WorldWideScience

Sample records for anti-tuberculosis drug resistance

  1. Combined antiretroviral and anti- tuberculosis drug resistance ...

    African Journals Online (AJOL)

    these epidemics, many challenges remain.[3] Antiretroviral and anti-TB drug resistance pose considerable threats to the control of these epidemics.[4,5]. The breakdown in HIV/TB control within prisons is another emerging threat.[6,7] We describe one of the first reports of combined antiretroviral and anti-TB drug resistance ...

  2. Relatively low primary resistance to anti-tuberculosis drugs in Bangui and Bimbo, Central African Republic.

    Science.gov (United States)

    Minime-Lingoupou, F; Manirakiza, A; Yango, F; Zandanga, G; Le Faou, A; Rigouts, L

    2011-05-01

    The Central African Republic (CAR) is a country with a high burden of tuberculosis (TB). Although its national tuberculosis programme is effective, there is no continuous surveillance system for anti-tuberculosis drug resistance in place. To establish base-line anti-tuberculosis drug resistance data to allow for future monitoring of trends and evolutions. More specifically, we aimed at investigating primary anti-tuberculosis drugs in Bangui and Bimbo, two cities of CAR. A total of 225 Mycobacterium tuberculosis isolates were tested for susceptibility to the anti-tuberculosis drugs commonly used in the country (isoniazid [INH, H], rifampicin [R], streptomycin [SM, S] and ethambutol [EMB, E]). Human immunodeficiency virus co-infection was recorded. Overall primary drug resistance was found to be 14.7% (33/225). The highest rate of primary resistance was for INH (9.3%), followed by SM (8.4%), and EMB (2.2%). The multidrug resistance rate was 0.4%. Our study indicates that primary drug resistance levels in urban settings of CAR are similar to or lower than in other African cities, and that the spread of multidrug-resistant TB in this population is limited. Extended nationwide monitoring of drug resistance remains important, especially in view of the planned introduction of a new treatment regimen (2HRZE/4HR [Z = pyrazinamide]).

  3. [Primary resistance of Mycobacterium tuberculosis to anti-tuberculosis drugs in Kinshasa, (DRC)].

    Science.gov (United States)

    Kabedi, M J; Kashongwe, M; Kayembe, J M; Mumba Ngoyi, D; Mampasi, P; Mbaya, P; Fissette, K; Verhaegen, J; Portaels, F; Muyembe-Tamfum, J J

    2007-10-01

    In a descriptive cross-sectional study carried out in Kinshasa between July 2003 and January 2004, we determined the prevalence of the primary resistance of M. tuberculosis to first-line anti-tuberculosis drugs. The antibiogram was performed with the proportion method on 301 isolats from patients who all had a first episode of pulmonary tuberculosis with positive microscopy (TPM+) and who had not received any anti-tuberculosis treatment before. The primary resistance rate reached 43.5%; it reached 31.6% in 1990. The multi-drug-resistance rate (MDR-TB) notified as resistant to both rifamicine and isoniazide rose to 5.3%. This rate of primary resistance is among the highest in Africa. The emergence of the resistant strains and specially the multi-drug-resistant strains (MDR-TB) in Kinshasa requires a regular assessment of these phenomena which threaten seriously the implementation of the national tuberculosis control programme.

  4. Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

    KAUST Repository

    Coll, Francesc

    2015-05-27

    Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.

  5. Anti-tuberculosis drug resistance in Bangladesh: reflections from the first nationwide survey.

    Science.gov (United States)

    Kamal, S M M; Hossain, A; Sultana, S; Begum, V; Haque, N; Ahmed, J; Rahman, T M A; Hyder, K A; Hossain, S; Rahman, M; Ahsan, Chowdhury R; Chowdhury, R A; Aung, K J M; Islam, A; Hasan, R; Van Deun, A

    2015-02-01

    To determine the prevalence of tuberculosis (TB) drug resistance in Bangladesh. Weighted cluster sampling among smear-positive cases, and standard culture and drug susceptibility testing on solid medium were used. Of 1480 patients enrolled during 2011, 12 falsified multidrug-resistant TB (MDR-TB) patients were excluded. Analysis included 1340 cases (90.5% of those enrolled) with valid results and known treatment antecedents. Of 1049 new cases, 12.3% (95%CI 9.3-16.1) had strains resistant to any of the first-line drugs tested, and 1.4% (95%CI 0.7-2.5) were MDR-TB. Among the 291 previously treated cases, this was respectively 43.2% (95%CI 37.1-49.5) and 28.5% (95%CI 23.5-34.1). History of previous anti-tuberculosis treatment was the only predictive factor for first-line drug resistance (OR 34.9). Among the MDR-TB patients, 19.2% (95%CI 11.3-30.5; exclusively previously treated) also showed resistance to ofloxacin. Resistance to kanamycin was not detected. Although MDR-TB prevalence was relatively low, transmission of MDR-TB may be increasing in Bangladesh. MDR-TB with fluoroquinolone resistance is rapidly rising. Integrating the private sector should be made high priority given the excessive proportion of MDR-TB retreatment cases in large cities. TB control programmes and donors should avoid applying undue pressure towards meeting global targets, which can lead to corruption of data even in national surveys.

  6. Resistance to anti-tuberculosis drugs and practices in drug susceptibility testing in Moldova, 1995-1999.

    Science.gov (United States)

    Crudu, V; Arnadottir, Th; Laticevschi, D

    2003-04-01

    To evaluate practices in initial drug susceptibility testing (DST) in Moldova, anti-tuberculosis drug resistance and the implications for tuberculosis control. Retrospective record review in the national reference laboratory. Of 3463 cases, 57.1% were recorded as 'new' and 24.6% as 'retreatment' cases; previous treatment status was not recorded for 18.3%. Of the 'new' cases, 1655 were correctly classified according to international recommendations and 322 were misclassified. The number of cases increased from 443 in 1995 to 939 in 1999; the proportion of 'retreatment' increased from 17.4% to 35.5%, 'any drug resistance' from 20.3% to 41.6%, and 'multidrug resistance' from 2.7% to 11.2%. In 1998-1999, 'any drug resistance' and 'multidrug resistance' in 800 previously untreated cases were respectively 29.1% and 5.3%, and respectively 61.0% and 21.9% in 521 'retreatment' cases. Of a total of 216 'multidrug-resistant' cases in 1998-1999, 21.8% were reported resistant to ethambutol and 81.5% to streptomycin. Initial specimens for culture are frequently taken late, after the start of treatment, compromising their usefulness for case management or surveillance. Inadequate treatment has led to an increase in the number of cases, the proportion of previously treated cases and the prevalence of drug resistance. In 1998-1999, a high proportion of cases with 'multidrug resistance' were susceptible to ethambutol.

  7. Supplementary Material for: Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-01-01

    Abstract Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel

  8. Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

    KAUST Repository

    Phelan, Jody

    2016-03-23

    Background Combating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance. Methods To investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods. Results The analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites. Conclusions Using the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance

  9. Epidemiology of anti-tuberculosis drug resistance in a chinese population: current situation and challenges ahead

    Science.gov (United States)

    2011-01-01

    Background Drug resistance has been a cause of concern for tuberculosis (TB) control in both developed and developing countries. Careful monitoring of the patterns and trends of drug resistance should remain a priority. Methods Strains were collected from 1824 diagnosed sputum smear positive pulmonary TB patients in Jiangsu province of China and then tested for drug susceptibility against rifampicin, isoniazid, ethambutol and streptomycin. The prevalence and patterns of drug resistance in mycobacterium tuberculosis (MTB) isolates were investigated. Multiple logistic regression analysis was performed to identify the risk factors for multidrug resistant (MDR) bacterial infection. The strength of association was estimated by odds ratio (OR) and 95% confidence interval (95% CI). Results The drug susceptibility tests showed that 1077(59.05%) MTB strains were sensitive to all the four antibiotics and the other 747(40.95%) strains were resistant to at least one drug. The proportions of mono-drug resistance were 28.73% for isoniazid, 19.41% for rifampicin, 29.33% for streptomycin, and 13.98% for ethambutol, respectively. The prevalence of MDR-TB was 16.61%, which was significantly different between new cases (7.63%) and those with previous treatment history (33.07%). Geographical variation of drug resistance was observed, where the proportion of MDR-TB among new cases was higher in the central (9.50%) or north part (9.57%) than that in the south area (4.91%) of Jiangsu province. The age of patients was significantly associated with the risk of drug resistance (P control. Prevention and control of drug-resistant TB should be emphasized by the revised DOTS (direct observed therapy, short course) program through prompt case detection, routine and quality-assured drug susceptibility test for patients at high risk of resistance, programmatic treatment with both first and second-line medicines, and systematic treatment observation, with priority for high MDR-TB settings. PMID

  10. Sensitivity Pattern of Second Line Anti-Tuberculosis Drugs against Clinical Isolates of Multidrug Resistant Mycobacterium Tuberculosis

    International Nuclear Information System (INIS)

    Ghafoor, T.; Ikram, A.; Abbasi, S. A.; Zaman, G.; Ayyub, M.; Palomino, J. C.; Vandamme, P.; Martin, A.

    2015-01-01

    Objective:To determine the current sensitivity pattern of second line anti-tuberculosis drugs against clinical isolates of Multidrug Resistant Mycobacterium tuberculosis (MDR-TB). Study Design: A cross-sectional study. Place and Duration of Study: Department of Microbiology, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from November 2011 to April 2013. Methodology: Samples received during the study period were processed on BACTEC MGIT 960 system for Mycobacterium tuberculosis (MTB) culture followed by first line drugs susceptibility testing of culture proven MTB isolates. On the basis of resistance to rifampicin and isoniazid, 100 clinical isolates of MDR-TB were further subjected to susceptibility testing against amikacin (AMK), capreomycin (CAP), ofloxacin (OFL) and ethionamide (ETH) as per standard BACTEC MGIT 960 instructions. Results: Out of 100 MDR-TB isolates, 62% were from male patients and 38% from female patients. 97% were sensitive to AMK, 53% to OFL, 87% to CAP; and 87% were sensitive to ETH. Conclusion: The majority of the MDR-TB isolates showed excellent sensitivity against AMK, CAP and ETH. However, sensitivity of MDR-TB isolates against fluoroquinolones like OFL was not encouraging. (author)

  11. Anti-tuberculosis drug resistance in Sub-Saharan Africa: The case of Uganda

    NARCIS (Netherlands)

    Lukoye, D.

    2015-01-01

    This thesis reports findings of six studies including two tuberculosis (TB) drug resistance surveys, a comparative study of HIV infection rates among patients enrolled in the survey and those under routine TB/HIV surveillance, two TB molecular epidemiological analyses and a systematic review and

  12. Detection of Mycobacterium isolates with different methods and their resistance ratios against anti-tuberculosis drugs

    Directory of Open Access Journals (Sweden)

    Mustafa Altındiş, Zafer Çetinkaya, Raike Kalaycı, Ihsan H Ciftçi, Alpaslan Arslan, Orhan C. Aktepe

    2011-06-01

    Full Text Available Objectives: The aim of the present study was to evaluate the efficacy (recovery rate, time to detection and Drug SusceptibilityTests –DST- of Mycobacteria-only B460 of new colorimetric medium, Dio-TK and to compare it with routinely used conventional media, Lowenstein Jensen (LJ and Bactec 460 TB culture system.Materials and methods: Totally 901 clinic specimens were investigated for assignment of tuberculosis by Ehrlich-Ziehl-Nielsen smear strain method, Lowenstein-Jensen, BACTEC 460TB and Dio-TK medium culture systems.Results: Nineteen of 901 clinic specimens (2.1% were positive by any of these methods. 17 (89.5% of these specimens positive found by smear strain method, 17 (89.5% by Lowenstein-Jensen, 19 (100% by BACTEC 460TB and 14 (73.7% by Dio-TK medium. NAP and Niacin identification tests were applied to Mycobacterium strains. 12 (63.1% of 19 isolates were identified as M.tuberculosis complex and 7 (36.9% were identified as Mycobacterium other than tuberculosis (MOTT bacilli. 10 (83.3% of 12 M.tuberculosis complex strains were not resistant to any major drug. But one of 2 isolate was resistant to streptomycin and the other one isolate was resistant to both streptomycin and isoniazid.Conclusion: Our data suggest that some advantages (such as an early detection and differentiation mycobacterium growth from contamination of the Dio-TK CS over other mycobacterial culture systems make it a practical and rapid system for daily use, and a suitable alternative to other currently available solid media, such as LJ, for detection time of mycobacteria and DST. J Microbiol Infect Dis 2011;1 (1 :5-9.

  13. High frequency of first-line anti-tuberculosis drug resistance among ...

    African Journals Online (AJOL)

    Introduction: The burden of MDR-TB is unknown in areas that do not have drug susceptibility testing (DST), but its frequency is expected to be higher in previously treated cases. Where DST is not available the WHO recommended standardized retreatment (Category II) regimen is given to previously treated TB patients

  14. Classifying new anti-tuberculosis drugs: rationale and future perspectives

    Directory of Open Access Journals (Sweden)

    Simon Tiberi

    2017-03-01

    Full Text Available The classification of anti-tuberculosis (TB drugs is important as it helps the clinician to build an appropriate anti-TB regimen for multidrug-resistant (MDR and extensively drug-resistant (XDR TB cases that do not fulfil the criteria for the shorter MDR-TB regimen. The World Health Organization (WHO has recently approved a revision of the classification of new anti-TB drugs based on current evidence on each drug. In the previous WHO guidelines, the choice of drugs was based on efficacy and toxicity in a step-down manner, from group 1 first-line drugs and groups 2–5 second-line drugs, to group 5 drugs with potentially limited efficacy or limited clinical evidence. In the revised WHO classification, exclusively aimed at managing drug-resistant cases, medicines are again listed in hierarchical order from group A to group D. In parallel, a possible future classification is independently proposed. The aim of this viewpoint article is to describe the evolution in WHO TB classification (taking into account an independently proposed new classification and recent changes in WHO guidance, while commenting on the differences between them. The latest evidence on the ex-group 5 drugs is also discussed.

  15. Primary and secondary anti-tuberculosis drug resistance in Hitossa District of Arsi Zone, Oromia Regional State, Central Ethiopia

    Directory of Open Access Journals (Sweden)

    Shallo Daba Hamusse

    2016-07-01

    Full Text Available Abstract Background Multidrug-resistant tuberculosis (MDR-TB drugs which is resistant to the major first-line anti-TB drugs, Isoniazid and Rifampicin, has become a major global challenge in tuberculosis (TB control programme. However, its burden at community level is not well known. Thus, the aim of study was to assess the prevalence of primary and secondary resistance to any first line anti-TB drugs and MDR TB in Hitossa District of Oromia Regional State, Central Ethiopia. Methods Population based cross- sectional study was conducted on individuals aged ≥15 years. Those with symptoms suggestive of TB were interviewed and two sputum specimens were collected from each and examined using Lowenstein-Jensen (LJ culture medium. Further, the isolates were confirmed by the Ziehl-Neelsen microscopic examination method. Drug susceptibility test (DST was also conducted on LJ medium using a simplified indirect proportion method. The resistance strains were then determined by percentage of colonies that grew on the critical concentration of Isoniazid, Streptomycin, Rifampicin and Ethambutol. Results The overall resistance of all forms of TB to any first-line anti-TB drug was 21.7 %. Of the total new and previously treated culture positive TB cases, 15.3 and 48.8 % respectively were found to be a resistant to any of the first-line anti-TB drugs. Further, of all forms of TB, the overall resistance of MDR-TB was 4.7 %. However, of the total new TB cases, 2.4 % had primary while 14.3 % had secondary MDR-TB. Resistance to any of the first-line anti-TB drugs (adjusted odd ratio (AOR, 8.1; 95 % CI: 2.26–29.30 and MDR-TB (AOR, 7.1; 95 % CI: 2.6–43.8 was found to be linked with previous history of anti-TB treatment. Conclusions The study has identified a high rate of primary and secondary resistance to any of the first-line anti-TB drugs and MDR-TB in the study area. The resistance may have resulted from sub-optimal performance of directly observed

  16. Is resistance to anti-tuberculosis drugs associated with type 2 diabetes mellitus? A register review in Beijing, China.

    Science.gov (United States)

    Mi, Fengling; Jiang, Guanglu; Du, Jian; Li, Liang; Yue, Wentao; Harries, Anthony D; Gudmund Hinderaker, Sven; Lin, Yan

    2014-01-01

    China has a high burden of drug-resistant tuberculosis (TB) and diabetes mellitus (DM). The objectives of this study were to determine the following in patients with culture-confirmed TB: 1) demographic characteristics and disease patterns in relation to the presence or absence of type 2 diabetes and 2) presence or absence of drug resistance to isoniazid (INH), rifampicin (RMP) or both in relation to duration of diabetes and control of diabetes. This is a cross-sectional and retrospective study involving record reviews. There were 621 patients with culture-positive TB, of whom 187 (30%) had previously known or new type 2 diabetes. In those with diabetes, there was a significantly higher proportion of males, persons aged ≥35 years and patients registered with new TB (pdiabetes. In patients with diabetes, there was no association of drug resistance with diabetes duration or disease control [assessed by fasting blood glucose (FBG) at 1 week]. A high proportion of patients with TB in a tertiary health facility, Beijing, China, had diabetes, but there was no association between type 2 diabetes and drug-resistant TB. Further prospective studies are needed to confirm these findings.

  17. A pilot external quality assurance programme for line-probe assay detection of anti-tuberculosis drug resistance.

    Science.gov (United States)

    Leung, K L; Yip, C W; Tang, H S; Lai, Y W; Lam, T K; Kam, K M

    2013-02-01

    Multidrug-resistant tuberculosis (MDR-TB; resistance to isoniazid and rifampicin) is difficult to detect and control. Line-probe assays (LiPA) are widely used for the rapid detection of MDR-TB. To ensure the quality of the test, a pilot external quality assurance (EQA) programme was initiated to assess the feasibility of running such a programme and the possibility of improving the proficiency of TB laboratories in performing the test. Prepared filter-paper-based Mycobacterium tuberculosis DNA samples were shipped to participant laboratories for LiPA EQA. The tests were performed blind, and the results were returned to the organising laboratory for comparison and analysis. A total of four rounds of EQA samples were dispatched to five laboratories in four countries. Overall inter- and intra-laboratory reproducibility was respectively 97% and 96%. The strengths and weaknesses of the participant laboratories in performing the test were discussed. A LiPA EQA programme can ensure quality and improve the performance of TB laboratories. This is a critical step during the initial stages at the time of setting up this method of testing.

  18. Successful drug desensitization in patients with delayed-type allergic reactions to anti-tuberculosis drugs.

    Science.gov (United States)

    Siripassorn, Krittaecho; Ruxrungtham, Kiat; Manosuthi, Weerawat

    2018-02-02

    To evaluate the outcomes of anti-tuberculosis drug desensitization. This was a retrospective study. Inclusion criteria were as follows: age >18years, documented tuberculosis infection, a previous cutaneous allergic reaction to anti-tuberculosis drugs, and having undergone drug desensitization between January 2003 and March 2014. The definition of allergic reaction to anti-tuberculosis drugs included (1) a temporal relationship between drug use and the allergic reaction; (2) improvement in the allergic reaction after drug withdrawal; (3) recurrence of the allergic reaction after reintroduction of only the offending drug; and (4) absence of other causes. A total of 19 desensitization procedures were performed. The drugs used for these procedures were isoniazid (n=7), rifampicin (n=6), or ethambutol (n=6). Of note, severe allergic reactions (Stevens-Johnson syndrome (n=4), erythema multiforme (n=3), and drug rash with eosinophilia and systemic syndrome (n=1)) were included. All patients underwent resolution of the previous allergic reactions before desensitization. The median duration of desensitization was 18 days. The success rate was 78.9%. The allergic reactions following failed desensitization were not severe; most were maculopapular rashes. The desensitization protocol for anti-tuberculosis drugs was associated with a high success rate, and the individuals who failed desensitization experienced mild allergic reactions. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  19. Substandard and falsified anti-tuberculosis drugs: a preliminary field analysis.

    Science.gov (United States)

    Bate, R; Jensen, P; Hess, K; Mooney, L; Milligan, J

    2013-03-01

    Pharmacies in 19 cities in Angola, Brazil, China, Democratic Republic of Congo, Egypt, Ethiopia, Ghana, India (n = 3), Kenya, Nigeria, Russia, Rwanda, Thailand, Turkey, Uganda, United Republic of Tanzania and Zambia. To assess the quality of the two main first-line anti-tuberculosis medicines, isoniazid and rifampicin, procured from private-sector pharmacies, to determine if substandard and falsified medicines are available and if they potentially contribute to drug resistance in cities in low- and middle-income countries. Local nationals procured 713 treatment packs from a selection of pharmacies in 19 cities. These samples were tested for quality using 1) thin-layer chromatography to analyze levels of active pharmaceutical ingredient (API), and 2) disintegration testing. Of 713 samples tested, 9.1% failed basic quality testing for requisite levels of API or disintegration. The failure rate was 16.6% in Africa, 10.1% in India, and 3.9% in other middle-income countries. Substandard and falsified drugs are readily available in the private marketplace and probably contribute to anti-tuberculosis drug resistance in low- and middle-income countries. This issue warrants further investigation through large-scale studies of drug quality in all markets.

  20. The role of the time-kill kinetics assay as part of a preclinical modeling framework for assessing the activity of anti-tuberculosis drugs.

    Science.gov (United States)

    Bax, Hannelore I; Bakker-Woudenberg, Irma A J M; de Vogel, Corné P; van der Meijden, Aart; Verbon, Annelies; de Steenwinkel, Jurriaan E M

    2017-07-01

    Novel treatment strategies for tuberculosis are urgently needed. Many different preclinical models assessing anti-tuberculosis drug activity are available, but it is yet unclear which combination of models is most predictive of clinical treatment efficacy. The aim of this study was to determine the role of our in vitro time kill-kinetics assay as an asset to a predictive preclinical modeling framework assessing anti-tuberculosis drug activity. The concentration- and time-dependent mycobacterial killing capacities of six anti-tuberculosis drugs were determined during exposure as single drugs or in dual, triple and quadruple combinations towards a Mycobacterium tuberculosis Beijing genotype strain and drug resistance was assessed. Streptomycin, rifampicin and isoniazid were most active against fast-growing M. tuberculosis. Isoniazid with rifampicin or high dose ethambutol were the only synergistic drug combinations. The addition of rifampicin or streptomycin to isoniazid prevented isoniazid resistance. In vitro ranking showed agreement with early bactericidal activity in tuberculosis patients for some but not all anti-tuberculosis drugs. The time-kill kinetics assay provides important information on the mycobacterial killing dynamics of anti-tuberculosis drugs during the early phase of drug exposure. As such, this assay is a valuable component of the preclinical modeling framework. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Utility of Phenotypic and Genotypic Testing in the Study of Mycobacterium tuberculosis Resistance to First-Line Anti-Tuberculosis drugs.

    Science.gov (United States)

    Alba Álvarez, Luz María; García García, José María; Pérez Hernández, M Dolores; Martínez González, Susana; Palacios Gutiérrez, Juan José

    2017-04-01

    To determine the utility of molecular techniques in the diagnosis of resistance and the extent of resistance to first-line drugs in our region. From 2004 to 2013, 1,889 strains of Mycobacterium tuberculosis complex isolated in Asturias, Spain, were studied using phenotypic (Clinical and Laboratory Standards Institute guidelines) and molecular (INNOLiPA RIF-TB © ; GenotypeMDRplus © ; GenotypeMDRsl © ) sensitivity tests. 1,759 strains (94.52%) were sensitive to all first-line drugs, and 102 strains (5.48%) showed some resistance: 81 strains (4.35%) were resistant to 1 single drug, 14 (0.75%) were polyresistant, and 7 (0.37%) were multiresistant (resistant to rifampicin and isoniazid). In total, 137 resistances were identified: 60 to isoniazid (3.22%), 7 to rifampicin (0.37%), 9 to pyrazinamide (0.48%), 11 to ethambutol (0.59%), and 50 to streptomycin (2.68%). Of the mutations detected, 75.9% (63/83) correlated with resistance, while 24.09% of mutations detected (20/83) were not associated with resistance; 16 of these involved a silent mutation at codon 514 of the rpoB gene. Between 0 and 90% of strains, depending on the drug under consideration, were resistant even when no gene mutations were detected using marketed systems. Molecular techniques are very useful, particularly for obtaining rapid results, but these must be confirmed with standard phenotypic sensitivity testing. The rate of resistance in our region is low and multi-drug resistantcases (0.37%) are sporadic. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Ethyl p-methoxycinnamate isolated from a traditional anti-tuberculosis medicinal herb inhibits drug resistant strains of Mycobacterium tuberculosis in vitro.

    Science.gov (United States)

    Lakshmanan, Divya; Werngren, Jim; Jose, Leny; Suja, K P; Nair, Mangalam S; Varma, R Luxmi; Mundayoor, Sathish; Hoffner, Sven; Kumar, R Ajay

    2011-07-01

    Many plants are used in Ayurveda for the treatment of tuberculosis. Our aim was to examine if these plants possess any specific molecule that inhibits Mycobacterium tuberculosis. One of them, Kaempferia galanga, yielded an anti-TB molecule, ethyl p-methoxycinnamate (EPMC). By resazurin microtitre assay (REMA), EPMC was shown to inhibit M. tuberculosis H37Ra, H37Rv, drug susceptible and multidrug resistant (MDR) clinical isolates (MIC 0.242-0.485mM). No cross resistance was observed to any standard anti-TB drugs in the MDR strains. The compound did not inhibit any prototype bacteria tested. EPMC seems to be a potential anti-TB lead molecule. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Aptamer and nanotechnology- based approaches for active targeted delivery of anti-tuberculosis drugs

    CSIR Research Space (South Africa)

    Ramalapa, B

    2012-10-01

    Full Text Available and Nanotechnology- based Approaches for Active Targeted Delivery of Anti-Tuberculosis Drugs Presented by : Bathabile Ramalapa CSIR Emerging Researcher Symposium 10 0ctober 2012 Outline ? Background: Challenges in the current TB treatment ? Proposed Solution...-expressed by TB infected macrophages Aptamers: RNA/DNA that bind to a specific target molecule ?Enhance drug efficiency at site of infection ?Reduce systemic toxicity Aptamer Synthesis: SELEX Method ? CSIR 2012 www.csir.co.za Partitioning...

  4. Silymarin protects liver against toxic effects of anti-tuberculosis drugs in experimental animals

    Directory of Open Access Journals (Sweden)

    Izzettin Fikret V

    2008-07-01

    Full Text Available Abstract Background The first line anti-tuberculosis drugs isoniazid (INH, rifampicin (RIF and pyrazinamide (PZA continues to be the effective drugs in the treatment of tuberculosis, however, the use of these drugs is associated with toxic reactions in tissues, particularly in the liver, leading to hepatitis. Silymarin, a standard plant extract with strong antioxidant activity obtained from S. marianum, is known to be an effective agent for liver protection and liver regeneration. The aim of this study was to investigate the protective actions of silymarin against hepatotoxicity caused by different combinations of anti-tuberculosis drugs. Methods Male Wistar albino rats weighing 250–300 g were used to form 6 study groups, each group consisting of 10 rats. Animals were treated with intra-peritoneal injection of isoniazid (50 mg/kg and rifampicin (100 mg/kg; and intra-gastric administration of pyrazinamid (350 mg/kg and silymarin (200 mg/kg. Hepatotoxicity was induced by a combination of drugs with INH+RIF and INH+RIF+PZA. Hepatoprotective effect of silymarin was investigated by co-administration of silymarin together with the drugs. Serum biochemical tests for liver functions and histopathological examination of livers were carried out to demonstrate the protection of liver against anti-tuberculosis drugs by silymarin. Results Treatment of rats with INH+RIF or INH+RIF+PZA induced hepatotoxicity as evidenced by biochemical measurements: serum alanine aminotransferase (ALT, aspartate aminotransferase (AST and alkaline phosphatase (ALP activities and the levels of total bilirubin were elevated, and the levels of albumin and total protein were decreased in drugs-treated animals. Histopathological changes were also observed in livers of animals that received drugs. Simultaneous administration of silymarin significantly decreased the biochemical and histological changes induced by the drugs. Conclusion The active components of silymarin had

  5. A population-based case-control study of the safety of oral anti-tuberculosis drug treatment during pregnancy

    DEFF Research Database (Denmark)

    Czeizel, A.E.; Rockenbauer, M.; Olsen, J.

    2001-01-01

    OUTCOME MEASURES: Congenital abnormalities in newborn infants and fetuses diagnosed prenatally during the second and third trimesters, and postnatally from birth to the age of one year. RESULTS: Of 38,151 controls, 29 (0.08%) were exposed to anti-tuberculosis drug treatment during pregnancy......OBJECTIVE: To study the human teratogenic potential of isoniazid and other anti-tuberculosis drug treatment during pregnancy. DESIGN AND SETTING: Cases from a large population-based dataset at the Hungarian Case-Control Surveillance of Congenital Abnormalities, and controls from the National Birth...... Registry, between 1980 and 1996. Information on all oral anti-tuberculosis drug treatments during pregnancy was medically recorded. STUDY PARTICIPANTS: Women who had newborns or fetuses with congenital abnormalities (case group), and women who had babies with no congenital abnormality (control group). MAIN...

  6. Drug lymphocyte stimulation test is not useful for side effects of anti-tuberculosis drugs despite its timing.

    Science.gov (United States)

    Miwa, S; Suzuki, Y; Shirai, M; Ohba, H; Kanai, M; Eifuku, T; Suda, T; Hayakawa, H; Chida, K

    2012-09-01

    Some patients have adverse reactions to anti-tuberculosis drugs. We have reported that drug lymphocyte stimulation testing (DLST), which we performed at Week 1 of adverse reactions, provides little useful information (14.9% sensitivity). However, it remains unclear whether the time of performance of the DLST contributed to these results. Patients with adverse reactions to anti-tuberculosis drugs, including rash, hepatitis and fever, underwent DLST in the first week of the adverse reaction and were then randomly assigned to Group A (among whom a second DLST was performed 2 months after the reaction) or Group B (among whom a second DLST was performed >12 months after the reaction). We compared Group A with Group B to determine the optimal timing for the performance of DLST. The causative drug was identified by an oral drug provocation test. Consistent with the previous study, the sensitivity of DLST performed in the first week was low (14.3%). For DLST performed later, the sensitivity in Group A and Group B was respectively 5.0% and 6.7%. DLST is not useful for determining the causative drug in patients with rash, hepatitis or fever reactions to anti-tuberculosis drugs, regardless of when it is performed.

  7. Unfavorable side effects to first line anti-tuberculosis drugs

    OpenAIRE

    N. A. Stepanova; E. N. Streltsova; Kh. M. Galimzyanov; B. I. Kantemirova

    2016-01-01

    The article presents the study of frequency of unfavorable side effects to anti-tuberculosis drugs in new pulmonary tuberculosis patients in Regional Clinical TB Dispensary in Astrakhan in 2012-2013. The study reflects the type and nature of unfavorable side effects to specific drugs. It has been found out that side effect occur more often in case of combination of TB drugs compared to one TB drugs. The efficiency of specific therapy in case of side effects has been demonstrated....

  8. Sale of anti-tuberculosis drugs through private pharmacies: a cross sectional study in Kerala, India.

    Directory of Open Access Journals (Sweden)

    Binoo Divakaran

    2011-03-01

    Full Text Available

    Background: Private health care providers are largely the first point of contact for Tuberculosis (TB patients, who either undergo treatment from private practitioners or buy medicines on their own from private pharmacies. Aims: This study assessed the availability, sale and magnitude of anti-tuberculosis drugs dispensing through private pharmacies.

    Methodology: The present cross sectional study was conducted among private pharmacies located along the national highway from Thalassery to Payyannur in the Kannur district of Kerala, India. A total of 38 private pharmacies located along the national highway were included.

    Results: The duration that anti–TB drugs had been on sale showed that 74.3% of pharmacies had started to sell these drugs only less than ten years ago. The majority (82.9% of the private pharmacies received up to 5 prescriptions for anti-TB drugs weekly. Out of the total of 35 pharmacies selling these drugs, 22 (62.9% reported an increase in their sales. Nearly 82% of those pharmacies that reported an increase in the sale of anti-TB drugs were selling these drugs for less than the past ten years.

    Conclusions: The current study shows that a large number of tuberculosis patients are still approaching private pharmacies for anti-tuberculosis drugs. This tendency has to be completely stopped and needs properly planned strategies to encourage private pharmacies to participate actively in the DOTS (Direct Observation Treatment Short course program of the Government, by providing them attractive alternative incentives

  9. Protective Effect of Bicyclol on Anti-Tuberculosis Drug Induced Liver Injury in Rats

    Directory of Open Access Journals (Sweden)

    Xin Liu

    2017-04-01

    Full Text Available The present study was performed to investigate the effect of bicyclol, a synthetic anti-hepatitis drug with anti-oxidative and anti-inflammatory properties, on anti-tuberculosis (anti-TB drug-induced liver injury and related mechanisms in rats. Bicyclol was given to rats by gavage 2 h before the oral administration of an anti-TB drug once a day for 30 days. Liver injury was evaluated by biochemical and histopathological examinations. Lipid peroxidation, mitochondrial function, and the activity of antioxidants were measured by spectrophotometric methods. Cytokines expression and CYP2E1 activity were determined by ELISA assay and liquid chromatography–tandem mass spectrometry (LC–MS/MS analysis. The expressions of hepatic CYP2E1 and hepatocyte growth factor (HGF were assessed by Western blotting. As a result, bicyclol significantly protected against anti-TB drug-induced liver injury by reducing the elevated serum aminotransferases levels and accumulation of hepatic lipids. Meanwhile, the histopathological changes were also attenuated in rats. The protective effect of bicyclol on anti-TB drug-induced hepatotoxicity was mainly due to its ability to attenuate oxidative stress, suppress the inflammatory cytokines and CYP2E1 expression, up-regulate the expression of HGF, and improve mitochondrial function. Furthermore, administration of bicyclol had no significant effect on the plasma pharmacokinetics of the anti-TB drug in rats.

  10. Incidence, clinical features and impact on anti-tuberculosis treatment of anti-tuberculosis drug induced liver injury (ATLI in China.

    Directory of Open Access Journals (Sweden)

    Penghui Shang

    Full Text Available Anti-tuberculosis drug induced liver injury (ATLI is emerging as a significant threat to tuberculosis control in China, though limited data is available about the burden of ATLI at population level. This study aimed to estimate the incidence of ATLI, to better understand its clinical features, and to evaluate its impact on anti-tuberculosis (TB treatment in China.In a population-based prospective study, we monitored 4,304 TB patients receiving directly observed treatment strategy (DOTS treatment, and found that 106 patients developed ATLI with a cumulative incidence of 2.55% (95% Confidence Interval [CI], 2.04%-3.06%. Nausea, vomiting and anorexia were the top three most frequently observed symptoms. There were 35 (33.02% ATLI patients with no symptoms, including 8 with severe hepatotoxicity. Regarding the prognosis of ATLI, 84 cases (79.25% recovered, 18 (16.98% improved, 2 (1.89% failed to respond to the treatment with continued elevation of serum alanine aminotransferase, and 2 (1.89% died as result of ATLI. Of all the ATLI cases, 74 (69.81% cases changed their anti-TB treatment, including 4 (3.77% cases with medication administration change, 21 (19.81% cases with drugs replacement, 54 (50.94% cases with therapy interruption, and 12 (11.32% cases who discontinued therapy. In terms of treatment outcomes, 53 (51.46% cases had TB cured in time, 48 (46.60% cases had therapy prolonged, and 2 (1.94% cases died. Compared with non-ATLI patients, ATLI patients had a 9.25-fold (95%CI, 5.69-15.05 risk of unsuccessful anti-TB treatment outcomes and a 2.11-fold (95%CI, 1.23-3.60 risk of prolonged intensive treatment phase.ATLI could considerably impact the outcomes of anti-TB treatment. Given the incidence of ATLI and the size of TB population in China, the negative impact is substantial. Therefore, more research and efforts are warranted in order to enhance the diagnosis and the prevention of ATLI.

  11. Patients with secondary amenorrhea due to tuberculosis endometritis towards the induced anti-tuberculosis drug category 1.

    Science.gov (United States)

    Perdhana, Raditya; Sutrisno, Sutrisno; Sugiri, Yani Jane; Baktiyani, Siti Candra Windu; Wiyasa, Arsana

    2016-01-01

    Tuberculosis (TB) is a disease which can affect various organs, including human's genital organs such as the endometrium. Tuberculosis endometritis can cause clinical symptoms of secondary amenorrhea and infertility. Infertility in genital TB caused by the involvement of the endometrium. The case presentation is 33-year-old woman from dr. Saiful Anwar Public Hospital to consult that she has not menstruated since 5 years ago (28 years old). The diagnosis was done by performing a clinical examination until the diagnosis of secondary amenorrhea due to tuberculosis endometritis is obtained. A treatment by using category I of anti-tuberculosis drugs was done for 6 months, afterward an Anatomical Pathology observation found no signs of the tuberculosis symptoms. Based on that, patient, who was diagnosed to have secondary amenorrhea due to tuberculosis endometritis, has no signs of tuberculosis process after being treated by using category I of anti-tuberculosis drugs for 6 months.

  12. Natural Compounds from Mexican Medicinal Plants as Potential Drug Leads for Anti-Tuberculosis Drugs

    Directory of Open Access Journals (Sweden)

    ROCIO GÓMEZ-CANSINO

    Full Text Available ABSTRACT In Mexican Traditional Medicine 187 plant species are used in the treatment of respiratory conditions that may be associated with tuberculosis. In this contribution, we review the ethnobotany, chemistry and pharmacology of 63 species whose extracts have been assayed for antimycobacterial activity in vitro. Among these, the most potent is Aristolochia brevipes (MIC= 12.5 µg/mL, followed by Aristolochia taliscana, Citrus sinensis, Chrysactinia mexicana, Persea americana, and Olea europaea (MIC 95%, 50 µg/mL include: Amphipterygium adstringens, Larrea divaricata, and Phoradendron robinsoni. Several active compounds have been identified, the most potent are: Licarin A (isolated from A. taliscana, and 9-amino-9-methoxy-3,4-dihydro-2H-benzo[h]-chromen-2-one (transformation product of 9-methoxytariacuripyrone isolated from Aristolochia brevipes, both with MIC= 3.125 µg/mL, that is 8-fold less potent than the reference drug Rifampicin (MIC= 0.5 µg/mL. Any of the compounds or extracts here reviewed has been studied in clinical trials or with animal models; however, these should be accomplished since several are active against strains resistant to common drugs.

  13. Multidrug resistant to extensively drug resistant tuberculosis: What is ...

    Indian Academy of Sciences (India)

    Prakash

    major anti tuberculosis drugs; Isoniazid and Rifampicin with or without resistance to other anti-TB drugs has been termed. MDR-TB. MDR-TB is more difficult to treat than drug- susceptible TB, requiring the use of less effective second line anti tubercular drugs (SLDs) which are often associated with major side effects. 2.

  14. Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance.

    Directory of Open Access Journals (Sweden)

    Miriam Bobadilla-del Valle

    2015-09-01

    Full Text Available Mycobacterium tuberculosis causes the majority of tuberculosis (TB cases in humans; however, in developing countries, human TB caused by M. bovis may be frequent but undetected. Human TB caused by M. bovis is considered a zoonosis; transmission is mainly through consumption of unpasteurized dairy products, and it is less frequently attributed to animal-to-human or human-to-human contact. We describe the trends of M. bovis isolation from human samples and first-line drug susceptibility during a 15-year period in a referral laboratory located in a tertiary care hospital in Mexico City.Data on mycobacterial isolates from human clinical samples were retrieved from the laboratory's database for the 2000-2014 period. Susceptibility to first-line drugs: rifampin, isoniazid, streptomycin (STR and ethambutol was determined. We identified 1,165 isolates, 73.7% were M. tuberculosis and 26.2%, M. bovis. Among pulmonary samples, 16.6% were M. bovis. The proportion of M. bovis isolates significantly increased from 7.8% in 2000 to 28.4% in 2014 (X(2trend, p<0.001. Primary STR resistance was higher among M. bovis compared with M. tuberculosis isolates (10.9% vs.3.4%, p<0.001. Secondary multidrug resistance (MDR rates were 38.5% and 34.4% for M. bovis and M. tuberculosis, respectively (p = 0.637. A rising trend of primary STR monoresistance was observed for both species (3.4% in 2000-2004 vs. 7.6% in 2010-2014; p = 0.02.There is a high prevalence and a rising trend of M. bovis isolates in our region. The proportion of pulmonary M. bovis isolates is higher than in previous reports. Additionally, we report high rates of primary anti-tuberculosis resistance and secondary MDR in both M. tuberculosis and M. bovis. This is one of the largest reports on drug susceptibility of M. bovis from human samples and shows a significant proportion of first-line anti-tuberculosis drug resistance.

  15. The Effects of First-Line Anti-Tuberculosis Drugs on the Actions of Vitamin D in Human Macrophages.

    Science.gov (United States)

    Chesdachai, Supavit; Zughaier, Susu M; Hao, Li; Kempker, Russell R; Blumberg, Henry M; Ziegler, Thomas R; Tangpricha, Vin

    2016-12-01

    Tuberculosis (TB) is a major global health problem. Patients with TB have a high rate of vitamin D deficiency, both at diagnosis and during the course of treatment with anti-tuberculosis drugs. Although data on the efficacy of vitamin D supplementation on Mycobacterium tuberculosis (Mtb) clearance is uncertain from randomized controlled trials (RCTs), vitamin D enhances the expression of the anti-microbial peptide human cathelicidin (hCAP18) in cultured macrophages in vitro. One possible explanation for the mixed (primarily negative) results of RCTs examining vitamin D treatment in TB infection is that anti-TB drugs given to enrolled subjects may impact actions of vitamin D to enhance cathelicidin in macrophages. To address this hypothesis, human macrophage-like monocytic (THP-1) cells were treated with varying doses of first-line anti-tuberculosis drugs in the presence of the active form of vitamin D, 1N1,25-dihydroxyvitamin D 3 (1,25(OH) 2 D 3 ). The expression of hCAP18 was determined by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR). 1,25(OH) 2 D 3 strongly induced expression of hCAP18 mRNA in THP-1 cells (fold-change from control). The combination of the standard 4-drug TB therapy (isoniazid, rifampicin, pyrazinamide and ethambutol) in the cultured THP-1 cells demonstrated a significant decrease of hCAP18 mRNA at the dosage of 10 ug/mL. In 31 subjects with newly diagnosed drug-sensitive TB randomized to either high-dose vitamin D 3 (1.2 million IU over 8 weeks, n=13) versus placebo (n=18), there was no change from baseline to week 8 in hCAP18 mRNA levels in peripheral blood mononuclear cells or in plasma concentrations of LL-37, the protein product of hCAP18.These data suggest that first-line anti-TB drugs may alter the vitamin D-dependent increase in hCAP18 and LL-37 human macrophages.

