproduced, which makes our theoretical horn as sharp as an experimental one. However, the $\\gamma_{s}$ fit approach does not sizably improve the description of the multi-strange baryons and antibaryons. Therefore, an apparent deviation of mu...

  17. Study ofe+e- to Lambda anti-Lambda, Lambda anti-Sigma^0,Sigma^0 anti-Sigma^0 using Initial State Radiation with BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.

    2007-09-14

    We study the e+e- --> Lambda anti-Lambda gamma, Lambda anti-Sigma0 gamma, Sigma0 anti-Sigma0 gamma processes using 230 fb-1 of integrated luminosity collected by the BaBar detector at e+e- center-of-mass energy of 10.58 GeV. From the analysis of the baryon-antibaryon mass spectra the cross sections for e+e- --> Lambda anti-Lambda, Lambda anti-Sigma0, Sigma0 anti-Sigma0 are measured in the dibaryon mass range from threshold up to 3 GeV/c{sup 2}. The ratio of electric and magnetic form factors, |G{sub E}/G{sub M}|, is measured for e+e- --> Lambda anti-Lambda, and limits on the relative phase between Lambda form factors are obtained. We also measure the J/psi --> Lambda anti-Lambda, Sigma0 anti-Sigma0 and psi(2S) --> Lambda anti-Lambda branching fractions.

  18. On the hadron production from the quark-gluon plasma phase in ultra-relativistic heavy-ion collisions

    CERN Document Server

    Berdnikov, Yu A; Ivanov, A N; Ivanova, V A; Kosmach, V F; Samsonov, V M; Troitskaya, N I; Berdnikov, Ya. A.

    2000-01-01

    We describe the quark gluon plasma (QGP) as a thermalized quark-gluon system, the thermalized QGP phase of QCD. The hadronization of the thermalized QGP phase is given in a way resembling a simple coalescence model. The input parameters of the approach are the spatial volumes of the hadronization. We introduce three dimensionless parameters C_M, C_B and C_\\bar{B} related to the spatial volumes of the production of low-lying mesons (M), baryons (B) and antibaryons (\\bar{B}). We show that at the temperature T= 175 MeV our predictions for the ratios of multiplicities agree good with the presently available set of hadron ratios measured for various experiments given by NA44, NA49, NA50 and WA97 Collaborations on Pb+Pb collisions at 158 GeV/nucleon, NA35 Collaboration on S+S collisions and NA38 Collaboration on O+U and S+U collisions at 200 GeV/nucleon.

  19. Observation of the decay B0bar -> LambdaC antiproton pi0

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; Palano, A.; Pappagallo, M.; /INFN, Bari; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Battaglia, M.; Brown, D.N.; Hooberman, B.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Frascati /INFN, Genoa /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /INFN, Pisa /Princeton U. /Frascati /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /INFN, Trieste /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2010-08-26

    In a sample of 467 million B{bar B} pairs collected with the BABAR detector at the PEP-II collider at SLAC we have observed the decay {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p}{pi}{sup 0} and measured the branching fraction to be (1.94 {+-} 0.17 {+-} 0.14 {+-} 0.50) x 10{sup -4}, where the uncertainties are statistical, systematic, and the uncertainty on the {Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +} branching fraction, respectively. We determine an upper limit of 1.5 x 10{sup -6} at 90% C.L. for the product branching fraction {Beta}({bar B}{sup 0} {yields} {Sigma}{sub c}{sup +}(2455){bar p}) x {Beta}({Lambda}{sub c}{sup +} {yields} pK{sup -}{pi}{sup +}). Furthermore, we observe an enhancement at the threshold of the invariant mass of the baryon-antibaryon pair.

