WorldWideScience

Sample records for anti-tuberculosis drug resistance

  1. Anti-tuberculosis drug resistance in Sub-Saharan Africa: The case of Uganda

    OpenAIRE

    Cobelens, F.G.J.; Joloba, M.L.; Lukoye, D

    2015-01-01

    This thesis reports findings of six studies including two tuberculosis (TB) drug resistance surveys, a comparative study of HIV infection rates among patients enrolled in the survey and those under routine TB/HIV surveillance, two TB molecular epidemiological analyses and a systematic review and meta-analysis of drug-resistant TB in sub-Saharan Africa. It provides a general introduction to anti-tuberculosis drug resistance in the world and associated risk factors. Results from the drug resist...

  2. Combined antiretroviral and anti-tuberculosis drug resistance following incarceration

    OpenAIRE

    Stott, K E; de Oliviera, T; Lessells, R.J.

    2013-01-01

    We describe a case of HIV/tuberculosis (TB) co-infection from KwaZulu-Natal, South Africa, characterised by drug resistance in both pathogens. The development of drug resistance was linked temporally to two periods of incarceration. This highlights the urgent need for improved integration of HIV/TB control strategies within prison health systems and within the broader public health framework.

  3. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  4. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  5. Sensitivity Pattern of Second Line Anti-Tuberculosis Drugs against Clinical Isolates of Multidrug Resistant Mycobacterium Tuberculosis

    International Nuclear Information System (INIS)

    Objective:To determine the current sensitivity pattern of second line anti-tuberculosis drugs against clinical isolates of Multidrug Resistant Mycobacterium tuberculosis (MDR-TB). Study Design: A cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from November 2011 to April 2013. Methodology: Samples received during the study period were processed on BACTEC MGIT 960 system for Mycobacterium tuberculosis (MTB) culture followed by first line drugs susceptibility testing of culture proven MTB isolates. On the basis of resistance to rifampicin and isoniazid, 100 clinical isolates of MDR-TB were further subjected to susceptibility testing against amikacin (AMK), capreomycin (CAP), ofloxacin (OFL) and ethionamide (ETH) as per standard BACTEC MGIT 960 instructions. Results: Out of 100 MDR-TB isolates, 62% were from male patients and 38% from female patients. 97% were sensitive to AMK, 53% to OFL, 87% to CAP; and 87% were sensitive to ETH. Conclusion: The majority of the MDR-TB isolates showed excellent sensitivity against AMK, CAP and ETH. However, sensitivity of MDR-TB isolates against fluoroquinolones like OFL was not encouraging. (author)

  6. Mortality among tuberculosis patients with acquired resistance to second-line anti-tuberculosis drugs — United States, 1993–2008

    Science.gov (United States)

    Ershova, Julia V.; Kurbatova, Ekaterina V.; Moonan, Patrick K.; Cegielski, J. Peter

    2016-01-01

    Background Resistance to second-line anti-tuberculosis drugs (SLD) severely compromises treatment options of drug-resistant tuberculosis (TB). We assessed the association between acquisition of resistance (AR) to second-line injectable drugs (SLI) or fluoroquinolones (FQ) and mortality among TB cases confirmed by positive culture results with available initial and final drug susceptibility test (DST) results. Methods We analyzed data from U.S. National TB Surveillance System, 1993–2008. Acquired resistance was defined as drug susceptibility at initial DST but resistance to the same drug at final DST. We compared survival with Kaplan-Meier curves and analyzed the association between AR and mortality using a univariate extended Cox proportional hazards model adjusted for age. Results Of 2,329 cases with both initial and final DST to SLI, 49 (2.1%) acquired resistance; 13/49 (26.5%) had treatment terminated by death versus 222 (10.0%) of those without AR to SLI (P<0.001). Of 1,187 cases with both initial and final DST to FQ, 32 (2.8%) acquired resistance; 12/32 (37.5%) had treatment terminated by death versus 121 (10.9%) of those without AR to FQ (P=0.001). Controlling for age, mortality was significantly greater among cases with AR to SLD than among cases without AR (adjusted hazard ratio (aHR)[SLI], 2.8; 95% confidence interval (CI),1.4–5.4; aHR[FQ], 1.9; 95% CI,1.0–3.5). MDR TB at treatment initiation, positive HIV status, and extrapulmonary disease were also significantly associated with mortality. Conclusion Mortality was significantly greater among TB cases with AR to SLD. Providers should consider AR to SLD early in treatment, monitor DST results, and avoid premature deaths. PMID:24846639

  7. Expression of Mycobacterium tuberculosis NLPC/p60 family protein Rv0024 induce biofilm formation and resistance against cell wall acting anti-tuberculosis drugs in Mycobacterium smegmatis.

    Science.gov (United States)

    Padhi, Avinash; Naik, Sumanta Kumar; Sengupta, Srabasti; Ganguli, Geetanjali; Sonawane, Avinash

    2016-04-01

    Bacterial species are capable of living as biofilm and/or planktonic forms. Role of biofilms in the pathogenesis of several human pathogens is well established. However, in case of Mycobacterium tuberculosis (Mtb) infection the role of biofilms and the genetic requirements for biofilm formation remains largely unknown. We herein report that ectopic expression of Mtb Rv0024, encoding a putative peptidoglycan amidase, in non-pathogenic Mycobacterium smegmatis(Msm) strain (MsmRv0024) confer at least 10-fold increase in resistance against two prominent anti-tuberculosis drugs isoniazid and pyrazinamide. We further report that the development of resistance was due to significant increase in biofilm formation by Rv0024. Transmission electron microscopy revealed differences in cell surface architecture of MsmRv0024 when compared with Msm wild-type (WT) and vector control Msm pSMT3 (pSMT3) strains and this aggregation pattern was due to increased cell wall hydrophobicity, as determined by Bacterial adhesion to hydrocarbons assay (BATH). Confocal microscopy study showed increased adherence of MsmRv0024 bacteria to lung epithelial cells as compared to pSMT3 strain. However, infection studies showed no differences in host cell invasion and intracellular survival in mouse macrophages. We envision that Rv0024 may play a critical role in initial infection process, adherence to host cells and drug resistance. Thus, Rv0024 may be considered as a potential drug target for the treatment of tuberculosis. PMID:26706821

  8. Rates of Anti-Tuberculosis Drug Resistance in Kampala-Uganda Are Low and Not Associated with HIV Infection

    NARCIS (Netherlands)

    D. Lukoye; F.G.J. Cobelens; N. Ezati; S. Kirimunda; F.E. Adatu; J.K. Lule; F. Nuwaha; M.L. Joloba

    2011-01-01

    Background: Drug resistance among tuberculosis patients in sub-Saharan Africa is increasing, possibly due to association with HIV infection. We studied drug resistance and HIV infection in a representative sample of 533 smear-positive tuberculosis patients diagnosed in Kampala, Uganda. Methods/Princ

  9. Is resistance to anti-tuberculosis drugs associated with type 2 diabetes mellitus? A register review in Beijing, China

    Directory of Open Access Journals (Sweden)

    Fengling Mi

    2014-05-01

    Full Text Available Background: China has a high burden of drug-resistant tuberculosis (TB and diabetes mellitus (DM. Objective: The objectives of this study were to determine the following in patients with culture-confirmed TB: 1 demographic characteristics and disease patterns in relation to the presence or absence of type 2 diabetes and 2 presence or absence of drug resistance to isoniazid (INH, rifampicin (RMP or both in relation to duration of diabetes and control of diabetes. Design: This is a cross-sectional and retrospective study involving record reviews. Results: There were 621 patients with culture-positive TB, of whom 187 (30% had previously known or new type 2 diabetes. In those with diabetes, there was a significantly higher proportion of males, persons aged ≥35 years and patients registered with new TB (p<0.05. Prevalence of multidrug-resistant TB (MDR-TB was 6.2% in new patients (N=422 and 62.3% in previously treated patients (N=199, with no significant differences between those with and without diabetes. In patients with diabetes, there was no association of drug resistance with diabetes duration or disease control [assessed by fasting blood glucose (FBG at 1 week]. Conclusion: A high proportion of patients with TB in a tertiary health facility, Beijing, China, had diabetes, but there was no association between type 2 diabetes and drug-resistant TB. Further prospective studies are needed to confirm these findings.

  10. Experiences in anti-tuberculosis treatment in patients with multiple previous treatments and its impact on drug resistant tuberculosis epidemics

    Directory of Open Access Journals (Sweden)

    Biao Xu

    2014-08-01

    Full Text Available Background: Tuberculosis (TB patients with a history of multiple anti-TB treatments are the ‘neglected’ group to the free anti-TB treatment policy in China. Objective: To understand the experiences of TB patients with multiple previous treatments with regard to bacteriological diagnosis and treatment regimens, especially for second-line anti-TB drugs, and how this might influence the risks of multidrug and extensively drug-resistant TB (M/XDR-TB. Design: A cross-sectional study was conducted in 10 county/district TB clinics in five provinces of China. The study participants were TB patients that had at least two previous treatment episodes that lasted longer than 1 month each. Face-to-face interviews and drug susceptibility testing (DST were conducted with the consenting participants. Results: A total of 328 TB patients were recruited. The proportion of multidrug-resistant tuberculosis (MDR-TB was 58.2% in the 287 DST-confirmed patients. Forty-two percent of the patients did not complete their first treatment course. About 23.8% of the participants had a history of taking second-line drugs, and more than 77.8% of them were treated in county TB dispensaries where only sputum microscopy was applied. Multivariate analysis found that the use of second-line drugs was significantly associated with frequency of previous treatments (p<0.01, but not with drug resistance profiles of patients. Conclusions: Patients with multiple previous treatments are at extremely high risk of MDR-TB in China. The unregulated use of second-line drugs bring about the threat of XDR-TB epidemic. DST-guided treatment and strict regulations of anti-TB treatment should be assured for the high-risk TB patients for the prevention and control of M/XDR-TB.

  11. Experiences in anti-tuberculosis treatment in patients with multiple previous treatments and its impact on drug resistant tuberculosis epidemics

    OpenAIRE

    Xu, Biao; Zhao, Qi; Hu, Yi; SHI Ying; Wang, Weibing; Diwan, Vinod K.

    2014-01-01

    Background: Tuberculosis (TB) patients with a history of multiple anti-TB treatments are the ‘neglected’ group to the free anti-TB treatment policy in China.Objective: To understand the experiences of TB patients with multiple previous treatments with regard to bacteriological diagnosis and treatment regimens, especially for second-line anti-TB drugs, and how this might influence the risks of multidrug and extensively drug-resistant TB (M/XDR-TB).Design: A cross-sectional study was conducted ...

  12. The epidemic status of drug-resistant tuberculosis and research progress of anti-tuberculosis drugs%耐药结核病流行现状及抗结核药物研究进展

    Institute of Scientific and Technical Information of China (English)

    许寅; 孟现民; 张永信

    2013-01-01

    China is one of the 22 countries with serious tuberculosis epidemic in the whole world and is also one of the 27 countries with the serious multidrug-resistant tuberculosis (MDR-TB). MDR-TB has become the tough problem of public health in many countries. It is an important link to study and develop the new anti-tuberculosis drugs to prevent and control tuberculosis and to improve their efficacy. This article introduces the tuberculosis, especially epidemic status of drug-resistant tuberculosis and research progress of anti-tuberculosis drugs.%  我国是全球22个结核病流行严重的国家之一,同时也是全球27个耐多药结核病流行严重的国家之一。耐多药结核病在许多国家已成为主要公共卫生问题,而研发新型抗结核药物是有效遏制结核病流行和提高结核病防治效果的重要环节之一。本文介绍结核病、尤其是耐多药结核病的流行现状以及抗结核药物研发的最新进展。

  13. Clinical Study of Drug-resistant Pulmonary Tuberculosis Treated by Combination of Anti-Tuberculosis Chemicals and Compound Astragalus Capsule(复方黄芪胶囊)

    Institute of Scientific and Technical Information of China (English)

    姜艳; 李新; 于志勇; 尹红义; 韩玉庆

    2004-01-01

    Objective: To observe and evaluate the therapeutic effect of anti-tuberculosis (anti-TB) chemicals and Compound Astragalus Capsule (CAC) in combinedly treating drug resistant pulmonary tuberculosis (DR-TB). Methods: Ninety-two patients with DR-TB were equally randomized into the treated group (treated with combination therapy) and the control group (treated with anti-TB chemicals alone). The therapeutic course for both groups was 18 months. Therapeutic effects between the two groups were compared at the end of the therapeutic course. Sputum bacterial negative rate, focal absorption effective rate, cavity closing rate, 10-day symptom improving rate, the incidence of adverse reaction and 2-year bacteriological recurrence rate between the two groups were compared. Results: In the treated group, the sputum bacterial negative conversion rate was 84. 8%, focal absorption effective rate 91.3 %, cavity closing rate 58. 7 % and 10-day symptom improving rate 54.4%, while in the control group, the corresponding rates were 65.2%,73.9 %, 37. 0% and 26.1%, respectively. Comparison between the groups showed significant difference in all the parameters ( P<0.05, P<0.05, P<0.05 and P<0.01 ). The incidence of adverse reaction and 2year bacteriological recurrence rate in the treated group were 23.9 % and 2.6 % respectively, while those in the control group 50.0% and 16.7%, which were higher than the former group with significant difference ( P<0.01 and P<0.05, respectively). Conclusion: The therapeutic effect of combined treatment with antiTB and CAC is superior to that of treatment with anti-TB chemicals alone, and the Chinese herbal medicine showed an adverse reaction alleviating effect, which provides a new therapy for DR-TB, and therefore, it is worth spreading in clinical practice.

  14. The search for new sterilizing anti-tuberculosis drugs.

    Science.gov (United States)

    Mitchison, Denis A

    2004-05-01

    To be of use in the control of tuberculosis, any new drug must be capable of shortening the duration of treatment by accelerating sterilizing activity, that is the rate at which Mycobacterium tuberculosis is killed in the lesions. The most difficult to kill are the extra-cellular bacilli in cavities. Persistence during therapy arises because there is a proportion of slowly metabolising bacilli (persisters) in the cavitary bacterial population at the start of treatment. Bacterial growth is slowed by low oxygen tension, quorum sensing and old age, but probably not by cellular immunity, since there are few professional phagocytic cells in cavities. The degree of phenotypic resistance to the bactericidal action of drugs can go through several stages: (i) the non-replicating stages 1 and 2 of micro-aerophilic adaptation, described by Wayne; (ii) a "tolerant" population that survives exposure to high rifampicin concentrations and is capable of growth in liquid medium but not on solid medium; and (iii) a population found in the sterile state of Cornell model mice which cannot grow initially in either liquid or solid medium but will eventually cause re-activation of tuberculosis. In all of these stages the bacilli are phenotypically resistant; there is no selection for genomic drug resistance. Rifampicin and pyrazinamide are the two drugs largely responsible for sterilizing activity during current treatment. Pyrazinamide is unique amongst anti-tuberculosis drugs in having no genomic site of action and having greater bactericidal activity as bacillary metabolism slows down; it is remarkably effective in human disease. The development of a new drug with a similar mode of activity might be very fruitful, especially if there were no need for an acid environment. Current methods advocated for drug development pass through a number of complex stages: choice of a genomic target, development of an in vitro assay, high throughput screening and identification of lead compounds

  15. Anti-Tuberculosis Drug Resistance among New and Previously Treated Sputum Smear-Positive Tuberculosis Patients in Uganda: Results of the First National Survey

    OpenAIRE

    Lukoye, Deus; Adatu, Francis; Musisi, Kenneth; Kasule, George William; Were, Willy; Odeke, Rosemary; Kalamya, Julius Namonyo; Awor, Ann; Date, Anand; Joloba, Moses L.

    2013-01-01

    Background Multidrug resistant and extensively drug resistant tuberculosis (TB) have become major threats to control of tuberculosis globally. The rates of anti-TB drug resistance in Uganda are not known. We conducted a national drug resistance survey to investigate the levels and patterns of resistance to first and second line anti-TB drugs among new and previously treated sputum smear-positive TB cases. Methods Sputum samples were collected from a nationally representative sample of new and...

  16. Drug-induced Hepatotoxicity of Anti-tuberculosis Drugs and Their Serum Levels

    OpenAIRE

    Jeong, Ina; Park, Jong-Sun; Cho, Young-Jae; Yoon, Ho Il; Song, Junghan; Lee, Choon-Taek; Lee, Jae-Ho

    2015-01-01

    The correlation between serum anti-tuberculosis (TB) drug levels and the drug-induced hepatotoxicity (DIH) remains unclear. The purpose of this study was to investigate whether anti-TB DIH is associated with basal serum drug levels. Serum peak levels of isoniazid (INH), rifampicin (RMP), pyrazinamide (PZA), and ethambutol (EMB) were analyzed in blood samples 2 hr after the administration of anti-TB medication. Anti-TB DIH and mild liver function test abnormality were diagnosed on the basis of...

  17. Time-kill kinetics of anti-tuberculosis drugs, and emergence of resistance, in relation to metabolic activity of Mycobacterium tuberculosis.

    NARCIS (Netherlands)

    Steenwinkel, J.E. de; Knegt, G.J. de; Kate, M.T. Ten; Belkum, A. van; Verbrugh, H.A.; Kremer, K.; Soolingen, D. van; Bakker-Woudenberg, I.A.

    2010-01-01

    OBJECTIVES: The pharmacodynamics of tuberculosis (TB) treatment should be further explored, to prevent emergence of resistance, treatment failure and relapse of infection. The diagnostic drug susceptibility tests guiding TB therapy investigate metabolically active Mycobacterium tuberculosis (Mtb) is

  18. New anti-tuberculosis drugs and regimens: 2015 update

    OpenAIRE

    Lia D'Ambrosio; Rosella Centis; Giovanni Sotgiu; Emanuele Pontali; Antonio Spanevello; Giovanni Battista Migliori

    2015-01-01

    Over 480 000 cases of multidrug-resistant (MDR) tuberculosis (TB) occur every year globally, 9% of them being affected by extensively drug-resistant (XDR) strains of Mycobacterium tuberculosis. The treatment of MDR/XDR-TB is unfortunately long, toxic and expensive, and the success rate largely unsatisfactory (

  19. New anti-tuberculosis drugs and regimens: 2015 update

    Directory of Open Access Journals (Sweden)

    Lia D'Ambrosio

    2015-05-01

    Full Text Available Over 480 000 cases of multidrug-resistant (MDR tuberculosis (TB occur every year globally, 9% of them being affected by extensively drug-resistant (XDR strains of Mycobacterium tuberculosis. The treatment of MDR/XDR-TB is unfortunately long, toxic and expensive, and the success rate largely unsatisfactory (<20% among cases with resistance patterns beyond XDR. The aim of this review is to summarise the available evidence-based updated international recommendations to manage MDR/XDR-TB, and to update the reader on the role of newly developed drugs (delamanid, bedaquiline and pretomanid as well as repurposed drugs (linezolid and meropenem clavulanate, among others used to treat these conditions within new regimens. A nonsystematic review based on historical trials results as well as on recent literature and World Health Organization (WHO guidelines has been performed, with special focus on the approach to managing MDR/XDR-TB. The new, innovative global public health interventions, recently approved by WHO and known as the “End TB Strategy”, support the vision of a TB-free world with zero death, disease and suffering due to TB. Adequate, universally accessed treatment is a pre-requisite to reach TB elimination. New shorter, cheap, safe and effective anti-TB regimens are necessary to boost TB elimination.

  20. Adequacy of anti-tuberculosis drug prescriptions in Viet Nam

    DEFF Research Database (Denmark)

    Hoa, N B; Lauritsen, J M; Rieder, H L

    2012-01-01

    SETTING: National Tuberculosis Program, Viet Nam, 2008. OBJECTIVES: To determine drug prescription adherence to national guidelines, to examine factors associated with an erroneous dosage of rifampin (RMP) and to evaluate the impact of an insufficient RMP dosage on treatment outcome. METHODS: A...... representative sample of 30 treatment units was randomly selected. All patient treatment cards enrolled in these units were obtained, and data were double-entered and validated before calculating the adequacy of the individual drug prescriptions. RESULTS: Of 3412 tuberculosis treatment cards, 3225 (94.5%) had...

  1. A population-based case-control study of the safety of oral anti-tuberculosis drug treatment during pregnancy

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Olsen, J.;

    2001-01-01

    OBJECTIVE: To study the human teratogenic potential of isoniazid and other anti-tuberculosis drug treatment during pregnancy. DESIGN AND SETTING: Cases from a large population-based dataset at the Hungarian Case-Control Surveillance of Congenital Abnormalities, and controls from the National Birth...... OUTCOME MEASURES: Congenital abnormalities in newborn infants and fetuses diagnosed prenatally during the second and third trimesters, and postnatally from birth to the age of one year. RESULTS: Of 38,151 controls, 29 (0.08%) were exposed to anti-tuberculosis drug treatment during pregnancy; the...... Registry, between 1980 and 1996. Information on all oral anti-tuberculosis drug treatments during pregnancy was medically recorded. STUDY PARTICIPANTS: Women who had newborns or fetuses with congenital abnormalities (case group), and women who had babies with no congenital abnormality (control group). MAIN...

  2. Sale of anti-tuberculosis drugs through private pharmacies: a cross sectional study in Kerala, India.

    Directory of Open Access Journals (Sweden)

    Binoo Divakaran

    2011-03-01

    Full Text Available

    Background: Private health care providers are largely the first point of contact for Tuberculosis (TB patients, who either undergo treatment from private practitioners or buy medicines on their own from private pharmacies. Aims: This study assessed the availability, sale and magnitude of anti-tuberculosis drugs dispensing through private pharmacies.

    Methodology: The present cross sectional study was conducted among private pharmacies located along the national highway from Thalassery to Payyannur in the Kannur district of Kerala, India. A total of 38 private pharmacies located along the national highway were included.

    Results: The duration that anti–TB drugs had been on sale showed that 74.3% of pharmacies had started to sell these drugs only less than ten years ago. The majority (82.9% of the private pharmacies received up to 5 prescriptions for anti-TB drugs weekly. Out of the total of 35 pharmacies selling these drugs, 22 (62.9% reported an increase in their sales. Nearly 82% of those pharmacies that reported an increase in the sale of anti-TB drugs were selling these drugs for less than the past ten years.

    Conclusions: The current study shows that a large number of tuberculosis patients are still approaching private pharmacies for anti-tuberculosis drugs. This tendency has to be completely stopped and needs properly planned strategies to encourage private pharmacies to participate actively in the DOTS (Direct Observation Treatment Short course program of the Government, by providing them attractive alternative incentives

  3. Monitoring the ingestion of anti-tuberculosis drugs by simple non-invasive methods.

    Science.gov (United States)

    Sirgel, F A; Maritz, J S; Venter, A; Langdon, G; Smith, P J; Donald, P R

    2006-01-13

    This investigation retrospectively assessed inexpensive non-invasive qualitative methods to monitor the ingestion of anti-tuberculosis drugs isoniazid, rifampicin and rifapentine. Results showed that commercial test strips detected the isoniazid metabolites isonicotinic acid and isonicotinylglycine as efficiently as the isonicotinic acid method in 150 urine samples. The presence of rifamycins in urine samples (n=1085) was detected by microbiological assay techniques and the sensitivity compared to the n-butanol extraction colour test in 91 of these specimens. The proportions detected by the two methods were significantly different and the sensitivity of the n-butanol procedure was only 63.8% (95% CL 51.2-76.4%) as compared to that of the superior microbiological method. Final validation (n=691) showed that qualitative assays measure isoniazid and rifamycin ingestion with an efficiency similar to high-performance liquid chromatography. The qualitative procedures may therefore be valuable in clinical trials and in tuberculosis clinics to confirm drug ingestion. PMID:16303269

  4. Hepatitis B or hepatitis C co-infection in individuals infected with human immunodeficiency virus and effect of anti-tuberculosis drugs on liver function

    OpenAIRE

    Padmapriyadarsini C; Chandrabose J; Victor L; Hanna L; Arunkumar N; Swaminathan Soumya

    2006-01-01

    Background: Tuberculosis (TB) and hepatitis are the two common co-infections in patients infected with human immunodeficiency virus (HIV). Anti-tuberculosis treatment (ATT) may have an effect on the liver enzymes in these co-infected HIV patients. Aims: To determine the prevalence of Hepatitis B and C virus coinfection in HIV infected patients in Tamilnadu and assess effects of anti-tuberculosis drugs on their liver function. Settings: HIV positive subjects referred to the Tuberculosis R...

  5. Anti-tuberculosis Drugs with Novel Mechanism of Action%具有新型作用机制的抗结核药物

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    Tuberculosis is one of major health problems worldwide. Approximately 1.8 mil ion people died from Tuberculosis each year which has become a global public health issue. Recently the emergence of drug resistant strains and HIV co-infection has resulted in a high incidence. As a result, there is an urgent need for us to understand the resistance mechanism and discover new anti-tuberculosis drugs. A number of new potential anti-tuberculosis drug candidates with novel modes of action have entered clinical trials in recent years. These agents are most likely to be effective against resistant strains. The paper summarized structure-activity relationships, in vitro and in vivo activity, pharmacokinetics, mechanism of action and combination regimens about several novel anti-tuberculosis drugs.%  结核病(Tuberculosis)是世界范围里的主要疾病之一,近年来,每年约有180万人死于结核病,结核病已经成为全球性的公众健康问题。近年来药物耐受以及伴有 HIV 感染的结核病发病率急剧增加,迫切需要深入了解目前抗结核药物的作用机制及耐药机制,以指导开发对持留菌和耐药菌更加有效的新型药物。近年来,一批具有全新作用机制的抗结核候选药物相继进入了临床研究,并且这些药物对耐药株表现出有效的抑制活性。文章对几类新型抗结核药物的化学结构、作用机制、构效关系、抗结核活性以及临床应用进行了综述。

  6. Facing multi-drug resistant tuberculosis.

    Science.gov (United States)

    Sotgiu, Giovanni; Migliori, Giovanni Battista

    2015-06-01

    Multi-drug resistant tuberculosis (MDR-TB) is caused by Mycobacterium tuberculosis strains resistant to at least two of the most effective anti-tuberculosis drugs (i.e., isoniazid and rifampicin). Therapeutic regimens based on second- and third-line anti-tuberculosis medicines showed poor efficacy, safety, and tolerability profiles. It was estimated that in 2012 the multi-drug resistant tuberculosis incidence ranged from 300,000 to 600,000 cases, mainly diagnosed in the Eastern European and Central Asian countries. The highest proportion of cases is among individuals previously exposed to anti-tuberculosis drugs. Three main conditions can favour the emergence and spread of multi-drug resistant tuberculosis: the poor implementation of the DOTS strategy, the shortage or the poor quality of the anti-tuberculosis drugs, and the poor therapeutic adherence of the patients to the prescribed regimens. Consultation with tuberculosis experts (e.g., consilium) is crucial to tailor the best anti-tuberculosis therapy. New therapeutic options are necessary: bedaquiline and delamanid seem promising drugs; in particular, during the development phase they demonstrated a protective effect against the emergence of further resistances towards the backbone drugs. In the recent past, other antibiotics have been administered off-label: the most relevant efficacy, safety, and tolerability profile was proved in linezolid-, meropenem/clavulanate-, cotrimoxazole-containing regimens. New research and development activities are needed in the diagnostic, therapeutic, preventive fields. PMID:24792579

  7. Impact of glutathione S-transferase M1 and T1 on anti-tuberculosis drug-induced hepatotoxicity in Chinese pediatric patients.

    Directory of Open Access Journals (Sweden)

    Fang Liu

    Full Text Available Anti-tuberculosis drug induced hepatotoxicity (ATDH is a major adverse drug reaction associated for anti-tuberculosis therapy. The glutathione S-transferases (GST plays a crucial role in the detoxification of hepatotoxic metabolites of anti-tuberculosis drugs.An association between GSTM1/GSTT1 null mutations and increased risk of ATDH has been demonstrated in adults. Given the ethnic differences and developmental changes, our study aims to investigate the potential impacts of GSTM1/GSTT1 genotypes on the development of ATDH in Han Chinese children treated with anti-tuberculosis therapy.Children receiving anti-tuberculosis therapy with or without evidence of ATDH were considered as the cases or controls, respectively. The GSTM1 and GSTT1 genotyping were performed using the polymerase chain reaction.One hundred sixty-three children (20 cases and 143 controls with a mean age of 4.7 years (range: 2 months-14.1 years were included. For the GSTM1, 14 (70.0% cases and 96 (67.1% controls had homozygous null mutations. For the GSTT1, 13 (65.0% cases and 97 (67.8% controls had homozygous null mutations. Neither the GSTM1, nor the GSTT1 polymorphism was significantly correlated with the occurrence of ATHD.Our results did not support the GSTM1 and GSTT1 polymorphisms as the predictors of ADTH in Chinese Han children treated with anti-tuberculosis drugs. An age-related association between pharmacogenetics and ATHD need to be confirmed in the further study.

  8. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance.

    Directory of Open Access Journals (Sweden)

    Miriam Bobadilla-del Valle

    2015-09-01

    Full Text Available Mycobacterium tuberculosis causes the majority of tuberculosis (TB cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory's database for the 2000-2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X(2trend, p<0.001. Primary STR resistance was higher among M. bovis compared with M. tuberculosis isolates (10.9% vs.3.4%, p<0.001. Secondary multidrug resistance (MDR rates were 38.5% and 34.4% for M. bovis and M. tuberculosis, respectively (p = 0.637. A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000-2004 vs. 7.6% in 2010-2014; p = 0.02.There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.

  9. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance

    Science.gov (United States)

    Bobadilla-del Valle, Miriam; Torres-González, Pedro; Cervera-Hernández, Miguel Enrique; Martínez-Gamboa, Areli; Crabtree-Ramirez, Brenda; Chávez-Mazari, Bárbara; Ortiz-Conchi, Narciso; Rodríguez-Cruz, Luis; Cervantes-Sánchez, Axel; Gudiño-Enríquez, Tomasa; Cinta-Severo, Carmen; Sifuentes-Osornio, José; Ponce de León, Alfredo

    2015-01-01

    Background Mycobacterium tuberculosis causes the majority of tuberculosis (TB) cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City. Methodology/Principal Findings Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory’s database for the 2000–2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR) and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X2trend, p<0.001). Primary STR resistance was higher among M. bovis compared with M. tuberculosis isolates (10.9% vs.3.4%, p<0.001). Secondary multidrug resistance (MDR) rates were 38.5% and 34.4% for M. bovis and M. tuberculosis, respectively (p = 0.637). A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000–2004 vs. 7.6% in 2010–2014; p = 0.02). Conclusions/Significance There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance. PMID:26421930

  10. HEPATOPROTECTIVE ACTIVITY OF SILYMARIN FLOATING DRUG DELIVERY SYSTEM AGAINST ANTI TUBERCULOSIS DRUG

    Directory of Open Access Journals (Sweden)

    Vinay kumar D*

    2010-06-01

    Full Text Available A Gastroretentive floating controlled drug delivery system containing Silymarin was prepared in the form of tablets and evaluated for its processing parameters, in vitro release in 0.1 N HCl. Eightformulations were prepared by using rate controlling polymers such as HPMC K4M and Eudragit RS100, alkalizing agent sodium bicarbonate and solubilizing agent poly vinyl Pyrrolidone (PVP K30.Floating tablets were prepared by direct compression method. The preformulation studies and tablet evaluation tests were performed and results were within the limits. Tablets remained buoyant over 20 hours in the release medium and the amount of sodium bicarbonate found to be significant for not only to remaining buoyant without causing disintegration of the tablet. The different ratios of polymers 15%and 20% showed the significant difference in the drug release with increasing in the concentration of solubilizing agent PVP K30. All the formulations exhibited diffusion dominant drug release. Stabilitystudies for all formulations were conducted for a period of 60 days at 4º±2ºC, 27º±2ºC and 45º±2ºC respectively and the formulations showed no significant changes in physical appearance, drug contentand in-vitro drug release even after 60 days. The control release of the drug from the dosage form shows the hepatoprotective activity against Isoniazid (INH + Rifampcin (RIF induced hepatotoxicity in rats.

  11. Recent patents and advances on anti - tuberculosis drug delivery and formulations.

    Science.gov (United States)

    Vora, Chintan; Patadia, Riddhish; Mittal, Karan; Mashru, Rajashree

    2013-08-01

    Tuberculosis has remained, unambiguously, a significant health care problem since long times, particularly in developing countries. The endeavoring battle against multi drug resistant TB, multiple dosing, their prominent side effects and bioavailability hiccups related to fixed dose combinations has undeniably become a Herculean task indicating rigorous research requirement in anti TB drug therapy. In view of the fact that patenting a drug molecule, a drug delivery system or a formulation has been very fruitful for the growth and sustainment of pharmaceutical industry, a meticulous review of recent developments, providing a balanced view on merits/demerits, will facilitate researchers to update themselves, thereby focusing their research in more relevant areas to furnish desired quality traits. This article reviews the present scenario in terms of drug delivery approaches for TB chemotherapy. The review encompasses and summarizes recent patents and advances on variegated facets of dosage forms, together with from conventional solid oral to novel controlled release oral formulations and additionally alternative weapons for anti TB drug delivery. A critical review of multidisciplinary approaches to boost anti TB therapy may facilitate the scientists to resolve existing technological gaps. PMID:23244680

  12. A new method for identifying causal genes of schizophrenia and anti-tuberculosis drug-induced hepatotoxicity.

    Science.gov (United States)

    Huang, Tao; Liu, Cheng-Lin; Li, Lin-Lin; Cai, Mei-Hong; Chen, Wen-Zhong; Xu, Yi-Feng; O'Reilly, Paul F; Cai, Lei; He, Lin

    2016-01-01

    Schizophrenia (SCZ) may cause tuberculosis, the treatments for which can induce anti-tuberculosis drug-induced hepatotoxicity (ATDH) and SCZ-like disorders. To date, the causal genes of both SCZ and ATDH are unknown. To identify them, we proposed a new network-based method by integrating network random walk with restart algorithm, gene set enrichment analysis, and hypergeometric test; using this method, we identified 500 common causal genes. For gene validation, we created a regularly updated online database ATDH-SCZgenes and conducted a systematic meta-analysis of the association of each gene with either disease. Till now, only GSTM1 and GSTT1 have been well studied with respect to both diseases; and a total of 23 high-quality association studies were collected for the current meta-analysis validation. Finally, the GSTM1 present genotype was confirmed to be significantly associated with both ATDH [Odds Ratio (OR): 0.71, 95% confidence interval (CI): 0.56-0.90, P = 0.005] and SCZ (OR: 0.78, 95% CI: 0.66-0.92, P = 0.004) according to the random-effect model. Furthermore, these significant results were supported by "moderate" evidence according to the Venice criteria. Our findings indicate that GSTM1 may be a causal gene of both ATDH and SCZ, although further validation pertaining to other genes, such as CYP2E1 or DRD2, is necessary. PMID:27580934

  13. Hepatitis B or hepatitis C co-infection in individuals infected with human immunodeficiency virus and effect of anti-tuberculosis drugs on liver function

    Directory of Open Access Journals (Sweden)

    Padmapriyadarsini C

    2006-01-01

    Full Text Available Background: Tuberculosis (TB and hepatitis are the two common co-infections in patients infected with human immunodeficiency virus (HIV. Anti-tuberculosis treatment (ATT may have an effect on the liver enzymes in these co-infected HIV patients. Aims: To determine the prevalence of Hepatitis B and C virus coinfection in HIV infected patients in Tamilnadu and assess effects of anti-tuberculosis drugs on their liver function. Settings: HIV positive subjects referred to the Tuberculosis Research Centre, Chennai Materials and Methods: All HIV infected patients referred to the Tuberculosis Research centre, from March 2000 to May 2004, were screened for Hepatitis B surface antigen (HBsAg & Hepatitis C virus (HCV antibodies by enzyme linked immunoabsorbent assay (ELISA. HIV infection was confirmed using two rapid tests and one ELISA. Patients were given either short- course anti-tuberculosis treatment or preventive therapy for tuberculosis, depending on the presence or absence of active TB, if their baseline liver functions were within normal limits. None of these patients were on antiretroviral therapy during the study period. Statistical Analysis: Paired t-test was used to find the significance between baseline and end of treatment liver enzymes levels, while logistic regression was done for assessing various associations. Results: Of the 951 HIV-infected patients, 61 patients (6.4% were HBsAg positive, 20 (2.1% had demonstrable anti HCV antibodies in their blood. Serial estimation of liver enzymes in 140 HIV patients (81 being co-infected with either HBV or HCV showed that 95% did not develop any liver toxicity while they were on anti-tuberculosis treatment or prophylaxis. Conclusions: The prevalence of hepatitis B and C coinfection was fairly high in this largely heterosexually infected population supporting the use of more careful screening for these viruses in HIV positive persons in this region. Anti-tuberculosis therapy as well as TB preventive

  14. Clinical significance of 2 h plasma concentrations of first-line anti-tuberculosis drugs

    DEFF Research Database (Denmark)

    Prahl, Julie B; Johansen, Isik S; Cohen, Arieh S;

    2014-01-01

    OBJECTIVES: To study 2 h plasma concentrations of the first-line tuberculosis drugs isoniazid, rifampicin, ethambutol and pyrazinamide in a cohort of patients with tuberculosis in Denmark and to determine the relationship between the concentrations and the clinical outcome. METHODS: After 6...... patients. Therapy failure occurred more frequently when the concentrations of isoniazid and rifampicin were both below the normal ranges (P = 0.013) and even more frequently when they were below the median 2 h drug concentrations obtained in the study (P = 0.005). CONCLUSIONS: At 2 h, plasma concentrations...

  15. Improved consistency in dosing anti-tuberculosis drugs in Taipei, Taiwan.

    Directory of Open Access Journals (Sweden)

    Chen-Yuan Chiang

    Full Text Available BACKGROUND: It was reported that 35.5% of tuberculosis (TB cases reported in 2003 in Taipei City had no recorded pre-treatment body weight and that among those who had, inconsistent dosing of anti-TB drugs was frequent. Taiwan Centers for Disease Control (CDC have taken actions to strengthen dosing of anti-TB drugs among general practitioners. Prescribing practices of anti-TB drugs in Taipei City in 2007-2010 were investigated to assess whether interventions on dosing were effective. METHODOLOGY/PRINCIPAL FINDINGS: Lists of all notified culture positive TB cases in 2007-2010 were obtained from National TB Registry at Taiwan CDC. A medical audit of TB case management files was performed to collect pretreatment body weight and regimens prescribed at commencement of treatment. Dosages prescribed were compared with dosages recommended. The proportion of patients with recorded pre-treatment body weight was 64.5% in 2003, which increased to 96.5% in 2007-2010 (p<0.001. The proportion of patients treated with consistent dosing of a 3-drug fixed-dose combination (FDC increased from 73.9% in 2003 to 87.7% in 2007-2010 (p<0.001, and that for 2-drug FDC from 76.0% to 86.1% (p = 0.024, for rifampicin (RMP from 62.8% to 85.5% (p<0.001, and for isoniazid from 87.8% to 95.3% (p<0.001. In 2007-2010, among 2917 patients treated with either FDCs or RMP in single-drug preparation, the dosage of RMP was adequate (8-12 mg/kg in 2571(88.1% patients, too high in 282(9.7%, too low in 64(2.2%. In multinomial logistic regression models, factors significantly associated with adequate dosage of RMP were body weight and preparations of RMP. Patients weighting <40 kg (relative risk ratio (rrr 6010.5, 95% CI 781.1-46249.7 and patients weighting 40-49 kg (rrr 1495.3, 95% CI 200.6-11144.6 were more likely to receive higher-than-recommended dose of RMP. CONCLUSIONS/SIGNIFICANCE: Prescribing practice in the treatment of TB in Taipei City has remarkably improved after health

  16. Anti-Tuberculosis Drug Induced Hepatotoxicity among TB/HIV Co-Infected Patients at Jimma University Hospital, Ethiopia: Nested Case-Control Study

    OpenAIRE

    Alima Hassen Ali; Tefera Belachew; Alemeshet Yami; Wubeante Yenet Ayen

    2013-01-01

    BACKGROUND: This study was carried out to determine the incidence and predictors of anti-tuberculosis drug induced hepatotoxicity among TB/HIV co-infected patients at Jimma University Hospital, Ethiopia. METHODS/PRINCIPAL FINDINGS: A nested case-control study was conducted by reviewing charts of all TB/HIV co-infected patients who commenced anti-TB treatment from January 2008 to December 2011 at Jimma University Hospital. Patients who had developed hepatotoxicity after at least 5 days of stan...

  17. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort

    OpenAIRE

    Ru Chen; Jing Wang; Shaowen Tang; Yuan Zhang; Xiaozhen Lv; Shanshan Wu; Zhirong Yang; Yinyin Xia; Dafang Chen; Siyan Zhan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan singl...

  18. Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    Xin Xia

    2014-09-01

    Full Text Available Tuberculosis is a major problem in public health. While new effective treatments to combat the disease are currently under development, they tend suffer from poor solubility often resulting in low and/or inconsistent oral bioavailability. Mesoporous materials are here investigated in an in vitro intracellular assay, for the effective delivery of compound PA-824; a poorly soluble bactericidal agent being developed against Tuberculosis (TB. Mesoporous materials enhance the solubility of PA-824; however, this is not translated into a higher antibacterial activity in TB-infected macrophages after 5 days of incubation, where similar values are obtained. The lack of improved activity may be due to insufficient release of the drug from the mesopores in the context of the cellular environment. However, these results show promising data for the use of mesoporous particles in the context of oral delivery with expected improvements in bioavailability.

  19. Role of polymorphic bile salt export pump (BSEP, ABCB11) transporters in anti-tuberculosis drug-induced liver injury in a Chinese cohort.

    Science.gov (United States)

    Chen, Ru; Wang, Jing; Tang, Shaowen; Zhang, Yuan; Lv, Xiaozhen; Wu, Shanshan; Yang, Zhirong; Xia, Yinyin; Chen, Dafang; Zhan, Siyan

    2016-01-01

    Evidence indicates that the polymorphisms in bile salt export pump (BSEP, encoded by ABCB11) may play an important role in the development of anti-tuberculosis drug-induced liver injury (ATDILI) and we aim to investigate the association between genetic variants of ABCB11 and the risk of ATDILI in a Chinese cohort. A total of 89 tuberculosis patients with ATDILI and 356 matched ATDILI -free patients constituted cases and controls. Genetic polymorphisms of ABCB11 were determined by TaqMan single-nucleotide polymorphism (SNP) genotyping assay. Odds ratio (OR) with 95% confidence intervals (CIs) was estimated by conditional logistic regression model. There were no significant differences in genotype frequencies of ABCB11 between cases and controls. In the subgroup analysis, polymorphisms of rs2287616 were found to be associated with cholestatic/mixed pattern of liver injury under dominant and addictive model (OR = 3.84, 95% CI:1.16-12.75, P = 0.028 and OR = 2.51, 95% CI:1.12-5.62, P = 0.025, respectively), however the significance disappeared after Bonferroni correction. This study suggested that genetic variants of ABCB11 gene might contribute to anti-tuberculosis drug-induced cholestatic liver injury in Chinese patients. Studies in larger, varied populations are required to confirm these findings. PMID:27293027

  20. Chemically amplified cytochrome P450-2E1 drug metabolism nanobiosensor for rifampicin anti-tuberculosis drug

    International Nuclear Information System (INIS)

    Fully susceptible tuberculosis (TB) develops secondary drug resistance during therapy due to inappropriate dosing of treatment drugs, inadequate treatment, non-adherence to the prescribed regimen or using low quality medication. Therefore, a fast and reliable method for the determination of a patient's metabolic profile for TB drugs is essential for appropriate dosing of these drugs. A nanobiosensor for the determination of the biotransformation of rifampicin (a TB drug) was developed using ethylene glycol bis(succinic acid N-hydroxysuccinimide ester) (EG)-modified cytochrome P450-2E1 (CYP2E1). The EG-CYP2EI enzyme system was electrodeposited on gold electrodes derivatised with polyvinylpyrrolidone/silver nanoparticles/poly(8-anilino-1-naphthalene sulphonic acid) (PVP-AgNPs/PANSA) nanocomposite. The electrochemical impedance spectroscopy (EIS) and transmission electron microscopy (TEM) analyses of the Au/PVP-AgNPs/PANSA/EG-CYP2E1 nanobiosensor system revealed that PVP-AgNPs/PANSA is a highly electroactive nanocomposite whose morphology and properties were suitable for the immobilisation of CYP2E1. The response profile of the nanobiosensor for rifampicin was studied by cyclic voltammetry (CV), differential voltammetry (DPV) and steady state amperometry under aerobic conditions. The dynamic linear range of the nanobiosensor (0.025 - 14 μM) covers the peak rifampicin serum level value of 0.045 μM

  1. Availability of second-line drugs and anti-tuberculosis drug susceptibility testing in China: a situational analysis

    NARCIS (Netherlands)

    G.X. He; S. van den Hof; M.W. Borgdorff; M.J. van der Werf; S.M. Cheng; Y.L. Hu; L.X. Zhang; L.X. Wang

    2010-01-01

    OBJECTIVE: To assess the availability of second-line drugs (SLDs) and the use of drug susceptibility testing (DST) results for the treatment of tuberculosis (TB) in China. DESIGN: Cross-sectional survey in 4675 health care facilities, 1960 of which have a dedicated TB clinic, in 12 provinces in Chin

  2. Multiplex Assay of Second-Line Anti-Tuberculosis Drugs in Dried Blood Spots Using Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Lee, Kyunghoon; Jun, Sun Hee; Han, Minje; Song, Sang Hoon; Park, Jong Sun; Lee, Jae Ho; Park, Kyoung Un; Song, Junghan

    2016-09-01

    As dried blood spots (DBSs) have various advantages over conventional venous blood sampling, some assays for detection of one or two anti-tuberculosis (TB) drugs in DBSs have been developed. However, there are no assays currently available for the simultaneous measurement of three or more anti-TB drugs in DBSs. In this study, we developed and evaluated a multiplex method for detecting nine anti-TB drugs including streptomycin, kanamycin, clarithromycin, cycloserine, moxifloxacin, levofloxacin, para-aminosalicylic acid, prothionamide, and linezolid in DBSs by using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Seventy-nine patient samples of DBS were analyzed on the UPLC-MS/MS system. All drug concentrations were determined within 4 min, and assay performance was evaluated. All drugs were clearly separated without ion suppression. Within-run and between-run precisions were 1.7-13.0% and 5.7-17.0%, respectively, at concentrations representing low and high levels for the nine drugs. Lower limits of detection and quantification were 0.06-0.6 and 0.5-5.0 μg/mL, respectively. Linearity was acceptable at five level concentrations for each drug. Correlations between drug concentrations in plasma and DBSs by using Passing-Bablock regression and Pearson's rho (ρ 0.798-0.989) were acceptable. In conclusion, we developed a multiplex assay to measure nine second-line anti-TB drugs in DBSs successfully. This assay provided convenient and rapid drug quantification and could have applications in drug monitoring during treatment. PMID:27374716

  3. Non-Adherence of New Pulmonary Tuberculosis Patients to Anti-Tuberculosis Treatment

    OpenAIRE

    Kulkarni, PY; Akarte, SV; Mankeshwar, RM; Bhawalkar, JS; A. Banerjee; Kulkarni, AD

    2013-01-01

    Background: Non-adherence to anti-tuberculosis (TB) treatment adversely affects treatment success rate. It increases disease morbidity and mortality. Also, it contributes significantly to the development of drug resistance. Aim: To identify risk factors for non-adherence to anti-TB treatment by new pulmonary TB patients. Subjects and Methods: It is a prospective cohort study at 21 TB treatment centres in E ward of Mumbai Municipal Corporation. All sputum smear positive new pulmonary TB patien...

  4. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  5. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol.

    Science.gov (United States)

    Couto, Rosa A S; Quinaz, Maria Beatriz

    2016-01-01

    Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs) for the voltammetric detection of the anti-tuberculosis (anti-TB) drug ethambutol (ETB). The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. Electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples. PMID:27376291

  6. Analysis of IL-6, STAT3 and HSPA1L gene polymorphisms in anti-tuberculosis drug-induced hepatitis in a nested case-control study.

    Directory of Open Access Journals (Sweden)

    Jing Wang

    Full Text Available To investigate the association of IL-6, STAT3 and HSPA1L polymorphisms with the risk of anti-tuberculosis drug-induced hepatitis (ATDH in Chinese Han population.The study was designed as a nested case-control study within a prospective cohort. Each case was matched with four controls by sex, age at baseline (±5 years, treatment history, disease severity, drug dosage and place of sample collection. Genetic polymorphisms of IL-6, STAT3 and HSPA1L were determined blindly by TaqMan single-nucleotide polymorphism (SNP genotyping assay. Odds ratio (OR with 95% confidence intervals (CIs was estimated by conditional logistic regression model to measure the association between selected SNPs and the risk of ATDH.A total of 89 incident ATDH cases and 356 ATDH-free controls were genotyped for IL-6 (rs2066992, rs2069837, rs1524107, STAT3 (rs1053004, rs1053023, rs1053005 and HSPA1L (rs2227956. In genotype analysis, no significant difference was observed in genotypes frequencies of the seven selected SNPs between case and control group after Bonferroni correction. In haplotype analysis, carriers with STAT3 GAT and AGC (rs1053023-rs1053005-rs1053004 haplotypes had a significantly higher risk of ATDH compared with wild-type haplotype (P<0.0001.This study suggested that genetic variants of STAT3 might contribute to ATDH susceptibility in Chinese Han population. Studies in larger, varied populations are required to confirm these findings.

  7. Drug Resistance

    Science.gov (United States)

    HIV Treatment Drug Resistance (Last updated 3/1/2016; last reviewed 3/1/2016) Key Points As HIV multiplies in the ... the risk of drug resistance. What is HIV drug resistance? Once a person becomes infected with HIV, ...

  8. Metabolism and pharmacokinetics of the anti-tuberculosis drug ethionamide in a flavin-containing monooxygenase null mouse.

    Science.gov (United States)

    Palmer, Amy L; Leykam, Virginia L; Larkin, Andrew; Krueger, Sharon K; Phillips, Ian R; Shephard, Elizabeth A; Williams, David E

    2012-01-01

    Multiple drug resistance (MDR) in Mycobacterium tuberculosis (mTB), the causative agent for tuberculosis (TB), has led to increased use of second-line drugs, including ethionamide (ETA). ETA is a prodrug bioactivated by mycobacterial and mammalian flavin-containing monooxygenases (FMOs). FMO2 is the major isoform in the lungs of most mammals, including primates. In humans a polymorphism exists in the expression of FMO2. FMO2.2 (truncated, inactive) protein is produced by the common allele, while the ancestral allele, encoding active FMO2.1, has been documented only in individuals of African and Hispanic origin, at an incidence of up to 50% and 7%, respectively. We hypothesized that FMO2 variability in TB-infected individuals would yield differences in concentrations and ratios of ETA prodrug and metabolites. In this study we assessed the impact of the FMO2 genetic polymorphism on the pharmacokinetics of ETA after administration of a single oral dose of ETA (125 mg/kg) to wild type and triple Fmo1/2/4-null mice, measuring levels of prodrug vs. metabolites in plasma collected from 0 to 3.5 h post-gavage. All mice metabolized ETA to ETA S-oxide (ETASO) and 2-ethyl-4-amidopyridine (ETAA). Wild type mice had higher plasma concentrations of metabolites than of parent compound (p = 0.001). In contrast, Fmo1/2/4-null mice had higher plasma concentrations of parent compound than of metabolites (p = 0.0001). Thus, the human FMO2 genotype could impact the therapeutic efficacy and/or toxicity of ETA. PMID:23580869

  9. Anti-tuberculosis drug induced hepatotoxicity among TB/HIV co-infected patients at Jimma University Hospital, Ethiopia: nested case-control study.

    Directory of Open Access Journals (Sweden)

    Alima Hassen Ali

    Full Text Available BACKGROUND: This study was carried out to determine the incidence and predictors of anti-tuberculosis drug induced hepatotoxicity among TB/HIV co-infected patients at Jimma University Hospital, Ethiopia. METHODS/PRINCIPAL FINDINGS: A nested case-control study was conducted by reviewing charts of all TB/HIV co-infected patients who commenced anti-TB treatment from January 2008 to December 2011 at Jimma University Hospital. Patients who had developed hepatotoxicity after at least 5 days of standard doses of anti-TB drug therapy were labeled as "cases" and those without hepatotoxicity were "controls". Each case with anti-TB drug induced hepatotoxicity was compared with 3 controls selected randomly from the cohort. From a cohort of 296 TB/HIV co-infected patients 8 were excluded from the study as the causality between anti-TB drugs and hepatotoxicity was not confirmed, 33 had developed hepatotoxicity. On bivariate logistic regression analysis, body mass index (BMI <18.5 Kg/m(2 [P = 0.01; OR (95%CI: 3.6 (1.4-9.5], disseminated pulmonary TB [P = 0.00; OR (95%CI: 5.6 (2.2-14.6], CD4 count ≤50 [P = 0.016; OR (95%CI: 3.6(1.27-10.23] and WHO stage 4 [P = 0.004, OR (95%CI: 3.8 (1.68-8.77] were significantly associated with anti-TB drug induced hepatotoxicity. Predictor variables with p-value <0.05 by bivariate analysis were analyzed using multivariable logistic regression analysis and identified disseminated pulmonary TB [P = 0.001; AOR (95%CI = 5.6 (2.1-15.0] and BMI <18.5 [P = 0.014; AOR (95%CI= 3.6 (1.3-10.1] as independent predictors of anti-TB drug induced hepatotoxicity. CONCLUSIONS: The incidence of anti-TB drug induced hepatotoxicity was 11.5%. The results suggest that in the presence of disseminated pulmonary TB and/or BMI <18.5 Kg/m(2, TB/HIV co-infected patients should be closely followed for the occurrence of hepatotoxicity during the intensive phase of TB treatment to prevent morbidity and mortality.

  10. Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug thioridazine with molecular simulations

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Khandelia, Himanshu

    2014-01-01

    mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations......Thioridazine is a well-known dopamine-antagonist drug with a wide range of pharmacological properties ranging from neuroleptic to antimicrobial and even anticancer activity. Thioridazine is a critical component of a promising multi-drug therapy against M. tuberculosis. Amongst the various proposed...... only for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the...

  11. Design of the Anti-tuberculosis Drugs induced Adverse Reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS

    Directory of Open Access Journals (Sweden)

    He Ping

    2010-05-01

    Full Text Available Abstract Background More than 1 million tuberculosis (TB patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS in China every year. Adverse reactions (ADRs induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. Methods/Design Multiple study designs were adopted. Firstly, a prospective cohort with 4488 sputum smears positive pulmonary tuberculosis patients was established. Patients were followed up for 6-9 months in 52 counties of four regions. Those suspected ADRs should be checked and confirmed by Chinese State Food and Drug Administration (SFDA. Secondly, if the suspected ADR was anti-TB drug induced liver injury (ATLI, a nested case-control study would be performed which comprised choosing a matched control and doing a plus questionnaire inquiry. Thirdly, health economical data of ADRs would be collected to analyze financial burdens brought by ADRs and cost-effectiveness of ADRs' treatments. Fourthly, a drop of intravenous blood for each patient was taken and saved in FTA card for DNA banking and genotyping. Finally, the demographic, clinical, environmental, administrative and genetic data would be merged for the comprehensive analysis. Discussion ADACS will give an overview of anti-TB drugs induced ADRs' incidences, risk factors, treatments, prognoses, and clinical, economical and public health impacts for TB patients applying CNTS regimen in China, and provide suggestions for individualized health care and TB control policy.

  12. Design of the Anti-tuberculosis Drugs induced Adverse Reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS)

    OpenAIRE

    He Ping; Yang Li; Chen Da; Wang Hong; Gao Wei; Zhu Li; Zhou Lin; Chen Yi; Tu,, Y.; Yuan Yan; Wang Xiao; Liu Fei; Hu Dai; Xia Yin; Li Xiao

    2010-01-01

    Abstract Background More than 1 million tuberculosis (TB) patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS) in China every year. Adverse reactions (ADRs) induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. Metho...