  16. Prescription practice of anti-tuberculosis drugs in Yunnan, China: A clinical audit.

    Directory of Open Access Journals (Sweden)

    Lin Xu

    Full Text Available China has a high burden of drug-resistant tuberculosis (TB. As irrational use and inadequate dosing of anti-TB drugs may contribute to the epidemic of drug-resistant TB, we assessed the drug types and dosages prescribed in the treatment of TB cases in a representative sample of health care facilities in Yunnan.We applied multistage cluster sampling using probability proportion to size to select 28 counties in Yunnan. Consecutive pulmonary TB patients were enrolled from either the TB centers of Yunnan Center of Disease Control or designated TB hospitals. Outcomes of interest included the regimen used in the treatment of new and retreatment TB patients; and the proportion of patients treated with adequate dosing of anti-TB drugs. Furthermore, we assess whether there has been reduction in the use of fluoroquinolone and second line injectables in Tuberculosis Clinical Centre (TCC after the training activity in late 2012.Of 2390 TB patients enrolled, 582 (24.4% were prescribed second line anti-TB drugs (18.0% in new cases and 60.9% in retreatment cases; 363(15.2% prescribed a fluoroquinolone. General hospitals (adjusted odds ratio (adjOR 1.97, 95% confidence interval (CI 1.47-2.66, retreatment TB cases (adjOR 4.75, 95% CI 3.59-6.27, smear positive cases (adjOR 1.69, 95% CI 1.22-2.33, and extrapulmonary TB (adjOR 2.59, 95% CI 1.66-4.03 were significantly associated with the use of fluoroquinolones. The proportion of patients treated with fluoroquinolones decreased from 41.4% before 2013 to 13.5% after 2013 (adjOR 0.19, 95% CI 0.12-0.28 in TCC. The proportion of patients with correct, under and over dosages of isoniazid was 88.2%, 1.5%, and 10.4%, respectively; of rifampicin was 50.2%, 46.8%, and 2.9%; of pyrazinamide was 67.6%, 31.7% and 0.7%; and of ethambutol was 41.4%, 57.5%, and 1.0%.The prescribing practice of anti-TB drugs was not standardized, findings with significant programmatic implication.

  17. In vitro anti-tuberculosis activity of azole drugs against Mycobacterium tuberculosis clinical isolates.

    Science.gov (United States)

    Imperiale, Belén R; Cataldi, Ángel A; Morcillo, Nora S

    Latent tuberculosis has been associated with the persistence of dormant Mycobacterium tuberculosis in the organism of infected individuals, who are reservoirs of the bacilli and the source for spreading the disease in the community. New active anti-TB drugs exerting their metabolic action at different stages and on latent/dormant bacilli are urgently required to avoid endogenous reactivations and to be part of treatments of multi- and extensively-drug resistant tuberculosis (M/XDR-TB). It was previously reported that azole drugs are active against M. tuberculosis. For that reason, the aims of this study were to determine the in vitro activity of azole drugs, imidazole (clotrimazole, CLO and econazole, ECO) and nitroimidazole (metronidazole, MZ and ipronidazole, IPZ), against a collection of MDR M. tuberculosis clinical isolates; and to analyze their potential use in both the LTB and the active forms of M/XDR-TB treatments. A total of 55 MDR M. tuberculosis isolates and H37Rv were included. MZ and IPZ activity against M. tuberculosis isolates were tested using anaerobic culture conditions. The activity of ECO and CLO was measured by the minimal inhibitory concentration (MIC) using a microdilution colorimetric method. MZ and IPZ showed bacteriostatic activity against M. tuberculosis strains. MIC 50 and MIC 90 to ECO was 4.0μg/ml, while MIC 50 to CLO was 4.0μg/ml and MIC 90 was 8.0μg/ml respectively. All azole compounds tested in the study showed inhibitory activity against MDR M. tuberculosis clinical isolates. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  18. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing

    DEFF Research Database (Denmark)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano

    2017-01-01

    The design and production of an oral dual-compartmental dosage unit (dcDU) was examined in vitro and in vivo with the purpose of physically isolating and modulating the release profile of an anti-tuberculosis drug combination. Rifampicin (RIF) and isoniazid (ISO) are first line combination drugs...... for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion...... (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution...

  19. Understanding anti-tuberculosis drug efficacy: rethinking bacterial populations and how we model them

    Directory of Open Access Journals (Sweden)

    Dimitrios Evangelopoulos

    2015-03-01

    Full Text Available Tuberculosis still remains a global health emergency, claiming 1.5 million lives in 2013. The bacterium responsible for this disease, Mycobacterium tuberculosis (M.tb, has successfully survived within hostile host environments, adapting to immune defence mechanisms, for centuries. This has resulted in a disease that is challenging to treat, requiring lengthy chemotherapy with multi-drug regimens. One explanation for this difficulty in eliminating M.tb bacilli in vivo is the disparate action of antimicrobials on heterogeneous populations of M.tb, where mycobacterial physiological state may influence drug efficacy. In order to develop improved drug combinations that effectively target diverse mycobacterial phenotypes, it is important to understand how such subpopulations of M.tb are formed during human infection. We review here the in vitro and in vivo systems used to model M.tb subpopulations that may persist during drug therapy, and offer aspirations for future research in this field.

  20. Evaluation of the quality of anti Tuberculosis drugs in Lusaka, Zambia

    African Journals Online (AJOL)

    Methodology: This was a cross sectional study whose objective was to determine the quality of 3 types of fixed dose combination (FDC) anti TB drugs namely 4FDC, 3FDC and 2FDC tablets available in Lusaka District by assessing the presence of active ingredients and the percentage content of these active ingredients ...

  1. Anti-tuberculosis drug concentrations in tuberculosis patients with and without diabetes mellitus.

    Science.gov (United States)

    Kumar, A K Hemanth; Chandrasekaran, V; Kannan, T; Murali, A Lakshmi; Lavanya, J; Sudha, V; Swaminathan, Soumya; Ramachandran, Geetha

    2017-01-01

    The aim of the study was to compare plasma concentrations of rifampicin (RMP), isoniazid (INH) and pyrazinamide (PZA) between tuberculosis (TB) patients with and without diabetes mellitus (DM). Two-hour post-dosing concentrations of RMP, INH and PZA were determined in adult TB patients that were studied with (n = 452) and without DM (n = 1460), treated with a thrice-weekly regimen in India. Drug concentrations were estimated by HPLC. The median (IQR) INH [6.6 (3.9-10.0) and 7.8 (4.6-11.3)] and PZA [31.0 (22.3-38.0) and 34.1 (24.6-42.7)] microgram per milliliter concentrations were significantly lower in diabetic than non-diabetic TB patients (p < 0.001 for both drugs). Blood glucose was negatively correlated with plasma INH (r = -0.09, p < 0.001) and PZA (r = -0.092, p < 0.001). Multiple linear regression analysis showed RMP, INH and PZA concentrations were influenced by age and drug doses, INH and PZA by DM, RMP by alcohol use and PZA by gender and category of ATT. DM reduced INH and PZA concentrations by 0.8 and 3.0 μg/ml, respectively. TB patients with DM had lower INH and PZA concentrations. Negative correlation between blood glucose and drug concentrations suggests delayed absorption/faster elimination of INH and PZA in the presence of elevated glucose.

  2. Improved consistency in dosing anti-tuberculosis drugs in Taipei, Taiwan.

    Science.gov (United States)

    Chiang, Chen-Yuan; Yu, Ming-Chih; Shih, Hsiu-Chen; Yen, Muh-Yong; Hsu, Yu-Ling; Yang, Shiang-Lin; Lin, Tao-Ping; Bai, Kuan-Jen

    2012-01-01

    It was reported that 35.5% of tuberculosis (TB) cases reported in 2003 in Taipei City had no recorded pre-treatment body weight and that among those who had, inconsistent dosing of anti-TB drugs was frequent. Taiwan Centers for Disease Control (CDC) have taken actions to strengthen dosing of anti-TB drugs among general practitioners. Prescribing practices of anti-TB drugs in Taipei City in 2007-2010 were investigated to assess whether interventions on dosing were effective. Lists of all notified culture positive TB cases in 2007-2010 were obtained from National TB Registry at Taiwan CDC. A medical audit of TB case management files was performed to collect pretreatment body weight and regimens prescribed at commencement of treatment. Dosages prescribed were compared with dosages recommended. The proportion of patients with recorded pre-treatment body weight was 64.5% in 2003, which increased to 96.5% in 2007-2010 (pTaipei City has remarkably improved after health authorities implemented a series of interventions.

  3. Encapsulation of Anti-Tuberculosis Drugs within Mesoporous Silica and Intracellular Antibacterial Activities

    Directory of Open Access Journals (Sweden)

    Xin Xia

    2014-09-01

    Full Text Available Tuberculosis is a major problem in public health. While new effective treatments to combat the disease are currently under development, they tend suffer from poor solubility often resulting in low and/or inconsistent oral bioavailability. Mesoporous materials are here investigated in an in vitro intracellular assay, for the effective delivery of compound PA-824; a poorly soluble bactericidal agent being developed against Tuberculosis (TB. Mesoporous materials enhance the solubility of PA-824; however, this is not translated into a higher antibacterial activity in TB-infected macrophages after 5 days of incubation, where similar values are obtained. The lack of improved activity may be due to insufficient release of the drug from the mesopores in the context of the cellular environment. However, these results show promising data for the use of mesoporous particles in the context of oral delivery with expected improvements in bioavailability.

  4. Substantially Higher and Earlier Occurrence of Anti-Tuberculosis Drug-Related Adverse Reactions in HIV Coinfected Tuberculosis Patients: A Matched-Cohort Study.

    Science.gov (United States)

    Matono, Takashi; Nishijima, Takeshi; Teruya, Katsuji; Morino, Eriko; Takasaki, Jin; Gatanaga, Hiroyuki; Kikuchi, Yoshimi; Kaku, Mitsuo; Oka, Shinichi

    2017-11-01

    Little information exists on the frequency, severity, and timing of first-line anti-tuberculosis drug-related adverse events (TB-AEs) in HIV-tuberculosis coinfected (HIV-TB) patients in the antiretroviral therapy (ART) era. This matched-cohort study included HIV-TB patients as cases and HIV-uninfected tuberculosis (non-HIV-TB) patients as controls. Tuberculosis was culture-confirmed in both groups. Cases were matched to controls in a 1:4 ratio on age, sex, and year of diagnosis. TB-AEs were defined as Grade 2 or higher requiring drug discontinuation/regimen change. From 2003 to 2015, 94 cases and 376 controls were analyzed (95% men, 98% Asians). Standard four-drug combination therapy was initiated in 91% of cases and 89% of controls (p = 0.45). Cases had a higher frequency of TB-AE [51% (48/94) vs. 10% (39/376), p tuberculosis treatment. HIV infection was an independent risk factor for TB-AEs in the multivariate Cox analysis [adjusted HR (aHR): 6.96; 95% confidence interval: 3.93-12.3]. TB-AEs occurred more frequently in HIV-TB than in non-HIV-TB patients, and were more severe. The majority of TB-AEs occurred within 4 weeks of initiating anti-tuberculosis treatment. Because TB-AEs may delay ART initiation, careful monitoring during this period is warranted in coinfected patients.

  5. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing.

    Science.gov (United States)

    Genina, Natalja; Boetker, Johan Peter; Colombo, Stefano; Harmankaya, Necati; Rantanen, Jukka; Bohr, Adam

    2017-12-28

    The design and production of an oral dual-compartmental dosage unit (dcDU) was examined in vitro and in vivo with the purpose of physically isolating and modulating the release profile of an anti-tuberculosis drug combination. Rifampicin (RIF) and isoniazid (ISO) are first line combination drugs for treatment of tuberculosis (TB) that negatively interact with each other upon simultaneous release in acidic environment. The dcDUs were designed in silico by computer aided design (CAD) and fabricated in two steps; first three-dimensional (3D) printing of the outer structure, followed by hot-melt extrusion (HME) of the drug-containing filaments. The structure of the fabricated dcDUs was visualized by scanning electron microscopy (SEM). The 3D printed compartmentalized shells were loaded with filaments containing active pharmaceutical ingredient (API) and selectively sealed to modulate drug dissolution. The drug release profile of the dcDUs was characterized by pH-transfer dissolution in vitro and pharmacokinetics studies in rats, and resulted in modified release of the APIs from the dcDUs as compared to the free filaments. Furthermore, the selective physical sealing of the compartments resulted in an effective retardation of the in vitro API release. The findings of this study support the development of controllable-by-design dcDU systems for combination therapies to enable efficient therapeutic translation of oral dosage forms. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Biosynthesis of ilamycins featuring unusual building blocks and engineered production of enhanced anti-tuberculosis agents.

    Science.gov (United States)

    Ma, Junying; Huang, Hongbo; Xie, Yunchang; Liu, Zhiyong; Zhao, Jin; Zhang, Chunyan; Jia, Yanxi; Zhang, Yun; Zhang, Hua; Zhang, Tianyu; Ju, Jianhua

    2017-08-30

    Tuberculosis remains one of the world's deadliest communicable diseases, novel anti-tuberculosis agents are urgently needed due to severe drug resistance and the co-epidemic of tuberculosis/human immunodeficiency virus. Here, we show the isolation of six anti-mycobacterial ilamycin congeners (1-6) bearing rare L-3-nitro-tyrosine and L-2-amino-4-hexenoic acid structural units from the deep sea-derived Streptomyces atratus SCSIO ZH16. The biosynthesis of the rare L-3-nitrotyrosine and L-2-amino-4-hexenoic acid units as well as three pre-tailoring and two post-tailoring steps are probed in the ilamycin biosynthetic machinery through a series of gene inactivation, precursor chemical complementation, isotope-labeled precursor feeding experiments, as well as structural elucidation of three intermediates (6-8) from the respective mutants. Most impressively, ilamycins E 1 /E 2 , which are produced in high titers by a genetically engineered mutant strain, show very potent anti-tuberculosis activity with an minimum inhibitory concentration value ≈9.8 nM to Mycobacterium tuberculosis H37Rv constituting extremely potent and exciting anti-tuberculosis drug leads.Tuberculosis (TB) remains one of the world's deadliest communicable diseases, novel anti-TB agents are urgently needed due to severe drug resistance and the co-epidemic of TB/HIV. Here, the authors show that anti-mycobacterial ilamycin congeners bearing unusual structural units possess extremely potent anti-tuberculosis activities.

  7. The susceptibility of anti-tuberculosis drug-induced liver injury and chronic hepatitis C infection: A systematic review and meta-analysis.

    Science.gov (United States)

    Chang, Tien-En; Huang, Yi-Shin; Chang, Chih-Hao; Perng, Chin-Lin; Huang, Yi-Hsiang; Hou, Ming-Chih

    2018-02-01

    Anti-tuberculosis drug-induced liver injury (ATDILI) is a major safety concern in the treatment of tuberculosis (TB). The impact of chronic hepatitis C (CHC) infection on the risk of ATDILI is still controversial. We aimed to assess the influence of CHC infection on ATDILI through a systematic review and meta-analysis. We systemically reviewed all English-language literature in the major medical databases with the subject search terms "anti-tuberculosis drug-induced liver injury" and "anti-tuberculosis drug-induced hepatotoxicity". We then performed a systematic review and meta-analysis of the papers relevant to hepatitis C in qualified publications. A total of 14 studies were eligible for analysis, which included 516 cases with ATDILI and 4301 controls without ATDILI. The pooled odds ratio (OR) of all studies for CHC infection to ATDILI was 3.21 (95% confidence interval (CI): 2.30-4.49). Subgroup analysis revealed that the CHC carriers had a higher risk of ATDILI than those without CHC both in Asians (OR = 2.96, 95% CI: 1.79-4.90) and Caucasians (OR = 4.07, 95% CI: 2.70-6.14), in those receiving standard four combination anti-TB therapy (OR = 2.94, 95% CI: 1.95-4.41) and isoniazid monotherapy (OR = 4.18, 95% CI: 2.36-7.40), in those with a strict definition of DILI (serum alanine aminotransferase [ALT] > 5 upper limit of normal value [ULN], OR = 2.59, 95% CI: 1.58-4.25) and a loose definition of DILI (ALT > 2 or 3 ULN, OR = 4.34, 95% CI: 2.96-6.37), and in prospective studies (OR = 4.16, 95% CI: 2.93-5.90) and case-control studies (OR = 2.43, 95% CI: 1.29-4.58). This meta-analysis suggests that CHC infection may increase the risk of ATDILI. Regular liver tests are mandatory for CHC carriers under anti-TB therapy. Copyright © 2017. Published by Elsevier Taiwan LLC.

  8. Biflavonoid fraction from Garcinia kola seed ameliorates hormonal imbalance and testicular oxidative damage by anti-tuberculosis drugs in Wistar rats.

    Science.gov (United States)

    Kehinde, Aderemi; Adefisan, Adedoyin; Adebayo, Olayinka; Adaramoye, Oluwatosin

    2016-06-01

    Tuberculosis (TB) is a global health problem. The effects of anti-TB drugs on male reproductive system have not been properly evaluated. We investigated the effects of anti-TB drugs on testicular antioxidant indices, sperm characteristics and hormonal levels in rats, and the protective role of kolaviron (KV), a biflavonoid from Garcinia kola seed. Twenty-eight male Wistar rats were assigned into four groups and orally treated with corn oil (control), anti-TB drugs [4-Tabs=isoniazid (5 mg/kg), rifampicin (10 mg/kg), pyrazinamide (15 mg/kg) and ethambutol (15 mg/kg) in combination], anti-TB drugs +KV and KV alone (200 mg/kg). Anti-TB drugs and KV were given three times per week for 8 weeks. In vitro, reducing power, inhibition of lipid peroxidation (LPO), diphenyl-1-picrylhydrazyl (DPPH) and hydroxyl radical scavenging effects of KV were examined. KV at 10, 20, 50 and 100 μg/mL showed strong reducing potential and effectively scavenged DPPH and OH radicals in a concentration-dependent manner. Furthermore, KV significantly inhibited LPO in rats' liver homogenate. In vivo, administration of 4-Tabs caused a significant (phormone and testosterone. Co-administration of KV with 4-Tabs normalized body weight, enhanced antioxidant system and improved sperm characteristics. Kolaviron protects male reproductive system from oxidative damage by anti-tuberculosis drugs via the antioxidative mechanism.

  9. Development of a Nafion/MWCNT-SPCE-Based Portable Sensor for the Voltammetric Analysis of the Anti-Tuberculosis Drug Ethambutol

    Directory of Open Access Journals (Sweden)

    Rosa A. S. Couto

    2016-06-01

    Full Text Available Herein we describe the development, characterization and application of an electrochemical sensor based on the use of Nafion/MWCNT-modified screen-printed carbon electrodes (SPCEs for the voltammetric detection of the anti-tuberculosis (anti-TB drug ethambutol (ETB. The electrochemical behaviour of the drug at the surface of the developed Nafion/MWCNT-SPCEs was studied through cyclic voltammetry (CV and square wave voltammetry (SWV techniques. Electrochemical impedance spectroscopy (EIS and scanning electron microscopy (SEM were employed to characterize the modified surface of the electrodes. Results showed that, compared to both unmodified and MWCNTs-modified SPCEs, negatively charged Nafion/MWCNT-SPCEs remarkably enhanced the electrochemical sensitivity and selectivity for ETB due to the synergistic effect of the electrostatic interaction between cationic ETB molecules and negatively charged Nafion polymer and the inherent electrocatalytic properties of both MWCNTs and Nafion. Nafion/MWCNT-SPCEs provided excellent biocompatibility, good electrical conductivity, low electrochemical interferences and a high signal-to-noise ratio, providing excellent performance towards ETB quantification in microvolumes of human urine and human blood serum samples. The outcomes of this paper confirm that the Nafion/MWCNT-SPCE-based device could be a potential candidate for the development of a low-cost, yet reliable and efficient electrochemical portable sensor for the low-level detection of this antimycobacterial drug in biological samples.

  10. Anti-tuberculosis lupane-type isoprenoids from Syzygium guineense Wild DC. (Myrtaceae stem bark

    Directory of Open Access Journals (Sweden)

    I.A. Oladosu

    2017-12-01

    Full Text Available Plant derived isoprenoids commonly called terpenoids, are not only useful as chemosytemic markers but are increasingly attracting attention in the development of newer drugs for the treatment of multi-drug resistant tuberculosis. Anti-tuberculosis activity guided solvent fractionation and chromatographic separation of the chloroform extract of S. guineense stem bark resulted in the isolation of two bioactive 3-β-hydroxylupane-type isoprenoids: betulinic acid methylenediol ester (1 (MIC; 0.15 mg/mL and betulinic acid (2 (MIC; 0.60 mg/mL. The structures of the isolated compounds were elucidated using spectroscopic techniques. The antituberculosis assay was done using the Mycobacterium Growth Indicator Tube (MGIT method. This is the first report of the isolation of the anti-tuberculosis constituents of S. guineense and its potentials for the development of drug leads for the treatment of tuberculosis thus validating its ethno-medicinal uses.

  11. Accelerating early anti-tuberculosis drug discovery by creating mycobacterial indicator strains that predict mode of action

    KAUST Repository

    Boot, Maikel

    2018-04-13

    Due to the rise of drug resistant forms of tuberculosis there is an urgent need for novel antibiotics to effectively combat these cases and shorten treatment regimens. Recently, drug screens using whole cell analyses have been shown to be successful. However, current high-throughput screens focus mostly on stricto sensu life-death screening that give little qualitative information. In doing so, promising compound scaffolds or non-optimized compounds that fail to reach inhibitory concentrations are missed. To accelerate early TB drug discovery, we performed RNA sequencing on Mycobacterium tuberculosis and Mycobacterium marinum to map the stress responses that follow upon exposure to sub-inhibitory concentrations of antibiotics with known targets: ciprofloxacin, ethambutol, isoniazid, streptomycin and rifampicin. The resulting dataset comprises the first overview of transcriptional stress responses of mycobacteria to different antibiotics. We show that antibiotics can be distinguished based on their specific transcriptional stress fingerprint. Notably, this fingerprint was more distinctive in M. marinum. We decided to use this to our advantage and continue with this model organism. A selection of diverse antibiotic stress genes was used to construct stress reporters. In total, three functional reporters were constructed to respond to DNA damage, cell wall damage and ribosomal inhibition. Subsequently, these reporter strains were used to screen a small anti-TB compound library to predict the mode of action. In doing so, we could identify the putative mode of action for three novel compounds, which confirms our approach.

  12. Evaluation of patterns of liver toxicity in patients on antiretroviral and anti-tuberculosis drugs: a prospective four arm observational study in ethiopian patients.

    Directory of Open Access Journals (Sweden)

    Getnet Yimer

    Full Text Available OBJECTIVES: To evaluate the incidence, type, severity and predictors of antiretroviral and/or anti-tuberculosis drugs induced liver injury (DILI. METHODS: A total of 1,060 treatment naive patients were prospectively enrolled into four treatment groups: HIV patients receiving efavirenz based HAART alone (Arm-1; TB-HIV co-infected patients with CD4≤200 cells/μL, receiving concomitant rifampicin based anti-TB and efavirenz based HAART (Arm-2; TB-HIV co-infected patients with CD4>200 cells/μL, receiving anti-TB alone (Arm-3; TB patients taking rifampicin based anti-TB alone (Arm-4. Liver enzyme levels were monitored at baseline, 1st, 2nd, 4th, 8th, 12th and 24th weeks during treatment. CD4 and HIV viral load was measured at baseline, 24th and 48th weeks. Data were analyzed using multivariate Cox Proportional Hazards Model. RESULTS: A total of 159 patients (15% developed DILI with severity grades 1, 2, 3 and 4 of 53.5%, 32.7%, 11.3% and 2.5% respectively. The incidence of cholestatic, hepatocellular or mixed pattern was 61%, 15% and 24%, respectively. Incidence of DILI was highest in Arm-2 (24.2%>Arm-3 (10.8%>Arm-1 (8.8%>Arm-4 (2.9%. Concomitant anti-TB-HIV therapy increased the risk of DILI by 10-fold than anti-TB alone (p<0.0001. HIV co-infection increased the risk of anti-TB DILI by 4-fold (p = 0.004. HAART associated DILI was 3-fold higher than anti-TB alone, (p = 0.02. HAART was associated with cholestatic and grade 1 DILI whereas anti-TB therapy was associated with hepatocellular and grade ≥ 2. Treatment type, lower CD4, platelet, hemoglobin, higher serum AST and direct bilirubin levels at baseline were significant DILI predictors. There was no effect of DILI on immunologic recovery or virologic suppression rate of HAART. CONCLUSION: HAART associated DILI is mainly cholestatic and mild whereas hepatocellular or mixed pattern with high severity grade is more common in anti-tuberculosis DILI. TB-HIV co-infection, disease severity

  13. Cytochrome P450 2E1 gene polymorphisms/haplotypes and anti-tuberculosis drug-induced hepatitis in a Chinese cohort.

    Directory of Open Access Journals (Sweden)

    Shaowen Tang

    Full Text Available The pathogenic mechanism of anti-tuberculosis (anti-TB drug-induced hepatitis is associated with drug metabolizing enzymes. No tagging single-nucleotide polymorphisms (tSNPs of cytochrome P450 2E1(CYP2E1 in the risk of anti-TB drug-induced hepatitis have been reported. The present study was aimed at exploring the role of tSNPs in CYP2E1 gene in a population-based anti-TB treatment cohort.A nested case-control study was designed. Each hepatitis case was 14 matched with controls by age, gender, treatment history, disease severity and drug dosage. The tSNPs were selected by using Haploview 4.2 based on the HapMap database of Han Chinese in Beijing, and detected by using TaqMan allelic discrimination technology.Eighty-nine anti-TB drug-induced hepatitis cases and 356 controls were included in this study. 6 tSNPs (rs2031920, rs2070672, rs915908, rs8192775, rs2515641, rs2515644 were genotyped and minor allele frequencies of these tSNPs were 21.9%, 23.0%, 19.1%, 23.6%, 20.8% and 44.4% in the cases and 20.9%, 22.7%, 18.9%, 23.2%, 18.2% and 43.2% in the controls, respectively. No significant difference was observed in genotypes or allele frequencies of the 6 tSNPs between case group and control group, and neither of haplotypes in block 1 nor in block 2 was significantly associated with the development of hepatitis.Based on the Chinese anti-TB treatment cohort, we did not find a statistically significant association between genetic polymorphisms of CYP2E1 and the risk of anti-TB drug-induced hepatitis. None of the haplotypes showed a significant association with the development of hepatitis in Chinese TB population.

  14. Reinforcing the membrane-mediated mechanism of action of the anti-tuberculosis candidate drug thioridazine with molecular simulations

    DEFF Research Database (Denmark)

    Kopec, Wojciech; Khandelia, Himanshu

    2014-01-01

    mechanisms of action, the cell membrane-mediated one is peculiarly tempting due to the distinctive feature of phenothiazine drug family to accumulate in selected body tissues. In this study, we employ long-scale molecular dynamics simulations to investigate the interactions of three different concentrations...... for the negatively charged bilayer. We show that the origin of such changes is the drug induced decrease of the interfacial tension, which ultimately leads to the significant membrane expansion. Our findings support the hypothesis that the phenothiazines therapeutic activity may arise from the drug...

  15. Evaluation of nano encapsulation techniques in different polymeric system for the delivery of anti-tuberculosis drugs (ATD)

    CSIR Research Space (South Africa)

    Swai, H

    2006-02-01

    Full Text Available .5,6,7,8,9,10,11 The TB nano drug delivery project’s primary objective is, therefore, to develop a home grown TB nano drug delivery system that will address non compliance and MDR-TB. This will significantly contribute to the saving of lives, while...-Chitosan system SEM results Observations The INH-encapsulated alginate/chitosan showed irregular particle shapes with sizes in the nanometre scale. The particles further showed some degree of agglomeration. Alginate (mg) Chitosan (mg) INH (mg) Tin /Tout...

  16. Design of the Anti-tuberculosis Drugs induced Adverse Reactions in China National Tuberculosis Prevention and Control Scheme Study (ADACS

    Directory of Open Access Journals (Sweden)

    He Ping

    2010-05-01

    Full Text Available Abstract Background More than 1 million tuberculosis (TB patients are receiving the standard anti-TB treatment provided by China National Tuberculosis Prevention and Control Scheme (CNTS in China every year. Adverse reactions (ADRs induced by anti-TB drugs could both do harm to patients and lead to anti-TB treatment failure. The ADACS aimed to explore ADRs' incidences, prognoses, economical and public health impacts for TB patients and TB control, and build a DNA bank of TB patients. Methods/Design Multiple study designs were adopted. Firstly, a prospective cohort with 4488 sputum smears positive pulmonary tuberculosis patients was established. Patients were followed up for 6-9 months in 52 counties of four regions. Those suspected ADRs should be checked and confirmed by Chinese State Food and Drug Administration (SFDA. Secondly, if the suspected ADR was anti-TB drug induced liver injury (ATLI, a nested case-control study would be performed which comprised choosing a matched control and doing a plus questionnaire inquiry. Thirdly, health economical data of ADRs would be collected to analyze financial burdens brought by ADRs and cost-effectiveness of ADRs' treatments. Fourthly, a drop of intravenous blood for each patient was taken and saved in FTA card for DNA banking and genotyping. Finally, the demographic, clinical, environmental, administrative and genetic data would be merged for the comprehensive analysis. Discussion ADACS will give an overview of anti-TB drugs induced ADRs' incidences, risk factors, treatments, prognoses, and clinical, economical and public health impacts for TB patients applying CNTS regimen in China, and provide suggestions for individualized health care and TB control policy.

  17. The role of cigarette smoking and liver enzymes polymorphisms in anti-tuberculosis drug-induced hepatotoxicity in Brazilian patients.

    Science.gov (United States)

    Zaverucha-do-Valle, Camila; Monteiro, Sérgio P; El-Jaick, Kênia B; Rosadas, Leonardo A; Costa, Marli J M; Quintana, Marcel S B; de Castro, Liane

    2014-05-01

    Tuberculosis (TB) is still a major health concern and side-effects related to the treatment, especially drug-induced hepatotoxicity (DIH), should be better investigated. In the present study, a possible association between anti-TB DIH and cigarette smoking, N-acetyltransferase 2 (NAT2), Cytochrome P450 2E1 (CYP2E1) and Cytochrome P450 3A4 (CYP3A4) genotypes was studied in 131 TB Brazilian patients. The NAT2 and CYP3A4 genetic polymorphisms were determined using a polymerase chain reaction (PCR) direct sequencing approach and genetic polymorphisms of CYP2E1 gene were determined by restriction fragment length polymorphism (RFLP). The risk of anti-TB DIH was lower in rapid/intermediate acetylators when compared to slow acetylators (OR: 0.34, CI 95: 0.16-0.71; p < 0.01). A decreased risk of developing anti-TB DIH was also observed in active smokers when compared to non-smokers (OR: 0.28, 95 CI: 0.11-0.64; p < 0.01). Significant association between CYP3A4 genotypes and hepatotoxicity was not observed, as well as between CYP2E1 genotype and hepatotoxicity, whose frequency of patients with wild homozygous was more prevalent. The anti-TB drugs interactions with smoking on hepatotoxicity, as well as the NAT2 phenotype, may require to adjust therapeutic regimen dosages or alarm in case of adverse event developments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Drug Resistance

    Science.gov (United States)

    ... infected with a drug-resistant strain of HIV. Drug-resistance testing results are used to decide which HIV medicines to include in a person’s first HIV regimen. After treatment is started, drug-resistance testing is repeated if ...

  19. PROPOSAL OF ANTI-TUBERCULOSIS REGIMENS BASED ON SUSCEPTIBILITY TO ISONIAZID AND RIFAMPICIN

    Science.gov (United States)

    Mendoza-Ticona, Alberto; Moore, David AJ; Alarcón, Valentina; Samalvides, Frine; Seas, Carlos

    2014-01-01

    Objective To elaborate optimal anti-tuberculosis regimens following drug susceptibility testing (DST) to isoniazid (H) and rifampicin (R). Design 12 311 M. tuberculosis strains (National Health Institute of Peru 2007-2009) were classified in four groups according H and R resistance. In each group the sensitivity to ethambutol (E), pirazinamide (Z), streptomycin (S), kanamycin (Km), capreomycin (Cm), ciprofloxacin (Cfx), ethionamide (Eto), cicloserine (Cs) and p-amino salicilic acid (PAS) was determined. Based on resistance profiles, domestic costs, and following WHO guidelines, we elaborated and selected optimal putative regimens for each group. The potential efficacy (PE) variable was defined as the proportion of strains sensitive to at least three or four drugs for each regimen evaluated. Results Selected regimes with the lowest cost, and highest PE of containing 3 and 4 effective drugs for TB sensitive to H and R were: HRZ (99,5%) and HREZ (99,1%), respectively; RZECfx (PE=98,9%) and RZECfxKm (PE=97,7%) for TB resistant to H; HZECfx (96,8%) and HZECfxKm (95,4%) for TB resistant to R; and EZCfxKmEtoCs (82.9%) for MDR-TB. Conclusion Based on resistance to H and R it was possible to select anti-tuberculosis regimens with high probability of success. This proposal is a feasible alternative to tackle tuberculosis in Peru where the access to rapid DST to H and R is improving progressively. PMID:23949502

  20. Evaluation of macrolides for possible use against multidrug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    van der Paardt, Anne-Fleur; Wilffert, Bob; Akkerman, Onno W.; de Lange, Wiel C. M.; van Soolingen, Dick; Sinha, Bhanu; van der Werf, Tjip S.; Kosterink, Jos G. W.; Alffenaar, Jan-Willem C.

    Multidrug-resistant tuberculosis (MDR-TB) is a major global health problem. The loss of susceptibility to an increasing number of drugs behoves us to consider the evaluation of non-traditional anti-tuberculosis drugs. Clarithromycin, a macrolide antibiotic, is defined as a group 5 anti-tuberculosis

  1. [Tuberculosis and drug-resistance tuberculosis in prisoners. Colombia, 2010-2012].

    Science.gov (United States)

    Gómez, Ingrid T; Llerena, Claudia R; Zabaleta, Angie P

    2015-01-01

    To characterize tuberculosis drug-resistance using anti-tuberculosis drug-sensitivity tests in Colombian prisoners. Descriptive-retrospective analyses were performed on cases of tuberculosis in prisoners. Samples were evaluated by the National Reference Laboratory. Conditions like gender, TB/VIH co-infection and drug-resistance were evaluated. Anti-tuberculosis drug-sensitivity tests were carried out on 72 prisoners. Results showed a distribution of 90.7 % of cases in males and 9.3 % of cases in females. 12 % of cases were TB/VIH co-infections, 94 % of the cases had not received any anti-tuberculosis treatment before, six isolates were drug-resistant corresponding to 8.8 % of total cases, and two cases were multi drug-resistant representing 1.3 % of the cases. Of the drug-resistant cases, 83.3 % were TB/VIH co-infected. Previously treated cases corresponded to 5.6 % of the total cases analyzed. One case with TB/VIH co-infection and rifampicin resistance was observed, representing 1.3 % of the total cases. The government must create a clear policy for prisoners in Colombia, because a high rate of disease in prisoners was observed. In addition, the results showed an association between drug-resistance and TB/VIH co-infection. Overcrowding and low quality of life in penitentiaries could become an important public health problem.

  2. High prevalence of drug-resistant tuberculosis, Republic of Lithuania, 2002

    DEFF Research Database (Denmark)

    Dewan, P; Sosnovskaja, A; Thomsen, V

    2005-01-01

    BACKGROUND: Nations of the former Soviet Union have the world's highest reported levels of resistance to anti-tuberculosis drugs. We conducted the first national survey of anti-tuberculosis drug resistance in the Republic of Lithuania. METHODS: We tested Mycobacterium tuberculosis isolates from all...... incident culture-positive pulmonary TB patients registered in 2002. New patients were those treated for streptomycin); previously treated patients were those treated for > or =1 month. RESULTS: Of 1163...... isolates, 475 (41%) were resistant to at least one first-line drug, and 263 (23%) were resistant to at least INH and RMP (MDR); this included 76/818 (9.3%) from new patients and 187/345 (54%) from previously treated patients. Of 52 MDR isolates randomly selected for extended testing at an international...

  3. Reagent Precoated Targets for Rapid In-Tissue Derivatization of the Anti-Tuberculosis Drug Isoniazid Followed by MALDI Imaging Mass Spectrometry

    Science.gov (United States)

    Manier, M. Lisa; Reyzer, Michelle L.; Goh, Anne; Dartois, Veronique; Via, Laura E.; Barry, Clifton E.; Caprioli, Richard M.

    2011-08-01

    Isoniazid (INH) is an important component of front-line anti-tuberculosis therapy with good serum pharmacokinetics but unknown ability to penetrate tuberculous lesions. However, endogenous background interferences hinder our ability to directly analyze INH in tissues. Chemical derivatization has been successfully used to measure isoniazid directly from tissue samples using matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS). MALDI targets were pretreated with trans-cinnamaldehyde (CA) prior to mounting tissue slices. Isoniazid present in the tissues was efficiently derivatized and the INH-CA product measured by MS/MS. Precoating of MALDI targets allows the tissues to be directly thaw-mounted and derivatized, thus simplifying the preparation. A time-course series of tissues from tuberculosis infected/INH dosed animals were assayed and the MALDI MS/MS response correlates well with the amount of INH determined to be in the tissues by high-performance liquid chromatography (HPLC)-MS/MS.

  4. Multi drug resistance tuberculosis: pattern seen in last 13 years

    International Nuclear Information System (INIS)

    Iqbal, R.; Shabbir, I.; Munir, K.; Tabassum, M.N.; Khan, S.U.; Khan, M.Z.U.

    2011-01-01

    Background: Drug resistance in tuberculosis is a serious problem throughout the world especially, after the emergence of multi drug resistant TB strains. Objectives: To estimate drug resistance in TB patients and compare it with previous studies to see the changing trends. Materials and Methods: The PMRC Research Centre receives sputum samples from all the leading hospitals of Lahore. This retrospective analysis was done from 1996 to 2008 on the multi drug resistant TB strains that were seen during these years. Five first lines anti tuberculosis drugs were tested on Lowenstein Jensen medium using standard proportion method. Results: A total of 2661 confirmed isolates of Mycobacterium tuberculosis were seen over the past 13 years. Of the total, 2182 were pulmonary and 479 were extra pulmonary specimens. The patients comprised of those with and without history of previous treatment. These specimens were subjected to drug susceptibility testing. Almost half of the patient had some resistance; multiple drug resistance was seen in 12.3% and 23.0% cases without and with history of previous treatment respectively. Overall resistance to rifampicin was 26.4%, isoniazid 24.1% streptomycin 21.6% ethambutol 13.4% and pyrazinamide 28.4% respectively. Statistically significant difference was seen between primary and acquired resistance. When compared with the reports from previous studies from the same area, there was a trend of gradual increase of drug resistance. Conclusions Resistance to anti tuberculosis drugs is high. Policy message. TB Control Program should start 'DOTS Plus' schemes for which drug susceptibility testing facilities should be available for correctly managing the patients. (author)

  5. Computer-aided drug design of capuramycin analogues as anti-tuberculosis antibiotics by 3D-QSAR and molecular docking

    Directory of Open Access Journals (Sweden)

    Jin Yuanyuan

    2017-12-01

    Full Text Available Capuramycin and a few semisynthetic derivatives have shown potential as anti-tuberculosis antibiotics.To understand their mechanism of action and structureactivity relationships a 3D-QSAR and molecular docking studies were performed. A set of 52 capuramycin derivatives for the training set and 13 for the validation set was used. A highly predictive MFA model was obtained with crossvalidated q2 of 0.398, and non-cross validated partial least-squares (PLS analysis showed a conventional r2 of 0.976 and r2pred of 0.839. The model has an excellent predictive ability. Combining the 3D-QSAR and molecular docking studies, a number of new capuramycin analogs with predicted improved activities were designed. Biological activity tests of one analog showed useful antibiotic activity against Mycobacterium smegmatis MC2 155 and Mycobacterium tuberculosis H37Rv. Computer-aided molecular docking and 3D-QSAR can improve the design of new capuramycin antimycobacterial antibiotics.

  6. Drug resistance

    NARCIS (Netherlands)

    Gorter, J.A.; Potschka, H.; Noebels, J.L.; Avoli, M.; Rogawski, M.A.; Olsen, R.W.; Delgado-Escueta, A.V.

    2012-01-01

    Drug resistance remains to be one of the major challenges in epilepsy therapy. Identification of factors that contribute to therapeutic failure is crucial for future development of novel therapeutic strategies for difficult-to-treat epilepsies. Several clinical studies have shown that high seizure

  7. The timing of death in patients with tuberculosis who die during anti-tuberculosis treatment in Andhra Pradesh, South India

    Directory of Open Access Journals (Sweden)

    Jonnalagada Subbanna

    2011-12-01

    Full Text Available Abstract Background India has 2.0 million estimated tuberculosis (TB cases per annum with an estimated 280,000 TB-related deaths per year. Understanding when in the course of TB treatment patients die is important for determining the type of intervention to be offered and crucially when this intervention should be given. The objectives of the current study were to determine in a large cohort of TB patients in India:- i treatment outcomes including the number who died while on treatment, ii the month of death and iii characteristics associated with "early" death, occurring in the initial 8 weeks of treatment. Methods This was a retrospective study in 16 selected Designated Microscopy Centres (DMCs in Hyderabad, Krishna and Adilabad districts of Andhra Pradesh, South India. A review was performed of treatment cards and medical records of all TB patients (adults and children registered and placed on standardized anti-tuberculosis treatment from January 2005 to September 2009. Results There were 8,240 TB patients (5183 males of whom 492 (6% were known to have died during treatment. Case-fatality was higher in those previously treated (12% and lower in those with extra-pulmonary TB (2%. There was an even distribution of deaths during anti-tuberculosis treatment, with 28% of all patients dying in the first 8 weeks of treatment. Increasing age and new as compared to recurrent TB disease were significantly associated with "early death". Conclusion In this large cohort of TB patients, deaths occurred with an even frequency throughout anti-TB treatment. Reasons may relate to i the treatment of the disease itself, raising concerns about drug adherence, quality of anti-tuberculosis drugs or the presence of undetected drug resistance and ii co-morbidities, such as HIV/AIDS and diabetes mellitus, which are known to influence mortality. More research in this area from prospective and retrospective studies is needed.

  8. Gene expression analysis of two extensively drug-resistant tuberculosis isolates show that two-component response systems enhance drug resistance.