  20. Axion field and the quark nugget's formation at the QCD phase transition

    CERN Document Server

    Liang, Xunyu

    2016-01-01

    We study a testable dark matter (DM) model outside of the standard WIMP paradigm in which the observed ratio $\\Omega_{\\rm dark} \\simeq \\Omega_{\\rm visible}$ for visible and dark matter densities finds its natural explanation as a result of their common QCD origin when both types of matter (DM and visible) are formed at the QCD phase transition and both are proportional to $\\Lambda_{\\rm QCD}$. Instead of conventional "baryogenesis" mechanism we advocate a paradigm when the "baryogenesis" is actually a charge separation process which always occur in the presence of the $\\cal{CP}$ odd axion field $a(x)$. In this scenario the global baryon number of the Universe remains zero, while the unobserved anti-baryon charge is hidden in form of heavy nuggets, similar to Witten's strangelets and compromise the DM of the Universe. We argue that the nuggets will be inevitably produced during the QCD phase transition as a result of Kibble-Zurek mechanism on formation of the topological defects during a phase transition. Relev...

  1. A tetraquark or not a tetraquark: A holography inspired stringy hadron (HISH) perspective

    CERN Document Server

    Sonnenschein, Jacob

    2016-01-01

    We suggest to use the state $Y(4630)$, which decays predominantly to $\\Lambda_c\\bar\\Lambda_c$, as a window to the landscape of tetraquarks. We propose a simple criterion to decide whether a state is a genuine stringy exotic hadron - a tetraquark - or a "molecule". If it is the former it should be on a (modified) Regge trajectory. We present the predictions of the mass and width of the higher excited states on the $Y(4630)$ trajectory. We argue that there should exist an analogous "$Y_b$" state that decays to $\\Lambda_b\\bar\\Lambda_b$ and describe its trajectory. We conjecture also a similar trajectory for tetraquarks containing strange quarks, and the modified Regge trajectories can in fact be predicted for any resonances found decaying to a baryon-antibaryon pair. En route to the results regarding tetraquarks, we also make some additional predictions on higher excited charmonium states. We briefly discuss the zoo of exotic stringy hadrons and in particular we sketch all the possibilities of tetraquark states.

  2. Detailed discussion of a linear electric field frequency shift induced in confined gases by a magnetic field gradient: Implications for neutron electric-dipole-moment experiments

    Science.gov (United States)

    Lamoreaux, S. K.; Golub, R.

    2005-03-01

    The search for particle electric dipole moments (EDM’s) is one of the best places to look for physics beyond the standard model of electroweak interaction because the size of time reversal violation predicted by the standard model is incompatible with present ideas concerning the creation of the baryon-antibaryon asymmetry. As the sensitivity of these EDM searches increases more subtle systematic effects become important. We develop a general analytical approach to describe a systematic effect recently observed in an electric dipole moment experiment using stored particles [J. M. Pendlebury , Phys. Rev. A 70, 032102 (2004)]. Our approach is based on the relationship between the systematic frequency shift and the velocity autocorrelation function of the resonating particles. Our results, when applied to well-known limiting forms of the correlation function, are in good agreement with both the limiting cases studied in recent work that employed a numerical and heuristic analysis. Our general approach explains some of the surprising results observed in that work and displays the rich behavior of the shift for intermediate frequencies, which has not been studied previously.

  3. Quantum annealing: The fastest route to quantum computation?

    Science.gov (United States)

    Smorra, C.; Blaum, K.; Bojtar, L.; Borchert, M.; Franke, K. A.; Higuchi, T.; Leefer, N.; Nagahama, H.; Matsuda, Y.; Mooser, A.; Niemann, M.; Ospelkaus, C.; Quint, W.; Schneider, G.; Sellner, S.; Tanaka, T.; Van Gorp, S.; Walz, J.; Yamazaki, Y.; Ulmer, S.

    2015-11-01

    The Baryon Antibaryon Symmetry Experiment (BASE) aims at performing a stringent test of the combined charge parity and time reversal (CPT) symmetry by comparing the magnetic moments of the proton and the antiproton with high precision. Using single particles in a Penning trap, the proton/antiproton g-factors, i.e. the magnetic moment in units of the nuclear magneton, are determined by measuring the respective ratio of the spin-precession frequency to the cyclotron frequency. The spin precession frequency is measured by non-destructive detection of spin quantum transitions using the continuous Stern-Gerlach effect, and the cyclotron frequency is determined from the particle*s motional eigenfrequencies in the Penning trap using the invariance theorem. By application of the double Penning-trap method we expect that in our measurements a fractional precision of δ g/ g 10-9 can be achieved. The successful application of this method to the antiproton will consist a factor 1000 improvement in the fractional precision of its magnetic moment. The BASE collaboration has constructed and commissioned a new experiment at the Antiproton Decelerator (AD) of CERN. This article describes and summarizes the physical and technical aspects of this new experiment.