  13. Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients

    Science.gov (United States)

    Mushiroda, Taisei; Yanai, Hideki; Yoshiyama, Takashi; Sasaki, Yuka; Okumura, Masao; Ogata, Hideo; Tokunaga, Katsushi

    2016-01-01

    Drug-induced liver injury (DILI) is a common adverse drug reaction in patients receiving antituberculosis (anti-TB) treatment. Among the anti-TB agents, isoniazid (INH) is the primary drug that causes hepatotoxicity in TB patients with DILI. Previous reports in several populations have consistently demonstrated an association between polymorphisms in the N-acetyltransferase 2 (NAT2) gene, which is responsible for INH hepatic metabolism, and a risk of DILI in TB patients. In this study, the genetic and baseline clinical data from 366 Japanese patients with TB (73 patients with DILI and 293 without DILI) were used to develop a system to predict DILI risk due to anti-TB agents. The distribution of the NAT2 acetylator status among the TB patients with DILI was 31 (42.5%), 29 (39.7%), and 13 (17.8%) for rapid, intermediate, and slow acetylators, respectively. A significant association was observed between NAT2 slow acetylators and DILI risk (odds ratio 4.32, 95% confidence interval 1.93–9.66, P value=5.56×10−4). A logistic regression model based on age and NAT2 genotype revealed that the area under the curve for the receiver-operating characteristic curve was 0.717. The findings demonstrated that slow NAT2 acetylator status is a significant predictor of the risk of DILI by anti-TB agents, and a personalized anti-TB treatment approach may aid in making treatment decisions and reducing the incidence of DILI. PMID:27340556

  14. Development of a prediction system for anti-tuberculosis drug-induced liver injury in Japanese patients.

    Science.gov (United States)

    Mushiroda, Taisei; Yanai, Hideki; Yoshiyama, Takashi; Sasaki, Yuka; Okumura, Masao; Ogata, Hideo; Tokunaga, Katsushi

    2016-01-01

    Drug-induced liver injury (DILI) is a common adverse drug reaction in patients receiving antituberculosis (anti-TB) treatment. Among the anti-TB agents, isoniazid (INH) is the primary drug that causes hepatotoxicity in TB patients with DILI. Previous reports in several populations have consistently demonstrated an association between polymorphisms in the N-acetyltransferase 2 (NAT2) gene, which is responsible for INH hepatic metabolism, and a risk of DILI in TB patients. In this study, the genetic and baseline clinical data from 366 Japanese patients with TB (73 patients with DILI and 293 without DILI) were used to develop a system to predict DILI risk due to anti-TB agents. The distribution of the NAT2 acetylator status among the TB patients with DILI was 31 (42.5%), 29 (39.7%), and 13 (17.8%) for rapid, intermediate, and slow acetylators, respectively. A significant association was observed between NAT2 slow acetylators and DILI risk (odds ratio 4.32, 95% confidence interval 1.93-9.66, P value=5.56×10(-4)). A logistic regression model based on age and NAT2 genotype revealed that the area under the curve for the receiver-operating characteristic curve was 0.717. The findings demonstrated that slow NAT2 acetylator status is a significant predictor of the risk of DILI by anti-TB agents, and a personalized anti-TB treatment approach may aid in making treatment decisions and reducing the incidence of DILI. PMID:27340556

  15. Novel anti-tuberculosis drug designs by data mining for similarity in substituent substitution and structure modification

    Directory of Open Access Journals (Sweden)

    Ronald Lee Bartzatt

    2011-11-01

    Full Text Available Mycobacterium tuberculosis (TB is among the most common of infectious diseases that cause death, and as many as one-third of the world’s population may be infected. This work presents 17 novel hydrazide agents formed by focused in silico data mining utilizing search parameters restricted to substituent replacement only. Substituent substitution has been highly successful in design of novel antibacterial and antiviral drugs. This diverse set of hydrazide constructs possess molecular properties indicating favorable bioavailability with excellent intestinal absorption for oral administration. All agents have zero violations of the Rule of 5, indicating favorable druglikeness. Important pharmaceutical properties including polar surface area, Log P, and formula weight were determined and compared to that of the parent structure of isoniazid by hierarchical cluster analysis and discriminant analysis. The average Log P with range is -0.258 and -2.165 to 1.373, respectively. The average polar surface area (PSA with range is 75.19 A2 and 55.121 A2 to 94.036 A2, respectively. The diverse range of PSA and Log P, with other descriptors, portend a versatile group of hydrazide drugs having substantial potential to expand the application and effectiveness for clinical treatment of multi-organ infected TB patients. Analysis of similarity indicated that all 17 agents are significantly similar to isoniazid, however discriminant analysis and hierarchical cluster analysis are able to differentiate isoniazid based upon molecular properties. Molecular weight and number of atoms were highly correlated by Pearson r (r > 0.9000, with Log P moderately correlated (r > 0.5500 to number of atoms, molecular weight, and volume. Seventeen hydrazide compounds (success rate of approximately 38% having diverse pharmaceutical properties resulted from substituent data mining with potential for clinical application.

  16. Systematic review of clofazimine for the treatment of drug-resistant tuberculosis

    OpenAIRE

    Gopal, M.; Padayatchi, N; Metcalfe, J. Z.; O’Donnell, M. R.

    2013-01-01

    The increased incidence of drug-resistant tuberculosis has created an urgent necessity for the development of new and effective anti-tuberculosis drugs and for alternative therapeutic regimens. Clofazimine (CFZ) is a fat-soluble riminophenazine dye used in the treatment of leprosy worldwide. CFZ has also been used as a Group 5 drug in the treatment of tuberculosis (TB). A large cohort study from Bangladesh published in 2010 described a treatment regimen for multidrug-resistant tuberculosis (M...

  17. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  18. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  19. A comparative study on the adverse effects of two anti-tuberculosis drugs regimen in initial two-month treatment period

    OpenAIRE

    Begum Lutfun Nahar, A.K.M. Mosharrof Hossain, M. Monirul Islam and Dipti Rani Saha

    2006-01-01

    Tuberculosis (TB) is a leading cause of death throughout the world and Bangladesh stands 4th among high burden countries. Treatment of TB hampered with poor patient compliance and intolerance at least partly due to the adverse drug reactions.A prospective longitudinal non-randomized case study was conducted on 64 admitted patients in Chest Disease Hospital and Shahid Shamsuddin Hospital, Sylhet diagnosed as primary (Category I) and resistant or treatment failure (Category II) to compare adve...

  20. Pharmacokinetics of para-Aminosalicylic Acid in HIV-Uninfected and HIV-Coinfected Tuberculosis Patients Receiving Antiretroviral Therapy, Managed for Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis

    OpenAIRE

    de Kock, Lizanne; Sy, Sherwin K.B.; Rosenkranz, Bernd; Diacon, Andreas H; Prescott, Kim; Hernandez, Kenneth R.; Yu, Mingming; Derendorf, Hartmut; Donald, Peter R.

    2014-01-01

    The emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mycobacterium tuberculosis prompted the reintroduction of para-aminosalicylic acid (PAS) to protect companion anti-tuberculosis drugs from additional acquired resistance. In sub-Saharan Africa, MDR/XDR tuberculosis with HIV coinfection is common, and concurrent treatment of HIV infection and MDR/XDR tuberculosis is required. Out of necessity, patients receive multiple drugs, and PAS therapy is frequent; however, n...

  1. Drug resistance pattern in multidrug resistance pulmonary tuberculosis patients

    International Nuclear Information System (INIS)

    To evaluate the frequency of drug resistance profiles of multidrug resistant tuberculosis (MDR-TB) isolates of pulmonary tuberculosis patients, against both the first and the second line drugs. Study Design: An observational study. Place and Duration of Study: The multidrug resistant tuberculosis (MDR-TB) ward of Ojha Institute of Chest Diseases (OICD), Karachi, from 1996 to 2006. Methodology: Culture proven MDR-TB cases (resistant to both isoniazid and Rifampicin) were retrospectively reviewed. Susceptibility testing was performed at the clinical laboratory of the Aga Khan University. Sensitivity against both first and second line anti-tuberculosis drugs was done. Susceptibility testing was performed using Agar proportion method on enriched middle brook 7H10 medium (BBL) for Rifampicin, Isoniazid, Streptomycin, Ethambutol, Ethionamide, Capreomycin and Ciprofloxacin. Pyrazinamide sensitivity was carried out using the BACTEC 7H12 medium. During the study period MTB H37Rv was used as control. Results: Out of total 577 patients, all were resistant to both Rifampicin and Isoniazid (INH). 56.5% isolates were resistant to all five first line drugs. Resistances against other first line drugs was 76.60% for Pyrazinamide, 73% for Ethambutol and 68.11% for Streptomycin. Five hundred and ten (88%) cases were MDR plus resistant to one more first line drug. Forty (07%) isolates were MDR plus Quinolone-resistant. They were sensitive to Capreomycin but sensitivity against Amikacin and Kanamycin were not tested. Conclusion: There were high resistance rates in MDR-TB to remaining first line and second line drugs. Continuous monitoring of drug resistance pattern especially of MDR isolates and treatment in specialized centers is a crucial need for future TB control in Pakistan. (author)

  2. Factors Associated with Anti-Tuberculosis Medication Adverse Effects: A Case-Control Study in Lima, Peru

    OpenAIRE

    Kocfa Chung-Delgado; Alejandro Revilla-Montag; Sonia Guillen-Bravo; Eduardo VelezSegovia; Andrea Soria-Montoya; Alexandra Nun˜ ez-Garbin; Wilmer Silva-Caso; Antonio Bernabe-Ortiz

    2011-01-01

    Background: Long-term exposure to anti-tuberculosis medication increases risk of adverse drug reactions and toxicity. The objective of this investigation was to determine factors associated with anti-tuberculosis adverse drug reactions in Lima, Peru, with special emphasis on MDR-TB medication, HIV infection, diabetes, age and tobacco use. Methodology and Results: A case-control study was performed using information from Peruvian TB Programme. A case was defined as having reported an anti-TB a...

  3. Successful treatment of multidrug-resistant tuberculosis following drug-induced hepatic necrosis requiring liver transplant.

    Science.gov (United States)

    Marra, F; Cox, V C; FitzGerald, J M; Moadebi, S; Elwood, R K

    2004-07-01

    A 28-year-old female developed multidrug-resistant (MDR) tuberculous lymphadenitis following a trip to India. She was initially treated with a four-drug regimen of first-line anti-tuberculosis medications, but when sensitivities indicated resistance to isoniazid and rifampin, her regimen was altered to ciprofloxacin (CFX), pyrazinamide (PZA) and ethambutol. She subsequently developed a rash, flu-like symptoms and fever, which progressed to acute hepatic necrosis despite discontinuation of medication. The clinical presentation and subsequent investigations suggested a hypersensitivity reaction, possibly related to the quinolone. The patient subsequently had an orthoptic liver transplant; second-line anti-tuberculosis medications were restarted to which she responded clinically and radiologically. Our findings raise the possibility that the CFX and PZA combination was responsible for the hepatic necrosis. The patient also illustrates that active, even MDR tuberculosis is not a contraindication to hepatic transplant. PMID:15260286

  4. The Six-Year Retrospective Results of Tuberculosis Laboratory and Anti-mycobacterial Drug-Resistance Rates

    OpenAIRE

    Hikmet Eda Alışkan; Ebru Bostanoğlu; Tuba Turunç; Şule Çolakoğlu; Yusuf Ziya Demiroğlu; Ebru Kurşun; Jülide Sedef Göçmen; Müge Demirbilek

    2013-01-01

    OBJECTIVE: In this retrospective study, the evaluation of M. tuberculosis complex rates and method-based differences were used to determine the resistance rates of culture positive samples to anti-tuberculosis drugs.MATERIAL AND METHODS: Six thousand, eight hundred and fourteen tuberculosis suspicious clinical samples were examined retrospectively in the Baskent University Faculty of Medicine Adana Hospital microbiology laboratory. After the NaOH-NALC method, all specimens were examined direc...

  5. Association of the CYP2B6 gene with anti-tuberculosis drug-induced hepatotoxicity in a Brazilian Amazon population

    OpenAIRE

    Débora Christina Ricardo Oliveira Fernandes; Ney Pereira Carneiro Santos; Milene Raiol Moraes; Ana Cristina Oliveira Braga; Cleonardo Augusto Silva; Andrea Ribeiro-dos-Santos; Sidney Santos

    2015-01-01

    Objectives: The treatment of tuberculosis (TB) remains a challenge owing to the high incidence of drug-induced hepatotoxicity. The aim of this study was to examine the effect of two gene polymorphisms, one in the CYP2B6 (rs3745274) gene and one in the CYP3A5 (rs776746) gene, on the development of hepatotoxicity in patients treated with anti-TB drugs in a Brazilian Amazon population. Methods: TB patients who were treated with anti-TB drugs were examined for hepatotoxicity, an adverse effect...

  6. Hepatitis C Virus Co-Infection Increases the Risk of Anti-Tuberculosis Drug-Induced Hepatotoxicity among Patients with Pulmonary Tuberculosis

    OpenAIRE

    Nino Lomtadze; Lali Kupreishvili; Archil Salakaia; Sergo Vashakidze; Lali Sharvadze; Kempker, Russell R.; Matthew J Magee; Carlos del Rio; Blumberg, Henry M.

    2013-01-01

    BACKGROUND: The country of Georgia has a high prevalence of tuberculosis (TB) and hepatitis C virus (HCV) infection. PURPOSE: To determine whether HCV co-infection increases the risk of incident drug-induced hepatitis among patients on first-line anti-TB drug therapy. METHODS: Prospective cohort study; HCV serology was obtained on all study subjects at the time of TB diagnosis; hepatic enzyme tests (serum alanine aminotransferase [ALT] activity) were obtained at baseline and monthly during tr...

  7. TSH-CHECK-1 Test: Diagnostic Accuracy and Potential Application to Initiating Treatment for Hypothyroidism in Patients on Anti-Tuberculosis Drugs

    OpenAIRE

    Kosack, Cara S; Page, Anne-Laure; Van Hulsteijn, Leonie T.; Lentjes, Eef. G. W. M.

    2012-01-01

    Background Thyroid-stimulating hormone (TSH) promotes expression of thyroid hormones which are essential for metabolism, growth, and development. Second-line drugs to treat tuberculosis (TB) can cause hypothyroidism by suppressing thyroid hormone synthesis. Therefore, TSH levels are routinely measured in TB patients receiving second-line drugs, and thyroxin treatment is initiated where indicated. However, standard TSH tests are technically demanding for many low-resource settings where TB is ...

  8. Hepatitis C virus co-infection increases the risk of anti-tuberculosis drug-induced hepatotoxicity among patients with pulmonary tuberculosis.

    Directory of Open Access Journals (Sweden)

    Nino Lomtadze

    Full Text Available BACKGROUND: The country of Georgia has a high prevalence of tuberculosis (TB and hepatitis C virus (HCV infection. PURPOSE: To determine whether HCV co-infection increases the risk of incident drug-induced hepatitis among patients on first-line anti-TB drug therapy. METHODS: Prospective cohort study; HCV serology was obtained on all study subjects at the time of TB diagnosis; hepatic enzyme tests (serum alanine aminotransferase [ALT] activity were obtained at baseline and monthly during treatment. RESULTS: Among 326 study patients with culture-confirmed TB, 68 (21% were HCV co-infected, 14 (4.3% had chronic hepatitis B virus (HBV infection (hepatitis B virus surface antigen positive [HBsAg+], and 6 (1.8% were HIV co-infected. Overall, 19% of TB patients developed mild to moderate incident hepatotoxicity. In multi-variable analysis, HCV co-infection (adjusted Hazards Ratio [aHR]=3.2, 95% CI=1.6-6.5 was found to be an independent risk factor for incident anti-TB drug-induced hepatotoxicity. Survival analysis showed that HCV co-infected patients developed hepatitis more quickly compared to HCV seronegative patients with TB. CONCLUSION: A high prevalence of HCV co-infection was found among patients with TB in Georgia. Drug-induced hepatotoxicity was significantly associated with HCV co-infection but severe drug-induced hepatotoxicity (WHO grade III or IV was rare.

  9. Multicenter evaluation of the nitrate reductase assay for drug resistance detection of Mycobacterium tuberculosis.

    Science.gov (United States)

    Martin, Anandi; Montoro, Ernesto; Lemus, Dihadenys; Simboli, Norberto; Morcillo, Nora; Velasco, Maritza; Chauca, José; Barrera, Lucía; Ritacco, Viviana; Portaels, Françoise; Palomino, Juan Carlos

    2005-11-01

    The performance of the nitrate reductase assay was evaluated in a multicenter laboratory study to detect resistance of Mycobacterium tuberculosis to the first-line anti-tuberculosis drugs rifampicin, isoniazid, ethambutol and streptomycin using a set of coded isolates. Compared with the gold standard proportion method on Löwenstein-Jensen medium, the assay was highly accurate in detecting resistance to rifampicin, isoniazid and ethambutol with an accuracy of 98%, 96.6% and 97.9%, respectively. For streptomycin, discrepant results were obtained with an overall accuracy of 85.3%. The assay proved easy to be implemented in countries with limited laboratory facilities. PMID:15893391

  10. Pediatric tuberculous meningitis: Model-based approach to determining optimal doses of the anti-tuberculosis drugs rifampin and levofloxacin for children.

    Science.gov (United States)

    Savic, R M; Ruslami, R; Hibma, J E; Hesseling, A; Ramachandran, G; Ganiem, A R; Swaminathan, S; McIlleron, H; Gupta, A; Thakur, K; van Crevel, R; Aarnoutse, R; Dooley, K E

    2015-12-01

    Pediatric tuberculous meningitis (TBM) is a highly morbid, often fatal disease. Standard treatment includes isoniazid, rifampin, pyrazinamide, and ethambutol. Current rifampin dosing achieves low cerebrospinal fluid (CSF) concentrations, and CSF penetration of ethambutol is poor. In adult trials, higher-dose rifampin and/or a fluoroquinolone reduced mortality and disability. To estimate optimal dosing of rifampin and levofloxacin for children, we compiled plasma and CSF pharmacokinetic (PK) and outcomes data from adult TBM trials plus plasma PK data from children. A population PK/pharmacodynamic (PD) model using adult data defined rifampin target exposures (plasma area under the curve (AUC)0-24 = 92 mg*h/L). Levofloxacin targets and rifampin pediatric drug disposition information were literature-derived. To attain target rifampin exposures, children require daily doses of at least 30 mg/kg orally or 15 mg/kg intravenously (i.v.). From our pediatric population PK model, oral levofloxacin doses needed to attain exposure targets were 19-33 mg/kg. Our results provide data-driven guidance to maximize pediatric TBM treatment while we await definitive trial results. PMID:26260983

  11. A Study of the Timing of Death in Patients with Tuberculosis Who Die During Anti-Tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    Bhavik Patel

    2016-06-01

    Full Text Available Introduction: India has 2.0 million estimated tuberculosis (TB cases per annum with an estimated 280,000 TB related deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India: - i treatment outcomes including the number who died while on treatment, ii the month of death and iii characteristics associated with and ldquo;early and rdquo; death, occurring in the initial 8 weeks of treatment. Methodology: This was a retrospective study in C.U.Shah Medical College and Hospital in Surendranagar, Gujarat India. A review was performed of treatment cards and medical records of all TB patients (adults and children registered and placed on standardized anti-tuberculosis treatment from January 2007 to April 2012. Results: There were 376 TB patients of whom 41 (11% were known to have died during treatment. Case-fatality was higher in those previously treated (24% and lower in those with extra-pulmonary TB (1%.Most of deaths during anti-tuberculosis treatment were early, with 66% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with and ldquo;early death and rdquo;. In this large cohort of TB patients, Most of deaths occurred early after starting anti-TB treatment. Reasons may relate to i the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii co-morbidities, such as HIV/ AIDS and diabetes mellitus, which are known to influence mortality. iii Late stage presentation by patients themselves. More research in this area from prospective and retrospective studies is needed. [Natl J Med Res 2016; 6(2.000: 186-190

  12. Detection and management of drug-resistant tuberculosis in HIV-infected patients in lower-income countries

    DEFF Research Database (Denmark)

    Ballif, M; Nhandu, V; Wood, R;

    2014-01-01

    SETTING: Drug resistance threatens tuberculosis (TB) control, particularly among human immunodeficiency virus (HIV) infected persons. OBJECTIVE: To describe practices in the prevention and management of drug-resistant TB under antiretroviral therapy (ART) programs in lower-income countries. DESIGN......%) provided directly observed therapy (DOT) during the entire course of treatment, 16 (34%) during the intensive phase only, and 11 (23%) did not follow DOT. Fourteen (30%) ART programs reported no access to second-line anti-tuberculosis regimens; 18 (38%) reported TB drug shortages. CONCLUSIONS: Capacity to...... diagnose and treat drug-resistant TB was limited across ART programs in lower-income countries. DOT was not always implemented and drug supplies were regularly interrupted, which may contribute to the global emergence of drug resistance....

  13. Chemical constituents and anti-tuberculosis activity of ink extracts of cuttlefish, Sepiella inermis

    Directory of Open Access Journals (Sweden)

    Muthusamy Ravichandiran

    2013-11-01

    Full Text Available Objective: To study the chemical constituents and the anti-tuberculosis activity of methanol and chloroform ink extracts of Sepiella inermis. Methods: Pulverized ink powder was extracted separately with chloroform and methanol. Chemical analysis was carried out by UV-VIS spectrophotometer, FT-IR and GC-MS. Crude extracts were tested in vitro for their activity against Mycobacterium tuberculosis using Lowenstein Jensen (L-J medium. Activity in L-J medium was assessed by mean reduction in number of colonies on extract containing bottles as compared to extract free controls. Results: GC-MS of methanol extract revealed four compounds viz. hexadecanoic acid, 9, 12- octadecadienoic acid, 9-octadecenoic acid and octadecanoic acid. The chloroform extract containing fourteen compounds. The methanol extract exhibited anti-tuberculosis activity in L-J medium at 64 µg/mL with the observed inhibition of 14 CFU. Chloroform extract displayed a weak activity against Mycobacterium tuberculosis. Conclusions: This investigation showed the methanol extract exhibited significant activity against Mycobacterium tuberculosis than chloroform extract. Since ink of sepia is available abundantly as a waste material, further studies aimed at isolation and efficacy of active substances pave the way for new anti-tuberculosis drugs.

  14. Understanding Rifampicin Resistance in Tuberculosis through a Computational Approach

    OpenAIRE

    Kumar, Satish; Jena, Lingaraja

    2014-01-01

    The disease tuberculosis, caused by Mycobacterium tuberculosis (MTB), remains a major cause of morbidity and mortality in developing countries. The evolution of drug-resistant tuberculosis causes a foremost threat to global health. Most drug-resistant MTB clinical strains are showing resistance to isoniazid and rifampicin (RIF), the frontline anti-tuberculosis drugs. Mutation in rpoB, the beta subunit of DNA-directed RNA polymerase of MTB, is reported to be a major cause of RIF resistance. Am...

  15. Undertreated HIV and drug-resistant tuberculosis at a referral hospital in Irkutsk, Siberia

    Science.gov (United States)

    Heysell, S. K.; Ogarkov, O. B.; Zhdanova, S.; Zorkaltseva, E.; Shugaeva, S.; Gratz, J.; Vitko, S.; Savilov, E. D.; Koshcheyev, M. E.; Houpt, E. R.

    2016-01-01

    SUMMARY SETTING A referral hospital for tuberculosis (TB) in Irkutsk, the Russian Federation. OBJECTIVE To describe disease characteristics, treatment and hospital outcomes of TB-HIV (human immunodeficiency virus). DESIGN Observational cohort of HIV-infected patients admitted for anti-tuberculosis treatment over 6 months. RESULTS A total of 98 patients were enrolled with a median CD4 count of 147 cells/mm3 and viral load of 205 943 copies/ml. Among patients with drug susceptibility testing (DST) results, 29 (64%) were multidrug-resistant (MDR), including 12 without previous anti-tuberculosis treatment. Nineteen patients were on antiretroviral therapy (ART) at admission, and 10 (13% ART-naïve) were started during hospitalization. Barriers to timely ART initiation included death, in-patient treatment interruption, and patient refusal. Of 96 evaluable patients, 21 (22%) died, 14 (15%) interrupted treatment, and 10 (10%) showed no microbiological or radiographic improvement. Patients with a cavitary chest X-ray (aOR 7.4, 95%CI 2.3–23.7, P = 0.001) or central nervous system disease (aOR 6.5, 95%CI 1.2–36.1, P=0.03) were more likely to have one of these poor outcomes. CONCLUSION High rates of MDR-TB, treatment interruption and death were found in an HIV-infected population hospitalized in Irkutsk. There are opportunities for integration of HIV and TB services to overcome barriers to timely ART initiation, increase the use of anti-tuberculosis regimens informed by second-line DST, and strengthen out-patient diagnosis and treatment networks. PMID:26792470

  16. Drug-resistant malaria

    OpenAIRE

    Hyde, John E

    2005-01-01

    In the past 21 years, a modest increase in the range of antimalarial drugs approved for clinical use has been complemented by a more impressive expansion in the analysis and understanding of the molecular mechanisms underlying resistance to these agents. Such resistance is a major factor in the increasing difficulty in controlling malaria, and important developments during this period are recounted here.

  17. Antiretroviral drug resistance testing

    Directory of Open Access Journals (Sweden)

    Sen Sourav

    2006-01-01

    Full Text Available While antiretroviral drugs, those approved for clinical use and others under evaluation, attempt in lowering viral load and boost the host immune system, antiretroviral drug resistance acts as a major impediment in the management of human immune deficiency virus type-1 (HIV-1 infection. Antiretroviral drug resistance testing has become an important tool in the therapeutic management protocol of HIV-1 infection. The reliability and clinical utilities of genotypic and phenotypic assays have been demonstrated. Understanding of complexities of interpretation of genotyping assay, along with updating of lists of mutation and algorithms, and determination of clinically relevant cut-offs for phenotypic assays are of paramount importance. The assay results are to be interpreted and applied by experienced HIV practitioners, after taking into consideration the clinical profile of the patient. This review sums up the methods of assay currently available for measuring resistance to antiretroviral drugs and outlines the clinical utility and limitations of these assays.

  18. Drug therapy in spinal tuberculosis

    OpenAIRE

    Rajasekaran, S.; Khandelwal, Gaurav

    2012-01-01

    Although the discovery of effective anti-tuberculosis drugs has made uncomplicated spinal tuberculosis a medical disease, the advent of multi-drug-resistant Mycobacterium tuberculosis and the co-infection of HIV with tuberculosis have led to a resurgence of the disease recently. The principles of drug treatment of spinal tuberculosis are derived from our experience in treating pulmonary tuberculosis. Spinal tuberculosis is classified to be a severe form of extrapulmonary tuberculosis and henc...

  19. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  20. Mechanisms of drug action and resistance in Mycobacterium tuberculosis%抗结核药物的作用机制及结核分枝杆菌的耐药机理

    Institute of Scientific and Technical Information of China (English)

    张颖; 徐顺清; 李传友

    2004-01-01

    Tuberculosis (TB) is a global health problem that poses increasing threat with the spread of HIV infection and drug resistant strains of Mycobacterium tuberculosis. Effective control of TB remains a significant challenge despite the availability of chemotherapy and BCG vaccine. The emergence of strains of M. tuberculosis resistant to multiple anti-tuberculosis drugs is increasing due to inadequate compliance to the lengthy TB therapy and presents a significant problem for the treatment. In order to combat the threat of drug resistant tuberculosis and to more effectively control the disease, an understanding of the mechanisms underlying drug resistance is necessary. Mechanisms of action and resistance of major anti-tuberculosis drugs are reviewed in this article. This knowledge could be used for the development of molecular tests for rapid detection of drug resistant strains and for the design of new anti-tuberculosis drugs.%结核病是一个严重的全球性疾病,随着艾滋病病毒及耐药结核菌的出现及播散成为结核病控制的又一个威胁.虽然我们有结核疫苗及抗结核药物.但控制结核病仍是一件很棘手的事情.多重耐药结核菌的不断出现给结核病的治疗带来很大的困难.为有效控制耐药结核病.我们必须了解结核菌的耐药机理.本文讨论了抗结核药物的作用机制及结核菌的耐药机理.结核菌耐药机理的阐明对耐药菌的快速分子诊断及新药的开发有重要的意义.

  1. Drug resistance in leishmaniasis.

    Science.gov (United States)

    Croft, Simon L; Sundar, Shyam; Fairlamb, Alan H

    2006-01-01

    Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimonials. This is now considered to be due to acquired resistance. Although this class of drugs has been used for over 60 years for leishmaniasis treatment, it is only in the past 2 years that the mechanisms of action and resistance have been identified, related to drug metabolism, thiol metabolism, and drug efflux. With the introduction of new therapies, including miltefosine in 2002 and paromomycin in 2005-2006, it is essential that there be a strategy to prevent the emergence of resistance to new drugs; combination therapy, monitoring of therapy, and improved diagnostics could play an essential role in this strategy. PMID:16418526

  2. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  3. Mycobacterial Interspersed Repetitive Unit Can Predict Drug Resistance of Mycobacterium tuberculosis in China

    Science.gov (United States)

    Cheng, Xian-feng; Jiang, Chao; Zhang, Min; Xia, Dan; Chu, Li-li; Wen, Yu-feng; Zhu, Ming; Jiang, Yue-gen

    2016-01-01

    Background: Recently, Mycobacterial Interspersed Repetitive Unit (MIRU) was supposed to be associated with drug resistance in Mycobacterium tuberculosis (M. tuberculosis), but whether the association exists actually in local strains in China was still unknown. This research was conducted to explore that association and the predictability of MIRU to drug resistance of Tuberculosis (TB). Methods: The clinical isolates were collected and the susceptibility test were conducted with Lowenstein–Jensen (LJ) medium for five anti-TB drug. Based on PCR of MIRU-VNTR (Variable Number of Tandem Repeat) genotyping, we tested the number of the repeat unite of MIRU. Then, we used logistic regression to evaluate the association between 15 MIRU and drug resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance by multivariate logistic regression. Results: Of the 102 strains, one isolate was resistant to rifampicin and one isolate was resistant to streptomycin. Among these fifteen MIRU, there was a association between MIRU loci polymorphism and anti-tuberculosis drug resistance, ETRB (P = 0.03, OR = 0.19, 95% CI 0.05–0.81) and ETRC (P = 0.01, OR = 0.14, 95% CI 0.03–0.64) were negatively related to isoniazid resistance; MIRU20 (P = 0.05, OR = 2.87, 95% CI 1.01–8.12) was positively associated with ethambutol resistance; and QUB11a (P = 0.02, OR = 0.79, 95% CI 0.65–0.96) was a negative association factor of p-aminosalicylic acid resistance. Conclusion: Our research showed that MIRU loci may predict drug resistance of tuberculosis in China. However, the mechanism still needs further exploration. PMID:27047485

  4. Antimalarial drug resistance: An overview

    OpenAIRE

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, a...

  5. Clinical implications of molecular drug resistance testing for Mycobacterium tuberculosis: a TBNET/RESIST-TB consensus statement.

    Science.gov (United States)

    Domínguez, J; Boettger, E C; Cirillo, D; Cobelens, F; Eisenach, K D; Gagneux, S; Hillemann, D; Horsburgh, R; Molina-Moya, B; Niemann, S; Tortoli, E; Whitelaw, A; Lange, C

    2016-01-01

    The emergence of drug-resistant strains of Mycobacterium tuberculosis is a challenge to global tuberculosis (TB) control. Although culture-based methods have been regarded as the gold standard for drug susceptibility testing (DST), molecular methods provide rapid information on mutations in the M. tuberculosis genome associated with resistance to anti-tuberculosis drugs. We ascertained consensus on the use of the results of molecular DST for clinical treatment decisions in TB patients. This document has been developed by TBNET and RESIST-TB groups to reach a consensus about reporting standards in the clinical use of molecular DST results. Review of the available literature and the search for evidence included hand-searching journals and searching electronic databases. The panel identified single nucleotide mutations in genomic regions of M. tuberculosis coding for katG, inhA, rpoB, embB, rrs, rpsL and gyrA that are likely related to drug resistance in vivo. Identification of any of these mutations in clinical isolates of M. tuberculosis has implications for the management of TB patients, pending the results of in vitro DST. However, false-positive and false-negative results in detecting resistance-associated mutations in drugs for which there is poor or unproven correlation between phenotypic and clinical drug resistance complicate the interpretation. Reports of molecular DST results should therefore include specific information on the mutations identified and provide guidance for clinicians on interpretation and on the choice of the appropriate initial drug regimen. PMID:26688526

  6. Multidrug-resistant and extensively drug-resistant tuberculosis in multi-ethnic region, Xinjiang Uygur Autonomous Region, China.

    Directory of Open Access Journals (Sweden)

    Ying-Cheng Qi

    Full Text Available BACKGROUND: The multidrug-resistant (MDR and extensively drug-resistant (XDR tuberculosis (TB has emerged as a global threat. Xinjiang is a multi-ethnic region and suffered second highest incidence of TB in China. However, epidemiological information on MDR and XDR TB is scarcely investigated. METHODOLOGY/PRINCIPAL FINDINGS: A prospective study was conducted to analyze the prevalence of MDR and XDR TB and the differences of drug resistance TB between Chinese Han and other nationalities population at Chest Hospital of Xinjiang Uygur Autonomous Region, China. We performed in vitro drug susceptibility testing of Mycobacterium tuberculosis to first- and second-line anti-tuberculosis drugs for all 1893 culture confirmed positive TB cases that were diagnosed between June 2009 and June 2011. Totally 1117 (59.0%, 95% CI, 56.8%-61.2% clinical isolates were resistant to ≥1 first-line drugs; the prevalence of MDR TB was 13.2% (95% CI, 11.7%-14.7%, of which, 77 (30.8%; 95% CI, 25.0%-36.6% and 31 (12.8%; 95% CI, 8.6%-17.0% isolates were pre-XDR and XDR TB respectively. Among the MDR/XDR TB, Chinese Han patients were significantly less likely to be younger with an odds ratio 0.42 for age 20-29 years and 0.52 for age 40-49 years; P(trend = 0.004, and Chinese Han patients has a lower prevalence of XDR TB (9.6% than all the other nationality (14.9%. CONCLUSIONS/SIGNIFICANCE: The burden of drug resistance TB cases is sizeable, which highlights an urgent need to reinforce the control, detection and treatment strategies for drug resistance TB. However, the difference of MDR and XDR TB between Chinese Han and other nationalities was not observed.

  7. STUDIES ON DRUG-RESISTANCE PATTERN BY PHENOTYPIC METHODS IN Mycobacterium tuberculosis ISOLATES IN A TERTIARY CARE HOSPITAL Authors

    Directory of Open Access Journals (Sweden)

    PATIL S.D.

    2013-10-01

    Full Text Available Background: Tuberculosis is a major health problem in India. The situation has been made worse because of the emergence of drug resistance. Tuberculosis has affected more than one third of the world’s population and India contributes to ¼ of the global annual incidence. With ¼ of the drug resistant forms coming from India. With this context the present study was undertaken to assess the magnitude and pattern of drug resistance among the isolates of Mycobacterium tuberculosis.Aims & Objective: To detect the drug-resistance pattern of the isolates of Mycobacterium tuberculosis from a tertiary care hospital. The objective was achieved by screening of sputum smears for acid-fast bacilli ( AFB, culture of AFB positive samples on Lowenstein-Jensen’s (L.J., identification of isolates of Mycobacterium tuberculosis and drug susceptibility testing (DST against first-line and second-line anti-tuberculosis drugs.Methods: Standard procedures were followed for the isolation & identification of Mycobacterium tuberculosis. DST was carried out by proportion method on L.J. to detect drug resistance pattern.Results: Out of 1186 samples studied, 123 were AFB & culture positive strains of Mycobacterium tuberculosis. Of these 123 strains 10 isolates were Multi-drug resistant (MDR-TB showing resistance to both Isoiniazide and Rifampicin. Out of these 10 strains two are Extensively drug-resistant (XDR-TB strains -one is resistant to kanamycin, ethionamide, ciprofloxacin and rifabutin while the other is resistant to kanamycin, D-Cycloserine, ciprofloxacin and rifabutin. Mono-drug resistance to D-cycloserine was observed in one isolate while resistance to two drugs like ethionamide, P-amino salicylic acid; ethionamide, ciprofloxacin and ethionamide, D-Cycloserine was observed in three isolates.Conclusion: The present work helps to study & monitor antibiotic susceptibility test results. Moreover its documentation will make us aware of any change in

  8. Antimalarial drug resistance: An overview.

    Science.gov (United States)

    Antony, Hiasindh Ashmi; Parija, Subhash Chandra

    2016-01-01

    Malaria is a major public health burden throughout the world. Resistance to the antimalarial drugs has increased the mortality and morbidity rate that is achieved so far through the malaria control program. Monitoring the drug resistance to the available antimalarial drugs helps to implement effective drug policy, through the in vivo efficacy studies, in vitro drug susceptibility tests and detection of molecular markers. It is important to understand the mechanism of the antimalarial drugs, as it is one of the key factors in the emergence and spread of drug resistance. This review summarizes the commonly used antimalarial drugs, their mechanism of action and the genetic markers validated so far for the detection of drug-resistant parasites. PMID:26998432

  9. Drug resistance in mycobacterium tuberculosis

    OpenAIRE

    Abate, Getahun

    1999-01-01

    Drug-resistant tuberculosis is a global public health problem. This investigation was performed to find ways of improving regimens that could be used for the treatment of drug- and multidrug-resistant TB and also to find a rapid method of diagnosis of drug resistant TB, particularly MDR-TB. Among 107 isolates of M. tuberculosis from re-treatment cases of pulmonary TB in Ethiopia (study 1), 48% were resistant at least to one of the four first-line drugs tested and 12 % were A...

  10. NAT2*6A,a haplotype of the N-acetyltransferase 2 gene, is an important biomarker for risk of anti-tuberculosis drug-induced hepatotoxicity in Japanese patients with tuberculosis

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To investigate an association between N-acetyltransferase 2 (NAT2)-haplotypes/diplotypes and adverse effects in apanese pulmonary tuberculosis patients.METHODS: We studied 100 patients with pulmonary TB treated with anti-TB drugs including INH. The frequencies and distributions of single nucleotide polymorphisms, haplotypes, and diplotypes of NAT2 were determined by the PCR-restriction fragment length polymorphism method, and the results were compared between TB patients with and without adverse effect,using multivariate logistic regression analysis.RESULTS: Statistical analysis revealed that the frequency of a variant haplotype, NAT2*6A, was significantly increased in TB patients with hepatotoxicity,compared with those without hepatotoxicity [P = 0.001,odds ratio (OR) = 3.535]. By contrast, the frequency of a wild-type (major) haplotype,"NAT2*4″, was significantly lower in TB patients with hepatotoxicity than those without hepatotoxicity (P < 0.001, OR = 0.265).There was no association between NAT2-haplotypes and skin rash or eosinophilia.CONCLUSION: The present study shows that NAT2 is one of the determinants of anti-TB drug-induced hepatotoxicity. Moreover, the haplotypes, NAT2*4 and NAT2*6A, are useful new biomarkers for predicting antiTB drug-induced hepatotoxicity.

  11. Drugs reverting multidrug resistance (chemosensitizers)

    Energy Technology Data Exchange (ETDEWEB)

    Gualtieri, F. [Florence Univ. (Italy). Dip. di Scienze Farmaceutiche

    1996-12-01

    Drug resistance is a phenomenon that frequently impairs proper treatment of cancer. Multidrug resistance (MDR) is a particular case of acquired drug resistance, resulting from overexpression of a protein (P-170) that functions as a pump, clearing cells from the chemotherapic. The P-170 protein functions can be inhibited by a variety of lipophilic drugs containing a hydrophilic nitrogen, protonated at physiological pH. A considerable effort is underway to identify new drugs able to reverse MDR. Few of these molecules are already undergoing clinical trials.

  12. Characterization of RPO B gene for detection of rifampicin drug resistance by SSCP and sequence analysis

    Directory of Open Access Journals (Sweden)

    Negi S

    2009-01-01

    Full Text Available Purpose: Because of the emergence of multidrug-resistant tuberculosis in recent times, the rapid detection of resistance to the first-line anti-tuberculosis drug rifampicin was felt worldwide. Accordingly, this study was conducted to evaluate the diagnostic potential of polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP for checking its utility as a rapid screening test for determination of rifampicin drug resistance. Materials and Methods: A total of 34 isolates of Mycobacterium tuberculosis ( M. tuberculosis (22 rifampicin resistant, 11 rifampicin sensitive and one control H37Rv strains were analysed by PCR-SSCP and DNA sequencing within the 157-bp region of the rpo B gene (Ala 500 -Val 550 . Results: Rifampicin resistance was detected successfully by PCR-SSCP in 20/22(90.90% of rifampicin-resistant strains showing a total of nine different mutations in seven codon positions: codon 513 (CAA→CCA, 516 (GAC→GTC, 507 (GGC→GAC, 526 (CAC→GAC, TAC, 531 (TCG→TTG, TGG, 522 (TCG→TGG and 533 (GTG→CCG. Two rifampicin-resistant strains showed an identical PCR-SSCP pattern with the wild type H37Rv; 77.27% rifampicin-resistant strains showed a single point mutation and 9.09% had no mutation. Three rifampicin-resistant strains showed characteristic double mutations at codon positions 526 and 531. Sensitivity and specificity were calculated as 90.90% and 100%. Conclusions: Rifampicin-resistant genotypes were mainly found in codon positions 516, 526 and 531. PCR-SSCP seems to be an efficacious method of predicting rifampicin resistance and substantially reduces the time required for susceptibility testing from 4 to 6 weeks to a few weeks.

  13. Drug resistance profile of human Mycobacterium avium complex strains from India

    Directory of Open Access Journals (Sweden)

    Venugopal D

    2007-01-01

    Full Text Available Purpose: To determine minimum inhibitory concentration (MIC of various anti-tuberculosis drugs for Mycobacterium avium complex (MAC strains isolated from clinical samples. Methods: Forty-nine human isolates of MAC were tested for susceptibility to nine chemotherapeutic agents. All isolates were from Indian patients suffering from chronic pulmonary mycobacteriosis. Drug susceptibility was performed both by agar dilution and MIC method. MIC values were analysed, both visually and by enzyme-linked immunosorbent assay reader. Results: More than 40% of the MAC isolates were sensitive to ciprofloxacine (48.98%, amikacin (46.94% and roxithromycin (42.86% by the MIC method. In contrast, the isolates showed high degree of resistance to the first line antituberculosis drugs: only 28.6% were sensitive to rifampicine, 22.85% to isoniazid and ethambutol each and 36.7% were sensitive to streptomycin. In addition, 22.85% of the strains were sensitive to clofazimine and 34.7% to kanamycin. Conclusions: Results of the study confirm the suitability of the rapid broth micro dilution (MIC method as a simple yet reliable method to assay for the drug susceptibility of nontuberculosis mycobacterium.

  14. Primary drug-resistant tuberculosis in Hanoi, Viet Nam: present status and risk factors.

    Directory of Open Access Journals (Sweden)

    Nguyen Thi Le Hang

    Full Text Available INTRODUCTION: Resistance of Mycobacterium tuberculosis (MTB to anti-tuberculosis (TB drugs presents a serious challenge to TB control worldwide. We investigated the status of drug resistance, including multidrug-resistant (MDR TB, and possible risk factors among newly diagnosed TB patients in Hanoi, the capital of Viet Nam. METHODS: Clinical and epidemiological information was collected from 506 newly diagnosed patients with sputum smear- and culture-positive TB, and 489 (96.6% MTB isolates were subjected to conventional drug susceptibility testing, spoligotyping, and 15-locus variable numbers of tandem repeats typing. Adjusted odds ratios (aORs were calculated to analyze the risk factors for primary drug resistance. RESULTS: Of 489 isolates, 298 (60.9% were sensitive to all drugs tested. Resistance to isoniazid, rifampicin, streptomycin, ethambutol, and MDR accounted for 28.2%, 4.9%, 28.2%, 2.9%, and 4.5%, respectively. Of 24 isolates with rifampicin resistance, 22 (91.7% were MDR and also resistant to streptomycin, except one case. Factors associated with isoniazid resistance included living in old urban areas, presence of the Beijing genotype, and clustered strains [aOR = 2.23, 95% confidence interval (CI 1.15-4.35; 1.91, 1.18-3.10; and 1.69, 1.06-2.69, respectively. The Beijing genotype was also associated with streptomycin resistance (aOR = 2.10, 95% CI 1.29-3.40. Human immunodeficiency virus (HIV coinfection was associated with rifampicin resistance and MDR (aOR = 5.42, 95% CI 2.07-14.14; 6.23, 2.34-16.58, respectively. CONCLUSION: Isoniazid and streptomycin resistance was observed in more than a quarter of TB patients without treatment history in Hanoi. Transmission of isoniazid-resistant TB among younger people should be carefully monitored in urban areas, where Beijing strains and HIV coinfection are prevalent. Choosing an optimal treatment regimen on the basis of the results of drug susceptibility tests and monitoring of treatment

  15. Antimicrobial (Drug) Resistance: Gonorrhea

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Multidrug-Resistant Neisseria gonorrhoeae (Gonorrhea) During the past 50 years, the use ... Gonorrhea is a sexually transmitted disease caused by Neisseria gonorrhoeae , a bacterium that can infect areas of the ...

  16. Prevalence of resistance to second-line tuberculosis drug among multidrug-resistant tuberculosis patients in Viet Nam, 2011

    Science.gov (United States)

    Tran, Huong Thi Giang; Bui, Quyen Thi Tu

    2016-01-01

    Introduction Extensively drug-resistant tuberculosis (XDR-TB) represents an emerging public health problem worldwide. According to the World Health Organization, an estimated 9.7% of multidrug-resistant TB (MDR-TB) cases are defined as XDR-TB globally. The objective of this study was to determine the prevalence of drug resistance to second-line TB drugs among MDR-TB cases detected in the Fourth National Anti-Tuberculosis Drug Resistance Survey in Viet Nam. Methods Eighty clusters of TB cases were selected using a probability-proportion-to-size approach. To identify MDR-TB cases, drug susceptibility testing (DST) was performed for the four major first-line TB drugs. DST of second-line drugs (ofloxacin, amikacin, kanamycin, capreomycin) was performed on isolates from MDR-TB cases to identify pre-XDR and XDR cases. Results A total of 1629 smear-positive TB cases were eligible for culture and DST. Of those, DST results for first-line drugs were available for 1312 cases, and 91 (6.9%) had MDR-TB. Second-line DST results were available for 84 of these cases. Of those, 15 cases (17.9%) had ofloxacin resistance and 6.0% were resistant to kanamycin and capreomycin. Five MDR-TB cases (6.0%) met the criteria of XDR-TB. Conclusion This survey provides the first estimates of the proportion of XDR-TB among MDR-TB cases in Viet Nam and provides important information for local policies regarding second-line DST. Local policies and programmes that are geared towards TB prevention, early diagnosis and treatment with effective regimens are of high importance. PMID:27508089

  17. Mortality among MDR-TB Cases: Comparison with Drug-Susceptible Tuberculosis and Associated Factors

    OpenAIRE

    Chung-Delgado, Kocfa; Guillen-Bravo, Sonia; Revilla-Montag, Alejandro; Bernabe-Ortiz, Antonio

    2015-01-01

    Background An increase in multidrug-resistant tuberculosis (MDR-TB) cases is evident worldwide. Its management implies a complex treatment, high costs, more toxic anti-tuberculosis drug use, longer treatment time and increased treatment failure and mortality. The aims of this study were to compare mortality between MDR and drug-susceptible cases of tuberculosis, and to determine risk factors associated with mortality among MDR-TB cases. Methods and Results A retrospective cohort study was per...

  18. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis

    OpenAIRE

    Sharma, Prashant; Kumar, Bhavnesh; Gupta, Yash; Singhal, Neelja; Katoch, Vishwa Mohan; Venkatesan, Krishnamurthy; Bisht, Deepa

    2010-01-01

    Background Streptomycin (SM) is a broad spectrum antibiotic and is an important component of any anti-tuberculosis therapy regimen. Several mechanisms have been proposed to explain the emergence of resistance but still our knowledge is inadequate. Proteins form a very complex network and drugs are countered by their modification/efflux or over expression/modification of targets. As proteins manifest most of the biological processes, these are attractive targets for developing drugs, immunodia...

  19. Proteomic analysis of streptomycin resistant and sensitive clinical isolates of Mycobacterium tuberculosis

    OpenAIRE

    Venkatesan Krishnamurthy; Katoch Vishwa; Singhal Neelja; Gupta Yash; Kumar Bhavnesh; Sharma Prashant; Bisht Deepa

    2010-01-01

    Abstract Background Streptomycin (SM) is a broad spectrum antibiotic and is an important component of any anti-tuberculosis therapy regimen. Several mechanisms have been proposed to explain the emergence of resistance but still our knowledge is inadequate. Proteins form a very complex network and drugs are countered by their modification/efflux or over expression/modification of targets. As proteins manifest most of the biological processes, these are attractive targets for developing drugs, ...

  20. Drug Resistance in Leishmaniasis

    OpenAIRE

    Croft, Simon L.; Sundar, Shyam; Fairlamb, Alan H.

    2006-01-01

    Leishmaniasis is a complex disease, with visceral and cutaneous manifestations, and is caused by over 15 different species of the protozoan parasite genus Leishmania. There are significant differences in the sensitivity of these species both to the standard drugs, for example, pentavalent antimonials and miltefosine, and those on clinical trial, for example, paromomycin. Over 60% of patients with visceral leishmaniasis in Bihar State, India, do not respond to treatment with pentavalent antimo...

  1. Antiviral Drug Resistance: Mechanisms and Clinical Implications

    OpenAIRE

    Strasfeld, Lynne; Chou, Sunwen

    2010-01-01

    Antiviral drug resistance is an increasing concern in immunocompromised patient populations, where ongoing viral replication and prolonged drug exposure lead to the selection of resistant strains. Rapid diagnosis of resistance can be made by associating characteristic viral mutations with resistance to various drugs as determined by phenotypic assays. Management of drug resistance includes optimization of host factors and drug delivery, selection of alternative therapies based on knowledge of...

  2. Co-infection of long-standing extensively drug-resistant Mycobacterium tuberculosis (XDR-TB and non-tuberculosis mycobacteria: A case report

    Directory of Open Access Journals (Sweden)

    Nafiseh Izadi

    2015-01-01

    Full Text Available We report a 69-years-old Iranian HIV negative male patient, with long-standing pulmonary tuberculosis (eleven years co-infected with non-tuberculosis mycobacteria. Despite of initiation of first line anti-tuberculosis therapy after diagnosis the patient poorly respond because of low compliance with anti-TB treatment. After several incomplete treatments the smear was still positive and thus drug susceptibility tests were performed on isolated organism which revealed that the organisms was resistant not only against isoniazid and rifampin but also against Ofloxacin (OFX, Capreomycin (CAP, p-aminosalicylic acid (PAS, ethionamide (ETH, Kanamycin (KAN, ciprofloxacin (Cip, amikacin (AMK and cycloserine (CYC. Persistence and resistance of infection had led us to do more investigation using molecular methods, which revealed co-infection with Non-tuberculosis mycobacteria (NTM. The patient is still alive with cough and shortness of breath.

  3. Extensively drug-resistant tuberculosis.

    Science.gov (United States)

    Jassal, Mandeep; Bishai, William R

    2009-01-01

    Extensively drug-resistant (XDR) tuberculosis is defined as disease caused by Mycobacterium tuberculosis with resistance to at least isoniazid and rifampicin, any fluoroquinolone, and at least one of three injectable second-line drugs (amikacin, capreomycin, or kanamycin). The definition has applicable clinical value and has allowed for more uniform surveillance in varied international settings. Recent surveillance data have indicated that the prevalence of tuberculosis drug resistance has risen to the highest rate ever recorded. The gold standard for drug-susceptibility testing has been the agar proportion method; however, this technique requires several weeks for results to be determined. More sensitive and specific diagnostic tests are still unavailable in resource-limited settings. Clinical manifestations, although variable in different settings and among different strains, have in general shown that XDR tuberculosis is associated with greater morbidity and mortality than non-XDR tuberculosis. The treatment of XDR tuberculosis should include agents to which the organism is susceptible, and should continue for a minimum of 18-24 months. However, treatment continues to be limited in tuberculosis-endemic countries largely because of weaknesses in national tuberculosis health-care models. The ultimate strategy to control drug-resistant tuberculosis is one that implements a comprehensive approach incorporating innovation from the political, social, economic, and scientific realms. PMID:18990610

  4. Bedaquiline – The first ATP synthase inhibitor against multi drug resistant tuberculosis

    OpenAIRE

    Lakshmanan, Mageshwaran; Xavier, Alphienes Stanley

    2013-01-01

    Increasing incidence of MDR-TB, long duration of treatment and co-infection with HIV are the significant problems in achieving the eradication of tuberculosis. Bedaquiline is an anti-tuberculosis drug with unique mechanism of action. It selectively inhibits the mycobacterial energy metabolism i.e. ATP synthesis and found to be effective against all states of Mycobacterium tuberculosis like active, dormant, replicating, non-replicating, intracellular and extracellular. Preclinical studies have...

  5. Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources

    Science.gov (United States)

    Grzelak, Edyta M.; Hwang, Changhwa; Cai, Geping; Nam, Joo-Won; Choules, Mary P.; Gao, Wei; Lankin, David C.; McAlpine, James B.; Mulugeta, Surafel G.; Napolitano, José G.; Suh, Joo-Won; Yang, Seung Hwan; Cheng, Jinhua; Lee, Hanki; Kim, Jin-Yong; Cho, Sang-Hyun; Pauli, Guido F.; Franzblau, Scott G.; Jaki, Birgit U.

    2016-01-01

    While natural products constitute an established source of lead compounds, the classical iterative bioassay-guided isolation process is both time- and labor-intensive and prone to failing to identify active minor constituents. (HP)TLC-bioautography-MS/NMR, which combines cutting-edge microbiological, chromatographic, and spectrometric technologies, was developed to accelerate anti-tuberculosis (TB) drug discovery from natural sources by acquiring structural information at a very early stage of the isolation process. Using the avirulent, bioluminescent Mtb strain mc27000 luxABCDE, three variations of bioautography were evaluated and optimized for sensitivity in detecting anti-TB agents, including established clinical agents and new leads with novel mechanisms of action. Several exemplary applications of this approach to microbial extracts demonstrate its potential as a routine method in anti-TB drug discovery from natural sources.

  6. Extensive Drug Resistance in Malaria and Tuberculosis

    OpenAIRE

    Wongsrichanalai, Chansuda; Varma, Jay K.; Juliano, Jonathan J; Kimerling, Michael E.; MacArthur, John R

    2010-01-01

    Drug resistance in malaria and in tuberculosis (TB) are major global health problems. Although the terms multidrug-resistant TB and extensively drug-resistant TB are precisely defined, the term multidrug resistance is often loosely used when discussing malaria. Recent declines in the clinical effectiveness of antimalarial drugs, including artemisinin-based combination therapy, have prompted the need to revise the definitions of and/or to recategorize antimalarial drug resistance to include ex...

  7. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant.

    Directory of Open Access Journals (Sweden)

    JunFeng Dong

    Full Text Available BACKGROUND: Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB are unsatisfactory due to a variety of reasons. Rifampicin (RFP is a well-known and highly effective first-line anti-tuberculosis (anti-TB drug. Poly-DL-lactide (PDLLA and nano-hydroxyapatite (nHA are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA. METHODS: RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies. RESULTS: A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR and X-Ray Diffraction (XRD. Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation. CONCLUSION: It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.