    Science.gov (United States)

    Yu, Guohua; Cui, Zhenling; Sun, Xian; Peng, Jinfu; Jiang, Jun; Wu, Wei; Huang, Wenhua; Chu, Kaili; Zhang, Lu; Ge, Baoxue; Li, Yao

    2015-05-01

    Global analysis of expression profiles using DNA microarrays was performed between a reference strain H37Rv and two clinical extensively drug-resistant isolates in response to three anti-tuberculosis drug exposures (isoniazid, capreomycin, and rifampicin). A deep analysis was then conducted using a combination of genome sequences of the resistant isolates, resistance information, and related public microarray data. Certain known resistance-associated gene sets were significantly overrepresented in upregulated genes in the resistant isolates relative to that observed in H37Rv, which suggested a link between resistance and expression levels of particular genes. In addition, isoniazid and capreomycin response genes, but not rifampicin, either obtained from published works or our data, were highly consistent with the differentially expressed genes of resistant isolates compared to those of H37Rv, indicating a strong association between drug resistance of the isolates and genes differentially regulated by isoniazid and capreomycin exposures. Based on these results, 92 genes of the studied isolates were identified as candidate resistance genes, 10 of which are known resistance-related genes. Regulatory network analysis of candidate resistance genes using published networks and literature mining showed that three two-component regulatory systems and regulator CRP play significant roles in the resistance of the isolates by mediating the production of essential envelope components. Finally, drug sensitivity testing indicated strong correlations between expression levels of these regulatory genes and sensitivity to multiple anti-tuberculosis drugs in Mycobacterium tuberculosis. These findings may provide novel insights into the mechanism underlying the emergence and development of drug resistance in resistant tuberculosis isolates and useful clues for further studies on this issue. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. TSH-CHECK-1 test: diagnostic accuracy and potential application to initiating treatment for hypothyroidism in patients on anti-tuberculosis drugs.

    Directory of Open Access Journals (Sweden)

    Cara S Kosack

    Full Text Available BACKGROUND: Thyroid-stimulating hormone (TSH promotes expression of thyroid hormones which are essential for metabolism, growth, and development. Second-line drugs to treat tuberculosis (TB can cause hypothyroidism by suppressing thyroid hormone synthesis. Therefore, TSH levels are routinely measured in TB patients receiving second-line drugs, and thyroxin treatment is initiated where indicated. However, standard TSH tests are technically demanding for many low-resource settings where TB is prevalent; a simple and inexpensive test is urgently needed. METHODS: As a proof of concept study TSH was measured in routinely collected sera at the University Medical Center Utrecht, Netherlands, using the TSH-CHECK-1 (VEDALAB, Alençon, France, a lateral-flow rapid immunochromatographic assay with a TSH cut-off value of 10 µIU/mL, the standard threshold for initiating treatment. These results were compared with TSH levels measured by a reference standard (UniCel DXi 800 imunoassay system, Beckman Coulter, USA. Sensitivity, specificity, and likelihood ratios were then calculated. RESULTS: A total of 215 serum samples were evaluated: 107 with TSH values <10 µIU/mL and 108 with values ≥10 µIU/mL. TSH-CHECK-1 test sensitivity was found to be 100.0% (95% CI: 96.6-100.0 and specificity was 76.6% (95% CI: 67.5-84.3. Predictive values (PV were modelled for different levels of prevalence. For a prevalence of 10% and 50%, the positive PV was 32.2% (95% CI: 25.0-39.7% and 81.1% (95% CI: 75.0-85.5%, respectively; the negative PV was 100% (95% CI: 98.9-100% and 100% (95% CI: 91.3-100% respectively. DISCUSSION/CONCLUSIONS: The TSH-CHECK-1 rapid test was practical and simple to perform but difficult to interpret on weak positive results. All sera with TSH≥10 µIU/mL were correctly identified, but the test lacked sufficient specificity. Given its excellent negative PV in this evaluation, the test shows promise for ruling out hypothyroidism. However, so far it

  10. High frequency of NAT2 slow acetylator alleles in the Malay population of Indonesia: an awareness to the anti-tuberculosis drug induced liver injury and cancer

    Directory of Open Access Journals (Sweden)

    Retno W. Susilowati

    2017-05-01

    Full Text Available Background: Arylamine N-acetyltransferase 2 (NAT2 polymorphism was previously reported to have association with the risk of drug toxicities and the development of various diseases. Previous research on the Indonesian population, especially Javanese and Sundanese, showed that there were 33% NAT2 slow acetylator phenotype. The aim of this study was to map the NAT2 variation in the Malay ethnic to gain a deeper insight into NAT2 haplotypic composition in this ethnic.Methods: 50 healthy samples from the Indonesian Malay ethnic were obtained. They were interviewed about their ethnic backgrounds for the last three generations. DNA was extracted from peripheral blood and NAT2 genotyping was done using the PCR direct Sequencing. Data were compiled according to the genotype and allele frequencies estimated from the observed numbers of each specific allele. Haplotype reconstruction was performed using PHASE v2.1.1 software.Results: We found 7 haplotypes consisting of 6 SNPs and 14 NAT2 genotype variations in Indonesian Malay population. The most frequent allele was NAT2*6A (38% which was classified as a slow acetylator allele. According to bimodal distribution, the predicted phenotype of the Malay population was composed of 62% rapid acetylator and 38% slow acetylator. According to trimodal distribution, the predicted phenotypes for rapid, intermediate and slow acetylators were 10%, 52% and 38% respectively.Conclusion: Our result indicates the presence of the allelic distribution and revealed the most frequent acetylator status and phenotype for the Indonesian Malay population. The result of this study will be helpful for future epidemiological or clinical studies and for understanding the genetic basis of acetylation polymorphism in Indonesia.

  11. Adherence to anti-tuberculosis treatment in Tigray, Northern Ethiopia

    NARCIS (Netherlands)

    Kiros, Y. K.; Teklu, T.; Desalegn, F.; Tesfay, M.; Klinkenberg, E.; Mulugeta, A.

    2014-01-01

    Tuberculosis (TB) patients in Mekelle Zone, Tigray Region, in Ethiopia. To investigate adherence to anti-tuberculosis treatment. A cross-sectional study in health facilities providing anti-tuberculosis treatment was conducted. Adherence was measured in three ways: through self-reported missed doses,

  12. Bedaquiline resistance: Its emergence, mechanism and prevention.

    NARCIS (Netherlands)

    Nguyen, Thi Van Anh; Anthony, Richard M; Bañuls, Anne-Laure; Vu, Dinh Hoa; Alffenaar, Jan-Willem C

    2017-01-01

    Bedaquiline, a new anti-tuberculosis drug, has already been used in more than 50 countries. The emergence of bedaquiline resistance is alarming, as it may result in the rapid loss of this new drug. This paper aims to review currently identified mechanisms of resistance, the emergence of bedaquiline

  13. Plant natural products research in tuberculosis drug discovery and ...

    African Journals Online (AJOL)

    The global resurgence of TB and the development of multidrug-resistant tuberculosis (MDR TB) and extensively drug-resistant tuberculosis (XDR-TB), call for the development of new anti-tuberculosis drugs to combat this disease. Plant natural products have a proven global history of treating diseases and ailments.

  14. Comparison of different treatments for isoniazid-resistant tuberculosis: an individual patient data meta-analysis.

    NARCIS (Netherlands)

    Fregonese, Federica; Ahuja, Shama D; Akkerman, Onno W; Arakaki-Sanchez, Denise; Ayakaka, Irene; Baghaei, Parvaneh; Bang, Didi; Bastos, Mayara; Benedetti, Andrea; Bonnet, Maryline; Cattamanchi, Adithya; Cegielski, Peter; Chien, Jung-Yien; Cox, Helen; Dedicoat, Martin; Erkens, Connie; Escalante, Patricio; Falzon, Dennis; Garcia-Prats, Anthony J; Gegia, Medea; Gillespie, Stephen H; Glynn, Judith R; Goldberg, Stefan; Griffith, David; Jacobson, Karen R; Johnston, James C; Jones-López, Edward C; Khan, Awal; Koh, Won-Jung; Kritski, Afranio; Lan, Zhi Yi; Lee, Jae Ho; Li, Pei Zhi; Maciel, Ethel L; Galliez, Rafael Mello; Merle, Corinne S C; Munang, Melinda; Narendran, Gopalan; Nguyen, Viet Nhung; Nunn, Andrew; Ohkado, Akihiro; Park, Jong Sun; Phillips, Patrick P J; Ponnuraja, Chinnaiyan; Reves, Randall; Romanowski, Kamila; Seung, Kwonjune; Schaaf, H Simon; Skrahina, Alena; Soolingen, Dick van; Tabarsi, Payam; Trajman, Anete; Trieu, Lisa; Banurekha, Velayutham V; Viiklepp, Piret; Wang, Jann-Yuan; Yoshiyama, Takashi; Menzies, Dick

    Isoniazid-resistant, rifampicin-susceptible (INH-R) tuberculosis is the most common form of drug resistance, and is associated with failure, relapse, and acquired rifampicin resistance if treated with first-line anti-tuberculosis drugs. The aim of the study was to compare success, mortality, and

  15. Comparison of different treatments for isoniazid-resistant tuberculosis : an individual patient data meta-analysis

    NARCIS (Netherlands)

    Fregonese, Federica; Ahuja, Shama D; Akkerman, Onno W; Arakaki-Sanchez, Denise; Ayakaka, Irene; Baghaei, Parvaneh; Bang, Didi; Bastos, Mayara; Benedetti, Andrea; Bonnet, Maryline; Cattamanchi, Adithya; Cegielski, Peter; Chien, Jung-Yien; Cox, Helen; Dedicoat, Martin; Erkens, Connie; Escalante, Patricio; Falzon, Dennis; Garcia-Prats, Anthony J; Gegia, Medea; Gillespie, Stephen H; Glynn, Judith R; Goldberg, Stefan; Griffith, David; Jacobson, Karen R; Johnston, James C; Jones-López, Edward C; Khan, Awal; Koh, Won-Jung; Kritski, Afranio; Lan, Zhi Yi; Lee, Jae Ho; Li, Pei Zhi; Maciel, Ethel L; Galliez, Rafael Mello; Merle, Corinne S C; Munang, Melinda; Narendran, Gopalan; Nguyen, Viet Nhung; Nunn, Andrew; Ohkado, Akihiro; Park, Jong Sun; Phillips, Patrick P J; Ponnuraja, Chinnaiyan; Reves, Randall; Romanowski, Kamila; Seung, Kwonjune; Schaaf, H Simon; Skrahina, Alena; Soolingen, Dick van; Tabarsi, Payam; Trajman, Anete; Trieu, Lisa; Banurekha, Velayutham V; Viiklepp, Piret; Wang, Jann-Yuan; Yoshiyama, Takashi; Menzies, Dick

    BACKGROUND: Isoniazid-resistant, rifampicin-susceptible (INH-R) tuberculosis is the most common form of drug resistance, and is associated with failure, relapse, and acquired rifampicin resistance if treated with first-line anti-tuberculosis drugs. The aim of the study was to compare success,

  16. Arrival of Imidazo[2,1-b]thiazole-5-carboxamides: Potent Anti-tuberculosis Agents That Target QcrB.

    Science.gov (United States)

    Moraski, Garrett C; Seeger, Natalie; Miller, Patricia A; Oliver, Allen G; Boshoff, Helena I; Cho, Sanghyun; Mulugeta, Surafel; Anderson, Jeffery R; Franzblau, Scott G; Miller, Marvin J

    2016-06-10

    Increasing interest in the potent anti-tuberculosis activity and the novel target (QcrB) of imidazo[1,2-a]pyridine-3-carboxamides encouraged extended structure-activity relationship studies of additional scaffolds. This study reports on the in vitro profiling of the imidazo[2,1-b]thiazole-5-carboxamides as a new promising class of anti-tuberculosis compounds endowed with nanomolar potency against replicating and drug-resistant Mycobacterium tuberculosis (Mtb) as well as low toxicity to VERO cells. Compounds 6, 16, and 17 had MIC values 100 μM. On-target selectivity of this series was confirmed by cross-resistance of specific QcrB mutants as well as the hypersusceptibility of a mutant with a functional gene deletion of the alternative cytochrome bd oxidase. Additionally, to demonstrate selectivity, three analogues (6, 15, 17) were broadly screened against a diverse set of eight strains of bacteria, including both Gram-positive and Gram-negative as well as six disease-causing non-tuberculosis mycobacteria. Finally, compounds 16 and 17 were found to be active in macrophages infected with Mtb.

  17. Association of the mycobacterial interspersed repetitive unit with drug resistance in mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Xian-feng eCheng

    2016-03-01

    Full Text Available BackgroundRecently, Mycobacterial Interspersed Repetitive Unit (MIRU was supposed to be associated with drug resistance in M.tuberculosis (MTB. However, whether the MIRU was related to drug resistance actually was still unknown. This research was conducted to explore that association.MethodsDrug susceptibility testing was used to evaluate the drug resistance of five anti-tuberculosis drug (isoniazid, INH; rifampicin, RFP; streptomycin, SM; ethambutol, EMB; and Paminosalicylicacid, PAS.. We tested the number of the repeat unite of MIRU (Mycobacterial Interspersed Repetitive Unit locus based on PCR of miru-vntr genotyping. Then, through logistic regression, we evaluated the association between fifteen MIRU and the resistance. In addition, we explored the most suitable MIRU locus of identified MIRU loci for drug resistance through multivariate logistic regression.ResultsAmong these fifteen MIRU, we found several MIRU loci could predict the drug resistance well. For example ,ETRB and ETRC could predict INH resistance; MIRU20 was associated with EMB resistance; and QUB11a was a predictive factor of PSA. ConclusionOur results may provide candidate regions for future genetic studies and aid in the prediction for drug resistance of MTB.

  18. Drug-resistant tuberculosis

    African Journals Online (AJOL)

    The epidemic of drug-resistant tuberculosis. (DR-TB) is a public health emergency that threatens to destabilise global TB control. Although TB incidence and mortality are decreasing in several parts of the world, the overall prevalence of multidrug-resistant tuberculosis (MDR-TB) is increasing in many high-burden countries, ...

  19. Emergence of fluoroquinolone resistance among drug resistant tuberculosis patients at a tertiary care facility in Karachi, Pakistan.

    Science.gov (United States)

    Zaidi, Syed Mohammad Asad; Haseeb, Abdul; Habib, Shifa Salman; Malik, Amyn; Khowaja, Saira; SaifUllah, Nausheen; Rizvi, Nadeem

    2017-07-25

    Pakistan is classified as one of the high multi-drug resistant tuberculosis (MDR-TB) burden countries. A poorly regulated private sector, over-prescription of antibiotics and self-medication has led to augmented rates of drug-resistance in the country. Pakistan's first national anti-tuberculosis drug resistance survey identified high prevalence of fluoroquinolone resistance among MDR-TB patients. Further institutional evidence of fluoroquinolone drug-resistance can support re-evaluation of treatment regimens as well as invigorate efforts to control antibiotic resistance in the country. In this study, data for drug-susceptibility testing (DST) was retrospectively analyzed for a total of 133 patients receiving MDR-TB treatment at the Chest Department of Jinnah Postgraduate Medical Center, Karachi, Pakistan. Frequency analyses for resistance patterns was carried out and association of fluoroquinolone (ofloxacin) resistance with demographics and past TB treatment category were assessed. Within first-line drugs, resistance to isoniazid was detected in 97.7% of cases, followed by rifampicin (96.9%), pyrazinamide (86.4%), ethambutol (69.2%) and streptomycin (64.6%). Within second-line drugs, ofloxacin resistance was detected in 34.6% of cases. Resistance to ethionamide and amikacin was 2.3% and 1.6%, respectively. Combined resistance of oflaxacin and isoniazid was detected in 33.9% of cases. Age, gender and past TB treatment category were not significantly associated with resistance to ofloxacin. Fluoroquinolone resistance was observed in an alarmingly high proportion of MDR-TB cases. Our results suggest caution in their use for empirical management of MDR-TB cases and recommended treatment regimens for MDR-TB may require re-evaluation. Greater engagement of private providers and stringent pharmacy regulations are urgently required.

  20. Kinetically Controlled Drug Resistance

    DEFF Research Database (Denmark)

    Sun, Xin E.; Hansen, Bjarne Gram; Hedstrom, Lizbeth

    2011-01-01

    The filamentous fungus Penicillium brevicompactum produces the immunosuppressive drug mycophenolic acid (MPA), which is a potent inhibitor of eukaryotic IMP dehydrogenases (IMPDHs). IMPDH catalyzes the conversion of IMP to XMP via a covalent enzyme intermediate, E-XMP*; MPA inhibits by trapping E...... of resistance is not apparent. Here, we show that, unlike MPA-sensitive IMPDHs, formation of E-XMP* is rate-limiting for both PbIMPDH-A and PbIMPDH-B. Therefore, MPA resistance derives from the failure to accumulate the drug-sensitive intermediate....

  1. Increasing drug resistance of Mycobacterium tuberculosis in Sinaloa, Mexico, 1997-2005.

    Science.gov (United States)

    Zazueta-Beltran, Jorge; León-Sicairos, Nidia; Muro-Amador, Secundino; Flores-Gaxiola, Adrian; Velazquez-Roman, Jorge; Flores-Villaseñor, Hector; Canizalez-Roman, Adrian

    2011-04-01

    In 1997 the US Centers for Disease Control and Prevention (CDC) and the World Health Organization (WHO) reported high proportions of drug-resistant Mycobacterium tuberculosis in three Mexican states: Sinaloa, Baja California, and Oaxaca. In 2006, we showed that resistance to anti-tuberculosis drugs remained frequent in Sinaloa. The objectives of this study were to describe drug-resistant tuberculosis (TB) trends and to investigate the probability that patients acquire resistance to first-line anti-TB drugs on recurrence after treatment in Sinaloa. Sputum specimens were collected from patients diagnosed with TB at all the health care institutions of Sinaloa during 1997-2005. Isolates were tested for susceptibility to first-line drugs. Among 671 isolates tested from 1997 to 2002, the overall resistance rate was 34.9% (95% confidence interval (CI) 31.2-38.4) with a 1.2% increase per year (Chi-square=4.258, p=0.03906). The prevalence of multi-drug resistance (MDR) was 17.9% (95% CI 14.9-20.7) with a 1.2% increase per year (Chi-square=8.352, p=0.00385). Of 50 patients registered twice between 1997 and 2005, 15 were fully susceptible at first registration, of whom six (40%) acquired drug resistance. Of 35 cases with any drug resistance at first registration, 21 (60%) came to acquire resistance to at least one other drug. The proportion of drug-resistant TB increased during 1997-2005 in Sinaloa. Major efforts are needed to prevent the further rise and spread of drug-resistant and MDR TB. Copyright © 2011 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  2. Comparative Modulation of Levels of Oxidative Stress in the Liver of Anti-Tuberculosis Drug Treated Wistar Rats by Vitamin B12, Beta-Carotene, and Spirulina fusiformis: Role of NF-κB, iNOS, IL-6, and IL-10.

    Science.gov (United States)

    Joseph Martin, Sherry; Evan Prince, Sabina

    2017-11-01

    Isoniazid (INH) and Rifampicin (RIF) are known hepatotoxic agents. We compared the efficacy of Spirulina fusiformis and its active components vitamin B12 and beta-carotene in attenuating INH and RIF induced hepatotoxicity. We also tried to elucidate the inflammatory mechanism behind anti-tuberculosis drug induced hepatotoxicity. INH and RIF were administered to Wistar albino rats for 28 days to induce hepatotoxicity. S. fusiformis, vitamin B12, and beta-carotene were co-administered with INH and RIF and their hepatoprotective, antioxidant, and immunomodulatory roles were studied through blood and liver analysis. Changes induced by INH and RIF in antioxidants, cytokines (IL-6 and IL-10) and expression of Nuclear Factor-κB (NF-κB) and Nitric Oxide Synthase (iNOS) were also studied. Supplement treatment caused restoration of liver function parameters to normal levels along with reversal of inflammatory changes in IL-6 and IL-10 levels. Liver PCNA, iNOS, and NF-κB expression were reduced in the supplement treated tissues compared to INH and RIF treated rats as evidenced by immunohistochemistry and quantitative PCR. Correlation of IL-6 levels, PCNA, and iNOS with NF-κB showed its pivotal role in the inflammatory process. Study shows the pivotal role of NF-kB and the equivalence in antioxidant efficacy of vitamin B12 and beta-carotene compared to Spirulina fusiformis. J. Cell. Biochem. 118: 3825-3833, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Drug resistance in malaria

    Directory of Open Access Journals (Sweden)

    S C Parija

    2011-01-01

    Full Text Available Antimalarial chemotherapy is an important component of all malaria control programmes throughout the world. This is especially so in light of the fact that there are no antimalarial vaccines which are available for clinical use at present. Emergence and spread of malaria parasites which are resistant to many of the available antimalarials today is, therefore, a major cause for concern. Till date, resistance to all groups of antimalarials excluding artemisinin has been reported. In recent years, in vitro resistance to even artemisinin has been described. While resistance to antibacterial agents has come to prominence as a clinical problem in recent years, antiparasitic resistance in general and antimalarial resistance in particular has not received much attention, especially in the Indian scenario. The present review deals with commonly used antimalarial drugs and the mechanisms of resistance to them. Various methods of detecting antimalarial resistance and avoiding the same have also been dealt with. Newer parasite targets which can be used in developing newer antimalarial agents and antimalarials obtained from plants have also been mentioned.

  4. Drug resistance in cancer cells

    National Research Council Canada - National Science Library

    Mehta, Kapil, Dr; Siddik, Zahid H

    2009-01-01

    ... from disappointment with the drug resistance reversal strategies that were carried out in the 1990s using pump inhibitors to block drug resistance mediated by P-glycoprotein, product of the MDR-1 gene. However, if one takes the larger definition - multidrug resistance as simultaneous resistance to multiple structurally unrelated anticancer therapies - its...

  5. Factors associated with anti-tuberculosis medication adverse effects: a case-control study in Lima, Peru.

    Directory of Open Access Journals (Sweden)

    Kocfa Chung-Delgado

    Full Text Available BACKGROUND: Long-term exposure to anti-tuberculosis medication increases risk of adverse drug reactions and toxicity. The objective of this investigation was to determine factors associated with anti-tuberculosis adverse drug reactions in Lima, Peru, with special emphasis on MDR-TB medication, HIV infection, diabetes, age and tobacco use. METHODOLOGY AND RESULTS: A case-control study was performed using information from Peruvian TB Programme. A case was defined as having reported an anti-TB adverse drug reaction during 2005-2010 with appropriate notification on clinical records. Controls were defined as not having reported a side effect, receiving anti-TB therapy during the same time that the case had appeared. Crude, and age- and sex-adjusted models were calculated using odds ratios (OR and 95% confidence intervals (95%CI. A multivariable model was created to look for independent factors associated with side effect from anti-TB therapy. A total of 720 patients (144 cases and 576 controls were analyzed. In our multivariable model, age, especially those over 40 years (OR = 3.93; 95%CI: 1.65-9.35, overweight/obesity (OR = 2.13; 95%CI: 1.17-3.89, anemia (OR = 2.10; IC95%: 1.13-3.92, MDR-TB medication (OR = 11.1; 95%CI: 6.29-19.6, and smoking (OR = 2.00; 95%CI: 1.03-3.87 were independently associated with adverse drug reactions. CONCLUSIONS: Old age, anemia, MDR-TB medication, overweight/obesity status, and smoking history are independent risk factors associated with anti-tuberculosis adverse drug reactions. Patients with these risk factors should be monitored during the anti-TB therapy. A comprehensive clinical history and additional medical exams, including hematocrit and HIV-ELISA, might be useful to identify these patients.

  6. Antimycobacterial and Anti-Inflammatory Activities of Substituted Chalcones Focusing on an Anti-Tuberculosis Dual Treatment Approach

    Directory of Open Access Journals (Sweden)

    Thatiana Lopes Biá Ventura

    2015-05-01

    Full Text Available Tuberculosis (TB remains a serious public health problem aggravated by the emergence of M. tuberculosis (Mtb strains resistant to multiple drugs (MDR. Delay in TB treatment, common in the MDR-TB cases, can lead to deleterious life-threatening inflammation in susceptible hyper-reactive individuals, encouraging the discovery of new anti-Mtb drugs and the use of adjunctive therapy based on anti-inflammatory interventions. In this study, a series of forty synthetic chalcones was evaluated in vitro for their anti-inflammatory and antimycobacterial properties and in silico for pharmacokinetic parameters. Seven compounds strongly inhibited NO and PGE2 production by LPS-stimulated macrophages through the specific inhibition of iNOS and COX-2 expression, respectively, with compounds 4 and 5 standing out in this respect. Four of the seven most active compounds were able to inhibit production of TNF-α and IL-1β. Chalcones that were not toxic to cultured macrophages were tested for antimycobacterial activity. Eight compounds were able to inhibit growth of the M. bovis BCG and Mtb H37Rv strains in bacterial cultures and in infected macrophages. Four of them, including compounds 4 and 5, were active against a hypervirulent clinical Mtb isolate as well. In silico analysis of ADMET properties showed that the evaluated chalcones displayed satisfactory pharmacokinetic parameters. In conclusion, the obtained data demonstrate that at least two of the studied chalcones, compounds 4 and 5, are promising antimycobacterial and anti-inflammatory agents, especially focusing on an anti-tuberculosis dual treatment approach.

  7. Molecular epidemiology and drug resistance of widespread genotypes of Mycobacterium tuberculosis in northwestern Russia.

    Science.gov (United States)

    Baranov, A A; Mariandyshev, A O; Mannsåker, T; Dahle, U R; Bjune, G A

    2009-10-01

    Four administrative territories (Archangel Oblast, Murmansk Oblast, Republic of Karelia, Republic of Komi) in the northwestern federal region of Russia. To describe the genetic diversity and level of drug resistance in Mycobacterium tuberculosis isolates from new cases of pulmonary tuberculosis. A total of 176 isolates of M. tuberculosis were tested for drug susceptibility and typed with insertion sequence (IS) 6110 restriction fragment length polymorphism (RFLP) and spoligotyping. The Beijing family was found to be the most prevalent (47.1%), most frequently clustered and significantly associated with drug resistance to all first-line anti-tuberculosis drugs (isoniazid, rifampicin, ethambutol, streptomycin and pyrazinamide) and ethionamide, when compared to the T and Haarlem families of M. tuberculosis, which were also prevalent in the study population. Some RFLP clusters (4/10) included isolates that originated from patients residing in different territories, and cases infected with multiple strains of M. tuberculosis were apparently present in the collection. The M. tuberculosis population in northwestern Russia appears to be genetically diverse and geographically widespread. Although dominated by isolates assigned to the Beijing family, other families also contribute to the current epidemic, and multiple strain infections may represent a problem in many cases. Extended genetic studies should be encouraged.

  8. Changing prevalence and resistance patterns in children with drug-resistant tuberculosis in Mumbai.

    Science.gov (United States)

    Shah, Ira; Shah, Forum

    2017-05-01

    35 (55.6%), P = 0.47], ethambutol [14 (60.9%) to 38 (60.3%), P = 1.00] and streptomycin [19 (82.6%) to 50 (79.4%), P = 1.00]. Resistance to PAS remained unchanged [2 (8.7%) to 5 (7.9%), P = 1.00]. There is increasing resistance to second-line anti-tuberculosis (ATT) drugs, particularly flouroquinolones and ethionamide. Hence, there is an urgent need to avoid the use of ATT drugs for non-tuberculous infection and to increase surveillance for DR TB in adults as MDR TB in children is usually through contact with an adult with infectious MDR TB.

  9. Adequacy of anti-tuberculosis drug prescriptions in Viet Nam

    DEFF Research Database (Denmark)

    Hoa, N B; Lauritsen, J M; Rieder, H L

    2012-01-01

    -39 kg weight bracket received insufficient dosages. This was almost entirely attributable to patients at the end of the weight bracket. Nevertheless, no significant association was found between treatment failure and death, body weight and insufficient RMP dosage. CONCLUSIONS: Adherence to national...

  10. Drug-resistant spinal tuberculosis

    Directory of Open Access Journals (Sweden)

    Anil K Jain

    2018-01-01

    Full Text Available Drug-resistant spinal tuberculosis (TB is an emerging health problem in both developing and developed countries. In this review article, we aim to define management protocols for suspicion, diagnosis, and treatment of such patients. Spinal TB is a deep-seated paucibacillary lesion, and the demonstration of acid-fast bacilli on Ziehl-Neelsen staining is possible only in 10%–30% of cases. Drug resistance is suspected in patients showing the failure of clinicoradiological improvement or appearance of a fresh lesion of osteoarticular TB while on anti tubercular therapy (ATT for a minimum period of 5 months. The conventional culture of Mycobacterium tuberculosis remains the gold standard for both bacteriological diagnosis and drug sensitivity testing (DST; however, the high turn around time of 2–6 weeks for detection with added 3 weeks for DST is a major limitation. To overcome this problem, rapid culture methods and molecular methods have been introduced. From a public health perspective, reducing the period between diagnosis and treatment initiation has direct benefits for both the patient and the community. For all patients of drug-resistant spinal TB, a complete Drug-O-Gram should be prepared which includes details of all drugs, their doses, and duration. Patients with confirmed multidrug-resistant TB strains should receive a regimen with at least five effective drugs, including pyrazinamide and one injectable. Patients with resistance to additional antitubercular drugs should receive individualized ATT as per their DST results.

  11. Drug-resistant Spinal Tuberculosis.

    Science.gov (United States)

    Jain, Anil K; Jaggi, Karan Raj; Bhayana, Himanshu; Saha, Rumpa

    2018-01-01

    Drug-resistant spinal tuberculosis (TB) is an emerging health problem in both developing and developed countries. In this review article, we aim to define management protocols for suspicion, diagnosis, and treatment of such patients. Spinal TB is a deep-seated paucibacillary lesion, and the demonstration of acid-fast bacilli on Ziehl-Neelsen staining is possible only in 10%-30% of cases. Drug resistance is suspected in patients showing the failure of clinicoradiological improvement or appearance of a fresh lesion of osteoarticular TB while on anti tubercular therapy (ATT) for a minimum period of 5 months. The conventional culture of Mycobacterium tuberculosis remains the gold standard for both bacteriological diagnosis and drug sensitivity testing (DST); however, the high turn around time of 2-6 weeks for detection with added 3 weeks for DST is a major limitation. To overcome this problem, rapid culture methods and molecular methods have been introduced. From a public health perspective, reducing the period between diagnosis and treatment initiation has direct benefits for both the patient and the community. For all patients of drug-resistant spinal TB, a complete Drug-O-Gram should be prepared which includes details of all drugs, their doses, and duration. Patients with confirmed multidrug-resistant TB strains should receive a regimen with at least five effective drugs, including pyrazinamide and one injectable. Patients with resistance to additional antitubercular drugs should receive individualized ATT as per their DST results.

  12. EFFICIENCY OF INTEGRAL THERAPY AND POTENTIAL SIDE EFFECTS WHEN TREATING RESPIRATORY TUBERCULOSIS WITH MULTIPLE DRUG RESISTANCE

    Directory of Open Access Journals (Sweden)

    M. V. Pavlova

    2015-01-01

    Full Text Available Treatment of multiple drug resistant tuberculosis presents a serious challenge. Use of perchlozon (thioureidoiminomethylpyridini um in the combination with the other five anti-tuberculosis drugs during 6 months of treatment allowed achieving cessation of bacillary excretion and X-ray improvement in all patients from the main group. Monitoring and evaluation of adverse events have not detected any confident difference in the number of adverse events apart from endocrine and allergic ones while taking perchlozon in the combination with other drugs. All adverse events were minor and moderate as regards severity degree and were managed by symptomatic treatment and did not cause cancellation of the drug. The obtained results will promote achieving the high tuberculosis treatment effciency by the end of the main chemotherapy course and this will require further investigation.

  13. Antimicrobial (Drug) Resistance

    Science.gov (United States)

    ... causes of resistance. Learn more about research and investigations currently underway . Clinical Research Clinical research projects related ... Interest for NIAID’s Small Business Program Division of AIDS High-Priority Areas of Interest Division of Allergy, ...

  14. GENOTYPES OF EXTENSIVELY DRUG-RESISTANT MYCOBACTERIUM TUBERCULOSIS STRAINS: CLINICAL AND EPIDEMIOLOGICAL FEATURES OF PULMONARY TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    N. R. Vasilieva

    2016-01-01

    Full Text Available Here, we present clinical and epidemiological analysis of 85 Russian cases of pulmonary tuberculosis caused by an extensively drug-resistant M. tuberculosis strains. As defined by spoligotyping, M. tuberculosis strains belonged to the following genetic families: Beijing — 81.2%, which significantly exceeds the prevalence rate of this genotype (50% in M. tuberculosis population across Russia; LAM — 14.1% and Ural — 4.7%. Among patients infected with Beijing strains prevailed alcohol and tobacco abused males; the main source of infection were family and penitentiary contacts. This group of patients has been characterized by a variety of clinical forms of lung disease with the prevalence of fibro-cavernous tuberculosis and a significant proportion of patients with interrupted treatment. Regardless of the M. tuberculosis strain genotype, the extensively drug-resistant pulmonary tuberculosis is characterized by severe course leading to the chronic disease with the relapses and poor response to anti-tuberculosis treatment, requiring repeated hospitalizations and surgical treatments.

  15. Computational Studies of Drug Resistance

    DEFF Research Database (Denmark)

    da Silva Martins, João Miguel

    Drug resistance has been an increasing problem in patient treatment and drug development. Starting in the last century and becoming a major worry in the medical and scienti c communities in the early part of the current millennium, major research must be performed to address the issues of viral...... is of the utmost importance in developing better and less resistance-inducing drugs. A drug's in uence can be characterized in many diff erent ways, however, and the approaches I take in this work re ect those same different in uences. This is what I try to achieve in this work, through seemingly unrelated...... approaches that come together in the study of drug's and their in uence on proteins and vice-versa. In part I, I aim to understand through combined theoretical ensemble analysis and free energy calculations the e ects mutations have over the binding anity and function of the M2 proton channel. This research...

  16. Peran Mikronutrien di dalam Perbaikan Kualitas Imunitas Penderita Multi Drug Resisten Tuberkulosis (Mdr-tb)

    OpenAIRE

    Thaha, Ida Leida M

    2010-01-01

    Tuberculosis (TB) is a disease very closely with the lack of nutrition. In the 21st century tuberculosis is is still the most frequent underlying cause of wasting worldwide. The chronic diseases such as pulmonary tuberculosis generally decreased nutritional status, nutritional status can even be worse. These problems will heightened when the cases of pulmo-nary tuberculosis patients resistant to anti-tuberculosis drugs. one of them is a problem in pa-tients who Multidrug resistant tuberculosi...

  17. Polyneuropathy, anti-tuberculosis treatment and the role of pyridoxine in the HIV/AIDS era: a systematic review.

    Science.gov (United States)

    van der Watt, J J; Harrison, T B; Benatar, M; Heckmann, J M

    2011-06-01

    Tuberculosis (TB) is increasing in incidence in certain parts of the world, particularly where there is a co-epidemic of human immunodeficiency virus/acquired immune-deficiency syndrome (HIV/AIDS), and it is associated with a significant degree of morbidity and mortality. One of the most common complications of anti-tuberculosis treatment is the development of a painful isoniazid (INH) associated polyneuropathy (PN), which is preventable with adequate pyridoxine supplementation. As PN is also the most frequent neurological complication associated with HIV infection, subjects who are HIV and TB co-infected may be at increased risk of developing PN. In this review, we explore current knowledge of anti-tuberculosis drug associated PN focusing on INH and its relationship to pyridoxine, as well as the additional impact of antiretroviral treatment and TB-HIV co-infection. It is evident that guidelines established for the prevention and treatment of this problem differ between industrialised and developing countries, and that further research is needed to define the optimum dosing of pyridoxine supplementation in populations where there is a significant burden of TB and HIV.

  18. Do pulmonary findings of granulomatosis with polyangiitis respond to anti-tuberculosis treatment?

    Science.gov (United States)

    Cansu, Döndü Üsküdar; Özbülbül, Nilgün Işıksalan; Akyol, Gülsüm; Arık, Deniz; Korkmaz, Cengiz

    2018-04-09

    Granulomatosis with polyangiitis (GPA) involves upper and lower respiratory tracts and kidneys. Lung involvement is among the most important organ involvements in GPA. GPA's lung involvement might be confused with other granulomatous conditions with lung involvement. In this report, we presented clinical features of two cases with GPA who had been diagnosed as tuberculosis (TBC) and well treated with anti-tuberculosis (anti-TBC) drugs. However, one of two cases had ear-nose-throat (ENT) manifestations before the diagnosis of TBC and her extrapulmonary findings related with GPA have added to clinical features in the following years. In the second case, the manifestations of GPA appeared after 13 months of anti-TBC treatment. We speculated that lung involvement in these cases may be due to GPA rather than TBC. Our aim was to highlight difficulties in the differential diagnosis between GPA and TBC and suggest the possible beneficial effect of anti-TBC drugs on the lung involvement due to GPA in light of the literature data.

  19. Clonal expansion of Mycobacterium tuberculosis isolates and coexisting drug resistance in patients newly diagnosed with pulmonary tuberculosis in Hanoi, Vietnam.

    Science.gov (United States)

    Hung, Nguyen Van; Ando, Hiroki; Thuy, Tran Thi-Bich; Kuwahara, Tomoko; Hang, Nguyen Thi-Le; Sakurada, Shinsaku; Thuong, Pham Huu; Lien, Luu Thi; Keicho, Naoto

    2013-11-05

    Newly diagnosed patients without anti-tuberculosis (TB) treatment histories have not often undergone drug susceptibility testing (DST), but have received the standard treatment regimen without information about their DST profiles in many countries with inadequate resources. We collected 346 clinical isolates from previously untreated patients with smear-positive active TB in Hanoi, the capital of Vietnam. Of these, 339 were tested for susceptibility to four first-line anti-TB drugs, including isoniazid (INH), rifampicin (RMP), streptomycin (SM), and ethambutol (EMB), using the proportion method. A pyrazinamidase (PZase) test was used to assess pyrazinamide (PZA) resistance. Results of the culture-based drug susceptibility tests were confirmed by those from reverse hybridization-based line probe assays (LiPAs) that detected mutations associated with RMP, INH, PZA, and fluoroquinolone (FQ) resistance. To investigate a diversity of these strains, IS6110-probed restriction fragment length polymorphisms (RFLPs) were analyzed. Nucleotide sequences for furA-katG and fabG1-inhA operons, transcription units responsible for INH resistance, were also determined. Of the isolates tested, 127 (37.5%) were resistant to at least one of the four drugs, which included 93 (27.4%) isolates that were resistant to INH. RFLP analysis identified four clusters defined by similarity of the band patterns, which accounted for 46.1% of the tested isolates. Among the clustered isolates, 37.7% were resistant to INH, most of which (85.4%) carried a g944c mutation, which causes an S315T amino acid substitution, in the katG gene. Our results suggest that drug-resistant strains, particularly those with INH resistance characterized by a single mutation, S315T, are spreading in Hanoi, Vietnam. When RMP resistance is combined with this setting, patients are not easily cured by conventional short-term treatment. We will need to carefully monitor these trends and search for the origins and transmission

  20. Extensively Drug-Resistant TB

    Centers for Disease Control (CDC) Podcasts

    2016-12-16

    Dr. Charlotte Kvasnovsky, a surgery resident and Ph.D. candidate in biostatistics, discusses various types of drug resistance in TB patients in South Africa.  Created: 12/16/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/16/2016.

  1. Initial drug resistance in India

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Initial drug resistance in India. There is gradual increase in primary MDR all over India : Pondi= Pondicherry 1985; Bangalore =1986; Jaipur = 1991; Jaipur =2000. Overall the MDR is less than 3% (TRC studies).

  2. Drug-resistant Escherichia coli, Rural Idaho

    OpenAIRE

    Hannah, Elizabeth L.; Angulo, Frederick J.; Johnson, James R.; Haddadin, Bassam; Williamson, Jacquelyn; Samore, Matthew H.

    2005-01-01

    Stool carriage of drug-resistant Escherichia coli in home-living residents of a rural community was examined. Carriage of nalidixic acid–resistant E. coli was associated with recent use of antimicrobial agents in the household. Household clustering of drug-resistant E. coli was observed. Most carriers of drug-resistant E. coli lacked conventional risk factors.

  3. Bioautography with TLC-MS/NMR for Rapid Discovery of Anti-tuberculosis Lead Compounds from Natural Sources.

    Science.gov (United States)

    Grzelak, Edyta M; Hwang, Changhwa; Cai, Geping; Nam, Joo-Won; Choules, Mary P; Gao, Wei; Lankin, David C; McAlpine, James B; Mulugeta, Surafel G; Napolitano, José G; Suh, Joo-Won; Yang, Seung Hwan; Cheng, Jinhua; Lee, Hanki; Kim, Jin-Yong; Cho, Sang-Hyun; Pauli, Guido F; Franzblau, Scott G; Jaki, Birgit U

    2016-04-08

    While natural products constitute an established source of lead compounds, the classical iterative bioassay-guided isolation process is both time- and labor-intensive and prone to failing to identify active minor constituents. (HP)TLC-bioautography-MS/NMR, which combines cutting-edge microbiological, chromatographic, and spectrometric technologies, was developed to accelerate anti-tuberculosis (TB) drug discovery from natural sources by acquiring structural information at a very early stage of the isolation process. Using the avirulent, bioluminescent Mtb strain mc 2 7000 luxABCDE, three variations of bioautography were evaluated and optimized for sensitivity in detecting anti-TB agents, including established clinical agents and new leads with novel mechanisms of action. Several exemplary applications of this approach to microbial extracts demonstrate its potential as a routine method in anti-TB drug discovery from natural sources.

  4. Preparation, characterization, and in vitro cytotoxicity evaluation of a novel anti-tuberculosis reconstruction implant.