  4. Measurement of the Branching Fractions of the Decays $\\bar{B}^{0} \\to \\Lambda_{c}^{+} \\bar{p}$ and $B^{-} \\to \\Lambda_{c}^{+} \\bar{p} \\pi^{-}$

    CERN Document Server

    Aubert, B; Bóna, M; Boutigny, D; Couderc, F; Karyotakis, Yu; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Graugès-Pous, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Y G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; Del Amo-Sánchez, P; Barrett, M; Ford, K E; Hart, A J; Harrison, T J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schröder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Asgeirsson, D J; Çuhadar-Dönszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Y I; Solodov, E P; Todyshev, K Y; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Merkel, J; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Latour, E; Thiebaux, C; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro-Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F R; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flächer, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Stängle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; Mclachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, Gallieno; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M A; Raven, G; Snoek, H L; Jessop, C P; LoSecco, J M; Allmendinger, T; Benelli, G; Corwin, L A; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Regensburger, J J; Ter-Antonian, R; Wong, Q K; Blount, N L; Brau, J E; Frey, R; Igonkina, O; Kolb, J A; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; Del Buono, L; La Vaissière, C de; Hamon, O; Hartfiel, B L; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; Del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai-Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; Vasseur, G; Yéche, C; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W M; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Grenier, P; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Lüth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Vavra, J; Van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Lopez-March, N; Martínez-Vidal, F; Banerjee, S; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R V; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihályi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H

    2006-01-01

    We present studies of two-body and three-body charmed baryonic B decays in a sample of 232 million $B\\bar{B}$ pairs collected with the BABAR detector at the PEP-II $e^+e^-$ storage ring. The branching fractions of the decays $\\bar{B}^{0} \\to \\Lambda_{c}^{+} \\bar{p}$ and $B^{-} \\to \\Lambda_{c}^{+} \\bar{p} \\pi^{-}$ are measured to be $(2.15 \\pm 0.36 \\pm 0.13 \\pm 0.56) \\times 10^{-5}$ and $(3.53 \\pm 0.18 \\pm 0.31 \\pm 0.92)\\times10^{-4}$, respectively. The uncertainties quoted are statistical, systematic, and from the $\\Lambda_{c}^{+} \\to p K^- \\pi^+$ branching fraction. We observe a baryon-antibaryon threshold enhancement in the $\\Lambda_{c}^{+} \\bar{p}$ invariant mass spectrum of the three-body mode and measure the ratio of the branching fractions to be ${\\cal B}(B^{-} \\to \\Lambda_{c}^{+} \\bar{p} \\pi^{-})/{\\cal B}(\\bar{B}^{0} \\to \\Lambda_{c}^{+} \\bar{p}) = 16.4 \\pm 2.9 \\pm 1.4$. These results are preliminary.

  5. Measurement of the Branching Fractions of the Decays \\bar{B}^0 to Lambda_c^+ \\bar{p} and B^- to Lambda_c^+ \\bar{p} pi^-

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, B.; Barate, R.; Bona, M.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; /Annecy, LAPP; Grauges, E.; /Barcelona; Palano, A.; /Bari U. /INFN, Bari; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; /Beijing, Inst. High Energy Phys.; Eigen, G.; Ofte, I.; Stugu, B.; /Bergen U.; Abrams, G.S.; /LBL, Berkeley /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /Bristol U. /British Columbia U. /Brunel U. /UC, Irvine /UCLA /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC,