  8. Antimicrobial peptides as novel anti-tuberculosis therapeutics.

    Science.gov (United States)

    Silva, João P; Appelberg, Rui; Gama, Francisco Miguel

    2016-01-01

    Tuberculosis (TB), a disease caused by the human pathogen Mycobacterium tuberculosis, has recently joined HIV/AIDS as the world's deadliest infectious disease, affecting around 9.6 million people worldwide in 2014. Of those, about 1.2 million died from the disease. Resistance acquisition to existing antibiotics, with the subsequent emergence of Multi-Drug Resistant mycobacteria strains, together with an increasing economic burden, has urged the development of new anti-TB drugs. In this scope, antimicrobial peptides (AMPs), which are small, cationic and amphipathic peptides that make part of the innate immune system, now arise as promising candidates for TB treatment. In this review, we analyze the potential of AMPs for this application. We address the mechanisms of action, advantages and disadvantages over conventional antibiotics and how problems associated with its use may be overcome to boost their therapeutic potential. Additionally, we address the challenges of translational development from benchside to bedside, evaluate the current development pipeline and analyze the expected global impact from a socio-economic standpoint. The quest for more efficient and more compliant anti-TB drugs, associated with the great therapeutic potential of emerging AMPs and the rising peptide market, provide an optimal environment for the emergence of AMPs as promising therapies. Still, their pharmacological properties need to be enhanced and manufacturing-associated issues need to be addressed. PMID:27235189

  9. Drug resistance in Giardia duodenalis.

    Science.gov (United States)

    Ansell, Brendan R E; McConville, Malcolm J; Ma'ayeh, Showgy Y; Dagley, Michael J; Gasser, Robin B; Svärd, Staffan G; Jex, Aaron R

    2015-11-01

    Giardia duodenalis is a microaerophilic parasite of the human gastrointestinal tract and a major contributor to diarrheal and post-infectious chronic gastrointestinal disease world-wide. Treatment of G. duodenalis infection currently relies on a small number of drug classes. Nitroheterocyclics, in particular metronidazole, have represented the front line treatment for the last 40 years. Nitroheterocyclic-resistant G. duodenalis have been isolated from patients and created in vitro, prompting considerable research into the biomolecular mechanisms of resistance. These compounds are redox-active and are believed to damage proteins and DNA after being activated by oxidoreductase enzymes in metabolically active cells. In this review, we explore the molecular phenotypes of nitroheterocyclic-resistant G. duodenalis described to date in the context of the protist's unusual glycolytic and antioxidant systems. We propose that resistance mechanisms are likely to extend well beyond currently described resistance-associated enzymes (i.e., pyruvate ferredoxin oxidoreductases and nitroreductases), to include NAD(P)H- and flavin-generating pathways, and possibly redox-sensitive epigenetic regulation. Mechanisms that allow G. duodenalis to tolerate oxidative stress may lead to resistance against both oxygen and nitroheterocyclics, with implications for clinical control. The present review highlights the potential for systems biology tools and advanced bioinformatics to further investigate the multifaceted mechanisms of nitroheterocyclic resistance in this important pathogen. PMID:25922317

  10. Prevention of hepatotoxicity due to anti tuberculosis treatment: A novel integrative approach

    Institute of Scientific and Technical Information of China (English)

    Meghna R Adhvaryu; Narsimha M Reddy; Bhasker C Vakharia

    2008-01-01

    AIM: To evaluate the ability of Curcuma longa (CL) and Tinospora cordifolia (TC) formulation to prevent anti-tuberculosis (TB) treatment (ATT) induced hepatotoxicity.METHODS: Patients with active TB diagnosis were randomized to a drug control group and a trial group on drugs plus an herbal formulation.Isoniazid,rifampicin,pyrazinamide and ethambutol for first 2 mo followed by continuation phase therapy excluding Pyrazinamide for 4 mo comprised the anti-tuberculous treatment.Curcumin enriched (25%) CL and a hydro-ethanolic extract enriched (50%) TC 1 g each divided in two doses comprised the herbal adjuvant.Hemogram,bilirubin and liver enzymes were tested initially and monthly till the end of study to evaluate the result.RESULTS: Incidence and severity of hepatotoxicity was significantly lower in trial group (incidence: 27/192 vs 2/316,P < 0.0001).Mean aspartate transaminase (AST) (195.93 ± 108.74 vs 85 ± 4.24,P < 0.0001),alanine transaminase (ALT) (75.74 ± 26.54 vs 41 ±1.41,P < 0.0001) and serum bilirubin (5.4 ± 3.38 vs 1.5± 0.42,P < 0.0001).A lesser sputum positivity ratio at the end of 4 wk (10/67 vs 4/137,P = 0.0068) and decreased incidence of poorly resolved parenchymal lesion at the end of the treatment (9/152 vs 2/278,P = 0.0037) was observed.Improved patient compliance was indicated by nil drop-out in trial vs 10/192 in control group (P < 0.0001).CONCLUSION: The herbal formulation prevented hepatotoxicity significantly and improved the disease outcome as well as patient compliance without any toxicity or side effects.

  11. Risk factors and drug-resistance patterns among pulmonary tuberculosis patients in northern Karnataka region, India

    Directory of Open Access Journals (Sweden)

    Gajanan S Gaude

    2014-01-01

    Full Text Available Background: India is one of the high tuberculosis (TB-burden countries in the world. Resistance to anti-tuberculosis (anti-TB drugs has already become an important and alarming threat in most of the regions worldwide. India ranks second in the world in harbouring multi-drug resistant cases (MDRTB. Prevalence of MDR-TB mirrors the functional state and efficacy of TB control programmes and realistic attitude of the community towards implementation of such programmes. The most important risk factor in the development of MDRTB is improper implementation in the guidelines in the management of TB, and high rate of defaults on the part of the patients. The study was carried out to evaluate the drug resistance pattern to first line anti-TB drugs in Northern Karnataka region, India. Materials and Methods: A prospective study was conducted at J. N. Medical College and its associated Hospitals, Belgaum. Between January 2011 and December 2012, 150 sputum samples of suspected pulmonary TB patients based on the history were examined for the AFB culture by Lowenstein-Jensen (LJ culture technique. A total of two early morning samples were collected for the smear [Ziehl-Neelsen (ZN staining] and culture methods. It was observed that ZN staining for AFB was positive in 113 patients (75%, while AFB culture by LJ medium yielded growth in 66 cases (44%. Thus, a total of 66 AFB culture-positive samples by LJ medium were subjected for AFB drug-sensitivity testing (DST. DST was done for Isoniazid (INH, Rifampicin (RIF, Pyrazinamide (PZA, Ethambutol (EMB and Streptomycin (SM after isolation by using the resistance proportion method. Results: A total of 66 AFB culture-positive specimens, 20 (30.3% cases were sensitive to all the five drugs while 46 (69.7% cases showed resistance to one or more drugs. Among these, the resistance to rifampicin was highest (80.4%, while resistance to isoniazid, pyrazinamide, ethambutol and streptomycin were observed to be 60%, 58.7%, 52

  12. Tuberculosis in Australia: bacteriologically confirmed cases and drug resistance, 2007. A report of the Australian Mycobacterium Reference Laboratory Network.

    Science.gov (United States)

    Lumb, Richard; Bastion, Ivan; Carter, Robyn; Jelfs, Peter; Keehner, Terillee; Sievers, Aina

    2009-09-01

    The Australian Mycobacterium Reference Laboratory Network collects and analyses laboratory data on new cases of disease caused by the Mycobacterium tuberculosis complex. In 2007, a total of 872 cases were identified by bacteriology; an annual reporting rate of 4.1 cases per 100,000 population. Isolates were identified as M. tuberculosis (n=867), M. africanum (n=4) and M. bovis (n=1). Fifteen children aged under 10 years had bacteriologically-confirmed tuberculosis. Results of in vitro drug susceptibility testing were available for 871 of 872 isolates for isoniazid (H), rifampicin (R), ethambutol (E), and pyrazinamide (Z). A total of 98 (11.3%) isolates of M. tuberculosis were resistant to at least one of these anti-tuberculosis agents. Resistance to at least H and R (defined as multi-drug resistance, MDR) was detected in 24 (2.8%) isolates, all from overseas-born patients; 17 were from the respiratory tract (sputum n=16, endotracheal aspirate n=1). Thirteen patients with MDR-TB were from the Papua New Guinea-Torres Strait Islands zone. Of the 98 M. tuberculosis isolates resistant to at least one of the standard drugs, 54 (55.1%) were from new cases, 9 (9.2%) from previously treated cases, and no information was available on the remaining 35 cases. Seven were Australian-born, 90 were overseas- born, and the country of birth of 1 was unknown. Of the 90 overseas-born persons with drug resistant disease, 66 (73.3%) were from 5 countries: India (n=16); Papua New Guinea (n=15); the Philippines (n=12); Vietnam (n=12); and China (n=11). No XDR-TB was detected in 2007. PMID:20043600

  13. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets.

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    Full Text Available Aminoglycosides, amikacin (AK and kanamycin (KM are second line anti-tuberculosis drugs used to treat tuberculosis (TB and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308, Trigger factor (Rv2462c, Dihydrolipoyl dehydrogenase (Rv0462, Elongation factor Tu (Rv0685, Transcriptional regulator MoxR1(Rv1479, Universal stress protein (Rv2005c, 35kDa hypothetical protein (Rv2744c, Proteasome subunit alpha (Rv2109c, Putative short-chain type dehydrogenase/reductase (Rv0148, Bacterioferritin (Rv1876, Ferritin (Rv3841 and Alpha-crystallin/HspX (Rv2031c. Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.

  14. Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets

    Science.gov (United States)

    Sharma, Divakar; Kumar, Bhavnesh; Lata, Manju; Joshi, Beenu; Venkatesan, Krishnamurthy; Shukla, Sangeeta; Bisht, Deepa

    2015-01-01

    Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1(Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM. PMID:26436944

  15. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient with pulmonary tuberculosis turning from drug sensitive to multidrug resistant

    Directory of Open Access Journals (Sweden)

    Amit Singh

    2015-01-01

    Full Text Available Background & objectives: Tuberculosis is a major health problem in India, and the emergence of multidrug resistant (MDR and extensively drug resistant (XDR strains of Mycobacterium tuberculosis (Mtb has further complicated the situation. Though several studies characterizing drug sensitive and drug resistant strains are available in literature, almost all studies are done on unrelated strains. Therefore, the objective of this study was to compare the proteomic data of four sequential isolates of Mtb from a single patient who developed MDR-TB during the course of anti-tuberculosis therapy (ATT. Methods: In this study, using two-dimensional (2D gel electrophoresis and MALDI-TOF mass spectrometry, we compared and analyzed the cell lysate proteins of Mtb sequential clinical isolates from a patient undergoing anti-TB treatment. The mRNA expression levels of selected identified proteins were determined by quantitative real-time polymerase chain reaction (qRT-PCR. Results: The genotypes of all four isolates remained homologous, indicating no re-infection. The initial isolate (before treatment was sensitive to all first-line drugs, but the consecutive isolates were found to be resistant to isoniazid (INH and rifampicin (RIF and developed mutations in the katG, inhA and rpoB. the intensities of 27 protein spots were found to be consistently overexpressed in INH and RIF resistant isolates. The most prominent and overexpressed proteins found during the development of drug resistance were GarA (Rv1827, wag31 (Rv2145c, Rv1437 and Rv2970c. Interpretation & conclusions: This preliminary proteomic study provides an insight about the proteins that are upregulated during drug resistance development. These upregulated proteins, identified here, could prove useful as immunodiagnostic and possibly drug resistant markers in future. However, more studies are required to confirm these findings.

  16. Fármacos no combate à tuberculose: passado, presente e futuro Drugs against tuberculose: past, present and future

    Directory of Open Access Journals (Sweden)

    Marcus Vinícius Nora de Souza

    2005-08-01

    Full Text Available Approximately every minute, somewhere in the world four people die from tuberculosis (TB, an infection of Mycobacterium tuberculosis with about 3 million deaths per year. In spite of these problems, unfortunaly, it is about 40 years that a novel drug was last introduced on the market. Due to the rapid spread of multi-drug resistant TB strains, resistant against all major anti-tuberculosis drugs, and the recent resurgence of the incidence of tuberculosis in association with the human immunodeficiency virus (HIV infection and AIDS, we need urgently the development of new drugs to fight tuberculosis. This is covered in the present article.

  17. Duration of Anti-Tuberculosis Therapy and Timing of Antiretroviral Therapy Initiation: Association with Mortality in HIV-Related Tuberculosis

    Science.gov (United States)

    Cortes, Claudia P.; Wehbe, Firas H.; McGowan, Catherine C.; Shepherd, Bryan E.; Duda, Stephany N.; Jenkins, Cathy A.; Gonzalez, Elsa; Carriquiry, Gabriela; Schechter, Mauro; Padgett, Denis; Cesar, Carina; Madero, Juan Sierra; Pape, Jean W.; Masys, Daniel R.; Sterling, Timothy R.

    2013-01-01

    Background Antiretroviral therapy (ART) decreases mortality risk in HIV-infected tuberculosis patients, but the effect of the duration of anti-tuberculosis therapy and timing of anti-tuberculosis therapy initiation in relation to ART initiation on mortality, is unclear. Methods We conducted a retrospective observational multi-center cohort study among HIV-infected persons concomitantly treated with Rifamycin-based anti-tuberculosis therapy and ART in Latin America. The study population included persons for whom 6 months of anti-tuberculosis therapy is recommended. Results Of 253 patients who met inclusion criteria, median CD4+ lymphocyte count at ART initiation was 64 cells/mm3, 171 (68%) received >180 days of anti-tuberculosis therapy, 168 (66%) initiated anti-tuberculosis therapy before ART, and 43 (17%) died. In a multivariate Cox proportional hazards model that adjusted for CD4+ lymphocytes and HIV-1 RNA, tuberculosis diagnosed after ART initiation was associated with an increased risk of death compared to tuberculosis diagnosis before ART initiation (HR 2.40; 95% CI 1.15, 5.02; P = 0.02). In a separate model among patients surviving >6 months after tuberculosis diagnosis, after adjusting for CD4+ lymphocytes, HIV-1 RNA, and timing of ART initiation relative to tuberculosis diagnosis, receipt of >6 months of anti-tuberculosis therapy was associated with a decreased risk of death (HR 0.23; 95% CI 0.08, 0.66; P=0.007). Conclusions The increased risk of death among persons diagnosed with tuberculosis after ART initiation highlights the importance of screening for tuberculosis before ART initiation. The decreased risk of death among persons receiving > 6 months of anti-tuberculosis therapy suggests that current anti-tuberculosis treatment duration guidelines should be re-evaluated. PMID:24066096

  18. New emerging drug-resistant malaria

    OpenAIRE

    Viroj Wiwanitkit

    2010-01-01

    Viroj WiwanitkitWiwanitkit House, Bangkhae, Bangkok ThailandDate of preparation: 20th August 2008Conflict of interest: None declaredClinical question: What is the best treatment for artemisinin-resistant malaria?Results: There is still no better treatment than the presently used artemisinin-based combination therapies. A new antimalarial drug for this problem needs to be found.Implementation: Pitfalls to avoid when treating drug-resistant malaria:Keywords: malaria, drug resistance

  19. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  20. Drug-Resistant Tuberculosis: Challenges and Progress.

    Science.gov (United States)

    Kurz, Sebastian G; Furin, Jennifer J; Bark, Charles M

    2016-06-01

    Antimicrobial resistance is a natural evolutionary process, which in the case of Mycobacterium tuberculosis is based on spontaneous chromosomal mutations, meaning that well-designed combination drug regimens provided under supervised therapy will prevent the emergence of drug-resistant strains. Unfortunately, limited resources, poverty, and neglect have led to the emergence of drug-resistant tuberculosis throughout the world. The international community has responded with financial and scientific support, leading to new rapid diagnostics, new drugs and regimens in advanced clinical development, and an increasingly sophisticated understanding of resistance mechanisms and their application to all aspects of TB control and treatment. PMID:27208770

  1. THE QUESTIONS OF ALLERGY AND ANTI-TUBERCULOSIS IMMUNITY IN THE WORKS OF М.М. TSEHNOVITSER

    OpenAIRE

    Kuchma Y.U; Moiseenko T.M

    2014-01-01

    The mechanism of anti-tuberculosis immunity drew the attention of scientists since the established of the infectious nature of tuberculosis. The famous ukrainian microbiologist and immunologist M.M. Tsehnovitser in period from 1921 to 1940 years spent a lot of original experiments for elucidation of the role of allergy in the anti-tuberculosis immunity. M.M. Tsehnovitser believed that a common cause of infectious allergy is tuberculosis granuloma, which even at rest eliminated weakened microb...

  2. Overcoming drug resistance by regulating nuclear receptors

    OpenAIRE

    Chen, Taosheng

    2010-01-01

    Drug resistance involves multiple mechanisms. Multidrug resistance (MDR) is the leading cause of treatment failure in cancer therapy. Elevated levels of MDR proteins [members of the ATP-binding cassette (ABC) transporter family] increase cellular efflux and decrease the effectiveness of chemotherapeutic agents. As a salvage approach to overcome drug resistance, inhibitors of MDR proteins have been developed, but have had limited success mainly due to undesired toxicities. Nuclear receptors (N...

  3. The role of glucuronidation in drug resistance.

    Science.gov (United States)

    Mazerska, Zofia; Mróz, Anna; Pawłowska, Monika; Augustin, Ewa

    2016-03-01

    The final therapeutic effect of a drug candidate, which is directed to a specific molecular target strongly depends on its absorption, distribution, metabolism and excretion (ADME). The disruption of at least one element of ADME may result in serious drug resistance. In this work we described the role of one element of this resistance: phase II metabolism with UDP-glucuronosyltransferases (UGTs). UGT function is the transformation of their substrates into more polar metabolites, which are better substrates for the ABC transporters, MDR1, MRP and BCRP, than the native drug. UGT-mediated drug resistance can be associated with (i) inherent overexpression of the enzyme, named intrinsic drug resistance or (ii) induced expression of the enzyme, named acquired drug resistance observed when enzyme expression is induced by the drug or other factors, as food-derived compounds. Very often this induction occurs via ligand binding receptors including AhR (aryl hydrocarbon receptor) PXR (pregnane X receptor), or other transcription factors. The effect of UGT dependent resistance is strengthened by coordinate action and also a coordinate regulation of the expression of UGTs and ABC transporters. This coupling of UGT and multidrug resistance proteins has been intensively studied, particularly in the case of antitumor treatment, when this resistance is "improved" by differences in UGT expression between tumor and healthy tissue. Multidrug resistance coordinated with glucuronidation has also been described here for drugs used in the management of epilepsy, psychiatric diseases, HIV infections, hypertension and hypercholesterolemia. Proposals to reverse UGT-mediated drug resistance should consider the endogenous functions of UGT. PMID:26808161

  4. The imaging feature of multidrug-resistant tuberculosis

    International Nuclear Information System (INIS)

    Objective: To evaluate the imaging features of multidrug-resistant tuberculosis by collecting multidrug-resistant tuberculosis verified by test of drug-sensitivity, which defined as resistance to three anti-tuberculosis drugs. Methods:Fifty-one cases of multidrug-resistant tuberculosis were categorized as group of observed, and 46 cases of drug sensitive tuberculosis were categorized as control. Cultures were positive for Mycobacterium tuberculosis in all cases with no other illness such as diabetes mellitus. All patients had chest radiographs available for review, while 64 cases had tomography and 30 cases had CT during the same time. All images were analyzed by three of the radiologists, disagreement among them was discussed and a consensus was reached. Results: There was no difference in the distribution of lesions between the multidrug-resistant tuberculosis group and control group. However, the radiological findings in the multidrug-resistant tuberculosis group were significantly more common than in control group, such as multiple nodules (10 cases), disseminated foci (23 cases), cavity (9 cases), and complications (10 cases). Comparing the dynamic cases, deteriorating cases were more commonly seen in observed group than in control group, while improved cases were less in observed group than in control group. Conclusion: Multidrug-resistant tuberculosis is the most serious tuberculosis, which is characterized with significant activity, more disseminated foci, cavity, and complications. The lesion deteriorated while correct anti-tuberculosis treatment is applied. (authors)

  5. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-01-01

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination. PMID:26858018

  6. Multidrug resistant to extensively drug resistant tuberculosis: What is next?

    Indian Academy of Sciences (India)

    Amita Jain; Pratima Dixit

    2008-11-01

    Drug resistant tuberculosis is a man made problem. While tuberculosis is hundred percent curable, multidrug resistant tuberculosis (MDR-TB) is difficult to treat. Inadequate and incomplete treatment and poor treatment adherence has led to a newer form of drug resistance known as extensively drug resistant tuberculosis (XDR-TB). XDR-TB is defined as tuberculosis caused by Mycobacterium tuberculosis strain, which is resistant to at least rifampicin and isoniazid among the first line anti tubercular drugs (MDR-TB) in addition to resistance to any fluroquinolones and at least one of three injectable second line anti tubercular drugs i.e. amikacin, kanamycin and/or capreomycin. Mismanagement of tuberculosis paves the way to drug resistant tuberculosis. Emergence of XDR-TB is reported world wide. Reported prevalence rates of XDR-TB of total MDR cases are; 6.6% overall worldwide, 6.5% in industrialized countries, 13.6% in Russia and Eastern Europe, 1.5% in Asia, 0.6% in Africa and Middle East and 15.4% in Republic of Korea. Better management and control of tuberculosis specially drug resistant TB by experienced and qualified doctors, access to standard microbiology laboratory, co-morbitidy of HIV and tuberculosis, new anti-TB drug regimens, better diagnostic tests, international standards for second line drugs (SLD)-susceptibility testing, invention of newer anti-tubercular molecules and vaccines and knowing the real magnitude of XDR-TB are some of the important issues to be addressed for effective prevention and management of XDR-TB.

  7. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  8. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  9. A database of antimalarial drug resistance

    Directory of Open Access Journals (Sweden)

    Ringwald Pascal

    2006-06-01

    Full Text Available Abstract A large investment is required to develop, license and deploy a new antimalarial drug. Too often, that investment has been rapidly devalued by the selection of parasite populations resistant to the drug action. To understand the mechanisms of selection, detailed information on the patterns of drug use in a variety of environments, and the geographic and temporal patterns of resistance is needed. Currently, there is no publically-accessible central database that contains information on the levels of resistance to antimalaria drugs. This paper outlines the resources that are available and the steps that might be taken to create a dynamic, open access database that would include current and historical data on clinical efficacy, in vitro responses and molecular markers related to drug resistance in Plasmodium falciparum and Plasmodium vivax. The goal is to include historical and current data on resistance to commonly used drugs, like chloroquine and sulfadoxine-pyrimethamine, and on the many combinations that are now being tested in different settings. The database will be accessible to all on the Web. The information in such a database will inform optimal utilization of current drugs and sustain the longest possible therapeutic life of newly introduced drugs and combinations. The database will protect the valuable investment represented by the development and deployment of novel therapies for malaria.

  10. Neurostimulation for Drug-Resistant Epilepsy

    OpenAIRE

    DeGiorgio, Christopher M.; Krahl, Scott E.

    2013-01-01

    Purpose of Review: The purpose of this review is to provide an evidence-based update on the neurostimulation options available for patients with drug-resistant epilepsy in the United States and in European countries.

  11. Antiviral Drug Resistance of Human Cytomegalovirus

    OpenAIRE

    Lurain, Nell S.; Chou, Sunwen

    2010-01-01

    Summary: The study of human cytomegalovirus (HCMV) antiviral drug resistance has enhanced knowledge of the virological targets and the mechanisms of antiviral activity. The currently approved drugs, ganciclovir (GCV), foscarnet (FOS), and cidofovir (CDV), target the viral DNA polymerase. GCV anabolism also requires phosphorylation by the virus-encoded UL97 kinase. GCV resistance mutations have been identified in both genes, while FOS and CDV mutations occur only in the DNA polymerase gene. Co...

  12. Antifungal drugs and resistance: Current concepts

    Directory of Open Access Journals (Sweden)

    Pramod Kumar Nigam

    2015-04-01

    Full Text Available Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to these drugs. The main biochemical and molecular mechanisms that contribute to antifungal resistance include reduced uptake of the drug, an active transport out of the cell or modified drug metabolic degradation of the cell, changes in the interaction of the drug to the target site or other enzymes involved in the process by point mutations, overexpression of the target molecule, overproduction or mutation of the target enzyme, amplification and gene conversion (recombination, and increased cellular efflux and occurrence of biofilm. Although, there is considerable knowledge concerning the biochemical, genetic and clinical aspects of resistance to antifungal agents, expansion of our understanding of the mechanisms by which antifungal resistance emerges and spreads, quicker methods for the determination of resistance, targetting efflux pumps, especially ATP binding cassette (ABC transporters and heat shock protein 90, new drug delivery systems, optimizing therapy according to pharmacokinetic and pharmacodynamic characteristics, new classes of antifungal drugs that are active against azole-resistant isolates, and use of combinations of antifungal drugs or use of adjunctive immunostimulatory therapy and other modalities of treatment will clearly be important for future treatment strategies and in preventing development of resistance.

  13. Chemotherapy of Drug-Resistant Malaria

    OpenAIRE

    1996-01-01

    OBJECTIVE: To review the impact of drug-resistant malaria on current management of plasmodial infections.DATA SOURCES: A MEDLINE search of the English-language medical literature from 1985 to 1995; bibliographies of selected papers; international malaria advisory experts.DATA SYNTHESIS: Combinations of artemisinin derivatives and mefloquine or atovaquone plus proguanil appear to be the most active drug regimens against multidrug-resistant falciparum malaria from Southeast Asia. The optimal th...

  14. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  15. Antimalarial drug resistance and combination chemotherapy.

    OpenAIRE

    White, N.

    1999-01-01

    Antimarial drug resistance develops when spontaneously occurring parasite mutants with reduced susceptibility are selected, and are then transmitted. Drugs for which a single point mutation confers a marked reduction in susceptibility are particularly vulnerable. Low clearance and a shallow concentration-effect relationship increase the chance of selection. Use of combinations of antimalarials that do not share the same resistance mechanisms will reduce the chance of selection because the cha...

  16. Drug resistance in Schistosomiasis: a review

    Directory of Open Access Journals (Sweden)

    John I. Bruce

    1987-01-01

    Full Text Available Drug resistance associated with the treatment of human schistosomiasis appears to be an emerging problem requiring more attention from the scientific community than the subject currently receives. Drug-resistant strains of Schistosoma mansoni have been isolated by various investigators as a result of laboratory experimentation or from a combination of field and laboratory studies. Review of this data appears to indicate that the lack of susceptibility observed for some of the isolated strains cannot be ascribed solely to previous administration of antischistosome drugs and thus further studies are required to elucidate this phenomena. Strains of S. mansoni have now been identified from Brazil which are resistant to oxamniquine, hycanthone and niridazole; from Puerto Rico which are resistant to hycanthone and oxamniquine; and from Kenya which are resistant to niridazole and probably oxamniquine. Strains derived by in vitro selection and resistant to oxamniquine and possibly to oltipraz are also available. All of these strains are currently maintained in the laboratory in snails and mice, thus providing for the first time an opportunity for indepth comparative studies. Preliminary data indicates that S. haematobium strains resistant to metrifonate may be occurring in Kenya. This problem could poise great difficulty in the eventual development of antischistosomal agents. Biomphalaria glabrata from Puerto Rico and Brazil were found to be susceptible to drug-resistant S. mansoni from each country.

  17. Drug Resistance Proteins and Refractory Epilepsy

    OpenAIRE

    J Gordon Millichap

    2002-01-01

    Expression of multi-drug resistance gene-1 P-glycoprotein (MDR1) and multidrug resistance-associated protein 1 (MRP1) in refractory epilepsy was studied at the Epilepsy Research Group, Institutes of Neurology and Child Health, University College, London, and Radcliffe Infirmary, Oxford, UK.

  18. Malaria Epidemic and Drug Resistance, Djibouti

    OpenAIRE

    Rogier, Christophe; Pradines, Bruno; H. Bogreau; Koeck, Jean-Louis; Kamil, Mohamed-Ali; Mercereau-Puijalon, Odile

    2005-01-01

    Analysis of Plasmodium falciparum isolates collected before, during, and after a 1999 malaria epidemic in Djibouti shows that, despite a high prevalence of resistance to chloroquine, the epidemic cannot be attributed to a sudden increase in drug resistance of local parasite populations.

  19. [Drug resistant epilepsy. Clinical and neurobiological concepts].

    Science.gov (United States)

    Espinosa-Jovel, Camilo A; Sobrino-Mejía, Fidel E

    2015-08-16

    Drug-resistant epilepsy, is a condition defined by the International League Against Epilepsy as persistent seizures despite having used at least two appropriate and adequate antiepileptic drug treatments. Approximately 20-30% of patients with epilepsy are going to be resistant to antiepileptic drugs, with different patterns of clinical presentation, which are related to the biological basis of this disease (de novo resistance, relapsing-remitting and progressive). Drug resistant epilepsy, impacts negatively the quality of life and significantly increases the risk of premature death. From the neurobiological point of view, this medical condition is the result of the interaction of multiple variables related to the underlying disease, drug interactions and proper genetic aspects of each patient. Thanks to advances in pharmacogenetics and molecular biology research, currently some hypotheses may explain the cause of this condition and promote the study of new therapeutic options. Currently, overexpression of membrane transporters such as P-glycoprotein, appears to be one of the most important mechanisms in the development of drug resistant epilepsy. The objective of this review is to deepen the general aspects of this clinical condition, addressing the definition, epidemiology, differential diagnosis and the pathophysiological bases. PMID:26204087

  20. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2), epirubicin (MCF-7EPI), paclitaxel (MCF-7TAX-2), or docetaxel (MCF-7TXT). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of resistance

  1. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  2. Antimicrobial Drugs in Fighting against Antimicrobial Resistance

    Directory of Open Access Journals (Sweden)

    Guyue eCheng

    2016-04-01

    Full Text Available The outbreak of antimicrobial resistance, together with the lack of newly developed antimicrobial drugs, represents an alarming signal for both human and animal healthcare worldwide. Selection of rational dosage regimens for traditional antimicrobial drugs based on pharmacokinetic/pharmacodynamic principles as well as development of novel antimicrobials targeting new bacterial targets or resistance mechanisms are key approaches in tackling AMR. In addition to the cellular level resistance (i.e., mutation and horizontal gene transfer of resistance determinants, the community level resistance (i.e., bilofilms and persisters is also an issue causing antimicrobial therapy difficulties. Therefore, anti-resistance and antibiofilm strategies have currently become research hotspot to combat antimicrobial resistance. Although metallic nanoparticles can both kill bacteria and inhibit biofilm formation, the toxicity is still a big challenge for their clinical applications. In conclusion, rational use of the existing antimicrobials and combinational use of new strategies fighting against antimicrobial resistance are powerful warranties to preserve potent antimicrobial drugs for both humans and animals.

  3. Coinfection and the evolution of drug resistance.

    Science.gov (United States)

    Hansen, J; Day, T

    2014-12-01

    Recent experimental work in the rodent malaria model has shown that when two or more strains share a host, there is competitive release of drug-resistant strains upon treatment. In other words, the propagule output of a particular strain is repressed when competing with other strains and increases upon the removal of this competition. This within-host effect is predicted to have an important impact on the evolution and growth of resistant strains. However, how this effect translates to epidemiological parameters at the between-host level, the level at which disease and resistance spread, has yet to be determined. Here we present a general, between-host epidemiological model that explicitly takes into account the effect of coinfection and competitive release. Although our model does show that when there is coinfection competitive release may contribute to the emergence of resistance, it also highlights an additional between-host effect. It is the combination of these two effects, the between-host effect and the within-host effect, that determines the overall influence of coinfection on the emergence of resistance. Therefore, even when competitive release of drug-resistant strains occurs, within an infected individual, it is not necessarily true that coinfection will result in the increased emergence of resistance. These results have important implications for the control of the emergence and spread of drug resistance. PMID:25417787

  4. Drug targeting of leptin resistance.

    Science.gov (United States)

    Santoro, Anna; Mattace Raso, Giuseppina; Meli, Rosaria

    2015-11-01

    Leptin regulates glucose, lipid and energy homeostasis as well as feeding behavior, serving as a bridge between peripheral metabolically active tissues and the central nervous system (CNS). Indeed, this adipocyte-derived hormone, whose circulating levels mirror fat mass, not only exerts its anti-obesity effects mainly modulating the activity of specific hypothalamic neurons expressing the long form of the leptin receptor (Ob-Rb), but it also shows pleiotropic functions due to the activation of Ob-Rb in peripheral tissues. Nevertheless, several mechanisms have been suggested to mediate leptin resistance, including obesity-associated hyperleptinemia, impairment of leptin access to CNS and the reduction in Ob-Rb signal transduction effectiveness, among others. During the onset and progression of obesity, the dampening of leptin sensitivity often occurs, preventing the efficacy of leptin replacement therapy from overcoming obesity and/or its comorbidities. This review focuses on obesity-associated leptin resistance and the mechanisms underpinning this condition, to highlight the relevance of leptin sensitivity restoration as a useful therapeutic strategy to treat common obesity and its complications. Interestingly, although promising strategies to counteract leptin resistance have been proposed, these pharmacological approaches have shown limited efficacy or even relevant adverse effects in preclinical and clinical studies. Therefore, the numerous findings from this review clearly indicate a lack of a single and efficacious treatment for leptin resistance, highlighting the necessity to find new therapeutic tools to improve leptin sensitivity, especially in patients with most severe disease profiles. PMID:26071010

  5. Epithelial-mesenchymal Transition and Tumor Drug Resistance

    Directory of Open Access Journals (Sweden)

    Linlin ZHANG

    2013-01-01

    Full Text Available Resistance to antineoplastic drugs is a common problem in cancer treatments. Epithelial-mesenchymal transition (EMT, which plays an important role in the process of drug resistance, may provide opportunity to solve this problem. This article reviews the characteristics of EMT, relationship between EMT and drug resistance, mechanism of EMT in tumor drug resistance in details.

  6. Epithelial-mesenchymal Transition and Tumor Drug Resistance

    OpenAIRE

    Zhang, Linlin; Wu, Zhihao; Zhou, Qinghua

    2013-01-01

    Resistance to antineoplastic drugs is a common problem in cancer treatments. Epithelial-mesenchymal transition (EMT), which plays an important role in the process of drug resistance, may provide opportunity to solve this problem. This article reviews the characteristics of EMT, relationship between EMT and drug resistance, mechanism of EMT in tumor drug resistance in details.

  7. Drug resistance genomics of the antimalarial drug artemisinin.

    Science.gov (United States)

    Winzeler, Elizabeth A; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast Asia are showing that artemisinin-based treatments are beginning to lose their effectiveness, adding renewed urgency to the search for the genetic determinants of parasite resistance to this important drug class. We review the genetic and genomic approaches that have led to an improved understanding of artemisinin resistance, including the identification of resistance-conferring mutations in the P. falciparum kelch13 gene. PMID:25470531

  8. Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints.

    Directory of Open Access Journals (Sweden)

    Stefan Niemann

    and exogenous reinfection might be impossible using standard genotyping tools if the overall diversity of circulating clones is limited. These findings have important implications for clinical trials of new anti-tuberculosis drugs.

  9. Challenges of drug-resistant malaria

    OpenAIRE

    Sinha Shweta; Medhi Bikash; Sehgal Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the glob...

  10. Antifungal drugs and resistance: Current concepts

    OpenAIRE

    Pramod Kumar Nigam

    2015-01-01

    Recently, clinical failure and relapses have been observed in patients treated with antifungals. Drug resistance has become an important problem leading to significant negative social, psychological, and occupational health effects and quality of life. Early recognition and treatment is essential to reduce morbidity and possibility of transmission. The increased use, inappropriate prescribing and over the counter sale of antifungal agents has also added in the development of resistance to the...

  11. Mechanisms of Candida biofilm drug resistance

    OpenAIRE

    Taff, Heather T.; Mitchell, Kaitlin F.; Edward, Jessica A; Andes, David R.

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involvin...

  12. Drug-resistant tuberculosis: emerging treatment options

    Directory of Open Access Journals (Sweden)

    Adhvaryu MR

    2011-12-01

    Full Text Available Meghna Adhvaryu1, Bhasker Vakharia21Department of Biotechnology, SRK Institute of Computer Education and Applied Sciences, 2R&D, Bhuma Research in Ayurvedic and Herbal Medicine, Surat, Gujarat, IndiaAbstract: Multidrug-resistant tuberculosis has emerged worldwide, with an increasing incidence due to failure of implementation of apparently effective first-line antituberculous therapy as well as primary infection with drug-resistant strains. Failure of current therapy is attributed to a long duration of treatment leading to nonadherence and irregular therapy, lack of patient education about the disease, poverty, irregular supply by care providers, drug–drug interactions in patients coinfected with human immunodeficiency virus (HIV, inadequate regulations causing market overlap and irresponsible drug usage in the private sector, and lack of research, with no addition of new drugs in the last four decades. Present standards of care for the treatment of drug-susceptible tuberculosis, multidrug-resistant tuberculosis, tuberculosis-HIV coinfection, and latent tuberculosis infection are all unsatisfactory. Since 2000, the World Health Organization (WHO has focused on drug development for tuberculosis, as well as research in all relevant aspects to discover new regimens by 2015 and to eliminate tuberculosis as a public health concern by 2050. As a result, some 20 promising compounds from 14 groups of drugs have been discovered. Twelve candidates from eight classes are currently being evaluated in clinical trials. Ongoing research should prioritize identification of novel targets and newer application of existing drugs, discovery of multitargeted drugs from natural compounds, strengthening host factors by immunopotentiation with herbal immunomodulators, as well as protective vaccines before and after exposure, consideration of surgical measures when indicated, development of tools for rapid diagnosis, early identification of resistant strains, and

  13. Drug resistance patterns in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Objective: To determine the resistance patterns of mycobacterium tuberculosis (MTB) isolates among category I and II patients of pulmonary tuberculosis. Methods: This cross sectional study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, from November 2008 to September 2009. Patients were divided into category I and II. The sputa were collected, stained with Ziehl-Nielsen (Z-N) staining and ultimately inoculated on Lowenstein-Jensen (L-J) media for six weeks. Out of 890 pulmonary tuberculosis (PTB) patients, the growth was obtained in 285 cases. The Drug sensitivity testing (DST) for Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) Pyrazinamide (PZA) and Streptomycin (SM) were performed. The data was analyzed on SPSS 10.0. A p-value of <0.05 was taken as significant. Result: Out of 285 cases, 176 (61.75%) were male and 109 (38.24%) female. The mean age was 37 +- 19.90 years. The DST showed drug sensitive and drug resistant isolates in 80 (28.05%) and 205 (71.92%) cases respectively (p=0.001). The drug resistant tuberculosis (DR-TB) rates for individual drugs; INH, RIF, EMB, PZA and SM were 51,22%, 15.4%, 13.33%, 9%12, and 3.85% respectively (p=0.03). The MDR-TB isolates were detected in 120 (42.10%) cases, including 5 (5.88%) in category I and 115 (57.50%) in category II patients (p=0.0001). Conclusion: Drug resistant and multidrug resistant tuberculosis was observed mainly in category II patients. However, primary MDR was also observed in category I patients and reflects dissemination of MDR cases within the community. (author)

  14. Co-infection of long-standing extensively drug-resistant Mycobacterium tuberculosis (XDR-TB) and non-tuberculosis mycobacteria: A case report

    OpenAIRE

    Nafiseh Izadi; Mohammad derakhshan; Amin Samiei; Kiarash Ghazvini

    2014-01-01

    We report a 69-years-old Iranian HIV negative male patient, with long-standing pulmonary tuberculosis (eleven years) co-infected with non-tuberculosis mycobacteria. Despite of initiation of first line anti-tuberculosis therapy after diagnosis the patient poorly respond because of low compliance with anti-TB treatment. After several incomplete treatments the smear was still positive and thus drug susceptibility tests were performed on isolated organism which revealed that the organisms was res...

  15. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC: 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs. The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively, but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  16. Antimalarial drug resistance in Africa: key lessons for the future

    OpenAIRE

    Takala-Harrison, Shannon; Laufer, Miriam K

    2015-01-01

    Drug-resistant parasites repeatedly arise as a result of widespread use of antimalarial drugs and have contributed significantly to the failure to control and eradicate malaria throughout the world. In this review, we describe the spread of resistance to chloroquine and sulfadoxine–pyrimethamine, two old drugs that are no longer used owing to high rates of resistance, and examine the effect of the removal of drug pressure on the survival of resistant parasites. Artemisinin-resistant malaria i...

  17. Fresh Air and Good Food: Children and the Anti-Tuberculosis Campaign in the Netherlands c.1900-1940

    Science.gov (United States)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic "mood" was encouraged by a child-saving ethos that focused upon the poor. In this article the author…

  18. Challenges of drug-resistant malaria.

    Science.gov (United States)

    Sinha, Shweta; Medhi, Bikash; Sehgal, Rakesh

    2014-01-01

    Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia-Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria. PMID:25402734

  19. Challenges of drug-resistant malaria

    Directory of Open Access Journals (Sweden)

    Sinha Shweta

    2014-01-01

    Full Text Available Over the past six decades, the drug resistance of Plasmodium falciparum has become an issue of utmost concern. Despite the remarkable progress that has been made in recent years in reducing the mortality rate to about 30% with the scaling-up of vector control, introduction of artemisinin-based combination therapies and other malaria control strategies, the confirmation of artemisinin resistance on the Cambodia–Thailand border threatened all the previous success. This review addresses the global scenario of antimalarial resistance and factors associated with it, with the main emphasis on futuristic approaches like nanotechnology and stem cell therapy that may impede resistant malaria, along with novel medications which are preparing to enter the global antimalarial market. These novel studies are likely to escalate over the coming years and will hopefully help to reduce the burden of malaria.

  20. Drug resistance genomics of the antimalarial drug artemisinin

    OpenAIRE

    Elizabeth A Winzeler; Manary, Micah J

    2014-01-01

    Across the globe, over 200 million annual malaria infections result in up to 660,000 deaths, 77% of which occur in children under the age of five years. Although prevention is important, malaria deaths are typically prevented by using antimalarial drugs that eliminate symptoms and clear parasites from the blood. Artemisinins are one of the few remaining compound classes that can be used to cure multidrug-resistant Plasmodium falciparum infections. Unfortunately, clinical trials from Southeast...

  1. 浙江省耐多药结核病例中二线耐药状况分析%Analysis on second-line drug resistance situation of multiple drug resistant tuberculosis in Zhejiang, China

    Institute of Scientific and Technical Information of China (English)

    陈松华; 王晓萌; 柳正卫; 何海波; 陈彬; 黄玉

    2011-01-01

    目的 通过对肺结核病耐药状况和耐药趋势的调查研究,掌握浙江省目前主要二线抗结核药的耐药状况,为耐药结核病疫情控制提供科学依据.方法 在全省随机抽取30个县区作为样本县,将选例期间发现的1077例涂阳病例纳入耐药监测;按规定要求进行分离培养、分枝杆菌菌种初步鉴定,用H37RV标准菌株常规质控监测,先使用比例法筛选耐药病例,对人组二线抗结核药耐药监测病例的菌株再使用绝对浓度法检测.结果 在耐多药(MDR)病例中各种二线抗结核药物的耐药率卡那霉素(K)9.62%,卷曲霉素(CPM)11.54%,丁胺卡那霉素(AK)7.69%,环丝氨酸(CS)5.77%,氧氟沙星(OFLX)28.85%,对氨基水杨酸(PAS)32.69%.MDR病例中广泛耐药结核病(XDR )耐药率3.85%.结论 调查结果显示浙江省的二线抗结核药物耐药状况比较严重,耐药结核病的控制面临挑战,有必要在今后的工作中进一步提高现代结核病控制策略(DOTS)执行质量,加强实验室对MDR,XDR的检测能力,完善耐药结核病诊疗管理综合体系建设.%Objective To investigate mycobacteriutn tuberculosis drug resistance to second-line drugs in Zhejiang and provide a scientific basis for the prevention and control of drug-resistant TB epidemic. Methods We randomly selected 30 counties for the study. Samples from the selected counties were entered into the group of surveillance if the specimens were smear-positive. The procedures of mycobacteri-um isolation, culture and primary species identification were performed under the guidelines of the Laboratory Procedure of Diagnostic Bacteriology in Tuberculosis. Results The surveillance group had 1 077 smear-positive tuberculosis specimens. Among multiple drug resistant (MDR) cases, the rates of anti-tuberculosis drug resistance to second-line drugs were 9.62%, 11.54%, 7.69%, 5.77%, 28.85% and 32.69% respectively for kanamycin (K), capreomycin (CPM), amikacin (AK), cycloserine (CS

  2. Resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosis patients

    Directory of Open Access Journals (Sweden)

    Nafees Ahmad

    2016-02-01

    Full Text Available Abstract Background Fluoroquinolones are the backbone of multidrug resistant tuberculosis treatment regimens. Despite the high burden of multidrug resistant tuberculosis in the country, little is known about drug resistance patterns, prevalence, and predictors of fluoroquinolones resistance among multidrug resistant tuberculosis patients from Pakistan. Objective To evaluate drug resistance patterns, prevalence, and predictors of fluoroquinolones resistance in multidrug resistant tuberculosis patients. Methods This was a cross-sectional study conducted at a programmatic management unit of drug resistant tuberculosis, Lady Reading Hospital Peshawar, Pakistan. Two hundred and forty-three newly diagnosed multidrug resistant tuberculosis patients consecutively enrolled for treatment at study site from January 1, 2012 to July 28, 2013 were included in the study. A standardized data collection form was used to collect patients’ socio-demographic, microbiological, and clinical data. SPSS 16 was used for data analysis. Results High degree of drug resistance (median 5 drugs, range 2–8 was observed. High proportion of patients was resistant to all five first-line anti-tuberculosis drugs (62.6%, and more than half were resistant to second line drugs (55.1%. The majority of the patients were ofloxacin resistant (52.7%. Upon multivariate analysis previous tuberculosis treatment at private (OR = 1.953, p = 0.034 and public private mix (OR = 2.824, p = 0.046 sectors were predictors of ofloxacin resistance. Conclusion The high degree of drug resistance observed, particularly to fluoroquinolones, is alarming. We recommend the adoption of more restrictive policies to control non-prescription sale of fluoroquinolones, its rational use by physicians, and training doctors in both private and public–private mix sectors to prevent further increase in fluoroquinolones resistant Mycobacterium tuberculosis strains.

  3. Comparative cytotoxic and anti-tuberculosis activity of Aplysina caissara marine sponge crude extracts.

    Science.gov (United States)

    Azevedo, Luciana G; Muccillo-Baisch, Ana L; Filgueira, Daza de M V B; Boyle, Robert T; Ramos, Daniela F; Soares, Andrea D; Lerner, Clea; Silva, Pedro A; Trindade, Gilma S

    2008-01-01

    Three crude extracts of Aplysina caissara, a marine sponge endemic to Brazil, were tested against a hepatoma cell line and Mycobacterium tuberculosis. The results demonstrate that all extracts are toxic and capable of inhibiting cellular growth. Additionally, the extracts produced morphological aberrations and inhibited cell attachment to culture substrates. These effects were dose/time dependent. Our results also suggest that reactive oxygen species (ROS) production is not involved in the cytotoxic processes levied by the extracts employed in this study and that active metabolites are likely to be present in the polar fractions of the crude extracts. Finally, our results indicate that all three extracts exhibit a moderate anti-tuberculosis capacity, and that the removal of an extract's lipid fraction appears to diminish this activity. PMID:17826358

  4. Efficacy Of Anti-Tuberculosis Treatment Alone On Resolution Of Tuberculosis Pleural Effusions

    Directory of Open Access Journals (Sweden)

    V S Selvarajah

    2007-12-01

    Full Text Available To determine the degree of resolution in pleuraleffusions treated with anti-tuberculosis treatment alonewithout thoracentesis, 62 eligible adult cases [mean age(SD, 46 (17 yrs; 77% male] of tuberculosis pleuraleffusions treated in two urban-based university teachinghospitals were retrospectively reviewed for changes ineffusion size at 2, 6 and 12 months after initiation oftreatment. The proportions of patients in whomresolution were complete, partial and unchanged were64.5%, 27.4% and 8.1%. Effusions with size smallerthan three tenth of hemithorax were at three-foldincreased likelihood of complete resolution, comparedwith those with larger effusions [Odds ratio (95% CI:3.295 (1.033 to 10.514; p=0.04]. Consideration forthoracentesis is therefore still important in certainpatients.

  5. Multi Drug Resistant (MDR and Extensively Resistant (XDR Tuberculosis

    Directory of Open Access Journals (Sweden)

    Salih Cesur

    2013-08-01

    Full Text Available Multi drug resistant tuberculosis (MDR-TB is defined as tuberculosis that is resistant to at least isoniazid and rifampicin, the two most powerful first-line anti-TB drugs. Extensively drug resistant tuberculosis (XDR-TB is defined as tuberculosis that is resistant to resistant to isoniazid and rifampin and to any fluoroquinolone and at least one of three injectable second-line drugs (namely, amikacin, kanamicin, or capreomycin. MDR-TB and XDR- TB are great dangers that threaten the public health. XDR-TB has been reported from many countries including the United States. In Turkey, among newly diagnosed cases, it was reported that the number of MDR-TB patients was 101 (3.1%, MDR-TB rate in the retreatment cases was 17.7% (90 patients, and MDR-TB rate in all cases was 5.1 (191 patients in 2005. The percentages were calculated through the number of patients who were tested in terms of susceptibility for both isoniazide and rifampin. In 2009, it was reported that the number of MDR-TB patients was 99 (2.7% among newly diagnosed cases, it was 123 (20.5 % in the retreatment cases and the total number of MDR-TB cases was 222 (5.1%. The first patient with XDR-TB was identified in 2010 in Turkey. Diagnosis of XDR TB takes several weeks by using conventional culture-based methods, although (however some molecular test can detect it rapidly. Treatment of XDR-TB patients is difficult and usually requiring at least 18-24 months of four to six second-line anti-TB drugs. The success rate with the treatment is about 30-50%, and mortality rate is higher in HIV-infected patients. Prevention of contact to XDR-TB patients is more complicated by the lack of a proven effective preventive treatment for XDR latent tuberculosis infection. Rapid diagnostic tests and new anti-TB drugs are needed to control the spread of this worldwide public health problem. [Dis Mol Med 2013; 1(4.000: 72-76

  6. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan;

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers to...

  7. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea. PMID:22089602

  8. Clinical relevance of HCV antiviral drug resistance.

    Science.gov (United States)

    Welsch, C; Zeuzem, S

    2012-10-01

    The approval of direct-acting antiviral agents (DAAs) against the hepatitis C virus (HCV) NS3 protease revolutionized antiviral therapy in chronic hepatitis C. They mark the beginning of an era with drugs designed to inhibit specific viral proteins involved in the virus life cycle rather than the nonspecific antiviral activity of interferon. Upcoming generations of antivirals are expected that lead to viral eradication in most patients who undergo treatment with hope held for years that HCV can be cured without interferon. Antiviral drug resistance plays a key role in DAA-treatment failure. Knowledge on molecular escape mechanisms of resistant variants, their time to wild-type reversal and potential persistence is of upmost importance to design treatment strategies for patients with previous DAA-treatment failure. PMID:23006585

  9. Engaging Resistant Adolescents in Drug Abuse Treatment

    OpenAIRE

    Waldron, Holly Barrett; Kern-Jones, Sheryl; Turner, Charles W.; Peterson, Thomas R.; Ozechowski, Timothy J.

    2006-01-01

    In the first phase of a two-part treatment development study, families with a treatment-resistant, drug-abusing adolescent (n=42) were offered 12 sessions of Community Reinforcement and Family Training (CRAFT). This parent-focused intervention was designed to help parents facilitate their adolescents' entry in treatment and support adolescents' subsequent behavior change and to improve parent and family functioning. In the second phase, successfully engaged adolescents (n=30) were offered 12 ...

  10. Antibacterial Cleaning Products and Drug Resistance

    OpenAIRE

    Aiello, Allison E.; Marshall, Bonnie; Levy, Stuart B.; Della-Latta, Phyllis; Lin, Susan X.; Larson, Elaine

    2005-01-01

    We examined whether household use of antibacterial cleaning and hygiene products is an emerging risk factor for carriage of antimicrobial drug–resistant bacteria on hands of household members. Households (N = 224) were randomized to use of antibacterial or nonantibacterial cleaning and hygiene products for 1 year. Logistic regression was used to assess the influence of antibacterial product use in homes. Antibacterial product use did not lead to a significant increase in antimicrobial drug re...

  11. Multi-drug resistant Ewingella Americana

    International Nuclear Information System (INIS)

    We report a case of pneumonia due to multi-drug resistant Ewingella Americana in a young patient admitted in the Intensive Care Unit of Hera General Hospital, Makkah, Saudi Arabia with severe head injury in a road traffic accident. He was an Indonesian pilgrim who had traveled to the Kingdom of Saudi Arabia to perform Hajj in December 2007. Ewingella Americana was identified to be the pathogen of pneumonia with clinical signs and symptoms along with positive radiological findings. (author)

  12. The challenge of developing robust drugs to overcome resistance

    OpenAIRE

    Anderson, Amy C; Schiffer, Celia; Pollastri, Michael; Peet, Norton P.

    2011-01-01

    Drug resistance is problematic in microbial disease, viral disease and cancer. Understanding at the outset that resistance will impact the effectiveness of any new drug that is developed for these disease categories is imperative. In this Feature, we detail approaches that have been taken with selected drug targets to reduce the susceptibility of new drugs to resistance mechanisms. We will also define the concepts of robust drugs and resilient targets, and discuss how the design of robust dru...

  13. The interplay between drug resistance and fitness in malaria parasites

    OpenAIRE

    Rosenthal, Philip J.

    2013-01-01

    Controlling the spread of antimalarial drug resistance, especially resistance of Plasmodium falciparum to artemisinin-based combination therapies, is a high priority. Available data indicate that, as with other microorganisms, the spread of drug-resistant malaria parasites is limited by fitness costs that frequently accompany resistance. Resistance-mediating polymorphisms in malaria parasites have been identified in putative drug transporters and in target enzymes. The impacts of these polymo...

  14. The genetics of drug resistance in malaria parasites*

    OpenAIRE

    Beale, G. H.

    1980-01-01

    The available experimental data on the genetics of drug resistance in malaria parasites are reviewed. Seven possible mechanisms for the origin of drug resistance are considered, and it is pointed out that spontaneous gene mutation is probably the most important. Experiments on the production of pyrimethamine-resistant and chloroquine-resistant strains of rodent Plasmodium species, and on the inheritance of such drug resistance, are reviewed. Relevant biochemical data are also considered in re...

  15. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  16. Current Perspectives on HIV-1 Antiretroviral Drug Resistance

    OpenAIRE

    Pinar Iyidogan; Anderson, Karen S.

    2014-01-01

    Current advancements in antiretroviral therapy (ART) have turned HIV-1 infection into a chronic and manageable disease. However, treatment is only effective until HIV-1 develops resistance against the administered drugs. The most recent antiretroviral drugs have become superior at delaying the evolution of acquired drug resistance. In this review, the viral fitness and its correlation to HIV-1 mutation rates and drug resistance are discussed while emphasizing the concept of lethal mutagenesis...

  17. Aberrant splicing and drug resistance in AML.

    Science.gov (United States)

    de Necochea-Campion, Rosalia; Shouse, Geoffrey P; Zhou, Qi; Mirshahidi, Saied; Chen, Chien-Shing

    2016-01-01

    The advent of next-generation sequencing technologies has unveiled a new window into the heterogeneity of acute myeloid leukemia (AML). In particular, recurrent mutations in spliceosome machinery and genome-wide aberrant splicing events have been recognized as a prominent component of this disease. This review will focus on how these factors influence drug resistance through altered splicing of tumor suppressor and oncogenes and dysregulation of the apoptotic signaling network. A better understanding of these factors in disease progression is necessary to design appropriate therapeutic strategies recognizing specific alternatively spliced or mutated oncogenic targets. PMID:27613060

  18. Drug Resistant Tuberculosis — Is There Hope?

    OpenAIRE

    Manish Kumar Goel; Pardeep Khanna

    2010-01-01

    Tuberculosis remains a worldwide public healthproblem. India has the highest burden of tuberculosis inthe world and accounts for nearly 2/5th of global burdenand 2/3rd of burden in SEAR countries. The XDR- TB wasfirst described in March 2006 and has also beenreported in India. The emergence of XDR – TB isassociated with a very low probability cure and a highcase fatality as evidenced by various researchers.Extensively drug-resistant tuberculosis is rapidly fatal ifnot treated. Some studies re...