    Directory of Open Access Journals (Sweden)

    JunFeng Dong

    Full Text Available Reconstruction materials currently used in clinical for osteoarticular tuberculosis (TB are unsatisfactory due to a variety of reasons. Rifampicin (RFP is a well-known and highly effective first-line anti-tuberculosis (anti-TB drug. Poly-DL-lactide (PDLLA and nano-hydroxyapatite (nHA are two promising materials that have been used both for orthopedic reconstruction and as carriers for drug release. In this study we report the development of a novel anti-TB implant for osteoarticular TB reconstruction using a combination of RFP, PDLLA and nHA.RFP, PDLLA and nHA were used as starting materials to produce a novel anti-TB activity implant by the solvent evaporation method. After manufacture, the implant was characterized and its biodegradation and drug release profile were tested. The in vitro cytotoxicity of the implant was also evaluated in pre-osteoblast MC3T3-E1 cells using multiple methodologies.A RFP/PDLLA/nHA composite was successfully synthesized using the solvent evaporation method. The composite has a loose and porous structure with evenly distributed pores. The production process was steady and no chemical reaction occurred as proved by Fourier Transform Infrared Spectroscopy (FTIR and X-Ray Diffraction (XRD. Meanwhile, the composite blocks degraded and released drug for at least 12 weeks. Evaluation of in vitro cytotoxicity in MC3T3-E1 cells verified that the synthesized composite blocks did not affect cell growth and proliferation.It is feasible to manufacture a novel bioactive anti-TB RFP/PDLLA/nHA composite by the solvent evaporation method. The composite blocks showed appropriate properties such as degradation, drug release and biosafety to MC3T3-E1 cells. In conclusion, the novel composite blocks may have great potential for clinical applications in repairing bone defects caused by osteoarticular TB.

  5. Attenuation of anti-tuberculosis therapy induced hepatotoxicity by Spirulina fusiformis, a candidate food supplement.

    Science.gov (United States)

    Martin, Sherry Joseph; Baskaran, Udhaya Lavinya; Vedi, Mahima; Sabina, Evan Prince

    2014-12-01

    Therapy using Isoniazid (INH) and Rifampicin (RIF) leads to induction of hepatotoxicity in some individuals undergoing anti-tuberculosis treatment. In this study, we assessed the effect of Spirulina fusiformis on INH and RIF induced hepatotoxicity in rats compared with hepatoprotective drug Silymarin. Induction of hepatotoxicity was measured by changes in the liver marker enzymes (aspartate transaminase, alanine transaminase, and alkaline phosphatase). The antioxidant status was also analyzed in liver tissue homogenate and plasma by measurement of superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, and lipid peroxidation levels. We also aimed to study the binding and interactions of the transcription factors Pregnane X Receptor (PXR) and Farnesoid X Receptor (FXR) with INH, RIF, and representative active compounds of Spirulina fusiformis by in silico methods. The administration of INH and RIF resulted in significant (p Spirulina fusiformis was seen to protect the parameters from significant changes upon challenge with INH and RIF in a dose-dependent manner. This was corroborated by histological examination of the liver. The results of the in silico analyses further support the wet lab results.

  6. Drug Resistance in Cancer: An Overview

    Science.gov (United States)

    Housman, Genevieve; Byler, Shannon; Heerboth, Sarah; Lapinska, Karolina; Longacre, Mckenna; Snyder, Nicole; Sarkar, Sibaji

    2014-01-01

    Cancers have the ability to develop resistance to traditional therapies, and the increasing prevalence of these drug resistant cancers necessitates further research and treatment development. This paper outlines the current knowledge of mechanisms that promote or enable drug resistance, such as drug inactivation, drug target alteration, drug efflux, DNA damage repair, cell death inhibition, and the epithelial-mesenchymal transition, as well as how inherent tumor cell heterogeneity plays a role in drug resistance. It also describes the epigenetic modifications that can induce drug resistance and considers how such epigenetic factors may contribute to the development of cancer progenitor cells, which are not killed by conventional cancer therapies. Lastly, this review concludes with a discussion on the best treatment options for existing drug resistant cancers, ways to prevent the formation of drug resistant cancers and cancer progenitor cells, and future directions of study. PMID:25198391

  7. DRUG RESISTANCE IN HELICOBACTER PYLORI

    Directory of Open Access Journals (Sweden)

    Júlia Silveira VIANNA

    Full Text Available ABSTRACT Background Helicobacter pylori has a worldwide distribution and is associated with the pathogenesis of various diseases of the digestive system. Treatment to eradicate this microorganism involves the use of a combination of antimicrobials, such as amoxicillin, metronidazole, clarithromycin, and levofloxacin, combined with proton pump inhibitors. Although the current therapy is effective, a high rate of treatment failure has been observed, mainly because of the acquisition of point mutations, one of the major resistance mechanisms developed by H. pylori. This phenomenon is related to frequent and/or inappropriate use of antibiotics. Conclusion This review reported an overview of the resistance to the main drugs used in the treatment of H. pylori, confirming the hypothesis that antibacterial resistance is a highly local phenomenon and genetic characteristics of a given population can influence which therapy is the most appropriate.

  8. Drug Resistance in Visceral Leishmaniasis

    Directory of Open Access Journals (Sweden)

    Helena C. Maltezou

    2010-01-01

    Full Text Available Visceral leishmaniasis remains a public health problem worldwide. This illness was included by the World Health Organization in the list of neglected tropical diseases targeted for elimination by 2015. The widespread emergence of resistance to pentavalent antimonials in India where half cases occur globally and the unavailability of a vaccine in clinical use constitute major obstacles in achieving this goal. The last decade new antileishmanials became available, including the oral agent miltefosine. However, in poor endemic countries their wide use was curtailed because of the high costs, and also due to concerns of toxicity and emergence of resistance. Various mechanisms of antileishmanial resistance were identified recently in field isolates. Their elucidation will boost the design of new drugs and the molecular surveillance of resistance. Combination regimens should be evaluated in large trials. Overall, the development of antileishmanials has been generally slow; new drugs are needed. In order to control visceral leishmaniasis worldwide, treatment advances should become affordable in the poorest countries, where they are needed most.

  9. Quorum sensing and microbial drug resistance.

    Science.gov (United States)

    Chen, Yu-fan; Liu, Shi-yin; Liang, Zhi-bin; Lv, Ming-fa; Zhou, Jia-nuan; Zhang, Lian-hui

    2016-10-20

    Microbial drug resistance has become a serious problem of global concern, and the evolution and regulatory mechanisms of microbial drug resistance has become a hotspot of research in recent years. Recent studies showed that certain microbial resistance mechanisms are regulated by quorum sensing system. Quorum sensing is a ubiquitous cell-cell communication system in the microbial world, which associates with cell density. High-density microbial cells produce sufficient amount of small signal molecules, activating a range of downstream cellular processes including virulence and drug resistance mechanisms, which increases bacterial drug tolerance and causes infections on host organisms. In this review, the general mechanisms of microbial drug resistance and quorum-sensing systems are summarized with a focus on the association of quorum sensing and chemical signaling systems with microbial drug resistance mechanisms, including biofilm formation and drug efflux pump. The potential use of quorum quenching as a new strategy to control microbial resistance is also discussed.

  10. Suppression of Drug Resistance in Dengue Virus

    Science.gov (United States)

    Mateo, Roberto; Nagamine, Claude M.

    2015-01-01

    ABSTRACT Dengue virus is a major human pathogen responsible for 400 million infections yearly. As with other RNA viruses, daunting challenges to antiviral design exist due to the high error rates of RNA-dependent RNA synthesis. Indeed, treatment of dengue virus infection with a nucleoside analog resulted in the expected genetic selection of resistant viruses in tissue culture and in mice. However, when the function of the oligomeric core protein was inhibited, no detectable selection of drug resistance in tissue culture or in mice was detected, despite the presence of drug-resistant variants in the population. Suppressed selection of drug-resistant virus correlated with cooligomerization of the targeted drug-susceptible and drug-resistant core proteins. The concept of “dominant drug targets,” in which inhibition of oligomeric viral assemblages leads to the formation of drug-susceptible chimeras, can therefore be used to prevent the outgrowth of drug resistance during dengue virus infection. PMID:26670386

  11. The prevalence and factors associated for anti-tuberculosis treatment non-adherence among pulmonary tuberculosis patients in public health care facilities in South Ethiopia: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Tadele Teshome Woimo

    2017-03-01

    Full Text Available Abstract Background Evidence exists pointing out how non-adherence to treatment remains a major hurdle to efficient tuberculosis control in developing countries. Many tuberculosis (Tb patients do not complete their six-month course of anti-tuberculosis medications and are not aware of the importance of sputum re-examinations, thereby putting themselves at risk of developing multidrug-resistant and extensively drug-resistant forms of tuberculosis and relapse. However, there is a dearth of publications about non-adherence towards anti-Tb medication in these settings. We assessed the prevalence of and associated factors for anti-Tb treatment non-adherence in public health care facilities of South Ethiopia. Methods This was a cross-sectional survey using both quantitative and qualitative methods. The quantitative study was conducted among 261 Tb patients from 17 health centers and one general hospital. The qualitative aspect included an in-depth interview of 14 key informants. For quantitative data, the analysis of descriptive statistics, bivariate and multiple logistic regression was carried out, while thematic framework analysis was applied for the qualitative data. Results The prevalence of non-adherence towards anti-Tb treatment was 24.5%. Multiple logistic regression analysis demonstrated that poor knowledge towards tuberculosis and its treatment (AOR = 4.6, 95%CI: 1.4-15.6, cost of medication other than Tb (AOR = 4.7, 95%CI: 1.7-13.4, having of health information at every visit (AOR = 3, 95% CI: 1.1-8.4 and distance of DOTS center from individual home (AOR = 5.7, 95%CI: 1.9-16.8 showed statistically significant association with non-adherence towards anti- tuberculosis treatment. Qualitative study also revealed that distance, lack of awareness about importance of treatment completion and cost of transportation were the major barriers for adherence. Conclusions A quarter of Tb patients interrupted their treatment due to knowledge

  12. Antifolate drug resistance: Novel mutations and haplotype ...

    Indian Academy of Sciences (India)

    N P Sarmah

    2017-09-27

    Sep 27, 2017 ... Malaria is a major public health concern in Northeast India with a preponderance of drug-resistant strains. Until recently the partner drug for artemisinin combination therapy (ACT) was sulphadoxine pyrimethamine (SP). Antifolate drug resistance has been associated with the mutations at dihydropteroate ...

  13. [THE IMPORTANCE OF PROPER ADHERENCE TO ANTI-TUBERCULOSIS TREATMENT].

    Science.gov (United States)

    Guix Comellas, Eva Maria; Force Sanmartín, Enriqueta; Rozas Quesada, Librada; Noguera Julian, Antoni

    2015-01-01

    Tuberculosis (TB) remains a major cause of morbidity and mortality in many countries. This involves a serious public health problem. Adherence to TB treatment is a cornerstone for the control of this disease. Globally, there are major differences between countries as to the prevalence, incidence and mortality tuberculosis. Spain has a incidence rate higher than that of other countries in their socio-economic background. Treatment is prolonged, with significant side effects. Adherence to treatment is essential to be effective, prevent drug resistance and disease control. Children are more vulnerable to developing the disease than the rest of the population. Several direct and indirect methods measure the adherence to treatment, but none is ideal. Some socio-demographic risk factors that influence on adherence are described (immigration...). In addition, there are another more specific child factors to have been add. The literature reviewed highlights the importance of proper monitoring of patients to increase adherence to TB treatment. The role of the nurse and their interventions are very important.

  14. Leading Antimicrobial Drug-Resistant Diseases

    Science.gov (United States)

    ... supporting research on several organisms that have developed resistance to antimicrobial drug treatment. The institute manages a research portfolio of grants aimed at the problem of antimicrobial resistance and hospital-acquired infections. Here is a list ...

  15. Drug-resistant tuberculosis in Sindh

    International Nuclear Information System (INIS)

    Almani, S.A.; Memon, N.M.; Qureshi, A.F.

    2002-01-01

    Objective: To assess the prevalence of primary and secondary drug resistance amongst the clinical isolates of M.tuberculosis, to identify risk factors and how to overcome this problem. Design: A case series of 50 indoor patients with sputum smear-positive pulmonary tuberculosis. Place and duration of Study: Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, Sindh, (Pakistan) from January 1999 to December 2000. Patients and methods: Four first line anti-tuberculous drugs rifampicine, ethambutol and streptomycin were tested for sensitivity pattern. Results: Twelve (26.66%) were sensitive to all four drugs, 12(26.66%) were resistant to one drug, 14 (31.11%) were resistant to two drugs, 2 (4.44%) were resistant to three drugs, and 5(11.11%) were resistant to all four drugs. Resistance to isoniazid was the most common in 27 cases (60%) with primary resistance in 6(13.33%) and secondary resistance in 21(46.66%), followed by resistance to streptomycin in 17 cases (37.77%) with primary resistance in 5(11.11%) and secondary resistance in 12 (26.66%). Resistance to ethambutol in 10 cases (22.22%) and rifampicine in 11 (24.44%) and all cases were secondary. Similarly multi-drugs resistance (MRD) TB was found in 11(24.44%) isolates. Conclusion: This study showed high prevalence of drug resistance among clinical isolates of M. tuberculosis. Their is a need to establish centers at number of places with adequate facilities for susceptibility testing so that the resistant pattern could be ascertained and treatment regimens tailored accordingly. (author)

  16. Clinical Management of HIV Drug Resistance

    Science.gov (United States)

    Cortez, Karoll J.; Maldarelli, Frank

    2011-01-01

    Combination antiretroviral therapy for HIV-1 infection has resulted in profound reductions in viremia and is associated with marked improvements in morbidity and mortality. Therapy is not curative, however, and prolonged therapy is complicated by drug toxicity and the emergence of drug resistance. Management of clinical drug resistance requires in depth evaluation, and includes extensive history, physical examination and laboratory studies. Appropriate use of resistance testing provides valuable information useful in constructing regimens for treatment-experienced individuals with viremia during therapy. This review outlines the emergence of drug resistance in vivo, and describes clinical evaluation and therapeutic options of the individual with rebound viremia during therapy. PMID:21994737

  17. Direct Detection by the Xpert MTB/RIF Assay and Characterization of Multi and Poly Drug-Resistant Tuberculosis in Guinea-Bissau, West Africa.

    Directory of Open Access Journals (Sweden)

    Paulo Rabna

    Full Text Available This study aimed to evaluate the usefulness of the Xpert MTB/RIF assay for the rapid direct detection of M. tuberculosis complex (MTBC strains and rifampicin resistance associated mutations in a resource-limited setting such as Guinea-Bissau and its implications in the management of tuberculosis (TB and drug resistant tuberculosis, complementing the scarce information on resistance and genotypic diversity of MTBC strains in this West African country.This cross-sectional prospective study included 100 consecutive TB patients with positive acid-fast smears at two months of anti-tuberculosis treatment or in a re-treatment situation, between May and December 2012. Resistance to rifampicin was detected using the GeneXpert system and the Xpert MTB/RIF assay. MTBC isolates obtained with the BACTEC MGIT 960 system were tested for susceptibility to first- and second-line anti-tuberculosis drugs. Overall, the prevalence of multidrug-resistant tuberculosis (MDR-TB was found to be 9 cases. Of these, 67% (6 patients of confirmed MDR-TB cases had no past history of TB treatment and 33% (3 patients were previously treated cases. Extensively drug-resistant TB was not found. Molecular typing of the MDR-TB strains revealed recent transmission patterns of imported MDR strains.The Xpert MTB/RIF assay was reliable for the detection of rifampicin resistant MTBC strains directly from sputum samples of patients undergoing first-line treatment for two months, being more trustworthy than the simple presence of acid-fast bacilli in the smear. Its implementation is technically simple, does not require specialized laboratory infrastructures and is suitable for resource-limited settings when a regular source of electricity and maintenance is available as well as financial and operation sustainability is guaranteed by the health authorities. A high prevalence of MDR-TB among patients at risk of MDR-TB after two months of first-line treatment was found, in support of the WHO

  18. Preventing drug resistance in severe influenza

    Science.gov (United States)

    Dobrovolny, Hana; Deecke, Lucas

    2015-03-01

    Severe, long-lasting influenza infections are often caused by new strains of influenza. The long duration of these infections leads to an increased opportunity for the emergence of drug resistant mutants. This is particularly problematic for new strains of influenza since there is often no vaccine, so drug treatment is the first line of defense. One strategy for trying to minimize drug resistance is to apply periodic treatment. During treatment the wild-type virus decreases, but resistant virus might increase; when there is no treatment, wild-type virus will hopefully out-compete the resistant virus, driving down the number of resistant virus. We combine a mathematical model of severe influenza with a model of drug resistance to study emergence of drug resistance during a long-lasting infection. We apply periodic treatment with two types of antivirals: neuraminidase inhibitors, which block release of virions; and adamantanes, which block replication of virions. We compare the efficacy of the two drugs in reducing emergence of drug resistant mutants and examine the effect of treatment frequency on the emergence of drug resistant mutants.

  19. Drug Resistance of Mycobacterium tuberculosis Complex among ...

    African Journals Online (AJOL)

    BACKGROUND: In Burkina Faso, there is no recent data about the level of drug resistance in Mycobacterium tuberculosis strains among newly diagnosed tuberculosis cases. OBJECTIVE: To provide an update of the primary drug resistance of mycobacterium tuberculosis among patients in Burkina faso. METHODS: ...

  20. Tuberculosis drug resistance in the Western Cape

    African Journals Online (AJOL)

    Objectives. Drug resistance is a serious problem in the treatment of tuberculosis and a threat to successful tuberculosis control programmes. Local health workers have expressed concern that the increasing tuberculosis epidemic in the Western Cape is partly attributable to drug resistance. The aim of this study was to ...

  1. [Change in drug resistance of Staphylococcus aureus].

    Science.gov (United States)

    Lin, Yan; Liu, Yan; Luo, Yan-Ping; Liu, Chang-Ting

    2013-11-01

    To analyze the change in drug resistance of Staphylococcus aureus (SAU) in the PLA general hospital from January 2008 to December 2012, and to provide solid evidence to support the rational use of antibiotics for clinical applications. The SAU strains isolated from clinical samples in the hospital were collected and subjected to the Kirby-Bauer disk diffusion test. The results were assessed based on the 2002 American National Committee for Clinical Laboratory Standards (NCCLS) guidelines. SAU strains were mainly isolated from sputum, urine, blood and wound excreta and distributed in penology, neurology wards, orthopedics and surgery ICU wards. Except for glycopeptide drugs, methicillin-resistant Staphylococcus aureus (MRSA) had a higher drug resistance rate than those of the other drugs and had significantly more resistance than methicillin-sensitive Staphylococcus aureus (MSSA) (P resistance, we discovered a gradual increase in drug resistance to fourteen test drugs during the last five years. Drug resistance rate of SAU stayed at a higher level over the last five years; moreover, the detection ratio of MRSA keeps rising year by year. It is crucial for physicians to use antibiotics rationally and monitor the change in drug resistance in a dynamic way.

  2. Extensively Drug-Resistant Tuberculosis, Burkina Faso

    OpenAIRE

    Saleri, Nuccia; Badoum, Gisèle; Ouedraogo, Martial; Dembélé, Sary M.; Nacanabo, Rachel; Bonkoungou, Victor; Cirillo, Daniela; Pinsi, Gabriele; Matteelli, Alberto

    2010-01-01

    Because data from countries in Africa are limited, we measured the proportion of extensively drug-resistant (XDR) tuberculosis (TB) cases among TB patients in Burkina Faso for whom retreatment was failing. Of 34 patients with multidrug-resistant TB, 2 had an XDR TB strain. Second-line TB drugs should be strictly controlled to prevent further XDR TB increase.

  3. Reverse Transcriptase Inhibitors Drug Resistance Mutations in Drug ...

    African Journals Online (AJOL)

    Objective: To evaluate the extent of HIV-1 drug resistance among drug naïve Kenyan individuals. Design: Cross-sectional study. Setting: Kenya Medical Research Institute HIV laboratory Nairobi, Kenya. Subjects: A total of seventy eight HIV-1 positive drug naïve subjects randomised from five Kenyan provincial hospitals ...

  4. Identification of a novel class of quinoline-oxadiazole hybrids as anti-tuberculosis agents.

    Science.gov (United States)

    Jain, Puneet P; Degani, Mariam S; Raju, Archana; Anantram, Aarti; Seervi, Madhav; Sathaye, Sadhana; Ray, Muktikanta; Rajan, M G R

    2016-01-15

    A series of novel quinoline-oxadiazole hybrid compounds was designed based on stepwise rational modification of the lead molecules reported previously, in order to enhance bioactivity and improve druglikeness. The hybrid compounds synthesized were screened for biological activity against Mycobacterium tuberculosis H37Rv and for cytotoxicity in HepG2 cell line. Several of the hits exhibited good to excellent anti-tuberculosis activity and selectivity, especially compounds 12m, 12o and 12p, showed minimum inhibitory concentration values500. The results of this study open up a promising avenue that may lead to the discovery of a new class of anti-tuberculosis agents. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. In vitro and in vivo study of anti-tuberculosis effect of extracts isolated from Ranunculi Ternati Radix.

    Science.gov (United States)

    Zhang, Lin; Li, Ruyi; Li, Mengzhu; Qi, Zhongjie; Tian, Jingkui

    2015-01-05

    This study was designed to investigate the anti-tuberculosis activities of Ranunculi Ternati Radix extracts to demonstrate the effect of active part of Ranunculi Ternati Radix, which could be enriched through macroporous resin, on mycobacterium tuberculosis infections. In vitro, the anti-tuberculosis activity of its water extract (WE), 70% ethanol extract (EE), water eluted part of EE from D101 macroporous resin (WEPMR), 70% ethanol eluted part of EE from D101 macroporous resin (EEPMR) was conducted using H37Rv. Then EEPMR of better anti-tuberculosis activity was chosen to carry out anti-tuberculosis activity test against MDR2314-2 and XDR1220. In vivo, the anti-tuberculosis activities of EEPMR, Ranunculi Ternati Capsules and Isoniazid alone or in combination with different doses were evaluated on mouse model infected H37Rv. In vitro, EEPMR had inhibitory effect on H37Rv, MDR2314-2 and XDR1220. In vivo study, both medium and high dose of EEPMR alone had therapeutic effect on chronic tuberculosis in mouse. No acute toxicity was identified of EEPMR at a dose of 12.0 g·kg-1. EEPMR possessed better anti-tuberculosis effects than other extracts and Radix Ranunculi Ternati Capsules. This supported the use of macroporous resin to enrich the active part of Ranunculi Ternati Radix to cure mycobacterium tuberculosis infections.

  6. Outcomes of HIV-infected versus HIV-non-infected patients treated for drug-resistance tuberculosis: Multicenter cohort study.

    Science.gov (United States)

    Bastard, Mathieu; Sanchez-Padilla, Elisabeth; du Cros, Philipp; Khamraev, Atadjan Karimovich; Parpieva, Nargiza; Tillyashaykov, Mirzagaleg; Hayrapetyan, Armen; Kimenye, Kamene; Khurkhumal, Shazina; Dlamini, Themba; Perez, Santiago Fadul; Telnov, Alex; Hewison, Cathy; Varaine, Francis; Bonnet, Maryline

    2018-01-01

    The emergence of resistance to anti-tuberculosis (DR-TB) drugs and the HIV epidemic represent a serious threat for reducing the global burden of TB. Although data on HIV-negative DR-TB treatment outcomes are well published, few data on DR-TB outcomes among HIV co-infected people is available despite the great public health importance. We retrospectively reported and compared the DR-TB treatment outcomes of HIV-positive and HIV-negative patients treated with an individualized regimen based on WHO guidelines in seven countries: Abkhazia, Armenia, Colombia, Kenya, Kyrgyzstan, Swaziland and Uzbekistan. Of the 1,369 patients started DRTB treatment, 809 (59.1%) were multi-drug resistant (MDR-TB) and 418 (30.5%) were HIV-positive. HIV-positive patients were mainly from African countries (90.1%) while HIV-negative originated from Former Soviet Union (FSU) countries. Despite a higher case fatality rate (19.0% vs 9.4%), HIV-positive MDR-TB patients had a 10% higher success rate than HIV-negative patients (64.0% vs 53.2%, p = 0.007). No difference in treatment success was found among polydrug-resistant (PDR-TB) patients. Overall, lost to follow-up rate was much higher among HIV-negative (22.0% vs. 8.4%). Older age and not receiving ART were the only factors associated with unfavorable treatment outcome among HIV-positive patients. As already known for HIV-negative patients, success rate of DR-TB HIV-positive patients remains low and requires more effective DR-TB regimen using new drugs also suitable to HIV-infected patients on ART. The study also confirms the need of ART introduction in HIV co-infected patients.

  7. Plasmodium falciparum drug resistance in Angola.

    Science.gov (United States)

    Fançony, Cláudia; Brito, Miguel; Gil, Jose Pedro

    2016-02-09

    Facing chloroquine drug resistance, Angola promptly adopted artemisinin-based combination therapy as the first-line to treat malaria. Currently, the country aims to consolidate malaria control, while preparing for the elimination of the disease, along with others African countries in the region. However, the remarkable capacity of Plasmodium to develop drug resistance represents an alarming threat for those achievements. Herein, the available, but relatively scarce and dispersed, information on malaria drug resistance in Angola, is reviewed and discussed. The review aims to inform but also to encourage future research studies that monitor and update the information on anti-malarial drug efficacy and prevalence of molecular markers of drug resistance, key fields in the context and objectives of elimination.

  8. Mechanisms of Drug Resistance: Daptomycin Resistance

    Science.gov (United States)

    Tran, Truc T.; Munita, Jose M.; Arias, Cesar A.

    2016-01-01

    Daptomycin (DAP) is a cyclic lipopeptide with in vitro activity against a variety of Gram-positive pathogens, including multidrug-resistant organisms. Since its introduction in clinical practice in 2003, DAP has become an important key front-line antibiotic for severe or deep-seated infections caused by Gram-positive organisms. Unfortunately, DAP-resistance (R) has been extensively documented in clinically important organisms such as Staphylococcus aureus, Enterococcus spp, and Streptococcus spp. Studies on the mechanisms of DAP-R in Bacillus subtilis and other Gram-positive bacteria indicate that the genetic pathways of DAP resistance are diverse and complex. However, a common phenomenon emerging from these mechanistic studies is that DAP-R is associated with important adaptive changes in cell wall and cell membrane homeostasis with critical changes in cell physiology. Findings related to these adaptive changes have offered novel insights into the genetics and molecular mechanisms of bacterial cell envelope stress response and the manner in which Gram-positive bacteria cope with the antimicrobial peptide attack and protect vital structures of the cell envelope such as the cell membrane. In this review, we will examine the most recent findings related to the molecular mechanisms of resistance to DAP in relevant Gram-positive pathogens and discuss the clinical implications for therapy against these important bacteria. PMID:26495887

  9. The imaging feature of multidrug-resistant tuberculosis

    International Nuclear Information System (INIS)

    Yang Jun; Zhou Xinhua; Li Xi; Fu Yuhong; Zheng Suhua; Lv Pingxin; Ma Daqing

    2004-01-01

    Objective: To evaluate the imaging features of multidrug-resistant tuberculosis by collecting multidrug-resistant tuberculosis verified by test of drug-sensitivity, which defined as resistance to three anti-tuberculosis drugs. Methods:Fifty-one cases of multidrug-resistant tuberculosis were categorized as group of observed, and 46 cases of drug sensitive tuberculosis were categorized as control. Cultures were positive for Mycobacterium tuberculosis in all cases with no other illness such as diabetes mellitus. All patients had chest radiographs available for review, while 64 cases had tomography and 30 cases had CT during the same time. All images were analyzed by three of the radiologists, disagreement among them was discussed and a consensus was reached. Results: There was no difference in the distribution of lesions between the multidrug-resistant tuberculosis group and control group. However, the radiological findings in the multidrug-resistant tuberculosis group were significantly more common than in control group, such as multiple nodules (10 cases), disseminated foci (23 cases), cavity (9 cases), and complications (10 cases). Comparing the dynamic cases, deteriorating cases were more commonly seen in observed group than in control group, while improved cases were less in observed group than in control group. Conclusion: Multidrug-resistant tuberculosis is the most serious tuberculosis, which is characterized with significant activity, more disseminated foci, cavity, and complications. The lesion deteriorated while correct anti-tuberculosis treatment is applied. (authors)

  10. Genetic sequencing for surveillance of drug resistance in tuberculosis in highly endemic countries: a multi-country population-based surveillance study.

    Science.gov (United States)

    Zignol, Matteo; Cabibbe, Andrea Maurizio; Dean, Anna S; Glaziou, Philippe; Alikhanova, Natavan; Ama, Cecilia; Andres, Sönke; Barbova, Anna; Borbe-Reyes, Angeli; Chin, Daniel P; Cirillo, Daniela Maria; Colvin, Charlotte; Dadu, Andrei; Dreyer, Andries; Driesen, Michèle; Gilpin, Christopher; Hasan, Rumina; Hasan, Zahra; Hoffner, Sven; Hussain, Alamdar; Ismail, Nazir; Kamal, S M Mostofa; Khanzada, Faisal Masood; Kimerling, Michael; Kohl, Thomas Andreas; Mansjö, Mikael; Miotto, Paolo; Mukadi, Ya Diul; Mvusi, Lindiwe; Niemann, Stefan; Omar, Shaheed V; Rigouts, Leen; Schito, Marco; Sela, Ivita; Seyfaddinova, Mehriban; Skenders, Girts; Skrahina, Alena; Tahseen, Sabira; Wells, William A; Zhurilo, Alexander; Weyer, Karin; Floyd, Katherine; Raviglione, Mario C

    2018-03-21

    In many countries, regular monitoring of the emergence of resistance to anti-tuberculosis drugs is hampered by the limitations of phenotypic testing for drug susceptibility. We therefore evaluated the use of genetic sequencing for surveillance of drug resistance in tuberculosis. Population-level surveys were done in hospitals and clinics in seven countries (Azerbaijan, Bangladesh, Belarus, Pakistan, Philippines, South Africa, and Ukraine) to evaluate the use of genetic sequencing to estimate the resistance of Mycobacterium tuberculosis isolates to rifampicin, isoniazid, ofloxacin, moxifloxacin, pyrazinamide, kanamycin, amikacin, and capreomycin. For each drug, we assessed the accuracy of genetic sequencing by a comparison of the adjusted prevalence of resistance, measured by genetic sequencing, with the true prevalence of resistance, determined by phenotypic testing. Isolates were taken from 7094 patients with tuberculosis who were enrolled in the study between November, 2009, and May, 2014. In all tuberculosis cases, the overall pooled sensitivity values for predicting resistance by genetic sequencing were 91% (95% CI 87-94) for rpoB (rifampicin resistance), 86% (74-93) for katG, inhA, and fabG promoter combined (isoniazid resistance), 54% (39-68) for pncA (pyrazinamide resistance), 85% (77-91) for gyrA and gyrB combined (ofloxacin resistance), and 88% (81-92) for gyrA and gyrB combined (moxifloxacin resistance). For nearly all drugs and in most settings, there was a large overlap in the estimated prevalence of drug resistance by genetic sequencing and the estimated prevalence by phenotypic testing. Genetic sequencing can be a valuable tool for surveillance of drug resistance, providing new opportunities to monitor drug resistance in tuberculosis in resource-poor countries. Before its widespread adoption for surveillance purposes, there is a need to standardise DNA extraction methods, recording and reporting nomenclature, and data interpretation. Bill & Melinda

  11. Preventing and managing antiretroviral drug resistance.

    Science.gov (United States)

    Kuritzkes, Daniel R

    2004-05-01

    Development of resistance to antiretroviral drugs (ARVs) is a major impediment to optimum treatment of HIV-1 infection. Although resistance testing can help to select subsequent regimens when virologic failure occurs, cross-resistance, which affects all classes of ARVs, may make it more difficult to achieve optimum control of HIV. We have known for some time that our first choice of antiretroviral therapy offers the best chance to control HIV replication and that initial therapy should be selected with an eye on future options. Potency is the first line of defense against the development of resistance. Other factors that affect resistance development include: tolerability, potential for optimum adherence, and genetic and pharmacologic barriers to development of resistance. If resistance emerges, only a single drug may be affected initially, and a rapid change in ARVs may preserve the efficacy of other components. One cautionary note is that we can no longer assume that a patient's HIV is fully susceptible to all ARVs even in the initial regimen. Transmission of drug-resistant HIV means that the genetic composition may be that of an "experienced" virus with reduced susceptibility to ARVs. Resistance testing at the time of transmission is most likely to reveal this resistance, but over time the dominant genetic pattern may revert to wild-type, and be missed by resistance testing. Because "archived" resistant HIV may emerge quickly once treatment is initiated, we need to keep this in mind when selecting initial therapy.

  12. Anti-tuberculosis activities of the crude methanolic extract and ...

    African Journals Online (AJOL)

    olayemitoyin

    Summary: Tuberculosis (TB) is of great public health burden globally especially in developing countries of Africa and. Asia . Current TB regimen involves multiple therapies and of long duration leading to poor patient adherence. There is also the challenge of multidrug resistant TB. Hence, there is a need for discovery of ...

  13. Anti-tuberculosis activities of the crude methanolic extract and ...

    African Journals Online (AJOL)

    Summary: Tuberculosis (TB) is of great public health burden globally especially in developing countries of Africa and Asia . Current TB regimen involves multiple therapies and of long duration leading to poor patient adherence. There is also the challenge of multidrug resistant TB. Hence, there is a need for discovery of new ...

  14. Anti-tuberculosis activity of -lactam antibiotics: prospects for the ...

    African Journals Online (AJOL)

    This review is prepared to show results on the anti-TB activity of -lactam antibiotics. -Lactams are among the oldest drugs with little or no side effects. Both in vitro studies and clinical data indicate that -lactams have a promising activity for use in the management of MDR-TB. More studies are required to define the interaction ...

  15. Emerging pathogens: Dynamics, mutation and drug resistance

    Energy Technology Data Exchange (ETDEWEB)

    Perelson, A.S.; Goldstein, B.; Korber, B.T. [and others

    1997-10-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The objectives of this project were to develop models of the spread of pathogens, such as HIV-1 and influenza, in humans, and then to use the models to address the possibility of designing appropriate drug therapies that may limit the ability of the pathogen to escape treatment by mutating into a drug resistant form. We have developed a model of drug-resistance to amantidine and rimantadine, the two major antiviral drugs used to treat influenza, and have used the model to suggest treatment strategies during an epidemic.

  16. THE QUESTIONS OF ALLERGY AND ANTI-TUBERCULOSIS IMMUNITY IN THE WORKS OF М.М. TSEHNOVITSER

    Directory of Open Access Journals (Sweden)

    Kuchma Y.U

    2014-10-01

    Full Text Available The mechanism of anti-tuberculosis immunity drew the attention of scientists since the established of the infectious nature of tuberculosis. The famous ukrainian microbiologist and immunologist M.M. Tsehnovitser in period from 1921 to 1940 years spent a lot of original experiments for elucidation of the role of allergy in the anti-tuberculosis immunity. M.M. Tsehnovitser believed that a common cause of infectious allergy is tuberculosis granuloma, which even at rest eliminated weakened microbes and their products in general lymphatic and blood stream of the body. In his experiments M.M. Tsehnovitser discovered: 1 When the body comes in contact with M.tuberculosisi formed tuberculosis centre. Infection meets local tissue reaction and in incubation period formed sensitization. In this state the body manifested as a natural susceptibility and resistance to infection. During this period organism going through the initial stage of allergy. 2. Meanwhile, the infectious process goes on and the M.tuberculosisi giving rise. The body reacts to this change in the formula blood - leukocytosis, monocytosis, eosinophilia. Tuberculosis focus represents a formed granuloma. This phase of tuberculosis infection accompanied by severe allergy. 3. Then there are two versions of the process. In the first case happened the generalization of tuberculosis infection. The blood reacts are leukopenia, monocytosis, eosinophilia and lymphocytosis due to toxic processes. In the second case M.tuberculosi multiplied only local in the granuloma and is not generalization of tuberculosis process. In this case, natural immunity is raised. There are allergy and positive anergy in later. 4. It is exclusively unique phenomenon for tuberculous process is the regression of the fire with his sterilization. This type of tuberculous process is in BCG-infection. In the source of infection observed complete resolution of pathological tissue, blood initially reacts slightly, but quickly comes

  17. Spatial epidemiology and spatial ecology study of worldwide drug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    Yuan Zhongshang

    2011-08-01

    Full Text Available Abstract Background Drug-resistant tuberculosis (DR-TB is a major public health problem caused by various factors. It is essential to systematically investigate the epidemiological and, in particular, the ecological factors of DR-TB for its prevention and control. Studies of the ecological factors can provide information on etiology, and assist in the effective prevention and control of disease. So it is of great significance for public health to explore the ecological factors of DR-TB, which can provide guidance for formulating regional prevention and control strategies. Methods Anti-TB drug resistance data were obtained from the World Health Organization/International Union Against Tuberculosis and Lung Disease (WHO/UNION Global Project on Anti-Tuberculosis Drug Resistance Surveillance, and data on ecological factors were collected to explore the ecological factors for DR-TB. Partial least square path modeling (PLS-PM, in combination with ordinary least squares (OLS regression, as well as geographically weighted regression (GWR, were used to build a global and local spatial regression model between the latent synthetic DR-TB factor ("DR-TB" and latent synthetic risk factors. Results OLS regression and PLS-PM indicated a significant globally linear spatial association between "DR-TB" and its latent synthetic risk factors. However, the GWR model showed marked spatial variability across the study regions. The "TB Epidemic", "Health Service" and "DOTS (directly-observed treatment strategy Effect" factors were all positively related to "DR-TB" in most regions of the world, while "Health Expenditure" and "Temperature" factors were negatively related in most areas of the world, and the "Humidity" factor had a negative influence on "DR-TB" in all regions of the world. Conclusions In summary, the influences of the latent synthetic risk factors on DR-TB presented spatial variability. We should formulate regional DR-TB monitoring planning and prevention

  18. Spatial epidemiology and spatial ecology study of worldwide drug-resistant tuberculosis.

    Science.gov (United States)

    Liu, Yunxia; Jiang, Shiwen; Liu, Yanxun; Wang, Rui; Li, Xiao; Yuan, Zhongshang; Wang, Lixia; Xue, Fuzhong

    2011-08-03

    Drug-resistant tuberculosis (DR-TB) is a major public health problem caused by various factors. It is essential to systematically investigate the epidemiological and, in particular, the ecological factors of DR-TB for its prevention and control. Studies of the ecological factors can provide information on etiology, and assist in the effective prevention and control of disease. So it is of great significance for public health to explore the ecological factors of DR-TB, which can provide guidance for formulating regional prevention and control strategies. Anti-TB drug resistance data were obtained from the World Health Organization/International Union Against Tuberculosis and Lung Disease (WHO/UNION) Global Project on Anti-Tuberculosis Drug Resistance Surveillance, and data on ecological factors were collected to explore the ecological factors for DR-TB. Partial least square path modeling (PLS-PM), in combination with ordinary least squares (OLS) regression, as well as geographically weighted regression (GWR), were used to build a global and local spatial regression model between the latent synthetic DR-TB factor ("DR-TB") and latent synthetic risk factors. OLS regression and PLS-PM indicated a significant globally linear spatial association between "DR-TB" and its latent synthetic risk factors. However, the GWR model showed marked spatial variability across the study regions. The "TB Epidemic", "Health Service" and "DOTS (directly-observed treatment strategy) Effect" factors were all positively related to "DR-TB" in most regions of the world, while "Health Expenditure" and "Temperature" factors were negatively related in most areas of the world, and the "Humidity" factor had a negative influence on "DR-TB" in all regions of the world. In summary, the influences of the latent synthetic risk factors on DR-TB presented spatial variability. We should formulate regional DR-TB monitoring planning and prevention and control strategies, based on the spatial characteristics

  19. Multidrug-resistant tuberculosis

    Directory of Open Access Journals (Sweden)

    McNerney Ruth

    2008-01-01

    Full Text Available Abstract Background With almost 9 million new cases each year, tuberculosis remains one of the most feared diseases on the planet. Led by the STOP-TB Partnership and WHO, recent efforts to combat the disease have made considerable progress in a number of countries. However, the emergence of mutated strains of Mycobacterium tuberculosis that are resistant to the major anti-tuberculosis drugs poses a deadly threat to control efforts. Multidrug-resistant tuberculosis (MDR-TB has been reported in all regions of the world. More recently, extensively drug resistant-tuberculosis (XDR-TB that is also resistant to second line drugs has emerged in a number of countries. To ensure that adequate resources are allocated to prevent the emergence and spread of drug resistance it is important to understand the scale of the problem. In this article we propose that current methods of describing the epidemiology of drug resistant tuberculosis are not adequate for this purpose and argue for the inclusion of population based statistics in global surveillance data. Discussion Whereas the prevalence of tuberculosis is presented as the proportion of individuals within a defined population having disease, the prevalence of drug resistant tuberculosis is usually presented as the proportion of tuberculosis cases exhibiting resistance to anti-tuberculosis drugs. Global surveillance activities have identified countries in Eastern Europe, the former Soviet Union and regions of China as having a high proportion of MDR-TB cases and international commentary has focused primarily on the urgent need to improve control in these settings. Other regions, such as sub-Saharan Africa have been observed as having a low proportion of drug resistant cases. However, if one considers the incidence of new tuberculosis cases with drug resistant disease in terms of the population then countries of sub-Saharan Africa have amongst the highest rates of transmitted MDR-TB in the world. We propose

  20. mycobacterium tuberculosis genetic diversity and drug resistance ...

    African Journals Online (AJOL)

    East African Medical Journal Vol. 88 No. 12 December 2011. MYCOBACTERIUM TUBERCULOSIS GENETIC DIVERSITY AND DRUG RESISTANCE CONFERRING MUTATIONS. IN THE DEMOCRATIC REPUBLIC OF THE CONGO. L. Fenner, Institute of Social and Preventive Medicine, University of Bern, Switzerland, S.

  1. Drug development against tuberculosis: Past, present and future.

    Science.gov (United States)

    Vasava, Mahesh S; Bhoi, Manoj N; Rathwa, Sanjay K; Borad, Mayuri A; Nair, Sneha G; Patel, Hitesh D

    2017-10-01

    Infection of Mycobacterium tuberculosis (MTB) was observed as early as 5000 years ago with evidence, which is a primeval enemy of the humanoid race. MTB is the pathogen which is responsible for causing the infectious disease tuberculosis; it remains a major cause of morbidity and mortality in poor low-income countries as well as in developing countries because of non-availability of reliable laboratory facilities. The current treatment for drug-resistant tuberculosis (TB) is lengthy, complex, and connected with severe harmful side effects and poor outcomes. The present cure against tuberculosis has substantial restrictions, in terms of their efficiency, side-effect outline, and complication of handling. Furthermore, the emergence of multi-drug resistant tuberculosis (MDR-TB) outbreaks during the 1990s and additionally in recent times the vast deadly strains of extensively drug-resistant tuberculosis (XDR-TB) and totally drug resistance tuberculosis (TDR-TB) is hampering efforts to control and manage tuberculosis (TB). As a result, novel methodologies for the treatment of multi-drug-resistant and extensive drug-resistant tuberculosis (TB) are severely desired. A number of new potential anti-tuberculosis drug candidates with novel modes of action have been entered in clinical trials in recent years. These agents are most likely to be effective against resistant strains. The treatment landscape is beginning to shift, with the recent approvals by Food and Drug Administration to the new TB drugs bedaquiline and delamanid. Also, the pipeline of potential new treatments has been fulfilled with several compounds in clinical trials or preclinical development with promising activities against sensitive and resistant MTB bacteria. An additional new chemical entity is also under development. The already existing drugs with their suggested mode of treatment as well as new probable anti-tuberculosis drug moieties which are at present in the pipeline has been summarized in this

  2. Emergence of Extensively Drug Resistant Tuberculosis

    Centers for Disease Control (CDC) Podcasts

    2007-03-01

    Extensively drug-resistant tuberculosis (XDR TB) outbreaks have been reported in South Africa, and strains have been identified on 6 continents. Dr. Peter Cegielski, team leader for drug-resistant TB with the Division of Tuberculosis Elimination at CDC, comments on a multinational team's report on this emerging global public health threat.  Created: 3/1/2007 by Emerging Infectious Diseases.   Date Released: 3/26/2007.