    2006-12-06

    The authors present studies of two-body and three-body charmed baryonic B decays in a sample of 232 million B{bar B} pairs collected with the BABAR detector at the PEP-II e{sup +}e{sup -} storage ring. The branching fractions of the decays {bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p} and B{sup -} {yields} {Lambda}{sub c}{sup +} {bar p}{pi}{sup -} are measured to be (2.15 {+-} 0.36 {+-} 0.13 {+-} 0.56) x 10{sup -5} and (3.53 {+-} 0.18 {+-} 0.31 {+-} 0.92) x 10{sup -4}, respectively. The uncertainties quoted are statistical, systematic, and from the {Lambda}{sub c}{sup +} {yields} pK{sup -} {pi}{sup +} branching fraction. They observe a baryon-antibaryon threshold enhancement in the {Lambda}{sub c}{sup +}{bar p} invariant mass spectrum of the three-body mode and measure the ratio of the branching fractions to be {Beta}(B{sup -} {yields} {Lambda}{sub c}{sup +}{bar p}{pi}{sup -})/{Beta}({bar B}{sup 0} {yields} {Lambda}{sub c}{sup +}{bar p}) = 16.4 {+-} 2.9 {+-} 1.4. These results are preliminary.

  6. Pseudo-Critical Enhancement of Thermal Photons in Relativistic Heavy-Ion Collisions

    CERN Document Server

    van Hees, Hendrik; Rapp, Ralf

    2014-01-01

    We compute the spectra and elliptic flow of thermal photons emitted in ultrarelativistic heavy-ion collisions (URHICs) at RHIC and LHC. The thermal emission rates are taken from complete leading-order rates for the QGP and hadronic many-body calculations including baryons and antibaryons, as well as meson-exchange reactions (including Bremsstrahlung). We first update previous thermal fireball calculations by implementing a lattice-QCD based equation of state and extend them to compare to recent LHC data. We then scrutinize the space-time evolution of Au-Au collisions at RHIC by employing an ideal hydrodynamic model constrained by bulk- and multistrange-hadron spectra and elliptic flow, including a non-vanishing initial flow. We systematically compare the evolutions of temperature, radial flow, azimuthal anisotropy and four-volume, and exhibit the temperature profile of thermal photon radiation. Based on these insights, we put forward a scenario with a "pseudo-critical enhancement" of thermal emission rates, a...

  7. Double pion production in $NN$ and $\\bar{N}N$ collisions

    CERN Document Server

    Cao, Xu; Xu, Hu-Shan

    2010-01-01

    With an effective Lagrangian approach, we give a full analysis on the $NN \\to NN\\pi\\pi$ and $\\bar{N}N\\to \\bar{N}N\\pi\\pi$ reactions by exploring the roles of various resonances with mass up to 1.72 GeV. We find large contributions from $\\Delta$, $N^*(1440)$, $\\Delta(1600)$ and $\\Delta(1620)$ resonances. Our calculations also indicate sizeable contributions from nucleon poles for the energies close to the threshold. A good description to the existing data of different isospin channels of $NN\\to NN\\pi\\pi$ and $\\bar{N}N\\to \\bar{N}N\\pi\\pi$ for beam energies up to 2.2 GeV is reached. Our results provide important implications to the ABC effect and guildlines to the future experimental projects at COSY, HADES and HIRFL-CSR. We point out that the \\={P}ANDA at FAIR could be an essential place for studying the properties of baryon resonances and the data with baryon and anti-baryon in final states are worth analyzing.

  8. Evidence for an exotic S= -2, Q= -2 baryon resonance in proton-proton collisions at the CERN SPS.

    Science.gov (United States)

    Alt, C; Anticic, T; Baatar, B; Barna, D; Bartke, J; Betev, L; Białkowska, H; Billmeier, A; Blume, C; Boimska, B; Botje, M; Bracinik, J; Bramm, R; Brun, R; Buncić, P; Cerny, V; Christakoglou, P; Chvala, O; Cramer, J G; Csató, P; Darmenov, N; Dimitrov, A; Dinkelaker, P; Eckardt, V; Farantatos, G; Filip, P; Flierl, D; Fodor, Z; Foka, P; Freund, P; Friese, V; Gál, J; Gaździcki, M; Georgopoulos, G; Gładysz, E; Hegyi, S; Höhne, C; Kadija, K; Karev, A; Kniege, S; Kolesnikov, V I; Kollegger, T; Korus, R; Kowalski, M; Kraus, I; Kreps, M; van Leeuwen, M; Lévai, P; Litov, L; Makariev, M; Malakhov, A I; Markert, C; Mateev, M; Mayes, B W; Melkumov, G L; Meurer, C; Mischke, A; Mitrovski, M; Molnár, J; Mrówczyński, St; Pálla, G; Panagiotou, A D; Panayotov, D; Perl, K; Petridis, A; Pikna, M; Pinsky, L; Pühlhofer, F; Reid, J G; Renfordt, R; Retyk, W; Roland, C; Roland, G; Rybczyński, M; Rybicki, A; Sandoval, A; Sann, H; Schmitz, N; Seyboth, P; Siklér, F; Sitar, B; Skrzypczak, E; Stefanek, G; Stock, R; Ströbele, H; Susa, T; Szentpétery, I; Sziklai, J; Trainor, T A; Varga, D; Vassiliou, M; Veres, G I; Vesztergombi, G; Vranić, D; Wetzler, A; Włodarczyk, Z; Yoo, I K; Zaranek, J; Zimányi, J