  19. 交联可调式抗结核药物缓释型纳米人工骨体内成骨的观察%Osteogenetic capacity of cross-linked adjustable anti-tuberculosis drug sustained-release artificial composite

    Institute of Scientific and Technical Information of China (English)

    席焱海; 薛敏涛; 叶晓健; 徐宁; 瞿金涛; 刘希麟; 何海龙

    2013-01-01

    目的 观察新型复合材料交联可调式抗结核药物缓释型纳米人工骨复合体(TPB/SA-RFP/PLA)的成骨效能.方法 建立兔股骨骨缺损模型,将TPB/SA-RFP/PLA复合体作为实验组(A组),缺损区填入TPB/SA/PLA材料作为对照组(B组),缺损区不做处理作为空白对照组(C组).分别在术后4、8、12周进行取材,对大体标本进行X线扫描、固定后组织染色和免疫组化定性分析,进而确定交联抗结核药的人工骨复合体的体内成骨性能.结果 大体及组织学观察和X线显示TPB/SA-RFP/PLA复合体同对照组相比较有着良好的成骨效能.同TPB/SA/PLA组比较成骨效能无明显差别.lane-sandhu组织学评分:A组(7.5±0.5)分、B组(7.2±0.3)分、C组(2.5±0.4)分.lane-sandhuX线评分术后12周:A组(8.3±0.3)分、B组(8.6±0.2)分、C组(2.2±0.4)分.TPB/SA-RFP/PLA材料组与空白对照组差异有统计学意义(P<0.05),与TPB/SA/PLA材料组间差异无统计学意义(P>0.05).免疫组化结果显示两组材料组ALP染色呈强阳性,对照组呈弱阳性.结论 复合材料TPB/SA-RFP/PLA具有很好的骨传导性和骨再生能力,复合利福平抗结核药物后不影响复合材料的体内成骨能力.%Objective To explore the osteogenetic capacity of cross-linked adjustable antituberculosis drug sustained-release artificial composite (TPB/SA-RFP/PLA).Methods The model of femur bone defect was established in rabbits.TPB/SA-RFP/PLA complex was implanted into defect parts in the experimental group while TPB/SA/PLA in the blank control group.At Weeks 4,8 and 12,gross specimens received radiographic,histological and immunohistochemical examinations to determine the osteogenetic performance of TPB/SA-RFP/PLA.Results As compared with the control group,TPB/SA-RFP/PLA complex had excellent osteogenic capacities while the TPB/SA/PLA group had no obvious osteogenic difference.Lane-sandhu histological and radiographic ratings demonstrated significant difference between

  20. The medical and surgical treatment of drug-resistant tuberculosis

    OpenAIRE

    Calligaro, Gregory L.; Moodley, Loven; Symons, Greg; Dheda, Keertan

    2014-01-01

    Multi drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant TB (XDR-TB) are burgeoning global problems with high mortality which threaten to destabilise TB control programs in several parts of the world. Of alarming concern is the emergence, in large numbers, of patients with resistance beyond XDR-TB (totally drug-resistant TB; TDR-TB or extremely drug resistant TB; XXDR-TB). Given the burgeoning global phenomenon of MDR-TB, XDR-TB and TDR-TB, and increasing international migrat...

  1. Young Women's Experiences of Resisting Invitations to Use Illicit Drugs

    Science.gov (United States)

    Koehn, Corinne V.; O'Neill, Linda K.

    2011-01-01

    Ten young women were interviewed regarding their experiences of resisting invitations to use illicit drugs. Hermeneutic phenomenology was used to gather and analyze information. One key theme was the motivations that inspired women to refuse drug offers. Young women resisted drug invitations because of their desires to be authentic, protect their…

  2. Evaluation of Idaho's DARE "Drug Abuse Resistance Education Projects."

    Science.gov (United States)

    Silva, Roberta K.

    The goal of DARE (Drug Abuse Resistance Education) is not to completely eliminate the drug and alcohol problems of society. It is a proactive prevention program designed to equip youth (focusing on elementary school) with skills for resisting peer pressure to experiment with drugs, and to manage anger without resorting to violence or the use of…

  3. Evaluation of Idaho's DARE "Drug Abuse Resistance Education" Projects.

    Science.gov (United States)

    Silva, Roberta K.

    The DARE (Drug Abuse Resistance Education) program teaches students decision-making skills, shows them how to resist peer pressure to experiment with drugs and alcohol, and provides positive alternatives to drug use. This report looks at one state's DARE programs. Included are an overview of the implementation process, a program appraisal with…

  4. Bedaquiline: A novel antitubercular drug for multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    H Nagabushan

    2014-01-01

    Full Text Available Multidrug-resistant and extensively drug-resistant tuberculosis (TB are emerging global health threats. Bedaquiline is a new antituberculous drug belonging to the diarylquinoline class that efficiently inhibits the adenosine triphosphate synthase enzyme of Mycobacterium tuberculosis. It is a bactericidal and long-acting drug. It inhibits both dormant as well as replicating bacterial sub-populations and thus shortens the duration of TB treatment. This drug has been approved by the Food and Drug Administration in December 2012 for the management of multidrug resistant-TB. The drug marks the introduction of a new addition to the TB armamentarium after four decades.

  5. The anti-tuberculosis agents under development and the challenges ahead.

    Science.gov (United States)

    Kumar, Deepak; Negi, Beena; Rawat, Diwan S

    2015-01-01

    Tuberculosis (TB) is a serious health problem causing 1.5 million deaths worldwide. After the discovery of first-line anti-TB drugs, the mortality rate declined sharply, however, the emergence of drug-resistant strains and HIV co-infection have led to increased incidence of this disease. A number of new potential antitubercular drug candidates with novel modes of action have entered clinical trials in recent years. Compounds such as gatifloxacin, moxifloxacin and linezolid, the already known antibiotics are currently being evaluated for their anti-TB activity. OPC-67683 and TMC207 have been approved for the treatment of MDR-TB patients recently, while PA-824, SQ109, PNU-100480, AZD5847, LL3858, SQ609, SQ641, BTZ043, DC-159a, CPZEN-45, Q-203, DNB1, TBA-354 are in various phases of clinical and preclinical developments. This review evaluates the current status of TB drug development and future aspects. PMID:26505682

  6. Evaluation of anti-tuberculosis antibodies in healthy contact and non-contacts persons

    International Nuclear Information System (INIS)

    This study was conducted to see the presence of the antimycobacterial antibodies in healthy household contacts of tuberculosis patients and healthy normal subjects who have never been in contact with tuberculosis patients. A total of 200 subjects, 120 with history of household contact and 80 without such history were included in the study. Routine Haematological investigations were performed and all the sera of 200 subjects were tested who 19M, 19G and IgA anti tuberculosis antibodies using ELISA technique. There was no difference in the average age of the household contacts and non-contacts. The complaints of pyrexia, night sweats and loss of weight was more in house hold contacts as compared to non-contacts. The awareness about BCG vaccination was equal among the household contacts and non-contacts. The combined serological positivity of the household contacts was 65.8% and the combined serological positivity for non-contacts was 34.1%. There was no statistically significant difference in the presence of 19M among household contacts as compared to non-contacts. However both IgG and 19A were present in significantly higher number of household contacts as compared to non contacts. This study concludes that the persons living in the house with a patient suffering from active pulmonary tuberculosis (household contact) have more chances of being infected with Mycobacterium tuberculosis as compared to the healthy non-contacts. (author)

  7. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  8. Molecular epidemiology study of Mycobacterium tuberculosis and its susceptibility to anti-tuberculosis drugs in Indonesia

    OpenAIRE

    Lisdawati, Vivi; Puspandari, Nelly; Rif’ati, Lutfah; Soekarno, Triyani; M, Melatiwati; K, Syamsidar; Ratnasari, Lies; Izzatun, Nur; Parwati, Ida

    2015-01-01

    Background Genotyping of Mycobacterium tuberculosis helps to understand the molecular epidemiology of tuberculosis and to address evolutionary questions about the disease spread. Certain genotypes also have implications for the spread of infection and treatment. Indonesia is a very diverse country with a population with multiple ethnicities and cultures and a history of many trade and tourism routes. This study describes the first attempt to map the molecular epidemiology of TB in the Indones...

  9. Treatment of falciparum malaria in the age of drug resistance

    OpenAIRE

    Shanks G

    2006-01-01

    The growing problem of drug resistance has greatly complicated the treatment for falciparum malaria. Whereaschloroquine and sulfadoxine/pyrimethamine could once cure most infections, this is no longer true and requiresexamination of alternative regimens. Not all treatment failures are drug resistant and other issues such asexpired antimalarials and patient compliance need to be considered. Continuation of a failing treatment policyafter drug resistance is established suppresses infections rat...

  10. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika;

    2014-01-01

    Resistance arises quickly during chemotherapeutic selection and is particularly problematic during long-term treatment regimens such as those for tuberculosis, HIV infections, or cancer. Although drug combination therapy reduces the evolution of drug resistance, drug pairs vary in their ability to...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance...... do so. Thus, predictive models are needed to rationally design resistance-limiting therapeutic regimens. Using adaptive evolution, we studied the resistance response of the common pathogen Escherichia coli to 5 different single antibiotics and all 10 different antibiotic drug pairs. By analyzing the...

  11. Delamanid: A new armor in combating drug-resistant tuberculosis

    OpenAIRE

    Alphienes Stanley Xavier; Mageshwaran Lakshmanan

    2014-01-01

    Intense search has been made in the discovery of newer anti-TB drugs to tackle the issues such as drug resistance, HIV co-infection and risk of drug-drug interactions in the management of TB. Delamanid, a newer mycobacterial cell wall synthesis inhibitor, received a conditional approval from European medicines agency (EMA) for the treatment of MDR-TB. Preclinical and clinical studies have shown that delamanid has high potency, least risk for drug-drug interactions and better tolerability.

  12. Stop the Spread of Superbugs: Help Fight Drug Resistant Bacteria

    Science.gov (United States)

    ... the Spread of Superbugs Help Fight Drug-Resistant Bacteria For nearly a century, bacteria-fighting drugs known as antibiotics have helped to control and destroy many of the harmful bacteria that can make us sick. But in recent ...

  13. Nanomedicine therapeutic approaches to overcome cancer drug resistance.

    Science.gov (United States)

    Markman, Janet L; Rekechenetskiy, Arthur; Holler, Eggehard; Ljubimova, Julia Y

    2013-11-01

    Nanomedicine is an emerging form of therapy that focuses on alternative drug delivery and improvement of the treatment efficacy while reducing detrimental side effects to normal tissues. Cancer drug resistance is a complicated process that involves multiple mechanisms. Here we discuss the major forms of drug resistance and the new possibilities that nanomedicines offer to overcome these treatment obstacles. Novel nanomedicines that have a high ability for flexible, fast drug design and production based on tumor genetic profiles can be created making drug selection for personal patient treatment much more intensive and effective. This review aims to demonstrate the advantage of the young medical science field, nanomedicine, for overcoming cancer drug resistance. With the advanced design and alternative mechanisms of drug delivery known for different nanodrugs including liposomes, polymer conjugates, micelles, dendrimers, carbon-based, and metallic nanoparticles, overcoming various forms of multi-drug resistance looks promising and opens new horizons for cancer treatment. PMID:24120656

  14. Klebsiella pneumoniae Antimicrobial Drug Resistance, United States, 1998–2010

    OpenAIRE

    Sanchez, Guillermo V.; Master, Ronald N; Clark, Richard B.; Fyyaz, Madiha; Duvvuri, Padmaraj; Ekta, Gupta; Bordon, Jose

    2013-01-01

    We studied antimicrobial-resistant Klebsiella pneumoniae for 1998–2010 by using data from The Surveillance Network. Susceptibility results (n = 3,132,354) demonstrated significant increases in resistance to all antimicrobial drugs studied, except tetracycline. Cross-resistance among carbapenem-resistant K. pneumoniae was lower for tetracycline and amikacin.

  15. New Developments in Antiepileptic Drug Resistance: An Integrative View

    OpenAIRE

    Schmidt, Dieter; Löscher, Wolfgang

    2009-01-01

    Current theories on drug resistance in epilepsy include the drug transporter hypothesis, the drug target hypothesis, and a novel approach called the inherent severity model of epilepsy, which posits that the severity of the disease determines its relative response to medication. Valuable as each of these hypotheses is, none is currently a stand-alone theory that is able to convincingly explain drug resistance in human epilepsy. As a consequence, it may be of interest to update and integrate t...

  16. Bedaquiline: A novel antitubercular drug for multidrug-resistant tuberculosis

    OpenAIRE

    Nagabushan, H.; H. S. Roopadevi

    2014-01-01

    Multidrug-resistant and extensively drug-resistant tuberculosis (TB) are emerging global health threats. Bedaquiline is a new antituberculous drug belonging to the diarylquinoline class that efficiently inhibits the adenosine triphosphate synthase enzyme of Mycobacterium tuberculosis. It is a bactericidal and long-acting drug. It inhibits both dormant as well as replicating bacterial sub-populations and thus shortens the duration of TB treatment. This drug has been approved by the Food and Dr...

  17. Competitive release of drug resistance following drug treatment of mixed Plasmodium chabaudi infections

    OpenAIRE

    Read Andrew F; Bell Andrew S; Culleton Richard; de Roode Jacobus C

    2004-01-01

    Abstract Background Malaria infections are often genetically diverse, potentially leading to competition between co-infecting strains. Such competition is of key importance in the spread of drug resistance. Methods The effects of drug treatment on within-host competition were studied using the rodent malaria Plasmodium chabaudi. Mice were infected simultaneously with a drug-resistant and a drug-sensitive clone and were then either drug-treated or left untreated. Transmission was assessed by f...

  18. Public health implications of antiretroviral therapy and HIV drug resistance.

    Science.gov (United States)

    Wainberg, M A; Friedland, G

    1998-06-24

    Widespread use of antiretroviral agents and increasing occurrence of human immunodeficiency virus (HIV) strains resistant to these drugs have given rise to a number of important issues. Some of these concerns are distinct from the obvious question of the relationship between drug resistance and treatment failure and have potentially widespread public health implications. The relevant issues include but are not limited to the following: (1) frequency with which drug-resistant virus may be transmitted via sexual, intravenous, or mother-to-child routes; (2) ability of drug-resistant variants to be transmitted, a question that relates, in part, to the relative fitness of such strains; (3) effectiveness of antiviral therapy in diminishing viral burden in both blood and genital secretions, and whether this may be compromised in persons harboring resistant virus; and (4) importance of patient adherence to antiviral therapy and its relationship to sustained reduction in viral load to minimize the appearance in and transmission of drug-resistant virus from both blood and genital secretions. Thus, prevention of both development of HIV drug resistance as well as transmission of drug-resistant variants is a central issue of public health importance. Unless this topic is appropriately addressed, the likelihood is that drug-resistant variants of HIV, if able to successfully replicate, will sustain the epidemic and limit the effectiveness of antiviral therapy. PMID:9643862

  19. Explaining risk factors for drug-resistant tuberculosis in England and Wales: contribution of primary and secondary drug resistance

    OpenAIRE

    Conaty, S. J.; Hayward, A. C.; Story, A; Glynn, J.R.; Drobniewski, F A; Watson, J.M.

    2004-01-01

    Drug-resistant tuberculosis can be transmitted (primary) or develop during the course of treatment (secondary). We investigated risk factors for each type of resistance. We compared all patients in England and Wales with isoniazid- and multidrug-resistant tuberculosis in two time-periods (1993-1994 and 1998-2000) with patients with fully sensitive tuberculosis, examining separately patients without and with previous tuberculosis (a proxy for primary and secondary drug-resistant tuberculosis)....

  20. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  1. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    I.L. Bergval

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive mech

  2. The de novo selection of drug-resistant malaria parasites.

    OpenAIRE

    White, N.J.; Pongtavornpinyo, W.

    2003-01-01

    Antimalarial drug resistance emerges de novo predominantly in areas of low malaria transmission. Because of the logarithmic distribution of parasite numbers in human malaria infections, inadequately treated high biomass infections are a major source of de novo antimalarial resistance, whereas use of antimalarial prophylaxis provides a low resistance selection risk. Slowly eliminated antimalarials encourage resistance largely by providing a selective filter for resistant parasites acquired fro...

  3. Improving Viral Protease Inhibitors to Counter Drug Resistance.

    Science.gov (United States)

    Kurt Yilmaz, Nese; Swanstrom, Ronald; Schiffer, Celia A

    2016-07-01

    Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design. PMID:27090931

  4. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  5. Survival probability of drug resistant mutants in malaria parasites.

    OpenAIRE

    Mackinnon, M. J.

    1997-01-01

    This study predicts the ultimate probability of survival of a newly arisen drug resistant mutant in a population of malaria parasites, with a view to understanding what conditions favour the evolution of drug resistance. Using branching process theory and a population genetics transmission model, the probabilities of survival of one- and two-locus new mutants are calculated as functions of the degree of drug pressure, the mean and variation in transmission rate, and the degree of natural sele...

  6. Dynamics of immune response and drug resistance in malaria infection

    OpenAIRE

    Gurarie David; McKenzie F Ellis

    2006-01-01

    Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains), drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-in...

  7. Drug-Resistant Malaria: The Era of ACT

    OpenAIRE

    Lin, Jessica T.; Juliano, Jonathan J; Wongsrichanalai, Chansuda

    2010-01-01

    As drug-resistant falciparum malaria has continued to evolve and spread worldwide, artemisinin-based combination therapies (ACT) have become the centerpiece of global malaria control over the past decade. This review discusses how advances in antimalarial drug resistance monitoring and rational use of the array of ACTs now available can maximize the impact of this highly efficacious therapy, even as resistance to artemisinins is emerging in Southeast Asia.

  8. Efflux-Mediated Drug Resistance in Bacteria: an Update

    OpenAIRE

    Li, Xian-Zhi; Nikaido, Hiroshi

    2009-01-01

    Drug efflux pumps play a key role in drug resistance and also serve other functions in bacteria. There has been a growing list of multidrug and drug-specific efflux pumps characterized from bacteria of human, animal, plant and environmental origins. These pumps are mostly encoded on the chromosome although they can also be plasmid-encoded. A previous article (Li X-Z and Nikaido H, Drugs, 2004; 64[2]: 159–204) had provided a comprehensive review regarding efflux-mediated drug resistance in bac...

  9. Antimalarial Drugs Clear Resistant Parasites from Partially Immune Hosts

    OpenAIRE

    Cravo, Pedro; Culleton, Richard; Hunt, Paul; Walliker, David; Mackinnon, Margaret J.

    2001-01-01

    Circumstantial evidence in human malaria suggests that elimination of parasites by drug treatment meets higher success rates in individuals having some background immunity. In this study, using the rodent malaria model Plasmodium chabaudi, we show that drug-resistant parasites can be cleared by drugs when the host is partially immune.

  10. Overcome Cancer Cell Drug Resistance Using Natural Products

    Directory of Open Access Journals (Sweden)

    Pu Wang

    2015-01-01

    Full Text Available Chemotherapy is one of the major treatment methods for cancer. However, failure in chemotherapy is not uncommon, mainly due to dose-limiting toxicity associated with drug resistance. Management of drug resistance is important towards successful chemotherapy. There are many reports in the Chinese literature that natural products can overcome cancer cell drug resistance, which deserve sharing with scientific and industrial communities. We summarized the reports into four categories: (1 in vitro studies using cell line models; (2 serum pharmacology; (3 in vivo studies using animal models; and (4 clinical studies. Fourteen single compounds were reported to have antidrug resistance activity for the first time. In vitro, compounds were able to overcome drug resistance at nontoxic or subtoxic concentrations, in a dose-dependent manner, by inhibiting drug transporters, cell detoxification capacity, or cell apoptosis sensitivity. Studies in vivo showed that single compounds, herbal extract, and formulas had potent antidrug resistance activities. Importantly, many single compounds, herbal extracts, and formulas have been used clinically to treat various diseases including cancer. The review provides comprehensive data on use of natural compounds to overcome cancer cell drug resistance in China, which may facilitate the therapeutic development of natural products for clinical management of cancer drug resistance.

  11. Shigella Antimicrobial Drug Resistance Mechanisms, 2004–2014

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert

    2016-01-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004–2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  12. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis. PMID:27191035

  13. Mycobacterium tuberculosis resistance to antituberculosis drugs in Mozambique

    Directory of Open Access Journals (Sweden)

    Germano Manuel Pires

    2014-04-01

    Full Text Available OBJECTIVE: To determine the drug resistance profile of Mycobacterium tuberculosis in Mozambique. METHODS: We analyzed secondary data from the National Tuberculosis Referral Laboratory, in the city of Maputo, Mozambique, and from the Beira Regional Tuberculosis Referral Laboratory, in the city of Beira, Mozambique. The data were based on culture-positive samples submitted to first-line drug susceptibility testing (DST between January and December of 2011. We attempted to determine whether the frequency of DST positivity was associated with patient type or provenance. RESULTS: During the study period, 641 strains were isolated in culture and submitted to DST. We found that 374 (58.3% were resistant to at least one antituberculosis drug and 280 (43.7% were resistant to multiple antituberculosis drugs. Of the 280 multidrug-resistant tuberculosis cases, 184 (65.7% were in previously treated patients, most of whom were from southern Mozambique. Two (0.71% of the cases of multidrug-resistant tuberculosis were confirmed to be cases of extensively drug-resistant tuberculosis. Multidrug-resistant tuberculosis was most common in males, particularly those in the 21-40 year age bracket. CONCLUSIONS: M. tuberculosis resistance to antituberculosis drugs is high in Mozambique, especially in previously treated patients. The frequency of M. tuberculosis strains that were resistant to isoniazid, rifampin, and streptomycin in combination was found to be high, particularly in samples from previously treated patients.

  14. Challenges in the development of drugs for the treatment of tuberculosis

    Directory of Open Access Journals (Sweden)

    Adeeb Shehzad

    2013-02-01

    Full Text Available Tuberculosis infection is a serious human health threat and the early 21st century has seen a remarkable increase in global tuberculosis activity. The pathogen responsible for tuberculosis is Mycobacterium tuberculosis, which adopts diverse strategies in order to survive in a variety of host lesions. These survival mechanisms make the pathogen resistant to currently available drugs, a major contributing factor in the failure to control the spread of tuberculosis. Multiple drugs are available for clinical use and several potential compounds are being screened, synthesized, or evaluated in preclinical or clinical studies. Lasting and effective achievements in the development of anti-tuberculosis drugs will depend largely on the proper understanding of the complex interactions between the pathogen and its human host. Ample evidence exists to explain the characteristics of tuberculosis. In this study, we highlighted the challenges for the development of novel drugs with potent bacteriostatic or bactericidal activity, which reduce the minimum time required to cure tuberculosis infection.

  15. Enhanced Transmission of Drug-Resistant Parasites to Mosquitoes following Drug Treatment in Rodent Malaria

    OpenAIRE

    Bell, Andrew S.; Huijben, Silvie; Paaijmans, Krijn P.; Sim, Derek G.; Chan, Brian H. K.; Nelson, William A.; Read, Andrew F.

    2012-01-01

    The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasm...

  16. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis

    OpenAIRE

    Divya Goel

    2014-01-01

    Tuberculosis (TB) is among the most common infectious diseases and continues as a major global health problem. The scenario is worsened by the emergence and spread of multiple drug-resistant tuberculosis (MDR-TB) and extensive drug-resistant tuberculosis (XDR-TB). Cure rates are high for drug sensitive strains of Myobacterium tuberculosis if treatment protocols are adhered to, but treatment of MDR-TB and extensive drug drug-resistant strains is virtually impossible. The treatment of MDR-TB an...

  17. Totally drug-resistant tuberculosis and adjunct therapies.

    Science.gov (United States)

    Parida, S K; Axelsson-Robertson, R; Rao, M V; Singh, N; Master, I; Lutckii, A; Keshavjee, S; Andersson, J; Zumla, A; Maeurer, M

    2015-04-01

    The first cases of totally drug-resistant (TDR) tuberculosis (TB) were reported in Italy 10 years ago; more recently, cases have also been reported in Iran, India and South Africa. Although there is no consensus on terminology, it is most commonly described as 'resistance to all first- and second-line drugs used to treat TB'. Mycobacterium tuberculosis (M.tb) acquires drug resistance mutations in a sequential fashion under suboptimal drug pressure due to monotherapy, inadequate dosing, treatment interruptions and drug interactions. The treatment of TDR-TB includes antibiotics with disputed or minimal effectiveness against M.tb, and the fatality rate is high. Comorbidities such as diabetes and infection with human immunodeficiency virus further impact on TB treatment options and survival rates. Several new drug candidates with novel modes of action are under late-stage clinical evaluation (e.g., delamanid, bedaquiline, SQ109 and sutezolid). 'Repurposed' antibiotics have also recently been included in the treatment of extensively drug resistant TB. However, because of mutations in M.tb, drugs will not provide a cure for TB in the long term. Adjunct TB therapies, including therapeutic vaccines, vitamin supplementation and/or repurposing of drugs targeting biologically and clinically relevant molecular pathways, may achieve better clinical outcomes in combination with standard chemotherapy. Here, we review broader perspectives of drug resistance in TB and potential adjunct treatment options. PMID:24809736

  18. Antimicrobial (Drug) Resistance: Methicillin-Resistant Staphylococcus aureus (MRSA)

    Science.gov (United States)

    ... Marketing Share this: Main Content Area Methicillin-Resistant Staphylococcus aureus (MRSA) During the past four decades, methicillin-resistant Staphylococcus aureus , or MRSA, has evolved from a controllable ...

  19. Drug-resistance mechanisms and prevalence of Enterobacter cloacae resistant to multi-antibiotics

    Institute of Scientific and Technical Information of China (English)

    张杰; 顾怡明; 俞云松; 周志慧; 杜小玲

    2004-01-01

    @@The main drug-resistance mechanism of gram-negative bacteria is producing β-lactamases. Two kinds of enzymes cause drug resistance by hydrolyzing oxyimino-cephalosporins and aztreonam: one is chromosomally encoded AmpC β-lactamases, the other is plasmid-mediated extended-spectrum β-lactamases (ESBLs). Enterobacter cloacae can produce both of them, so that these strains are seriously resistance to many antibiotics. In order to study the main drug-resistant mechanism in Enterobacter cloacae, PCR and nucleotide sequencing were performed on 58 multidrug resistant strains.

  20. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  1. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger;

    2015-01-01

    calculated using logistic regression with generalized estimating equations. RESULTS: Compared to 74.2% of ART-experienced individuals in 1997, only 5.1% showed evidence of virological failure in 2012. The odds of resistance testing declined after 2004 (global P < 0.001). Resistance was detected in 77.9% of......OBJECTIVES: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. DESIGN: Multinational cohort...... study. METHODS: Individuals in EuroSIDA with virological failure (>1 RNA measurement >500 on ART after >6 months on ART) after 1997 were included. Adjusted odds ratios (aORs) for resistance testing following virological failure and aORs for the detection of resistance among those who had a test were...

  2. Global Chemical Composition and Antioxidant and Anti-Tuberculosis Activities of Various Extracts of Globularia alypum L. (Globulariaceae Leaves

    Directory of Open Access Journals (Sweden)

    François Couderc

    2011-12-01

    Full Text Available In this work, an evaluation of the biological activities of Globularia alypum L. extracts and their global chemical composition was realized. Extracts from G. alypum were obtained by two extraction methods. The composition of polyphenols (8.5–139.95 g gallic acid equivalent/Kg of dry mass, tannins (1.39–18.65 g catechin equivalent/Kg of dry mass, anthocyanins (8.17–70.69 mg cyanidin equivalent/Kg of dry mass and flavonoids (0.31–19.28 g quercetin equivalent/Kg of dry mass was evaluated. The samples were subjected to a screening for their antioxidant activities using the DPPH· and ABTS·+ assays. For the first time, the anti-tuberculosis activity (H37Rv for G. alypum was tested against Mycobacterium tuberculosis. The strongest antioxidant activity was obtained for the methanol extract (IC50 = 15.58 ± 0.168 mg/L and the best anti-tuberculosis activity was obtained for the petroleum ether extract (IC50 = 77 mg/L. We have found a positive correlation between the total phenolics content and the antioxidant activity R2 = 0.88 (DPPH· and R2 = 0.97 (ABTS·+. We have found also a positive correlation between the flavonoid content and the antioxidant activity R2 = 0.91 (DPPH· and R2 = 0.91 (ABTS·+.

  3. Delamanid: A new armor in combating drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Alphienes Stanley Xavier

    2014-01-01

    Full Text Available Intense search has been made in the discovery of newer anti-TB drugs to tackle the issues such as drug resistance, HIV co-infection and risk of drug-drug interactions in the management of TB. Delamanid, a newer mycobacterial cell wall synthesis inhibitor, received a conditional approval from European medicines agency (EMA for the treatment of MDR-TB. Preclinical and clinical studies have shown that delamanid has high potency, least risk for drug-drug interactions and better tolerability.

  4. Bedaquiline for the treatment of drug-resistant tuberculosis.

    Science.gov (United States)

    Bélard, Sabine; Heuvelings, Charlotte C; Janssen, Saskia; Grobusch, Martin P

    2015-05-01

    Bedaquiline is a much-needed novel drug which is highly effective against drug-resistant tuberculosis. While its clinical development has been laudably fast-tracked and the drug is now available for inclusion into treatment regimens when no suitable alternatives exist, clinical experience with bedaquiline is still limited. Phase III trial data and Phase IV studies are needed particularly to study different patient populations and to optimize treatment regimens. Drug resistance to bedaquiline needs to be monitored carefully, and full access to bedaquiline treatment where it is appropriate and needed must be promoted. PMID:25797824

  5. Drug-resistant epilepsy associated with cortical dysplasias

    Directory of Open Access Journals (Sweden)

    I. E. Poverennova

    2013-12-01

    Full Text Available Epilepsy associated with malformations of the cerebral cortex is reported in the literature to account for up to 25% of the total cases of symptomatic epilepsies. It is characterized by the most severe course and often induces drug-resistance in seizures. A group of patients with resistant seizures is singled out among the total number of patients with symptomatic epilepsy caused by cerebral cortical dysgenesis. The most important risk factors for resistance are identified in dysplasias. The prognostically unfavorable clinical features of epilepsy are described. A diagnostic algorithm is proposed to identify risk groups and to prevent drug-resistant forms of epilepsy.

  6. Extensive Drug Resistance Acquired During Treatment of Multidrug-Resistant Tuberculosis

    Science.gov (United States)

    Cegielski, J. Peter; Dalton, Tracy; Yagui, Martin; Wattanaamornkiet, Wanpen; Volchenkov, Grigory V.; Via, Laura E.; Van Der Walt, Martie; Tupasi, Thelma; Smith, Sarah E.; Odendaal, Ronel; Leimane, Vaira; Kvasnovsky, Charlotte; Kuznetsova, Tatiana; Kurbatova, Ekaterina; Kummik, Tiina; Kuksa, Liga; Kliiman, Kai; Kiryanova, Elena V.; Kim, HeeJin; Kim, Chang-ki; Kazennyy, Boris Y.; Jou, Ruwen; Huang, Wei-Lun; Ershova, Julia; Erokhin, Vladislav V.; Diem, Lois; Contreras, Carmen; Cho, Sang Nae; Chernousova, Larisa N.; Chen, Michael P.; Caoili, Janice Campos; Bayona, Jaime; Akksilp, Somsak; Calahuanca, Gloria Yale; Wolfgang, Melanie; Viiklepp, Piret; Vasilieva, Irina A.; Taylor, Allison; Tan, Kathrine; Suarez, Carmen; Sture, Ingrida; Somova, Tatiana; Smirnova, Tatyana G.; Sigman, Erika; Skenders, Girts; Sitti, Wanlaya; Shamputa, Isdore C.; Riekstina, Vija; Pua, Kristine Rose; Therese, M.; Perez, C.; Park, Seungkyu; Norvaisha, Inga; Nemtsova, Evgenia S.; Min, Seonyeong; Metchock, Beverly; Levina, Klavdia; Lei, Yung-Chao; Lee, Jongseok; Larionova, Elena E.; Lancaster, Joey; Jeon, Doosoo; Jave, Oswaldo; Khorosheva, Tatiana; Hwang, Soo Hee; Huang, Angela Song-En; Gler, M. Tarcela; Dravniece, Gunta; Eum, Seokyong; Demikhova, Olga V.; Degtyareva, Irina; Danilovits, Manfred; Cirula, Anda; Cho, Eunjin; Cai, Ying; Brand, Jeanette; Bonilla, Cesar; Barry, Clifton E.; Asencios, Luis; Andreevskaya, Sofia N.; Akksilp, Rattanawadee

    2014-01-01

    Background. Increasing access to drugs for the treatment of multidrug-resistant (MDR) tuberculosis is crucial but could lead to increasing resistance to these same drugs. In 2000, the international Green Light Committee (GLC) initiative began to increase access while attempting to prevent acquired resistance. Methods. To assess the GLC's impact, we followed adults with pulmonary MDR tuberculosis from the start to the end of treatment with monthly sputum cultures, drug susceptibility testing, and genotyping. We compared the frequency and predictors of acquired resistance to second-line drugs (SLDs) in 9 countries that volunteered to participate, 5 countries that met GLC criteria, and 4 countries that did not apply to the GLC. Results. In total, 832 subjects were enrolled. Of those without baseline resistance to specific SLDs, 68 (8.9%) acquired extensively drug-resistant (XDR) tuberculosis, 79 (11.2%) acquired fluoroquinolone (FQ) resistance, and 56 (7.8%) acquired resistance to second-line injectable drugs (SLIs). The relative risk (95% confidence interval [CI]) of acquired resistance was lower at GLC-approved sites: 0.27 (.16–.47) for XDR tuberculosis, 0.28 (.17–.45) for FQ, and 0.15 (.06–.39) to 0.60 (.34–1.05) for 3 different SLIs. The risk increased as the number of potentially effective drugs decreased. Controlling for baseline drug resistance and differences between sites, the odds ratios (95% CIs) were 0.21 (.07–.62) for acquired XDR tuberculosis and 0.23 (.09–.59) for acquired FQ resistance. Conclusions. Treatment of MDR tuberculosis involves substantial risk of acquired resistance to SLDs, increasing as baseline drug resistance increases. The risk was significantly lower in programs documented by the GLC to meet specific standards. PMID:25057101

  7. Bedaquiline: A novel drug to combat multiple drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Divya Goel

    2014-01-01

    Full Text Available Tuberculosis (TB is among the most common infectious diseases and continues as a major global health problem. The scenario is worsened by the emergence and spread of multiple drug-resistant tuberculosis (MDR-TB and extensive drug-resistant tuberculosis (XDR-TB. Cure rates are high for drug sensitive strains of Myobacterium tuberculosis if treatment protocols are adhered to, but treatment of MDR-TB and extensive drug drug-resistant strains is virtually impossible. The treatment of MDR-TB and XDR-TB relies on the drugs, which are less potent, more toxic and more costly and have to be administered for the longer duration. No new drug had come in to market for last 40 years, but the emergence of MDR-TB and XDR-TB has spurred interest in the development of novel drugs. For the effective treatment outcome, there is a dire need of new drugs with a different mechanism of action that can tackle both drug sensitive as well as drug-resistant strains. Bedaquiline is one such new drug with unique mechanism of action. Food and Drug Administration has approved bedaquiline for MDR-TB in December 2012. This article reviews the available evidence of efficacy and safety of bedaquiline.

  8. The evolution of drug-resistant malaria

    OpenAIRE

    Plowe, Christopher V.

    2008-01-01

    Molecular epidemiological investigations have uncovered the patterns of emergence and global spread of Plasmodium falciparum resistance to chloroquine and sulfadoxine-pyrimethamine. Malaria parasites highly resistant to chloroquine and pyrimethamine spread from Asian origins to Africa, at great cost to human health and life. If artemisinin-resistant falciparum malaria follows the same pattern, renewed efforts to eliminate and eradicate malaria will be gravely threatened. This paper, adapted f...

  9. Antibiotics in Animal Feed Contribute to Drug-Resistant Germs

    Science.gov (United States)

    ... medlineplus/news/fullstory_158316.html Antibiotics in Animal Feed Contribute to Drug-Resistant Germs: Study Individual farm ... HealthDay News) -- Use of antibiotics in farm animal feed is helping drive the worldwide increase in antibiotic- ...

  10. Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis.

    NARCIS (Netherlands)

    Gandhi, N.R.; Nunn, P.; Dheda, K.; Schaaf, H.S.; Zignol, M.; Soolingen, D. van; Jensen, P.; Bayona, J.

    2010-01-01

    Although progress has been made to reduce global incidence of drug-susceptible tuberculosis, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis during the past decade threatens to undermine these advances. However, countries are responding far too slowly. Of

  11. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  12. Highly active ozonides selected against drug resistant malaria

    Directory of Open Access Journals (Sweden)

    Lis Lobo

    2016-01-01

    Full Text Available Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART, artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites.

  13. Highly active ozonides selected against drug resistant malaria.

    Science.gov (United States)

    Lobo, Lis; Sousa, Bruno de; Cabral, Lília; Cristiano, Maria Ls; Nogueira, Fátima

    2016-06-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  14. Highly active ozonides selected against drug resistant malaria

    Science.gov (United States)

    Lobo, Lis; de Sousa, Bruno; Cabral, Lília; Cristiano, Maria LS; Nogueira, Fátima

    2016-01-01

    Ever increasing multi-drug resistance by Plasmodium falciparum is creating new challenges in malaria chemotherapy. In the absence of licensed vaccines, treatment and prevention of malaria is heavily dependent on drugs. Potency, range of activity, safety, low cost and ease of administration are crucial issues in the design and formulation of antimalarials. We have tested three synthetic ozonides NAC89, LC50 and LCD67 in vitro and in vivo against multidrug resistant Plasmodium. In vitro, LC50 was at least 10 times more efficient inhibiting P. falciparum multidrug resistant Dd2 strain than chloroquine and mefloquine and as efficient as artemisinin (ART), artesunate and dihydroartemisinin. All three ozonides showed high efficacy in clearing parasitaemia in mice, caused by multi-drug resistant Plasmodium chabaudi strains, by subcutaneous administration, demonstrating high efficacy in vivo against ART and artesunate resistant parasites. PMID:27276364

  15. Targeting imperfect vaccines against drug-resistance determinants: a strategy for countering the rise of drug resistance.

    Directory of Open Access Journals (Sweden)

    Regina Joice

    Full Text Available The growing prevalence of antimicrobial resistance in major pathogens is outpacing discovery of new antimicrobial classes. Vaccines mitigate the effect of antimicrobial resistance by reducing the need for treatment, but vaccines for many drug-resistant pathogens remain undiscovered or have limited efficacy, in part because some vaccines selectively favor pathogen strains that escape vaccine-induced immunity. A strain with even a modest advantage in vaccinated hosts can have high fitness in a population with high vaccine coverage, which can offset a strong selection pressure such as antimicrobial use that occurs in a small fraction of hosts. We propose a strategy to target vaccines against drug-resistant pathogens, by using resistance-conferring proteins as antigens in multicomponent vaccines. Resistance determinants may be weakly immunogenic, offering only modest specific protection against resistant strains. Therefore, we assess here how varying the specific efficacy of the vaccine against resistant strains would affect the proportion of drug-resistant vs. -sensitive strains population-wide for three pathogens--Streptococcus pneumoniae, Staphylococcus aureus, and influenza virus--in which drug resistance is a problem. Notably, if such vaccines confer even slightly higher protection (additional efficacy between 1% and 8% against resistant variants than sensitive ones, they may be an effective tool in controlling the rise of resistant strains, given current levels of use for many antimicrobial agents. We show that the population-wide impact of such vaccines depends on the additional effect on resistant strains and on the overall effect (against all strains. Resistance-conferring accessory gene products or resistant alleles of essential genes could be valuable as components of vaccines even if their specific protective effect is weak.

  16. Drug resistance in the sexually transmitted protozoan Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    REBECCA L DUNNE; LINDA A DUNN; PETER UPCROFT; PETER J O'DONOGHUE; JACQUELINE A UPCROFT

    2003-01-01

    Trichomoniasis is the most common, sexually transmitted infection. It is caused by the flagellated protozoan parasite Trichomonas vaginalis. Symptoms include vaginitis and infections have been associated with preterm delivery, low birth weight and increased infant mortality, as well as predisposing to HIV/AIDS and cervical cancer. Trichomoniasis has the highest prevalence and incidence of any sexually transmitted infection. The 5-nitroimidazole drugs, of which metronidazole is the most prescribed, are the only approved,effective drugs to treat trichomoniasis. Resistance against metronidazole is frequently reported and crossresistance among the family of 5-nitroimidazole drugs is common, leaving no alternative for treatment, with some cases remaining unresolved. The mechanism of metronidazole resistance in T. vaginalis from treatment failures is not well understood, unlike resistance which is developed in the laboratory under increasing metronidazole pressure. In the latter situation, hydrogenosomal function which is involved in activation of the prodrug, metronidazole, is down-regulated. Reversion to sensitivity is incomplete after removal of drug pressure in the highly resistant parasites while clinically resistant strains, so far analysed, maintain their resistance levels in the absence of drug pressure. Although anaerobic resistance has been regarded as a laboratory induced phenomenon, it clearly has been demonstrated in clinical isolates. Pursuit of both approaches will allow dissection of the underlying mechanisms. Many alternative drugs and treatments have been tested in vivo in cases of refractory trichomoniasis, as well as in vitro with some successes including the broad spectrum anti-parasitic drug nitazoxanide. Drug resistance incidence in T. vaginalis appears to be on the increase and improved surveillance of treatment failures is urged.

  17. Fitness of Leishmania donovani parasites resistant to drug combinations.

    OpenAIRE

    Raquel García-Hernández; Verónica Gómez-Pérez; Santiago Castanys; Francisco Gamarro

    2015-01-01

    Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc lin...

  18. Molecular Biology of Drug Resistance in Mycobacterium tuberculosis

    OpenAIRE

    Smith, Tasha; Wolff, Kerstin A; Nguyen, Liem

    2013-01-01

    Tuberculosis (TB) has become a curable disease thanks to the discovery of antibiotics. However, it has remained one of the most difficult infections to treat. Most current TB regimens consist of six to nine months of daily doses of four drugs that are highly toxic to patients. The purpose of these lengthy treatments is to completely eradicate Mycobacterium tuberculosis, notorious for its ability to resist most antibacterial agents, thereby preventing the formation of drug resistant mutants. O...

  19. Tiagabine add-on for drug-resistant partial epilepsy

    OpenAIRE

    Pereira, J; Marson, A G; Hutton, J L

    2012-01-01

    Cochrane Database Syst Rev. 2002;(3):CD001908. Tiagabine add-on for drug-resistant partial epilepsy. Pereira J, Marson AG, Hutton JL. Servico de Neurologia, Hospital de Santo Antonio, Largo Prof. Abel Salazar, 4099-001 Porto, Portugal. Abstract BACKGROUND: Epilepsy is a common neurological condition, affecting almost 0.5 to 1 per cent of the population. Nearly 30 per cent of people with epilepsy are resistant to currently available drugs. Tiagabine...

  20. Combined antiretroviral and antituberculosis drug resistance following incarceration

    Directory of Open Access Journals (Sweden)

    Katharine Elizabeth Stott

    2013-09-01

    Full Text Available We describe a case of HIV/tuberculosis (TB co-infection from KwaZulu-Natal, South Africa, characterised by drug resistance in both pathogens. The development of drug resistance was linked temporally to two periods of incarceration. This highlights the urgent need for improved integration of HIV/TB control strategies within prison health systems and within the broader public health framework.

  1. Nanodrug Formed by Coassembly of Dual Anticancer Drugs to Inhibit Cancer Cell Drug Resistance.

    Science.gov (United States)

    Zhao, Yuanyuan; Chen, Fei; Pan, Yuanming; Li, Zhipeng; Xue, Xiangdong; Okeke, Chukwunweike Ikechukwu; Wang, Yifeng; Li, Chan; Peng, Ling; Wang, Paul C; Ma, Xiaowei; Liang, Xing-Jie

    2015-09-01

    Carrier-free pure nanodrugs (PNDs) that are composed entirely of pharmaceutically active molecules are regarded as promising candidates to be the next generation of drug formulations and are mainly formulated from supramolecular self-assembly of drug molecules. It benefits from the efficient use of drug compounds with poor aqueous solubility and takes advantage of nanoscale drug delivery systems. Here, a type of all-in-one nanoparticle consisting of multiple drugs with enhanced synergistic antiproliferation efficiency against drug-resistant cancer cells has been created. To nanoparticulate the anticancer drugs, 10-hydroxycamptothecin (HCPT) and doxorubicin (DOX) were chosen as a typical model. The resulting HD nanoparticles (HD NPs) were formulated by a "green" and convenient self-assembling method, and the water-solubility of 10-hydroxycamptothecin (HCPT) was improved 50-fold after nanosizing by coassembly with DOX. The formation process was studied by observing the morphological changes at various reaction times and molar ratios of DOX to HCPT. Molecular dynamics (MD) simulations showed that DOX molecules tend to assemble around HCPT molecules through intermolecular forces. With the advantage of nanosizing, HD NPs could improve the intracellular drug retention of DOX to as much as 2-fold in drug-resistant cancer cells (MCF-7R). As a dual-drug-loaded nanoformulation, HD NPs effectively enhanced drug cytotoxicity to drug-resistant cancer cells. The combination of HCPT and DOX exhibited a synergistic effect as the nanosized HD NPs improved drug retention in drug-resistant cancer cells against P-gp efflux in MCF-7R cells. Furthermore, colony forming assays were applied to evaluate long-term inhibition of cancer cell proliferation, and these assays confirmed the greatly improved cytotoxicity of HD NPs in drug-resistant cells compared to free drugs. PMID:26270258

  2. Sublineages of Mycobacterium tuberculosis Beijing genotype strains and unfavorable outcomes of anti-tuberculosis treatment.

    Science.gov (United States)

    Hang, Nguyen T L; Maeda, Shinji; Keicho, Naoto; Thuong, Pham H; Endo, Hiroyoshi

    2015-05-01

    The influence of Mycobacterium tuberculosis (MTB) lineages/sublineages on unfavorable tuberculosis (TB) treatment outcomes is poorly understood. We investigated the effects of Beijing genotype sublineages and other factors contributing to treatment outcome. Patients newly diagnosed with sputum smear-positive and culture-positive TB in Hanoi, Vietnam, participated in the study. After receiving anti-TB treatment, they were intensively followed up for the next 16 months. MTB isolates collected before treatment were subjected to drug susceptibility testing, and further analyzed to determine MTB (sub) lineages and their clonal similarities. Of 430 patients, 17 had treatment failure and 30 had TB recurrence. Rifampicin resistance was associated with treatment failure {adjusted odds ratio = 6.64 [95% confidence interval (CI), 1.48-29.73]}. The modern Beijing genotype was significantly associated with recurrent TB within 16 months [adjusted hazard ratio = 3.29 (95% CI, 1.17-9.27)], particularly after adjustment for the relevant antibiotic resistance. Human immunodeficiency virus coinfection and severity on chest radiographs were not significantly associated with unfavorable outcomes. Our findings provide further understanding of the influence of MTB strains on unfavorable treatment outcomes. Multiple risk factors should be considered for the optimal management of TB. PMID:25732626

  3. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R;

    2014-01-01

    with nonnucleoside reverse transcriptase inhibitor (NNRTIs)-resistant virus in South Africa, 275 000 in majority virus [Non-nucleoside reverse transcriptase inhibitor resistant virus present in majority virus (NRMV)] with an unsuppressed viral load. If current diagnosis and retention in care and...

  4. Sphingolipids in neuroblastoma : Their role in drug resistance mechanisms

    NARCIS (Netherlands)

    Sietsma, H; Dijkhuis, AJ; Kamps, W; Kok, JW

    2002-01-01

    Disseminated neuroblastoma usually calls for chemotherapy as the primary approach for treatment. Treatment failure is often attributable to drug resistance. This involves a variety of cellular mechanisms, including increased drug efflux through expression of ATP-binding cassette transporters (e.g.,

  5. Mechanisms of acquired resistance to androgen receptor targeting drugs in castration resistant prostate cancer

    OpenAIRE

    Chism, David D.; De Silva, Dinuka; Whang, Young E.

    2014-01-01

    After initial response to androgen receptor targeting drugs abiraterone or enzalutamide, most patients develop progressive disease and therefore, castration resistant prostate cancer (CRPC) remains a terminal disease. Multiple mechanisms underlying acquired resistance have been postulated. Intratumoral androgen synthesis may resume after abiraterone treatment. A point mutation in the ligand binding domain of androgen receptor may confer resistance to enzalutamide. Emergence of androgen recept...

  6. (Post-)genomic approaches to tackle drug resistance in Leishmania

    OpenAIRE

    Berg, Maya; Mannaert, An; Vanaerschot, Manu; Van Der Auwera, Gert; Dujardin, Jean-Claude

    2013-01-01

    Abstract: Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-) genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration...

  7. Gene-Drug Interactions and the Evolution of Antibiotic Resistance

    OpenAIRE

    Palmer, Adam Christopher

    2012-01-01

    The evolution of antibiotic resistance is shaped by interactions between genes, the chemical environment, and an antibiotic's mechanism of action. This thesis explores these interactions with experiments, theory, and analysis, seeking a mechanistic understanding of how different interactions between genes and drugs can enhance or constrain the evolution of antibiotic resistance. Chapter 1 investigates the effects of the chemical decay of an antibiotic. Tetracycline resistant and sensitive bac...

  8. Study on Drug Resistance and Relative Mechanisms of Chlamydia Trachomatis

    Institute of Scientific and Technical Information of China (English)

    侯淑萍; 刘全忠

    2004-01-01

    Abstract: Chlamydia Trachomatis (C.T.) is one of the most common pathogens of human sexually transmitted diseases. Treatment of C.T. infection primarily depends on Tetracyclines, Macrolides and Quinolones, but with the wide use of antibiotics an increasing number of drug-resistant Chlamydia trachomatis cases have been reported. This review summarizes the resistant conditions and the possible resistance mechanisms of C.T..

  9. Extensively Drug-Resistant Tuberculosis (XDR TB)

    Science.gov (United States)

    ... American Community Summit Background Slideset Children Correctional Facilities Homelessness International Travelers Pregnancy Health Disparities Laboratory Information Model Performance Evaluation Program (MPEP) Drug Susceptibility Testing The Uses of Nucleic Acid Amplification ...

  10. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  11. Drug resistance pattern among afb smear positive retreatment completed cases

    International Nuclear Information System (INIS)

    Worldwide, multidrug resistance (MDR TB) is a serious issue. It has increased over the last decade. Re-treatment completed sputum smear positive cases have much higher incidence of MDR- TB as compared to primary MDR - TB. Objective: To estimate the incidence of drug resistance pattern among AFB smear positive re-treatment completed cases. Study Design: Evidence based prospective study. Study Setting: Institute of Chest Medicine, Mayo Hospital Lahore, Tertiary care hospital affiliated with King Edward Medical University, Lahore, Pakistan. Methodology: A total 50 (Male 22, Female 28) pulmonary TB patients who had completed Re- treatment regimen in the past and are still sputum smear positive for acid fast Bacilli were included in the study. Three consecutive sputum specimens were collected at Aga Khan University collection center at Lahore. The specimen were sent to Aga Khan University Lab Karachi for AFB smear, culture and drug sensitivity both for essential and reserve drugs. Reports for AFB smear were received within a week, while culture and drug sensitivity' reports after 6 weeks. Reports data was analyzed for essential and reserve anti tuberculous drug sensitivity for mycobacterium tuberculosis. Results: Data Analysis revealed MDR TB in 31(62%) patients which include 11 males and 23 females. Individual drug resistance to essential drugs was INH - 62%, Rifampicin - 68%, Ethambutol - 24%, PZA - 25% and Streptomycin - 21 %. Poly drug resistance was determined in' 38% cases. Individual drug resistance to reserve drugs - kanamycin, Amikacin, ofloxacin, Ethionamide and PAS was 4%, 4%, 36%, 10% and 2% respectively. Conclusion: There is a very high proportion of MDR TB in sputum smear AFB positive retreatment cases. Suggestion: Comprehensive measures including DO- TS PLUS are needed to control MDR TB in Pakistan. (author)

  12. Update on antifungal drug resistance mechanisms of Aspergillus fumigatus.

    Science.gov (United States)

    Chamilos, G; Kontoyiannis, D P

    2005-12-01

    Although the arsenal of agents with anti-Aspergillus activity has expanded over the last decade, mortality due to invasive aspergillosis (IA) remains unacceptably high. Aspergillus fumigatus still accounts for the majority of cases of IA; however less susceptible to antifungals non-fumigatus aspergilli began to emerge. Antifungal drug resistance of Aspergillus might partially account for treatment failures. Recent advances in our understanding of mechanisms of antifungal drug action in Aspergillus, along with the standardization of in vitro susceptibility testing methods, has brought resistance testing to the forefront of clinical mycology. In addition, molecular biology has started to shed light on the mechanisms of resistance of A. fumigatus to azoles and the echinocandins, while genome-based assays show promise for high-throughput screening for genotypic antifungal resistance. Several problems remain, however, in the study of this complex area. Large multicenter clinical studies--point prevalence or longitudinal--to capture the incidence and prevalence of antifungal resistance in A. fumigatus isolates are lacking. Correlation of in vitro susceptibility with clinical outcome and susceptibility breakpoints has not been established. In addition, the issue of cross-resistance between the newer triazoles is of concern. Furthermore, in vitro resistance testing for polyenes and echinocandins is difficult, and their mechanisms of resistance are largely unknown. This review examines challenges in the diagnosis, epidemiology, and mechanisms of antifungal drug resistance in A. fumigatus. PMID:16488654

  13. Modeling and predicting drug resistance rate and strength.

    Science.gov (United States)

    Fullybright, R; Dwivedi, A; Mallawaarachchi, I; Sinsin, B

    2016-08-01

    Drug resistance has been worsening in human infectious diseases medicine over the past several decades. Our ability to successfully control resistance depends to a large extent on our understanding of the features characterizing the process. Part of that understanding includes the rate at which new resistance has been emerging in pathogens. Along that line, resistance data covering 90 infectious diseases, 118 pathogens, and 337 molecules, from 1921 through 2007, are modeled using various statistical tools to generate regression models for the rate of new resistance emergence and for cumulative resistance build-up in pathogens. Thereafter, the strength of the association between the number of molecules put on the market and the number of resulting cases of resistance is statistically tested. Predictive models are presented for the rate at which new resistance has been emerging in infectious diseases medicine, along with predictive models for the rate of cumulative resistance build-up in the aggregate of 118 pathogens as well as in ten individual pathogens. The models are expressed as a function of time and/or as a function of the number of molecules put on the market by the pharmaceutical industry. It is found that molecules significantly induce resistance in pathogens and that new or cumulative drug resistance across infectious diseases medicine has been arising at exponential rates. PMID:27209288

  14. Supramolecular Antibiotic Switches: A Potential Strategy for Combating Drug Resistance.

    Science.gov (United States)

    Bai, Haotian; Lv, Fengting; Liu, Libing; Wang, Shu

    2016-08-01

    Bacterial infectious disease is a serious public health concern throughout the world. Pathogen drug resistance, arising from both rational use and abuse/misuse of germicides, complicates the situation. Aside from developing novel antibiotics and antimicrobial agents, molecular approaches have become another significant method to overcome the problem of pathogen drug resistance. Established supramolecular systems, the antibiotic properties of which can be switched "on" and "off" through host-guest interactions, show great potential in combating issues regarding antibiotic resistance in the long term, as indicated by several recent studies. In this Concept, recently developed strategies for antibacterial regulation are summarized and further directions for research into antibiotic switches are proposed. PMID:27312106

  15. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes.

    Science.gov (United States)

    Rudramurthy, Gudepalya Renukaiah; Swamy, Mallappa Kumara; Sinniah, Uma Rani; Ghasemzadeh, Ali

    2016-01-01

    Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals). Antimicrobials are considered "miracle drugs" and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs) depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future. PMID:27355939

  16. Challenges of drug resistance in the management of pancreatic cancer.

    LENUS (Irish Health Repository)

    Sheikh, Rizwan

    2012-02-01

    The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and\\/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.

  17. Long non-coding RNAs in cancer drug resistance development.

    Science.gov (United States)

    Majidinia, Maryam; Yousefi, Bahman

    2016-09-01

    The presence or emergence of chemoresistance in tumor cells is a major burden in cancer therapy. While drug resistance is a multifactorial phenomenon arising from altered membrane transport of drugs, altered drug metabolism, altered DNA repair, reduced apoptosis rate and alterations of drug metabolism, it can also be linked to genetic and epigenetic factors. Long non-coding RNAs (lncRNAs) have important regulatory roles in many aspects of genome function including gene transcription, splicing, and epigenetics as well as biological processes involved in cell cycle, cell differentiation, development, and pluripotency. As such, it may not be surprising that some lncRNAs have been recently linked to carcinogenesis and drug resistance/sensitivity. Research is accelerating to decipher the exact molecular mechanism of lncRNA-regulated drug resistance and its therapeutic implications. In this article, we will review the structure, biogenesis, and mode of action of lncRNAs. Then, the involvement of lncRNAs in drug resistance will be discussed in detail. PMID:27427176

  18. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  19. Alcohol and drug use disorders, HIV status and drug resistance in a sample of Russian TB patients

    Science.gov (United States)

    Fleming, M. F.; Krupitsky, E.; Tsoy, M.; Zvartau, E.; Brazhenko, N.; Jakubowiak, W.; E. McCaul, M.