  3. Hypothyroidism during second-line treatment of multidrug-resistant tuberculosis: a prospective study.

    Science.gov (United States)

    Bares, R; Khalid, N; Daniel, H; Dittmann, H; Reimold, M; Gallwitz, B; Schmotzer, C

    2016-07-01

    Hypothyroidism is an adverse effect of certain anti-tuberculosis drugs. This is a prospective study of the frequency and possible pathomechanisms associated with hypothyroidism due to second-line treatment of multidrug-resistant tuberculosis. Fifty human immunodeficiency virus negative patients and 20 controls were included. All participants underwent ultrasonography of the thyroid and measurement of thyroid stimulating hormone (TSH). TSH levels were checked every 3 months. If hypothyroidism was present, T3, T4 and thyroid peroxidase autoantibodies were measured, and imaging extended to scintigraphy and repeated ultrasonography. Before treatment, 7 patients (14%) and 1 control (5%) were hypothyreotic. During the first 6 months of treatment, TSH levels increased in 41 patients (82%), 39 (78%) had values above the normal range and 19 (38%) had overt hypothyroidism. As none of the patients had signs of autoimmune thyroiditis, interaction with anti-tuberculosis drugs was assumed to be the cause of hypothyroidism. Nine patients died during treatment, all of whom had developed hypothyroidism. In seven, the metabolic situation at their death was known, and they had become euthyreotic following levothyroxine substitution. TSH levels should be checked before initiating anti-tuberculosis treatment and after 3 and 6 months to start timely replacement of levothyroxine. Further studies are needed to elucidate the exact pathomechanism involved in hypothyroidism and whether hypothyroidism can be used as predictor of treatment failure.

  4. Drug resistance in the mouse cancer clinic

    NARCIS (Netherlands)

    Rottenberg, Sven; Borst, Piet

    2012-01-01

    Drug resistance is one of the most pressing problems in treating cancer patients today. Local and regional disease can usually be adequately treated, but patients eventually die from distant metastases that have become resistant to all available chemotherapy. Although work on cultured tumor cell

  5. Campylobacter Antimicrobial Drug Resistance among Humans in ...

    African Journals Online (AJOL)

    Background: Though Campylobacter enteritis is a self-limiting disease, antimicrobial agents are recommended for extraintestinal infections and for treating immunocompromised persons. Erythromycin and ciprofloxacin are drugs of choice. The rate of resistance to these drugs is increasing in both developed and developing ...

  6. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update.

    Directory of Open Access Journals (Sweden)

    Diane E Bennett

    Full Text Available Programs that monitor local, national, and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programs. To accurately compare transmitted drug resistance rates across geographic regions and times, the World Health Organization has recommended the adoption of a consensus genotypic definition of transmitted HIV-1 drug resistance. In January 2007, we outlined criteria for developing a list of mutations for drug-resistance surveillance and compiled a list of 80 RT and protease mutations meeting these criteria (surveillance drug resistance mutations; SDRMs. Since January 2007, several new drugs have been approved and several new drug-resistance mutations have been identified. In this paper, we follow the same procedures described previously to develop an updated list of SDRMs that are likely to be useful for ongoing and future studies of transmitted drug resistance. The updated SDRM list has 93 mutations including 34 NRTI-resistance mutations at 15 RT positions, 19 NNRTI-resistance mutations at 10 RT positions, and 40 PI-resistance mutations at 18 protease positions.

  7. Profiling evolutionary landscapes underlying drug resistance

    DEFF Research Database (Denmark)

    Hickman, Rachel

    bacterial communities i.e. biofilms or dormant metabolic states. Antibiotic drugs are currently our best medicine to treat (against) bacterial pathogens due to antibiotics unique properties of being small molecules that are soluble and act systemically. These qualities allow for many modern medical......, the work involved in this PhD thesis, examines the evolution of antibiotic resistance in bacterial populations. Two main studies were performed: the first to elucidate the molecular mechanisms of collateral sensitive drug pairs and collateral resistance drug pairs in adaptation of Escherichia coli...

  8. Streptococcus pneumoniae Drugs Resistance in Acute Rhinosinusitis

    Directory of Open Access Journals (Sweden)

    Chong Jie Hao

    2016-03-01

    Full Text Available Background: Acute rhinosinusitis that usually caused by Streptococcus pneumoniae becomes the reason why patients seek for medical care. Drugs resistance in Streptococcus pneumoniae is increasing worldwide. This study was conducted to determine drugs resistance of Streptococcus pneumonia from acute rhinosinusitis in Dr. Hasan Sadikin General Hospital. Methods: A descriptive laboratory study was conducted in June–October 2014 at the Laboratory of Microbiology Faculty of Medicine Universitas Padjadjaran. The sample was taken using nasopharyngeal swabbing from 100 acute rhinosinusitis patients in Dr. Hasan Sadikin General Hospital and planted on tryptic soy agar containing 5% sheep blood and 5 μg/ml of gentamicin sulphate and then incubated in 5% CO2 incubator at 37°C for 24 hours. The identification of Streptococcus pneumonia was performed by optochin test. The susceptibility test against Streptococcus pneumoniae was done using disk diffusion method.The antibiotic disks were trimethoprim-sulfamethoxazole, oxacillin, levofloxacin, azithromycin, and doxycycline. Results: Out of 100 samples, 8 of them were tested positive for Streptococcus pneumoniae. Three of Streptococcus pneumoniae isolates died with unknown reason after it were stored at -80 .The drugs resistance test showed the resistance of Streptococcus pneumonia to oxacillin, azithromycin and trimethoprim were 6, whereas levofloxacin and doxycycline are 4. Conclusions: Streptococcus pneumonia drugs resistance in acute rhinosinusitis shows the resistance of Streptococcus pneumoniae to oxacillin, azithromycin and trimethoprim are 6, whereas the resistance to levofloxacin and doxycycline are 4.

  9. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    International Nuclear Information System (INIS)

    Hembruff, Stacey L; Laberge, Monique L; Villeneuve, David J; Guo, Baoqing; Veitch, Zachary; Cecchetto, Melanie; Parissenti, Amadeo M

    2008-01-01

    Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7 DOX-2 ), epirubicin (MCF-7 EPI ), paclitaxel (MCF-7 TAX-2 ), or docetaxel (MCF-7 TXT ). During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does occur at the threshold dose, the magnitude of

  10. Role of drug transporters and drug accumulation in the temporal acquisition of drug resistance

    Directory of Open Access Journals (Sweden)

    Veitch Zachary

    2008-11-01

    Full Text Available Abstract Background Anthracyclines and taxanes are commonly used in the treatment of breast cancer. However, tumor resistance to these drugs often develops, possibly due to overexpression of drug transporters. It remains unclear whether drug resistance in vitro occurs at clinically relevant doses of chemotherapy drugs and whether both the onset and magnitude of drug resistance can be temporally and causally correlated with the enhanced expression and activity of specific drug transporters. To address these issues, MCF-7 cells were selected for survival in increasing concentrations of doxorubicin (MCF-7DOX-2, epirubicin (MCF-7EPI, paclitaxel (MCF-7TAX-2, or docetaxel (MCF-7TXT. During selection cells were assessed for drug sensitivity, drug uptake, and the expression of various drug transporters. Results In all cases, resistance was only achieved when selection reached a specific threshold dose, which was well within the clinical range. A reduction in drug uptake was temporally correlated with the acquisition of drug resistance for all cell lines, but further increases in drug resistance at doses above threshold were unrelated to changes in cellular drug uptake. Elevated expression of one or more drug transporters was seen at or above the threshold dose, but the identity, number, and temporal pattern of drug transporter induction varied with the drug used as selection agent. The pan drug transporter inhibitor cyclosporin A was able to partially or completely restore drug accumulation in the drug-resistant cell lines, but had only partial to no effect on drug sensitivity. The inability of cyclosporin A to restore drug sensitivity suggests the presence of additional mechanisms of drug resistance. Conclusion This study indicates that drug resistance is achieved in breast tumour cells only upon exposure to concentrations of drug at or above a specific selection dose. While changes in drug accumulation and the expression of drug transporters does

  11. Antimicrobial Drug Resistance and Gonorrhea

    Centers for Disease Control (CDC) Podcasts

    2017-12-26

    Dr. Robert Kirkcaldy, a medical officer at CDC, discusses his article on antimicrobial resistance and gonorrhea.  Created: 12/26/2017 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 12/26/2017.

  12. Antibacterial drug discovery in the resistance era.

    Science.gov (United States)

    Brown, Eric D; Wright, Gerard D

    2016-01-21

    The looming antibiotic-resistance crisis has penetrated the consciousness of clinicians, researchers, policymakers, politicians and the public at large. The evolution and widespread distribution of antibiotic-resistance elements in bacterial pathogens has made diseases that were once easily treatable deadly again. Unfortunately, accompanying the rise in global resistance is a failure in antibacterial drug discovery. Lessons from the history of antibiotic discovery and fresh understanding of antibiotic action and the cell biology of microorganisms have the potential to deliver twenty-first century medicines that are able to control infection in the resistance era.

  13. Drug resistance mutations for surveillance of transmitted HIV-1 drug-resistance: 2009 update

    NARCIS (Netherlands)

    D.E. Bennett (Diane); R.J. Camacho (Ricardo Jorge); D. Otelea (Dan); D.R. Kuritzkes (Daniel); H. Fleury (Hervé); M. Kiuchi (Mark); W. Heneine (Walid); R. Kantor (Rami); M.R. Jordan (Michael); J.M. Schapiro (Jonathan); A.M. Vandamme (Anne Mieke); P. Sandstrom (Paul); C.A.B. Boucher (Charles); D.A.M.C. van de Vijver (David); S.Y. Rhee (Soo Yoon); T.F. Liu (Tommy); D. Pillay (Deenan); R.W. Shafer (Robert)

    2009-01-01

    textabstractPrograms that monitor local, national, and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programs. To accurately compare transmitted drug resistance rates across geographic regions

  14. Primary antimicrobial resistance among Mycobacterium tuberculosis isolates from HIV seropositive and HIV seronegative patients in Dar es Salaam Tanzania

    Directory of Open Access Journals (Sweden)

    Bosch Ronald

    2008-07-01

    Full Text Available Abstract Background The United Republic of Tanzania is one of the 22 high M. tuberculosis burden countries. Data collected between 2002 and 2007 indicate that the global prevalence of drug-resistant M. tuberculosis including MDR vary greatly. The varied drug-resistance patterns make continuous surveillance of drug resistance an essential component of tuberculosis control program. Findings M. tuberculosis isolates were obtained from consenting adult tuberculosis patients involved in a placebo-controlled study to evaluate the efficacy of multivitamin supplements on response to anti-Tb treatment in Dar es Salaam, Tanzania. Antimicrobial susceptibility testing was done on four antimicrobial agents namely streptomycin, isoniazid, ethambutol and rifampicin. HIV testing and CD4+ T lymphocytes enumeration were also done. A total of 280 M. tuberculosis isolates from 191 (68% males and 89 (32% female patients with no previous history of anti-tuberculosis treatment exceeding 4 weeks in the previous 12 months were tested. Among these, 133 (47% patients were HIV seropositive. Fourteen (5.0% isolates were resistant to any of the anti-tuberculosis drugs. The prevalence of primary resistance was 5.0%, 0.7%, 0.4% and 0% for isoniazid, streptomycin, rifampicin and ethambutol respectively. One isolate (0.4% was MDR, with resistance to isoniazid, streptomycin and rifampicin. Conclusion M. Tb primary resistance rate in a selected population in Dar es Salaam Tanzania is low and efforts should be undertaken to support the Tuberculosis program.

  15. Minority Variants of Drug-Resistant HIV

    Science.gov (United States)

    Gianella, Sara; Richman, Douglas D.

    2010-01-01

    Minor drug-resistant variants exist in every HIV-infected patient. Since these minority variants are usually present at very low levels, they cannot be detected and quantified using conventional genotypic and phenotypic tests. Recently, several assays have been developed to characterize these low-abundance drug-resistant variants in the large genetically complex population present in every HIV-infected individual. The most important issue is, what results generated by these assays can predict clinical or treatment outcomes and might guide patient management in clinical practice. Cutoff-values for the detection of these low-abundance viral variants that predict increased risk of treatment failure should be determined. These thresholds may be specific for each mutation and treatment regimen. In this review we summarize the attributes and limitations of the currently available detection assays and review the existing information about both acquired and transmitted drug resistant minority variants. PMID:20649427

  16. NEW METHOD OF EPIDEMIOLOGICAL EVALUATION OF THE INCIDENCE OF COMPLICATIONS AFTER ANTI-TUBERCULOSIS VACCINATION

    OpenAIRE

    S. N. Shugaeva; E. D. Savilov

    2016-01-01

    The article offers a new method for calculation of incidence of complications after primary anti-tuberculosis vaccination. Using the example of analysis of continuous sampling of complications after anti-tuberculosis vaccination (n = 110) in Irkutsk Region in 2005-2014 the article shows the advantage of the offered method compared to the existing ones.

  17. SPECIFIC FEATURES OF ANTI-TUBERCULOSIS CHEMOTHERAPY TOLERANCE IN THE LIGHT OF PSYCHOLOGICAL STATUS OF PATIENTS

    Directory of Open Access Journals (Sweden)

    N. V. Zolotova

    2017-01-01

    Full Text Available Specific features of psychological state were studied in 295 pulmonary tuberculosis patients with satisfactory tolerance to anti-tuberculosis medications and 75 patients poorly tolerating the treatment.Before the treatment start the patients who later demonstrated adverse reactions to treatment were diagnosed with more intense neurotic and hypochondriac personal features, destructive reactions and higher level of emotional tension and frustration – all the above promote dysregulation of the host adaptation. The research demonstrated the need to consider psychological aspects when studying the tolerance to anti-tuberculosis chemotherapy. 

  18. Mesenchymal change and drug resistance in neuroblastoma.

    Science.gov (United States)

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. reverse transcriptase inhibitors drug resistance mutations in drug ...

    African Journals Online (AJOL)

    2011-01-01

    Jan 1, 2011 ... through put drug resistance testing for the increasing number of infected individuals in order to effectively manage those initiating ART. ACKNoWLEdGEMENTs. To the patient who participated in the study, the Kenya. Medical Research Institute, Centre for Virus HIV. Laboratory division staff for their support.

  20. Drug resistance patterns in pulmonary tuberculosis

    International Nuclear Information System (INIS)

    Khoharo, H.K.; Shaikh, I.A.

    2011-01-01

    Objective: To determine the resistance patterns of mycobacterium tuberculosis (MTB) isolates among category I and II patients of pulmonary tuberculosis. Methods: This cross sectional study was conducted at the Department of Medicine, Liaquat University of Medical and Health Sciences Jamshoro, from November 2008 to September 2009. Patients were divided into category I and II. The sputa were collected, stained with Ziehl-Nielsen (Z-N) staining and ultimately inoculated on Lowenstein-Jensen (L-J) media for six weeks. Out of 890 pulmonary tuberculosis (PTB) patients, the growth was obtained in 285 cases. The Drug sensitivity testing (DST) for Isoniazid (INH), Rifampicin (RIF), Ethambutol (EMB) Pyrazinamide (PZA) and Streptomycin (SM) were performed. The data was analyzed on SPSS 10.0. A p-value of <0.05 was taken as significant. Result: Out of 285 cases, 176 (61.75%) were male and 109 (38.24%) female. The mean age was 37 +- 19.90 years. The DST showed drug sensitive and drug resistant isolates in 80 (28.05%) and 205 (71.92%) cases respectively (p=0.001). The drug resistant tuberculosis (DR-TB) rates for individual drugs; INH, RIF, EMB, PZA and SM were 51,22%, 15.4%, 13.33%, 9%12, and 3.85% respectively (p=0.03). The MDR-TB isolates were detected in 120 (42.10%) cases, including 5 (5.88%) in category I and 115 (57.50%) in category II patients (p=0.0001). Conclusion: Drug resistant and multidrug resistant tuberculosis was observed mainly in category II patients. However, primary MDR was also observed in category I patients and reflects dissemination of MDR cases within the community. (author)

  1. Mechanisms of Candida biofilm drug resistance

    Science.gov (United States)

    Taff, Heather T; Mitchell, Kaitlin F; Edward, Jessica A; Andes, David R

    2013-01-01

    Candida commonly adheres to implanted medical devices, growing as a resilient biofilm capable of withstanding extraordinarily high antifungal concentrations. As currently available antifungals have minimal activity against biofilms, new drugs to treat these recalcitrant infections are urgently needed. Recent investigations have begun to shed light on the mechanisms behind the profound resistance associated with the biofilm mode of growth. This resistance appears to be multifactorial, involving both mechanisms similar to conventional, planktonic antifungal resistance, such as increased efflux pump activity, as well as mechanisms specific to the biofilm lifestyle. A unique biofilm property is the production of an extracellular matrix. Two components of this material, β-glucan and extracellular DNA, promote biofilm resistance to multiple antifungals. Biofilm formation also engages several stress response pathways that impair the activity of azole drugs. Resistance within a biofilm is often heterogeneous, with the development of a subpopulation of resistant persister cells. In this article we review the molecular mechanisms underlying Candida biofilm antifungal resistance and their relative contributions during various growth phases. PMID:24059922

  2. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC: 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs. The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively, but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  3. Repurposing salicylanilide anthelmintic drugs to combat drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Conery, Annie L; Kim, Wooseong; Jayamani, Elamparithi; Kwon, Bumsup; Ausubel, Frederick M; Mylonakis, Eleftherios

    2015-01-01

    Staphylococcus aureus is a Gram-positive bacterium that has become the leading cause of hospital acquired infections in the US. Repurposing Food and Drug Administration (FDA) approved drugs for antimicrobial therapy involves lower risks and costs compared to de novo development of novel antimicrobial agents. In this study, we examined the antimicrobial properties of two commercially available anthelmintic drugs. The FDA approved drug niclosamide and the veterinary drug oxyclozanide displayed strong in vivo and in vitro activity against methicillin resistant S. aureus (minimum inhibitory concentration (MIC): 0.125 and 0.5 μg/ml respectively; minimum effective concentration: ≤ 0.78 μg/ml for both drugs). The two drugs were also effective against another Gram-positive bacteria Enterococcus faecium (MIC 0.25 and 2 μg/ml respectively), but not against the Gram-negative species Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter aerogenes. The in vitro antimicrobial activity of niclosamide and oxyclozanide were determined against methicillin, vancomycin, linezolid or daptomycin resistant S. aureus clinical isolates, with MICs at 0.0625-0.5 and 0.125-2 μg/ml for niclosamide and oxyclozanide respectively. A time-kill study demonstrated that niclosamide is bacteriostatic, whereas oxyclozanide is bactericidal. Interestingly, oxyclozanide permeabilized the bacterial membrane but neither of the anthelmintic drugs exhibited demonstrable toxicity to sheep erythrocytes. Oxyclozanide was non-toxic to HepG2 human liver carcinoma cells within the range of its in vitro MICs but niclosamide displayed toxicity even at low concentrations. These data show that the salicylanilide anthelmintic drugs niclosamide and oxyclozanide are suitable candidates for mechanism of action studies and further clinical evaluation for treatment of staphylococcal infections.

  4. Multidrug resistant to extensively drug resistant tuberculosis: What is ...

    Indian Academy of Sciences (India)

    Prakash

    reported figure, because the annual risk of tuberculosis and prevalence of acquired multi-drug resistant tuberculosis and tuberculosis with HIV is increasing in India (Narain and Lo 2004). One case of XDR- TB is recently reported from Tuberculosis Research Center, Chennai (Thomas et al. 2007). 7. XDR-TB with HIV/AIDS.

  5. Characterization of drug resistant Pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    Lizards as well as some other reptiles have been known to carry pathogenic bacteria organisms as well as drug resistant pathogens. Despite the fact that they remain asymptomatic in many cases, they nevertheless play significant roles in the epidemiology of these pathogens through their dissemination to the public, ...

  6. Population mobility, globalization, and antimicrobial drug resistance.

    Science.gov (United States)

    MacPherson, Douglas W; Gushulak, Brian D; Baine, William B; Bala, Shukal; Gubbins, Paul O; Holtom, Paul; Segarra-Newnham, Marisel

    2009-11-01

    Population mobility is a main factor in globalization of public health threats and risks, specifically distribution of antimicrobial drug-resistant organisms. Drug resistance is a major risk in healthcare settings and is emerging as a problem in community-acquired infections. Traditional health policy approaches have focused on diseases of global public health significance such as tuberculosis, yellow fever, and cholera; however, new diseases and resistant organisms challenge existing approaches. Clinical implications and health policy challenges associated with movement of persons across barriers permeable to products, pathogens, and toxins (e.g., geopolitical borders, patient care environments) are complex. Outcomes are complicated by high numbers of persons who move across disparate and diverse settings of disease threat and risk. Existing policies and processes lack design and capacity to prevent or mitigate adverse health outcomes. We propose an approach to global public health risk management that integrates population factors with effective and timely application of policies and processes.

  7. Death receptor ligands, in particular TRAIL, to overcome drug resistance

    NARCIS (Netherlands)

    de Jong, S; Timmer, T; Heijenbrok, FJ; de Vries, EGE

    2001-01-01

    The efficacy of chemotherapeutic drugs is hampered by the occurrence of intrinsic and acquired drug resistance. A variety of mechanisms cause drug-resistance. A final common factor, however, is the reduced capacity of drug resistant cells to go into apoptosis following treatment with DNA damaging

  8. Fresh Air and Good Food: Children and the Anti-Tuberculosis Campaign in the Netherlands c.1900-1940

    Science.gov (United States)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic "mood" was encouraged by a child-saving ethos that focused upon the poor. In this article the…

  9. Late paradoxical lymph node enlargement during and after anti-tuberculosis treatment in non-HIV-infected patients.

    Science.gov (United States)

    Yu, S N; Cho, O-H; Park, K-H; Jung, J; Kim, Y K; Lee, J Y; Chong, Y-P; Lee, S-O; Choi, S-H; Kim, Y S; Woo, J H; Kim, S-H

    2015-11-01

    A tertiary referral centre in South Korea. To investigate the incidence, clinical characteristics and outcomes of late paradoxical response (>4 months after the initiation of anti-tuberculosis treatment) during and after anti-tuberculosis treatment in non-human immunodeficiency virus (HIV) infected patients with lymph node tuberculosis (TB). We retrospectively reviewed the medical records of non-HIV-infected patients with lymph node TB between 1997 and 2007, and prospectively enrolled patients with newly diagnosed lymph node TB between 2008 and 2013. Of 467 patients with confirmed and probable lymph node TB, 83 (18%) displayed a paradoxical response: 57 of these (69%) were classified as early and 26 (31%) as late paradoxical response. Patients with late paradoxical response (median 12 months) received more prolonged anti-tuberculosis treatment than those with early (median 9 months, P lymph node enlargement increased progressively from those without any paradoxical response (6%), through those with an early response (12%) to those with a late response (23%). Paradoxical response presents late in about one third of non-HIV-infected patients with lymph node TB who experience a response. Although anti-tuberculosis treatment is commonly prolonged in patients with late paradoxical response, post-treatment lymph node enlargement is more frequent in these patients.

  10. Fresh air and good food : Children and the anti-tuberculosis campaign in the Netherlands c.1900-1940

    NARCIS (Netherlands)

    Bakker, Nelleke

    2010-01-01

    As elsewhere in the Western world, between 1900 and 1940 the anti-tuberculosis campaign in the Netherlands produced a wide range of initiatives to promote child health. In each of these the social and the medical were linked, as the hygienic 'mood' was encouraged by a child-saving ethos that focused

  11. Anti-tuberculosis treatment defaulting: an analysis of perceptions and interactions in Chiapas, Mexico.

    Science.gov (United States)

    Reyes-Guillén, Ivett; Sánchez-Pérez, Héctor Javier; Cruz-Burguete, Jorge; Izaurieta-de Juan, Miren

    2008-01-01

    To analyze the perceptions and interactions of the actors involved in anti-tuberculosis treatment, and to explore their influence in treatment defaulting in Los Altos region of Chiapas, Mexico. From November 2002 to August 2003, in-depth interviews were administered to patients with PTB, patients' family members, institutional physicians, community health coordinators, and traditional medicine practitioners. We found different perceptions about PTB between patients and their families and among health personnel, as well as communication barriers between actors. Defaulting is considered to be mainly due to the treatment's adverse effects. It is necessary to conduct research and interventions in the studied area with the aim of changing perceptions, improving sensitization, quality and suitability of management of patients with PTB in a multicultural context, and promoting collaboration between institutional and traditional medicine.

  12. An insight into the drug resistance profile & mechanism of drug resistance in Neisseria gonorrhoeae.

    Science.gov (United States)

    Patel, Achchhe Lal; Chaudhry, Uma; Sachdev, Divya; Sachdeva, Poonam Nagpal; Bala, Manju; Saluja, Daman

    2011-10-01

    Among the aetiological agents of treatable sexually transmitted diseases (STDs), Neissseria gonorrhoeae is considered to be most important because of emerging antibiotic resistant strains that compromise the effectiveness of treatment of the disease - gonorrhoea. In most of the developing countries, treatment of gonorrhoea relies mainly on syndromic management rather than the aetiological based therapy. Gonococcal infections are usually treated with single-dose therapy with an agent found to cure > 95 per cent of cases. Unfortunately during the last few decades, N. gonorrhoeae has developed resistance not only to less expensive antimicrobials such as sulphonamides, penicillin and tetracyclines but also to fluoroquinolones. The resistance trend of N. gonorrhoeae towards these antimicrobials can be categorised into pre-quinolone, quinolone and post-quinolone era. Among the antimicrobials available so far, only the third-generation cephalosporins could be safely recommended as first-line therapy for gonorrhoea globally. However, resistance to oral third-generation cephalosporins has also started emerging in some countries. Therefore, it has become imperative to initiate sustained national and international efforts to reduce infection and misuse of antibiotics so as to prevent further emergence and spread of antimicrobial resistance. It is necessary not only to monitor drug resistance and optimise treatment regimens, but also to gain insight into how gonococcus develops drug resistance. Knowledge of mechanism of resistance would help us to devise methods to prevent the occurrence of drug resistance against existing and new drugs. Such studies could also help in finding out new drug targets in N. gonorrhoeae and also a possibility of identification of new drugs for treating gonorrhoea.

  13. Antituberculosis drug resistance patterns in adults with tuberculous meningitis

    DEFF Research Database (Denmark)

    Senbayrak, Seniha; Ozkutuk, Nuri; Erdem, Hakan

    2015-01-01

    BACKGROUND: Tuberculous meningitis (TBM) caused by Mycobacterium tuberculosis resistant to antituberculosis drugs is an increasingly common clinical problem. This study aimed to evaluate drug resistance profiles of TBM isolates in adult patients in nine European countries involving 32 centers to ...

  14. HIV drug resistance: problems and perspectives

    OpenAIRE

    Pleuni S. Pennings

    2013-01-01

    Access to combination antiretroviral treatment (ART) has improved greatly over recent years. At the end of 2011, more than eight million HIV infected people were receiving antiretroviral therapy in low-income and middle-income countries. ART generally works well in keeping the virus suppressed and the patient healthy. However, treatment only works as long as the virus is not resistant against the drugs used. In the last decades, HIV treatments have become better and better at slowing down the...

  15. The impact of anticoccidial drug resistance on poultry production - a ...

    African Journals Online (AJOL)

    This review, using coccidiosis and anticoccidial drug resistance highlighted the economic impact of drug resistance on livestock industry but also suggested ways of preventing or minimizing drug resistance on the farm. This way, economic loss will be minimized and more protein from animal origin will be made available to ...

  16. Overcoming drug resistance in multi-drug resistant cancers and microorganisms: a conceptual framework.

    Science.gov (United States)

    Avner, Benjamin S; Fialho, Arsenio M; Chakrabarty, Ananda M

    2012-01-01

    Resistance development against multiple drugs is a common feature among many pathogens--including bacteria such as Pseudomonas aeruginosa, viruses, and parasites--and also among cancers. The reasons are two-fold. Most commonly-used rationally-designed small molecule drugs or monoclonal antibodies, as well as antibiotics, strongly inhibit a key single step in the growth and proliferation of the pathogen or cancer cells. The disease agents quickly change or switch off this single target, or activate the efflux mechanisms to pump out the drug, thereby becoming resistant to the drug. A second problem is the way drugs are designed. The pharmaceutical industry chooses to use, by high-throughput screening, compounds that are maximally inhibitory to the key single step in the growth of the pathogen or cancer, thereby promoting selective pressure. An ideal drug would be one that inhibits multiple steps in the disease progression pathways with less stringency in these steps. Low levels of inhibition at multiple steps provide cumulative strong inhibitory effect, but little incentives or ability on the part of the pathogen/cancer to develop resistance. Such intelligent drug design involving multiple less stringent inhibitory steps is beyond the scope of the drug industry and requires evolutionary wisdom commonly possessed by bacteria. This review surveys assessments of the current clinical situation with regard to drug resistance in P. aeruginosa, and examines tools currently employed to limit this trend. We then provide a conceptual framework in which we explore the similarities between multi-drug resistance in pathogens and in cancers. We summarize promising work on anti-cancer drugs derived from the evolutionary wisdom of bacteria such as P. aeruginosa, and how such strategies can be the basis for how to look for candidate protein/peptide antibiotic drugs from bioengineered bugs. Such multi-domain proteins, unlike diffusible antibiotics, are not diffusible because of their

  17. Multidrug Resistant and Extensively Drug Resistant Bacteria: A Study

    Directory of Open Access Journals (Sweden)

    Silpi Basak

    2016-01-01

    Full Text Available Background and Objective. Antimicrobial resistance is now a major challenge to clinicians for treating patients. Hence, this short term study was undertaken to detect the incidence of multidrug-resistant (MDR, extensively drug-resistant (XDR, and pandrug-resistant (PDR bacterial isolates in a tertiary care hospital. Material and Methods. The clinical samples were cultured and bacterial strains were identified in the department of microbiology. The antibiotic susceptibility profile of different bacterial isolates was studied to detect MDR, XDR, and PDR bacteria. Results. The antibiotic susceptibility profile of 1060 bacterial strains was studied. 393 (37.1% bacterial strains were MDR, 146 (13.8% strains were XDR, and no PDR was isolated. All (100% Gram negative bacterial strains were sensitive to colistin whereas all (100% Gram positive bacterial strains were sensitive to vancomycin. Conclusion. Close monitoring of MDR, XDR, or even PDR must be done by all clinical microbiology laboratories to implement effective measures to reduce the menace of antimicrobial resistance.

  18. Biophysics of Cell Membrane Lipids in Cancer Drug Resistance: Implications for Drug Transport and Drug Delivery with Nanoparticles

    Science.gov (United States)

    Peetla, Chiranjeevi; Vijayaraghavalu, Sivakumar; Labhasetwar, Vinod

    2013-01-01

    In this review, we focus on the biophysics of cell membrane lipids, particularly when cancers develop acquired drug resistance, and how biophysical changes in resistant cell membrane influence drug transport and nanoparticle-mediated drug delivery. Recent advances in membrane lipid research show the varied roles of lipids in regulating membrane P-glycoprotein function, membrane trafficking, apoptotic pathways, drug transport, and endocytic functions, particularly endocytosis, the primary mechanism of cellular uptake of nanoparticle-based drug delivery systems. Since acquired drug resistance alters lipid biosynthesis, understanding the role of lipids in cell membrane biophysics and its effect on drug transport is critical for developing effective therapeutic and drug delivery approaches to overcoming drug resistance. Here we discuss novel strategies for (a) modulating the biophysical properties of membrane lipids of resistant cells to facilitate drug transport and regain endocytic function and (b) developing effective nanoparticles based on their biophysical interactions with membrane lipids to enhance drug delivery and overcome drug resistance. PMID:24055719

  19. A cross-sectional and follow-up study of leukopenia in tuberculosis patients: prevalence, risk factors and impact of anti-tuberculosis treatment.

    Science.gov (United States)

    Lin, Fei-Shen; Wu, Mei-Ying; Tu, Wen-Jun; Pan, Hong-Qiu; Zheng, Jian; Shi, Jun-Wei; Fei, Zhong-Ting; Zhang, Rui-Mei; Yan, Wei-Guo; Shang, Ming-Qun; Zheng, Qiang; Wang, Meng-Jie; Zhang, Xia

    2015-12-01

    To investigate the prevalence of and risk factors for leukopenia in tuberculosis patients and the impact of anti-tuberculosis regimens on the occurrence of leukopenia in newly treated tuberculosis patients. A total of 1,904 tuberculosis patients were included in the study. A cross-sectional survey of the prevalence of leukopenia was initially conducted, and then factors influencing leukopenia were identified using Logistic regression analysis. Non-treatment factors influencing peripheral blood leukocyte counts were analyzed using univariate COX proportional hazards models. Covariate analysis was used to assess the independent effect of different anti-tuberculosis regimens on peripheral blood leukocyte counts. Being female, advanced age and longer duration of previous anti-tuberculosis treatment (>6 month) were risk factors for leukopenia in tuberculosis patients, while secondary pulmonary tuberculosis, higher body mass index (BMI: 24-27.9 kg/m(2)), and higher degree of education (senior high school or above) were protective factors. Gender, vegetable consumption, drinking, pulmonary infection, other chronic diseases, and use of antibiotics were significantly associated with the development of leukopenia in patients on anti-tuberculosis treatment. In tuberculosis patients treated with anti-tuberculosis regimens not containing antibiotics, peripheral blood leukocyte levels gradually declined with the prolongation of treatment duration. In tuberculosis patients treated with anti-tuberculosis regimens containing antibiotics, peripheral blood leukocyte levels showed a declining trend. Female patients, patients at advanced age and recurrent tuberculosis patients having longer previous anti-tuberculosis treatment are high-risk populations for leukopenia. Attention should be paid to the influence of vegetable consumption and drinking, co-morbidities and use of antibiotics during anti-tuberculosis treatment.

  20. Exploiting nanotechnology to overcome tumor drug resistance: Challenges and opportunities.

    Science.gov (United States)

    Kirtane, Ameya R; Kalscheuer, Stephen M; Panyam, Jayanth

    2013-11-01

    Tumor cells develop resistance to chemotherapeutic drugs through multiple mechanisms. Overexpression of efflux transporters is an important source of drug resistance. Efflux transporters such as P-glycoprotein reduce intracellular drug accumulation and compromise drug efficacy. Various nanoparticle-based approaches have been investigated to overcome efflux-mediated resistance. These include the use of formulation excipients that inhibit transporter activity and co-delivery of the anticancer drug with a specific inhibitor of transporter function or expression. However, the effectiveness of nanoparticles can be diminished by poor transport in the tumor tissue. Hence, adjunct therapies that improve the intratumoral distribution of nanoparticles may be vital to the successful application of nanotechnology to overcome tumor drug resistance. This review discusses the mechanisms of tumor drug resistance and highlights the opportunities and challenges in the use of nanoparticles to improve the efficacy of anticancer drugs against resistant tumors. © 2013.

  1. Inhibition of Glutamine Synthetase: A Potential Drug Target in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Sherry L. Mowbray

    2014-08-01

    Full Text Available Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6–9 months and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  2. Inhibition of glutamine synthetase: a potential drug target in Mycobacterium tuberculosis.

    Science.gov (United States)

    Mowbray, Sherry L; Kathiravan, Muthu K; Pandey, Abhishek A; Odell, Luke R

    2014-08-26

    Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis. Globally, tuberculosis is second only to AIDS in mortality and the disease is responsible for over 1.3 million deaths each year. The impractically long treatment schedules (generally 6-9 months) and unpleasant side effects of the current drugs often lead to poor patient compliance, which in turn has resulted in the emergence of multi-, extensively- and totally-drug resistant strains. The development of new classes of anti-tuberculosis drugs and new drug targets is of global importance, since attacking the bacterium using multiple strategies provides the best means to prevent resistance. This review presents an overview of the various strategies and compounds utilized to inhibit glutamine synthetase, a promising target for the development of drugs for TB therapy.

  3. Prediction of resistance development against drug combinations by collateral responses to component drugs

    DEFF Research Database (Denmark)

    Munck, Christian; Gumpert, Heidi; Nilsson Wallin, Annika

    2014-01-01

    the genomes of all evolved E. coli lineages, we identified the mutational events that drive the differences in drug resistance levels and found that the degree of resistance development against drug combinations can be understood in terms of collateral sensitivity and resistance that occurred during...... adaptation to the component drugs. Then, using engineered E. coli strains, we confirmed that drug resistance mutations that imposed collateral sensitivity were suppressed in a drug pair growth environment. These results provide a framework for rationally selecting drug combinations that limit resistance...

  4. My Cousin, My Enemy: quasispecies suppression of drug resistance

    Science.gov (United States)

    Kirkegaard, Karla; van Buuren, Nicholas J; Mateo, Roberto

    2017-01-01

    If a freshly minted genome contains a mutation that confers drug resistance, will it be selected in the presence of the drug? Not necessarily. During viral infections, newly synthesized viral genomes occupy the same cells as parent and other progeny genomes. If the antiviral target is chosen so that the drug-resistant progeny’s growth is dominantly inhibited by the drug-susceptible members of its intracellular family, its outgrowth can be suppressed. Precedent for ‘dominant drug targeting’ as a deliberate approach to suppress the outgrowth of inhibitor-resistant viruses has been established for envelope variants of vesicular stomatitis virus and for capsid variants of poliovirus and dengue virus. Small molecules that stabilize oligomeric assemblages are a promising means to an unfit family to destroy the effectiveness of a newborn drug-resistant relative due to the co-assembly of drug-susceptible and drug-resistant monomers. PMID:27764731

  5. mtct regimen choice, drug resistance and the treatment of hiv

    African Journals Online (AJOL)

    Perinauzl HW Unit, University ofcJu WilWalmTand. MTCT REGIMEN CHOICE, DRUG. RESISTANCE AND THE TREATMENT OF. HIV-I-INFECTED CHILDREN assessing ARV drug resistance. Genotypic assays detect specific point mutations in the HIV genome that are associated with phenotypic resistance. These are most.

  6. Prevalence of drug resistant tuberculosis in Arsi Zone, Ethiopia ...

    African Journals Online (AJOL)

    Background: Wide spread of occurrence of multi-drug resistance tuberculosis is becoming a major challenge to effective tuberculosis control. Thus, it is imperative to monitor the sensitivity of anti-TB drugs regularly. Objective: To determine the prevalence resistance to anti-TB drugs in a well established control program area ...

  7. Evaluation of anti-tuberculosis antibodies in healthy contact and non-contacts persons

    International Nuclear Information System (INIS)

    Aziz, N; Bukhari, M.H; Muneer, M; Tayyab, M; Chaudhry, N.A.

    2006-01-01

    This study was conducted to see the presence of the antimycobacterial antibodies in healthy household contacts of tuberculosis patients and healthy normal subjects who have never been in contact with tuberculosis patients. A total of 200 subjects, 120 with history of household contact and 80 without such history were included in the study. Routine Haematological investigations were performed and all the sera of 200 subjects were tested who 19M, 19G and IgA anti tuberculosis antibodies using ELISA technique. There was no difference in the average age of the household contacts and non-contacts. The complaints of pyrexia, night sweats and loss of weight was more in house hold contacts as compared to non-contacts. The awareness about BCG vaccination was equal among the household contacts and non-contacts. The combined serological positivity of the household contacts was 65.8% and the combined serological positivity for non-contacts was 34.1%. There was no statistically significant difference in the presence of 19M among household contacts as compared to non-contacts. However both IgG and 19A were present in significantly higher number of household contacts as compared to non contacts. This study concludes that the persons living in the house with a patient suffering from active pulmonary tuberculosis (household contact) have more chances of being infected with Mycobacterium tuberculosis as compared to the healthy non-contacts. (author)

  8. Correlates of default from anti-tuberculosis treatment: a case study using Kenya's electronic data system.

    Science.gov (United States)

    Sitienei, J; Kipruto, H; Mansour, O; Ndisha, M; Hanson, C; Wambu, R; Addona, V

    2015-09-01

    In 2012, the World Health Organization estimated that there were 120,000 new cases and 9500 deaths due to tuberculosis (TB) in Kenya. Almost a quarter of the cases were not detected, and the treatment of 4% of notified cases ended in default. To identify the determinants of anti-tuberculosis treatment default. Data from 2012 and 2013 were retrieved from a national case-based electronic data recording system. A comparison was made between new pulmonary TB patients for whom treatment was interrupted vs. those who successfully completed treatment. A total of 106,824 cases were assessed. Human immunodeficiency virus infection was the single most influential risk factor for default (aOR 2.7). More than 94% of patients received family-based directly observed treatment (DOT) and were more likely to default than patients who received DOT from health care workers (aOR 2.0). Caloric nutritional support was associated with lower default rates (aOR 0.89). Males were more likely to default than females (aOR 1.6). Patients cared for in the private sector were less likely to default than those in the public sector (aOR 0.86). Understanding the factors contributing to default can guide future program improvements and serve as a proxy to understanding the factors that constrain access to care among undetected cases.

  9. Predicted levels of HIV drug resistance

    DEFF Research Database (Denmark)

    Cambiano, Valentina; Bertagnolio, Silvia; Jordan, Michael R

    2014-01-01

    -term effects. METHODS: The previously validated HIV Synthesis model was calibrated to South Africa. Resistance was modeled at the level of single mutations, transmission potential, persistence, and effect on drug activity. RESULTS: We estimate 652 000 people (90% uncertainty range: 543 000-744 000) are living...... are maintained, in 20 years' time HIV incidence is projected to have declined by 22% (95% confidence interval, CI -23 to -21%), and the number of people carrying NNRTI resistance to be 2.9-fold higher. If enhancements in diagnosis and retention in care occur, and ART is initiated at CD4 cell count less than 500......  cells/μl, HIV incidence is projected to decline by 36% (95% CI: -37 to -36%) and the number of people with NNRTI resistance to be 4.1-fold higher than currently. Prevalence of people with viral load more than 500  copies/ml carrying NRMV is not projected to differ markedly according to future ART...