    2004-01-30

    Results of resonance searches in the Xi(-)pi(-), Xi(-)pi(+), Xi;(+)pi(-), and Xi;(+)pi(+) invariant mass spectra in proton-proton collisions at sqrt[s]=17.2 GeV are presented. Evidence is shown for the existence of a narrow Xi(-)pi(-) baryon resonance with mass of 1.862+/-0.002 GeV/c(2) and width below the detector resolution of about 0.018 GeV/c(2). The significance is estimated to be above 4.2sigma. This state is a candidate for the hypothetical exotic Xi(--)(3/2) baryon with S=-2, I=3 / 2, and a quark content of (dsdsū). At the same mass, a peak is observed in the Xi(-)pi(+) spectrum which is a candidate for the Xi(0)(3/2) member of this isospin quartet with a quark content of (dsus[-]d). The corresponding antibaryon spectra also show enhancements at the same invariant mass.

  9. Production of ultra cold neutrons with a solid deuterium converter; Produktion von ultrakalten Neutronen mit einem festen Deuteriumkonverter

    Energy Technology Data Exchange (ETDEWEB)

    Frei, Andreas

    2008-10-28

    Spontaneous breaking of fundamental symmetries is an attractive topic in modern particle physics. Understanding qualitative and quantitative the parameters involved in these kind of processes could help to explain the unbalanced presence in the universe of matter (baryons) with respect to antimatter (anti-baryons). Due to their intrinsic properties, ultra cold neutrons (UCN) are excellent candidates for experiments measuring with high level of accuracy parameters like the electric dipole moment (EDM), the neutron lifetime ({tau}{sub n}), the axial-vector coupling constant (g{sub A}), or in search of quantum effects of gravity. In this work the setup of a source for ultra cold neutrons with a solid deuterium converter is described, which serves as a prototype for a new, strong UCN source, that is currently designed and constructed at the FRMII in Garching. The prototype source has been taken into operation and important parameters have been measured. These experimental results have been compared with theoretical models to prove calculations for the performance of the new source at the FRMII. (orig.)

  10. Chemical and mechanical instabilities in high energy heavy-ion collisions

    Science.gov (United States)

    Gervino, G.; Lavagno, A.; Pigato, D.

    2015-07-01

    We investigate the possible thermodynamic instability in a warm and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated Δ-matter can take place. Such a phase transition is characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the isospin concentration) in asymmetric nuclear matter. Similarly to the liquid-gas phase transition, the nucleonic and the Δ-matter phase have a different isospin density in the mixed phase. In the liquid-gas phase transition, the process of producing a larger neutron excess in the gas phase is referred to as isospin fractionation. A similar effects can occur in the nucleon-Δ matter phase transition due essentially to a Δ- excess in the Δ-matter phase in asymmetric nuclear matter. In this context, we study the hadronic equation of state by means of an effective quantum relativistic mean field model with the inclusion of the full octet of baryons, the Δ-isobar degrees of freedom, and the lightest pseudoscalar and vector mesons. Finally, we will investigate the presence of thermodynamic instabilities in a hot and dense nuclear medium where phases with different values of antibaryon-baryon ratios and strangeness content may coexist. Such a physical regime could be in principle investigated in the future high-energy compressed nuclear matter experiments where will make it possible to create compressed baryonic matter with a high net baryon density.