    2006-01-01

    SUMMARY SETTING: Alcohol use, tuberculosis (TB) drug resistance and human immunodeficiency virus (HIV) risk behavior are of increasing concern in Russian TB patients. DESIGN: A prevalence study of alcohol use and HIV risk behavior was conducted in a sample of 200 adult men and women admitted to TB hospitals in St Petersburg and Ivanovo, Russia. RESULTS: Of the subjects, 72% were men. The mean age was 41. Active TB was diagnosed using a combination of chest X-ray, sputum smears and sputum cultures. Sixty-two per cent met DSM-IV criteria for current alcohol abuse or dependence. Drug use was uncommon, with only two patients reporting recent intravenous heroin use. There was one case of HIV infection. The mean total risk assessment battery score was 3.4. Depression was present in 60% of the sample, with 17% severely depressed. Alcohol abuse/dependence was associated with an eight-fold increase in drug resistance (OR 8.58; 95% CI 2.09-35.32). Patients with relapsing or chronic TB were more likely to meet the criteria for alcohol abuse/dependence (OR 2.56; 95% CI 1.0-6.54). CONCLUSION: Alcohol use disorders are common in patients being treated for active TB, and are associated with significant morbidity. Additional surveys are needed to examine the relationship between alcohol use disorders and anti-tuberculosis drug resistance. CONTEXTE: Chezles patients tuberculeux russes, l’utilisation d’alcool, la résistance aux médicaments antituberculeux et un comportement à risque pour le virus de l’immunodéficience humaine (VIH) sont des sujets croissants d’inquiétude. SCHÉMA: Une étude: de prévalence de l’utilisation d’alcool et du comportement à risque pour le VIH a été menée sur un échantillon de 200 hommes et femmes adultes, admis dans des hôpitaux pour la tuberculose (TB) de Saint-Pétersbourg et d’Ivanovo en Russie. RÉSULTATS: Il y avait 72% d’hommes dans l’échantillon. L’âge moyen est de 41 ans. On a diagnostiqué la TB active par l

  20. Dynamics of immune response and drug resistance in malaria infection

    Directory of Open Access Journals (Sweden)

    Gurarie David

    2006-10-01

    Full Text Available Abstract Background Malaria parasites that concurrently infect a host compete on the basis of their intrinsic growth rates and by stimulating cross-reactive immune responses that inhibit each others' growth. If the phenotypes also show different drug sensitivities ('sensitive' vs. 'resistant' strains, drug treatment can change their joint dynamics and the long-term outcome of the infection: most obviously, persistent drug pressure can permit the more resistant, but otherwise competitively-inferior, strains to dominate. Methods Here a mathematical model is developed to analyse how these and more subtle effects of antimalarial drug use are modulated by immune response, repeated re-inoculation of parasites, drug pharmacokinetic parameters, dose and treatment frequency. Results The model quantifies possible effects of single and multiple (periodic treatment on the outcome of parasite competition. In the absence of further inoculation, the dosage and/or treatment frequency required for complete clearance can be estimated. With persistent superinfection, time-average parasite densities can be derived in terms of the basic immune-regulating parameters, the drug efficacy and treatment regimen. Conclusion The functional relations in the model are applicable to a wide range of conditions and transmission environments, allowing predictions to be made on both the individual and the community levels, and, in particular, transitions from drug-sensitive to drug-resistant parasite dominance to be projected on both levels.

  1. Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment.

    Directory of Open Access Journals (Sweden)

    Leopold D Tientcheu

    2016-05-01

    Full Text Available Epidemiological differences exist between Mycobacterium africanum (Maf- and Mycobacterium tuberculosis (Mtb-infected patients, but to date, contributing host factors have not been characterised. We analysed clinical outcomes, as well as soluble markers and gene expression profiles in unstimulated, and ESAT6/CFP-10-, whole-Maf- and Mtb-stimulated blood samples of 26 Maf- and 49 Mtb-HIV-negative tuberculosis patients before, and after 2 and 6 months of anti-tuberculosis therapy. Before treatment, both groups had similar clinical parameters, but differed in few cytokines concentration and gene expression profiles. Following treatment the body mass index, skinfold thickness and chest X-ray scores showed greater improvement in the Mtb- compared to Maf-infected patients, after adjusting for age, sex and ethnicity (p = 0.02; 0.04 and 0.007, respectively. In addition, in unstimulated blood, IL-12p70, IL12A and TLR9 were significantly higher in Maf-infected patients, while IL-15, IL-8 and MIP-1α were higher in Mtb-infected patients. Overnight stimulation with ESAT-6/CFP-10 induced significantly higher levels of IFN-γ and TNF-α production, as well as gene expression of CCL4, IL1B and TLR4 in Mtb- compared to Maf-infected patients. Our study confirms differences in clinical features and immune genes expression and concentration of proteins associated with inflammatory processes between Mtb- and Maf-infected patients following anti-tuberculosis treatment These findings have public health implications for treatment regimens, and biomarkers for tuberculosis diagnosis and susceptibility.

  2. Mechanisms of anti-retroviral drug resistance: implications for novel drug discovery and development.

    Science.gov (United States)

    Emamzadeh-Fard, Sahra; Esmaeeli, Shooka; Arefi, Khalilullah; Moradbeigi, Majedeh; Heidari, Behnam; Fard, Sahar E; Paydary, Koosha; Seyedalinaghi, Seyedahmad

    2013-10-01

    Anti-retroviral drug resistance evolves as an inevitable consequence of expanded combination Anti-retroviral Therapy (cART). According to each drug class, resistance mutations may occur due to the infidel nature of HIV reverse transcriptase (RT) and inadequate drug pressures. Correspondingly, resistance to Nucleoside Reverse Transcriptase Inhibitors (NRTIs) occurs due to incorporation impairment of the agent or its removal from the elongating viral DNA chain. With regard to Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs), resistance mutations may alter residues of the RT hydrophobic pocket and demonstrate high level of cross resistance. However, resistance to Protease Inhibitors requires complex accumulation of primary and secondary mutations that substitute amino acids in proximity to the viral protease active site. Resistance to novel entry inhibitors may also evolve as a result of mutations that affect the interactions between viral glycoprotein and CD4 or the chemokine receptors. According to the current studies, future drug initiative programs should consider agents that possess higher genetic barrier toward resistance for ascertaining adequate drug efficacy among patients who have failed first-line regimens. PMID:24712673

  3. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  4. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  5. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    1997-01-01

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  6. TWO OPTIMAL CONTROL PROBLEMS IN CANCER CHEMOTHERAPY WITH DRUG RESISTANCE

    Directory of Open Access Journals (Sweden)

    Werner Krabs

    2012-01-01

    Full Text Available We investigate two well-known basic optimal control problems forchemotherapeutic cancer treatment modified by introducing a timedependent “resistance factor”. This factor should be responsible for the effect of the drug resistance of tumor cells on the dynamical growth for the tumor. Both optimal control problems have common pointwise but different integral constraints on the control. We show that in both models the usually practised bang-bang control is optimal if the resistance is sufficiently strong. Further, we discuss different optimal strategies in both models for general resistance.

  7. Drug Repurposing Identifies Inhibitors of Oseltamivir-Resistant Influenza Viruses.

    Science.gov (United States)

    Bao, Ju; Marathe, Bindumadhav; Govorkova, Elena A; Zheng, Jie J

    2016-03-01

    The neuraminidase (NA) inhibitor, oseltamivir, is a widely used anti-influenza drug. However, oseltamivir-resistant H1N1 influenza viruses carrying the H275Y NA mutation spontaneously emerged as a result of natural genetic drift and drug treatment. Because H275Y and other potential mutations may generate a future pandemic influenza strain that is oseltamivir-resistant, alternative therapy options are needed. Herein, we show that a structure-based computational method can be used to identify existing drugs that inhibit resistant viruses, thereby providing a first line of pharmaceutical defense against this possible scenario. We identified two drugs, nalidixic acid and dorzolamide, that potently inhibit the NA activity of oseltamivir-resistant H1N1 viruses with the H275Y NA mutation at very low concentrations, but have no effect on wild-type H1N1 NA even at a much higher concentration, suggesting that the oseltamivir-resistance mutation itself caused susceptibility to these drugs. PMID:26833677

  8. Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand

    Directory of Open Access Journals (Sweden)

    Gil José

    2002-10-01

    Full Text Available Abstract Background The increasing levels of Plasmodium falciparum resistance to chloroquine (CQ in Thailand have led to the use of alternative antimalarials, which are at present also becoming ineffective. In this context, any strategies that help improve the surveillance of drug resistance, become crucial in overcoming the problem. Methods In the present study, we have established the in vitro sensitivity to CQ, mefloquine (MF, quinine (QUIN and amodiaquine (AMQ of 52 P. falciparum isolates collected in Thailand, and assessed the prevalence of four putative genetic polymorphisms of drug resistance, pfcrt K76T, pfmdr1 N86Y, pfmdr1 D1042N and pfmdr1 Y1246D, by PCR-RFLP. Results The percentage of isolates resistant to CQ, MF, and AMQ was 96% (50/52, 62% (32/52, and 58% (18/31, respectively, while all parasites were found to be sensitive to QUIN. In addition, 41 (79% of the isolates assayed were resistant simultaneously to more than one drug; 25 to CQ and MF, 9 to CQ and AMQ, and 7 to all three drugs, CQ, MF and AMQ. There were two significant associations between drug sensitivity and presence of particular molecular markers, i CQ resistance / pfcrt 76T (P = 0.001, and ii MF resistance / pfmdr1 86N (P Conclusions i In Thailand, the high levels of CQ pressure have led to strong selection of the pfcrt 76T polymorphism and ii pfmdr1 86N appears to be a good predictor of in vitro MF resistance.

  9. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  10. Drug resistance mechanisms of fungal biofilms

    OpenAIRE

    Seneviratne, CJ; Samaranayake, LP

    2011-01-01

    Fungi are ubiquitous in nature and exist in soil, water, plants, and in animals and humans. Similar to bacteria, fungi also form confluent biofilms either singly (mono-species) or with other microbial species (mixed-species). Fungal biofilms are known to be highly resistant to the adverse environmental conditions including antimicrobials and biocide compared to its planktonic (free-floating) counterparts. Although bacterial biofilms have been studied in detail, relatively little is known of f...

  11. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  12. New strategies against drug resistance to herpes simplex virus

    Institute of Scientific and Technical Information of China (English)

    Yu-Chen Jiang; Hui Feng; Yu-Chun Lin; Xiu-Rong Guo

    2016-01-01

    Herpes simplex virus (HSV), a member of the Herpesviridae family, is a significant human pathogen that results in mucocutaneous lesions in the oral cavity or genital infections. Acyclovir (ACV) and related nucleoside analogues can successfully treat HSV infections, but the emergence of drug resistance to ACV has created a barrier for the treatment of HSV infections, especially in immunocompromised patients. There is an urgent need to explore new and effective tactics to circumvent drug resistance to HSV. This review summarises the current strategies in the development of new targets (the DNA helicase/primase (H/P) complex), new types of molecules (nature products) and new antiviral mechanisms (lethal mutagenesis of Janus-type nucleosides) to fight the drug resistance of HSV.

  13. Antimicrobial drug resistance ofStaphylococcus aureus in dairy products

    Institute of Scientific and Technical Information of China (English)

    Sasidharan S; Prema B; Yoga Latha L

    2011-01-01

    Objective:To evaluate the prevalence of multidrug resistantStaphylococcus aureus(S. aureus) in dairy products.Methods:Isolation and identification ofS. aureus were performed in3 dairy-based food products. The isolates were tested for their susceptibility to5 different common antimicrobial drugs.Results:Of50 samples examined,5 (10%) were contaminated with S. aureus. Subsequently, the5 isolates were subjected to antimicrobial resistance pattern using five antibiotic discs (methicillin, vancomycin, kanamycin, chloramphenicol and tetracycline). Sample 29 showed resistance to methicillin and vancomycin. Sample18 showed intermediate response to tetracycline. The other samples were susceptible to all the antibiotics tested.Conclusions:The results provide preliminary data on sources of food contamination which may act as vehicles for the transmission of antimicrobial-resistantStaphylococcus.Therefore, it enables us to develop preventive strategies to avoid the emergence of new strains of resistantS. aureus.

  14. Determinants of poor adherence to anti-tuberculosis treatment in Mumbai, India

    Directory of Open Access Journals (Sweden)

    Suparna Bagchi

    2010-01-01

    Conclusions: An approach, targeting easier access to drugs, an ensured drug supply, effective solutions for travel-related concerns and modification of smoking and alcohol related behaviors are essential for treatment adherence.

  15. Multidrug resistance in oncology and beyond : from imaging of drug efflux pumps to cellular drug targets

    NARCIS (Netherlands)

    Nagengast, Wouter B; Oude Munnink, Thijs H; Dijkers, Eli; Hospers, Geesiena; Brouwers, Adrienne H; Schröder, Carolien P; Lub-de Hooge, Marjolijn; de Vries, Elisabeth G E

    2010-01-01

    Resistance of tumor cells to several structurally unrelated classes of natural products, including anthracyclines, taxanes, and epipodophyllotoxines, is often referred as multidrug resistance (MDR). This is associated with ATP-binding cassette transporters, which function as drug efflux pumps such a

  16. Prevalence of genotypic HIV-1 drug resistance in Thailand, 2002

    Directory of Open Access Journals (Sweden)

    Watitpun Chotip

    2003-03-01

    Full Text Available Abstract Background The prices of reverse transcriptase (RT inhibitors in Thailand have been reduced since December 1, 2001. It is expected that reduction in the price of these inhibitors may influence the drug resistance mutation pattern of HIV-1 among infected people. This study reports the frequency of HIV-1 genetic mutation associated with drug resistance in antiretroviral-treated patients from Thailand. Methods Genotypic resistance testing was performed on samples collected in 2002 from 88 HIV-1 infected individuals. Automated DNA sequencing was used to genotype the HIV-1 polymerase gene isolated from patients' plasma. Results Resistance to protease inhibitors, nucleoside and non-nucleoside reverse transcriptase inhibitors were found in 10 (12%, 42 (48% and 19 (21% patients, respectively. The most common drug resistance mutations in the protease gene were at codon 82 (8%, 90 (7% and 54 (6%, whereas resistant mutations at codon 215 (45%, 67 (40%, 41 (38% and 184 (27% were commonly found in the RT gene. This finding indicates that genotypic resistance to nucleoside reverse transcriptase inhibitors was prevalent in 2002. The frequency of resistant mutations corresponding to non-nucleoside reverse transcriptase inhibitors was three times higher-, while resistant mutation corresponding to protease inhibitors was two times lower than those frequencies determined in 2001. Conclusion This study shows that the frequencies of RT inhibitor resistance mutations have been increased after the reduction in the price of RT inhibitors since December 2001. We believe that this was an important factor that influenced the mutation patterns of HIV-1 protease and RT genes in Thailand.

  17. Drug Resistance and Cancer Stem Cells

    OpenAIRE

    Fonseca, João Pedro Couto

    2012-01-01

    O cancro do pulmão é a principal causa de morte por cancro a nível mundial. Apesar do crescente conhecimento sobre os mecanismos subjacentes ao processo tumorigénico não se tem observado alteração significativa na sobrevivência dos pacientes. É, por isso, urgente encontrar novas estratégias terapêuticas que visem superar a resistência, tanto intrínseca como extrínseca, observada com a quimioterapia corrente. Os tumores são caracterizados pela sua heterogeneidade celular, devido à coexistên...

  18. A new antihypertensive drug ameliorates insulin resistance

    Institute of Scientific and Technical Information of China (English)

    Yan-xia LIU

    2012-01-01

    Insulin resistance (IR)is defined as decreased sensitivity and/or responsiveness to insulin that promote glucose disposal.A growing body of clinical and epidemiologic evidence indicates that essential hypertension and IR often coexist[1].Approximately 50 percent of patients with hypertension can be considered to have IR and hyperinsulinemia[1].This inextricable linkage between hypertension and IR has been identified to increase the prevalence of cardiovascular disease (CVD)and new onset of type Ⅱ diabetes that is the major cause of morbidity and mortality in this clinical syndrome[2].However,the driving force linking IR and hypertension remains to be fully elucidated.

  19. (Post-) Genomic approaches to tackle drug resistance in Leishmania.

    Science.gov (United States)

    Berg, Maya; Mannaert, An; Vanaerschot, Manu; Van Der Auwera, Gert; Dujardin, Jean-Claude

    2013-10-01

    Leishmaniasis, like other neglected diseases is characterized by a small arsenal of drugs for its control. To safeguard the efficacy of current drugs and guide the development of new ones it is thus of utmost importance to acquire a deep understanding of the phenomenon of drug resistance and its link with treatment outcome. We discuss here how (post-)genomic approaches may contribute to this purpose. We highlight the need for a clear definition of the phenotypes under consideration: innate and acquired resistance versus treatment failure. We provide a recent update of our knowledge on the Leishmania genome structure and dynamics, and compare the contribution of targeted and untargeted methods for the understanding of drug resistance and show their limits. We also present the main assays allowing the experimental validation of the genes putatively involved in drug resistance. The importance of analysing information downstream of the genome is stressed and further illustrated by recent metabolomics findings. Finally, the attention is called onto the challenges for implementing the acquired knowledge to the benefit of the patients and the population at risk. PMID:23480865

  20. Multi drug resistance to cancer chemotherapy: Genes involved and blockers

    International Nuclear Information System (INIS)

    During the last three decades, important and considerable research efforts had been performed to investigate the mechanism through which cancer cells overcome the cytotoxic effects of a variety of chemotherapeutic drugs. Most of the previously published work has been focused on the resistance of tumor cells to those anticancer drugs of natural source. Multidrug resistance (MDR) is a cellular cross-resistance to a broad spectrum of natural products used in cancer chemotherapy and is believed to be the major cause of the therapeutic failures of the drugs belonging to different naturally obtained or semisynthetic groups including vinca alkaloids, taxans, epipodophyllotoxins and certain antibiotics. This phenomenon results from overexpression of four MDR genes and their corresponding proteins that act as membrane-bound ATP consuming pumps. These proteins mediate the efflux of many structurally and functionally unrelated anticancer drugs of natural source. MDR may be intrinsic or acquired following exposure to chemotherapy. The existence of intrinsically resistant tumor cell clone before and following chemotherapeutic treatment has been associated with a worse final outcome because of increased incidence of distant metasis. In view of irreplaceability of natural product anticancer drugs as effective chemotherapeutic agents, and in view of MDR as a major obstacle to successful chemotherapy, this review is aimed to highlight the genes involved in MDR, classical MDR blockers and gene therapy approaches to overcome MDR. (author)

  1. Vaults: a ribonucleoprotein particle involved in drug resistance?

    Science.gov (United States)

    Mossink, Marieke H; van Zon, Arend; Scheper, Rik J; Sonneveld, Pieter; Wiemer, Erik A C

    2003-10-20

    Vaults are ribonucleoprotein particles found in the cytoplasm of eucaryotic cells. The 13 MDa particles are composed of multiple copies of three proteins: an M(r) 100 000 major vault protein (MVP) and two minor vault proteins of M(r) 193 000 (vault poly-(ADP-ribose) polymerase) and M(r) 240 000 (telomerase-associated protein 1), as well as small untranslated RNA molecules of approximately 100 bases. Although the existence of vaults was first reported in the mid-1980s no function has yet been attributed to this organelle. The notion that vaults might play a role in drug resistance was suggested by the molecular identification of the lung resistance-related (LRP) protein as the human MVP. MVP/LRP was found to be overexpressed in many chemoresistant cancer cell lines and primary tumor samples of different histogenetic origin. Several, but not all, clinico-pathological studies showed that MVP expression at diagnosis was an independent adverse prognostic factor for response to chemotherapy. The hollow barrel-shaped structure of the vault complex and its subcellular localization indicate a function in intracellular transport. It was therefore postulated that vaults contributed to drug resistance by transporting drugs away from their intracellular targets and/or the sequestration of drugs. Here, we review the current knowledge on the vault complex and critically discuss the evidence that links vaults to drug resistance. PMID:14576851

  2. Live-cell luciferase assay of drug resistant cells

    OpenAIRE

    sprotocols

    2015-01-01

    To date, multiplexing cell-based assay is essential for high-throughput screening of molecular targets. Measuring multiple parameters of a single sample increases consistency and decrease time and cost of assay. Functional assay of living cell is useful as a first step of multiplexing assay, because live-cell assay allows following second assay using cell lysate or stained cell. However, live-cell assay of drug resistant cells that are highly activated of drug efflux mechanisms is sometimes u...

  3. Antibiotic Adjuvants: Diverse Strategies for Controlling Drug-Resistant Pathogens

    OpenAIRE

    Gill, Erin E.; Franco, Octavio L.; Robert E. W. Hancock

    2014-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance ...

  4. Polymer nanotherapeutics for overcoming drug resistance during cancer treatment

    Czech Academy of Sciences Publication Activity Database

    Etrych, Tomáš; Braunová, Alena; Chytil, Petr; Šírová, Milada; Heinrich, A. K.; Müller, T.; Mäder, K.

    Ostrava: TANGER Ltd., 2015. s. 52-53. ISBN 978-80-87294-59-8. [NANOCON 2015. International Conference /7./. 14.10.2015-16.10.2015, Brno] R&D Projects: GA ČR(CZ) GA15-02986S; GA MŠk(CZ) ED1.1.00/02.0109 Institutional support: RVO:61389013 ; RVO:61388971 Keywords : multi-drug resistence * controlled drug release * nanotherapeutics Subject RIV: CD - Macromolecular Chemistry; EB - Genetics ; Molecular Biology (MBU-M)

  5. HIV Drug-Resistant Patient Information Management, Analysis, and Interpretation

    OpenAIRE

    Singh, Yashik; Mars, Maurice

    2012-01-01

    Introduction The science of information systems, management, and interpretation plays an important part in the continuity of care of patients. This is becoming more evident in the treatment of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS), the leading cause of death in sub-Saharan Africa. The high replication rates, selective pressure, and initial infection by resistant strains of HIV infer that drug resistance will inevitably become an important health car...

  6. Antibiotic residues and drug resistance in human intestinal flora.

    OpenAIRE

    Corpet, D. E.

    1987-01-01

    The effect of residual levels of ampicillin on the drug resistance of fecal flora was studied in human volunteers given 1.5 mg of ampicillin orally per day for 21 days. This treatment failed to have any significant reproducible effect on the number of resistant Escherichia coli in their feces. The effect of continuous administration of small doses of ampicillin, chlortetracycline, or streptomycin in the drinking water was studied in gnotobiotic mice inoculated with a human fecal flora. In thi...

  7. Extensively drug-resistant tuberculosis: epidemiology and management

    Directory of Open Access Journals (Sweden)

    Matteelli A

    2014-04-01

    Full Text Available Alberto Matteelli,1 Alberto Roggi,1 Anna CC Carvalho21Institute of Infectious and Tropical Diseases, WHO Collaborating Centre for TB/HIV Co-Infection, University of Brescia, Brescia, Italy; 2Laboratory of Innovations in Therapies, Education and Bioproducts (LITEB, Oswaldo Cruz Institute (IOC, Oswaldo Cruz Foundation (Fiocruz, Rio de Janeiro, BrazilAbstract: The advent of antibiotics for the treatment of tuberculosis (TB represented a major breakthrough in the fight against the disease. However, since its first use, antibiotic therapy has been associated with the emergence of resistance to drugs. The incorrect use of anti-TB drugs, either due to prescription errors, low patient compliance, or poor quality of drugs, led to the widespread emergence of Mycobacterium tuberculosis strains with an expanding spectrum of resistance. The spread of multidrug-resistant (MDR strains (ie, strains resistant to both isoniazid and rifampicin has represented a major threat to TB control since the 1990s. In 2006, the first cases of MDR strains with further resistance to fluoroquinolone and injectable drugs were described and named extensively drug-resistant TB (XDR-TB. The emergence of XDR-TB strains is a result of mismanagement of MDR cases, and treatment relies on drugs that are less potent and more toxic than those used to treat drug-susceptible or MDR strains. Furthermore, treatment success is lower and mortality higher than achieved in MDR-TB cases, and the number of drugs necessary in the intensive phase of treatment may be higher than the four drugs recommended for MDR-TB. Linezolid may represent a valuable drug to treat cases of XDR-TB. Delamanid, bedaquiline, and PA-824 are new anti-TB agents in the development pipeline that have the potential to enhance the cure rate of XDR-TB. The best measures to prevent new cases of XDR-TB are the correct management of MDR-TB patients, early detection, and proper treatment of existing patients with XDR

  8. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy.

    Science.gov (United States)

    Lee, Jinsoo; Son, Kwanghyun; Hwang, Gwiseo; Kim, Moonju

    2016-01-01

    Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT) has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p = 0.0284, Fisher's exact test). Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children. PMID:27047568

  9. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    Directory of Open Access Journals (Sweden)

    Jinsoo Lee

    2016-01-01

    Full Text Available Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p=0.0284, Fisher’s exact test. Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children.

  10. Multidrug-resistant tuberculosis in Lithuania - Still a long way ahead.

    Science.gov (United States)

    Musteikienė, Greta; Miliauskas, Skaidrius; Sakalauskas, Raimundas; Vitkauskienė, Astra; Žemaitis, Marius

    2016-01-01

    Despite the recent advances in the diagnosis of tuberculosis, treatment of the disease, for the most part, remains the same as it was half a century ago. In recent years only two new anti-tuberculosis drugs have been approved by the European Medicines Agency and Food and Drug Administration. Though the prevalence of this disease is slowly decreasing all over Europe, new challenges appear. One of them is multidrug-resistant tuberculosis (MDR-TB). This problem is especially prominent in Lithuania, which is one of the 27 high MDR-TB burden countries in the world and falls behind neighboring countries in terms of the prevalence of the disease. The objective of this paper was to review the situation of tuberculosis and MDR-TB in Lithuania, and current available methods of treatment, control and diagnosis of this disease. PMID:27170479

  11. Evidence for epistatic interactions in antiepileptic drug resistance.

    Science.gov (United States)

    Kim, Myeong-Kyu; Moore, Jason H; Kim, Jong-Ki; Cho, Ki-Hyun; Cho, Yong-Won; Kim, Yo-Sik; Lee, Min-Cheol; Kim, Young-Ok; Shin, Min-Ho

    2011-01-01

    To investigate the epistatic interactions involved in antiepileptic drug (AED) resistance, 26 coding single-nucleotide polymorphisms (SNPs) were selected from 16 candidate genes. A total of 200 patients with drug-resistant localization-related epilepsy and 200 patients with drug-responsive localization-related epilepsy were genotyped individually for the SNPs. Rather than using the traditional parametric statistical method, a new statistical method, multifactor dimensionality reduction (MDR), was used to determine whether gene-gene interactions increase the risk of AED resistance. The MDR method indicated that a combination of four SNPs (rs12658835 and rs35166395 from GABRA1, rs2228622 from EAAT3 and rs2304725 from GAT3) was the best model for predicting susceptibility to AED resistance with a statistically significant testing accuracy of 0.625 (P < 0.001) and cross-validation consistency of 10/10. This best model had an odds ratio of 3.68 with a significant 95% confidence interval of 2.32-5.85 (P < 0.0001). Our results may provide meaningful information on the mechanism underlying AED resistance and, to the best of our knowledge, this is the first report of evidence for gene-gene interactions underlying AED resistance. PMID:21124337

  12. Additional drug resistance of multidrug-resistant tuberculosis in patients in 9 countries.

    Science.gov (United States)

    Kurbatova, Ekaterina V; Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; Van Der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y; Volchenkov, Grigory V; Jou, Ruwen; Kliiman, Kai; Demikhova, Olga V; Cegielski, J Peter

    2015-06-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line injectable drug would qualify as candidates for a bedaquiline-containing regimen in accordance with published guidelines. Among candidates for the 9-month regimen, standardized drug-susceptibility tests demonstrated susceptibility to a median of 5 (interquartile range 5-6) drugs. Among candidates for bedaquiline, drug-susceptibility tests demonstrated susceptibility to a median of 3 (interquartile range 2-4) drugs; 26% retained susceptibility to <2 drugs. These data may assist national TB programs in planning to implement new drugs and drug regimens. PMID:25988299

  13. Targeting mitochondrial biogenesis to overcome drug resistance to MAPK inhibitors.

    Science.gov (United States)

    Zhang, Gao; Frederick, Dennie T; Wu, Lawrence; Wei, Zhi; Krepler, Clemens; Srinivasan, Satish; Chae, Young Chan; Xu, Xiaowei; Choi, Harry; Dimwamwa, Elaida; Ope, Omotayo; Shannan, Batool; Basu, Devraj; Zhang, Dongmei; Guha, Manti; Xiao, Min; Randell, Sergio; Sproesser, Katrin; Xu, Wei; Liu, Jephrey; Karakousis, Giorgos C; Schuchter, Lynn M; Gangadhar, Tara C; Amaravadi, Ravi K; Gu, Mengnan; Xu, Caiyue; Ghosh, Abheek; Xu, Weiting; Tian, Tian; Zhang, Jie; Zha, Shijie; Liu, Qin; Brafford, Patricia; Weeraratna, Ashani; Davies, Michael A; Wargo, Jennifer A; Avadhani, Narayan G; Lu, Yiling; Mills, Gordon B; Altieri, Dario C; Flaherty, Keith T; Herlyn, Meenhard

    2016-05-01

    Targeting multiple components of the MAPK pathway can prolong the survival of patients with BRAFV600E melanoma. This approach is not curative, as some BRAF-mutated melanoma cells are intrinsically resistant to MAPK inhibitors (MAPKi). At the systemic level, our knowledge of how signaling pathways underlie drug resistance needs to be further expanded. Here, we have shown that intrinsically resistant BRAF-mutated melanoma cells with a low basal level of mitochondrial biogenesis depend on this process to survive MAPKi. Intrinsically resistant cells exploited an integrated stress response, exhibited an increase in mitochondrial DNA content, and required oxidative phosphorylation to meet their bioenergetic needs. We determined that intrinsically resistant cells rely on the genes encoding TFAM, which controls mitochondrial genome replication and transcription, and TRAP1, which regulates mitochondrial protein folding. Therefore, we targeted mitochondrial biogenesis with a mitochondrium-targeted, small-molecule HSP90 inhibitor (Gamitrinib), which eradicated intrinsically resistant cells and augmented the efficacy of MAPKi by inducing mitochondrial dysfunction and inhibiting tumor bioenergetics. A subset of tumor biopsies from patients with disease progression despite MAPKi treatment showed increased mitochondrial biogenesis and tumor bioenergetics. A subset of acquired drug-resistant melanoma cell lines was sensitive to Gamitrinib. Our study establishes mitochondrial biogenesis, coupled with aberrant tumor bioenergetics, as a potential therapy escape mechanism and paves the way for a rationale-based combinatorial strategy to improve the efficacy of MAPKi. PMID:27043285

  14. Biophysical principles predict fitness landscapes of drug resistance.

    Science.gov (United States)

    Rodrigues, João V; Bershtein, Shimon; Li, Anna; Lozovsky, Elena R; Hartl, Daniel L; Shakhnovich, Eugene I

    2016-03-15

    Fitness landscapes of drug resistance constitute powerful tools to elucidate mutational pathways of antibiotic escape. Here, we developed a predictive biophysics-based fitness landscape of trimethoprim (TMP) resistance for Escherichia coli dihydrofolate reductase (DHFR). We investigated the activity, binding, folding stability, and intracellular abundance for a complete set of combinatorial DHFR mutants made out of three key resistance mutations and extended this analysis to DHFR originated from Chlamydia muridarum and Listeria grayi We found that the acquisition of TMP resistance via decreased drug affinity is limited by a trade-off in catalytic efficiency. Protein stability is concurrently affected by the resistant mutants, which precludes a precise description of fitness from a single molecular trait. Application of the kinetic flux theory provided an accurate model to predict resistance phenotypes (IC50) quantitatively from a unique combination of the in vitro protein molecular properties. Further, we found that a controlled modulation of the GroEL/ES chaperonins and Lon protease levels affects the intracellular steady-state concentration of DHFR in a mutation-specific manner, whereas IC50 is changed proportionally, as indeed predicted by the model. This unveils a molecular rationale for the pleiotropic role of the protein quality control machinery on the evolution of antibiotic resistance, which, as we illustrate here, may drastically confound the evolutionary outcome. These results provide a comprehensive quantitative genotype-phenotype map for the essential enzyme that serves as an important target of antibiotic and anticancer therapies. PMID:26929328

  15. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  16. Flu Resistance to Antiviral Drug in North Carolina

    Centers for Disease Control (CDC) Podcasts

    2011-12-19

    Dr. Katrina Sleeman, Associate Service Fellow at CDC, discusses resistance to an antiviral flu drug in North Carolina.  Created: 12/19/2011 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/19/2011.

  17. What is Multidrug and Extensively Drug Resistant TB?

    Science.gov (United States)

    ... more potent types used to treat MDR TB. Treatment for XDR TB is much more difficult, expensive, and lasts longer. ... of treatment; When healthcare providers prescribe the wrong treatment, the ... poor quality. Drug-resistant TB is more common in people who: Do not ...

  18. P-Glycoprotein and Drug Resistance in Systemic Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Andrea Picchianti-Diamanti

    2014-03-01

    Full Text Available Autoimmune diseases such as systemic lupus erythematosus (SLE, rheumatoid arthritis (RA and psoriatic arthritis (PsA are chronic inflammatory disorders of unknown etiology characterized by a wide range of abnormalities of the immune system that may compromise the function of several organs, such as kidney, heart, joints, brain and skin. Corticosteroids (CCS, synthetic and biologic immunosuppressive agents have demonstrated the capacity to improve the course of autoimmune diseases. However, a significant number of patients do not respond or develop resistance to these therapies over time. P-glycoprotein (P-gp is a transmembrane protein that pumps several drugs out of the cell, including CCS and immunosuppressants; thus, its over-expression or hyper-function has been proposed as a possible mechanism of drug resistance in patients with autoimmune disorders. Recently, different authors have demonstrated that P-gp inhibitors, such as cyclosporine A (CsA and its analogue Tacrolimus, are able to reduce P-gp expression and or function in SLE, RA and PsA patients. These observations suggest that P-gp antagonists could be adopted to revert drug resistance and improve disease outcome. The complex inter-relationship among drug resistance, P-gp expression and autoimmunity still remains elusive.

  19. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  20. Drug Resistance Characteristics and Macrolide-Resistant Mechanisms of Streptococcus pneumoniae in Wenzhou City, China.

    Science.gov (United States)

    Hu, Dakang; Sun, Zheng; Luo, Xinhua; Liu, Shuangchun; Yu, Lianhua; Qu, Ying; Yang, Jinhong; Yu, Jian; Li, Xiangyang; Zhang, Jin

    2016-01-01

    BACKGROUND Streptococcus pneumoniae (SP) is a Gram-positive, alpha-hemolytic, facultative anaerobic member of the genus Streptococcus. The erythromycin-resistant methylase (erm) gene and macrolide efflux (mef) gene are the 2 main genes that can mediate SP. Transposon (Tn) also plays an important role in the collection and metastasis of the gene. In the present study we investigated the drug resistance characteristics and the macrolide-resistant mechanisms of SP in Wenzhou City, China. MATERIAL AND METHODS Sixty-eight strains of SP were isolated from sputum samples of hospitalized children in the Second Affiliated Hospital of Wenzhou Medical University. These strains were analyzed using antimicrobial susceptibility tests to determine their drug resistance to 10 kinds of antibacterials. Macrolide-resistant phenotypes were identified using K-B method. PCR method was used to analyze the erm B gene, mef A gene, and int Tn gene. RESULTS Drug resistance rates of 68 strains of SP were 98.5%, 100.0%, 63.2%, 52.9%, 94.1%, 89.7%, 0.0%, 0.0%, 16.2%, and 14.7% for clindamycin, erythromycin, penicillin G, cefotaxime, tetracycline, sulfamethoxazole/trimethoprim, levofloxacin, vancomycin, chloramphenicol, and amoxicillin, respectively. Total detection rates of the erm B gene, mef A gene, and int Tn gene were 98.5%, 91.2%, and 100.0%, respectively. CONCLUSIONS SP shows significant multi-drug resistance in Wenzhou City, whereas there is no clinical value of macrolides antibiotics for SP. cMLSB mediated by erm B gene is the most predominant phenotype among macrolide-resistant SP. The int Tn gene may play an important role in horizontal transfer and clonal dissemination of SP drug resistance genes in Wenzhou City. PMID:27483416

  1. Balancing drug resistance and growth rates via compensatory mutations in the Plasmodium falciparum chloroquine resistance transporter.

    Science.gov (United States)

    Petersen, Ines; Gabryszewski, Stanislaw J; Johnston, Geoffrey L; Dhingra, Satish K; Ecker, Andrea; Lewis, Rebecca E; de Almeida, Mariana Justino; Straimer, Judith; Henrich, Philipp P; Palatulan, Eugene; Johnson, David J; Coburn-Flynn, Olivia; Sanchez, Cecilia; Lehane, Adele M; Lanzer, Michael; Fidock, David A

    2015-07-01

    The widespread use of chloroquine to treat Plasmodium falciparum infections has resulted in the selection and dissemination of variant haplotypes of the primary resistance determinant PfCRT. These haplotypes have encountered drug pressure and within-host competition with wild-type drug-sensitive parasites. To examine these selective forces in vitro, we genetically engineered P. falciparum to express geographically diverse PfCRT haplotypes. Variant alleles from the Philippines (PH1 and PH2, which differ solely by the C72S mutation) both conferred a moderate gain of chloroquine resistance and a reduction in growth rates in vitro. Of the two, PH2 showed higher IC50 values, contrasting with reduced growth. Furthermore, a highly mutated pfcrt allele from Cambodia (Cam734) conferred moderate chloroquine resistance and enhanced growth rates, when tested against wild-type pfcrt in co-culture competition assays. These three alleles mediated cross-resistance to amodiaquine, an antimalarial drug widely used in Africa. Each allele, along with the globally prevalent Dd2 and 7G8 alleles, rendered parasites more susceptible to lumefantrine, the partner drug used in the leading first-line artemisinin-based combination therapy. These data reveal ongoing region-specific evolution of PfCRT that impacts drug susceptibility and relative fitness in settings of mixed infections, and raise important considerations about optimal agents to treat chloroquine-resistant malaria. PMID:25898991

  2. A study on application of BacT/ALERT 3D liquid culture technology on tuberculosis drug resistance detection%BacT/ALERT 3D 技术在结核杆菌耐药检测中的应用研究

    Institute of Scientific and Technical Information of China (English)

    黄文忠; 王平平; 吴红照; 周燕珍; 胡真宝

    2014-01-01

    目的:比较 BacT/ALERT 3D 法与传统罗氏(L -J)比例法在耐药结核分枝杆菌检测中的差异,评价BacT/ALERT 3D 快速培养系统在结核分枝杆菌耐药检测中的应用价值。方法对219份固体培养结核杆菌阳性的培养物采用 BacT/ALERT 3D 液体培养技术和 L -J 比例法同时进行药敏试验,并进行比对分析。结果BacT/ALERT 3D 法平均检出时间(8.02±3.85)d,比 L -J 比例法检出时间平均缩短约20 d;BacT/ALERT 3D 法检出耐药菌60株,L -J 比例法检出耐药菌79株,差异无统计学意义(P >0.05);以 L -J 比例法结果为判定标准, BacT/ALERT 3D 法对 INH、RFP、EMB 和 SM 4种抗结核药耐药检测结果符合率分别为95.43%、92.69%、95.43%和92.24%。结论与 L -J 比例法比较,BacT/ALERT 3D 药敏检测方法对结核杆菌的耐药检出结果有较高的一致性,BacT/ALERT 3D 法检出时间明显短于 L -J 比例法。%Objective To evaluate the BacT/ALERT 3D liquid culture technology on the detection of drug resistance of Mycobacterium tuberculosis(MTB)and to compare the difference between this technology and Lowenstein -Jensen (L -J) proportion method.Methods BacT/ALERT 3D liquid culture technology and L -J proportion technology were applied to detect the drug resistance of tuberculosis from the positive cultures of 219 solid culture samples.Results The average detection time of BacT/ALERT 3D method was 8.02 ±3.85 d,which was about 20 days shorter than that of L -J proportion method.60 drug resistance strains were found using BacT/ALERT 3D technology,While 79 drug resistance strains were found using L -J proportion technology.There showed no significant difference (P >0.05).The compliance rate of BacT/ALERT 3D method and L -J proportion method on the anti -tuberculosis drugs INH,RFP,EMB and SMwas 95.43%,92.69%,95.43% and 92.24% respectively.Conclusion BacT/ALERT 3D liquid culture technology could detect drug resistant TB

  3. Drug resistance of bacteria——present situation and treatment

    Directory of Open Access Journals (Sweden)

    Min ZHAO

    2011-02-01

    Full Text Available Antimicrobial resistance of bacteria is a serious problem worldwide.It has become the difficulty of anti-infection that multidrug-resistance(MDR and drug wide-resistance(DWR gram-negative bacteria are increasing year and year.Alarm has been knolled again on the emerging of Gram-negative pathogens producing the NDM-1 worldwide in 2010.NDM-1 is a new metallo-carbapenemase which is highly resistant to all antibiotics,and has been mostly found among Escherichia coli and Klebsiella pneumoniae.Infections of MDR and DWR Enterobacteriaceae can be effectively treated with tigecycline,polymyxin and fosfomycin on clinic trail.Prevention is very important for reducing the occurring and spreading of MDR and DWR bacteria.

  4. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  5. Application of Metabolomics in Drug Resistant Breast Cancer Research

    Directory of Open Access Journals (Sweden)

    Ayesha N. Shajahan-Haq

    2015-02-01

    Full Text Available The metabolic profiles of breast cancer cells are different from normal mammary epithelial cells. Breast cancer cells that gain resistance to therapeutic interventions can reprogram their endogenous metabolism in order to adapt and proliferate despite high oxidative stress and hypoxic conditions. Drug resistance in breast cancer, regardless of subgroups, is a major clinical setback. Although recent advances in genomics and proteomics research has given us a glimpse into the heterogeneity that exists even within subgroups, the ability to precisely predict a tumor’s response to therapy remains elusive. Metabolomics as a quantitative, high through put technology offers promise towards devising new strategies to establish predictive, diagnostic and prognostic markers of breast cancer. Along with other “omics” technologies that include genomics, transcriptomics, and proteomics, metabolomics fits into the puzzle of a comprehensive systems biology approach to understand drug resistance in breast cancer. In this review, we highlight the challenges facing successful therapeutic treatment of breast cancer and the innovative approaches that metabolomics offers to better understand drug resistance in cancer.

  6. Systematic review of the performance of rapid rifampicin resistance testing for drug-resistant tuberculosis.

    Directory of Open Access Journals (Sweden)

    Matthew Arentz

    Full Text Available INTRODUCTION: Rapid tests for rifampicin resistance may be useful for identifying isolates at high risk of drug resistance, including multidrug-resistant TB (MDR-TB. However, choice of diagnostic test and prevalence of rifampicin resistance may both impact a diagnostic strategy for identifying drug resistant-TB. We performed a systematic review to evaluate the performance of WHO-endorsed rapid tests for rifampicin resistance detection. METHODS: We searched MEDLINE, Embase and the Cochrane Library through January 1, 2012. For each rapid test, we determined pooled sensitivity and specificity estimates using a hierarchical random effects model. Predictive values of the tests were determined at different prevalence rates of rifampicin resistance and MDR-TB. RESULTS: We identified 60 publications involving six different tests (INNO-LiPA Rif. TB assay, Genotype MTBDR assay, Genotype MTBDRplus assay, Colorimetric Redox Indicator (CRI assay, Nitrate Reductase Assay (NRA and MODS tests: for all tests, negative predictive values were high when rifampicin resistance prevalence was ≤ 30%. However, positive predictive values were considerably reduced for the INNO-LiPA Rif. TB assay, the MTBDRplus assay and MODS when rifampicin resistance prevalence was < 5%. LIMITATIONS: In many studies, it was unclear whether patient selection or index test performance could have introduced bias. In addition, we were unable to evaluate critical concentration thresholds for the colorimetric tests. DISCUSSION: Rapid tests for rifampicin resistance alone cannot accurately predict rifampicin resistance or MDR-TB in areas with a low prevalence of rifampicin resistance. However, in areas with a high prevalence of rifampicin resistance and MDR-TB, these tests may be a valuable component of an MDR-TB management strategy.

  7. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  8. Magnitude of drug resistant shigellosis: A report from Bangalore

    Directory of Open Access Journals (Sweden)

    Srinivasa H

    2009-01-01

    Full Text Available Shigella is an important cause of acute invasive diarrhea in children and others. Antimicrobial susceptibility of Shigella spp. isolated from diarrhoeal/ dysenteric patients in Bangalore was studied in our hospital from January 2002 to December 2007. One hundred and thirty-four isolates were identified as Shigella species. S. flexneri, S. sonnei , S. boydii and S. dysenteriae were accounted respectively for 64.9%, 21.6%, 8.2% and 3.7% of the total number of Shigella isolated. Of these 56 (41.8% were from children (0 to 14 years and 78 (58.2% were from adults and elderly patients. Over 70% of Shigella isolates were resistant to two or more drugs including Ampicillin and Co-trimoxazole. During 2002 to 2007, resistance to Ampicillin had increased from 46.7% to 68%. For Co-trimoxazole, though the resistance had gradually decreased from 100% to 72%, but still the resistance is high. Chloramphenicol resistance showed sudden decline from 73.3% to 25% from 2002 to 2003, but gradually has reached 48%. Nalidixic acid resistance was more than 70%. All isolates were sensitive to Ciprofloxacin during the period 2002 to 2004, but over the years the resistance pattern gradually increased up to 48%. Ceftriaxone had shown no resistance. The results of the study revealed the endemicity of Shigellosis with S. flexneri as the predominant serogroup. Children were at a higher risk of severe shigellosis. The results also suggest that Ampicillin, Co-trimoxazole, Chloramphenicol, Nalidixic acid and Ciprofloxacin should not be used empirically as the first line drugs in the treatment of Shigellosis. Periodic analysis and reporting of antibiotic susceptibility is an important measure to guide antibiotic treatment.

  9. Genome-wide screening of loci associated with drug resistance to 5-fluorouracil-based drugs.

    Science.gov (United States)

    Ooyama, Akio; Okayama, Yoshihiro; Takechi, Teiji; Sugimoto, Yoshikazu; Oka, Toshinori; Fukushima, Masakazu

    2007-04-01

    Resistance to chemotherapeutic agents represents the chief cause of mortality in cancer patients with advanced disease. Chromosomal aberration and altered gene expression are the main genetic mechanisms of tumor chemoresistance. In this study, we have established an algorithm to calculate DNA copy number using the Affymetrix 10K array, and performed a genome-wide correlation analysis between DNA copy number and antitumor activity against 5-fluorouracil (5-FU)-based drugs (S-1, tegafur + uracil [UFT], 5'-DFUR and capecitabine) to screen for loci influencing drug resistance using 27 human cancer xenografts. A correlation analysis confirmed that the single nucleotide polymorphism (SNP) showing significant associations with drug sensitivity were concentrated in some cytogenetic regions (18p, 17p13.2, 17p12, 11q14.1, 11q11 and 11p11.12), and we identified some genes that have been indicated their relations to drug sensitivity. Among these regions, 18p11.32 at the location of the thymidylate synthase gene (TYMS) was strongly associated with resistance to 5-FU-based drugs. A change in copy number of the TYMS gene was reflected in the TYMS expression level, and showed a significant negative correlation with sensitivity against 5-FU-based drugs. These results suggest that amplification of the TYMS gene is associated with innate resistance, supporting the possibility that TYMS copy number might be a predictive marker of drug sensitivity to fluoropyrimidines. Further study is necessary to clarify the functional roles of other genes coded in significant cytogenetic regions. These promising data suggest that a comprehensive DNA copy number analysis might aid in the quest for optimal markers of drug response. PMID:17425594

  10. Improvement of the productivity of ecumicin, a novel anti-tuberculosis agent, from new Nonomuraea sp. MJM5123.

    Science.gov (United States)

    Jin, Ying-Yu; Kim, Jin-Yong; Yang, Seung Hwan; Lee, Hanki; Suh, Joo-Won

    2016-05-01

    Ecumicin is a novel anti-tuberculosis agent produced by Nonomuraea sp. MJM5123 as a new strain of actinomycetes. First, in order to increase the cell mass of Nonomuraea sp. MJM5123, we optimized the culture conditions with regard to carbon and nitrogen sources. The cell mass of Nonomuraea sp. MJM5123 increased by approximately twofold when glucose and soybean flour were used as carbon and nitrogen sources, respectively. For maximum production of ecumicin, we optimized the culture conditions by adding amino acids as building blocks for ecumicin, by adding vegetable oils and by controlling the temperature and pH. Ecumicin production was two times higher with the addition of valine as the building blocks for ecumicin compared with the production in the absence of valine. Interestingly, with the addition of 1% corn oil, the production of ecumicin increased by 4.6-fold compared with the production in the absence of corn oil. Finally, by controlling the pH and temperature, we established an optimized culture condition in which Nonomuraea sp. MJM5123 produced 576 mg ecumicin per litre of medium, which is about 50 times higher than in the control medium at 30 °C and pH 7.0. PMID:26648116

  11. Sensitive, resistant and multi-drug resistant Acinetobacter baumanii at Saudi Arabia hospital eastern region.

    Science.gov (United States)

    Ahmed, Mughis Uddin; Farooq, Reshma; Al-Hawashim, Nadia; Ahmed, Motasim; Yiannakou, Nearchos; Sayeed, Fatima; Sayed, Ali Rifat; Lutfullah, Sualiha

    2015-05-01

    Since the Physicians start use of antibiotics long ago with un-notice drug resistance. However actual problem was recognized about 85 years ago. Antibiotic resistant and Multi-drug resistant bacterial strains are at rise throughout the world. It is physicians and researchers to take scientific research based appropriate action to overcome this ever-spreading problem. This study is designed to find out sensitive (S), resistant (R) and multi-drug resistant (MDR) Acinetobacter baumanii strain along with other isolates in the resident patients of Eastern Region of Saudi Arabia. Pseudomonas aeruginosa is excluded from other gram-negative organisms isolated from different sites as it will be dealt separately. This study is based in was retrospective observations designed to collect data of different stains of Acinetobacter baumanii with reference to their Sensitivity (S), Resistance (R), Multi-Drug Resistance (MDR) along with other Gram negative isolated from different sites (from 1st January 2004 to 31st December 2011) at King Abdulaziz Hospital located Eastern Region of Kingdom of Saudi Arabia (KSA). All necessary techniques were used to culture and perform sensitivity of these isolates. There were 4532 isolates out of which 3018 (67%) were from patients. Out of Acinetobacter baumanii infected were 906 (20%) while other 3626 (80%) isolates were miscellaneous. Numbers of patients or cases were 480 (53%) out of 906 isolates and numbers of patients or cases in other organisms were 2538 (70%) out of 3626 isolates. Acinetobacter baumanii infected patients 221 (46%) were male and 259 (54%) were female and the male and female ratio of 1:1.2. In other organisms this male female ratio was almost same. There was steady rise in number of patients and the hence the isolates from 2004 to 2011. Majority of the bacterial strains were isolated as single organism but some were isolated as double or triple or quadruple or more organisms from different sites. Sensitive, Resistant and

  12. Elaboration of a global strategy for containing microbial drug resistance.

    Science.gov (United States)

    Zabicki, W

    2001-01-01

    The World Health Organization is engaged in developing the Global Strategy for Containment of Antimicrobial Resistance. The preliminary document WHO/CDC/CSR/DRS/2000.I Draft has already been distributed, and remarks have been solicited. The World Health Assembly Resolution of 1998 urged Member States to encourage the appropriate and cost-effective use of antimicrobials. Member States were requested to implement effective systems of microbial resistance surveillance and to monitor volumes and patterns of antimicrobial drug use. The phenomenon of antimicrobial resistance is rising rapidly and causing growing international concern. Many countries have undertaken their own national plans to address the problem. The overall aim of the strategy being developed is to find the most effective forms and to prevent the spread of antimicrobial resistance and resistant microbes. The strategy covers the following topics: patients and general community, prescribers, hospitals, veterinarians, manufacturers and drug dispensers, and international aspects. The strategy is being developed on the basis of expert opinions, published reports, reviews of specific topics specially commissioned by various international and national bodies, and a large body of literature with a list of publications containing over 100 items. PMID:17986973

  13. Drug resistance patterns of acinetobacter baumannii in makkah, saudi arabia

    International Nuclear Information System (INIS)

    Background: Acinetobacter baumannii causes infections of respiratory, urinary tract, blood stream and surgical sites. Its clinical significance has increased due to its rapidly developing resistance to major groups of antibiotics used for its treatment. There is limited data available on antimicrobial susceptibility of A. baumannii from Saudi Arabia. Objectives: To determine the patterns of drug resistance of Acinetobacter baumannii and predisposing factors for its acquisition.Subjects and Methods: In this descriptive study, 72 hospitalized patients infected with A baumannii were studied. The clinical and demographic data of the patients were collected using a predesigned questionnaire. Isolation and identification of A.baumannii from all clinical specimens were done using standard microbiological methods. Antibiotic susce ptibility testing was performed by disk diffusion method recommended by Clinical Laboratory Standards Institute. Results: Majority of the isolates (61.1%) were from respiratory tract infections. A.baumannii isolates showed high drug resistance to piperacil lin (93.1%), aztreonam (80.5%), ticarcillin, ampicillin, and tetracycline (76.4%, each) and cefotaxime (75%). Only amikacin showed low rate of resistance compared to other antibiotics (40.3%). About 36% patients had some underlying diseases with diabetes mellitus (11%) being the predominant underlying disease. Conclusions: High antimicrobial resistance to commonly used antibiotics was seen against A.baumannii isolates. Only amikacin was most effective against it. (author)

  14. 钛表面聚多巴胺、聚乙二醇、聚乳酸-聚羟基乙酸、异烟肼抗结核控释涂层的构建及生物学性能%Fabrication of the anti-tuberculosis controlled drug delivery system with Ti-PDA-PEG-PLGA-INH and investigation of the biological characteristics

    Institute of Scientific and Technical Information of China (English)

    马云龙; 马远征; 李力韬; 李丹; 彭明丽; 赵冠人; 李大伟; 罗展鹏; 顾苏熙; 杨飞

    2016-01-01

    Objective To fabricate an anti⁃tuberculosis controlled drug release coating with Ti⁃PDA⁃PEG⁃PLGA⁃INH and to investigate its surface characteristics, in vivo and in vitro drug release behavior, and tissue biocompatibility. Methods 4⁃arm⁃polyethylene glycol (PEG) was synthesized first. Then cover the surface of titanium (Ti) with a layer of poly dopamine (PDA) by Michael addition reaction. Use porous starch and 4⁃arm⁃PEG as a carrier, load with isoniazid (INH), then attach to the surface of titanium by casting or sol⁃gel dip coating methods, and then cover with a layer of poly lactic⁃co⁃glycolic acid (PLGA) by the same method, to fabricate the Ti⁃PDA⁃PEG⁃PLGA⁃INH composite coating finally. The functional group of 4⁃arm⁃PEG was charac⁃terized by proton nuclear resonance spectroscopy (HNMR). The surface characteristics of Ti⁃PDA⁃PEG⁃PLGA⁃INH were evaluated by scanning electron microscope (SEM), while drug release behaviors were detected by high performance liquid chromatography (HPLC) and the cumulative release rate was calculated, and carry out the antibacterial performance in vitro. The animal model of femoral condyle bone defect was established in 25 New Zealand white rabbits. Titanium rods covered with PDA⁃PEG⁃PLGA⁃INH coating were implanted into defect area. INH concentrations were detected by HPLC in venous blood, muscle and bone tissue at each time point postoperatively. Another 12 rabbits were randomly divided into experimental group and control group, the experi⁃mental group was implanted with titanium tablets and titanium rods coated with PDA⁃PEG⁃PLGA⁃INH in the paraspinous muscle and left femoral condyles respectively, while the control group was implanted with a blank sheet of titanium tablets and titanium rods in the same place. Hematoxylin and Eosin Staining were used to observe the biocompatibility of the composite system in vivo at 28 and 56 days postoperatively. Results Ti

  15. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...... P388 leukemia cell line, P388/ADR. The time course of accumulation of these drugs, and the effect of energy starvation and the presence of chloroquine on the level of their steady-state accumulation were quite disparate. Vinblastine inhibited the accumulation of verapamil whereas it enhanced the...