  10. adverse events to first line anti-tuberculosis drugs in patients co

    African Journals Online (AJOL)

    University College Hospital, a tertiary healthcare center located in Ibadan, Nigeria. It was a prospective observational study of patients aged between 18 and. 65 years. The study took place when TB-HIV treatment allowed for treatment of TB alone before commencement of anti-retroviral therapy, thus it was possible to ...

  11. ANALYSIS OF MUTATIONS OF TUBERCULOUS MYCOBACTERIA DEFINING DRUG RESISTANCE IN HIV POSITIVE AND HIV NEGATIVE TUBERCULOSIS PATIENTS WITHOUT PRIOR HISTORY OF TREATMENT IN SVERDLOVSK REGION

    Directory of Open Access Journals (Sweden)

    G. V. Panov

    2017-01-01

    Full Text Available Goal of the study: to identify profile of mutations of tuberculous mycobacteria responsible for resistance to anti-tuberculosis drugs in HIV positive and HIV negative tuberculosis patients without prior history of treatment.Materials and methods. 165 strains of tuberculous mycobacteria from HIV positive patients and 166 strains of tuberculous mycobacteria from HIV negative patients were studied in Sverdlovsk Region (TB Dispensary, Yekaterinburg. Mutations in genes were identified using microchips of TB-BIOCHIP® and TB-BIOCHIP®-2 in compliance with the manufacturer's guidelines (OOO Biochip-IMB, Moscow.Results. It was observed that 85/165 (51.52% strains isolated from HIV positive tuberculosis patients and 58/166 (34.94% strains isolated from tuberculosis patients not associated with HIV possessed MDR genotype (p < 0.01. The majority of MDR strains had mutations in the 531th codon of rpoB (Ser→Leu and 315th codon of katG (Ser→Thr (64/85, 75.29% and 38/58, 65.52% respective the groups, resulting in the high level of resistance to rifampicin and isoniazid. Each group also had approximately equal ratio (11/165, 6.67% and 12/166, 7.23% respective the groups of strains with genomic mutations defining the resistance to isoniazid, rifampicin and fluoruquinolones. No confident difference was found in mutation patterns of genome of tuberculous mycobacteria isolated from HIV positive and HIV negative tuberculosis patients. 

  12. Study on drug resistance of mycobacterium tuberculosis in patients with pulmonary tuberculosis by drug resistance gene detecting

    International Nuclear Information System (INIS)

    Wang Wei; Li Hongmin; Wu Xueqiong; Wang Ansheng; Ye Yixiu; Wang Zhongyuan; Liu Jinwei; Chen Hongbing; Lin Minggui; Wang Jinhe; Li Sumei; Jiang Ping; Feng Bai; Chen Dongjing

    2004-01-01

    To investigate drug resistance of mycobacterium tuberculosis in different age group, compare detecting effect of two methods and evaluate their the clinical application value, all of the strains of mycobacterium tuberculosis were tested for resistance to RFP, INH SM PZA and EMB by the absolute concentration method on Lowenstein-Jensen medium and the mutation of the rpoB, katG, rpsL, pncA and embB resistance genes in M. tuberculosis was tested by PCR-SSCP. In youth, middle and old age group, the rate of acquired drug resistance was 89.2%, 85.3% and 67.6% respectively, the gene mutation rate was 76.2%, 81.3% and 63.2% respectively. The rate of acquired drug resistance and multiple drug resistance in youth group was much higher than those in other groups. The gene mutation was correlated with drug resistance level of mycobacterium tuberculosis. The gene mutation rate was higher in strains isolated from high concentration resistance than those in strains isolated from low concentration resistance. The more irregular treatment was longer, the rate of drug resistance was higher. Acquired drug resistance varies in different age group. It suggested that surveillance of drug resistence in different age group should be taken seriously, especially in youth group. PCR - SSCP is a sensitive and specific method for rapid detecting rpoB, katG, rpsL, pncA and embB genes mutations of MTB. (authors)

  13. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis

    NARCIS (Netherlands)

    Kamp, Jasper; Bolhuis, Mathieu S.; Tiberi, Simon; Akkerman, Onno W.; Centis, Rosella; de lange, Wiel C.; Kosterink, Jos G.; van der Werf, Tjip S.; Migliori, Giovanni B.; Alffenaar, Jan-Willem C.

    Linezolid is used increasingly for the treatment of multi-drug-resistant (MDR) and extensively-drug-resistant (XDR) tuberculosis (TB). However, linezolid can cause severe adverse events, such as peripheral and optical neuropathy or thrombocytopenia related to higher drug exposure. This study aimed

  14. Antituberculous drug resistance in Manitoba from 1980 to 1989.

    Science.gov (United States)

    Long, R; Manfreda, J; Mendella, L; Wolfe, J; Parker, S; Hershfield, E

    1993-01-01

    OBJECTIVES: To estimate the magnitude of antituberculous drug resistance and identify the risk factors for its development in tuberculosis patients in Manitoba over a 10-year period. As well, to examine the clinical course of the patients whose initial or subsequent isolates of Mycobacterium tuberculosis were resistant to one or more drugs. DESIGN: Comparison of drug-resistant and non-drug-resistant cases of tuberculosis. SETTING: Manitoba. PATIENTS: All people with tuberculosis reported to the Central Tuberculosis Registry of Manitoba between Jan. 1, 1980, and Dec. 31, 1989. MAIN OUTCOME MEASURES: Of 1478 cases of active tuberculosis 1086 were culture positive, and drug susceptibility testing was performed in these cases. The clinical course, including outcome of treatment, of all drug-resistant cases was described. RESULTS: Of 1086 culture-positive cases of tuberculosis 77 (7.1%) were drug resistant. Odds ratios suggested that the risk of drug resistance was significantly higher among the immigrants than among the other Canadians. Compared with the other Canadians the risk of drug resistance was 9.9 times greater among the immigrants in whom tuberculosis developed within the first year after arrival in Canada and 5.4 times greater among the immigrants in whom it developed 2 to 5 years after arrival in Canada. Of the 71 patients with drug-resistant disease whose type of resistance was known 62% had never taken antituberculous drugs before and 38% had. Most (91%) of the 77 cases of drug-resistant disease were resistant to first-line drugs, especially isoniazid and streptomycin. Thirty-two (42%) of the 77 cases were resistant to two or more first-line drugs. Of patients with drug-resistant disease a subgroup of 10 had disease that became resistant to several drugs over the 10-year period. The outcome of treatment in these individuals was poor, and they presented a particular public health problem. CONCLUSION: Resistance to one or more first-line antituberculous

  15. Susceptibility of Selected Multi-Drug Resistant Clinical Isolates to ...

    African Journals Online (AJOL)

    2018-03-01

    . ... multi-drug resistance. INTRODUCTION. Antimicrobials are great resorts in the treatment of bacterial infectious diseases (1). However, over the past few decades, these ..... of carbapenem-resistant Enterobacteriaceae from.

  16. Drug-resistant post-neurosurgical nosocomial Acinetobacter ...

    African Journals Online (AJOL)

    The majority of carbapenem-resistant isolates were resistant to at least three other antibiotic classes. The emergence of postsurgical multi-drug resistant Acinetobacter meningitis highlights the importance of implementing preventative strategies towards nosocomial infections. Key words: Acinetobacter baumannii, resistance ...

  17. Multi-drug resistance and molecular pattern of erythromycin and ...

    African Journals Online (AJOL)

    The appearance and dissemination of penicillin resistant and macrolide resistant Streptococcus pneumoniae strains has caused increasing concern worldwide. The aim of this study was to survey drug resistance and genetic characteristics of macrolide and penicillin resistance in S. pneumoniae. This is a cross-sectional ...

  18. [Genotyping and drug resistance of methicillin-resistant Staphylococcus aureus].

    Science.gov (United States)

    Yao, Ming; Guan, Lifeng; Jia, Wei; Wang, Linlin; Li, Gang; Wu, Xuejun; Sun, Tao

    2014-10-01

    To investigate the genotype of staphylococcal chromosomal cassette mec (SCCmec) in methicillin-resistant Staphylococcus aureus (MRSA) isolated from burn wards and its current status of drug resistance. One hundred and seventy-nine strains of Staphylococcus aureus were isolated from wound excretion, blood, and sputum samples of patients that were admitted to ICU or public wards of our Department of Burns and Plastic Surgery from September 2012 to September 2013. Among them, 68 strains were from ICU and 111 strains from public wards. The MRSA phenotype of Staphylococcus aureus was detected with cefoxitin K-B disk diffusion method, and the isolation rates of MRSA in ICU and public wards were compared. Genotyping of SCCmec was performed by PCR in strains of MRSA. In the meantime, the identification result of MRSA by K-B method was verified through detecting methicillin-resistant determinant mecA. The antimicrobial resistance of MRSA and methicillin-sensitive Staphylococcus aureus (MSSA) to 23 kinds of commonly used antibiotics in clinic were detected by K-B disk diffusion method. Except for the antibiotics to which the resistant rates of MRSA were 100.0% or 0, the resistant rates of SCCmecIII MRSA and non-SCCmec III MRSA to the rest of antibiotics were compared. Data were processed with Pearson chi-square test or corrected chi-square test. One hundred and forty-eight strains out of the 179 Staphylococcus aureus were identified as MRSA (accounting for 82.7%), among which 62 were originated from ICU and 86 from public wards. The rest 31 strains of Staphylococcus aureus were MSSA, accounting for 17.3%. The percentage of MRSA in the isolated Staphylococcus aureus was 91.2% (62/68) in ICU, which was significantly higher than that in the public wards [77.5% (86/111), χ2 = 5.526, P = 0.019]. PCR detection showed that the 148 strains of MRSA harbored the mecA gene, out of which 106 strains were SCCmec III positive, accounting for 71.6%. The percentages of SCCmec III type MRSA

  19. Bedaquiline resistance: Its emergence, mechanism and prevention.

    Science.gov (United States)

    Nguyen, Thi Van Anh; Anthony, Richard M; Bañuls, Anne-Laure; Vu, Dinh Hoa; Alffenaar, Jan-Willem C

    2017-11-08

    Bedaquiline, a new anti-tuberculosis drug, has already been used in more than 50 countries. The emergence of bedaquiline resistance is alarming, as it may result in the rapid loss of this new drug. This paper aims to review currently identified mechanisms of resistance, the emergence of bedaquiline resistance, and discuss strategies to delay the resistance acquisition. In vitro and clinical studies as well as reports from the compassionate use have identified the threat of bedaquiline resistance and cross-resistance with clofazimine, emphasizing the crucial need for the systematic surveillance of resistance. Currently known mechanisms of resistance include mutations within the atpE, Rv0678 and pepQ genes. The development of standardized drug susceptibility testing (DST) for bedaquiline is urgently needed.Understanding any target and non-target based mechanisms is essential to minimize the resistance development and treatment failure, help to develop appropriate DST for bedaquiline and genetic based resistance screening. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  20. Targeted cancer therapy; nanotechnology approaches for overcoming drug resistance.

    Science.gov (United States)

    Gao, Yan; Shen, Jacson K; Milane, Lara; Hornicek, Francis J; Amiji, Mansoor M; Duan, Zhenfeng

    2015-01-01

    Recent advances in cancer molecular biology have resulted in parallel and unprecedented progress in the development of targeted cancer therapy. Targeted therapy can provide higher efficacy and lower toxicity than conventional chemotherapy for cancer. However, like traditional chemotherapy, molecularly targeted cancer therapy also faces the challenge of drug resistance. Multiple mechanisms are responsible for chemotherapy resistance in tumors, including over-expression of efflux transporters, somatic alterations of drug targets, deregulation of apoptosis, and numerous pharmacokinetic issues. Nanotechnology based approaches are proving to be efficacious in overcoming drug resistance in cancer. Combination of targeted therapies with nanotechnology approaches is a promising strategy to overcome targeted therapy drug resistance in cancer treatment. This review discusses the mechanisms of targeted drug resistance in cancer and discusses nanotechnology approaches to circumvent this resistance.

  1. Drug Resistance to EGFR Inhibitors in Lung Cancer

    Science.gov (United States)

    Tetsu, Osamu; Hangauer, Matthew J.; Phuchareon, Janyaporn; Eisele, David W.; McCormick, Frank

    2016-01-01

    Background The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small cell lung cancer (NSCLC)—the leading cause of cancer death worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. Methods We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. Results The mechanisms causing primary, acquired, and persistent drug resistance to TKIs vary. Researchers and clinicians, who have used study findings to develop more effective therapeutic approaches, have found that the sequential use of single agents presents a formidable challenge, suggesting that multi-drug combinations must be considered. Conclusions In the era of precision medicine, oncologists should promptly obtain an accurate diagnosis of drug resistance in each patient to design the most relevant combination therapy to overcome patient-specific drug resistance. PMID:26910730

  2. Effect of radiation decontamination on drug-resistant bacteria

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    2006-01-01

    More than 80% of food poisoning bacteria such as Salmonella are reported as antibiotic-resistant to at least one type antibiotic, and more than 50% as resistant to two or more. For the decontamination of food poisoning bacteria in foods, radiation resistibility on drug-resistant bacteria were investigated compared with drug-sensitive bacteria. Possibility on induction of drug-resistant mutation by radiation treatment was also investigated. For these studies, type strains of Escherichia coli S2, Salmonella enteritidis YK-2 and Staphylococcus aureus H12 were used to induce drug-resistant strains with penicillin G. From the study of radiation sensitivity on the drug-resistant strain induced from E. coli S2, D 10 value was obtained to be 0.20 kGy compared with 0.25 kGy at parent strain. On S. enteritidis YK-2, D 10 value was obtained to be 0.14 kGy at drug-resistant strain compared with 0.16 kGy at parent strain. D 10 value was also obtained to be 0.15 kGy at drug-resistant strain compared with 0.21 kGy at parent strain of St. aureus H12. Many isolates of E. coli 157:H7 or other type of E. coli from meats such as beef were resistant to penicillin G, and looked to be no relationship on radiation resistivities between drug-resistant strains and sensitive strains. On the study of radiation sensitivity on E. coli S2 at plate agars containing antibiotics, higher survival fractions were obtained at higher doses compared with normal plate agar. The reason of higher survival fractions at higher doses on plate agar containing antibiotics should be recovery of high rate of injured cells by the relay of cell division, and drug-resistant strains by mutation are hardly induced by irradiation. (author)

  3. HIV resistance testing and detected drug resistance in Europe

    NARCIS (Netherlands)

    Schultze, Anna; Phillips, Andrew N.; Paredes, Roger; Battegay, Manuel; Rockstroh, Jürgen K.; Machala, Ladislav; Tomazic, Janez; Girard, Pierre M.; Januskevica, Inga; Gronborg-Laut, Kamilla; Lundgren, Jens D.; Cozzi-Lepri, Alessandro; Losso, M.; Kundro, M.; Vetter, N.; Zangerle, R.; Karpov, I.; Vassilenko, A.; Mitsura, V. M.; Paduto, D.; Clumeck, N.; de Wit, S.; Delforge, M.; Florence, E.; Vandekerckhove, L.; Hadziosmanovic, V.; Kostov, K.; Begovac, J.; Machala, L.; Jilich, D.; Sedlacek, D.; Nielsen, J.; Kronborg, G.; Benfield, T.; Larsen, M.; Gerstoft, J.; Katzenstein, T.; Pedersen, C.; Møller, N. F.; Ostergaard, L.; Dragsted, U. B.; Nielsen, L. N.; Zilmer, K.; Smidt, Jelena; Ristola, M.; Katlama, C.; Pradier, C.; Dabis, F.; Neau, D.; Duvivier, C.; Rockstroh, J.; Schmidt, R.; van Lunzen, J.; Degen, O.; Stefan, C.; Bogner, J.; Fatkenheuer, G.; Chkhartishvili, N.; Kosmidis, J.; Gargalianos, P.; Xylomenos, G.; Perdios, J.; Sambatakou, H.; Banhegyi, D.; Gottfredsson, M.; Mulcahy, F.; Yust, I.; Turner, D.; Burke, M.; Shahar, E.; Hassoun, G.; Elinav, H.; Haouzi, M.; Sthoeger, Z. M.; d'Arminio, A.; Esposito, R.; Mazeu, I.; Mussini, C.; Pristera, R.; Mazzotta, F.; Gabbuti, A.; Vullo, V.; Lichtner, M.; Zaccarelli, M.; Reiss, P.; Ormaasen, V.; Maeland, A.; Bruun, J.; Knysz, B.; Gasiorowski, J.; Inglot, M.; Horban, A.; Bakowska, E.; Grzeszczuk, A.; Flisiak, R.; Parczewski, M.; Pynka, M.; Maciejewska, K.; Beniowski, M.; Mularska, E.; Smiatacz, T.; Jablonowska, E.; Malolepsza, E.; Wojcik, K.; Mozer-Lisewska, I.; Doroana, M.; Caldeira, L.; Mansinho, K.; Maltez, F.; Radoi, R.; Oprea, C.; Babes, Victor; Rakhmanova, A.; Trofimora, T.; Khromova, I.; Kuzovatova, E.; Jevtovic, D.; Shunnar, A.; Stanekova, D.; Tomazic, J.; Moreno, S.; Rodriguez, J. M.; Clotet, B.; Jou, A.; Paredes, R.; Tural, C.; Puig, J.; Bravo, I.; Gatell, J. M.; Miro, J. M.; Domingo, P.; Gutierrez, M.; Mateo, G.; Sambeat, M. A.; Laporte, J. M.; Blaxhult, A.; Flamholc, L.; Thalme, A.; Sonnerborg, A.; Ledergerber, B.; Weber, R.; Cavassini, M.; Calmy, A.; Furrer, H.; Battegay, M.; Elzi, L.; Schmid, P.; Kravchenko, E.; Chentsova, N.; Frolov, V.; Kutsyna, G.; Baskakov, I.; Kuznetsova, A.; Kyselyova, G.; Gazzard, B.; Johnson, A. M.; Simons, E.; Edwards, S.; Phillips, A.; Johnson, M. A.; Mocroft, A.; Orkin, C.; Weber, J.; Scullard, G.; Fisher, M.; Leen, C.; Gatell, J.; Monforte, A. d'Arminio; Lundgren, J.; DeWit, S.; Kirk, O.; Grarup, J.; Cozzi-Lepri, A.; Thiebaut, R.; Burger, D.; Peters, L.; Podlekareva, D.; Nielsen, J. E.; Matthews, C.; Fischer, A. H.; Bojesen, A.; Raben, D.; Kristensen, D.; Laut, K. Grønborg; Larsen, J. F.; Grint, D.; Shepherd, L.; Schultze, A.

    2015-01-01

    Objectives: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. Design: Multinational cohort

  4. Distribution of red blood cell antigens in drug-resistant and drug ...

    African Journals Online (AJOL)

    Frequency distribution of ABO, Rh-Hr, MN, Kell blood group system antigens were studied in 277 TB patients (151-drug-sensitive and 126 drug-resistant) of pulmonary tuberculosis to know whether there was any association between them, and also between drug resistance and sensitiveness. They were compared with 485 ...

  5. Prevalence of drug resistant Mycobacterium tuberculosis among children in China.

    Science.gov (United States)

    Jiao, Wei-wei; Liu, Zhi-guang; Han, Rui; Zhao, Xiu-qin; Dong, Fang; Dong, Hai-yan; Huang, Hai-rong; Li, Qin-jing; Lin, Nan; Song, Wen-qi; Wan, Kang-lin; Shen, A-dong

    2015-05-01

    The available data on the epidemic of drug resistant tuberculosis (TB) among children in China is limited. This study attempted to clarify the drug resistance profiles of clinical strains isolated from children and estimate risk factors related to acquisition of drug resistance. All Mycobacterium tuberculosis strains from children (age children, 159 from adolescents, and 191 from adults) from all over China. Drug susceptibility testing was performed by a proportion method. As a result, the drug resistance and multi-drug resistance (MDR) rates in children were 55% (55/100) and 22% (22/100), respectively. In children with MDR-TB, new cases accounted for 40.9% (9/22). Compared with adults, the drug resistance rates were similar in all subgroups (new cases, previously treated cases and all cases) of children (P > 0.05), except for the lower resistance rate to isoniazid in total cases of children (P = 0.011). Patient related information was included in the MDR-TB association analysis. The treatment history was found to be strongly associated with MDR-TB in all three age groups (P children in China is alarmingly high and similar to that seen in adults. In contrast, in adolescents, the drug resistance rate to most tested drugs was lower than in adults. Primary transmission and inadequate treatment are two equally important factors for the high MDR-TB rate in children. Thus, major efforts in the TB control in children should focus on decreasing the transmission of drug resistant TB and early testing of drug resistance. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Characteristics of Drug Resistant Tuberculosis in Sanatoria of North Korea.

    Science.gov (United States)

    Jung, Jihee; Jegal, Yangjin; Ki, Moran; Shin, Young Jeon; Kim, Cheon Tae; Shim, Tae Sun; Sung, Nackmoon

    2017-07-01

    Although several reports about drug-resistant tuberculosis (TB) in North Korea have been published, a nationwide surveillance on this disease remains to be performed. This study aims to analyze the drug resistance patterns of Mycobacterium tuberculosis among the patients in the sanatoria of North Korea, especially during the period when second-line drugs (SLDs) had not yet been officially supplied to this country. The Eugene Bell Foundation (EBF) transferred 947 sputum specimens obtained from 667 patients from 2007 to 2009 to the Clinical Research Center, Masan National Tuberculosis Hospital (MNTH), South Korea. Four hundred ninety-two patients were culture positive for TB (73.8%). Drug susceptibility test (DST) was performed for the bacilli isolated from 489 patients. Over 3 quarters of the cases (76.9%) were multidrug-resistant (MDR)-TB. Additionally, 2 patients had extremely drug-resistant (XDR)-TB. Very high resistance to first-line drugs and low resistance to fluoroquinolones (FQs) and injectable drugs (IDs) except for streptomycin (S) were detected. A small but significant regional variation in resistance pattern was observed. Big city regions had higher rate of MDR-TB, higher resistance to FQs and IDs than relatively isolated regions. In conclusion, significant number of drug-resistant TB was detected in North Korean sanatoria, and small but significant regional variations in resistance pattern were noticeable. However, the data in this study do not represent the nationwide drug resistance pattern in North Korea. Further large-scale evaluations are necessary to estimate the resistance pattern of TB in North Korea. © 2017 The Korean Academy of Medical Sciences.

  7. Drug-resistance in chronic tuberculosis cases in Southern Nigeria ...

    African Journals Online (AJOL)

    Nigeria has a high burden of tuberculosis but the drug resistant situationwas previously unknown. This report evaluates the firstline drug resistance and associated factors among chronic tuberculosis cases from the tuberculosis control programme in South south and South east zones ofNigeria. Descriptive study of chronic ...

  8. Tuberculosis drug resistance in the Western Cape | Weyer | South ...

    African Journals Online (AJOL)

    Objectives: Drug resistance is a serious problem in the treatment of tuberculosis and a threat to successful tuberculosis control programmes. Local health workers have expressed concern that the increasing tuberculosis epidemic in the Western Cape is partly attributable to drug resistance. The aim of this study was to ...

  9. Multi-drug resistant tuberculosis in Tanzania: Initial description of ...

    African Journals Online (AJOL)

    Background: Drug resistant Tuberculosis is well documented worldwide and is associated with increasing morbidity and mortality complicating Tuberculosis control with increasing costs of managing the disease. Broad. Objective: To describe clinical and laboratory characteristics of multi-drug resistant Tuberculosis ...

  10. Multi drug resistant tuberculosis: a challenge in the management of ...

    African Journals Online (AJOL)

    kemrilib

    Multi drug resistant tuberculosis (MDR-TB) will not usually respond to short course chemotherapy. Unless the individual infected with this bug is treated appropriately, they can continue spreading resistant strains in the community and further fuel the tuberculosis epidemic. Diagnosis requires drug sensitivity testing and the ...

  11. Adaptation and evolution of drug-resistant Mycobacterium tuberculosis

    NARCIS (Netherlands)

    Bergval, I.L.

    2013-01-01

    Many studies have been conducted on drug resistance and the evolution of Mycobacterium tuberculosis. Notwithstanding, many molecular mechanisms facilitating the emergence, adaptation and spread of drug-resistant tuberculosis have yet to be discovered. This thesis reports studies of the adaptive

  12. Conventional versus newer methods for detection of drug resistance ...

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Conventional versus newer methods for detection of drug resistance in tuberculosis. Classical microbiological methods are well established but are cumbersome and time consuming. Newer rapid methods for rapid detection of drug resistance - microbiological, ...

  13. Early antiretroviral therapy and potent second-line drugs could decrease HIV incidence of drug resistance.

    Science.gov (United States)

    Shen, Mingwang; Xiao, Yanni; Rong, Libin; Meyers, Lauren Ancel; Bellan, Steven E

    2017-06-28

    Early initiation of antiretroviral therapy (ART) reduces the risk of drug-sensitive HIV transmission but may increase the transmission of drug-resistant HIV. We used a mathematical model to estimate the long-term population-level benefits of ART and determine the scenarios under which earlier ART (treatment at 1 year post-infection, on average) could decrease simultaneously both total and drug-resistant HIV incidence (new infections). We constructed an infection-age-structured mathematical model that tracked the transmission rates over the course of infection and modelled the patients' life expectancy as a function of ART initiation timing. We fitted this model to the annual AIDS incidence and death data directly, and to resistance data and demographic data indirectly among men who have sex with men (MSM) in San Francisco. Using counterfactual scenarios, we assessed the impact on total and drug-resistant HIV incidence of ART initiation timing, frequency of acquired drug resistance, and second-line drug effectiveness (defined as the combination of resistance monitoring, biomedical drug efficacy and adherence). Earlier ART initiation could decrease the number of both total and drug-resistant HIV incidence when second-line drug effectiveness is sufficiently high (greater than 80%), but increase the proportion of new infections that are drug resistant. Thus, resistance may paradoxically appear to be increasing while actually decreasing. © 2017 The Author(s).

  14. Evaluation of isoprinosine to be repurposed as an adjunct anti-tuberculosis chemotherapy.

    Science.gov (United States)

    Mishra, Alok K; Yabaji, Shivraj M; Dubey, Rikesh K

    2018-06-01

    Isoprinosine (Inos) or immunovir is a synthetic purine derivative with immune-modulatory and antiviral properties. The drug shows apparent in vivo enhancement of host immune responses by inducing pro-inflammatory cytokines and rapid proliferation of T-cell subsets. Strikingly, the cytokines induced by Inos also play crucial roles in providing immune resistance against Mycobacterium tuberculosis (Mtb). Inos has been licensed for several antiviral diseases; however, its efficacy against Mtb has not been tested yet. Since Mtb subverts the host immune system to survive within the host. Therefore, we hypothesized that the immune-stimulatory properties of Inos can be explored as an adjunct therapy for the management of tuberculosis. We have also outlined a systematic direction of study to evaluate if Inos could be repurposed for tuberculosis. The in vivo studies for therapeutic evaluation of Inos alone or in combination with the first line anti-TB drugs in a suitable TB disease model would provide a clearer picture of its utility as a host-directed anti-TB drug and may endow us with a new application of an existing drug to combat tuberculosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Dominant drug targets suppress the emergence of antiviral resistance

    OpenAIRE

    Tanner, Elizabeth J; Liu, Hong-mei; Oberste, M Steven; Pallansch, Mark; Collett, Marc S; Kirkegaard, Karla

    2014-01-01

    eLife digest Treating a viral infection with a drug sometimes has an unwanted side effect?the virus quickly becomes resistant to the drug. Viruses whose genetic information is encoded in molecules of RNA mutate faster than DNA viruses and are particularly good at developing resistance to drugs. This is because the process of copying the RNA is prone to errors, and by chance some of these errors, or mutations, may allow the virus to resist the drug's effects. Treating viral infections with mos...

  16. Diagnosis and Treatment of Drug-Resistant Tuberculosis.

    Science.gov (United States)

    Caminero, José A; Cayla, Joan A; García-García, José-María; García-Pérez, Francisco J; Palacios, Juan J; Ruiz-Manzano, Juan

    2017-09-01

    In the last 2 decades, drug-resistant tuberculosis has become a threat and a challenge to worldwide public health. The diagnosis and treatment of these forms of tuberculosis are much more complex and prognosis clearly worsens as the resistance pattern intensifies. Nevertheless, it is important to remember that with the appropriatesystematic clinical management, most of these patients can be cured. These guidelines itemize the basis for the diagnosis and treatment of all tuberculosis patients, from those infected by strains that are sensitive to all drugs, to those who are extensively drug-resistant. Specific recommendations are given forall cases. The current and future role of new molecular methods for detecting resistance, shorter multi-drug-resistant tuberculosis regimens, and new drugs with activity against Mycobacterium tuberculosis are also addressed. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Repurposing and Revival of the Drugs: A New Approach to Combat the Drug Resistant Tuberculosis

    Directory of Open Access Journals (Sweden)

    Divakar Sharma

    2017-12-01

    Full Text Available Emergence of drug resistant tuberculosis like multi drug resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and totally drug resistant tuberculosis (TDR-TB has created a new challenge to fight against these bad bugs of Mycobacterium tuberculosis. Repurposing and revival of the drugs are the new trends/options to combat these worsen situations of tuberculosis in the antibiotics resistance era or in the situation of global emergency. Bactericidal and synergistic effect of repurposed/revived drugs along with the latest drugs bedaquiline and delamanid used in the treatment of MDR-TB, XDR-TB, and TDR-TB might be the choice for future promising combinatorial chemotherapy against these bad bugs.

  18. Risk factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil

    Directory of Open Access Journals (Sweden)

    Geisa Fregona

    Full Text Available ABSTRACT OBJECTIVE To analyze the prevalence and factors associated with multidrug-resistant tuberculosis in Espírito Santo, Brazil. METHODS This is a cross-sectional study of cases of tuberculosis tested for first-line drugs (isoniazid, rifampicin, pyrazinamide, ethambutol, and streptomycin in Espírito Santo between 2002 and 2012. We have used laboratory data and registration of cases of tuberculosis – from the Sistema Nacional de Agravos de Notificação and Sistema para Tratamentos Especiais de Tuberculose. Individuals have been classified as resistant and non-resistant and compared in relation to the sociodemographic, clinical, and epidemiological variables. Some variables have been included in a logistic regression model to establish the factors associated with resistance. RESULTS In the study period, 1,669 individuals underwent anti-tuberculosis drug susceptibility testing. Of these individuals, 10.6% showed resistance to any anti-tuberculosis drug. The rate of multidrug resistance observed, that is, to rifampicin and isoniazid, has been 5%. After multiple analysis, we have identified as independent factors associated with resistant tuberculosis: history of previous treatment of tuberculosis [recurrence (OR = 7.72; 95%CI 4.24–14.05 and re-entry after abandonment (OR = 3.91; 95%CI 1.81–8.43], smoking (OR = 3.93; 95%CI 1.98–7.79, and positive culture for Mycobacterium tuberculosis at the time of notification of the case (OR = 3.22; 95%CI 1.15–8.99. CONCLUSIONS The partnership between tuberculosis control programs and health teams working in the network of Primary Health Care needs to be strengthened. This would allow the identification and monitoring of individuals with a history of previous treatment of tuberculosis and smoking. Moreover, the expansion of the offer of the culture of tuberculosis and anti-tuberculosis drug susceptibility testing would provide greater diagnostic capacity for the resistant types in Espírito Santo.

  19. Quantifying the Determinants of Evolutionary Dynamics Leading to Drug Resistance.

    Directory of Open Access Journals (Sweden)

    Guillaume Chevereau

    Full Text Available The emergence of drug resistant pathogens is a serious public health problem. It is a long-standing goal to predict rates of resistance evolution and design optimal treatment strategies accordingly. To this end, it is crucial to reveal the underlying causes of drug-specific differences in the evolutionary dynamics leading to resistance. However, it remains largely unknown why the rates of resistance evolution via spontaneous mutations and the diversity of mutational paths vary substantially between drugs. Here we comprehensively quantify the distribution of fitness effects (DFE of mutations, a key determinant of evolutionary dynamics, in the presence of eight antibiotics representing the main modes of action. Using precise high-throughput fitness measurements for genome-wide Escherichia coli gene deletion strains, we find that the width of the DFE varies dramatically between antibiotics and, contrary to conventional wisdom, for some drugs the DFE width is lower than in the absence of stress. We show that this previously underappreciated divergence in DFE width among antibiotics is largely caused by their distinct drug-specific dose-response characteristics. Unlike the DFE, the magnitude of the changes in tolerated drug concentration resulting from genome-wide mutations is similar for most drugs but exceptionally small for the antibiotic nitrofurantoin, i.e., mutations generally have considerably smaller resistance effects for nitrofurantoin than for other drugs. A population genetics model predicts that resistance evolution for drugs with this property is severely limited and confined to reproducible mutational paths. We tested this prediction in laboratory evolution experiments using the "morbidostat", a device for evolving bacteria in well-controlled drug environments. Nitrofurantoin resistance indeed evolved extremely slowly via reproducible mutations-an almost paradoxical behavior since this drug causes DNA damage and increases the mutation

  20. Shigella Antimicrobial Drug Resistance Mechanisms, 2004-2014.

    Science.gov (United States)

    Nüesch-Inderbinen, Magdalena; Heini, Nicole; Zurfluh, Katrin; Althaus, Denise; Hächler, Herbert; Stephan, Roger

    2016-06-01

    To determine antimicrobial drug resistance mechanisms of Shigella spp., we analyzed 344 isolates collected in Switzerland during 2004-2014. Overall, 78.5% of isolates were multidrug resistant; 10.5% were ciprofloxacin resistant; and 2% harbored mph(A), a plasmid-mediated gene that confers reduced susceptibility to azithromycin, a last-resort antimicrobial agent for shigellosis.

  1. Plasmid Conjugation in E. coli and Drug Resistance

    African Journals Online (AJOL)

    Prof. Ogunji

    more the copy number of resistance plasmid present in a bacterial cell, the higher the resistant ability of ... amoxicillin, as well as other semi synthetic penicillins, many cephalosporins, carbapenems, aztreonam, ... drugs resistant E. coli to amoxicillin-clavulanic acid and ceftriaxone were also carried out (Hadley, 2002;.

  2. Cytochromes P450 and drug resistance

    NARCIS (Netherlands)

    Doehmer, J.; Goeptar, A R; Vermeulen, N P

    1993-01-01

    Cytochromes P450 are the key enzymes for activating and inactivating many drugs, in particular anticancer drugs. Therefore, individual expression levels of cytochromes P450 may play a crucial role in drug safety and drug efficacy. Overexpression of cytochrome P450 may yield rapid turnover and

  3. Occurrence of transmitted HIV-1 drug resistance among Drug-naïve ...

    African Journals Online (AJOL)

    Occurrence of transmitted HIV-1 drug resistance among Drug-naïve pregnant women in selected HIV-care centres in Ghana. Alexander Martin-Odoom, Theophilus Adiku, Elena Delgado, Margaret Lartey, William K. Ampofo ...

  4. Cancer stem cells and drug resistance: the potential of nanomedicine

    Science.gov (United States)

    Vinogradov, Serguei; Wei, Xin

    2012-01-01

    Properties of the small group of cancer cells called tumor-initiating or cancer stem cells (CSCs) involved in drug resistance, metastasis and relapse of cancers can significantly affect tumor therapy. Importantly, tumor drug resistance seems to be closely related to many intrinsic or acquired properties of CSCs, such as quiescence, specific morphology, DNA repair ability and overexpression of antiapoptotic proteins, drug efflux transporters and detoxifying enzymes. The specific microenvironment (niche) and hypoxic stability provide additional protection against anticancer therapy for CSCs. Thus, CSC-focused therapy is destined to form the core of any effective anticancer strategy. Nanomedicine has great potential in the development of CSC-targeting drugs, controlled drug delivery and release, and the design of novel gene-specific drugs and diagnostic modalities. This review is focused on tumor drug resistance-related properties of CSCs and describes current nanomedicine approaches, which could form the basis of novel combination therapies for eliminating metastatic and CSCs. PMID:22471722

  5. Alternate efflux pump mechanism may contribute to drug resistance in extensively drug-resistant isolates of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Akbar Kanji

    2016-01-01

    Conclusion: Our data show an nsSNP in the drrA efflux pump gene that may result in upregulation of drug efflux mechanisms in MTB strains. It is therefore imperative to understand the mechanism of efflux and its role in drug resistance, which will enable the identification of new drug targets and development of new drug regimens to counteract the drug efflux mechanism of MTB.

  6. in vitro surveillance of drug resistant falciparum malaria in north ...

    African Journals Online (AJOL)

    Dr Oboro VO

    ABSTRACT. Background: drug resistant malaria is spreading inexorably to areas with drug sensitive malaria parasites. This study compared the in vitro sensitivities of Plasmodium falciparum fresh parasite isolates, to some standard antimalarial drugs, in Makurdi and Masaka located over 300 km apart, in north central.

  7. Drug resistant tuberculosis in prisons in Azerbaijan: case study

    Science.gov (United States)

    Coninx, R; Pfyffer, G E; Mathieu, C; Savina, D; Debacker, M; Jafarov, F; Jabrailov, I; Ismailov, A; Mirzoev, F; de Haller, R; Portaels, F

    1998-01-01

    Objectives: To document the existence of drug resistance in a tuberculosis treatment programme that adheres strictly to the DOTS principles (directly observed treatment, short course) and to determine the extent of drug resistance in a prison setting in one of the republics of the former Soviet Union. Design: Case study. Setting: Central Penitentiary Hospital in Baku, the referral centre for tuberculosis patients from all prisons in Azerbaijan. Subjects: Prisoners with tuberculosis: 28 selected patients not responding clinically or bacteriologically to the standard treatment (group 1) and 38 consecutive patients at admission to the programme (group 2). Main outcome measures: Drug resistance of Mycobacterium tuberculosis strains grown from sputum. Results: All the non-responding patients (group 1) had strains resistant to at least one drug. 25 (89%) of the non-responding patients and nine (24%) of the consecutive patients had M tuberculosis strains resistant to both rifampicin and isoniazid. A further 17 patients in group 2 had strains resistant to one or more first line drugs. Conclusions: Drug resistant M tuberculosis strains are common in prisons in Azerbaijan. Tuberculosis problems tend to be worse in prisons, but prisoners and former prisoners may have an important role in the transmission of tuberculosis, particularly of drug resistant forms, in the community. National programmes to control tuberculosis will have to take into account and address the problems in prisons to ensure their success. Key messages Tuberculosis is an important problem in prisons in Azerbaijan Multidrug resistant tuberculosis was common and an important cause of non-response to standard treatment National tuberculosis control programmes must include prisons and take account of drug resistance Unless WHO recommended treatment protocols are followed the problem of multidrug resistant tuberculosis may result in untreatable tuberculosis which will spread to the general community PMID

  8. Diversity and evolution of drug resistance mechanisms in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Al-Saeedi M

    2017-10-01

    Full Text Available Mashael Al-Saeedi, Sahal Al-Hajoj Department of Infection and Immunity, Mycobacteriology Research Section, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia Abstract: Despite the efficacy of antibiotics to protect humankind against many deadly pathogens, such as Mycobacterium tuberculosis, nothing can prevent the emergence of drug-resistant strains. Several mechanisms facilitate drug resistance in M. tuberculosis including compensatory evolution, epistasis, clonal interference, cell wall integrity, efflux pumps, and target mimicry. In this study, we present recent findings relevant to these mechanisms, which can enable the discovery of new drug targets and subsequent development of novel drugs for treatment of drug-resistant M. tuberculosis. Keywords: Mycobacterium tuberculosis, antibiotic resistance, compensatory evolution, epistasis, efflux pumps, fitness cost

  9. Long Non-coding RNAs and Drug Resistance.

    Science.gov (United States)

    Pan, Jing-Jing; Xie, Xiao-Juan; Li, Xu; Chen, Wei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are emerging as key players in gene expression that govern cell developmental processes, and thus contributing to diseases, especially cancers. Many studies have suggested that aberrant expression of lncRNAs is responsible for drug resistance, a substantial obstacle for cancer therapy. Drug resistance not only results from individual variations in patients, but also from genetic and epigenetic differences in tumors. It is reported that drug resistance is tightly modulated by lncRNAs which change the stability and translation of mRNAs encoding factors involved in cell survival, proliferation, and drug metabolism. In this review, we summarize recent advances in research on lncRNAs associated with drug resistance and underlying molecular or cellular mechanisms, which may contribute helpful approaches for the development of new therapeutic strategies to overcome treatment failure.

  10. Is selection relevant in the evolutionary emergence of drug resistance?

    OpenAIRE

    Day, Troy; Huijben, Silvie; Read, Andrew F.

    2015-01-01

    The emergence of drug resistant pathogens is often considered a canonical case of evolution by ‘natural’ selection. Here we argue that the strength of selection can be a poor predictor of the rate of resistance emergence. It is possible for a resistant strain to be under negative selection and still emerge in an infection or spread in a population. Measuring the right parameters is a necessary first step towards the development of evidence-based resistance management strategies. We argue that...

  11. Drug resistance analysis of bacterial strains isolated from burn patients.

    Science.gov (United States)

    Wang, L F; Li, J L; Ma, W H; Li, J Y

    2014-01-22

    This study aimed to analyze the spectrum and drug resistance of bacteria isolated from burn patients to provide a reference for rational clinical use of antibiotics. Up to 1914 bacterial strain specimens isolated from burn patients admitted to hospital between 2001 and 2010 were subjected to resistance monitoring by using the K-B paper disk method. Retrospective analysis was performed on drug resistance analysis of burn patients. The top eight bacterium strains according to detection rate. A total of 1355 strains of Gram-negative (G(-)) bacteria and 559 strains of Gram-positive (G(+)) bacteria were detected. The top eight bacterium strains, according to detection rate, were Acinetobacter baumannii, Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae, Enterobacter cloacae, and Enterococcus. Drug resistance rates were higher than 90% in A. baumannii, P. aeruginosa, S. epidermidis, and S. aureus, which accounted for 52.2, 21.7, 27.8, and 33.3%, respectively, of the entire sample. Those with drug resistance rates lower than 30% accounted for 4.3, 30.4, 16.7, and 16.7%, respectively. Multidrug-resistant S. aureus (MRSA) and methicillin-resistant S. epidermidis (MRSE) accounted for 49.2 and 76.4% of the S. epidermis and S. aureus resistance, respectively. Antibacterial drugs that had drug resistance rates to MRSE and MRSA higher than 90% accounted for 38.9 and 72.2%, respectively, whereas those with lower than 30% drug resistance rates accounted for 11.1 and 16.7%, respectively. The burn patients enrolled in the study were mainly infected with G(-) bacteria. These results strongly suggest that clinicians should practice rational use of antibiotics based on drug susceptibility test results.