  11. Particle Physics And Cosmology In Supersymmetric Models

    CERN Document Server

    Morrissey, D E

    2005-01-01

    The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...

  12. Antideuterons in cosmic rays: sources and discovery potential

    Science.gov (United States)

    Herms, Johannes; Ibarra, Alejandro; Vittino, Andrea; Wild, Sebastian

    2017-02-01

    Antibaryons are produced in our Galaxy in collisions of high energy cosmic rays with the interstellar medium and in old supernova remnants, and possibly, in exotic sources such as primordial black hole evaporation or dark matter annihilations and decays. The search for signals from exotic sources in antiproton data is hampered by large backgrounds from spallation which, within theoretical errors, can solely account for the current data. Due to the higher energy threshold for antideuteron production, which translates into a suppression of the low energy flux from spallations, antideuteron searches have been proposed as a probe for exotic sources. We perform in this paper a comprehensive analysis of the antideuteron fluxes at the Earth expected from known and hypothetical sources in our Galaxy, and we calculate their maximal values consistent with current antiproton data from AMS-02. We find that supernova remnants generate a negligible flux, whereas primordial black hole evaporation and dark matter annihilations or decays may dominate the total flux at low energies. On the other hand, we find that the {detection of cosmic antideuterons} would require, for the scenarios studied in this paper and assuming optimistic values of the coalescence momentum and solar modulation, an increase of the experimental sensitivity compared to ongoing and planned instruments by at least a factor of 2. Finally, we briefly comment on the prospects for antihelium-3 detection.

  13. Hadronic final states in e{sup +}e{sup -} annihilation at BaBar

    Energy Technology Data Exchange (ETDEWEB)

    Petzold, A [Universitaet Dortmund, Experimentelle Physik 5, 44221 Dortmund (Germany)], E-mail: petzold@slac.stanford.edu

    2008-05-15

    We present recent results of studies of hadronic final states produced in e{sup ++}e{sup -} annihilation at the BaBar experiment at the PEP-II asymmetric-energy storage rings. We study the processes e{sup +}e{sup -} {yields} K{sup +}K{sup -} {pi}{sup 0}{pi}{sup 0} {gamma}, K{sup +} K{sup -} {pi}{sup 0}{pi}{sup 0} {gamma}, and K{sup +} K{sup -} K{sup +} K{sup -} {gamma}, where the photon is radiated from the initial state. Studying the structure of these events, we find contributions from a number of intermediate states, and we extract their cross sections where possible. In particular, we isolate the contribution from e{sup +} e{sup -} {yields} {phi}(1020)fo(980). In the charmonium region, we observe the J/{psi} in all three final states and several intermediate states, as well as the {psi}(2S) in some modes, and measure the corresponding branching fractions. We describe the preliminary measurement of the hadronic cross section {sigma}(e{sup +}e{sup -} {yields} {pi}{sup +}{pi}{sup -} {pi}{sup 0}{pi}{sup 0}) performed via Initial State Radiation in the mass range from 0.95 GeV to 4.5 GeV. We study the s dependence with small point-to-point uncertainties and the internal structure of the {pi}{sup +} {pi}{sup -} {pi}{sup 0} {pi}{sup 0} channel. We report the first observation of e{sup +}e{sup -} annihilation into states of positive C-parity, namely {rho}{sup 0}{rho}{sup 0} and {phi}{rho}{sup 0}. The two states are observed in the {pi}{sup +}{pi}{sup -} {pi}{sup +}{pi}{sup -} and K{sup +} K{sup -} {pi}{sup +}{pi}{sup -} final states, respectively, at energies near s{radical} = 10.58 GeV. The distributions of cos{theta}*, where {theta}* is the center-of-mass polar angle of the {phi}s on or the forward {rho} meson, suggest production by two-virtual-photon annihilation. We present a preliminary study e{sup +}e{sup -}{yields} CC events at s{radical} {approx}10.6 GeV containing both a A{sub c}{sup +} baryon and a A{sub c}{sup -} antibaryon. We find roughly 4.2 times the

  14. PROCEEDINGS OF RIKEN BNL RESEARCH CENTER WORKSHOP ON BARYON DYNAMICS AT RHIC, MARCH 28-30, 2002, BROOKHAVEN NATIONAL LABORATORY.