  16. The management of drug resistant seizures in tuberous sclerosis

    Directory of Open Access Journals (Sweden)

    Romina MOAVERO

    2009-12-01

    Full Text Available Tuberous Sclerosis Complex (TSC is a multisystem autosomal dominant genetic disorder resulting from mutations in one of two genes, TSC1 and TSC2. Pathologically TSC is characterized by abnormal cellular differentiation and proliferation, as well as abnormal neuronal migration. The majority of patients with TSC have epilepsy, although the mechanisms underlying epileptogenesis remain unknown. Seizures onset is frequently during the first year of life, and in a sizable proportion of individuals tend to be refractory to antiepileptic drug treatment. This article reviews the progress in understanding drug resistant seizures in TSC, from molecular pathogenesis to the pathophysiological mechanisms of epileptogenesis, and the rationale for appropriate medical and surgical treatment.

  17. Multi drug resistant tuberculosis presenting as anterior mediastinal mass

    Directory of Open Access Journals (Sweden)

    Parmarth Chandane

    2016-01-01

    Full Text Available Enlargement of the mediastinal lymphatic glands is a common presentation of intrathoracic tuberculosis (TB in children. However, usually, the mediastinal TB nodes enlarge to 2.8 ± 1.0 cm. In this report, we describe a case of anterior mediastinal lymphnode TB seen as huge mass (7 cm on computed tomography (CT thorax without respiratory or food pipe compromise despite anterior mediastinum being an enclosed space. CT guided biopsy of the mass cultured Mycobacterium TB complex which was resistant to isoniazide, rifampicin, streptomycin ofloxacin, moxifloxacin, and pyrazinamide. Hence, we report primary multi drug resistant TB presenting as anterior mediastinal mass as a rare case report.

  18. Coherent feedforward transcriptional regulatory motifs enhance drug resistance

    Science.gov (United States)

    Charlebois, Daniel A.; Balázsi, Gábor; Kærn, Mads

    2014-05-01

    Fluctuations in gene expression give identical cells access to a spectrum of phenotypes that can serve as a transient, nongenetic basis for natural selection by temporarily increasing drug resistance. In this study, we demonstrate using mathematical modeling and simulation that certain gene regulatory network motifs, specifically coherent feedforward loop motifs, can facilitate the development of nongenetic resistance by increasing cell-to-cell variability and the time scale at which beneficial phenotypic states can be maintained. Our results highlight how regulatory network motifs enabling transient, nongenetic inheritance play an important role in defining reproductive fitness in adverse environments and provide a selective advantage subject to evolutionary pressure.

  19. A rare adverse reaction to ethambutol: drug-induced haemolytic anaemia.

    Science.gov (United States)

    Nicolini, A; Perazzo, A; Gatto, P; Piroddi, I M G; Barlascini, C; Karamichali, S; Strada, P

    2016-05-01

    Anti-tuberculosis drugs seldom cause serious haematological side effects. However, among these drugs, isoniazid and rifampicin, especially when administered intermittently, may very rarely be linked to acute autoimmune haemolytic anaemia. Ethambutol (EMB) can cause dose-related retrobulbar neuritis. In this paper, we present the first reported case of acute fatal autoimmune haemolytic anaemia due to EMB. PMID:27084828

  20. World Antimalarial Resistance Network (WARN) III: Molecular Markers for Drug Resistant Malaria

    OpenAIRE

    Sibley Carol H; Shafer Robert W; Price Ric N; Naidoo Inbarani; Mugittu Kefas; Meshnick Steven R; Mbacham Wilfred; Joshi Hema H; Happi Christian T; Barnwell John W; Roper Cally; Plowe Christopher V; Sutherland Colin J; Zimmerman Peter A; Rosenthal Philip J

    2007-01-01

    Abstract Molecular markers for drug resistant malaria represent public health tools of great but mostly unrealized potential value. A key reason for the failure of molecular resistance markers to live up to their potential is that data on the their prevalence is scattered in disparate databases with no linkage to the clinical, in vitro and pharmacokinetic data that are needed to relate the genetic data to relevant phenotypes. The ongoing replacement of older monotherapies for malaria by new, ...

  1. World antimalarial resistance network (WARN) III: Molecular markers for drug resistant malaria

    OpenAIRE

    plowe, cv; Roper, C.; Barnwell, JW; Happi, CT; Joshi, HH; Mbacham, W.; Meshnick, SR; Mugittu, K; Naidoo, I; Price, RN; Shafer, RW; Sibley, CH; Sutherland, CJ; Zimmerman, PA; Rosenthal, PJ

    2007-01-01

    Molecular markers for drug resistant malaria represent public health tools of great but mostly unrealized potential value. A key reason for the failure of molecular resistance markers to live up to their potential is that data on the their prevalence is scattered in disparate databases with no linkage to the clinical, in vitro and pharmacokinetic data that are needed to relate the genetic data to relevant phenotypes. The ongoing replacement of older monotherapies for malaria by new, more effe...

  2. Drug - Resistance - Associated Mutations and HIV Sub - Type Determination in Drug - Naïve and HIV - Positive Patients under Treatment with Antiretroviral Drugs

    Directory of Open Access Journals (Sweden)

    Naziri, H . (M S c

    2013-09-01

    Full Text Available Abstract Background and Objective: Resistance to antiretroviral agents is a significant concern in clinical management of HIV-infected individuals. Resistance is the result of mutations that develops in the viral protein targeted by antiretroviral agents. Material and Methods: In this cross-sectional study, the blood samples of 40 HIV-positive patients were collected. Twenty of them were drug-naïve and the rest were under treatment for at least one year by antiretroviral agents. Virus genome was extracted from patient's plasma with high-pure-viral-nucleic-acid kit. Then, by means of reverse-transcriptase and specific primers of protease genes were amplified and sequenced. Sequences of genes, drug- antiretroviral- resistant mutations and subtypes were determined using Stanford University’s HIV-drug-resistance databases. Results: Drug-naive patients show 15% resistance to nucleoside-reverse-transcriptase inhibitor (NRTI and 20% resistance to non-nucleoside-reverse-transcriptase inhibitor (NNRTI. Anti-protease resistance is not observed in any patients. In under treatment patients, drug resistance to NNRTI (25% is more than drug resistance to NRTI (20% and the rate of drug resistance to protease inhibitor is 5%. Conclusion: Our findings show a high prevalence of drug-resistant mutations in Iranian-drug-naïve-HIV-infected patients. But in under treatment individuals, the rate of drug resistance is less than previous studies. Keywords: HIV; Nucleoside Inhibitor; Non-Nucleoside Inhibitor; Protease Inhibitor

  3. Analysis of Etiology and Drug Resistance of Biliary Infections

    Institute of Scientific and Technical Information of China (English)

    王欣; 李秋; 邹声泉; 孙自庸; 朱峰

    2004-01-01

    The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli,Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium,Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections.The value of susceptibility test should be respected to avoid drug abuse of antibiotics.

  4. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  5. Multi-drug resistant Acinetobacter ventilator-associated pneumonia

    OpenAIRE

    Shete, Vishal B.; Dnyaneshwari P Ghadage; Vrishali A Muley; Bhore, Arvind V.

    2010-01-01

    Background: Ventilator-associated pneumonia (VAP) due to a multi-drug resistant (MDR) Acinetobacter is one of the most dreadful complications, which occurs in the critical care setting. Aims and objectives: To find out the incidence of Acinetobacter infection in VAP cases, to determine various risk factors responsible for acquisition of Acinetobacter infection and to determine the antimicrobial susceptibility pattern of Acinetobacter. Materials and Methods: A total of 60 endotracheal aspirate...

  6. Risk factors for anti-MRSA drug resistance.

    Science.gov (United States)

    Abe, Yasuhisa; Shigemura, Katsumi; Yoshida, Hiroyuki; Fujisawa, Masato; Arakawa, Soichi

    2012-11-01

    Meticillin-resistant Staphylococcus aureus (MRSA)-related infections have recently been spreading and are difficult to control, partly because affected patients are frequently in a poor condition. This study retrospectively investigated recent MRSA-related infections focusing on the relationship between clinical risk factors and anti-MRSA drug resistance. The patients with MRSA-related infections in Kobe University Hospital (Kobe, Japan) in 2009 were enrolled in the study. The relationships between various clinical risk factors as well as MRSA bacterial DNA concentration with minimum inhibitory concentrations (MICs) of anti-MRSA drugs were examined. In total, 44 patients were enrolled in the study and MRSA was isolated from blood (23 patients), urine (12 patients) and nasal secretions (9 patients). There was only one resistant strain to linezolid (LZD) among the anti-MRSA drugs tested, and this strain was considered staphylococcal cassette chromosome mec (SCCmec) type IIa from phage open-reading frame typing analyses. Statistical analyses showed that MRSA bacterial DNA concentration, cancer and use of a respirator, respectively, had a significant relationship with the MICs of LZD (P=0.0058) and arbekacin (ABK) (P=0.0003), of quinupristin/dalfopristin (Q/D) (P=0.0500) and ABK (P=0.0133), and of Q/D (P=0.0198) and vancomycin (P=0.0036). In conclusion, bacterial DNA concentration, cancer and use of a respirator were found to be significant risk factors for lower susceptibilities to anti-MRSA drugs; one strain was resistant to LZD. We suggest that further investigation and surveillance for MRSA-related infection are necessary for preventing the spread of MRSA-related infections. PMID:22999766

  7. Molecular Basis of Antimalarial Drug Resistance in Indonesia

    OpenAIRE

    Syafruddin D

    2003-01-01

    Malaria continues to be a major public health problem in Indonesia. In fact over 3 million clinical cases of malaria and about 100 deaths are reported annually through hospitals and public health centres (Ministry of Health, The Republic of Indonesia, compiled data, 1998). The spread of drug-resistant parasites and the recent outbreaks and re-emergence of malaria in places previously declared malaria-free have forced the Government of Indonesia to re-assess the current national malaria contro...

  8. New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline

    OpenAIRE

    Leibert E; Danckers M; Rom WN

    2014-01-01

    Eric Leibert, Mauricio Danckers, William N Rom Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, NY, USA Abstract: Mycobacterium tuberculosis develops spontaneous resistance mutants to virtually every drug in use. Courses of therapy select for these mutants and drug-resistant organisms emerge. The development of drug-resistant organisms has reached the point that drug resistance now threatens to undermi...

  9. CHEMOTHERAPY, WITHIN-HOST ECOLOGY AND THE FITNESS OF DRUG-RESISTANT MALARIA PARASITES

    OpenAIRE

    Huijben, Silvie; Nelson, William A.; Wargo, Andrew R.; Sim, Derek G.; Drew, Damien R.; Read, Andrew F.

    2010-01-01

    A major determinant of the rate at which drug-resistant malaria parasites spread through a population is the ecology of resistant and sensitive parasites sharing the same host. Drug treatment can significantly alter this ecology by removing the drug-sensitive parasites, leading to competitive release of resistant parasites. Here, we test the hypothesis that the spread of resistance can be slowed by reducing drug treatment and hence restricting competitive release. Using the rodent malaria mod...

  10. An approach to identifying drug resistance associated mutations in bacterial strains

    OpenAIRE

    2012-01-01

    Background Drug resistance in bacterial pathogens is an increasing problem, which stimulates research. However, our understanding of drug resistance mechanisms remains incomplete. Fortunately, the fast-growing number of fully sequenced bacterial strains now enables us to develop new methods to identify mutations associated with drug resistance. Results We present a new comparative approach to identify genes and mutations that are likely to be associated with drug resistance mechanisms. In ord...

  11. Molecular Genetics of Drug-resistance in Epilepsies

    Directory of Open Access Journals (Sweden)

    Kurupath Radhakrishnan

    2015-06-01

    Full Text Available Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive to antiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genes encoding the proteins that regulate the pharmacokinetics such as P-glycoprotein [ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1, ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7], and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABA receptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intense investigation to unravel the mysteries of AED-resistance. However, till today, a consistent and reliable result that could help the clinician either to predict drug resistance or to overcome it has not been forthcoming. The discrepant results may be related to variations in the definition of drug-resistance, heterogeneous patient populations, ethnic variations in the frequency distribution of single nucleotide polymorphisms (SNPs and the selection of SNPs. Understanding of these limitations of existing studies, hopefully, will help in designing better studies. Nearly one-third of newly diagnosed patients with epilepsy remain unresponsive toantiepileptic drugs (AEDs, etiopathogenesis of which is poorly understood. The genesencoding the proteins that regulate the pharmacokinetics such as P-glycoprotein[ABCBI], major vault protein [MVP gene] and drug metabolizing enzymes [ABCB1,ABCG2, MVP, CYP2C9, CYP2C19, CYP3A4, CYP3A5, EPHX1, UGT1A1, UGT2B7],and pharmacodynamics such as sodium channels [SCN1A, SCN2A] and GABAreceptors [GABRA1, GABRA6, GABRB2, GABRG2] of AEDs are under intenseinvestigation to unravel the mysteries of AED-resistance. However, till today, aconsistent and reliable result that could help the clinician either to predict drugresistanceor to overcome it has not been forthcoming. The discrepant results may berelated to variations in the definition of drug-resistance, heterogeneous patientpopulations, ethnic

  12. Technetium-99m Radiopharmaceuticals for Monitoring Drug Resistance. Chapter 12

    International Nuclear Information System (INIS)

    Resistance to chemotherapy constitutes a major obstacle to cancer cures. Cellular mechanisms of resistance involve efflux pumps, P-glycoprotein (Pgp), the product of the MDR1 gene and the related membrane glycoprotein, multidrug resistance associated protein 1 (MRP1). Multidrug resistant cell lines overexpressing Pgp are resistant to a structurally and functionally diverse group of chemotherapeutic agents. Many of these drugs tend to be lipophilic and positively charged at neutral pH. This suggested the application of the two lipophilic cationic 99mTc radiopharmaceuticals currently used for myocardial perfusion, 99mTc-MIBI and 99mTc-Tetrofosmin. Efforts were also made to develop specific 99mTc labelled substrates for Pgp based on lipophilic cationic 99mTc complexes. A large number of studies indicated that 99mTc-MIBI, 99mTc-Tetrofosmin and some related 99mTc compounds are substrates for Pgp. However, it remains uncertain whether these 99mTc labelled compounds are substrates for MRP1. Thus, both 99mTc-MIBI and 99mTc-Tetrofosmin would be general probes of transporter mediated multidrug resistance in tumour cells. (author)

  13. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  14. Surfactant-based drug delivery systems for treating drug-resistant lung cancer.

    Science.gov (United States)

    Kaur, Prabhjot; Garg, Tarun; Rath, Goutam; Murthy, R S R; Goyal, Amit K

    2016-01-01

    Among all cancers, lung cancer is the major cause of deaths. Lung cancer can be categorized into two classes for prognostic and treatment purposes: small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Both categories of cancer are resistant to certain drugs. Various mechanisms behind drug resistance are over-expression of superficial membrane proteins [glycoprotein (P-gp)], lung resistance-associated proteins, aberration of the intracellular enzyme system, enhancement of the cell repair system and deregulation of cell apoptosis. Structure-performance relationships and chemical compatibility are consequently major fundamentals in surfactant-based formulations, with the intention that a great deal investigation is committed to this region. With the purpose to understand the potential of P-gp in transportation of anti-tumor drugs to cancer cells with much effectiveness and specificity, several surfactant-based delivery systems have been developed which may include microspheres, nanosized drug carriers (nanoparticles, nanoemulsions, stealth liposomes, nanogels, polymer-drug conjugates), novel powders, hydrogels and mixed micellar systems intended for systemic and/or localized delivery. PMID:25013959

  15. Additional Drug Resistance of Multidrug-Resistant Tuberculosis in Patients in 9 Countries

    OpenAIRE

    Kurbatova, Ekaterina V.; Dalton, Tracy; Ershova, Julia; Tupasi, Thelma; Caoili, Janice Campos; van der Walt, Martie; Kvasnovsky, Charlotte; Yagui, Martin; Bayona, Jaime; Contreras, Carmen; Leimane, Vaira; Via, Laura E.; Kim, HeeJin; Akksilp, Somsak; Kazennyy, Boris Y.

    2015-01-01

    Data from a large multicenter observational study of patients with multidrug-resistant tuberculosis (MDR TB) were analyzed to simulate the possible use of 2 new approaches to treatment of MDR TB: a short (9-month) regimen and a bedaquiline-containing regimen. Of 1,254 patients, 952 (75.9%) had no resistance to fluoroquinolones and second-line injectable drugs and thus would qualify as candidates for the 9-month regimen; 302 (24.1%) patients with resistance to a fluoroquinolone or second-line ...

  16. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D;

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA-dam...

  17. Anti-Tuberculosis Therapy-Induced Hepatotoxicity among Ethiopian HIV-Positive and Negative Patients

    OpenAIRE

    Yimer, Getnet; Aderaye, Getachew; Amogne, Wondwossen; Makonnen, Eyasu; Aklillu, Eleni; Lindquist, Lars; Yamuah, Lawrence; Feleke, Beniyam; Aseffa, Abraham

    2008-01-01

    Background To assess and compare the prevalence, severity and prognosis of anti-TB drug induced hepatotoxicity (DIH) in HIV positive and HIV negative tuberculosis (TB) patients in Ethiopia. Methodology/Principal Findings In this study, 103 HIV positive and 94 HIV negative TB patients were enrolled. All patients were evaluated for different risk factors and monitored biochemically and clinically for development of DIH. Sub-clinical hepatotoxicity was observed in 17.3% of the patients and 8 out...

  18. Bioactivation of Anti-Tuberculosis Thioamide and Thiourea Prodrugs by Bacterial and Mammalian Flavin Monooxygenases

    OpenAIRE

    Nishida, Clinton R.; Ortiz de Montellano, Paul R.

    2010-01-01

    The thioamide and thiourea class of antituberculosis agents encompasses prodrugs that are oxidatively converted to their active forms by the flavin monooxygenase EtaA of Mycobacterium tuberculosis. Reactive intermediates produced in the EtaA-catalyzed transformations of ethionamide and prothionamide result in NAD+/NADH adducts that inhibit the enoyl CoA reductase InhA, the ultimate target of these drugs. In the case of thiacetazone and isoxyl, EtaA produces electrophilic metabolites that medi...

  19. 社会家庭支持对耐多药肺结核患者治疗依从性的影响%Analysis of multi drug resistant tuberculosis treatment compliance and effect of family social support

    Institute of Scientific and Technical Information of China (English)

    石静; 李燕; 田瑞英

    2014-01-01

    目的:分析社会家庭支持对耐多药肺结核患者治疗依从性的影响。方法:将2011年1月~2012年8月在我院治疗80例耐多药肺结核患者,随机等分为观察组和对照组,对照组常规给予医务人员支持,观察组在对照组基础上进行社会家庭支持干预,抗结核治疗1年后对两组患者治疗依从性效果比较。结果:观察组通过社会家庭支持后,患者对治疗依从性效果明显高于对照组,差异有统计学意义(P<0.05)。结论:社会家庭支持有利于耐多药患者的心理康复和行为改善,提高患者治疗的依从性和疗效,而且能有效地控制耐多药肺结核病的传播与流行。%Objective:To analyze the treatment compliance effect of family and social support for patients with multi drug resistant pulmonary tuberculosis. Methods:80 patients in our hospital treatment of MDR-TB patients,were randomly divided into obserbvation group and control group. Support intervention in the observation group were family social,the control group only routine support intervention. Anti tuberculosis treatment compared to one year after treat-ment compliance of two groups of patients. Results:The observation group through the family social support,patients on treatment compliance of fruit was sig-nificantly higher than the control group,there was statistically significant differences between the two groups (P<0. 05). Conclusion:Family and social sup-port for multi drug resistant patients psychological rehabilitation and improvement of behavior,To improve the compliance and therapeutic effect of the treat-ment of patients with,Popular and can effectively control the multi drug resistant pulmonary tuberculosis.

  20. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid...

  1. Conjugation to polymeric chains of influenza drugs targeting M2 ion channels partially restores inhibition of drug-resistant mutants

    OpenAIRE

    Larson, Alyssa M.; Chen, Jianzhu; Klibanov, Alexander M.

    2013-01-01

    By attaching multiple copies of the influenza M2 ion channel inhibitors amantadine (1) and rimantadine (2) to polymeric chains, we endeavored to recover their potency in inhibiting drug-resistant influenza viruses. Depending on loading densities, as well as the nature of the drug, the polymer, and the spacer arm, polymer-conjugated drugs were up to 30-fold more potent inhibitors of drug-resistant strains than their monomeric parents. In particular, a 20% loading density and a short linker gro...

  2. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P;

    1976-01-01

    strains from general practice. Multiple resistance was common especially in strains from hospital. R factors was found in 23% of the 317 drug-resistant strains from hospital and in 11% of the 46 drug-resistant strains from general practice. Resistance to streptomycin, sulphonamide and tetracycline either...

  3. Seasonal distribution of anti-malarial drug resistance alleles on the island of Sumba, Indonesia

    NARCIS (Netherlands)

    Asih, P.B.; Rogers, W.O.; Susanti, A.I.; Rahmat, A.; Rozi, I.E.; Kusumaningtyas, M.A.; Dewi, R.M.; Coutrier, F.N.; Sutamihardja, A.; Ven, A.J.A.M. van der; Sauerwein, R.W.; Syafruddin, D.

    2009-01-01

    BACKGROUND: Drug resistant malaria poses an increasing public health problem in Indonesia, especially eastern Indonesia, where malaria is highly endemic. Widespread chloroquine (CQ) resistance and increasing sulphadoxine-pyrimethamine (SP) resistance prompted Indonesia to adopt artemisinin-based com

  4. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  5. Transmission of extensively drug-resistant and multidrug resistant Mycobacterium tuberculosis in families identified by genotyping

    Institute of Scientific and Technical Information of China (English)

    YAN Li-ping; QIN Lian-hua; ZHANG Qing; SUN Hua; HAN Min; XIAO He-ping

    2013-01-01

    Background Diagnosis and appropriate treatment of multidrug-resistant tuberculosis (MDR-TB) remain major challenges.We sought to elucidate that persons who share a household with drug resistance tuberculosis patients are at high risk for primary drug resistance tuberculosis and how to prevent these outbreaks.Methods We used 12-locus mycobacterial interspersed repetitive unit and 7-locus variable-number tandem repeat to identify household transmission of extensively drug resistant and multiple drug resistant Mycobacterium tuberculosis in three families admitted in Shanghai Pulmonary Hospital affiliated with Tongji University.Drug susceptibility tests were done by the modified proportion method in the MGIT 960 system in the same time.Clinical data were also obtained from the subjects' medical records.Results All of the six strains were defined as Beijing genotype by the deletion-targeted multiplex PCR (DTM-PCR) identification on the genomic deletion RD105.Strains from family-1 had the same minisatellite interspersed repetitive unit (MIRU) pattem (232225172531) and the same MIRU pattern (3677235).Strains from family-2 had the same MIRU pattern (2212261553323) and the same MIRU pattern (3685134).Strains from family-3 did not have the same MIRU pattern and they differed at only one locus (223326173533,223325173533),and did not have the same VNTR pattern with two locus differed (3667233,3677234).Conclusions Household transmission exists in the three families.A clear chain of tuberculosis transmission within family exists.Tuberculosis susceptibility should be considered when there is more than one tuberculosis patients in a family.Household tuberculosis transmission could be prevented with adequate treatment of source patients.

  6. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  7. Comparative genomics of drug resistance in Trypanosoma brucei rhodesiense.

    Science.gov (United States)

    Graf, Fabrice E; Ludin, Philipp; Arquint, Christian; Schmidt, Remo S; Schaub, Nadia; Kunz Renggli, Christina; Munday, Jane C; Krezdorn, Jessica; Baker, Nicola; Horn, David; Balmer, Oliver; Caccone, Adalgisa; de Koning, Harry P; Mäser, Pascal

    2016-09-01

    Trypanosoma brucei rhodesiense is one of the causative agents of human sleeping sickness, a fatal disease that is transmitted by tsetse flies and restricted to Sub-Saharan Africa. Here we investigate two independent lines of T. b. rhodesiense that have been selected with the drugs melarsoprol and pentamidine over the course of 2 years, until they exhibited stable cross-resistance to an unprecedented degree. We apply comparative genomics and transcriptomics to identify the underlying mutations. Only few mutations have become fixed during selection. Three genes were affected by mutations in both lines: the aminopurine transporter AT1, the aquaporin AQP2, and the RNA-binding protein UBP1. The melarsoprol-selected line carried a large deletion including the adenosine transporter gene AT1, whereas the pentamidine-selected line carried a heterozygous point mutation in AT1, G430R, which rendered the transporter non-functional. Both resistant lines had lost AQP2, and both lines carried the same point mutation, R131L, in the RNA-binding motif of UBP1. The finding that concomitant deletion of the known resistance genes AT1 and AQP2 in T. b. brucei failed to phenocopy the high levels of resistance of the T. b. rhodesiense mutants indicated a possible role of UBP1 in melarsoprol-pentamidine cross-resistance. However, homozygous in situ expression of UBP1-Leu(131) in T. b. brucei did not affect the sensitivity to melarsoprol or pentamidine. PMID:26973180

  8. Magnitude of drug resistant shigellosis in Nepalese patients.

    Directory of Open Access Journals (Sweden)

    Salman Khan

    2013-12-01

    Full Text Available Shigella plays an important role as a causative organism of acute gastroenteritis, in children and others. Rapid emergence of antibiotic resistance warrants continuous monitoring of susceptibility pattern of bacterial isolates. We report here our findings about Shigella spp. isolates and their drug resistance patterns in Nepalese patients.The study was conducted on 507 Nepalese patients with acute gastroenteritis attending outpatient and inpatient departments of Nepalgunj Medical college and teaching Hospital, Banke, Nepal from September 2011 to April 2013. Stool specimens were processed for isolation and identification of Shigella species following the standard microbiological methods while the disc diffusion test was used to determine antimicrobial resistance patterns of the recovered isolates at the central Laboratory of Microbiology.Sixty nine isolates were identified as Shigella species. S. flexneri, S. dysenteriae, S. boydii and S. sonnei accounted, respectively, for 42.03%, 27.54%, 21.74% and 8.70% of the total number of Shigella isolates. Resistance to nalidixic acid (95.65%, ampicillin (85.51%, co-trimoxazole (82.61% and ciprofloxacin (47.83% was observed. Among 69 isolates, 29 (42.03% were from children aged 1-10 years and this group was statistically significant (P < 0.05, compared to the other age groups.The study revealed endemicity of shigellosis with S. flexneri as the predominant serogroup in Nepalese patients. Children were at a higher risk of severe shigellosis. Nalidixic acid, ampicillin, co-trimoxazole and ciprofloxacin should not be used empirically as the first line drugs in treatment of shigellosis. Continuous local monitoring of resistance patterns is necessary for the appropriate selection of empirical antimicrobial therapy.

  9. Multiple myeloma and persistence of drug resistance in the age of novel drugs (Review).

    Science.gov (United States)

    Krishnan, Sabna Rajeev; Jaiswal, Ritu; Brown, Ross D; Luk, Frederick; Bebawy, Mary

    2016-07-01

    Multiple myeloma (MM) is a mature B cell neoplasm that results in multi-organ failure. The median age of onset, diverse clinical manifestations, heterogeneous survival rate, clonal evolution, intrinsic and acquired drug resistance have impact on the therapeutic management of the disease. Specifically, the emergence of multidrug resistance (MDR) during the course of treatment contributes significantly to treatment failure. The introduction of the immunomodulatory agents and proteasome inhibitors has seen an increase in overall patient survival, however, for the majority of patients, relapse remains inevitable with evidence that these agents, like the conventional chemotherapeutics are also subject to the development of MDR. Clinical management of patients with MM is currently compromised by lack of a suitable procedure to monitor the development of clinical drug resistance in individual patients. The current MM prognostic measures fail to pick the clonotypic tumor cells overexpressing drug efflux pumps, and invasive biopsy is insufficient in detecting sporadic tumors in the skeletal system. This review summarizes the challenges associated with treating the complex disease spectrum of myeloma, with an emphasis on the role of deleterious multidrug resistant clones orchestrating relapse. PMID:27175906

  10. Pharmacogenomic association study on the role of drug metabolizing, drug transporters and drug target gene polymorphisms in drug-resistant epilepsy in a north Indian population

    OpenAIRE

    Ritu Kumari; Ram Lakhan; Garg, R. K.; Kalita, J; Misra, U K; Balraj Mittal

    2011-01-01

    Background: In epilepsy, in spite of the best possible medications and treatment protocols, approximately one-third of the patients do not respond adequately to anti-epileptic drugs. Such interindividual variations in drug response are believed to result from genetic variations in candidate genes belonging to multiple pathways. Materials and Methods: In the present pharmacogenetic analysis, a total of 402 epilepsy patients were enrolled. Of them, 128 were diagnosed as multiple drug-resist...

  11. Combined drug medium with isoniazid and rifampicin for identification of multi-drug resistant Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Nalini S

    2010-01-01

    Full Text Available A low-cost method of detecting multi-drug resistant Mycobacterium tuberculosis (MDR-TB with the possibility of quick adoption in a resource limited setting is urgently required. We conducted a study combining isoniazid and rifampicin in a single LJ medium, to detect MDR-TB strains. Combined and individual drug media showed 100% concordance for the detection of MDR-TB and susceptible strains by proportion method. Considering the results, combined isoniazid and rifampicin containing medium could be considered for use in settings where the sole detection of MDR-TB strains is justified.

  12. Positron emission tomography in patients with drug-resistant epilepsy

    International Nuclear Information System (INIS)

    Positron emission tomography with 18Fluor-deoxyglucose (18FDG PET) was introduced as method of evaluation of the cerebral metabolism in the early 80s. 18FDG PET/computed tomography (PET/CT) has rapidly become a method of epileptogenic zone localization because of the hypometaboilsm of this zone during the interictal period. This paper represents the first Bulgarian series of patients with drug- resistant epilepsy who were evaluated with 18FDG PET as part of the presurgical work-up. Our study has included 21 patients with drug-resistant epilepsy who were evaluated with 18FDG PET/CT from January 2010 to May 2013. All patients were evaluated with dedicated MRI epilepsy protocol. PET/CT study was fused with 3D MRI study using FSL or GE software. Video EEG monitoring was performed in all 21 patients and seizures were recorded in 18 patients. Hypometabolic zones were found in 15 patients. The hypometabolism was focal in 5 patients, multilobar in 9 patients and hemispheric in 1 patient. The MRI was normal in 8 patients. Hypometabolic zones were found in 3 of these 8 patients with cryptogenic epilepsy. Epilepsy surgery was performed in 6 cases. All operated patients were with hypometabolic zones. Significant seizure reduction after surgery was observed in 5 of 6 operated patients. 18FDG PET/CT is a valuable method for epileptogenic zone localization in patients with drug-resistant epilepsy. The introduction of this method in the bulgarian epilepsy surgery program increases the chances for successful resective surgery. (authors)

  13. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components

    OpenAIRE

    Hou, Tingjun; Zhang, Wei; Wang, Jian; Wang, Wei

    2009-01-01

    Drug resistance significantly impairs the efficacy of AIDS therapy. Therefore, precise prediction of resistant viral mutants is particularly useful for developing effective drugs and designing therapeutic regimen. In this study, we applied a structure-based computational approach to predict mutants of the HIV-1 protease resistant to the seven FDA approved drugs. We analyzed the energetic pattern of the protease-drug interaction by calculating the molecular interaction energy components (MIECs...

  14. Identification and Characterization of Novel Drug Resistance Loci in Plasmodium falciparum

    OpenAIRE

    Van Tyne, Daria Natalie

    2012-01-01

    Malaria has plagued mankind for millennia. Antimalarial drug use over the last century has generated highly drug-resistant parasites, which amplify the burden of this disease and pose a serious obstacle to control efforts. This dissertation is motivated by the simple fact that malaria parasites have become resistant to nearly every antimalarial drug that has ever been used, yet the precise genetic mechanisms of parasite drug resistance remain largely unknown. Our work pairs genomics-age techn...

  15. Prediction of HIV drug resistance from genotype with encoded three-dimensional protein structure

    OpenAIRE

    Yu, Xiaxia; Weber, Irene T.; Harrison, Robert W.

    2014-01-01

    Background Drug resistance has become a severe challenge for treatment of HIV infections. Mutations accumulate in the HIV genome and make certain drugs ineffective. Prediction of resistance from genotype data is a valuable guide in choice of drugs for effective therapy. Results In order to improve the computational prediction of resistance from genotype data we have developed a unified encoding of the protein sequence and three-dimensional protein structure of the drug target for classificati...

  16. Studies of overcoming acquired resistance : molecular mechanisms and development of novel drugs

    OpenAIRE

    Wang, Xin

    2014-01-01

    Chemotherapeutic agents have become widely applied for treatment of various types of malignancies. Drug resistance unfortunately remains as a major obstacle for the effectiveness of chemotherapy. Cancer drug resistance includes two broad categories: intrinsic and acquired. In this thesis I have examined the problem of acquired drug resistance and have aimed to develop novel approaches to overcome acquired resistance. Clofarabine is a second-generation nucleoside analogue which has been ...

  17. Falciparum malaria molecular drug resistance in the Democratic Republic of Congo: a systematic review

    OpenAIRE

    Mvumbi, Dieudonné; Kayembe, Jean-Marie; SITUAKIBANZA, Hippolyte; Bobanga, Thierry; Nsibu, Célestin; Mvumbi, Georges; Melin, Pierrette; De Mol, Patrick; Hayette, Marie-Pierre

    2015-01-01

    Background: Malaria cases were estimated to 207 million in 2013. One of the problems of malaria control is the emergence and spread of Plasmodium falciparum strains that become resistant to almost all drugs available. Monitoring drug resistance is essential for early detection and subsequent prevention of the spread of drug resistance by timely changes of treatment policy. This review was performed to gather all data available on P. falciparum molecular resistance in DR Congo, as ...

  18. Antibiotic adjuvants: diverse strategies for controlling drug-resistant pathogens.

    Science.gov (United States)

    Gill, Erin E; Franco, Octavio L; Hancock, Robert E W

    2015-01-01

    The growing number of bacterial pathogens that are resistant to numerous antibiotics is a cause for concern around the globe. There have been no new broad-spectrum antibiotics developed in the last 40 years, and the drugs we have currently are quickly becoming ineffective. In this article, we explore a range of therapeutic strategies that could be employed in conjunction with antibiotics and may help to prolong the life span of these life-saving drugs. Discussed topics include antiresistance drugs, which are administered to potentiate the effects of current antimicrobials in bacteria where they are no longer (or never were) effective; antivirulence drugs, which are directed against bacterial virulence factors; host-directed therapies, which modulate the host's immune system to facilitate infection clearance; and alternative treatments, which include such therapies as oral rehydration for diarrhea, phage therapy, and probiotics. All of these avenues show promise for the treatment of bacterial infections and should be further investigated to explore their full potential in the face of a postantibiotic era. PMID:25393203

  19. Outcome after hemispherectomy in patients with drug-resistant epilepsy

    Directory of Open Access Journals (Sweden)

    Wei-wei WANG

    2015-11-01

    Full Text Available Hemispherectomy, as well as hemispherotomy, is an effective treatment for children and adolescents with drug-resistant epilepsy. The procedure is considered in children and adolescents with hemispheric damage due to congenital (e.g. malformation of cortical development, acquired (e.g. perinatal cerebral infarction or progressive diseases (e.g. Rasmussen encephalitis. As the main objective of this procedure, seizure control can be achieved in up to 80% of selected cases. Besides, the cognitive and motor function as well as the quality of life has shown good outcome. DOI: 10.3969/j.issn.1672-6731.2015.11.016

  20. Plasmonic Nanobubbles Rapidly Detect and Destroy Drug-Resistant Tumors

    Directory of Open Access Journals (Sweden)

    Ekaterina Y. Lukianova-Hleb, Xiaoyang Ren, Debra Townley, Xiangwei Wu, Michael E. Kupferman, Dmitri O. Lapotko

    2012-01-01

    Full Text Available The resistance of residual cancer cells after oncological resection to adjuvant chemoradiotherapies results in both high recurrence rates and high non-specific tissue toxicity, thus preventing the successful treatment of such cancers as head and neck squamous cell carcinoma (HNSCC. The patients' survival rate and quality of life therefore depend upon the efficacy, selectivity and low non-specific toxicity of the adjuvant treatment. We report a novel, theranostic in vivo technology that unites both the acoustic diagnostics and guided intracellular delivery of anti-tumor drug (liposome-encapsulated doxorubicin, Doxil in one rapid process, namely a pulsed laser-activated plasmonic nanobubble (PNB. HNSCC-bearing mice were treated with gold nanoparticle conjugates, Doxil, and single near-infrared laser pulses of low energy. Tumor-specific clusters of gold nanoparticles (solid gold spheres converted the optical pulses into localized PNBs. The acoustic signals of the PNB detected the tumor with high specificity and sensitivity. The mechanical impact of the PNB, co-localized with Doxil liposomes, selectively ejected the drug into the cytoplasm of cancer cells. Cancer cell-specific generation of PNBs and their intracellular co-localization with Doxil improved the in vivo therapeutic efficacy from 5-7% for administration of only Doxil or PNBs alone to 90% thus demonstrating the synergistic therapeutic effect of the PNB-based intracellular drug release. This mechanism also reduced the non-specific toxicity of Doxil below a detectable level and the treatment time to less than one minute. Thus PNBs combine highly sensitive diagnosis, overcome drug resistance and minimize non-specific toxicity in a single rapid theranostic procedure for intra-operative treatment.

  1. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion...

  2. Radiation induction of drug resistance in RIF-1: Correlation of tumor and cell culture results

    International Nuclear Information System (INIS)

    The RIF-1 tumor line contains cells that are resistant to various anti-neoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), adriamycin (ADR), and etoposide (VP16). The frequency of these drug-resistant cells is increased after irradiation. The frequency of drug-resistant cells and the magnitude of radiation-induced drug resistance are different in cell culture than in tumors. The dose-response and expression time relationships for radiation induction of drug resistance observed in RIF-1 tumors are unusual.We hypothesize that at high radiation doses in vivo, we are selecting for cells that are both drug resistant and radiation resistant due to microenvironmental factors, whereas at low radiation doses in vivo and all radiation doses in vitro, we are observing true mutants. These studies indicate that there can be significant differences in drug-resistance frequencies between tumors and their cell lines of origin, and that radiation induction of drug resistance depends significantly on whether the induction is done in tumors or in cell culture. These results imply that theories about the induction of drug resistance that are based on cell culture studies may be inapplicable to the induction of drug resistance in tumors

  3. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  4. Radiation induction of drug resistance in RIF-1 tumors and tumor cells

    International Nuclear Information System (INIS)

    The RIF-1 tumor cell line contains a small number of cells (1-20 per 10(6) cells) that are resistant to various single antineoplastic drugs, including 5-fluorouracil (5FU), methotrexate (MTX), and adriamycin (ADR). For 5FU the frequency of drug resistance is lower for tumor-derived cells than for cells from cell culture; for MTX the reverse is true, and for ADR there is no difference. In vitro irradiation at 5 Gy significantly increased the frequency of drug-resistant cells for 5FU, MTX, and ADR. In vivo irradiation at 3 Gy significantly increased the frequency of drug-resistant cells for 5FU and MTX, but not for ADR. The absolute risk for in vitro induction of MTX, 5FU, and ADR resistance, and for in vivo induction of 5FU resistance, was 1-3 per 10(6) cells per Gy; but the absolute risk for in vivo induction of MTX resistance was 54 per 10(6) cells per Gy. The frequency of drug-resistant cells among individual untreated tumors was highly variable; among individual irradiated tumors the frequency of drug-resistant cells was significantly less variable. These studies provide supporting data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be due to radiation-induced drug resistance

  5. Extensively and Pre-Extensively Drug Resistant Tuberculosis in Clinical Isolates of Multi-Drug Resistant Tuberculosis Using Classical Second Line Drugs (Levofloxacin and Amikacin)

    International Nuclear Information System (INIS)

    Objective:To find out the frequency of Extensively Drug Resistant (XDR) and pre-XDR tuberculosis in clinical isolates of Multi-Drug Resistant (MDR) Tuberculosis (TB) by determining the susceptibilities against Levofloxacin and Amikacin (classical second line antituberculosis drugs). Study Design: A descriptive cross-sectional study. Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from September 2011 to August 2013. Methodology: Amikacin (AK) and Levofloxacin (LEVO) were obtained in chemically pure form from Sigma (Taufkirchen, Germany). The breakpoint concentration used for AK was 1.0 micro g/ml and for LEVO 2.0 micro g/ml. Mycobacterial Growth Indicator Tube (MGIT) 960 system was used to carry out drug susceptibility testing as per recommended protocol. Results: A total of 3 MDR-TB isolates (3 percentage) turned out to be XDR-TB based upon simultaneous resistance to injectable second line antituberculosis drug AK and one of the fluoro-quinolones (LEVO). A total of 24 MDR-TB isolates (24 percentage) were found to be pre-XDR based upon resistance to LEVO alone. Treatment status record of patients with XDR and pre-XDRTB isolates revealed that majority of patients had received fluoroquinolones (FQs) during the course of treatment. Conclusion: XDR-TB has started to emerge in MDR-TB isolates in our set up. The worrying sign is the high frequency of pre-XDR tuberculosis. Urgent steps need to be taken to stem the tide of pre-XDR-TB in our population. It is thus recommended to develop facilities to carry out drug susceptibility testing to monitor the status of pre-XDR and XDR-TB in our population. (author)

  6. Factors Associated with Fatality during the Intensive Phase of Anti-Tuberculosis Treatment

    Science.gov (United States)

    Casals, M.; Caminero, J. A.; García-García, J. M.; Jiménez-Fuentes, M. A.; Medina, J. F.; Millet, J. P.; Ruiz-Manzano, J.; Caylá, J.

    2016-01-01

    Objective To determine the case-fatality rate (CFR) at the end of the intensive phase of tuberculosis (TB) treatment, and factors associated with fatality. Methods TB patients diagnosed between 2006 and 2013 were followed-up during treatment. We computed the CFR at the end of the intensive phase of TB treatment, and the incidence of death per 100 person-days (pd) of follow-up. We performed survival analysis using the Kaplan-Meier method and Cox regression, and calculate hazard ratios (HR) and 95% confidence intervals (CI). Results A total of 5,182 patients were included, of whom 180 (3.5%) died; 87 of these deaths (48.3%) occurred during the intensive phase of treatment, with a CFR of 1.7%. The incidence of death was 0.028/100 pd. The following factors were associated with death during the intensive phase: being >50 years (HR = 36.9;CI:4.8–283.4); being retired (HR = 2.4;CI:1.1–5.1); having visited the emergency department (HR = 3.1;CI:1.2–7.7); HIV infection (HR = 3.4;CI:1.6–7.2); initial standard treatment with 3 drugs (HR = 2.0;CI:1.2–3.3) or non-standard treatments (HR = 2.68;CI:1.36–5.25); comprehension difficulties (HR = 2.8;CI:1.3–6.1); and smear-positive sputum (HR = 2.3-CI:1.0–4.8). Conclusion There is a non-negligible CFR during the intensive phase of TB, whose reduction should be prioritised. The CFR could be a useful indicator for evaluating TB programs. PMID:27487189

  7. Predicting the emergence of drug-resistant HSV-2: new predictions

    Directory of Open Access Journals (Sweden)

    Darby Graham

    2003-03-01

    Full Text Available Abstract Background Mathematical models can be used to predict the emergence and transmission of antiviral resistance. Previously it has been predicted that high usage of antivirals (in immunocompetent populations to treat Herpes Simplex Virus type 2 (HSV-2 would only lead to fairly low levels of antiviral resistance. The HSV-2 predictions were based upon the assumption that drug-resistant strains of HSV-2 would be less infectious than drug-sensitive strains but that the drug-resistant strains would not be impaired in their ability to reactivate. Recent data suggest that some drug-resistant strains of HSV-2 are likely to be impaired in their ability to reactivate. Objectives: (1 To predict the effect of a high usage of antivirals on the prevalence of drug-resistant HSV-2 under the assumption that drug-resistant strains will be less infectious than drug-sensitive strains of HSV-2 and also have an impaired ability to reactivate. (2 To compare predictions with previous published predictions. Methods We generated theoretical drug-resistant HSV-2 strains that were attenuated (in comparison with drug-sensitive strains in both infectivity and ability to reactivate. We then used a transmission model to predict the emergence and transmission of drug-resistant HSV-2 in the immunocompetent population assuming a high usage of antivirals. Results Our predictions are an order of magnitude lower than previous predictions; we predict that even after 25 years of high antiviral usage only 5 out of 10,000 immunocompetent individuals will be shedding drug-resistant virus. Furthermore, after 25 years, 52 cases of HSV-2 would have been prevented for each prevalent case of drug-resistant HSV-2. Conclusions The predicted levels of drug-resistant HSV-2 for the immunocompetent population are so low that it seems unlikely that cases of drug-resistant HSV-2 will be detected.

  8. QTF-Gold assay for monitoring of anti-tuberculosis therapy in subjects with active TB

    Directory of Open Access Journals (Sweden)

    Ilaria Sauzullo

    2008-09-01

    Full Text Available Introduction: The identification and characterization of two M. tuberculosis-specific antigens (ESAT-6 and CFP- 10 has led to the development of a whole blood new generation of M. tuberculosis specific diagnostic tests, that have several advantages over tuberculin skin test (TST, in terms of higher specificity, better correlation with surrogate measures of exposure to M. tuberculosis in low-incidence setting, and less cross-reactivity with M. bovis (BCG vaccine and environmental mycobacteria.The role of these new tests in evaluating post-therapy tuberculosis eradication has not been investigated yet. Aim of this longitudinal study was to determinate changes of response to M. tuberculosis-specific antigens in patients during the standard tuberculosis treatment and to investigate the in vitro effects of tuberculosis drugs on the IFN-γ release. Methods: 23 individuals with active tuberculosis were enrolled and followed over time.They were tested with QuantiFERON TB-Gold (QFT-Gold at four time points: at diagnosis (t0, after 3 and 6 months of treatment (t1- t2 and at the end of the specific treatment (t3. Results: At baseline all patients were positive by QFT-Gold.At second time-point 17 out of 23 (74% were positive, at third time-point 11 of 23 (47% were positive, at treatment completion 3/23 (13% were positive.The conversion to negative response to M. tuberculosis-specific antigens was found in 87% patients analyzed after successful therapy. Longitudinal QFT-Gold testing shown a significant decrease (p<0.001 of IFN-γ response during the therapy. No inhibitory effect on IFN-γ release was noted in vitro for chemotherapy using at concentrations compatible with those achieved in serum of treated patients.We have revealed an inhibitory effect only at concentrations 2-3 times greater than those previously tested. Conclusion: A successful therapy for tuberculosis causes a significant decrease of the ESAT-6 and CFP-10 response and this data suggest

  9. A genomic and evolutionary approach reveals non-genetic drug resistance in malaria

    OpenAIRE

    Herman, Jonathan D.; Rice, Daniel P.; Ribacke, Ulf; Silterra, Jacob; Deik, Amy A.; Moss, Eli L; Broadbent, Kate M; Neafsey, Daniel E; Desai, Michael M; Clish, Clary B.; Mazitschek, Ralph; Wirth, Dyann F.

    2014-01-01

    Background Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. Results We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of tw...

  10. Antimicrobial Drug Resistance: "Prediction Is Very Difficult, Especially about the Future"1

    OpenAIRE

    Courvalin, Patrice

    2005-01-01

    Evolution of bacteria towards resistance to antimicrobial drugs, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. Resistance to antimicrobial drugs in bacteria can result from mutations in housekeeping structural or regulatory genes. Alternativ...

  11. Resistance to antiretroviral drugs in treated and drug-naive patients in the Democratic Republic of Congo

    OpenAIRE

    Muwonga, J; Edidi, S.; Butel, Christelle; Vidal, Nicole; Monleau, Marjorie; Okenge, A; Mandjo, J. L.; Mukumbi, H.; Muyembe, J. J.; Mbayo, F.; Nzongola, D. K.; Delaporte, Eric; Boillot, F.; Peeters, Martine

    2011-01-01

    Background: We studied virological outcome and drug resistance in patients on antiretroviral therapy (ART) in health care centers in the Democratic Republic of Congo and looked for the presence of drug resistance in antiretroviral-naive patients attending the same clinics. Methods: In 2008, we conducted a cross-sectional survey among patients on ART for >= 12 months in 4 major cities [Kinshasa (n = 289), Matadi (n = 198), Lubumbashi (n = 77), and Mbuji-Mayi (n = 103)]. Genotypic drug resistan...

  12. Surgical management of cavernous malformations coursing with drug resistant epilepsy

    Directory of Open Access Journals (Sweden)

    Mario Arturo Alonso-Vanegas

    2012-01-01

    Full Text Available Cerebral cavernous malformations (CM are dynamic lesions characterized by continuous size changes and repeated bleeding. When involving cortical tissue, CM pose a significant risk for the development of drug-resistant epilepsy, which is thought to be result of an altered neuronal network caused by the lesion itself and its blood degradation products. Preoperative evaluation should comprise a complete seizure history, neurological examination, epilepsy-oriented MRI, EEG, video-EEG, completed with SPECT, PET, functional MRI and/or invasive monitoring as needed. Radiosurgery shows variable rates of seizure freedom and a high incidence of complications, thus microsurgical resection remains the optimal treatment for CM coursing with drug-resistant epilepsy.Two thirds of patients reach Engel I class at three-year follow-up, regardless of lobar location. Those with secondarily generalized seizures, a higher seizure frequency, and generalized abnormalities on preoperative or postoperative EEG, show poorer outcomes, while factors such as gender, duration of epilepsy, lesion size, age, bleeding at the time of surgery, do not correlate consistently with seizure outcome. Electrocorticography and a meticulous removal of all cortical hemosiderin –beyond pure lesionectomy– reduce the risk of symptomatic recurrences.

  13. Amplification of a Gene Related to Mammalian mdr Genes in Drug-Resistant Plasmodium falciparum

    Science.gov (United States)

    Wilson, Craig M.; Serrano, Adelfa E.; Wasley, Annemarie; Bogenschutz, Michael P.; Shankar, Anuraj H.; Wirth, Dyann F.

    1989-06-01

    The malaria parasite Plasmodium falciparum contains at least two genes related to the mammalian multiple drug resistance genes, and at least one of the P. falciparum genes is expressed at a higher level and is present in higher copy number in a strain that is resistant to multiple drugs than in a strain that is sensitive to the drugs.

  14. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Science.gov (United States)

    2010-06-11

    ... resistance, rapid diagnostic device development for bacterial diseases, and antibacterial drug development... antibacterial drug resistance and product development for bacterial diseases. Topics for discussion include the following: (1) An overview and discussion of the scale of the current bacterial resistance problem,...

  15. Drug Resistance versus Spiritual Resistance: A Comparative Analysis from the Perspective of Spiritual Health

    Directory of Open Access Journals (Sweden)

    Mohammad Baqer Mohammadi Laini

    2014-12-01

    Full Text Available Background and Objectives: Taking into account a few principles concerning human being, it becomes plausible that the human spirit would also have a similar reaction to spiritual “medicine” provided to it. In order to better understand how this is possible, we must consider the means by which the human spirit becomes resistant to spiritual remedies and compare them with the resistance developed by the body against physical drugs. As such, this research aimed at creating a comparative analysis between the elements that cause the human spirit to become resistant against spiritual remedies in comparison to the body’s resistance against physical treatments (e.g. drugs and other physical treatment. Methods: The research at hand highlights the conclusions of an overall study of the Holy Quran, books of Islamic narration, and extensive Internet research concerning this subject. With these resources, the various aspects of the spirit’s resistance against spiritual remedies were discussed in detail. Results: According to Holy Quran and Islamic narrations: Based on the expectations which God has of man, his heart (i.e. spirit has the potential to fall under one of two categories – positive or negative. An afflicted heart may at times, like an afflicted body, become resistant against a remedy designed to cure it. In both cases of physical or metaphysical resistance, the underlying element that causes this resistance as well as the symptoms which accompany it are similar to one another. Having considered the teachings found in religious texts, this research discovered the underlying causes of spiritual resistance, and outlined some solutions which can prevent this issue from arising in the first place. Conclusion: Based on the standards of health and spiritual wellbeing as outlined in Holy Quran, it is said that some hearts are unhealthy and require treatment and healing. In Holy Quran, there is also no doubt in it, guidance to the God wary

  16. Anti-tuberculosis drug resistance among new and previously treated pulmonary tuberculosis patients in Cotonou, Benin%贝宁-科托努地区初治和复治肺结核患者抗结核药物耐药研究

    Institute of Scientific and Technical Information of China (English)

    D. Affolabi; O.A.B.G.Adjagba; B. Tanimomo-Kledjo; M. Gninafon; S.Y. Anagonou; F. Portaels; 徐彩红

    2008-01-01

    目的:评估贝宁最大的结核病中心科托努地区目前抗结核药物的耐药形势.方法:共计分析从肺结核患者分离出的 470 株结核分枝杆菌复合群:其中 244 株来自新病人,226 株来自复治病人.使用比例法对分离菌株进行一线药物的敏感性试验.结果:原发耐多药情况与患者的来源有关:若分析所有的患者,则新病人中耐多药相对较高(1.6%);若仅考虑贝宁常住人口,该比例则较低(0.5%),并与 1994 年国家的耐药监测结果比较.复治患者的耐多药率(11.1%),也与贝宁1994年的耐药监测结果持平.没有发现合并感染人类免疫缺陷病毒与抗结核药物的耐药性相关.结论:本研究表明在流行病学调查中正确的区分患者的重要性,研究人口不同,结果就可能不相同.

  17. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.; (Einstein); (TAM); (Jacobus)

    2009-06-30

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  18. Novel TetR family transcriptional factor regulates expression of multiple transport-related genes and affects rifampicin resistance in Mycobacterium smegmatis.

    Science.gov (United States)

    Liu, Huicong; Yang, Min; He, Zheng-Guo

    2016-01-01

    Transport-related genes significantly affect bacterial antibiotic resistance. However, the effects of these genes and their regulation of bacterial drug resistance in several mycobacterial species, including the fast-growing Mycobacterium smegmatis, the pathogen M. tuberculosis and M. avium have not been clearly characterized. We identified Ms4022 (MSMEG_4022) as a novel TetR family regulator that activates the expression of seven transport-related genes and affects drug resistance in M. smegmatis. Overexpression of Ms4022 inhibited M. smegmatis growth and enhanced mycobacterial resistance to the anti-tuberculosis drug rifampicin (RIF). By contrast, the Ms4022-deleted mycobacterial strain has shown sensitive to RIF. Ms4022 recognized three 19 bp non-palindromic motifs containing a 9 bp conserved region at their 5' end and it directly regulated seven transport-related genes, which affects mycobacterial resistance to RIF. Overexpression of three of seven transport-related genes (Ms1448, Ms1613, and Ms5278) inhibited the growth of M. smegmatis. This study improves our understanding of the function of mycobacterial transport-related genes and their regulation of bacterial drug resistance. PMID:27271013

  19. Analysis of Antimicrobial Resistance Genes in Multiple Drug Resistant (MDR) Salmonella enterica Isolated from Animals and Humans

    Science.gov (United States)

    Background: Multiple Drug Resistant (MDR) foodborne bacteria are a concern in animal and human health. Identification of resistance genes in foodborne pathogens is necessary to determine similarities of resistance mechanisms in animal, food and human clinical isolates. This information will help us ...