  12. HIV resistance testing and detected drug resistance in Europe

    DEFF Research Database (Denmark)

    Schultze, Anna; Phillips, Andrew N; Paredes, Roger

    2015-01-01

    OBJECTIVES: To describe regional differences and trends in resistance testing among individuals experiencing virological failure and the prevalence of detected resistance among those individuals who had a genotypic resistance test done following virological failure. DESIGN: Multinational cohort...... study. METHODS: Individuals in EuroSIDA with virological failure (>1 RNA measurement >500 on ART after >6 months on ART) after 1997 were included. Adjusted odds ratios (aORs) for resistance testing following virological failure and aORs for the detection of resistance among those who had a test were...... calculated using logistic regression with generalized estimating equations. RESULTS: Compared to 74.2% of ART-experienced individuals in 1997, only 5.1% showed evidence of virological failure in 2012. The odds of resistance testing declined after 2004 (global P Resistance was detected in 77...

  13. Drug-Resistant Bacteria: On the Edge of a Crisis | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... drug-resistant bacteria research program. Why are certain bacteria becoming more resistant to drugs? There is a ... a national, even global crisis of drug-resistant bacteria. Why is that? The more we see this ...

  14. DNA origami as a carrier for circumvention of drug resistance.

    Science.gov (United States)

    Jiang, Qiao; Song, Chen; Nangreave, Jeanette; Liu, Xiaowei; Lin, Lin; Qiu, Dengli; Wang, Zhen-Gang; Zou, Guozhang; Liang, Xingjie; Yan, Hao; Ding, Baoquan

    2012-08-15

    Although a multitude of promising anti-cancer drugs have been developed over the past 50 years, effective delivery of the drugs to diseased cells remains a challenge. Recently, nanoparticles have been used as drug delivery vehicles due to their high delivery efficiencies and the possibility to circumvent cellular drug resistance. However, the lack of biocompatibility and inability to engineer spatially addressable surfaces for multi-functional activity remains an obstacle to their widespread use. Here we present a novel drug carrier system based on self-assembled, spatially addressable DNA origami nanostructures that confronts these limitations. Doxorubicin, a well-known anti-cancer drug, was non-covalently attached to DNA origami nanostructures through intercalation. A high level of drug loading efficiency was achieved, and the complex exhibited prominent cytotoxicity not only to regular human breast adenocarcinoma cancer cells (MCF 7), but more importantly to doxorubicin-resistant cancer cells, inducing a remarkable reversal of phenotype resistance. With the DNA origami drug delivery vehicles, the cellular internalization of doxorubicin was increased, which contributed to the significant enhancement of cell-killing activity to doxorubicin-resistant MCF 7 cells. Presumably, the activity of doxorubicin-loaded DNA origami inhibits lysosomal acidification, resulting in cellular redistribution of the drug to action sites. Our results suggest that DNA origami has immense potential as an efficient, biocompatible drug carrier and delivery vehicle in the treatment of cancer.

  15. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  16. Mathematical modeling and computational prediction of cancer drug resistance.

    Science.gov (United States)

    Sun, Xiaoqiang; Hu, Bin

    2017-06-23

    Diverse forms of resistance to anticancer drugs can lead to the failure of chemotherapy. Drug resistance is one of the most intractable issues for successfully treating cancer in current clinical practice. Effective clinical approaches that could counter drug resistance by restoring the sensitivity of tumors to the targeted agents are urgently needed. As numerous experimental results on resistance mechanisms have been obtained and a mass of high-throughput data has been accumulated, mathematical modeling and computational predictions using systematic and quantitative approaches have become increasingly important, as they can potentially provide deeper insights into resistance mechanisms, generate novel hypotheses or suggest promising treatment strategies for future testing. In this review, we first briefly summarize the current progress of experimentally revealed resistance mechanisms of targeted therapy, including genetic mechanisms, epigenetic mechanisms, posttranslational mechanisms, cellular mechanisms, microenvironmental mechanisms and pharmacokinetic mechanisms. Subsequently, we list several currently available databases and Web-based tools related to drug sensitivity and resistance. Then, we focus primarily on introducing some state-of-the-art computational methods used in drug resistance studies, including mechanism-based mathematical modeling approaches (e.g. molecular dynamics simulation, kinetic model of molecular networks, ordinary differential equation model of cellular dynamics, stochastic model, partial differential equation model, agent-based model, pharmacokinetic-pharmacodynamic model, etc.) and data-driven prediction methods (e.g. omics data-based conventional screening approach for node biomarkers, static network approach for edge biomarkers and module biomarkers, dynamic network approach for dynamic network biomarkers and dynamic module network biomarkers, etc.). Finally, we discuss several further questions and future directions for the use of

  17. Identification of drug-resistant subpopulations in canine hemangiosarcoma.

    Science.gov (United States)

    Khammanivong, A; Gorden, B H; Frantz, A M; Graef, A J; Dickerson, E B

    2016-09-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. © 2014 John Wiley & Sons Ltd.

  18. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Science.gov (United States)

    Huijben, Silvie; Bell, Andrew S; Sim, Derek G; Tomasello, Danielle; Mideo, Nicole; Day, Troy; Read, Andrew F

    2013-09-01

    Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold), without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  19. Aggressive chemotherapy and the selection of drug resistant pathogens.

    Directory of Open Access Journals (Sweden)

    Silvie Huijben

    2013-09-01

    Full Text Available Drug resistant pathogens are one of the key public health challenges of the 21st century. There is a widespread belief that resistance is best managed by using drugs to rapidly eliminate target pathogens from patients so as to minimize the probability that pathogens acquire resistance de novo. Yet strong drug pressure imposes intense selection in favor of resistance through alleviation of competition with wild-type populations. Aggressive chemotherapy thus generates opposing evolutionary forces which together determine the rate of drug resistance emergence. Identifying treatment regimens which best retard resistance evolution while maximizing health gains and minimizing disease transmission requires empirical analysis of resistance evolution in vivo in conjunction with measures of clinical outcomes and infectiousness. Using rodent malaria in laboratory mice, we found that less aggressive chemotherapeutic regimens substantially reduced the probability of onward transmission of resistance (by >150-fold, without compromising health outcomes. Our experiments suggest that there may be cases where resistance evolution can be managed more effectively with treatment regimens other than those which reduce pathogen burdens as fast as possible.

  20. An evaluation of the emergence of drug resistant virus for HIV/AIDS drug treatments.

    Science.gov (United States)

    Chang, Hyuk-Jun

    2015-01-01

    HIV/AIDS drug treatment, such as highly active anti-retroviral therapy (HAART), often fails due to the emergence of drug resistant species. In this paper we investigate a new estimation method for the possibility of emergence of drug resistant mutation. To the best knowledge of the author this work is the first study to try to describe quantitatively the possibility of drug resistance emergence for HIV/AIDS drug treatments. In simulation studies we compare HIV/AIDS treatment methods, such as structured treatment interruption (STI) and improved gradual dosage reduction (iGDR), based on the proposed analysis. From the analysis we can explain why STI treatment often fails and also can show that iGDR is desirable rather than STI particularly in terms of the decrease of the possibility of emergence of drug resistant virus.

  1. ESBL determination and antibacterial drug resistance pattern of ...

    African Journals Online (AJOL)

    ESBL determination and antibacterial drug resistance pattern of Klebsiella Pneumoniae amongst patients at PIMS Islamabad. Jafar Khan, Noor Naz, Naser M AbdEl-Salam, Nayab Nayab, Anum Tabassum, H Hussain, Riaz Ullah ...

  2. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing

    NARCIS (Netherlands)

    Rhee, Soo-Yon; Jordan, Michael R.; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; van Zyl, Gert U.; Mukui, Irene; Hosseinipour, Mina C.; Frenkel, Lisa M.; Ndembi, Nicaise; Hamers, Raph L.; Rinke de Wit, Tobias F.; Wallis, Carole L.; Gupta, Ravindra K.; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M.; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F.; de Oliveira, Tulio; Wensing, Annemarie M. J.; Gallant, Joel E.; Wainberg, Mark A.; Richman, Douglas D.; Fitzgibbon, Joseph E.; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W.

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in

  3. HIV-1 drug resistance mutations : Potential applications for point-of-care Genotypic resistance testing

    NARCIS (Netherlands)

    Rhee, Soo Yon; Jordan, Michael R.; Raizes, Elliot; Chua, Arlene; Parkin, Neil; Kantor, Rami; Van Zy, Gert U.; Mukui, Irene; Hosseinipour, Mina C.; Frenkel, Lisa M.; Ndembi, Nicaise; Hamers, Raph L.; De Wit, Tobias F Rinke; Wallis, Carole L.; Gupta, Ravindra K.; Fokam, Joseph; Zeh, Clement; Schapiro, Jonathan M.; Carmona, Sergio; Katzenstein, David; Tang, Michele; Aghokeng, Avelin F.; De Oliveira, Tulio; Wensing, Annemarie M J; Gallant, Joel E.; Wainberg, Mark A.; Richman, Douglas D.; Fitzgibbon, Joseph E.; Schito, Marco; Bertagnolio, Silvia; Yang, Chunfu; Shafer, Robert W.

    2015-01-01

    The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART) in the low- and middle-income countries (LMICs) hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in

  4. Life cycle synchronization is a viral drug resistance mechanism.

    Directory of Open Access Journals (Sweden)

    Iulia A Neagu

    2018-02-01

    Full Text Available Viral infections are one of the major causes of death worldwide, with HIV infection alone resulting in over 1.2 million casualties per year. Antiviral drugs are now being administered for a variety of viral infections, including HIV, hepatitis B and C, and influenza. These therapies target a specific phase of the virus's life cycle, yet their ultimate success depends on a variety of factors, such as adherence to a prescribed regimen and the emergence of viral drug resistance. The epidemiology and evolution of drug resistance have been extensively characterized, and it is generally assumed that drug resistance arises from mutations that alter the virus's susceptibility to the direct action of the drug. In this paper, we consider the possibility that a virus population can evolve towards synchronizing its life cycle with the pattern of drug therapy. The periodicity of the drug treatment could then allow for a virus strain whose life cycle length is a multiple of the dosing interval to replicate only when the concentration of the drug is lowest. This process, referred to as "drug tolerance by synchronization", could allow the virus population to maximize its overall fitness without having to alter drug binding or complete its life cycle in the drug's presence. We use mathematical models and stochastic simulations to show that life cycle synchronization can indeed be a mechanism of viral drug tolerance. We show that this effect is more likely to occur when the variability in both viral life cycle and drug dose timing are low. More generally, we find that in the presence of periodic drug levels, time-averaged calculations of viral fitness do not accurately predict drug levels needed to eradicate infection, even if there is no synchronization. We derive an analytical expression for viral fitness that is sufficient to explain the drug-pattern-dependent survival of strains with any life cycle length. We discuss the implications of these findings for

  5. Drug-Resistant Tuberculosis among Children, China, 2006-2015.

    Science.gov (United States)

    Tao, Ning-Ning; He, Xiao-Chun; Zhang, Xian-Xin; Liu, Yao; Yu, Chun-Bao; Li, Huai-Chen

    2017-11-01

    Microbial drug resistance has become a major public health concern worldwide. To acquire epidemiologic data on drug-resistant tuberculosis (DR TB) among children, a major cause of illness and death for this population, we conducted a retrospective study of 2006-2015 data from 36 TB prevention and control institutions in Shandong Province, China. A total of 14,223 new TB cases, among which children (tuberculosis. Among children with TB, 18.9% had DR TB and 6.9% had multidrug-resistant TB. Over the past decade, the percentage of DR TB; multidrug-resistant TB; and overall first-line drug resistance for isoniazid, rifampin, ethambutol, and streptomycin among children increased significantly (at least 12%). Understanding the long-term trends of DR TB among children can shed light on the performance of TB control programs, thereby contributing to global TB control.

  6. Combined antiretroviral and antituberculosis drug resistance following incarceration

    Directory of Open Access Journals (Sweden)

    Katharine Elizabeth Stott

    2013-09-01

    Full Text Available We describe a case of HIV/tuberculosis (TB co-infection from KwaZulu-Natal, South Africa, characterised by drug resistance in both pathogens. The development of drug resistance was linked temporally to two periods of incarceration. This highlights the urgent need for improved integration of HIV/TB control strategies within prison health systems and within the broader public health framework.

  7. Treatment of tuberculosis in a region with high drug resistance: outcomes, drug resistance amplification and re-infection.

    Science.gov (United States)

    Bonnet, Maryline; Pardini, Manuela; Meacci, Francesca; Orrù, Germano; Yesilkaya, Hasan; Jarosz, Thierry; Andrew, Peter W; Barer, Mike; Checchi, Francesco; Rinder, Heinz; Orefici, Graziella; Rüsch-Gerdes, Sabine; Fattorini, Lanfranco; Oggioni, Marco Rinaldo; Melzer, Juliet; Niemann, Stefan; Varaine, Francis

    2011-01-01

    Emerging antituberculosis drug resistance is a serious threat for tuberculosis (TB) control, especially in Eastern European countries. We combined drug susceptibility results and molecular strain typing data with treatment outcome reports to assess the influence of drug resistance on TB treatment outcomes in a prospective cohort of patients from Abkhazia (Georgia). Patients received individualized treatment regimens based on drug susceptibility testing (DST) results. Definitions for antituberculosis drug resistance and treatment outcomes were in line with current WHO recommendations. First and second line DST, and molecular typing were performed in a supranational laboratory for Mycobacterium tuberculosis (MTB) strains from consecutive sputum smear-positive TB patients at baseline and during treatment. At baseline, MTB strains were fully drug-susceptible in 189/326 (58.0%) of patients. Resistance to at least H or R (PDR-TB) and multidrug-resistance (MDR-TB) were found in 69/326 (21.2%) and 68/326 (20.9%) of strains, respectively. Three MDR-TB strains were also extensively resistant (XDR-TB). During treatment, 3/189 (1.6%) fully susceptible patients at baseline were re-infected with a MDR-TB strain and 2/58 (3.4%) PDR-TB patients became MDR-TB due to resistance amplification. 5/47 (10.6%) MDR- patients became XDR-TB during treatment. Treatment success was observed in 161/189 (85.2%), 54/69 (78.3%) and 22/68 (32.3%) of patients with fully drug susceptible, PDR- and MDR-TB, respectively. Development of ofloxacin resistance was significantly associated with a negative treatment outcome. In Abkhazia, a region with high prevalence of drug resistant TB, the use of individualized MDR-TB treatment regimens resulted in poor treatment outcomes and XDR-TB amplification. Nosocomial transmission of MDR-TB emphasizes the importance of infection control in hospitals.

  8. Antiretroviral drug resistance: A guide for the southern African clinician

    African Journals Online (AJOL)

    Both private and public sector see a bewildering clinical array of patients taking failing antiretroviral (ARV) regimens. We intend this article to provide a practical guide to help clinicians understand and manage ARV drug resistance in an African context. ARV resistance is a rapidly evolving field, requiring expertise in dealing ...

  9. Towards an understanding of drug resistance in malaria

    DEFF Research Database (Denmark)

    Lemcke, T; Christensen, I T; Jørgensen, Flemming Steen

    1999-01-01

    and structural differences. Based on this analysis the molecular consequences of point mutations known to be involved in drug resistance were discussed. The significance of the most important point mutation causing resistance, S108N, could be explained by the model, whereas the point mutations associated...

  10. Molecular Analysis of Multi-Drug Resistance (MDR) in ...

    African Journals Online (AJOL)

    The recent emergence of multi-drug resistant (MDR) strains of Mycobacterium tuberculosis has become an area of great concern. This occurs as a result of inadequate treatment management of tuberculosis which provides a selective pressure that favours the emergence of resistant mutants with enhanced infectiousness.

  11. Scabies in the age of increasing drug resistance.

    Science.gov (United States)

    Khalil, Samar; Abbas, Ossama; Kibbi, Abdul Ghani; Kurban, Mazen

    2017-11-01

    Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem.

  12. Scabies in the age of increasing drug resistance

    OpenAIRE

    Khalil, Samar; Abbas, Ossama; Kibbi, Abdul Ghani; Kurban, Mazen

    2017-01-01

    Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem.

  13. Drug resistant Proteus mirabilis and Proteus vulgaris isolated from ...

    African Journals Online (AJOL)

    Proteus mirabilis and Proteus vulgaris are pathogens often associated with drug resistance traits. They are of public health importance with zoonotic status. They have been globally associated with humans and poultry infections. Multidrug resistant strains of these organisms are routinely isolated from organs samples from ...

  14. Options for modulation of drug resistance in ovarian cancer

    NARCIS (Netherlands)

    Arts, HJG; Van der Zee, AGJ; De Jong, S; De Vries, EGE

    2000-01-01

    The objective of this paper is to present an update of mechanisms responsible for drug resistance in ovarian cancer and the possible therapeutic options to modulate this resistance using literature review with emphasis on data acquired in studies comprising ovarian tumor samples. The classic

  15. Characterization of drug resistant Enterobacter species isolated from ...

    African Journals Online (AJOL)

    Enterobacter species are emerging clinical pathogens and they play important roles in the dissemination of drug resistant traits within the food chain due to their intrinsic abilities for resistance to commonly used antibiotics such as cephalosporins. Two Enterobacter cloacae and one Enterobacter hormaechei characterized in ...

  16. World Health Organization/HIVResNet drug resistance laboratory strategy

    NARCIS (Netherlands)

    Bertognolio, Silvio; Derdelinckx, Inge; Parker, Monica; Fitzgibbon, Joseph; Fleury, Herve; Peeters, Martin; Schuurman, Rob; Pillay, Deenan; Morris, Lynn; Tanuri, Amilcar; Gershy-Damet, Guy-Michel; Nkengasong, John; Gilks, Charles F.; Sutherland, Donald; Sandstrom, Paul

    2008-01-01

    With rapidly increasing access to antiretroviral drugs globally, HIV drug resistance (HIVDR) has become a significant public health issue, This requires a coordinated and collaborative response from country level to international level to assess the extent of HIVDR and the establishment of efficient

  17. 2017 update of the drug resistance mutations in HIV-1

    NARCIS (Netherlands)

    Wensing, Annemarie M.; Calvez, Vincent; Günthard, Huldrych F.; Johnson, Victoria A.; Paredes, Roger; Pillay, Deenan; Shafer, Robert W.; Richman, Douglas D.

    2016-01-01

    The 2017 edition of the IAS–USA drug resistance mutations list updates the figures last published in November 2015. The mutations listed are those that have been identified by specific criteria for evidence and drugs described. The figures are designed to assist practitioners in identifying key

  18. mtct regimen choice, drug resistance and the treatment of hiv

    African Journals Online (AJOL)

    drug-resistant variants may become selected as long as the drug is administered. There has been some concern that the use of ARV monotherapy for the prevention of MTCT, including ... potential implications for perinatal transmission, the choice of ... transmission rate using this regimen, short-term treatment with dual ...

  19. Incidence microbiological profile and drug resistance pattern of ...

    African Journals Online (AJOL)

    Klebsiella was the most commonest uropathogen found in our study followed by Enterococcus , E.coli and Pseudomonas. E.coli and Pseudomonas showed high rates of drug resistance. Nitrofurantoin and Amikacin was the most effective drugs for majority of the isolates. Hence routine monitoring and screening for ASB in ...

  20. Troglitazone reverses the multiple drug resistance phenotype in cancer cells

    Directory of Open Access Journals (Sweden)

    Gerald F Davies

    2009-03-01

    Full Text Available Gerald F Davies1, Bernhard HJ Juurlink2, Troy AA Harkness11Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Canada; 2College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi ArabiaAbstract: A major problem in treating cancer is the development of drug resistance. We previously demonstrated doxorubicin (DOX resistance in K562 human leukemia cells that was associated with upregulation of glyoxalase 1 (GLO-1 and histone H3 expression. The thiazolidinedione troglitazone (TRG downregulated GLO-1 expression and further upregulated histone H3 expression and post-translational modifications in these cells, leading to a regained sensitivity to DOX. Given the pleiotropic effects of epigenetic changes in cancer development, we hypothesized that TRG may downregulate the multiple drug resistance (MDR phenotype in a variety of cancer cells. To test this, MCF7 human breast cancer cells and K562 cells were cultured in the presence of low-dose DOX to establish DOX-resistant cell lines (K562/DOX and MCF7/DOX. The MDR phenotype was confirmed by Western blot analysis of the 170 kDa P-glycoprotein (Pgp drug efflux pump multiple drug resistance protein 1 (MDR-1, and the breast cancer resistance protein (BCRP. TRG markedly decreased expression of both MDR-1 and BCRP in these cells, resulting in sensitivity to DOX. Silencing of MDR-1 expression also sensitized MCF7/DOX cells to DOX. Use of the specific and irreversible peroxisome proliferator-activated receptor gamma (PPARγ inhibitor GW9662 in the nanomolar range not only demonstrated that the action of TRG on MCF/DOX was PPARγ-independent, but indicated that PPARγ may play a role in the MDR phenotype, which is antagonized by TRG. We conclude that TRG is potentially a useful adjunct therapy in chemoresistant cancers. Keywords: chemotherapy, doxorubicin, breast cancer resistance protein-1, multiple drug resistance, multiple drug resistance protein 1

  1. Oncolytic Virotherapy Targeting Lung Cancer Drug Resistance

    Science.gov (United States)

    2013-08-01

    resistant phenotype. Because cisplatin is highly mutagenic, it has an ability to quickly induce genetic changes in cancer cells usually resulting in... Mendelian selection and generation of cells that acquire a permanent resistant phenotype (8). We initially exposed both KLN205 and LLC1 to increasing...multiple epigenetic and genetic changes. Pharmacological reviews 64:706-721. 9. Siegel, R., D. Naishadham, and A. Jemal. 2013. Cancer statistics, 2013

  2. Research Highlights: Helping Adolescents Resist Drugs

    National Research Council Canada - National Science Library

    2000-01-01

    Project ALERT departs boldly from prevention models of the 196Os and 197Os, which emphasized informing adolescents about the long-term consequences of drug use or building their decisionmaking skills...

  3. A study on Prevalence of Drug Resistance in Drug Default ...

    African Journals Online (AJOL)

    ), and particularly multidrug-resistant TB (MDR-TB), has become a significant public health problem in a number of countries and an obstacle to effective global TB control. Method: This is a prospective randomized cross sectional study to ...

  4. Challenges of drug resistance in the management of pancreatic cancer.

    LENUS (Irish Health Repository)

    Sheikh, Rizwan

    2012-02-01

    The current treatment of choice for metastatic pancreatic cancer involves single-agent gemcitabine or a combination of gemcitabine with capecitabine or erlotinib (a tyrosine kinase inhibitor). Only 25–30% of patients respond to this treatment and patients who do respond initially ultimately exhibit disease progression. Median survival for pancreatic cancer patients has reached a plateau due to inherent and acquired resistance to these agents. Key molecular factors implicated in this resistance include: deficiencies in drug uptake, alteration of drug targets, activation of DNA repair pathways, resistance to apoptosis and the contribution of the tumor microenvironment. Moreover, for newer agents including tyrosine kinase inhibitors, overexpression of signaling proteins, mutations in kinase domains, activation of alternative pathways, mutations of genes downstream of the target and\\/or amplification of the target represent key challenges for treatment efficacy. Here we will review the contribution of known mechanisms and markers of resistance to key pancreatic cancer drug treatments.

  5. [The long controversy over anti-tuberculosis vaccination in Canada: the Calmette-Guerin bacillus (BCG), 1925-1975].

    Science.gov (United States)

    Malissard, P

    1998-01-01

    The focus of this article is the history of Canada's reception of Bacillus Calmette-Guerin (BCG), an anti-tuberculosis vaccine which has almost constantly been plagued with controversy. The article examines this vaccine NRCC sponsored introduction in 1925, which led to the creation of the Associate Committee on Tuberculosis Research, a committee almost unique for its acrimonious debates. It also analyzes the interests at stakes in the ultimate rejection of the BCG by the federal Department of Agriculture veterinary services and, with the exception of Quebec and Newfoundland, by almost all public health authorities in Canada. Based on sources never taped before, this paper sheds a light on the multiple ramifications of a little known episode of the Canadian public health history.

  6. Success of community-based directly observed anti-tuberculosis treatment in Mongolia.

    Science.gov (United States)

    Dobler, C C; Korver, S; Batbayar, O; Oyuntsetseg, S; Tsolmon, B; Wright, C; Solongo, B; Marais, B J

    2015-06-01

    Many countries restrict access to directly observed therapy (DOT) for tuberculosis (TB) to government health facilities. More innovative approaches are required to reduce non-adherence, improve patient outcomes and limit the risk of selecting drug-resistant strains. We performed a retrospective cohort study in sputum smear-positive patients treated with community-based DOT (home-based DOT or 'lunch' DOT, whereby DOT is provided with a free daily meal once sputum smear conversion has been documented), and conventional clinic-based DOT in Ulaanbaatar, the capital of Mongolia, in 2010-2011. We compared treatment success using community-based home DOT vs. conventional clinic DOT and describe treatment completion rates using lunch DOT. The overall treatment success among new sputum smear-positive TB patients was 85.1% (1505/1768). Patients receiving community DOT had higher cure rates (294/327, 89.9% vs. 1112/1441, 77.2%; aOR 2.66, 95%CI 1.81-3.90) and higher treatment success (306/327, 93.6% vs. 1199/1441, 83.2%; aOR 2.95, 95%CI 1.85-4.71, P Mongolia. It should now be scaled up to be made available for more patients and in all regions of the country.

  7. Developing artemisinin based drug combinations for the treatment of drug resistant falciparum malaria: A review

    Directory of Open Access Journals (Sweden)

    Olliaro P

    2004-01-01

    Full Text Available The emergence and spread of drug resistant malaria represents a considerable challenge to controlling malaria. To date, malaria control has relied heavily on a comparatively small number of chemically related drugs, belonging to either the quinoline or the antifolate groups. Only recently have the artemisinin derivatives been used but mostly in south east Asia. Experience has shown that resistance eventually curtails the life-span of antimalarial drugs. Controlling resistance is key to ensuring that the investment put into developing new antimalarial drugs is not wasted. Current efforts focus on research into new compounds with novel mechanisms of action, and on measures to prevent or delay resistance when drugs are introduced. Drug discovery and development are long, risky and costly ventures. Antimalarial drug development has traditionally been slow but now various private and public institutions are at work to discover and develop new compounds. Today, the antimalarial development pipeline is looking reasonably healthy. Most development relies on the quinoline, antifolate and artemisinin compounds. There is a pressing need to have effective, easy to use, affordable drugs that will last a long time. Drug combinations that have independent modes of action are seen as a way of enhancing efficacy while ensuring mutual protection against resistance. Most research work has focused on the use of artesunate combined with currently used standard drugs, namely, mefloquine, amodiaquine, sulfadoxine/pyrimethamine, and chloroquine. There is clear evidence that combinations improve efficacy without increasing toxicity. However, the absolute cure rates that are achieved by combinations vary widely and depend on the level of resistance of the standard drug. From these studies, further work is underway to produce fixed dose combinations that will be packaged in blister packs. This review will summarise current antimalarial drug developments and outline recent

  8. Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment.

    Directory of Open Access Journals (Sweden)

    Leopold D Tientcheu

    2016-05-01

    Full Text Available Epidemiological differences exist between Mycobacterium africanum (Maf- and Mycobacterium tuberculosis (Mtb-infected patients, but to date, contributing host factors have not been characterised. We analysed clinical outcomes, as well as soluble markers and gene expression profiles in unstimulated, and ESAT6/CFP-10-, whole-Maf- and Mtb-stimulated blood samples of 26 Maf- and 49 Mtb-HIV-negative tuberculosis patients before, and after 2 and 6 months of anti-tuberculosis therapy. Before treatment, both groups had similar clinical parameters, but differed in few cytokines concentration and gene expression profiles. Following treatment the body mass index, skinfold thickness and chest X-ray scores showed greater improvement in the Mtb- compared to Maf-infected patients, after adjusting for age, sex and ethnicity (p = 0.02; 0.04 and 0.007, respectively. In addition, in unstimulated blood, IL-12p70, IL12A and TLR9 were significantly higher in Maf-infected patients, while IL-15, IL-8 and MIP-1α were higher in Mtb-infected patients. Overnight stimulation with ESAT-6/CFP-10 induced significantly higher levels of IFN-γ and TNF-α production, as well as gene expression of CCL4, IL1B and TLR4 in Mtb- compared to Maf-infected patients. Our study confirms differences in clinical features and immune genes expression and concentration of proteins associated with inflammatory processes between Mtb- and Maf-infected patients following anti-tuberculosis treatment These findings have public health implications for treatment regimens, and biomarkers for tuberculosis diagnosis and susceptibility.

  9. Host Immune Responses Differ between M. africanum- and M. tuberculosis-Infected Patients following Standard Anti-tuberculosis Treatment

    Science.gov (United States)

    Tientcheu, Leopold D.; Haks, Mariëlle C.; Agbla, Schadrac C.; Sutherland, Jayne S.; Adetifa, Ifedayo M.; Donkor, Simon; Quinten, Edwin; Daramy, Mohammed; Antonio, Martin; Kampmann, Beate; Ottenhoff, Tom H. M.; Dockrell, Hazel M.; Ota, Martin O.

    2016-01-01

    Epidemiological differences exist between Mycobacterium africanum (Maf)- and Mycobacterium tuberculosis (Mtb)-infected patients, but to date, contributing host factors have not been characterised. We analysed clinical outcomes, as well as soluble markers and gene expression profiles in unstimulated, and ESAT6/CFP-10-, whole-Maf- and Mtb-stimulated blood samples of 26 Maf- and 49 Mtb-HIV-negative tuberculosis patients before, and after 2 and 6 months of anti-tuberculosis therapy. Before treatment, both groups had similar clinical parameters, but differed in few cytokines concentration and gene expression profiles. Following treatment the body mass index, skinfold thickness and chest X-ray scores showed greater improvement in the Mtb- compared to Maf-infected patients, after adjusting for age, sex and ethnicity (p = 0.02; 0.04 and 0.007, respectively). In addition, in unstimulated blood, IL-12p70, IL12A and TLR9 were significantly higher in Maf-infected patients, while IL-15, IL-8 and MIP-1α were higher in Mtb-infected patients. Overnight stimulation with ESAT-6/CFP-10 induced significantly higher levels of IFN-γ and TNF-α production, as well as gene expression of CCL4, IL1B and TLR4 in Mtb- compared to Maf-infected patients. Our study confirms differences in clinical features and immune genes expression and concentration of proteins associated with inflammatory processes between Mtb- and Maf-infected patients following anti-tuberculosis treatment These findings have public health implications for treatment regimens, and biomarkers for tuberculosis diagnosis and susceptibility. PMID:27192147

  10. The role of drug susceptibility testing in controlling drug resistant tuberculosis: Challenges and possibilities

    Directory of Open Access Journals (Sweden)

    Sven Hoffner

    2015-01-01

    Conclusions: Reliable and timely detection of drug-resistant TB is needed, which is best achieved with molecular assays. In this author's opinion, rapid detection of resistance to isoniazid should be included with rifampicin resistance examination. In MDR, timely detection of the XDR defining agents and PZA is urgently needed. Development and validation of such tests should be a priority, as well as establishing QMS for the implementation and routine use of molecular rapid diagnostics. Each country should develop national diagnostic algorithms for how, when and where rapid molecular assays should be used for early detection of drug-resistant TB.

  11. ‘A‘ole Drugs! Cultural Practices and Drug Resistance of Rural Hawaiian Youth

    Science.gov (United States)

    PO‘A-KEKUAWELA, KA‘OHINANI; OKAMOTO, SCOTT K.; NEBRE, LA RISA H.; HELM, SUSANA; CHIN, CORALEE I. H.

    2009-01-01

    This qualitative study examined how Native Hawaiian youth from rural communities utilized cultural practices to promote drug resistance and/or abstinence. Forty-seven students from 5 different middle schools participated in gender specific focus groups that focused on the cultural and environmental contexts of drug use for Native Hawaiian youth. The findings described culturally specific activities that participants used in drug related problem situations. The findings also suggested that those youth with higher levels of enculturation were able to resist drugs more effectively than those youth who were disconnected from their culture. The implications of these findings for social work practice are discussed. PMID:20352019

  12. Alcohol and drug use disorders, HIV status and drug resistance in a sample of Russian TB patients

    Science.gov (United States)

    Fleming, M. F.; Krupitsky, E.; Tsoy, M.; Zvartau, E.; Brazhenko, N.; Jakubowiak, W.; E. McCaul, M.

    2006-01-01

    SUMMARY SETTING: Alcohol use, tuberculosis (TB) drug resistance and human immunodeficiency virus (HIV) risk behavior are of increasing concern in Russian TB patients. DESIGN: A prevalence study of alcohol use and HIV risk behavior was conducted in a sample of 200 adult men and women admitted to TB hospitals in St Petersburg and Ivanovo, Russia. RESULTS: Of the subjects, 72% were men. The mean age was 41. Active TB was diagnosed using a combination of chest X-ray, sputum smears and sputum cultures. Sixty-two per cent met DSM-IV criteria for current alcohol abuse or dependence. Drug use was uncommon, with only two patients reporting recent intravenous heroin use. There was one case of HIV infection. The mean total risk assessment battery score was 3.4. Depression was present in 60% of the sample, with 17% severely depressed. Alcohol abuse/dependence was associated with an eight-fold increase in drug resistance (OR 8.58; 95% CI 2.09-35.32). Patients with relapsing or chronic TB were more likely to meet the criteria for alcohol abuse/dependence (OR 2.56; 95% CI 1.0-6.54). CONCLUSION: Alcohol use disorders are common in patients being treated for active TB, and are associated with significant morbidity. Additional surveys are needed to examine the relationship between alcohol use disorders and anti-tuberculosis drug resistance. CONTEXTE: Chezles patients tuberculeux russes, l’utilisation d’alcool, la résistance aux médicaments antituberculeux et un comportement à risque pour le virus de l’immunodéficience humaine (VIH) sont des sujets croissants d’inquiétude. SCHÉMA: Une étude: de prévalence de l’utilisation d’alcool et du comportement à risque pour le VIH a été menée sur un échantillon de 200 hommes et femmes adultes, admis dans des hôpitaux pour la tuberculose (TB) de Saint-Pétersbourg et d’Ivanovo en Russie. RÉSULTATS: Il y avait 72% d’hommes dans l’échantillon. L’âge moyen est de 41 ans. On a diagnostiqué la TB active par l

  13. Establishing Drug Resistance in Microorganisms by Mass Spectrometry

    Science.gov (United States)

    Demirev, Plamen A.; Hagan, Nathan S.; Antoine, Miquel D.; Lin, Jeffrey S.; Feldman, Andrew B.

    2013-08-01

    A rapid method to determine drug resistance in bacteria based on mass spectrometry is presented. In it, a mass spectrum of an intact microorganism grown in drug-containing stable isotope-labeled media is compared with a mass spectrum of the intact microorganism grown in non-labeled media without the drug present. Drug resistance is determined by predicting characteristic mass shifts of one or more microorganism biomarkers using bioinformatics algorithms. Observing such characteristic mass shifts indicates that the microorganism is viable even in the presence of the drug, thus incorporating the isotopic label into characteristic biomarker molecules. The performance of the method is illustrated on the example of intact E. coli, grown in control (unlabeled) and 13C-labeled media, and analyzed by MALDI TOF MS. Algorithms for data analysis are presented as well.

  14. Efflux Pump-mediated Drug Resistance in Burkholderia

    Directory of Open Access Journals (Sweden)

    Nicole L Podnecky

    2015-04-01

    Full Text Available Several members of the genus Burkholderia are prominent pathogens. Infections caused by these bacteria are difficult to treat because of significant antibiotic resistance. Virtually all Burkholderia species are also resistant to polymyxin, prohibiting use of drugs like colistin that are available for treatment of infections caused by most other drug resistant Gram-negative bacteria. Despite clinical significance and antibiotic resistance of Burkholderia species, characterization of efflux pumps lags behind other non-enteric Gram-negative pathogens such as Acinetobacter baumannii and Pseudomonas aeruginosa. Although efflux pumps have been described in several Burkholderia species, they have been best studied in B. cenocepacia and B. pseudomallei. As in other non-enteric Gram-negatives, efflux pumps of the resistance nodulation cell division (RND family are the clinically most significant efflux systems in these two species. Several efflux pumps were described in B. cenocepacia, which when expressed confer resistance to clinically significant antibiotics, including aminoglycosides, chloramphenicol, fluoroquinolones, and tetracyclines. Three RND pumps have been characterized in B. pseudomallei, two of which confer either intrinsic or acquired resistance to aminoglycosides, macrolides, chloramphenicol, fluoroquinolones, tetracyclines, trimethoprim, and in some instances trimethoprim+sulfamethoxazole. Several strains of the host-adapted B. mallei, a clone of B. pseudomallei, lack AmrAB-OprA and are therefore aminoglycoside and macrolide susceptible. B. thailandensis is closely related to B. pseudomallei, but non-pathogenic to humans. Its pump repertoire and ensuing drug resistance profile parallels that of B. pseudomallei. An efflux pump in B. vietnamiensis plays a significant role in acquired aminoglycoside resistance. Summarily, efflux pumps are significant players in Burkholderia drug resistance.

  15. Drug efflux proteins in multidrug resistant bacteria

    NARCIS (Netherlands)

    vanVeen, HW; Konings, WN

    Bacteria contain an array of transport proteins in their cytoplasmic membrane. Many of these proteins play an important role in conferring resistance to toxic compounds. The multidrug efflux systems encountered in prokaryotic cells are very similar to those observed in eukaryotic cells. Therefore, a

  16. characterization of drug resistant pseudomonas aeruginosa and ...

    African Journals Online (AJOL)

    their dissemination to the public, sometimes through the food chain. Four multidrug resistant Gram negative pathogens including: 2 Pseudomonas aeruginosa and 2 Proteus mirabilis characterized in this study were isolated from lizards captured from some poultry houses in Ibadan Oyo State, Nigeria. The four isolates were ...

  17. Insulin resistance induced by antiretroviral drugs: Current ...

    African Journals Online (AJOL)

    Treatment with highly active antiretroviral therapy (HAART) has improved the prognosis of patients with AIDS, but it has also increased the incidence of various metabolic disorders, in particular insulin resistance accompanied by dyslipidaemia, hyperglycaemia and lipodystrophy. This is often accompanied by frank type 2 ...

  18. Will Drug Resistance against Dolutegravir in Initial Therapy Ever Occur?

    Directory of Open Access Journals (Sweden)

    Mark eWainberg

    2015-04-01

    Full Text Available Dolutegravir (DTG is a second-generation integrase strand transfer inhibitor (INSTI and INSTIs are the latest class of potent anti-HIV drugs. Compared to the first generation INSTIs, raltegravir (RAL and elvitegravir (EVG, DTG shows a limited cross-resistance profile. More interestingly, clinical resistance mutations to DTG in treatment-naive patents have not been observed to this date. This review summarizes recent studies on resistance mutations to DTG and on our understanding of the mechanisms of resistance to DTG as well as future directions for research.

  19. Partner-Drug Resistance and Population Substructuring of Artemisinin-Resistant Plasmodium falciparum in Cambodia.

    Science.gov (United States)

    Parobek, Christian M; Parr, Jonathan B; Brazeau, Nicholas F; Lon, Chanthap; Chaorattanakawee, Suwanna; Gosi, Panita; Barnett, Eric J; Norris, Lauren D; Meshnick, Steven R; Spring, Michele D; Lanteri, Charlotte A; Bailey, Jeffrey A; Saunders, David L; Lin, Jessica T; Juliano, Jonathan J

    2017-06-01

    Plasmodium falciparum in western Cambodia has developed resistance to artemisinin and its partner drugs, causing frequent treatment failure. Understanding this evolution can inform the deployment of new therapies. We investigated the genetic architecture of 78 falciparum isolates using whole-genome sequencing, correlating results to in vivo and ex vivo drug resistance and exploring the relationship between population structure, demographic history, and partner drug resistance. Principle component analysis, network analysis and demographic inference identified a diverse central population with three clusters of clonally expanding parasite populations, each associated with specific K13 artemisinin resistance alleles and partner drug resistance profiles which were consistent with the sequential deployment of artemisinin combination therapies in the region. One cluster displayed ex vivo piperaquine resistance and mefloquine sensitivity with a high rate of in vivo failure of dihydroartemisinin-piperaquine. Another cluster displayed ex vivo mefloquine resistance and piperaquine sensitivity with high in vivo efficacy of dihydroartemisinin-piperaquine. The final cluster was clonal and displayed intermediate sensitivity to both drugs. Variations in recently described piperaquine resistance markers did not explain the difference in mean IC90 or clinical failures between the high and intermediate piperaquine resistance groups, suggesting additional loci may be involved in resistance. The results highlight an important role for partner drug resistance in shaping the P. falciparum genetic landscape in Southeast Asia and suggest that further work is needed to evaluate for other mutations that drive piperaquine resistance. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  20. mycobacterium tuberculosis genetic diversity and drug resistance ...

    African Journals Online (AJOL)

    2011-12-12

    Dec 12, 2011 ... (17) at the TB reference laboratory in Kinshasa. Standard phenotypic drug susceptibility testing. (DST) for isoniazid and rifampicin were performed by proportion method according to international guidelines (17). Molecular investigations: DNA was extracted from subcultures according to standard laboratory.

  1. Nationwide surveillance of drug-resistant tuberculosis in The Netherlands: rates, risk factors and treatment outcome

    NARCIS (Netherlands)

    Lambregts-van Weezenbeek, C. S.; Jansen, H. M.; Nagelkerke, N. J.; van Klingeren, B.; Veen, J.

    1998-01-01

    The Netherlands, 1993 and 1994. To determine 1) rates of drug resistance in relation to nationality and country of birth, 2) risk factors for drug resistance, 3) treatment outcome of drug-resistant cases, and 4) rates of primary and acquired drug resistance. Retrospective study of all cases notified

  2. Nanoparticles: Alternatives Against Drug-Resistant Pathogenic Microbes

    Directory of Open Access Journals (Sweden)

    Gudepalya Renukaiah Rudramurthy

    2016-06-01

    Full Text Available Antimicrobial substances may be synthetic, semisynthetic, or of natural origin (i.e., from plants and animals. Antimicrobials are considered “miracle drugs” and can determine if an infected patient/animal recovers or dies. However, the misuse of antimicrobials has led to the development of multi-drug-resistant bacteria, which is one of the greatest challenges for healthcare practitioners and is a significant global threat. The major concern with the development of antimicrobial resistance is the spread of resistant organisms. The replacement of conventional antimicrobials by new technology to counteract antimicrobial resistance is ongoing. Nanotechnology-driven innovations provide hope for patients and practitioners in overcoming the problem of drug resistance. Nanomaterials have tremendous potential in both the medical and veterinary fields. Several nanostructures comprising metallic particles have been developed to counteract microbial pathogens. The effectiveness of nanoparticles (NPs depends on the interaction between the microorganism and the NPs. The development of effective nanomaterials requires in-depth knowledge of the physicochemical properties of NPs and the biological aspects of microorganisms. However, the risks associated with using NPs in healthcare need to be addressed. The present review highlights the antimicrobial effects of various nanomaterials and their potential advantages, drawbacks, or side effects. In addition, this comprehensive information may be useful in the discovery of broad-spectrum antimicrobial drugs for use against multi-drug-resistant microbial pathogens in the near future.