    Energy Technology Data Exchange (ETDEWEB)

    GYULASSY,M.; KHARZEEV,D.; XU,N.

    2002-03-28

    One of the striking observations at RHIC is the large valence baryon rapidity density observed at mid rapidity in central Au+Au at 130 A GeV. There are about twice as many valence protons at mid-rapidity than predicted based on extrapolation from p+p collisions. Even more striking PHENIX observed that the high pt spectrum is dominated by baryons and anti-baryons. The STAR measured event anisotropy parameter v2 for lambdas are as high as charged particles at pt {approx} 2.5 GeV/c. These are completely unexpected based on conventional pQCD parton fragmentation phenomenology. One exciting possibility is that these observables reveal the topological gluon field origin of baryon number transport referred to as baryon junctions. Another is that hydrodynamics may apply up to high pt in A+A. There is no consensus on what are the correct mechanisms for producing baryons and hyperons at high pt and large rapidity shifts and the new RHIC data provide a strong motivation to hold a meeting focusing on this class of observables. The possible role of junctions in forming CP violating domain walls and novel nuclear bucky-ball configurations would also be discussed. In this workshop, we focused on all measured baryon distributions at RHIC energies and related theoretical considerations. To facilitate the discussions, results of heavy ion collisions at lower beam energies, results from p+A /p+p/e+e collisions were included. Some suggestions for future measurements have been made at the workshop.

  15. Search for Popcorn Mesons in Events with Two Charmed Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Hartfiel, Brandon; /SLAC

    2006-07-07

    The physics of this note is divided into two parts. The first part measures the {Lambda}{sub c} {yields} {pi}kp continuum momentum spectrum at a center of mass energy of 10.54 GeV/c. The data sample consists of 15,400 {Lambda}{sub c} baryons from 9.46 fb{sup -1} of integrated luminosity. With more than 13 times more data than the best previous measurement, we are able to exclude some of the simpler, one parameter fragmentation functions. In the second part, we add the {Lambda}{sub c} {yields} K{sup 0}p mode, and look for events with a {Lambda}{sub c}{sup +} and a {bar {Lambda}}{sub c}{sup -} in order to look for ''popcorn'' mesons formed between the baryon and antibaryon. We add on-resonance data, with a kinematic cut to eliminate background from B decays, as well as BaBar run 3 and 4 data to increase the total data size to 219.70 fb{sup -1}. We find 619 events after background subtraction. After a subtraction of 1.06 {+-} .09 charged pions coming from decays of known resonances to {Lambda}{sub c} + {eta}{pi}, we are left with 2.63 {+-} .21 additional charged pions in each of these events. This is significantly higher than the .5 popcorn mesons per baryon pair used in the current tuning of Pythia 6.2, the most widely used Monte Carlo generator. The extra mesons we find appear to be the first direct evidence of popcorn mesons, although some of them could be arising from hypothetical unresolved, unobserved charmed baryon resonances contributing decay mesons to our data. To contribute a significant fraction, this hypothesis requires a large number of such broad unresolved states and seems unlikely, but can not be completely excluded.

  16. Lattice QCD and physics beyond the Standar Model: an experimentalist perspective

    Science.gov (United States)

    Artuso, Marina

    2017-01-01

    The new frontier in elementary particle physics is to find evidence for new physics that may lead to a deeper understanding of observations such as the baryon-antibaryon asymmetry of the universe, mass hierarchy, dark matter, or dark energy to name a few. Flavor physics provides a wealth of opportunities to find such signatures, and a vast body of data taken at e+e- b-factories and at hadron machines has provided valuable information, and a few tantalizing ``tensions'' with respect to the Standard Model predictions. While the window for new physics is still open, the chance that its manifestations will be subtle is very real. A vibrant experimental program is ongoing, and significant upgrades, such as the upgraded LHCb experiment at LHC and Belle 2 at KEKb, are imminent. One of the challenges in extracting new physics from flavor physics data is the need to relate observed hadron decays to fundamental particles and interactions. The continuous improvement of Lattice QCD predictions is a key element to achieve success in this quest. Improvements in algorithms and hardware have led to predictions of increasing precision on several fundamental matrix elements, and the continuous breaking of new grounds, thus allowing a broader spectrum of measurements to become relevant to this quest. An important aspect of the experiment-lattice synergy is a comparison between lattice predictions with experiment for a variety of hadronic quantities. This talk summarizes current synergies between lattice QCD theory and flavor physics experiments, and gives some highlights of expectations from future upgrades. this work was supported by NSF.