  20. Second-line drug resistance in multidrug-resistant tuberculosis cases of various origins in the Netherlands.

    NARCIS (Netherlands)

    Ingen, J. van; Boeree, M.J.; Wright, A.; Laan, T.; Dekhuijzen, P.N.R.; Soolingen, D van

    2008-01-01

    SETTING: The Netherlands. OBJECTIVE: To investigate the frequency of resistance to second-line drugs among multidrug-resistant tuberculosis (MDR-TB) cases and its correlation with patients' geographic origin. DESIGN: Retrospective laboratory database study of multidrug-resistant Mycobacterium tuberc

  1. Global Introduction of New Multidrug-Resistant Tuberculosis Drugs-Balancing Regulation with Urgent Patient Needs.

    Science.gov (United States)

    Sullivan, Timothy; Ben Amor, Yanis

    2016-03-01

    New treatments for multidrug-resistant tuberculosis (MDR TB) are urgently needed. Two new drugs, bedaquiline and delamanid, have recently been released, and several new drugs and treatment regimens are in the pipeline. Misuse of TB drugs is a principal cause of drug resistance. As new drugs and regimens reach the market, the need to make them available to patients must be balanced with regulation of their use so that resistance to the new drugs can be prevented. To foster the rational use of new drugs, we propose 1) expanding/strengthening the capacity for drug susceptibility testing, beginning with countries with a high TB burden; 2) regulating prescribing practices by banning over-the-counter sale of TB drugs and enacting an accreditation system whereby providers must be certified to prescribe new drugs; and 3) decentralizing MDR TB care in rural communities by employing trained community health workers, using promising mobile technologies, and enlisting the aid of civil society organizations. PMID:26889711

  2. Prevalence and transmission of pyrazinamide resistant Mycobacterium tuberculosis in China.

    Science.gov (United States)

    Xu, Peng; Wu, Jie; Yang, Chongguang; Luo, Tao; Shen, Xin; Zhang, Yangyi; Nsofor, Chijioke A; Zhu, Guofeng; Gicquel, Brigitte; Gao, Qian

    2016-05-01

    Pyrazinamide (PZA) is an important first-line anti-tuberculosis drug, however, there are relatively few available data on PZA resistant (PZA-R) rate in China. From June 2009 to June 2012, we selected 493 isolates from five field settings in China to investigate PZA-R by pncA gene sequencing. The result showed that PZA-R rate was 1.0% (2/196) among pan-susceptible isolates, 3.1% (4/130) among isoniazid (INH) mono-resistant isolates, 14.0% (6/43) among rifampin (RIF) mono-resistant isolates and 43.5% (54/124) among multidrug resistant (MDR) isolates. MDR tuberculosis (TB), RIF mono-resistance, and retreatment were found to be risk factors for PZA-R. Newly diagnosed PZA-R TB patients and clustered isolates with identical pncA mutations indicate that transmission of PZA-R isolates plays an important role in emergence of PZA-R TB. The results suggest that, it is necessary to conduct PZA susceptibility test among MDR isolates and modify the treatment regimens accordingly. PMID:27156619

  3. Prevalence and determinants of resistance to use drugs among adolescents who had an opportunity to use drugs *

    OpenAIRE

    Lopez-Quintero, Catalina; Neumark, Yehuda

    2015-01-01

    Background As drugs remain ubiquitous and their use increasingly viewed as socially normative, vulnerable population groups such as adolescents face continued and growing risk. A better understanding of the factors that discourage individuals from initiating drug use, particularly in enabling scenarios, is therefore needed. This study aims to identify individual, interpersonal and school-contextual factors associated with resistance to using drugs in the presence of a drug use opportunity amo...

  4. Drug Resistance Strategies Rural Hawaiian Youth of as a Function of Drug Offerers and Substances: A Community Stakeholder Analysis

    OpenAIRE

    Okamoto, Scott K.; Helm, Susana; Kulis, Stephen; Delp, Justin A.; Dinson, Ay-Laina

    2012-01-01

    This study examined the variations in drug resistance strategies endorsed by community members for rural Native Hawaiian youth in drug-related problem situations. Community stakeholders completed a Web-based survey focused on drug-related problem scenarios and their matched set of responses developed by middle/intermediate school youth in prior research. Mean differences were examined based on drug offerers described in the scenarios (i.e., peers/friends, cousins, and parents) and the substan...

  5. Experimental studies on the ecology and evolution of drug-resistant malaria parasites

    OpenAIRE

    Huijben, Silvie

    2010-01-01

    Drug resistance is a serious problem in health care in general, and in malaria treatment in particular, rendering many of our previously considered ‘wonder drugs’ useless. Recently, large sums of money have been allocated for the continuous development of new drugs to replace the failing ones. We seem to be one step behind the evolution of antimalarial resistance; is it possible to get one step ahead? Are interventions which slow down the evolution and spread of drug-resistant ...

  6. Mycobacterium tuberculosis spoligotypes and drug susceptibility pattern of isolates from tuberculosis patients in peri-urban Kampala, Uganda

    Directory of Open Access Journals (Sweden)

    Kallenius Gunilla

    2008-07-01

    Full Text Available Abstract Background The poor peri-urban areas of developing countries with inadequate living conditions and a high prevalence of HIV infection have been implicated in the increase of tuberculosis (TB. Presence of different lineages of Mycobacterium tuberculosis has been described in different parts of the world. This study determined the predominant strain lineages that cause TB in Rubaga division, Kampala, Uganda, and the prevalence of resistance to key anti-tuberculosis drugs in this community. Methods This was a cross-sectional study of newly diagnosed sputum smear-positive patients aged ≥ 18 years. A total of 344 isolates were genotyped by standard spoligotyping and the strains were compared with those in the international spoligotype database (SpolDB4. HIV testing and anti-tuberculosis drug susceptibility assays for isoniazid and rifampicin were performed and association with the most predominant spoligotypes determined. Results A total of 33 clusters were obtained from 57 spoligotype patterns. According to the SpolDB4 database, 241 (70% of the isolates were of the T2 family, while CAS1-Kili (3.5%, LAM9 (2.6%, CAS1-Delhi (2.6% were the other significant spoligotypes. Furthermore, a major spoligotype pattern of 17 (4.5% strains characterized by lack of spacers 15–17 and 19–43 was not identified in SpolDB4. A total of 92 (26.7% of the patients were HIV sero-positive, 176 (51.2% sero-negative, while 76 (22.1% of the patients did not consent to HIV testing. Resistance to isoniazid was found in 8.1% of strains, while all 15 (4.4% strains resistant to rifampicin were multi-drug resistant. Additionally, there was no association between any strain types in the sample with either drug resistance or HIV sero-status of the patients. Conclusion The TB epidemic in Kampala is localized, mainly caused by the T2 family of strains. Strain types were neither associated with drug resistance nor HIV sero-status.

  7. The problem of resistant Trichomonas vaginalis to antiprotozoal drugs

    Directory of Open Access Journals (Sweden)

    A. L. Poznyak

    2014-09-01

    Full Text Available This review presents recent data on the energy metabolism of Trichomonas vaginalis and ways the activation of metronidazole. The sensitivity of microorganisms to the 5-nitroimidazole by the presence of their enzyme systems, generating and transporting electrons, which can then transfer them to the nitro group of the drug. In T.vaginalis these are pyruvate ferredoxin-oxydoreductase, thioredoxin reductase and flavin reductase. The development of resistance T.vaginalis to metronidazole preparations of this multistep process, based on the gradual reduction (up to a loss activity hydrogenosomal enzymes and / or violation of the flavindependent metabolic pathways.

  8. Drug resistance in sea lice: a threat to salmonid aquaculture.

    Science.gov (United States)

    Aaen, Stian Mørch; Helgesen, Kari Olli; Bakke, Marit Jørgensen; Kaur, Kiranpreet; Horsberg, Tor Einar

    2015-02-01

    Sea lice are copepod ectoparasites with vast reproductive potential and affect a wide variety of fish species. The number of parasites causing morbidity is proportional to fish size. Natural low host density restricts massive parasite dispersal. However, expanded salmon farming has shifted the conditions in favor of the parasite. Salmon farms are often situated near wild salmonid migrating routes, with smolts being particularly vulnerable to sea lice infestation. In order to protect both farmed and wild salmonids passing or residing in the proximity of the farms, several measures are taken. Medicinal treatment of farmed fish has been the most predictable and efficacious, leading to extensive use of the available compounds. This has resulted in drug-resistant parasites occurring on farmed and possibly wild salmonids. PMID:25639521

  9. RLIP76, a non-ABC transporter, and drug resistance in epilepsy

    OpenAIRE

    Awasthi Yogesh C; Cucullo Luca; Singhal Sharad S; Fazio Vince; Hallene Kerri L; Awasthi Sanjay; Dini Gabriele; Janigro Damir

    2005-01-01

    Abstract Background Permeability of the blood-brain barrier is one of the factors determining the bioavailability of therapeutic drugs and resistance to chemically different antiepileptic drugs is a consequence of decreased intracerebral accumulation. The ABC transporters, particularly P-glycoprotein, are known to play a role in antiepileptic drug extrusion, but are not by themselves sufficient to fully explain the phenomenon of drug-resistant epilepsy. Proteomic analyses of membrane protein ...

  10. Environmental, pharmacological and genetic influences on the spread of drug-resistant malaria

    OpenAIRE

    Antao, Tiago; Hastings, Ian M.

    2010-01-01

    Plasmodium falciparum malaria is subject to artificial selection from antimalarial drugs that select for drug-resistant parasites. We describe and apply a flexible new approach to investigate how epistasis, inbreeding, selection heterogeneity and multiple simultaneous drug deployments interact to influence the spread of drug-resistant malaria. This framework recognizes that different human ‘environments’ within which treatment may occur (such as semi- and non-immune humans taking full or part...

  11. Proposal for a new therapy for drug-resistant malaria using Plasmodium synthetic lethality inference ☆

    OpenAIRE

    Lee, Sang Joon; Seo, Eunseok; Cho, Yonghyun

    2013-01-01

    Many antimalarial drugs kill malaria parasites, but antimalarial drug resistance (ADR) and toxicity to normal cells limit their usefulness. To solve this problem, we suggest a new therapy for drug-resistant malaria. The approach consists of data integration and inference through homology analysis of yeast–human–Plasmodium. If one gene of a Plasmodium synthetic lethal (SL) gene pair has a mutation that causes ADR, a drug targeting the other gene of the SL pair might be used as an effective tre...

  12. Harnessing evolutionary fitness in Plasmodium falciparum for drug discovery and suppressing resistance

    OpenAIRE

    Lukens, Amanda Kathleen; Ross, L. S.; Heidebrecht, Richard W; Javier Gamo, F.; Lafuente-Monasterio, M. J.; Booker, M. L.; Hartl, Daniel L.; Wiegand, R C; Wirth, Dyann F

    2013-01-01

    Drug resistance emerges in an ecological context where fitness costs restrict the diversity of escape pathways. These pathways are targets for drug discovery, and here we demonstrate that we can identify small-molecule inhibitors that differentially target resistant parasites. Combining wild-type and mutant-type inhibitors may prevent the emergence of competitively viable resistance. We tested this hypothesis with a clinically derived chloroquine-resistant (CQr) malaria parasite and with para...

  13. Accelerating clinical drug development for children with tuberculosis.

    Science.gov (United States)

    Murray, S; McKenna, L; Pelfrene, E; Botgros, R

    2015-12-01

    Despite urgent need, the development, approval and availability of child-friendly anti-tuberculosis drugs lag significantly behind that of adults, with children having been ignored in anti-tuberculosis drug development research. This paper outlines possible strategies for accelerating and better integrating the development of drugs and regimens for pediatric tuberculosis (TB) into existing drug development pathways for adults: initiation of pediatric studies of new treatments as soon as promising efficacy data have been generated in adults following successful phase II studies, shifting from the current age de-escalated approach to concomitant enrollment of children from the various age groups in studies, and leveraging the concepts of both the Unified Pathway and regimen development that have helped speed the study and development of novel regimens in adults. PMID:26564546

  14. Drugs Susceptibility Reactions Patterns and Multiple Drug Resistance of Escherichia coli Isolated from Diarrhoeic Calves in Sudan

    Directory of Open Access Journals (Sweden)

    E.D.M. ElAmin

    2007-01-01

    Full Text Available Drug sensitivity test was performed on forty-four E. coli isolates using nine antimicrobial drugs. The latter were ampicillin, chloramphenicol, erythromycin, gentamycin, nalidixic acid, neomycin, streptomycin, sulfamethoxazole/trimethoprim and tetracycline. A considerable variation in their pattern of sensitivity was shown. Almost all isolates showed sensitivity to chloramphnicol. On the other hand, the strains were all insensitive to erythromycin. Forty-one patterns of drug susceptibility reactions were obtained. Each pattern was represented by a single strain with the exception of three of them which included two strains each.On the whole, 26 patterns of drugs resistance that ranged between resistance to a single drug and seven drugs were encountered A scheme of drug susceptibility patterns is put forward for use in routine clinical diagnosis as well as epidemiological investigations.

  15. Multi-drug resistant Acinetobacter ventilator-associated pneumonia

    Directory of Open Access Journals (Sweden)

    Shete Vishal

    2010-01-01

    Full Text Available Background: Ventilator-associated pneumonia (VAP due to a multi-drug resistant (MDR Acinetobacter is one of the most dreadful complications, which occurs in the critical care setting. Aims and objectives: To find out the incidence of Acinetobacter infection in VAP cases, to determine various risk factors responsible for acquisition of Acinetobacter infection and to determine the antimicrobial susceptibility pattern of Acinetobacter. Materials and Methods: A total of 60 endotracheal aspirate specimens from intubated patients diagnosed clinically and microscopically as VAP were studied bacteriologically. All clinical details and prior exposure to antibiotics were recorded. Results: An incidence of 11.6% of Acinetobacter VAP cases was recorded. Various underlying conditions like head injury, cerebral hemorrhage and chronic obstructive pulmonary disease (COPD were found to be associated with Acinetobacter VAP. Acinetobacter strains exhibited MDR pattern. Conclusion: Strict infection control measures, judicious prescribing of antibiotics, antibiotic resistance surveillance programs and antibiotic cycling should be adopted to control infections due to these bacteria in patients admitted to intensive care units.

  16. [Adverse drug reactions in multidrug-resistant tuberculosis].

    Science.gov (United States)

    Palmero, Domingo; Cruz, Víctor; Museli, Tomás; Pavlovsky, Hernán; Fernández, Juan; Waisman, Jaime

    2010-01-01

    Multidrug-resistant tuberculosis (MDRTB) poses difficulties in diagnosis and treatment, including increased frequency of adverse reactions to antituberculosis drugs (ADRAs), which compromise the effectiveness of treatment. This is specially complicated in the treatment of patients co-infected with HIV which includes the antiretroviral therapy plus the treatment of eventual comorbidities. A total of 121 MDRTB patients, 87 HIV-negative and 34 HIV positive, assisted in the Hospital F. J. Muñiz, Buenos Aires, during the period 2003-2007 were retrospectively studied. The incidence of ADRAs among the two groups of patients was compared. All the patients with adherence to treatment (no more than one abandon, recovered) were included in the study. Antituberculosis drugs used were: ethambutol, pyrazinamide, ofloxacin, moxifloxacin, cycloserine, ethionamide, PAS, streptomycin, kanamycin, amikacin and linezolid. The emergence of ADRAs and the proportion of severe reactions attributed to antituberculosis drugs were similar in both groups: 44.8% in HIV negative and 44.1% in HIV positive, but it was observed an additional 23.5% of adverse reactions to antiretroviral therapy in the second group. There were differences in the type of reactions and time of occurrence between the two groups. One HIV positive patient died of epidermolysis. The proportion of adverse reactions in HIV/AIDS patients increased 50% when those attributed to antiretroviral treatment were included. We conclude that the studied population showed a frequency of ADRAs higher than it would be expected in the treatment of susceptible TB, but there was no difference in its frequency among HIV-negative and positive patients. PMID:20920959

  17. Parallel selection of chemotherapy-resistant cell lines to illuminate mechanisms of drug resistance in human tumors

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Eklund, Aron Charles; Birkbak, Nicolai Juul;

    2011-01-01

    , which is with accordance to their mode of action. Our findings are validated on already existing gene expression profiles of patient cohorts treated with the drugs in question, and the most promising ones will be chosen for functional validation by RNAi knock down. Successful validation will improve...... understanding of drug resistance mechanisms, suggest future drug targets, and enable more efficacious treatment of cancer patients....... the identification of reliable predictive biomarkers for each drug. Currently, we are developing a framework for systematic biomarker discovery by using a combination of gene expression and CGH arrays to keep track of consistent changes that take place during resistance acquisition in cell lines...

  18. Pay close attention to prevalence and treatment of multi-drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Hong-bing CHEN

    2011-03-01

    Full Text Available Multi-drug-resistant tuberculosis(MDR-TB and extensive-drug-resistant tuberculosis(XDR-TB has become more prevalent worldwide.It is a disease which is difficult and expensive to treatment,with poor prognosis and high mortality.The spread of HIV accelerated the progression of malignancy of infection of tuberculosis.The evolution of MDR-and XDR-Mycobacterium tuberculosis had been a complicated and dynamic process related to the drug-resistant genes and phenotypes.The new diagnostic and therapeutic methods,research on vaccines,and the research and application of new drugs would be conducive to inhibit the prevalence of MDR-TB and XDR-TB.Prevention of initial drug-resistance infection should be emphasized in the prevention of drug-resistant TB.

  19. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  20. Epidemiology and patterns of drug resistance among tuberculosis patients in Northwestern Iran

    Directory of Open Access Journals (Sweden)

    L Sahebi

    2016-01-01

    Full Text Available Background: Multidrug-resistant tuberculosis (MDR-TB has emerged as an important global health concern and is on the rise throughout the world. Objective: The aim of this study was to examine the epidemiology and pattern of TB drug resistance. Methods: In this cross-sectional study, 180 pulmonary TB patients from two Northwestern provinces of Iran were selected. The first and second line drug susceptibility testing was carried out using the 1% proportion method on the Lφwenstein-Jensen medium. Full demographic, environmental and clinical history was evaluated. Results: Prevalence of resistance to any TB drug was 13.8%. Eight (4.4% patients had MDR-TB (2.4% in the province of East Azerbaijan and 9.3% in the province of Ardabil and one patient had extensively drug-resistant TB. Patient resistance to both isoniazid and streptomycin was the most prevalent at a rate of 8.3%. Patients showed the least resistance to ethambutol (2.8%. There was a significant relationship between the previous history of TB drug treatment and TB drug resistance. Migrants from rural to urban areas were in high-risk groups for the occurrence of TB drug resistance. Conclusion: In our study, prevalence of MDR was less than the global average. It is essential to monitor the patients with previous history of TB treatment and migrants by rapid and accurate techniques in terms of drug-resistance odds.

  1. Toward genetic transformation of mitochondria in mammalian cells using a recoded drug-resistant selection marker

    Institute of Scientific and Technical Information of China (English)

    Young Geol Yoon; Michael Duane Koob

    2011-01-01

    Due to technical difficulties, the genetic transformation of mitochondria in mammalian cells is still a challenge. In this report, we described our attempts to transform mammalian mitochondria with an engineered mitochondrial genome based on selection using a drug resistance gene. Because the standard drug-resistant neomycin phosphotransferase confers resistance to high concentrations of G418 when targeted to the mitochondria, we generated a recoded neomycin resistance gene that uses the mammalian mitochondrial genetic code to direct the synthesis of this protein in the mitochondria, but not in the nucleus (mitochondrial version). We also generated a universal version of the recoded neomycin resistance gene that allows synthesis of the drug-resistant proteins both in the mitochondria and nucleus. When we transfected these recoded neomycin resistance genes that were incorporated into the mouse mitochondrial genome clones into mouse tissue culture cells by electroporation, no DNA constructs were delivered into the mitochondria. We found that the universal version of the recoded neomycin resistance gene was expressed in the nucleus and thus conferred drug resistance to G418 selection, while the synthetic mitochondrial version of the gene produced no background drug-resistant cells from nuclear transformation. These recoded synthetic drug-resistant genes could be a useful tool for selecting mitochondrial genetic transformants as a precise technology for mitochondrial transformation is developed.

  2. Infectious drug resistance during an outbreak of salmonellosis

    International Nuclear Information System (INIS)

    The sudden acquisition of aminoglycoside resistance among Salmonella group C1 isolates causing summer diarrhoea raised the possibility of plasmid-mediated resistance. The demonstration of circular DNA species in the resistant, but not in the sensitive salmonellae and the transfer by conjugation of antibiotic resistance to a sensitive strain of Escherichia coli, was consistent with plasmid-mediated resistance

  3. Parallel selection of chemotherapy-resistant cell lines to illuminate mechanisms of drug resistance in human tumors

    DEFF Research Database (Denmark)

    Krzystanek, Marcin; Eklund, Aron Charles; Birkbak, Nicolai Juul; Tegze, B.; Gautier, Laurent; Holberg Blicher, Lene; Swanton, C.; Richardson, A. L.; Gyorffy, B.; Szallasi, Zoltan Imre

    2011-01-01

    Treatment of cancer often involves the use of chemotherapeutic agents that preferentially target tumor cells. The idea behind personalized medicine is to characterize differences between individual cancer cases that will and to direct the therapy to those most likely to respond. This will require...... understanding of drug resistance mechanisms, suggest future drug targets, and enable more efficacious treatment of cancer patients....... the identification of reliable predictive biomarkers for each drug. Currently, we are developing a framework for systematic biomarker discovery by using a combination of gene expression and CGH arrays to keep track of consistent changes that take place during resistance acquisition in cell lines...... towards two anti-cancer drugs: doxorubicin and paclitaxel. By monitoring changes at two different levels (DNA and RNA) of the genome and developing multiple cell lines developing resistance against the same drug under identical conditions, we were able to separate relevant changes from spurious ones and...

  4. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian;

    2015-01-01

    As drug-resistant pathogens continue to emerge, combination therapy will increasingly be relied upon to treat infections and to help combat further development of multidrug resistance. At present a dichotomy exists between clinical practice, which favors therapeutically synergistic combinations......, and the scientific model emerging from in vitro experimental work, which maintains that this interaction provides greater selective pressure toward resistance development than other interaction types. We sought to extend the current paradigm, based on work below or near minimum inhibitory...... concentration levels, to reflect drug concentrations more likely to be encountered during treatment. We performed a series of adaptive evolution experiments using Staphylococcus aureus. Interestingly, no relationship between drug interaction type and resistance evolution was found as resistance increased...

  5. Predicting drug resistance of the HIV-1 protease using molecular interaction energy components.

    Science.gov (United States)

    Hou, Tingjun; Zhang, Wei; Wang, Jian; Wang, Wei

    2009-03-01

    Drug resistance significantly impairs the efficacy of AIDS therapy. Therefore, precise prediction of resistant viral mutants is particularly useful for developing effective drugs and designing therapeutic regimen. In this study, we applied a structure-based computational approach to predict mutants of the HIV-1 protease resistant to the seven FDA approved drugs. We analyzed the energetic pattern of the protease-drug interaction by calculating the molecular interaction energy components (MIECs) between the drug and the protease residues. Support vector machines (SVMs) were trained on MIECs to classify protease mutants into resistant and nonresistant categories. The high prediction accuracies for the test sets of cross-validations suggested that the MIECs successfully characterized the interaction interface between drugs and the HIV-1 protease. We conducted a proof-of-concept study on a newly approved drug, darunavir (TMC114), on which no drug resistance data were available in the public domain. Compared with amprenavir, our analysis suggested that darunavir might be more potent to combat drug resistance. To quantitatively estimate binding affinities of drugs and study the contributions of protease residues to causing resistance, linear regression models were trained on MIECs using partial least squares (PLS). The MIEC-PLS models also achieved satisfactory prediction accuracy. Analysis of the fitting coefficients of MIECs in the regression model revealed the important resistance mutations and shed light into understanding the mechanisms of these mutations to cause resistance. Our study demonstrated the advantages of characterizing the protease-drug interaction using MIECs. We believe that MIEC-SVM and MIEC-PLS can help design new agents or combination of therapeutic regimens to counter HIV-1 protease resistant strains. PMID:18704937

  6. Prevalence and Risk Factors of Primary Drug-Resistant Tuberculosis in China

    Institute of Scientific and Technical Information of China (English)

    WANG Sheng Fen; ZHOU Yang; PANG Yu; ZHENG Hui Wen; ZHAO Yan Lin

    2016-01-01

    ObjectiveTo investigatetheprevalence of primary drug-resistant tuberculosis (TB) and associated risk factors in China.We also explored factors contributing tothe transmission of multidrug-resistant tuberculosis (MDR-TB). MethodsA total of 2794 representative,Mycobacterium tuberculosis isolates from treatment-naive patients were subjected to drug susceptibility testing, and risk factors for drug-resistant TBwere analyzed. We also analyzed MDR-TB strain sublineages, drug-resistance-conferring mutations, and risk factors associated with clustered primary MDR strains. ResultsAmong 2794Mycobacterium tuberculosis isolates from treatment-naive patients, the prevalence of any resistance to first-line drugs was 33.2%andthe prevalence of MDR-TB was 5.7%. We did not find any risk factors significantly associated with resistance to first-line drugs.The93 primary MDR-TB isolates were classified into six sublineages, of which, 75 (80.6%) isolates were the RD105-deleted Beijing lineage.The largest sublineage included 65 (69.9%) isolates with concurrent deletions of RD105, RD207, and RD181.Twenty-nine (31.2%) primary MDR strains grouped in clusters;MDR isolates in clusters were more likely to have S531LrpoBmutation. ConclusionThis study indicates that primary drug-resistantTBand MDR-TBstrains are prevalent in China,and multiplemeasures should be taken toaddress drug-resistant TB.

  7. Transmission Intensity and Drug Resistance in Malaria Population Dynamics : Implications for Climate Change

    NARCIS (Netherlands)

    Artzy-Randrup, Yael; Alonso, David; Pascual, Mercedes

    2010-01-01

    Although the spread of drug resistance and the influence of climate change on malaria are most often considered separately, these factors have the potential to interact through altered levels of transmission intensity. The influence of transmission intensity on the evolution of drug resistance has b

  8. First-Line Treatment for Tuberculosis (TB), Drug Resistant TB -- A Visual Tour

    Science.gov (United States)

    ... this: Main Content Area Tuberculosis Drugs First-Line Treatment of TB for Drug-Sensitive TB Tuberculosis, which results from ... Multidrug-Resistant Tuberculosis (MDR TB) and Second-Line Treatments MDR TB occurs when a Mycobacterium tuberculosis strain is resistant ...

  9. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy

    DEFF Research Database (Denmark)

    Nicita, Francesco; Spalice, Alberto; Papetti, Laura;

    2014-01-01

    Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy....

  10. Extremely Drug-Resistant Salmonella enterica Serovar Senftenberg Infections in Patients in Zambia

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Joensen, Katrine Grimstrup; Lukwesa-Musyani, Chileshe;

    2013-01-01

    Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones and...

  11. An Invitation to Project DARE: Drug Abuse Resistance Education. Program Brief.

    Science.gov (United States)

    Marx, Eva; DeJong, William

    Project DARE (Drug Abuse Resistance Education) is a substance use prevention education program designed to equip elementary school children with skills for resisting peer pressure to experiment with tobacco, drugs, and alcohol. This unique program, which was developed in 1983 as a cooperative effort by the Los Angeles Police Department and the Los…

  12. HIV-1 drug resistance among antiretroviral treatment-naïve Ethiopian patients

    Directory of Open Access Journals (Sweden)

    A Mulu

    2012-11-01

    Full Text Available Background: In many African countries, access to antiretroviral treatment (ART has been significantly scaled up over the last five years. Nevertheless, data on drug resistance mutation are scarce. The objective of the current study was to determine the predominant subtypes of HIV-1 as well as to identify baseline mutations with potential drug resistance among ART-naïve patients from Ethiopia. Methods: Genotypic drug resistance on the entire protease and partial reverse transcriptase (codons 1–335 regions of the pol gene was determined by an in-house protocol in 160 ART-naïve patients. Genotypic drug resistance was defined as the presence of one or more resistance-related mutations, as specified by the consensus of the Stanford University HIV drug resistance database (HIVDB available at http://hivdb.stanford.edu/ and the 2011 International AIDS Society (IAS mutation list (http://www.iasusa.org/resistance-mutations/. Results: A predominance of HIV-1 subtype C (98.7% was observed. According to the IAS mutation list, antiretroviral drug resistance mutations were detected in 20 patients (13%. However, the level of drug resistance is 5.2% (8/155 when the most conservative method, HIVDB algorithms were applied. In both algorithms, none had major PI mutation and mutation-conferring resistance to NRTI and NNRTI were not overlapping. Conclusions: There is strong evidence for clade homogeneity in Ethiopia and low influx of other subtypes to the country. The level of transmitted drug resistance exceeds that of WHO estimates and indicates that many HIV-infected individuals on ART are practicing risk-related behaviours. The results also show that HIV drug resistance testing should be installed in resource limited settings.

  13. The fitness of drug-resistant malaria parasites in a rodent model: multiplicity of infection

    OpenAIRE

    Huijben, Silvie; Sim, Derek G.; Nelson, William; Read, Andrew F.

    2011-01-01

    Malaria infections normally consist of more than one clonally-replicating lineage. Within-host interactions between sensitive and resistant parasites can have profound effects on the evolution of drug resistance. Here, using the Plasmodium chabaudi mouse malaria model, we ask whether the costs and benefits of resistance are affected by the number of co-infecting strains competing with a resistant clone. We found strong competitive suppression of resistant parasites in untreated infections and...

  14. The Association between Mycobacterium Tuberculosis Genotype and Drug Resistance in Peru.

    Directory of Open Access Journals (Sweden)

    Louis Grandjean

    Full Text Available The comparison of Mycobacterium tuberculosis bacterial genotypes with phenotypic, demographic, geospatial and clinical data improves our understanding of how strain lineage influences the development of drug-resistance and the spread of tuberculosis.To investigate the association of Mycobacterium tuberculosis bacterial genotype with drug-resistance. Drug susceptibility testing together with genotyping using both 15-loci MIRU-typing and spoligotyping, was performed on 2,139 culture positive isolates, each from a different patient in Lima, Peru. Demographic, geospatial and socio-economic data were collected using questionnaires, global positioning equipment and the latest national census.The Latin American Mediterranean (LAM clade (OR 2.4, p<0.001 was significantly associated with drug-resistance and alone accounted for more than half of all drug resistance in the region. Previously treated patients, prisoners and genetically clustered cases were also significantly associated with drug-resistance (OR's 2.5, 2.4 and 1.8, p<0.001, p<0.05, p<0.001 respectively.Tuberculosis disease caused by the LAM clade was more likely to be drug resistant independent of important clinical, genetic and socio-economic confounding factors. Explanations for this include; the preferential co-evolution of LAM strains in a Latin American population, a LAM strain bacterial genetic background that favors drug-resistance or the "founder effect" from pre-existing LAM strains disproportionately exposed to drugs.

  15. Epigenetic mechanisms of cell adhesion-mediated drug resistance in multiple myeloma.

    Science.gov (United States)

    Furukawa, Yusuke; Kikuchi, Jiro

    2016-09-01

    Multiple myeloma cells acquire the resistance to anti-cancer drugs through physical and functional interactions with the bone marrow microenvironment via two overlapping mechanisms. First, bone marrow stromal cells (BMSCs) produce soluble factors, such as interleukin-6 and insulin-like growth factor-1, to activate signal transduction pathways leading to drug resistance (soluble factor-mediated drug resistance). Second, BMSCs up-regulate the expression of cell cycle inhibitors, anti-apoptotic members of the Bcl-2 family and ABC drug transporters in myeloma cells upon direct adhesion [cell adhesion-mediated drug resistance (CAM-DR)]. Elucidation of the mechanisms underlying drug resistance may greatly contribute to the advancement of cancer therapies. Recent investigations, including ours, have revealed the involvement of epigenetic alterations in drug resistance especially CAM-DR. For example, we found that class I histone deacetylases (HDACs) determine the sensitivity of proteasome inhibitors and the histone methyltransferase EZH2 regulates the transcription of anti-apoptotic genes during the acquisition of CAM-DR by myeloma cells. In addition, another histone methyltransferase MMSET was shown to confer drug resistance to myeloma cells by facilitating DNA repair. These findings provide a rationale for the inclusion of epigenetic drugs, such as HDAC inhibitors and histone methylation modifiers, in combination chemotherapy for MM patients to increase the therapeutic index. PMID:27411688

  16. How could preventive therapy affect the prevalence of drug resistance? Causes and consequences.

    Science.gov (United States)

    Kunkel, Amber; Colijn, Caroline; Lipsitch, Marc; Cohen, Ted

    2015-06-01

    Various forms of preventive and prophylactic antimicrobial therapies have been proposed to combat HIV (e.g. pre-exposure prophylaxis), tuberculosis (e.g. isoniazid preventive therapy) and malaria (e.g. intermittent preventive treatment). However, the potential population-level effects of preventative therapy (PT) on the prevalence of drug resistance are not well understood. PT can directly affect the rate at which resistance is acquired among those receiving PT. It can also indirectly affect resistance by altering the rate at which resistance is acquired through treatment for active disease and by modifying the level of competition between transmission of drug-resistant and drug-sensitive pathogens. We propose a general mathematical model to explore the ways in which PT can affect the long-term prevalence of drug resistance. Depending on the relative contributions of these three mechanisms, we find that increasing the level of coverage of PT may result in increases, decreases or non-monotonic changes in the overall prevalence of drug resistance. These results demonstrate the complexity of the relationship between PT and drug resistance in the population. Care should be taken when predicting population-level changes in drug resistance from small pilot studies of PT or estimates based solely on its direct effects. PMID:25918446

  17. Hospital costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition

    Science.gov (United States)

    2012-01-01

    Background We aimed to assess the hospital economic costs of nosocomial multi-drug resistant Pseudomonas aeruginosa acquisition. Methods A retrospective study of all hospital admissions between January 1, 2005, and December 31, 2006 was carried out in a 420-bed, urban, tertiary-care teaching hospital in Barcelona (Spain). All patients with a first positive clinical culture for P. aeruginosa more than 48 h after admission were included. Patient and hospitalization characteristics were collected from hospital and microbiology laboratory computerized records. According to antibiotic susceptibility, isolates were classified as non-resistant, resistant and multi-drug resistant. Cost estimation was based on a full-costing cost accounting system and on the criteria of clinical Activity-Based Costing methods. Multivariate analyses were performed using generalized linear models of log-transformed costs. Results Cost estimations were available for 402 nosocomial incident P. aeruginosa positive cultures. Their distribution by antibiotic susceptibility pattern was 37.1% non-resistant, 29.6% resistant and 33.3% multi-drug resistant. The total mean economic cost per admission of patients with multi-drug resistant P. aeruginosa strains was higher than that for non-resistant strains (15,265 vs. 4,933 Euros). In multivariate analysis, resistant and multi-drug resistant strains were independently predictive of an increased hospital total cost in compared with non-resistant strains (the incremental increase in total hospital cost was more than 1.37-fold and 1.77-fold that for non-resistant strains, respectively). Conclusions P. aeruginosa multi-drug resistance independently predicted higher hospital costs with a more than 70% increase per admission compared with non-resistant strains. Prevention of the nosocomial emergence and spread of antimicrobial resistant microorganisms is essential to limit the strong economic impact. PMID:22621745

  18. Extraction and identification of exosomes from drug-resistant breast cancer cells and their potential role in cell-to-cell drug-resistance transfer

    Institute of Scientific and Technical Information of China (English)

    许金金

    2014-01-01

    Objective To explore whether docetaxel-resistant cells(MCF-7/Doc)and doxorubicin-resistant cells(MCF-7/ADM)can secrete Exosomes and their potential role in cell-cell drug-resistance transfer.Methods Exosomes were extracted from the cell culture supernatants of MCF-7/Doc and MCF-7/ADM cells by fractionation ultracentrifugation,and were identified by transmission

  19. Drug-resistant tuberculosis control in China: progress and challenges

    Institute of Scientific and Technical Information of China (English)

    Qian Long; Yan Qu; Henry Lucas

    2016-01-01

    Background:China has the second highest caseload of multidrug-resistant tuberculosis (MDR-TB) in the world.In 2009,the Chinese government agreed to draw up a plan for MDR-TB prevention and control in the context of a comprehensive health system reform launched in the same year.Discussion:China is facing high prevalence rates of drug-resistant TB and MDR-TB.MDR-TB disproportionally affects the poor rural population and the highest rates are in less developed regions largely due to interrupted and/or inappropriate TB treatment.Most households with an affected member suffer a heavy financial burden because of a combination of treatment and other related costs.The influential Global Fund programme for MDR-TB control in China provides technical and financial support for MDR-TB diagnosis and treatment.However,this programme has a fixed timeline and cannot provide a long term solution.In 2009,the Bill and Melinda Gates Foundation,in cooperation with the National Health and Family Planning Commission of China,started to develop innovative approaches to TB/MDR-TB management and case-based payment mechanisms for treatment,alongside increased health insurance benefits for patients,in order to contain medical costs and reduce financial barriers to treatment.Although these efforts appear to be in the right direction,they may not be sufficient unless (a) domestic sources are mobilized to raise funding for TB/MDR-TB prevention and control and (b) appropriate incentives are given to both health facilities and their care providers.Summary:Along with the on-going Chinese health system reform,sustained government financing and social health protection schemes will be critical to ensure universal access to appropriate TB treatment in order to reduce risk of developing MDR-TB and systematic MDR-TB treatment and management.

  20. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available BACKGROUND: Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness. METHODOLOGY/PRINCIPAL FINDINGS: We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  1. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    Science.gov (United States)

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. PMID:26259943

  2. Phylogeny and drug resistance of HIV PR gene among HIV patients receiving RT inhibitors in Iran

    Institute of Scientific and Technical Information of China (English)

    Kazem Baesi; Majedeh Moradbeigi; Mehrdad Ravanshad; Ashrafolnesa Baghban

    2016-01-01

    Objective: To survey the level and patterns of reverse transcriptase-based drug resistance and subtype distribution among antiretroviral-treated HIV-infected patients receiving only reverse transcriptase inhibitors in Iran. Methods: A total of 25 samples of antiretroviral therapy experienced patients with no history of using protease inhibitors were collected. After RNA extraction, reverse transcriptase-nested PCR was performed. The final products were sequenced and then analysed for drug-resistant mutations and subtypes. Results: No drug resistant mutations were observed among the 25 subjects. The results showed the following subtypes among patients:CRF 35_AD (88%), CRF 28_BF (8%), and CRF 29_BF (4%). Conclusions: A significant increase in drug resistance has been noted in recently-infected patients worldwide. Subtype distributions are needed to perform properly-designed surveillance studies to continuously monitor rates and patterns of transmitted drug resistance and subtypes to help guide therapeutic approaches and limit transmission of these variants.

  3. Self-Reported Risks for Multiple-Drug Resistance among New Tuberculosis Cases: Implications for Drug Susceptibility Screening and Treatment

    OpenAIRE

    Brewer, Timothy F.; Choi, Howard W.; Seas, Carlos; Krapp, Fiorella; Zamudio, Carlos; Shah, Lena; Ciampi, Antonio; Heymann, S Jody; Gotuzzo, Eduardo

    2011-01-01

    Background Multiple drug-resistance in new tuberculosis (TB) cases accounts for the majority of all multiple drug-resistant TB (MDR-TB) worldwide. Effective control requires determining which new TB patients should be tested for MDR disease, yet the effectiveness of global screening recommendations of high-risk groups is unknown. Methods Sixty MDR-TB cases with no history of previous TB treatment, 80 drug-sensitive TB and 80 community-based controls were recruited in Lima, Peru between August...

  4. Antimicrobial susceptibility of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Enterobacteriaceae isolates to fosfomycin

    OpenAIRE

    Falagas, Matthew E.; Maraki, Sofia; Karageorgopoulos, Drosos E.; Kastoris, Antonia C.; Mavromanolakis, Emmanuel; Samonis, George

    2010-01-01

    Abstract The advancing antimicrobial drug resistance among Enterobacteriaceae renders the evaluation of potential novel therapeutic options necessary. We sought to evaluate the in vitro antimicrobial activity of fosfomycin against multidrug-resistant (MDR) Enterobacteriaceae isolates. Antimicrobial susceptibility to fosfomycin and 12 additional antibiotics of MDR Enterobacteriaceae isolates collected between November 2007 and April 2009 at the University Hospital of Heraklion, Cret...

  5. Prevalence of drug-resistant tuberculosis in mainland China: systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Yu Yang

    Full Text Available BACKGROUND: The spread of drug-resistant tuberculosis (TB is one of the major public health problems in the world. Surveillance of anti-TB drug resistance is important for monitoring TB control strategies. However, the status of drug-resistant TB in China has been reported inconsistently. METHODS: We systematically reviewed published studies on drug-resistant TB in China until March 31, 2011, and quantitatively summarized prevalence and patterns of anti-TB drug resistance among new cases and previously treated cases, respectively. RESULTS: Ninety-five eligible articles, published during 1993-2011, were included in this review. The meta-analyses showed that the prevalence of drug-resistant TB in new cases was 27.9% (95% CI, 25.6%-30.2% (n/N = 27,360/104,356 and in previously treated cases was 60.3% (95% CI, 56.2%-64.2% (n/N = 30,350/45,858. Furthermore, in these two study populations, the prevalence of multiple drug resistance was found to be 5.3% (95% CI, 4.4%-6.4% (n/N = 8810/101,718 and 27.4% (95% CI, 24.1%-30.9% (n/N = 10,486/44,530 respectively. However, the results were found to be frequently heterogeneous (p for Q tests <0.001. The most common resistance was observed for isoniazid among both study populations. Different patterns of drug resistance were observed in the subgroup analysis with respect to geographic areas, drug susceptibility testing methods and subject enrollment time. CONCLUSIONS: Results of meta-analyses indicated a severe status of drug-resistant TB in China, which attaches an importance to strength TB prevention and control.

  6. Harnessing Evolutionary Fitness in Plasmodium falciparum for Drug Discovery and Suppressing Resistance

    OpenAIRE

    Ross, Leila Saxby

    2013-01-01

    Malaria is a preventable and treatable disease caused by infection with Plasmodium parasites. Complex socioeconomic and political factors limit access to vector control and antimalarial drugs, and an estimated 600,000 people die from malaria every year. Rising drug resistance threatens to make malaria untreatable. As for all new traits, resistance is limited by fitness, and a small number of pathways are heavily favored by evolution. These pathways are targets for drug discovery. Pairing comp...

  7. A Randomised Trial Comparing Genotypic and Virtual Phenotypic Interpretation of HIV Drug Resistance: The CREST Study

    OpenAIRE

    Hales, Gillian; Birch, Chris; Crowe, Suzanne; Workman, Cassy; Hoy, Jennifer F.; Law, Matthew G; Kelleher, Anthony D.; Lincoln, Douglas; Emery, Sean

    2006-01-01

    Editorial Commentary Background: Antiretroviral drugs are used to treat patients with HIV infection, with good evidence that they improve prognosis. However, mutations develop in the HIV genome that allow it to evade successful treatment—known as drug resistance—and such mutations are known against every class of antiretroviral drug. Resistance can cause treatment failure and limit the treatment options available. Different types of tests are often used to detect resistance and to work out wh...

  8. Clinical Prediction Rule of Drug Resistant Epilepsy in Children

    Science.gov (United States)

    Boonluksiri, Pairoj; Visuthibhan, Anannit; Katanyuwong, Kamornwan

    2015-01-01

    Background and Purpose: Clinical prediction rules (CPR) are clinical decision-making tools containing variables such as history, physical examination, diagnostic tests by developing scoring model from potential risk factors. This study is to establish clinical prediction scoring of drug-resistant epilepsy (DRE) in children using clinical manifestationa and only basic electroencephalography (EEG). Methods: Retrospective cohort study was conducted. A total of 308 children with diagnosed epilepsy were recruited. Primary outcome was the incidence of DRE. Independent determinants were patient characteristics, clinical manifestations and electroencephalography. CPR was performed based on multiple logistic regression. Results: The incidence of DRE was 42%. Risk factors were age onset, prior neurological deficits, and abnormal EEG. CPR can be established and stratified the prediction using scores into 3 levels such as low risk (score12) with positive likelihood ratio of 0.5, 1.8 and 12.5 respectively. Conclusions: CPR with scoring risks were stratified into 3 levels. The strongest risk is prior global neurological deficits. PMID:26819940

  9. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2014-01-01

    Full Text Available Intracranial EEG (icEEG monitoring is critical in epilepsy surgical planning, but it has limitations. The advances of neuroimaging have made it possible to reveal epileptic abnormalities that could not be identified previously and improve the localization of the seizure focus and the vital cortex. A frequently asked question in the field is whether non-invasive neuroimaging could replace invasive icEEG or reduce the need for icEEG in presurgical evaluation. This review considers promising neuroimaging techniques in epilepsy presurgical assessment in order to address this question. In addition, due to large variations in the accuracies of neuroimaging across epilepsy centers, multicenter neuroimaging studies are reviewed, and there is much need for randomized controlled trials (RCTs to better reveal the utility of presurgical neuroimaging. The results of multiple studies indicate that non-invasive neuroimaging could not replace invasive icEEG in surgical planning especially in non-lesional or extratemporal lobe epilepsies, but it could reduce the need for icEEG in certain cases. With technical advances, multimodal neuroimaging may play a greater role in presurgical evaluation to reduce the costs and risks of epilepsy surgery, and provide surgical options for more patients with drug-resistant epilepsy.

  10. Integrating Antimicrobial Therapy with Host Immunity to Fight Drug-Resistant Infections: Classical vs. Adaptive Treatment

    OpenAIRE

    Gjini, Erida; Brito, Patricia H.

    2016-01-01

    Antimicrobial resistance of infectious agents is a growing problem worldwide. To prevent the continuing selection and spread of drug resistance, rational design of antibiotic treatment is needed, and the question of aggressive vs. moderate therapies is currently heatedly debated. Host immunity is an important, but often-overlooked factor in the clearance of drug-resistant infections. In this work, we compare aggressive and moderate antibiotic treatment, accounting for host immunity effects. W...

  11. Studies of resistance factors against chloroethylnitrosourea drugs in malignant tumor cells

    OpenAIRE

    Egyházi, Suzanne

    1996-01-01

    Drug resistance is a major clinical problem in the chemotherapy of tumor diseases and the identification of factors that make tumor cells resistant to drug treatment is therefore of crucial importance. We have investigated a possible involvement of O6-methylguanine-DNA methyltransferase (MGMT), glutathione transferase (GST) and glutathione (GSH) in the resistance to 1,3- bis(2-chloroethyl)- 1 -nitrosourea (BCNU) in two human lung cancer cell lines. The non-small cell lung ca...

  12. Chloramphenicol acetyltransferase may confer resistance to fusidic acid by sequestering the drug.

    OpenAIRE

    Proctor, G N; McKell, J.; Rownd, R H

    1983-01-01

    Enterobacterial chloramphenicol acetyltransferase bound fusidic acid with high affinity, but did not acetylate the drug at an experimentally detectable rate. The enzyme may therefore confer resistance to fusidic acid by sequestering the drug and thereby preventing the drug from binding to translational elongation factor G.

  13. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. PMID:27449595

  14. Selective modulation of P-glycoprotein-mediated drug resistance

    OpenAIRE

    Bebawy, M; Morris, M B; Roufogalis, B. D.

    2001-01-01

    Multidrug resistance associated with the overexpression of the multidrug transporter P-glycoprotein is a serious impediment to successful cancer treatment. We found that verapamil reversed resistance of CEM/VLB 100 cells to vinblastine and fluorescein-colchicine, but not to colchicine. Chlorpromazine reversed resistance to vinblastine but not to fluorescein-colchicine, and it increased resistance to colchicine. Initial influx rates of fluorescein-colchicine were similar in resistant and paren...

  15. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  16. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Julia Jezmir

    Full Text Available To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS methodology.The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance.This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains.Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  17. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya

    Science.gov (United States)

    Cohen, Ted; Zignol, Matteo; Nyakan, Edwin; Hedt-Gauthier, Bethany L.; Gardner, Adrian; Kamle, Lydia; Injera, Wilfred; Carter, E. Jane

    2016-01-01

    Objective To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB) in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS) methodology. Design The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance. Results This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains. Conclusion Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints. PMID:27167381

  18. Transmission of HIV Drug Resistance and the Predicted Effect on Current First-line Regimens in Europe

    NARCIS (Netherlands)

    L.M. Hofstra (L. Marije); N. Sauvageot (Nicolas); J. Albert (Jan); I. Alexiev (Ivailo); F. Garcia (Federico); D. Struck (Daniel); D.A.M.C. van de Vijver (David); B. Asjö (Birgitta); D. Beshkov (Danail); S. Coughlan (Suzie); D. Descamps (Diane); A. Griskevicius (Algis); O. Hamouda (Osamah); A. Horban (Andrzej); M. Van Kasteren (Marjo); T. Kolupajeva (Tatjana); L.G. Kostrikis (Leondios); K. Liitsola (Kirsi); M. Linka (Marek); O. Mor (Orna); C. Nielsen (Claus); D. Otelea (Dan); D. Paraskevis (Dimitrios); R. Paredes (Roger); M. Poljak (Mario); E. Puchhammer-Stockl E. (E.); A. Sonnerborg (Anders); D. Stanekova (Danica); M. Stanojevic (Maja); K. Van Laethem (Kristel); M. Zazzi (Maurizio); S. Zidovec Lepej (Snjezana); C.A.B. Boucher (Charles A. B.); J.-C. Schmit (Jean-Claude); A.M.J. Wensing (Annemarie); E. Puchhammer-Stöckl (Elisabeth); M. Sarcletti (M.); B. Schmied (B.); M. Geit (M.); G. Balluch (G.); A.-M. Vandamme; J. Vercauteren (Jurgen); I. Derdelinckx; A. Sasse; M. Bogaert; H. Ceunen (H.); A. de Roo (Annie); S. De Wit; F. Echahidi (F.); K. Fransen; J.-C. Goffard (J.); P. Goubau; E. Goudeseune (E.); J.-C. Yombi (J.); P. Lacor; C. Liesnard (C.); M. Moutschen; L.A. Pierard; R. Rens (R.); J. Schrooten; D. Vaira; L.P.R. Vandekerckhove; A. van den Heuvel (A.); B. van der Gucht (B.); M. Van Ranst; E. Van Wijngaerden; B. Vandercam; M. Vekemans; C. Verhofstede; N. Clumeck (N.); K. van Laethem (Kristel); D. Beshkov; I. Alexiev; S.Z. Lepej (Snjezana); J. Begovac; L.G. Kostrikis (Leondios); I. Demetriades (I.); I. Kousiappa (Ioanna); V.L. Demetriou (Victoria); J. Hezka (Johana); M. Linka; M. Maly; L. MacHala; C. Nielsen; L.B. Jørgensen; J. Gerstoft (J.); L. Mathiesen (L.); C. Pedersen (Court); H. Nielsen; A. Laursen (A.); B. Kvinesdal (B.); K. Liitsola (Kirsi); M. Ristola (M.); J. Suni; J. Sutinen (J.); D. Descamps; L. Assoumou; G. Castor; M. Grude; P. Flandre; A. Storto; O. Hamouda (Osamah); C. K̈ucherer (C.); T. Berg; P. Braun; G. Poggensee; M. Daumer (Martin); J. Eberle; H. Heiken; R. Kaiser; H. Knechten (H.); K. Korn; H. Müller; S. Neifer; B. Schmidt; H. Walter; B. Gunsenheimer-Bartmeyer (B.); T. Harrer (T.); D. Paraskevis (Dimitrios); A. Hatzakis (Angelos); A. Zavitsanou (A.); A. Vassilakis; M. Lazanas; L. Chini; A. Lioni; V. Sakka (V.); S. Kourkounti (S.); V. Paparizos (V.); A. Antoniadou (A.); A. Papadopoulos; G. Poulakou; I. Katsarolis; K. Protopapas; G. Chryssos (G.); S. Drimis (S.); P. Gargalianos; G. Xylomenos; G. Lourida; M. Psichogiou (M.); G.L. Daikos (G.); N.V. Sipsas; A. Kontos (Angelos); M.N. Gamaletsou; G. Koratzanis (G.); H. Sambatakou; H. Mariolis; A. Skoutelis; V. Papastamopoulos; O. Georgiou; P. Panagopoulos (P.); E. Maltezos; S. Coughlan (Suzie); C. de Gascun (Cillian); C. Byrne; M. Duffy; P. Bergin; D. Reidy; G. Farrell; J. Lambert; E. O'Connor; A. Rochford; J. Low; P. Coakely (P.); S. O'Dea; W. Hall; O. Mor; I. Levi (I.); D. Chemtob (D.); Z. Grossman (Zehava); M. Zazzi; A. de Luca (Andrea); C. Balotta (Claudia); C. Riva (Chiara); C. Mussini (C.); I. Caramma (I.); A. Capetti (A.); M. Colombo (Massimo); C. Rossi; F. Prati (Francesco); F. Tramuto; F. Vitale (F.); M. Ciccozzi; G. Angarano (Guiseppe); G. Rezza (G.); T. Kolupajeva; O. Vasins; A. Griskevicius (Algis); V. Lipnickiene; J.C. Schmit; D. Struck (Daniel); N. Sauvageot; R. Hemmer (R.); V. Arendt (V.); C. Michaux; T. Staub (T.); C. Sequin-Devaux; A.M.J. Wensing (Annemarie); C.A.B. Boucher (Charles); D.A.M.C. van de Vijver (David); A. Van Kessel; P.H.M. Van Bentum; K. Brinkman; B.J. Connell; M.E. van der Ende (Marchina); I.M. Hoepelman (Ilja Mohandas); M.E.E. van Kasteren (Marjo); M. Kuipers; N. Langebeek (Nienke); C. Richter; R.M.W.J. Santegoets (R. M W J); L. Schrijnders-Gudde (L.); R. Schuurman; B.J.M. van de Ven (B. J M); B. Åsjö (Birgitta); A.-M.B. Kran (A.-M. Bakken); V. Ormaasen (Vidar); P. Aavitsland (P.); A. Horban (Andrzej); J. Stanczak (J.); G.P. Stanczak (G.); E. Firlag-Burkacka (E.); A. Wiercinska-Drapalo; E. Jablonowska (E.); E. Maolepsza; M. Leszczyszyn-Pynka (M.); W. Szata (W.); R.J. Camacho (Ricardo Jorge); A. de Palma (Andre); F. Borges (F.); T. Paixão; V. Duque (V.); F. Araújo; D. Otelea; C. Paraschiv (Corina); A.M. Tudor; R. Cernat; C. Chiriac; F. Dumitrescu; L.J. Prisecariu; M. Stanojevic (Maja); D.J. Jevtovic (D.); D. Salemovic (D.); D. Stanekova; M. Habekova (M.); Z. Chabadová; T. Drobkova; P. Bukovinova; A. Shunnar; P. Truska; M. Poljak (Mario); M.M. Lunar (Maja M.); D. Babic; J. Tomazic (J.); S. Vidmar (Suzanna); T. Vovko; P. Karner (P.); F. Garcia; R. Paredes (Roger); S. Monge; S. Moreno; J. Del Amo; V. Asensi; J.L. Sirvent; C. de Mendoza (Carmen); R. Delgado; F. Gutiérrez; J. Berenguer; S. Garcia-Bujalance; N. Stella; I. De Los Santos; J.R. Blanco; D. Dalmau; M. Rivero; F. Segura; M.J.P. Elías (M. J. Pcrossed); M. Alvarez; N. Chueca; C. Rodríguez-Martín; C. Vidal; J.C. Palomares; I. Viciana; P. Viciana; J. Cordoba; A. Aguilera; P. Domingo; M.J. Galindo; C. Miralles; M.A. Del Pozo; E. Ribera; C. Iribarren (Carlos); L. Ruiz; J. De La Torre; F. Vidal; B. Clotet (Bonaventura); J. Albert; A. Heidarian; K. Aperia-Peipke (K.); M. Axelsson; M. Mild; A. Karlsson; A. Sonnerborg (Anders); A. Thalme; L. Navénr; G. Bratt (G.); A. Karlsson; A. Blaxhult; M. Gisslénn; B. Svennerholm; I.-M. Bergbrant (I.); P. Bj̈orkman (P.); C. Säll; A. Mellgren; A. Lindholm; N. Kuylenstierna; R. Montelius; F. Azimi; B. Johansson; M. Carlsson; E. Johansson; B. Ljungberg; H. Ekvall; A. Strand; S. Mäkitalo; S. Öberg; P. Holmblad; M. Höfer; H. Holmberg; P. Josefson; U. Ryding

    2016-01-01

    textabstractBackground. Numerous studies have shown that baseline drug resistance patterns may influence the outcome of antiretroviral therapy. Therefore, guidelines recommend drug resistance testing to guide the choice of initial regimen. In addition to optimizing individual patient management, the

  19. Whole-Genome Sequencing Analysis of Serially Isolated Multi-Drug and Extensively Drug Resistant Mycobacterium tuberculosis from Thai Patients.

    Science.gov (United States)

    Faksri, Kiatichai; Tan, Jun Hao; Disratthakit, Areeya; Xia, Eryu; Prammananan, Therdsak; Suriyaphol, Prapat; Khor, Chiea Chuen; Teo, Yik-Ying; Ong, Rick Twee-Hee; Chaiprasert, Angkana

    2016-01-01

    Multi-drug and extensively drug-resistant tuberculosis (MDR and XDR-TB) are problems that threaten public health worldwide. Only some genetic markers associated with drug-resistant TB are known. Whole-genome sequencing (WGS) is a promising tool for distinguishing between re-infection and persistent infection in isolates taken at different times from a single patient, but has not yet been applied in MDR and XDR-TB. We aim to detect genetic markers associated with drug resistance and distinguish between reinfection and persistent infection from MDR and XDR-TB patients based on WGS analysis. Samples of Mycobacterium tuberculosis (n = 7), serially isolated from 2 MDR cases and 1 XDR-TB case, were retrieved from Siriraj Hospital, Bangkok. The WGS analysis used an Illumina Miseq sequencer. In cases of persistent infection, MDR-TB isolates differed at an average of 2 SNPs across the span of 2-9 months whereas in the case of reinfection, isolates differed at 61 SNPs across 2 years. Known genetic markers associated with resistance were detected from strains susceptible to streptomycin (2/7 isolates), p-aminosalicylic acid (3/7 isolates) and fluoroquinolone drugs. Among fluoroquinolone drugs, ofloxacin had the highest phenotype-genotype concordance (6/7 isolates), whereas gatifloxcain had the lowest (3/7 isolates). A putative candidate SNP in Rv2477c associated with kanamycin and amikacin resistance was suggested for further validation. WGS provided comprehensive results regarding molecular epidemiology, distinguishing between persistent infection and reinfection in M/XDR-TB and potentially can be used for detection of novel mutations associated with drug resistance. PMID:27518818

  20. Sputum smear microscopy result: a predictor for drug-resistant tuberculosis?

    Science.gov (United States)

    Dean, A S; Zignol, M; Lumb, R; Lalor, M; Skrahina, A; Floyd, K

    2016-07-01

    Until countries establish capacity for continuous surveillance systems, representative surveys of tuberculosis (TB) patients continue to improve our understanding of the burden of drug-resistant TB and help ensure appropriate allocation of resources. Although the available data are limited, the current recommendation of restricting surveys to sputum smear-positive patients is justified, given the greatly simplified logistics and only limited evidence in specific settings of an association between drug resistance and sputum smear status. Nonetheless, the relationship between drug resistance and sputum smear microscopy results may vary according to the setting and population under study. With the increasing availability and use of molecular diagnostics and the drive for universal drug susceptibility testing under the World Health Organization's End TB Strategy, substantially more data on drug resistance in the whole TB patient population should become available in the near future. PMID:27287635

  1. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms.

    Science.gov (United States)

    Hughes, Diarmaid; Andersson, Dan I

    2015-08-01

    Drug therapy has a crucial role in the treatment of viral, bacterial, fungal and protozoan infections, as well as the control of human cancer. The success of therapy is being threatened by the increasing prevalence of resistance. We examine and compare mechanisms of drug resistance in these diverse biological systems (using HIV and Plasmodium falciparum as examples of viral and protozoan pathogens, respectively) and discuss how factors — such as mutation rates, fitness effects of resistance, epistasis and clonal interference — influence the evolutionary trajectories of drug-resistant clones. We describe commonalities and differences related to resistance development that could guide strategies to improve therapeutic effectiveness and the development of a new generation of drugs. PMID:26149714

  2. Trends of drug resistant Mycobacterium Tuberculosis in a tertiary tuberculosis center in Iran

    International Nuclear Information System (INIS)

    To determine the drug resistance pattern to first line antituberculosis drugs in National Research Institute of Tuberculosis and Lung Disease and to compare resistant rates with the previous studies. An anterograde cross-sectional study was performed. The study includes all adults with documented pulmonary tuberculosis (TB) that were hospitalized in National Research Institute of Tuberculosis and Lung Disease, Tehran from June 2003 to September 2004. Demographic characteristic, TB categories, and drug susceptibility tests were recorded. Two previous studies regarding susceptibility in Iran were selected as historical controls. One hundred and ninety-six new cases and 68 previously treated patients were enrolled in the study. The strains of 61% of new patients and 21% of previously treated patients were fully sensitive to all drugs. The most common resistance was streptomycin (27%) followed by isoniazid (23%) in new cases. Multiple drug resistant strains were noted in 2.6% (95% CI 0.8% to 5.8%) of new cases versus 56% (95% CI 43% to 68%) in previously treated group. The frequency of primary drug resistance to isoniazid was 98%-15% or streptomycin 9.8%-15% or streptomycin 9.8%-13% in the previous studies (p<0.00001). While these rates may not reflect the true prevalence of drug resistance on national scale, it does partially demonstrate some defects in the existing tuberculosis control program. The significant increase of isoniazid and streptomycin resistance in the last few years would present a serious challenge to effective management of TB. (author)

  3. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  4. [Erythropoietin and drug resistance in breast and ovarian cancers].

    Science.gov (United States)

    Szenajch, Jolanta M; Synowiec, Agnieszka E

    2016-01-01

    Recombinant human erythropoietin (rhEPO) is used in breast and ovarian cancer patients to alleviate cancer- and chemotherapy-related anemia. Some clinical trials have reported that rhEPO may adversely impact survival and increase the risk of thrombovascular events in patients with breast cancer but not with ovarian cancer. The latter may potentially benefit the most from rhEPO treatment due to the nephrotoxic and myelosuppresive effects of standard platinum-based chemotherapy used in ovarian cancer disease. However, over the last decade the preclinical data have revealed that EPO is not only the principal growth factor and the hormone which regulates erythropoiesis, but also a cytokine with a pleiotropic activity which also can affect cancer cells. EPO can stimulate survival, ability to form metastases and drug resistance not only in continuous breast- and ovarian cancer cell lines but also in breast cancer stem-like cells. EPO receptor (EPOR) can also be constitutively active in both these cancers and, in breast cancer cells, may act in an interaction with estrogen receptor (ER) and epidermal growth factor receptor-2 (HER-2). EPOR, by an EPO-independent mechanism, promotes proliferation of breast cancer cells in cooperation with estrogen receptor, resulting in decreased effectiveness of tamoxifen treatment. In another interaction, as a result of the molecular antagonism between EPOR and HER2, rhEPO protects breast cancer cells against trastuzumab. Both clinical and preclinical evidence strongly suggest the urgent need to reevaluate the traditional use of rhEPO in the oncology setting. PMID:27321103

  5. Patterns of Drug Resistance Among Tuberculosis Patients in West and Northwestern Iran

    Science.gov (United States)

    Sahebi, Leyla; Ansarin, Khalil; Mohajeri, Parviz; Khalili, Majid; Monfaredan, Amir; Farajnia, Safar; Zadeh, Simin Khayyat

    2016-01-01

    Background: Tuberculosis (TB) is the leading cause of morbidity and mortality among chronic infectious diseases. Objective: The goal of this cross-sectional study (2011-2013;2013) was to examine the patterns of TB drug resistance among HIV-negative pulmonary TB patients in regions near the Iranian border. Method: To this end, MTB isolates were harvested from 300 HIV-negative, pulmonary smear-positive TB patients from the northwest and west Iranian border provinces. Isolates were subjected to first and second-line drug susceptibility testing by the 1% proportion method. Demographic and clinical data were provided using a questionnaire and information from patient records. Results were analyzed using SPSS-18. Results: The mean age of the patients was 52.03 years and 54.3% were male. The prevalence of resistance to any TB drug was 13.6% (38 cases). Eleven percent of the new treatment TB group (28 patients) and 40.7% of the retreatment TB group (11 patients) were resistant to all TB drugs. Twelve (4.3%) patients had multidrug-resistant tuberculosis (MDR-TB) (2.38% in the new TB treatment group and 23.1% in the retreatment group). One patient had extensively drug-resistant tuberculosis (XDR-TB). There was a statistically significant relationship between TB drug resistance and smoking (p=0.02) and a history of migration from village to city (p=0.04), also between TB drug resistance and recurrence of TB in patients that had previously received treatment (p<0.001). Conclusion: Knowledge of drug resistance patterns for new and previously treated cases is critical for effective control of MDR-TB in different regions of the country. The burden of MDR-TB in retreatment cases was high. Previous TB treatment was one of the most important mokers and those who had a history of rural to urban migration were at high risk for the occurrence of TB drug resistance.

  6. Isolation of drug-resistant Aeromonas hydrophila from aquatic environments.

    OpenAIRE

    McNicol, L A; Aziz, K. M.; Huq, I; Kaper, J B; Lockman, H A; Remmers, E F; Spira, W M; Voll, M. J.; Colwell, R R

    1980-01-01

    Antibiotic-resistant strains of Aeromonas hydrophila have been isolated from the natural environment in the Chesapeake Bay and areas surrounding Dacca and the Matlab region of Bangladesh. The Bangladesh strains carried resistance to chloramphenicol, streptomycin, and tetracycline, and 57% of them had a multiple streptomycin-tetracycline resistance phenotype correlated with the presence of a large plasmid. The Chesapeake Bay strains were resistant to polymyxin B ane tetracycline, but showed ne...

  7. Rapid Diagnosis of Extensively Drug-Resistant Tuberculosis by Use of a Reverse Line Blot Hybridization Assay▿†

    OpenAIRE

    Ajbani, Kanchan; Shetty,Anjali; Mehta, Ajita; Rodrigues, Camilla

    2011-01-01

    Drug resistance in tuberculosis (TB) is a matter of grave concern for TB control programs, as there is currently no cure for some extensively drug-resistant (XDR) strains. There is concern that this resistance could transmit, stressing the need for additional control measures, rapid diagnostic methods, and newer drugs for treatment. We developed an in-house assay that can rapidly detect resistance to drugs involved in the definition of XDR-TB directly from smear-positive specimens. Two hundre...

  8. The inhibitory effect of Zingiber corallinum Hance essential oil on drug-resistant bacteria and evaluation of its acute toxicity

    OpenAIRE

    Yang, Ce; Zhou, Lin-Lin; Wang, Hai-Yan; Huang, Su-Na; Liu, Qing; Hu, Shi-lin; Li, Ting-Rong; Chen, Yan-Bing; Jiang, Jian-Xin

    2011-01-01

    Summary Background The excessive and irregular use of antibiotics could result in the generation and diffusion of drug-resistant bacteria. The aim of this study was to investigate the inhibitory effect of Zingiber corallinum Hance essential oil (ZCHO) on drug-resistant bacteria, especially on drug-resistant Acinetobacter baumannii. Material/Methods Susceptibility testing was used to evaluate the effect of ZCHO on growth inhibition of drug-resistant bacteria by paper disk method. Mice orally a...

  9. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren;

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue...

  10. Association between Mycobacterium tuberculosis Complex Phylogenetic Lineage and Acquired Drug Resistance

    OpenAIRE

    Courtney M Yuen; Kurbatova, Ekaterina V.; Click, Eleanor S.; J Sean Cavanaugh; J Peter Cegielski

    2013-01-01

    BACKGROUND: Development of resistance to antituberculosis drugs during treatment (i.e., acquired resistance) can lead to emergence of resistant strains and consequent poor clinical outcomes. However, it is unknown whether Mycobacterium tuberculosis complex species and lineage affects the likelihood of acquired resistance. METHODS: We analyzed data from the U.S. National Tuberculosis Surveillance System and National Tuberculosis Genotyping Service for tuberculosis cases during 2004-2011 with a...

  11. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    KAUST Repository

    Phelan, Jody

    2015-06-04

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  12. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology

    Institute of Scientific and Technical Information of China (English)

    Xue Xue; Xing-Jie Liang

    2012-01-01

    Multidrug resistance (MDR),which significantly decreases the efficacy of anticancer drugs and causes tumor recurrence,has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades.Several mechanisms of overcoming drug resistance have been postulated.Well known Pglycoprotein (P-gp) and other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells and causing chemotherapy failure.Innovative theranostic (therapeutic and diagnostic)strategies with nanoparticles are rapidly evolving and are anticipated to offer opportunities to overcome these limits.In this review,we discuss the mechanisms of drug efflux-mediated resistance and the application of multiple nanoparticle-based platforms to overcome chemoresistance and improve therapeutic outcome.

  13. Detection of Multi-drug Resistant Acinetobacter Lwoffii Isolated from Soil of Mink Farm.

    Science.gov (United States)

    Sun, Na; Wen, Yong Jun; Zhang, Shu Qin; Zhu, Hong Wei; Guo, Li; Wang, Feng Xue; Chen, Qiang; Ma, Hong Xia; Cheng, Shi Peng

    2016-07-01

    There were 4 Acinetobacter lwoffii obtained from soil samples. The antimicrobial susceptibility of the strains to 16 antimicrobial agents was investigated using K-B method. Three isolates showed the multi-drug resistance. The presence of resistance genes and integrons was determined using PCR. The aadA1, aac(3')-IIc, aph(3')-VII, aac(6')-Ib, sul2, cat2, floR, and tet(K) genes were detected, respectively. Three class 1 integrons were obtained. The arr-3-aacA4 and blaPSE-1 gene cassette, which cause resistance to aminoglycoside and beta-lactamase antibiotics. Our results reported the detection of multi-drug resistant and carried resistant genes Acinetobacter lwoffii from soil. The findings suggested that we should pay close attention to the prevalence of multi-drug resistant bacterial species of environment. PMID:27554122

  14. Fighting fire with fire: mass antimalarial drug administrations in an era of antimalarial resistance.

    Science.gov (United States)

    von Seidlein, Lorenz; Dondorp, Arjen

    2015-06-01

    The emergence and spread of antimalarial resistance has been a major liability for malaria control. The spread of chloroquine-resistant Plasmodium falciparum strains had catastrophic consequences for people in malaria-endemic regions, particularly in sub-Saharan Africa. The recent emergence of artemisinin-resistant P. falciparum strains is of highest concern. Current efforts to contain artemisinin resistance have yet to show success. In the absence of more promising plans, it has been suggested to eliminate falciparum malaria from foci of artemisinin resistance using a multipronged approach, including mass drug administrations. The use of mass drug administrations is controversial as it increases drug pressure. Based on current knowledge it is difficult to conceptualize how targeted malaria elimination could contribute to artemisinin resistance, provided a full treatment course is ensured. PMID:25831482

  15. Efficacy of moxifloxacin & econazole against multidrug resistant (MDR Mycobacterium tuberculosis in murine model

    Directory of Open Access Journals (Sweden)

    U D Gupta

    2015-01-01

    Full Text Available Background & objectives: Studies have shown the bactericidal potential of econazole and clotrimazole against Mycobacterium tuberculosis under in vitro and ex vivo conditions along with their synergism with conventional antituberculosis drugs. These molecules were also found to be effective against different multidrug resistant (MDR M. tuberculosis isolates in vitro. Hence the present study was designed to evaluate the in vivo antimycobacterial potential of moxifloxacin and econazole alone and in combination against multidrug resistant tuberculosis (MDR-TB in a mice model. Methods: Mice were infected with 2.5×10 [7] bacilli of MDR strain of M. tuberculosis by aerosol route of infection. After four weeks of infection, chemotherapy was started orally by moxifloxacin 8.0 mg/kg body wt and econazole 3.3 mg/kg alone and in combination, as well as with four first line anti-tuberculosis drugs as a positive control. The animals were sacrificed and the lungs and spleen were excised under aspetic conditions. The tissues were homogenized with sterile normal saline, an aliquot of the homogenate was plated on Middlebrook 7H11 agar supplemented with oleate albumin dextrose catalase (OADC and incubated at 37°C for four weeks. The number of visible and individual colonies were counted. Results: The first line anti-tuberculosis drugs (RIF+INH+EMB+PZA after eight weeks of therapy had no impact as the bacillary load in lungs and spleens remained unchanged. However, econazole, moxifloxacin alone as well as in combination significantly reduced the bacillary load in lungs as well as in spleens of MDR-TB bacilli infected mice. Interpretation & conclusions: Co-administration of the two drugs (econazole and moxifloxacin to MDR-TB strain JAL-7782 infected mice exhibited additive effect, the efficacy of the drugs in combination being higher as compared with ECZ or MOX alone. These results were substantiated by histopathological studies. This study suggests the utility of

  16. ALTERED MRP IS ASSOCIATED WITH MULTIDRUG-RESISTANCE AND REDUCED DRUG ACCUMULATION IN HUMAN SW-1573 CELLS

    NARCIS (Netherlands)

    EIJDEMS, EWHM; ZAMAN, GJR; DEHAAS, M; VERSANTVOORT, CHM; FLENS, MJ; SCHEPER, RJ; KAMST, E; BORST, P; BAAS, F

    1995-01-01

    We have analysed the contribution of several parameters, e.g. drug accumulation, MDR1 P-glycoprotein (P-gp), multidrug resistance-associated protein (MRP) and topoisomerase (topo) II, to drug resistance in a large set of drug-resistant variants of the human non-small-cell lung cancer cell line SW-15

  17. Is Incident Drug-Resistance of Childhood-Onset Epilepsy Reversible? A Long-Term Follow-Up Study

    Science.gov (United States)

    Sillanpaa, Matti; Schmidt, Dieter

    2012-01-01

    Given the grave morbidity and mortality of drug-resistant epilepsy, it is of great clinical interest to determine how often prior proven drug-resistant epilepsy is reversible without surgery and whether remission can be predicted by clinical features in children with incident drug-resistant epilepsy. We determined the likelihood of 1-, 2- and…

  18. Modeling the effects of drug resistant influenza virus in a pandemic

    Directory of Open Access Journals (Sweden)

    Koch Daniel

    2008-10-01

    Full Text Available Abstract Neuraminidase inhibitors (NI play a major role in plans to mitigate future influenza pandemics. Modeling studies suggested that a pandemic may be contained at the source by early treatment and prophylaxis with antiviral drugs. Here, we examine the influence of NI resistant influenza strains on an influenza pandemic. We extend the freely available deterministic simulation program InfluSim to incorporate importations of resistant infections and the emergence of de novo resistance. The epidemic with the fully drug sensitive strain leads to a cumulative number of 19,500 outpatients and 258 hospitalizations, respectively, per 100,000 inhabitants. Development of de novo resistance alone increases the total number of outpatients by about 6% and hospitalizations by about 21%. If a resistant infection is introduced into the population after three weeks, the outcome dramatically deteriorates. Wide-spread use of NI treatment makes it highly likely that the resistant strain will spread if its fitness is high. This situation is further aggravated if a resistant virus is imported into a country in the early phase of an outbreak. As NI-resistant influenza infections with high fitness and pathogenicity have just been observed, the emergence of drug resistance in treated populations and the transmission of drug resistant strains is an important public health concern for seasonal and pandemic influenza.

  19. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  20. The role of delamanid in the treatment of drug-resistant tuberculosis.

    Science.gov (United States)

    Lewis, Joseph M; Sloan, Derek J

    2015-01-01

    Tuberculosis (TB) remains a significant cause of death worldwide, and emergence of drug-resistant TB requires lengthy treatments with toxic drugs that are less effective than their first-line equivalents. New treatments are urgently needed. Delamanid, previously OPC-67863, is a novel drug of the dihydro-nitroimidazole class with potent anti-TB activity and great promise to be effective in the treatment of drug-resistant TB. This review examines the preclinical and clinical development of delamanid, reviews current guidance on its use and evaluates the opportunities and challenges for its future role in TB management. PMID:25999726

  1. Genotypic drug resistance and long-term mortality in patients with triple-class antiretroviral drug failure

    DEFF Research Database (Denmark)

    Lohse, Nicolai; Jørgensen, Louise B; Kronborg, Gitte; Møller, Axel; Kvinesdal, Birgit; Sørensen, Henrik T; Obel, Niels; Gerstoft, Jan; NN, NN

    2007-01-01

    OBJECTIVE: To examine the prevalence of drug-resistance-associated mutations in HIV patients with triple-drug class virological failure (TCF) and their association with long-term mortality. DESIGN: Population-based study from the Danish HIV Cohort Study (DHCS). METHODS: We included all patients in...... the DHCS who experienced TCF between January 1995 and November 2004, and we performed genotypic resistance tests for International AIDS Society (IAS)-USA primary mutations on virus from plasma samples taken around the date of TCF. We computed time to all-cause death from date of TCF. The relative risk...... of death according to the number of mutations and individual mutations was estimated by Cox regression analysis and adjusted for potential confounders. RESULTS: Resistance tests were done for 133 of the 179 patients who experienced TCF. The median number of resistance mutations was eight...

  2. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates

    Directory of Open Access Journals (Sweden)

    Yasmine Fathy Mohamed

    2016-06-01

    Full Text Available Abstract Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat.

  3. Drug resistance mutation of HIV-1 in HIV/AIDS patients infected by blood transfusion

    Directory of Open Access Journals (Sweden)

    Xin-li LU

    2013-03-01

    Full Text Available Objective  To study the characteristic of HIV-1 gene mutation in HIV/AIDS patients infected by blood transfusion, and analyze the resistance to anti-HIV drugs. Methods  Plasma samples were collected from 37 HIV/AIDS patients infected by blood transfusion for extraction of HIV-1 RNA. The gene fragments of HIV pol domain were amplified by RT-PCR and nested-PCR , and the electrophoresis positive products were sequenced. The sequencing result was landed to the website http:// HIV-1db.stanford.edu to analyze the drug resistance mutations. Results  Drug resistance mutations were found in 20 patients, including 19 cases of virological or immunological failure. Mutation of gene locus V32AV of protease inhibitors (PIs occurred in 3 patients during the treatment, but it did not cause the drug resistance of PIs. Mutation of the coding regions of reverse transcriptase was found in 23 patients, including M184V, TAMs, Q151M complexus, K103N, Y181C and so on. Of the 23 patients mentioned above, the HIV-1 gene mutation induced the resistance to reverse transcriptase inhibitors (RTIs in 20 patients, and the mutation rate of RTIs was 54.05% (20/37. Conclusion  The drug resistance rate of HIV-1 in patients infected by blood transfusion may be high for antiviral therapy, so the drug resistance of HIV-1 should be monitored and treatment plan should be adjusted timely.

  4. High rate of drug resistance among tuberculous meningitis cases in Shaanxi province, China.

    Science.gov (United States)

    Wang, Ting; Feng, Guo-Dong; Pang, Yu; Liu, Jia-Yun; Zhou, Yang; Yang, Yi-Ning; Dai, Wen; Zhang, Lin; Li, Qiao; Gao, Yu; Chen, Ping; Zhan, Li-Ping; Marais, Ben J; Zhao, Yan-Lin; Zhao, Gang

    2016-01-01

    The clinical and mycobacterial features of tuberculous meningitis (TBM) cases in China are not well described; especially in western provinces with poor tuberculosis control. We prospectively enrolled patients in whom TBM was considered in Shaanxi Province, northwestern China, over a 2-year period (September 2010 to December 2012). Cerebrospinal fluid specimens were cultured for Mycobacterium tuberculosis; with phenotypic and genotypic drug susceptibility testing (DST), as well as genotyping of all positive cultures. Among 350 patients included in the study, 27 (7.7%) had culture-confirmed TBM; 84 (24.0%) had probable and 239 (68.3%) had possible TBM. DST was performed on 25/27 (92.3%) culture positive specimens; 12/25 (48.0%) had "any resistance" detected and 3 (12.0%) were multi-drug resistant (MDR). Demographic and clinical features of drug resistant and drug susceptible TBM cases were similar. Beijing was the most common genotype (20/25; 80.0%) with 9/20 (45%) of the Beijing strains exhibiting drug resistance; including all 3 MDR strains. All (4/4) isoniazid resistant strains had mutations in the katG gene; 75% (3/4) of strains with phenotypic rifampicin resistance had mutations in the rpoB gene detected by Xpert MTB/RIF®. High rates of drug resistance were found among culture-confirmed TBM cases; most were Beijing strains. PMID:27143630

  5. Relationship between Methylation Status of Multi-drug Resistance Protein(MRP) and Multi-drug Resistance in Lung Cancer Cell Lines

    Institute of Scientific and Technical Information of China (English)

    LIU Rui-jun; ZHONG Hong

    2007-01-01

    Objective: To study the relationship between the methylation status of multi-drug resistance protein (MRP) gene and the expression of its mRNA and protein in lung cancer cell lines. Methods: Human embryo lung cell line WI-38, lung adenocarcinoma cell line SPCA-1 and its drug-resistant cells induced by different concentrations of doxorubicin were treated with restriction endonuclease Eco47Ⅲ. The methylation status of MRP was examined by PCR, and the expressions of its mRNA and protein were evaluated by in situ hybridization and immunohistochemistry. Results: MRP gene promoter region of WI-38 cells was in hypermethylation status, but the promoter region of MRP in SPCA-1 cells and their resistant derivatives induced by different concentrations of doxorubicin were in hypomethylation status. There were significant differences in the expression of MRP mRNA among WI-38 cell line, SPCA-1 cells and their drug-resistant derivatives induced by different concentration of doxorubicin. Consistently, MRP immunostaining presented similar significant differences. Conclusion: The promoter region of MRP in SPCA-1 lung adenocarcinoma cells was in hypomethylation status. The hypomethylation status of 5' regulatory region of MRP promoter is an important structural basis that can increase the activity of transcription and results in the development of drug resistance in lung cancer.

  6. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  7. Potential impact of intermittent preventive treatment (IPT on spread of drug-resistant malaria.

    Directory of Open Access Journals (Sweden)

    Wendy Prudhomme O'Meara

    2006-05-01

    Full Text Available BACKGROUND: Treatment of asymptomatic individuals, regardless of their malaria infection status, with regularly spaced therapeutic doses of antimalarial drugs has been proposed as a method for reducing malaria morbidity and mortality. This strategy, called intermittent preventive treatment (IPT, is currently employed for pregnant women and is being studied for infants (IPTi as well. As with any drug-based intervention strategy, it is important to understand how implementation may affect the spread of drug-resistant parasites. This is a difficult issue to address experimentally because of the limited size and duration of IPTi trials as well as the intractability of distinguishing the spread of resistance due to conventional treatment of malaria episodes versus that due to IPTi when the same drug is used in both contexts. METHODS AND FINDINGS: Using a mathematical model, we evaluated the possible impact of treating individuals with antimalarial drugs at regular intervals regardless of their infection status. We translated individual treatment strategies and drug pharmacokinetics into parasite population dynamic effects and show that immunity, treatment rate, drug decay kinetics, and presumptive treatment rate are important factors in the spread of drug-resistant parasites. Our model predicts that partially resistant parasites are more likely to spread in low-transmission areas, but fully resistant parasites are more likely to spread under conditions of high transmission, which is consistent with some epidemiological observations. We were also able to distinguish between spread of resistance due to treatment of symptomatic infections and that due to IPTi. We showed that IPTi could accelerate the spread of resistant parasites, but this effect was only likely to be significant in areas of low or unstable transmission. CONCLUSIONS: The results presented here demonstrate the importance of considering both the half-life of a drug and the existing level

  8. Retroviral transfer of a murine cDNA for multidrug resistance confers pleiotropic drug resistance to cells without prior drug selection.

    OpenAIRE

    Guild, B C; Mulligan, R C; Gros, P.; Housman, D.E.

    1988-01-01

    We have constructed a retrovirus expression vector that carries the murine mdr cDNA transcribed under the control of the human H4 histone promoter to examine the feasibility of efficiently transferring a multidrug resistance phenotype to cells without requiring drug selection. This approach will facilitate the transfer of mdr cDNA to hematopoietic progenitor cells for the study of multidrug resistance in vivo. The retrovirus vector pHmdr has been used for transmission and expression of the md...

  9. Repurposing—a ray of hope in tackling extensively drug resistance in tuberculosis

    Directory of Open Access Journals (Sweden)

    Arundhati Maitra

    2015-03-01

    Full Text Available Tuberculosis (TB remains a serious concern more than two decades on from when the World Health Organization declared it a global health emergency. The alarming rise of antibiotic resistance in Mycobacterium tuberculosis, the etiological agent of TB, has made it exceedingly difficult to control the disease with the existing portfolio of anti-TB chemotherapy. The development of effective drugs with novel mechanism(s of action is thus of paramount importance to tackle drug resistance. The development of novel chemical entities requires more than 10 years of research, requiring high-risk investment to become commercially available. Repurposing pre-existing drugs offers a solution to circumvent this mammoth investment in time and funds. In this context, several drugs with known safety and toxicity profiles have been evaluated against the TB pathogen and found to be efficacious against its different physiological states. As the endogenous targets of these drugs in the TB bacillus are most likely to be novel, there is minimal chance of cross-resistance with front-line anti-TB drugs. Also, reports that some of these drugs may potentially have multiple targets means that the possibility of the development of resistance against them is minimal. Thus repurposing existing molecules offers immense promise to tackle extensively drug-resistant TB infections.

  10. New developments in the treatment of drug-resistant tuberculosis: clinical utility of bedaquiline and delamanid

    Directory of Open Access Journals (Sweden)

    Brigden G

    2015-10-01

    Full Text Available Grania Brigden,1 Cathy Hewison,2 Francis Varaine21Access Campaign, Médecins Sans Frontières, Geneva, Switzerland; 2Medical Department, Médecins Sans Frontières, Paris, France Abstract: The current treatment for drug-resistant tuberculosis (TB is long, complex, and associated with severe and life-threatening side effects and poor outcomes. For the first time in nearly 50 years, there have been two new drugs registered for use in multidrug-resistant TB (MDR-TB. Bedaquiline, a diarylquinoline, and delamanid, a nitromidoxazole, have received conditional stringent regulatory approval and have World Health Organization interim policy guidance for their use. As countries improve and scale up their diagnostic services, increasing number of patients with MDR-TB and extensively drug-resistant TB are identified. These two new drugs offer a real opportunity to improve the outcomes of these patients. This article reviews the evidence for these two new drugs and discusses the clinical questions raised as they are used outside clinical trial settings. It also reviews the importance of the accompanying drugs used with these new drugs. It is important that barriers hindering the use of these two new drugs are addressed and that the existing clinical experience in using these drugs is shared, such that their routine-use programmatic conditions is scaled up, ensuring maximum benefit for patients and countries battling the MDR-TB crisis. Keywords: MDR-TB, XDR-TB, tuberculosis drugs, group 5 drugs

  11. U.S. Cases of Drug-Resistant Gonorrhea Rise Fourfold in One Year

    Science.gov (United States)

    ... Cases of Drug-Resistant Gonorrhea Rise Fourfold in One Year CDC statistics for 2013-2014 show troubling ... treat it," Mermin said. "We are running just one step ahead in order to preserve the remaining ...

  12. [New Drugs for the Treatment of Multidrug-resistant Tuberculosis (MDR-TB)].

    Science.gov (United States)

    Schaberg, T; Otto-Knapp, R; Bauer, T

    2015-05-01

    This article summarizes the state of development of new drugs for the treatment of multidrug-resistant tuberculosis. We focused on delamanid, bedaquiline, pretomanid, SQ 109 and sutezolid. PMID:25970122

  13. Molecular detection of drug resistance in microbes by isotopic techniques: The IAEA experience

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) supports various programmes on the uses of radionuclide techniques in the management of human communicable diseases. An important issue, being addressed through several technology transfer projects, is the detection of drug resistance in microbes by radioisotope based molecular-biology diagnostic procedures. The techniques employed include dot blot hybridisation with P-32 labelled oligonucleotide probes to detect point mutations, associated with drug resistance, in microbial genes amplified by the polymerase chain reaction (PCR). Molecular methods have been used for the detection of drug resistance in the malarial parasite, Plasmodium falciparum, and in Mycobacterium tuberculosis. Radioisotope based molecular-biology methods have been demonstrated to have comparative advantages in being sensitive, specific, cost-effective, and suitable for application to large-scale molecular surveillance for drug resistance. (author)

  14. Distribution of putative virulence genes and antimicrobial drug resistance in Vibrio harveyi

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Mendez, D.; Anto, C.

    environments for understanding the distribution of putative virulence genes and antimicrobial drug resistance. The putative genes targeted for PCR detection included four reversible toxin (Rtx)/hemolysin genes, a gene encoding homologue of Vibrio cholerae...

  15. Tumor cell heterogeneity: impact on mechanisms of therapeutic drug resistance

    International Nuclear Information System (INIS)

    Purpose: The aim of these studies was to determine whether chemotherapy-resistant tumor cell sublines derived from a single starting cell population with identical treatment protocols, have the same mechanism of resistance. Methods and Materials: Twelve cyclophosphamide-resistant sublines were derived from KHT-iv murine sarcoma cells by repeated exposures to 2, 4, or 8 μg/ml doses of 4-hydroperoxycyclophosphamide (4-OOHCP). To investigate possible mechanisms of resistance, glutathione (GSH) levels, glutathione S-transferase (GST) activity, and aldehyde dehydrogenase (ALDH) activity were determined. In addition, studies with the GSH depletor buthionine sulfoximine (BSO) and the ALDH inhibitor diethylamino-benzaldehyde (DEAB) were undertaken. Results: Resistant factors to 4-OOHCP, assessed at 10% clonogenic cell survival, ranged from 1.5-7.0 for the various cell lines. Crossresistance to melphalan and adriamycin also were commonly observed. Increased GSH levels, GST activity and ALDH activity were detected in the sublines but not all exhibited the same pattern of biochemical alterations. The response to GSH and ALDH inhibitors also varied among the sublines; the resistance being reversible in some cell lines but not others. Conclusion: The present results indicate that when resistant sublines are derived simultaneously from the same starting cell population, the observed mechanisms of resistance may not be the same in each of the variants. These findings support the hypothesis that preexisting cellular heterogeneity may affect mechanisms of acquired resistance

  16. The role of delamanid in the treatment of drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Lewis JM

    2015-05-01

    Full Text Available Joseph M Lewis,1 Derek J Sloan2,3 1Tropical and Infectious Disease Unit, Royal Liverpool University Hospital, Liverpool, UK; 2Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK; 3Liverpool Heart and Chest Hospital, Liverpool, UK Abstract: Tuberculosis (TB remains a significant cause of death worldwide, and emergence of drug-resistant TB requires lengthy treatments with toxic drugs that are less effective than their first-line equivalents. New treatments are urgently needed. Delamanid, previously OPC-67863, is a novel drug of the dihydro-nitroimidazole class with potent anti-TB activity and great promise to be effective in the treatment of drug-resistant TB. This review examines the preclinical and clinical development of delamanid, reviews current guidance on its use and evaluates the opportunities and challenges for its future role in TB management. Keywords: delamanid, OPC-67683, tuberculosis, drug resistance, MDR-TB 

  17. Molecular Characterization of Resistance-Nodulation-Division Transporters from Solvent- and Drug-Resistant Bacteria in Petroleum-Contaminated Soil

    OpenAIRE

    Meguro, Norika; Kodama, Yumiko; Gallegos, Maria-Trinidad; Watanabe, Kazuya

    2005-01-01

    PCR assays for analyzing resistance-nodulation-division transporters from solvent- and drug-resistant bacteria in soil were developed. Sequence analysis of amplicons showed that the PCR successfully retrieved transporter gene fragments from soil. Most of the genes retrieved from petroleum-contaminated soils formed a cluster (cluster PCS) that was distantly related to known transporter genes. Competitive PCR showed that the abundance of PCS genes is increased in petroleum-contaminated soil.

  18. Genome Analysis of the First Extensively Drug-Resistant (XDR) Mycobacterium tuberculosis in Malaysia Provides Insights into the Genetic Basis of Its Biology and Drug Resistance.

    Science.gov (United States)

    Kuan, Chee Sian; Chan, Chai Ling; Yew, Su Mei; Toh, Yue Fen; Khoo, Jia-Shiun; Chong, Jennifer; Lee, Kok Wei; Tan, Yung-Chie; Yee, Wai-Yan; Ngeow, Yun Fong; Ng, Kee Peng

    2015-01-01

    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia. PMID:26110649

  19. Repurposing — a ray of hope in tackling extensively drug resistance in tuberculosis

    OpenAIRE

    Arundhati Maitra; Sadé Bates; Trupti Kolvekar; Devarajan, Padma V.; Guzman, Juan D.; Sanjib Bhakta

    2015-01-01

    Tuberculosis (TB) remains a serious concern more than two decades on from when the World Health Organization declared it a global health emergency. The alarming rise of antibiotic resistance in Mycobacterium tuberculosis, the etiological agent of TB, has made it exceedingly difficult to control the disease with the existing portfolio of anti-TB chemotherapy. The development of effective drugs with novel mechanism(s) of action is thus of paramount importance to tackle drug resistance. The deve...

  20. Fluorometric assay for phenotypic differentiation of drug-resistant HIV mutants

    OpenAIRE

    Qinchang Zhu; Zhiqiang Yu; Tsutomu Kabashima; Sheng Yin; Shpend Dragusha; El-Mahdy, Ahmed F. M.; Valon Ejupi; Takayuki Shibata; Masaaki Kai

    2015-01-01

    Convenient drug-resistance testing of viral mutants is indispensable to effective treatment of viral infection. We developed a novel fluorometric assay for phenotypic differentiation of drug-resistant mutants of human immunodeficiency virus-I protease (HIV-PR) which uses enzymatic and peptide-specific fluorescence (FL) reactions and high-performance liquid chromatography (HPLC) of three HIV-PR substrates. This assay protocol enables use of non-purified enzyme sources and multiple substrates f...

  1. Automating HIV Drug Resistance Genotyping with RECall, a Freely Accessible Sequence Analysis Tool

    OpenAIRE

    Woods, Conan K.; Chanson J Brumme; Liu, Tommy F; Chui, Celia K. S.; Chu, Anna L.; Wynhoven, Brian; Hall, Tom A.; Trevino, Christina; Shafer, Robert W; Harrigan, P. Richard

    2012-01-01

    Genotypic HIV drug resistance testing is routinely used to guide clinical decisions. While genotyping methods can be standardized, a slow, labor-intensive, and subjective manual sequence interpretation step is required. We therefore performed external validation of our custom software RECall, a fully automated sequence analysis pipeline. HIV-1 drug resistance genotyping was performed on 981 clinical samples at the Stanford Diagnostic Virology Laboratory. Sequencing trace files were first inte...

  2. Epigenetic modulation of the drug resistance genes MGMT, ABCB1 and ABCG2 in glioblastoma multiforme

    OpenAIRE

    Oberstadt, Moritz C.; Bien-Möller, Sandra; Weitmann, Kerstin; Herzog, Susann; Hentschel, Katharina; Rimmbach, Christian; Vogelgesang, Silke; Balz, Ellen; Fink, Matthias; Michael, Heike; Zeden, Jan-Philip; Bruckmüller, Henrike; Werk, Anneke N.; Cascorbi, Ingolf; Hoffmann, Wolfgang

    2013-01-01

    Background Resistance of the highly aggressive glioblastoma multiforme (GBM) to drug therapy is a major clinical problem resulting in a poor patient’s prognosis. Beside promoter methylation of the O 6 -methylguanine-DNA-methyltransferase (MGMT) gene the efflux transporters ABCB1 and ABCG2 have been suggested as pivotal factors contributing to drug resistance, but the methylation of ABCB1 and ABCG2 has not been assessed before in GBM. Methods Therefore, we evaluated the proportion and pr...

  3. Drug resistance of organisms isolated from feces of laboratory mice and rats.

    Science.gov (United States)

    Maejima, K; Urano, T; Tamura, H; Terakado, N

    1980-01-01

    A total of 248 strains of EScherichia coli, 132 of Staphylococcus epidermidis, 137 of Streptococcus faecalis and 89 of STr. faecium were collected from feces of 40 mice and 36 rats of 8 colonies in 1978, and drug resistance were examined by an agar dieution method using 23 antibiotics. The results indicated a positive relation between use of antibiotics and appearance of multiple drug resistant organisms. PMID:6772455

  4. ABCB1 gene polymorphisms is not associated with drug-resistant epilepsy in Romanian children

    Directory of Open Access Journals (Sweden)

    Butila Anamaria Todoran

    2015-12-01

    Full Text Available Background: P-glycoprotein (P-gp, a drug efflux transporter, encoded by the gene MDR1 ABCB1 multidrug resistant, reduces the penetration through the brain by the AEDs. Overexpression of Pgp in blood-brain barrier in epileptic patients play an important rol in pharmacoresistance. The aim of this study was to evaluate a possible association between C1236T and G2677T ABCB1 gene polymorphisms and drug-resistant epilepsy in Romanian children.

  5. HIV-1 Reverse Transcriptase and Antiviral Drug Resistance (Part 1 of 2)

    OpenAIRE

    Das, Kalyan; Arnold, Eddy

    2013-01-01

    HIV-1 reverse transcriptase (RT) contributes to the development of resistance to all anti-AIDS drugs by introducing mutations into the viral genome. At the molecular level, mutations in RT result in resistance to RT inhibitors. Eight nucleoside/nucleotide analogs (NRTIs) and five non-nucleoside inhibitors (NNRTIs) are approved HIV-1 drugs. Structures of RT have been determined in complexes with substrates and/or inhibitors, and the structures have revealed different conforma...

  6. New developments in the treatment of drug-resistant tuberculosis: clinical utility of bedaquiline and delamanid

    OpenAIRE

    Brigden, Grania

    2015-01-01

    Grania Brigden,1 Cathy Hewison,2 Francis Varaine21Access Campaign, Médecins Sans Frontières, Geneva, Switzerland; 2Medical Department, Médecins Sans Frontières, Paris, France Abstract: The current treatment for drug-resistant tuberculosis (TB) is long, complex, and associated with severe and life-threatening side effects and poor outcomes. For the first time in nearly 50 years, there have been two new drugs registered for use in multidrug-resistant...

  7. Monitoring a Nuclear Factor-κB Signature of Drug Resistance in Multiple Myeloma*

    OpenAIRE

    Xiang, Yun; Remily-Wood, Elizabeth R.; Oliveira, Vasco; Yarde, Danielle; He, Lili; Cheng, Jin Q; Mathews, Linda; Boucher, Kelly; Cubitt, Christopher; Perez, Lia; Gauthier, Ted J.; Eschrich, Steven A.; Shain, Kenneth H.; Dalton, William S.; Hazlehurst, Lori

    2011-01-01

    The emergence of acquired drug resistance results from multiple compensatory mechanisms acting to prevent cell death. Simultaneous monitoring of proteins involved in drug resistance is a major challenge for both elucidation of the underlying biology and development of candidate biomarkers for assessment of personalized cancer therapy. Here, we have utilized an integrated analytical platform based on SDS-PAGE protein fractionation prior to liquid chromatography coupled to multiple reaction mon...

  8. On a drug-resistant malaria model with susceptible individuals without access to basic amenities

    OpenAIRE

    Okosun, Kazeem Oare; Makinde, Oluwole Daniel

    2012-01-01

    In this paper, a deterministic malaria transmission model in the presence of a drug-resistant strain is investigated. The model is studied using stability theory of differential equations, optimal control, and computer simulation. The threshold condition for disease-free equilibrium is found to be locally asymptotically stable and can only be achieved in the absence of a drug-resistant strain in the population. The existence of multiple endemic equilibria is also established. Both the Sensiti...

  9. Gene Expression Noise Facilitates Adaptation and Drug Resistance Independently of Mutation

    CERN Document Server

    Charlebois, Daniel A; Kaern, Mads

    2011-01-01

    We show that the effect of stress on the reproductive fitness of noisy cell populations can be modelled as first-passage time problem, and demonstrate that even relatively short-lived fluctuations in gene expression can ensure long-term survival of a drug-resistant population. We examine how this effect contributes to the development of drug-resistant cancer cells, and demonstrate that permanent immunity can arise independently of mutations.

  10. Streptococcus suis, an Emerging Drug-Resistant Animal and Human Pathogen

    OpenAIRE

    Palmieri, Claudio; Varaldo, Pietro E.; Facinelli, Bruna

    2011-01-01

    Streptococcus suis, a major porcine pathogen, has been receiving growing attention not only for its role in severe and increasingly reported infections in humans, but also for its involvement in drug resistance. Recent studies and the analysis of sequenced genomes have been providing important insights into the S. suis resistome, and have resulted in the identification of resistance determinants for tetracyclines, macrolides, aminoglycosides, chloramphenicol, antifolate drugs, streptothricin,...

  11. [Rifampicin-resistant Mycobacterium bovis BCG strain isolated from an infant with NEMO mutation].

    Science.gov (United States)

    Çavuşoğlu, Cengiz; Edeer Karaca, Neslihan; Azarsız, Elif; Ulusoy, Ezgi; Kütükçüler, Necil

    2015-04-01

    It is well known that disseminated Mycobacterium bovis BCG infection is developed after BCG vaccination in infants with congenital cellular immune deficiencies such as mutations in genes along the interleukin (IL)-12/interferon (IFN)-γ pathway and mutations in nuclear factor-kB essential modulator (NEMO). In this report, a rifampicin-resistant M.bovis BCG strain isolated from an infant with NEMO defect was presented. An 8-month-old male infant with NEMO defect admitted to the pediatric outpatient clinic of our hospital with fever, generalized lymphadenopathy and hepatosplenomegaly. Microscopic examination of the smears prepared from lymph node and liver biopsy specimens revealed abundant amount (3+) of acid-fast bacilli (AFB). Rifampicin-susceptible Mycobacterium tuberculosis complex (MTC) was detected by real-time PCR (GeneXpert MTB/RIF; Cepheid, USA) in the samples. The growth of mycobacteria was determined on the 20th day of culture performed in MGIT960 system (Becton Dickinson, USA). The isolate was identified as M.bovis BCG by GenoType MTBC kit (Hain Lifescience, Germany) and defined as M.bovis BCG [SIT 482 (BOV_1)] by spoligotyping. In the primary anti-tuberculosis drug susceptibility test performed by MGIT960 system, the isolate was found susceptible to rifampicin (RIF), isoniazid (INH), streptomycin (STM) and ethambutol (EMB). Then anti-tuberculosis treatment was started to the patient. However, the patient at the age of 2 years, re-admitted to the hospital with the complaint of hepatosplenomegaly. Smear of spontaneously draining abscess material obtained from subcutaneous nodules revealed intensive AFB positivity (3+) once again. In the present instance RIF-resistant MTC was detected with GeneXpert system in the specimen. The growth of mycobacteria was determined on the 13th day of culture and isolate was identified as M.bovis BCG. The present isolate was found susceptible to INH, STM and EMB but resistant to RIF. A mutation in the rpoB gene (codon 531, S

  12. New drugs to treat multidrug-resistant tuberculosis: the case for bedaquiline

    Directory of Open Access Journals (Sweden)

    Leibert E

    2014-07-01

    Full Text Available Eric Leibert, Mauricio Danckers, William N Rom Department of Internal Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, New York University School of Medicine, New York, NY, USA Abstract: Mycobacterium tuberculosis develops spontaneous resistance mutants to virtually every drug in use. Courses of therapy select for these mutants and drug-resistant organisms emerge. The development of drug-resistant organisms has reached the point that drug resistance now threatens to undermine global success against tuberculosis (TB. New drugs are needed. The last new class of drugs specifically developed for treatment of TB was the rifamycins over 40 years ago. New funding sources and the development of product development partnerships have energized the TB drug development effort. There are now more TB drugs in development than at any time in the past. The first of these drugs to be developed and marketed was bedaquiline. Bedaquiline has an entirely novel mechanism of action and so should be active against otherwise highly resistant organisms. It acts on the transmembrane component of adenosine triphosphate synthase and acts by preventing electron transport. This raises the exciting possibility that bedaquiline may be active against less metabolically active organisms. Drug–drug interactions between rifamycins and the cytochrome P450-3A system will limit bedaquiline's utility and create complexity in treatment regimens. In clinical trials, treatment with bedaquiline added to a background multidrug-resistant TB regimen was associated with earlier culture conversion and higher cure rates, but there were unexplained excess deaths in the bedaquiline arms of these trials. Food and Drug Administration approved bedaquiline for the treatment of multidrug-resistant TB when an effective treatment regimen cannot otherwise be provided. They required a black box warning about excess deaths and require that a phase III trial be completed. A planned Phase

  13. The Communicative Process of Drug Resistance among High School Students.

    Science.gov (United States)

    Alberts, J. K.; And Others

    1992-01-01

    Analyzed 69 narrative accounts of successful and unsuccessful attempts by high school students to say no to drug offers. Found peer pressure applied in approximately 70 percent of offers. Much of pressure was applied after refusal of initial offer. Simple offers were more likely with alcohol; drug offers were more likely to be persuasive and to…

  14. Clinical and epidemiological profiles of individuals with drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Heloisa da Silveira Paro Pedro

    2015-04-01

    Full Text Available Drug-resistant tuberculosis (TB is a growing global threat. Approximately 450,000 people developed multidrug-resistant TB worldwide in 2012 and an estimated 170,000 people died from the disease. This paper describes the sociodemographic, clinical-epidemiological and bacteriological aspects of TB and correlates these features with the distribution of anti-TB drug resistance. Mycobacterium tuberculosis (MT cultures and drug susceptibility testing were performed according to the BACTEC MGIT 960 method. The results demonstrated that MT strains from individuals who received treatment for TB and people who were infected with human immunodeficiency virus were more resistant to TB drugs compared to other individuals (p < 0.05. Approximately half of the individuals received supervised treatment, but most drug-resistant cases were positive for pulmonary TB and exhibited positive acid-fast bacilli smears, which are complicating factors for TB control programs. Primary healthcare is the ideal level for early disease detection, but tertiary healthcare is the most common entry point for patients into the system. These factors require special attention from healthcare managers and professionals to effectively control and monitor the spread of TB drug-resistant cases.

  15. Cooperative Antibiotic Resistance in a Multi-Drug Environment

    Science.gov (United States)

    Yurtsev, Eugene; Dai, Lei; Gore, Jeff

    2013-03-01

    The emergence of antibiotic resistance in bacteria is a significant health concern. A frequent mechanism of antibiotic resistance involves the production of an enzyme which inactivates the antibiotic. By inactivating the antibiotic, resistant cells can ``share'' their resistance with other cells in the bacterial population, suggesting that it may be possible to observe cooperation between strains that inactivate different antibiotics. Here, we experimentally track the population dynamics of two E. coli strains in the presence of two different antibiotics. We find that together the strains are able to grow in antibiotic concentrations that inhibit growth of either of the strains individually. We observe that even when there is stable coexistence between the two strains, the population size of each strain can undergo large oscillations. We expect that our results will provide insight into the evolution of antibiotic resistance and the evolutionary origin of phenotypic diversity and cooperative behaviors.

  16. Multi-Drug Resistant Bacteria Isolated from Fish and Fish Handlers in Maiduguri, Nigeria

    Directory of Open Access Journals (Sweden)

    Hafsat Ali Grema

    2015-07-01

    Full Text Available Multi-drug resistant bacteria were isolated from fresh fish and fish handlers using conventional methods of bacterial isolation such as colonial morphology, gram staining and biochemical tests. The bacteria isolated include Staphylococcus aureus, Streptococcus sp, E. coli, Klebsiella sp, Proteus sp. and Brucella sp. bacterial isolates were subjected to antibiotic susceptibility testing using disc diffusion technique against ten antimicrobial agents. S. aureus isolates showed resistance to gentamycin, tetracycline, oxacillin, ciprofloxacin and cefoxitin while Streptococcus sp were resistant to tetracycline, chloramphenicol and clindamycin. All the bacterial isolates were resistant to tetracycline while susceptible to cefoxitin, cephazolin, erythromycin and clindamycin. The multi drug resistance pattern of Staphylococcus aureus isolates showed resistance to three and more antimicrobial agents while none was resistant to 10 antimicrobial agents. All other isolates were resistant to four and more different antimicrobial agents while no isolates was resistant to one and ten antimicrobial agents. Therefore the continuous monitoring and surveillance of multi-drug resistant bacteria in fish and fish handlers will not only reduce the risk of disease to the fishes but public health hazard to fish handlers and consumers in general.

  17. The global tuberculosis situation and the inexorable rise of drug-resistant disease.

    Science.gov (United States)

    Marais, Ben J

    2016-07-01

    The highly cost-effective DOTS strategy helped to bring the global tuberculosis (TB) epidemic under control in many parts of the world; however, the emergence and spread of drug-resistant strains pose a major threat to these gains. Molecular epidemiology studies, together with recent genomic evidence, provide proof that some drug-resistant strains are highly transmissible with documented epidemic spread. The potential for epidemic replacement of drug-susceptible with drug-resistant strains provides strong motivation for renewed emphasis on TB drug and vaccine development. It also reflects the need for enhanced infection control measures in health care and congregate settings, especially in TB endemic areas. The exploration of preventive therapy options for close contacts of patients with infectious drug-resistant TB also warrants further exploration, in an attempt to break the transmission cycle. Increased population mobility and large scale cross-border migration imply that the inexorable rise of drug-resistant TB is not geographically confined; it is a global concern that poses a very real threat to TB endemic and non-endemic settings. Failure to find new solutions will compromise traditional TB control efforts and derail momentum toward future TB elimination. PMID:26855302

  18. Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma

    Science.gov (United States)

    Müller, Judith; Krijgsman, Oscar; Tsoi, Jennifer; Robert, Lidia; Hugo, Willy; Song, Chunying; Kong, Xiangju; Possik, Patricia A.; Cornelissen-Steijger, Paulien D.M.; Foppen, Marnix H. Geukes; Kemper, Kristel; Goding, Colin R.; McDermott, Ultan; Blank, Christian; Haanen, John; Graeber, Thomas G.; Ribas, Antoni; Lo, Roger S.; Peeper, Daniel S.

    2015-01-01

    Increased expression of the Microphthalmia-associated transcription factor (MITF) contributes to melanoma progression and resistance to BRAF pathway inhibition. Here we show that the lack of MITF is associated with more severe resistance to a range of inhibitors, while its presence is required for robust drug responses. Both in primary and acquired resistance, MITF levels inversely correlate with the expression of several activated receptor tyrosine kinases, most frequently AXL. The MITF-low/AXL-high/drug-resistance phenotype is common among mutant BRAF and NRAS melanoma cell lines. The dichotomous behaviour of MITF in drug response is corroborated in vemurafenib-resistant biopsies, including MITF-high and -low clones in a relapsed patient. Furthermore, drug cocktails containing AXL inhibitor enhance melanoma cell elimination by BRAF or ERK inhibition. Our results demonstrate that a low MITF/AXL ratio predicts early resistance to multiple targeted drugs, and warrant clinical validation of AXL inhibitors to combat resistance of BRAF and NRAS mutant MITF-low melanomas. PMID:25502142

  19. Fluoroquinolones, the Cornerstone of Treatment of Drug-Resistant Tuberculosis : A Pharmacokinetic and Pharmacodynamic Approach

    NARCIS (Netherlands)

    Pranger, A. D.; Alffenaar, J. W. C.; Aarnoutse, R. E.

    2011-01-01

    Fluoroquinolones (FQs) are important drugs to treat drug-resistant tuberculosis. In this review we integrated pharmacokinetic properties (PK) and microbiological susceptibility against M. tuberculosis and eventually evaluated the pharmcodynamic (PD) properties, as well as the influence of co-adminis

  20. Fluoroquinolones, the cornerstone of treatment of drug-resistant tuberculosis: a pharmacokinetic and pharmacodynamic approach.

    NARCIS (Netherlands)

    Pranger, A.D.; Alffenaar, J.W.C.; Aarnoutse, R.E.

    2011-01-01

    Fluoroquinolones (FQs) are important drugs to treat drug-resistant tuberculosis. In this review we integrated pharmacokinetic properties (PK) and microbiological susceptibility against M. tuberculosis and eventually evaluated the pharmcodynamic (PD) properties, as well as the influence of co-adminis