  17. Gravitationally neutral dark matter-dark antimatter universe crystal with epochs of decelerated and accelerated expansion

    Science.gov (United States)

    Gribov, I. A.; Trigger, S. A.

    2016-11-01

    A large-scale self-similar crystallized phase of finite gravitationally neutral universe (GNU)—huge GNU-ball—with spherical 2D-boundary immersed into an endless empty 3D- space is considered. The main principal assumptions of this universe model are: (1) existence of stable elementary particles-antiparticles with the opposite gravitational “charges” (M+gr and M -gr), which have the same positive inertial mass M in = |M ±gr | ≥ 0 and are equally presented in the universe during all universe evolution epochs; (2) the gravitational interaction between the masses of the opposite charges” is repulsive; (3) the unbroken baryon-antibaryon symmetry; (4) M+gr-M-gr “charges” symmetry, valid for two equally presented matter-antimatter GNU-components: (a) ordinary matter (OM)-ordinary antimatter (OAM), (b) dark matter (DM)-dark antimatter (DAM). The GNU-ball is weightless crystallized dust of equally presented, mutually repulsive (OM+DM) clusters and (OAM+DAM) anticlusters. Newtonian GNU-hydrodynamics gives the observable spatial flatness and ideal Hubble flow. The GNU in the obtained large-scale self-similar crystallized phase preserves absence of the cluster-anticluster collisions and simultaneously explains the observable large-scale universe phenomena: (1) the absence of the matter-antimatter clusters annihilation, (2) the self-similar Hubble flow stability and homogeneity, (3) flatness, (4) bubble and cosmic-net structures as 3D-2D-1D decrystallization phases with decelerative (a ≤ 0) and accelerative (a ≥ 0) expansion epochs, (5) the dark energy (DE) phenomena with Λ VACUUM = 0, (6) the DE and DM fine-tuning nature and predicts (7) evaporation into isolated huge M±gr superclusters without Big Rip.

  18. Systematic Measurements of Identified Particle Spectra in pp, d+Au and Au+Au Collisions from STAR

    Energy Technology Data Exchange (ETDEWEB)

    STAR Coll

    2009-04-11

    Identified charged particle spectra of {pi}{sup {+-}}, K{sup {+-}}, p and {bar p} at mid-rapidity (|y| < 0.1) measured by the dE/dx method in the STAR-TPC are reported for pp and d + Au collisions at {radical}s{sub NN} = 200 GeV and for Au + Au collisions at 62.4 GeV, 130 GeV, and 200 GeV. Average transverse momenta, total particle production, particle yield ratios, strangeness and baryon production rates are investigated as a function of the collision system and centrality. The transverse momentum spectra are found to be flatter for heavy particles than for light particles in all collision systems; the effect is more prominent for more central collisions. The extracted average transverse momentum of each particle species follows a trend determined by the total charged particle multiplicity density. The Bjorken energy density estimate is at least several GeV/fm{sub 3} for a formation time less than 1 fm/c. A significantly larger net-baryon density and a stronger increase of the net-baryon density with centrality are found in Au + Au collisions at 62.4 GeV than at the two higher energies. Antibaryon production relative to total particle multiplicity is found to be constant over centrality, but increases with the collision energy. Strangeness production relative to total particle multiplicity is similar at the three measured RHIC energies. Relative strangeness production increases quickly with centrality in peripheral Au + Au collisions, to a value about 50% above the pp value, and remains rather constant in more central collisions. Bulk freeze-out properties are extracted from thermal equilibrium model and hydrodynamics-motivated blast-wave model fits to the data. Resonance decays are found to have little effect on the extracted kinetic freeze-out parameters due to the transverse momentum range of our measurements. The extracted chemical freeze-out temperature is constant, independent of collision system or centrality; its value is close to the predicted phase