  3. Initial resistance to antituberculosis drugs in Yaounde, Cameroon in 1995.

    Science.gov (United States)

    Bercion, R; Kuaban, C

    1997-04-01

    Tuberculosis centre of Hôpital Jamot, Yaounde, Cameroon, the sole referral and tuberculosis treatment facility for Yaounde and its surroundings. To identify Mycobacterium tuberculosis complex strains responsible for pulmonary tuberculosis in Yaounde, determine the prevalence of initial resistance to the main antituberculosis drugs and compare this prevalence in human immunodeficiency virus (HIV) positive and HIV-negative patients. In total, 576 consecutive and previously untreated adult patients admitted with sputum smear positive pulmonary tuberculosis to the tuberculosis centre from July 1994 to December 1995 were included in the study. Sputum specimens collected from each eligible patient were cultured on Löwenstein-Jensen and Coletsos media. Identification of the cultured strains was based on their cultural aspects and standard biochemical tests. The susceptibility of isolates to the major antituberculosis drugs was tested using the indirect proportion method. HIV testing was done using two ELISAs and confirmed by Western blot. Growth of M. tuberculosis complex strains was obtained from specimens of 516 (89.6%) of the 576 patients: 53 (10.3%) were identified as M. africanum and 463 (89.7%) as M. tuberculosis. Of the 516 patients with culture positive specimens, 92 (17.8%) were HIV-positive. Of the 516 strains isolated, 164 (31.8%) were resistant to at least one drug. The pattern of resistance was noted as 25% to one drug, 5.8% to two drugs and 1% to three or more drugs. Initial resistance to streptomycine was the most frequent (20.5%), followed by isoniazid (12.4%), thiacetazone (5.6%), rifampicin (0.8%) and ethambutol (0.4%). No significant difference in the rate of initial resistance was observed between HIV-positive and HIV-negative patients. The rate of initial drug resistance of M. tuberculosis in Yaounde is relatively high. There is therefore an urgent need to reestablish a tuberculosis control programme in Cameroon.

  4. Molecular characterisation of drug-resistant Plasmodium falciparum from Thailand

    Directory of Open Access Journals (Sweden)

    Gil José

    2002-10-01

    Full Text Available Abstract Background The increasing levels of Plasmodium falciparum resistance to chloroquine (CQ in Thailand have led to the use of alternative antimalarials, which are at present also becoming ineffective. In this context, any strategies that help improve the surveillance of drug resistance, become crucial in overcoming the problem. Methods In the present study, we have established the in vitro sensitivity to CQ, mefloquine (MF, quinine (QUIN and amodiaquine (AMQ of 52 P. falciparum isolates collected in Thailand, and assessed the prevalence of four putative genetic polymorphisms of drug resistance, pfcrt K76T, pfmdr1 N86Y, pfmdr1 D1042N and pfmdr1 Y1246D, by PCR-RFLP. Results The percentage of isolates resistant to CQ, MF, and AMQ was 96% (50/52, 62% (32/52, and 58% (18/31, respectively, while all parasites were found to be sensitive to QUIN. In addition, 41 (79% of the isolates assayed were resistant simultaneously to more than one drug; 25 to CQ and MF, 9 to CQ and AMQ, and 7 to all three drugs, CQ, MF and AMQ. There were two significant associations between drug sensitivity and presence of particular molecular markers, i CQ resistance / pfcrt 76T (P = 0.001, and ii MF resistance / pfmdr1 86N (P Conclusions i In Thailand, the high levels of CQ pressure have led to strong selection of the pfcrt 76T polymorphism and ii pfmdr1 86N appears to be a good predictor of in vitro MF resistance.

  5. Spread of anti-malarial drug resistance: Mathematical model with implications for ACT drug policies

    Directory of Open Access Journals (Sweden)

    Dondorp Arjen M

    2008-11-01

    Full Text Available Abstract Background Most malaria-endemic countries are implementing a change in anti-malarial drug policy to artemisinin-based combination therapy (ACT. The impact of different drug choices and implementation strategies is uncertain. Data from many epidemiological studies in different levels of malaria endemicity and in areas with the highest prevalence of drug resistance like borders of Thailand are certainly valuable. Formulating an appropriate dynamic data-driven model is a powerful predictive tool for exploring the impact of these strategies quantitatively. Methods A comprehensive model was constructed incorporating important epidemiological and biological factors of human, mosquito, parasite and treatment. The iterative process of developing the model, identifying data needed, and parameterization has been taken to strongly link the model to the empirical evidence. The model provides quantitative measures of outcomes, such as malaria prevalence/incidence and treatment failure, and illustrates the spread of resistance in low and high transmission settings. The model was used to evaluate different anti-malarial policy options focusing on ACT deployment. Results The model predicts robustly that in low transmission settings drug resistance spreads faster than in high transmission settings, and treatment failure is the main force driving the spread of drug resistance. In low transmission settings, ACT slows the spread of drug resistance to a partner drug, especially at high coverage rates. This effect decreases exponentially with increasing delay in deploying the ACT and decreasing rates of coverage. In the high transmission settings, however, drug resistance is driven by the proportion of the human population with a residual drug level, which gives resistant parasites some survival advantage. The spread of drug resistance could be slowed down by controlling presumptive drug use and avoiding the use of combination therapies containing drugs with

  6. The role of photodynamic therapy in overcoming cancer drug resistance

    Science.gov (United States)

    Spring, Bryan Q.; Rizvi, Imran; Xu, Nan; Hasan, Tayyaba

    2015-01-01

    Many modalities of cancer therapy induce mechanisms of treatment resistance and escape pathways during chronic treatments, including photodynamic therapy (PDT). It is conceivable that resistance induced by one treatment might be overcome by another treatment. Emerging evidence suggests that the unique mechanisms of tumor cell and microenvironment damage produced by PDT could be utilized to overcome cancer drug resistance, to mitigate the compensatory induction of survival pathways and even to re-sensitize resistant cells to standard therapies. Approaches that capture the unique features of PDT, therefore, offer promising factors for increasing the efficacy of a broad range of therapeutic modalities. Here, we highlight key preclinical findings utilizing PDT to overcome classical drug resistance or escape pathways and thus enhance the efficacy of many pharmaceuticals, possibly explaining the clinical observations of the PDT response to otherwise treatment-resistant diseases. With the development of nanotechnology, it is possible that light activation may be used not only to damage and sensitize tumors but also to enable controlled drug release to inhibit escape pathways that may lead to resistance or cell proliferation. PMID:25856800

  7. Enhanced transmission of drug-resistant parasites to mosquitoes following drug treatment in rodent malaria.

    Directory of Open Access Journals (Sweden)

    Andrew S Bell

    Full Text Available The evolution of drug resistant Plasmodium parasites is a major challenge to effective malaria control. In theory, competitive interactions between sensitive parasites and resistant parasites within infections are a major determinant of the rate at which parasite evolution undermines drug efficacy. Competitive suppression of resistant parasites in untreated hosts slows the spread of resistance; competitive release following treatment enhances it. Here we report that for the murine model Plasmodium chabaudi, co-infection with drug-sensitive parasites can prevent the transmission of initially rare resistant parasites to mosquitoes. Removal of drug-sensitive parasites following chemotherapy enabled resistant parasites to transmit to mosquitoes as successfully as sensitive parasites in the absence of treatment. We also show that the genetic composition of gametocyte populations in host venous blood accurately reflects the genetic composition of gametocytes taken up by mosquitoes. Our data demonstrate that, at least for this mouse model, aggressive chemotherapy leads to very effective transmission of highly resistant parasites that are present in an infection, the very parasites which undermine the long term efficacy of front-line drugs.

  8. An investigation of classification algorithms for predicting HIV drug resistance without genotype resistance testing

    CSIR Research Space (South Africa)

    Brandt, P

    2014-01-01

    Full Text Available is limited in low-resource settings. In this paper we investigate machine learning techniques for drug resistance prediction from routine treatment and laboratory data to help clinicians select patients for confirmatory genotype testing. The techniques...

  9. Suppressive drug combinations and their potential to combat antibiotic resistance.

    Science.gov (United States)

    Singh, Nina; Yeh, Pamela J

    2017-11-01

    Antibiotic effectiveness often changes when two or more such drugs are administered simultaneously and unearthing antibiotic combinations with enhanced efficacy (synergy) has been a longstanding clinical goal. However, antibiotic resistance, which undermines individual drugs, threatens such combined treatments. Remarkably, it has emerged that antibiotic combinations whose combined effect is lower than that of at least one of the individual drugs can slow or even reverse the evolution of resistance. We synthesize and review studies of such so-called 'suppressive interactions' in the literature. We examine why these interactions have been largely disregarded in the past, the strategies used to identify them, their mechanistic basis, demonstrations of their potential to reverse the evolution of resistance and arguments for and against using them in clinical treatment. We suggest future directions for research on these interactions, aiming to expand the basic body of knowledge on suppression and to determine the applicability of suppressive interactions in the clinic.

  10. "A'ole" Drugs! Cultural Practices and Drug Resistance of Rural Hawai'ian Youths

    Science.gov (United States)

    Po'A-Kekuawela, Ka'Ohinani; Okamoto, Scott K.; Nebre, La Risa H.; Helm, Susana; Chin, Coralee I. H.

    2009-01-01

    This qualitative study examined how Native Hawai'ian youths from rural communities utilized cultural practices to promote drug resistance and/or abstinence. Forty-seven students from five different middle schools participated in gender-specific focus groups that focused on the cultural and environmental contexts of drug use for Native Hawai'ian…

  11. Breast Cancer-Targeted Nuclear Drug Delivery Overcoming Drug Resistance for Breast Cancer Chemotherapy

    Science.gov (United States)

    2010-09-01

    Biotransformation of curcumin through reduction and glucuronidation in mice. Drug  Metab. Dispos. 27, 486–494 (1999). 46 Ireson C, Orr S, Jones DJL et...factor receptor (EGFR), and estrogen receptor (ER) [1,10,12]. Curcumin was also found to down-regulate multi- drug resistance proteins (MDR) and P

  12. Epigenetic Modulation of the Biophysical Properties of Drug-Resistant Cell Lipids to Restore Drug Transport and Endocytic Functions

    OpenAIRE

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-01-01

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g....

  13. RESISTANCE TO ANTIPLATELET DRUGS IN PATIENTS WITH ISCHEMIC HEART DISEASE

    Directory of Open Access Journals (Sweden)

    D. H. Aynetdinova

    2007-01-01

    Full Text Available The clinical, cell and genetic factors are distinguished among reasons for resistance to antiplatelet drugs. There are many methods to detect sensitivity to antiplatelet drugs, but they all have disadvantages. Moreover, there is no unified approach for interpretation of received results, and no recommendations for their practical use. It is necessary to work out unified procedure to assess platelet function, to define indications for its usage and to work out unified criteria of resistance. Individualized approach and each patient’s peculiarities consideration are essential when prescribing antiplatelet therapy.

  14. Extensively drug-resistant tuberculosis (XDR-TB) in Morocco.

    Science.gov (United States)

    Ennassiri, Wifak; Jaouhari, Sanae; Cherki, Wafa; Charof, Reda; Filali-Maltouf, Abdelkarim; Lahlou, Ouafae

    2017-12-01

    Extensively drug-resistant tuberculosis (XDR-TB) has recently been identified as a major global health threat. The aim of this study was to evaluate the presence of XDR-TB among Mycobacterium tuberculosis isolates in Morocco and its association with demographic, clinical and epidemiological features. A total of 524 patients from the Moroccan National Tuberculosis Reference Laboratory, representative of all of the geographic regions, were subject to first-line drug susceptibility testing (DST). Subsequently, 155 isolates found to be multidrug-resistant tuberculosis (MDR-TB) underwent second-line DST. Moreover, to enhance our understanding of the genetic basis of these drug-resistant strains, drug resistance-associated mutations were investigated in isolates either identified as pre-XDR- and XDR-TB or suspected resistant using the GenoType ® MTBDRsl V1.0 assay. In this study, 4 (2.6%) XDR-TB and 18 (11.6%) pre-XDR-TB isolates were identified. Agreement between the MTBDRsl assay results and phenotypic DST was 95.2% for ofloxacin, 81.0% for kanamycin and 95.2% for amikacin. To the best of our knowledge, this is the first study to evaluate the frequency of XDR-TB in Morocco. These results highlight the need to reinforce the TB management policy in Morocco with regard to control and detection strategies in order to prevent further spread of XDR-TB isolates. Copyright © 2017. Published by Elsevier Ltd.

  15. Scabies in the age of increasing drug resistance

    Science.gov (United States)

    Khalil, Samar; Abbas, Ossama; Kibbi, Abdul Ghani; Kurban, Mazen

    2017-01-01

    Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem. PMID:29190303

  16. Scabies in the age of increasing drug resistance.

    Directory of Open Access Journals (Sweden)

    Samar Khalil

    2017-11-01

    Full Text Available Scabies is an infestation of the skin by the mite Sarcoptes scabiei. It manifests with pruritic erythematous papules and excoriations, in addition to the pathognomonic burrows. Multiple drugs can be used for treatment, but resistance to conventional therapy is increasing throughout the years. This paper will review the mechanisms of resistance proposed in the literature and some of the potential solutions to this problem.

  17. Skin conditions: emerging drug-resistant skin infections and infestations.

    Science.gov (United States)

    Zuniga, Ramiro; Nguyen, Tam

    2013-04-01

    Methicillin-resistant Staphylococcus aureus (MRSA) skin infections are increasingly common. Automated microbiology systems are now available to detect MRSA and to determine antibiotic resistance patterns. Abscesses should be drained and antibiotics administered, with systemic antibiotics used to manage more severe infections. Until sensitivities are known and depending on local resistance rates, clindamycin is an option for empiric management of stable patients without bacteremia. For patients who are more ill, linezolid and vancomycin are alternatives, the latter being first-line treatment for children hospitalized with MRSA skin infections. Drug resistance also occurs in head lice management. Although topical permethrin is still the first-line drug management, its effectiveness has decreased due to permethrin-resistant strains. Patients who do not benefit from 2 applications of permethrin can be treated with topical malathion or topical ivermectin. Though not approved by the Food and Drug Administration (FDA) for treating head lice, oral ivermectin is sometimes used for difficult-to-treat cases. Permethrin is also the first-line management for scabies, though there is a concern that permethrin-resistant scabies may soon occur. For patients with scabies who do not benefit from topical treatment, oral ivermectin is recommended by the Centers for Disease Control and Prevention, although it is not approved by the FDA for this purpose. Written permission from the American Academy of Family Physicians is required for reproduction of this material in whole or in part in any form or medium.

  18. A Hybrid Drug Limits Resistance by Evading the Action of the Multiple Antibiotic Resistance Pathway.

    Science.gov (United States)

    Wang, Kathy K; Stone, Laura K; Lieberman, Tami D; Shavit, Michal; Baasov, Timor; Kishony, Roy

    2016-02-01

    Hybrid drugs are a promising strategy to address the growing problem of drug resistance, but the mechanism by which they modulate the evolution of resistance is poorly understood. Integrating high-throughput resistance measurements and genomic sequencing, we compared Escherichia coli populations evolved in a hybrid antibiotic that links ciprofloxacin and neomycin B with populations evolved in combinations of the component drugs. We find that populations evolved in the hybrid gain less resistance than those evolved in an equimolar mixture of the hybrid's components, in part because the hybrid evades resistance mediated by the multiple antibiotic resistance (mar) operon. Furthermore, we find that the ciprofloxacin moiety of the hybrid inhibits bacterial growth whereas the neomycin B moiety diminishes the effectiveness of mar activation. More generally, comparing the phenotypic and genotypic paths to resistance across different drug treatments can pinpoint unique properties of new compounds that limit the emergence of resistance. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Effect and Safety of Shihogyejitang for Drug Resistant Childhood Epilepsy

    Directory of Open Access Journals (Sweden)

    Jinsoo Lee

    2016-01-01

    Full Text Available Objective. Herbal medicine has been widely used to treat drug resistant epilepsy. Shihogyejitang (SGT has been commonly used to treat epilepsy. We investigated the effect and safety of SGT in children with drug resistant epilepsy. Design. We reviewed medical records of 54 patients with epilepsy, who failed to respond to at least two antiepileptic drugs and have been treated with SGT between April 2006 and June 2014 at the Department of Pediatric Neurology, I-Tomato Hospital, Korea. Effect was measured by the response rate, seizure-free rate, and retention rate at six months. We also checked adverse events, change in antiepileptic drugs use, and the variables related to the outcome. Results. Intent-to-treat analysis showed that, after six months, 44.4% showed a >50% seizure reduction, 24.1% including seizure-free, respectively, and 53.7% remained on SGT. Two adverse events were reported, mild skin rash and fever. Focal seizure type presented significantly more positive responses when compared with other seizure types at six months (p=0.0284, Fisher’s exact test. Conclusion. SGT is an effective treatment with excellent tolerability for drug resistant epilepsy patients. Our data provide evidence that SGT may be used as alternative treatment option when antiepileptic drug does not work in epilepsy children.

  20. Collateral Resistance and Sensitivity Modulate Evolution of High-Level Resistance to Drug Combination Treatment in Staphylococcus aureus

    DEFF Research Database (Denmark)

    de Evgrafov, Mari Cristina Rodriguez; Gumpert, Heidi; Munck, Christian

    2015-01-01

    -type levels. All drug combinations, irrespective of interaction types, effectively limited resistance evolution compared with monotreatment. Cross-resistance and collateral sensitivity were found to be important factors in the extent of resistance evolution toward a combination. Comparative genomic analyses...

  1. Emerging drug -resistance and guidelines for treatment of malaria

    International Nuclear Information System (INIS)

    Khan, M.A.; Smego Jr, R.A.; Razi, S.T.; Beg, M.A.

    2004-01-01

    The increasing prevalence of multi-resistant Plasmodium falciparum malaria worldwide is a serious public health threat to the global control of malaria, especially in poor countries like Pakistan. In many countries chloroquine-resistance is a huge problem, accounting for more than 90% of malaria cases. In Pakistan, resistance to chloroquine is on the rise and reported in up to 16- 62% of Plasmodium falciparum. Four to 25% of Plasmodium falciparum also reported to be resistant to sulfadoxine-pyrimethamine and several cases of delayed parasite clearance have been observed in patients with Plasmodium falciparum malaria treated with quinine. In this article we have introduced the concept of artemisinin- based combination therapy (ACT) and emphasize the use of empiric combination therapy for all patients with Plasmodium falciparum malaria to prevent development of drug resistance and to obtain additive and synergistic killing of parasite. (author)

  2. Drug accumulation in the presence of the multidrug resistance pump

    DEFF Research Database (Denmark)

    Ayesh, S; Litman, Thomas; Stein, W D

    1997-01-01

    We studied the interaction between the multidrug transporter, P-glycoprotein, and two compounds that interact with it: vinblastine, a classical substrate of the pump, and verapamil, a classical reverser. Steady-state levels of accumulation of these two drugs were determined in a multidrug resistant...

  3. Susceptibility of Selected Multi-Drug Resistant Clinical Isolates to ...

    African Journals Online (AJOL)

    2018-03-01

    Mar 1, 2018 ... pharmacological potentials that could show efficiency in the treatment of bacterial infections. Keywords: Carpolobia lutea, antifungal, antibacterial, multi-drug ..... Antimicrobial Resistance 2016;7: 41-144. 21. Yoon Y, Kim J, Sohn J, Yang K, Kim M. Role of piperacillin/tazobactam as a carbapenem-sparing.

  4. Laboratory methods for diagnosis and detection of drug resistant ...

    African Journals Online (AJOL)

    Data source: Published series of peer reviewed journals and manuals written on laboratory methods that are currently used for diagnosis and detection of drug resistance of Mycobacterium tuberculosis complex were reviewed using the index medicus, pubmed and medline search. Conventional bacteriological microscopy ...

  5. Multi-Drug Resistance 1 Genetic Polymorphisms Gene Expression ...

    African Journals Online (AJOL)

    Although anthracycline-based chemotherapy is a crucial treatment for breast cancer, its outcome is limited by the multidrug resistance MDR. Overexpression of P-glycoprotein (Pgp), a transmembrane active efflux transporter of various drugs and carcinogenic substrate, may result in MDR. The impact of MDR1 ...

  6. Extracting causal relations on HIV drug resistance from literature

    NARCIS (Netherlands)

    Q.C. Bui; B.O. Nualláin (Breanndán); C.A.B. Boucher (Charles); P.M.A. Sloot (Peter)

    2010-01-01

    textabstractBackground: In HIV treatment it is critical to have up-to-date resistance data of applicable drugs since HIV has a very high rate of mutation. These data are made available through scientific publications and must be extracted manually by experts in order to be used by virologists and

  7. Alcohol and Other Drug Resistance Strategies Employed by Rural Adolescents

    Science.gov (United States)

    Pettigrew, Jonathan; Miller-Day, Michelle; Krieger, Janice; Hecht, Michael L.

    2011-01-01

    This study seeks to identify how rural adolescents make health decisions and utilize communication strategies to resist influence attempts in offers of alcohol, tobacco, and other drugs (ATOD). Semi-structured interviews were conducted with 113 adolescents from rural school districts to solicit information on ATOD norms, past ATOD experiences, and…

  8. The screening of multi-drug resistance (MDR) susceptibilities of ...

    African Journals Online (AJOL)

    The screening of multi-drug resistance (MDR) susceptibilities of Staphylococcus aureus and Staphylococcus epidermidis to methicillin and vancomycin in teaching hospitals in Nigeria. ... The antibiotics susceptibility patterns were determined both by overnight broth-micro-dilution and agar disk diffusion methods. Results: ...

  9. Diversity of Urinary Tract Pathogens and Drug Resistant Isolates of ...

    African Journals Online (AJOL)

    Purpose: This paper was mainly aimed to investigate drug resistance of the various urinary tract infection (UTI) pathogens from patients of different gender and age groups of Pakistanis. Method: For these purposes, urine samples of 109 patients were analyzed. Samples were screened on CLED agar. Antimicrobial ...

  10. HIV infection and mycobacterium tuberculosis drug-resistance ...

    African Journals Online (AJOL)

    The aim of this study was to compare the drug-resistance patterns of Mycobacterium tuberculosis strains among pulmonary tuberculosis patients, according to their HIV serostatus, in Burkina Faso. Tuberculosis (TB) patients were classified in new and previously treated cases by using a structured questionnaire.

  11. Drug resistance patterns of bacterial isolates from infected wounds ...

    African Journals Online (AJOL)

    unhcc

    Conclusions: High frequency of mono and multi-drug resistant bacterial pathogens were documented. Thus, an alternative method to the causative agent and antimicrobial susceptibility testing surveillance in areas where there is no culture facility is needed to assist health professionals for the selection of appropriate ...

  12. Isolation rate and drug resistance patterns of Shigella species ...

    African Journals Online (AJOL)

    High prevalence of Shigella spp. with multiple antibiotic resistance isolates were observed in this study. Ciprofloxacin may be used as a drug of choice for empirical treatment for Shigella infections. Regular, systematic monitoring of diarrheal cases is also needed to identify changes in the prevalence and antimicrobial ...

  13. Extracting causal relations on HIV drug resistance from literature

    NARCIS (Netherlands)

    Bui, Q.C.; Ó Nualláin, B.; Boucher, C.A.; Sloot, P.M.A.

    2010-01-01

    Background: In HIV treatment it is critical to have up-to-date resistance data of applicable drugs since HIV has a very high rate of mutation. These data are made available through scientific publications and must be extracted manually by experts in order to be used by virologists and medical

  14. Mechanisms of antifungal drug resistance in Candida dubliniensis.

    LENUS (Irish Health Repository)

    Coleman, David C

    2010-06-01

    Candida dubliniensis was first described in 1995 and is the most closely related species to the predominant human fungal pathogen Candida albicans. C. dubliniensis is significantly less prevalent and less pathogenic than C. albicans and is primarily associated with infections in HIV-infected individuals and other immunocompromised cohorts. The population structure of C. dubliniensis consists of three well-defined major clades and is significantly less diverse than C. albicans. The majority of C. dubliniensis isolates are susceptible to antifungal drugs commonly used to treat Candida infections. To date only two major patterns of antifungal drug resistance have been identified and the molecular mechanisms of these are very similar to the resistance mechanisms that have been described previously in C. albicans. However, significant differences are evident in the predominant antifungal drug mechanisms employed by C. dubliniensis, differences that reflect its more clonal nature, its lower prevalence and characteristics of its genome, the complete sequence of which has only recently been determined.

  15. Epigenetic modulation of the biophysical properties of drug-resistant cell lipids to restore drug transport and endocytic functions.

    Science.gov (United States)

    Vijayaraghavalu, Sivakumar; Peetla, Chiranjeevi; Lu, Shan; Labhasetwar, Vinod

    2012-09-04

    In our recent studies exploring the biophysical characteristics of resistant cell lipids, and the role they play in drug transport, we demonstrated the difference of drug-resistant breast cancer cells from drug-sensitive cells in lipid composition and biophysical properties, suggesting that cancer cells acquire a drug-resistant phenotype through the alteration of lipid synthesis to inhibit intracellular drug transport to protect from cytotoxic effect. In cancer cells, epigenetic changes (e.g., DNA hypermethylation) are essential to maintain this drug-resistant phenotype. Thus, altered lipid synthesis may be linked to epigenetic mechanisms of drug resistance. We hypothesize that reversing DNA hypermethylation in resistant cells with an epigenetic drug could alter lipid synthesis, changing the cell membrane's biophysical properties to facilitate drug delivery to overcome drug resistance. Herein we show that treating drug-resistant breast cancer cells (MCF-7/ADR) with the epigenetic drug 5-aza-2'-deoxycytidine (decitabine) significantly alters cell lipid composition and biophysical properties, causing the resistant cells to acquire biophysical characteristics similar to those of sensitive cell (MCF-7) lipids. Following decitabine treatment, resistant cells demonstrated increased sphingomyelinase activity, resulting in a decreased sphingomyelin level that influenced lipid domain structures, increased membrane fluidity, and reduced P-glycoprotein expression. Changes in the biophysical characteristics of resistant cell lipids facilitated doxorubicin transport and restored endocytic function for drug delivery with a lipid-encapsulated form of doxorubicin, enhancing the drug efficacy. In conclusion, we have established a new mechanism for efficacy of an epigenetic drug, mediated through changes in lipid composition and biophysical properties, in reversing cancer drug resistance.

  16. Regulatory circuitry governing fungal development, drug resistance, and disease.

    Science.gov (United States)

    Shapiro, Rebecca S; Robbins, Nicole; Cowen, Leah E

    2011-06-01

    Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.

  17. Potential risk for drug resistance globalization at the Hajj.

    Science.gov (United States)

    Al-Tawfiq, J A; Memish, Z A

    2015-02-01

    Antibiotics were once considered the miracle cure for infectious diseases. The tragedy would be the loss of these miracles as we witness increased antibiotic resistance throughout the world. One of the concerns during mass gatherings is the transmission of antibiotic resistance. Hajj is one of the most common recurring mass gatherings, attracting millions of people from around the world. The transmission of drug-resistant organisms during the Hajj is not well described. In the current review, we summarize the available literature on the transmission and acquisition of antibiotic resistance during the Hajj and present possible solutions. Copyright © 2014 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  18. Drug resistance following irradiation of RIF-1 tumors: Influence of the interval between irradiation and drug treatment

    International Nuclear Information System (INIS)

    Hopwood, L.E.; Davies, B.M.; Moulder, J.E.

    1990-01-01

    RIF-1 tumors contain a small number of cells (1 to 100 per 10(6) cells) that are resistant to 5-fluorouracil, methotrexate, or adriamycin. The frequency of drug-resistant cells among individual untreated tumors is highly variable. Radiation, delivered in vivo at doses of 3 to 12 Gy, increases the frequency of methotrexate- and 5-fluorouracil-resistant cells, but not the frequency of adriamycin-resistant cells. The magnitude of induction of 5-fluorouracil and methotrexate resistance shows a complex dependence on the radiation dose and on the interval between irradiation and assessment of drug resistance. For a dose of 3 Gy, induced 5-fluorouracil and methotrexate resistance is seen only after an interval of 5 to 7 days, whereas for a dose of 12 Gy, high levels of induced resistance are observed 1 to 3 days after irradiation. The maximum absolute risk for induction of resistance is 4 per 10(4) cells per Gy for methotrexate, and 3 per 10(6) cells per Gy for 5-fluorouracil. These results indicate that tumor hypoxia may play a role in the increased levels of drug resistance seen after irradiation, and that both genetic and environmental factors may influence radiation-induction of drug resistance. These studies provide essential data for models of the development of tumor drug resistance, and imply that some of the drug resistance seen when chemotherapy follows radiotherapy may be caused by radiation-induced drug resistance

  19. Modeling HIV-1 drug resistance as episodic directional selection.

    Directory of Open Access Journals (Sweden)

    Ben Murrell

    Full Text Available The evolution of substitutions conferring drug resistance to HIV-1 is both episodic, occurring when patients are on antiretroviral therapy, and strongly directional, with site-specific resistant residues increasing in frequency over time. While methods exist to detect episodic diversifying selection and continuous directional selection, no evolutionary model combining these two properties has been proposed. We present two models of episodic directional selection (MEDS and EDEPS which allow the a priori specification of lineages expected to have undergone directional selection. The models infer the sites and target residues that were likely subject to directional selection, using either codon or protein sequences. Compared to its null model of episodic diversifying selection, MEDS provides a superior fit to most sites known to be involved in drug resistance, and neither one test for episodic diversifying selection nor another for constant directional selection are able to detect as many true positives as MEDS and EDEPS while maintaining acceptable levels of false positives. This suggests that episodic directional selection is a better description of the process driving the evolution of drug resistance.

  20. HIV Drug-Resistant Patient Information Management, Analysis, and Interpretation.

    Science.gov (United States)

    Singh, Yashik; Mars, Maurice

    2012-06-07

    The science of information systems, management, and interpretation plays an important part in the continuity of care of patients. This is becoming more evident in the treatment of human immunodeficiency virus (HIV) and acquired immune deficiency syndrome (AIDS), the leading cause of death in sub-Saharan Africa. The high replication rates, selective pressure, and initial infection by resistant strains of HIV infer that drug resistance will inevitably become an important health care concern. This paper describes proposed research with the aim of developing a physician-administered, artificial intelligence-based decision support system tool to facilitate the management of patients on antiretroviral therapy. This tool will consist of (1) an artificial intelligence computer program that will determine HIV drug resistance information from genomic analysis; (2) a machine-learning algorithm that can predict future CD4 count information given a genomic sequence; and (3) the integration of these tools into an electronic medical record for storage and management. The aim of the project is to create an electronic tool that assists clinicians in managing and interpreting patient information in order to determine the optimal therapy for drug-resistant HIV patients.

  1. Molecular Basis for Drug Resistance in HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Celia A. Schiffer

    2010-11-01

    Full Text Available HIV-1 protease is one of the major antiviral targets in the treatment of patients infected with HIV-1. The nine FDA approved HIV-1 protease inhibitors were developed with extensive use of structure-based drug design, thus the atomic details of how the inhibitors bind are well characterized. From this structural understanding the molecular basis for drug resistance in HIV-1 protease can be elucidated. Selected mutations in response to therapy and diversity between clades in HIV-1 protease have altered the shape of the active site, potentially altered the dynamics and even altered the sequence of the cleavage sites in the Gag polyprotein. All of these interdependent changes act in synergy to confer drug resistance while simultaneously maintaining the fitness of the virus. New strategies, such as incorporation of the substrate envelope constraint to design robust inhibitors that incorporate details of HIV-1 protease’s function and decrease the probability of drug resistance, are necessary to continue to effectively target this key protein in HIV-1 life cycle.

  2. Resistance patterns and trends of extensively drug-resistant tuberculosis: 5-year experience

    Directory of Open Access Journals (Sweden)

    Amresh Kumar Singh

    2013-12-01

    Full Text Available Objective:Extensively drug-resistant tuberculosis (XDR-TB strains were emerged when multidrug-resistant TB (MDR- TB was inadequately treated. Inadequate treatment of MDR-TB cases may result in additional resistance especially non-XDR-TB and then XDR-TB. The aim of this study was to know the prevalence, resistance patterns and trends of the XDR-TB strains among the MDR-TB at a tertiary care hospital in Lucknow, India Methods: A total of 430 Mycobacterium isolates were underwent NAP test and TB MPT64 Ag test for the identification of Mycobacterium tuberculosis complex (MTBC. Drug-susceptibility test (DST was performed over MTBC for the first line drugs by 1% proportion method (Bactec and for the second-line drugs by 1% proportion method (Lowenstein- Jensen media. The XDR-TB status was further confirmed by line probe assay (GenoType® MTBDRsl assay. Results: Among the 430 isolates of mycobacterium, 365 (84.9% were MTBC and 139 (38.1% were MDR-TB respectively. Further 97 MDR-TB from “highly suspected drug resistant-TB (DR-TB” cases among MDR-TB were tested with second line drugs in which 15 (15.5% XDR-TB and 82 (84.5% were non-XDR-TB. Regarding XDR-TB status, using the 1% proportion method a 100% agreement was seen with the GenoType® MTBDRsl assay. Resistance patterns of XDR-TB were as; 10/15 (66.7% as isoniazid + rifampicin + ciprofloxacin + amikacin resistance and 5/15 (33.3% as isoniazid + rifampicin + ciprofloxacin + amikacin + kanamycin resistance. Conclusion:The prevalence of XDR-TB was 15.5% among MDR-TB. Hence laboratory testing of “highly suspected drug resistant-TB” isolates should be done for both first and second line drugs simultaneously especially in developing countries.J Microbiol Infect Dis 2013;3(4: 169-175

  3. Drug resistance patterns of acinetobacter baumannii in makkah, saudi arabia

    International Nuclear Information System (INIS)

    Khan, M.A.; Ashshi, A.M.; Mahomed, M.F.

    2012-01-01

    Background: Acinetobacter baumannii causes infections of respiratory, urinary tract, blood stream and surgical sites. Its clinical significance has increased due to its rapidly developing resistance to major groups of antibiotics used for its treatment. There is limited data available on antimicrobial susceptibility of A. baumannii from Saudi Arabia. Objectives: To determine the patterns of drug resistance of Acinetobacter baumannii and predisposing factors for its acquisition.Subjects and Methods: In this descriptive study, 72 hospitalized patients infected with A baumannii were studied. The clinical and demographic data of the patients were collected using a predesigned questionnaire. Isolation and identification of A.baumannii from all clinical specimens were done using standard microbiological methods. Antibiotic susce ptibility testing was performed by disk diffusion method recommended by Clinical Laboratory Standards Institute. Results: Majority of the isolates (61.1%) were from respiratory tract infections. A.baumannii isolates showed high drug resistance to piperacil lin (93.1%), aztreonam (80.5%), ticarcillin, ampicillin, and tetracycline (76.4%, each) and cefotaxime (75%). Only amikacin showed low rate of resistance compared to other antibiotics (40.3%). About 36% patients had some underlying diseases with diabetes mellitus (11%) being the predominant underlying disease. Conclusions: High antimicrobial resistance to commonly used antibiotics was seen against A.baumannii isolates. Only amikacin was most effective against it. (author)

  4. Multi drug resistant tuberculosis presenting as anterior mediastinal mass

    Directory of Open Access Journals (Sweden)

    Parmarth Chandane

    2016-01-01

    Full Text Available Enlargement of the mediastinal lymphatic glands is a common presentation of intrathoracic tuberculosis (TB in children. However, usually, the mediastinal TB nodes enlarge to 2.8 ± 1.0 cm. In this report, we describe a case of anterior mediastinal lymphnode TB seen as huge mass (7 cm on computed tomography (CT thorax without respiratory or food pipe compromise despite anterior mediastinum being an enclosed space. CT guided biopsy of the mass cultured Mycobacterium TB complex which was resistant to isoniazide, rifampicin, streptomycin ofloxacin, moxifloxacin, and pyrazinamide. Hence, we report primary multi drug resistant TB presenting as anterior mediastinal mass as a rare case report.

  5. Personalized Cancer Medicine: Molecular Diagnostics, Predictive biomarkers, and Drug Resistance

    Science.gov (United States)

    Gonzalez de Castro, D; Clarke, P A; Al-Lazikani, B; Workman, P

    2013-01-01

    The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution. PMID:23361103

  6. Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer

    International Nuclear Information System (INIS)

    Kangaspeska, Sara; Hultsch, Susanne; Jaiswal, Alok; Edgren, Henrik; Mpindi, John-Patrick; Eldfors, Samuli; Brück, Oscar; Aittokallio, Tero; Kallioniemi, Olli

    2016-01-01

    The estrogen receptor (ER) inhibitor tamoxifen reduces breast cancer mortality by 31 % and has served as the standard treatment for ER-positive breast cancers for decades. However, 50 % of advanced ER-positive cancers display de novo resistance to tamoxifen, and acquired resistance evolves in 40 % of patients who initially respond. Mechanisms underlying resistance development remain poorly understood and new therapeutic opportunities are urgently needed. Here, we report the generation and characterization of seven tamoxifen-resistant breast cancer cell lines from four parental strains. Using high throughput drug sensitivity and resistance testing (DSRT) with 279 approved and investigational oncology drugs, exome-sequencing and network analysis, we for the first time, systematically determine the drug response profiles specific to tamoxifen resistance. We discovered emerging vulnerabilities towards specific drugs, such as ERK1/2-, proteasome- and BCL-family inhibitors as the cells became tamoxifen-resistant. Co-resistance to other drugs such as the survivin inhibitor YM155 and the chemotherapeutic agent paclitaxel also occurred. This study indicates that multiple molecular mechanisms dictate endocrine resistance, resulting in unexpected vulnerabilities to initially ineffective drugs, as well as in emerging co-resistances. Thus, combatting drug-resistant tumors will require patient-tailored strategies in order to identify new drug vulnerabilities, and to understand the associated co-resistance patterns. The online version of this article (doi:10.1186/s12885-016-2452-5) contains supplementary material, which is available to authorized users

  7. Mathematical models of tumor heterogeneity and drug resistance

    Science.gov (United States)

    Greene, James

    In this dissertation we develop mathematical models of tumor heterogeneity and drug resistance in cancer chemotherapy. Resistance to chemotherapy is one of the major causes of the failure of cancer treatment. Furthermore, recent experimental evidence suggests that drug resistance is a complex biological phenomena, with many influences that interact nonlinearly. Here we study the influence of such heterogeneity on treatment outcomes, both in general frameworks and under specific mechanisms. We begin by developing a mathematical framework for describing multi-drug resistance to cancer. Heterogeneity is reflected by a continuous parameter, which can either describe a single resistance mechanism (such as the expression of P-gp in the cellular membrane) or can account for the cumulative effect of several mechanisms and factors. The model is written as a system of integro-differential equations, structured by the continuous "trait," and includes density effects as well as mutations. We study the limiting behavior of the model, both analytically and numerically, and apply it to study treatment protocols. We next study a specific mechanism of tumor heterogeneity and its influence on cell growth: the cell-cycle. We derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations, when the number of cells is large. The model is closely tied to experimental data of cell growth, and includes a novel implementation of

  8. Mycobacterium tuberculosis drug-resistance in previously treated ...

    African Journals Online (AJOL)

    Keywords: Burkina faso, drug resistance, Ouagadougou, tuberculosis. Résumé. Arrière-plan: Tuberculose pharmacorésistance devient commun en Afrique; Toutefois, très peu de données est disponibles au Burkina Faso. L'objectif de cette étude est pour évaluer la résistance acquise de Mycobacterium tuberculosis ...

  9. Extracting causal relations on HIV drug resistance from literature.

    Science.gov (United States)

    Bui, Quoc-Chinh; Nualláin, Breanndán O; Boucher, Charles A; Sloot, Peter M A

    2010-02-23

    In HIV treatment it is critical to have up-to-date resistance data of applicable drugs since HIV has a very high rate of mutation. These data are made available through scientific publications and must be extracted manually by experts in order to be used by virologists and medical doctors. Therefore there is an urgent need for a tool that partially automates this process and is able to retrieve relations between drugs and virus mutations from literature. In this work we present a novel method to extract and combine relationships between HIV drugs and mutations in viral genomes. Our extraction method is based on natural language processing (NLP) which produces grammatical relations and applies a set of rules to these relations. We applied our method to a relevant set of PubMed abstracts and obtained 2,434 extracted relations with an estimated performance of 84% for F-score. We then combined the extracted relations using logistic regression to generate resistance values for each pair. The results of this relation combination show more than 85% agreement with the Stanford HIVDB for the ten most frequently occurring mutations. The system is used in 5 hospitals from the Virolab project http://www.virolab.org to preselect the most relevant novel resistance data from literature and present those to virologists and medical doctors for further evaluation. The proposed relation extraction and combination method has a good performance on extracting HIV drug resistance data. It can be used in large-scale relation extraction experiments. The developed methods can also be applied to extract other type of relations such as gene-protein, gene-disease, and disease-mutation.

  10. Surgical management of cavernous malformations coursing with drug resistant epilepsy

    OpenAIRE

    Mario Arturo Alonso-Vanegas; Jose Miguel eCisneros-Franco; Taisuke eOtsuki

    2012-01-01

    Cerebral cavernous malformations (CM) are dynamic lesions characterized by continuous size changes and repeated bleeding. When involving cortical tissue, CM pose a significant risk for the development of drug-resistant epilepsy, which is thought to be result of an altered neuronal network caused by the lesion itself and its blood degradation products. Preoperative evaluation should comprise a complete seizure history, neurological examination, epilepsy-oriented MRI, EEG, video-EEG, completed ...

  11. The cost of multiple drug resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Ward, H; Perron, G G; Maclean, R C

    2009-05-01

    The spread of bacterial antibiotic resistance mutations is thought to be constrained by their pleiotropic fitness costs. Here we investigate the fitness costs of resistance in the context of the evolution of multiple drug resistance (MDR), by measuring the cost of acquiring streptomycin resistance mutations (StrepR) in independent strains of the bacterium Pseudomonas aeruginosa carrying different rifampicin resistance (RifR) mutations. In the absence of antibiotics, StrepR mutations are associated with similar fitness costs in different RifR genetic backgrounds. The cost of StrepR mutations is greater in a rifampicin-sensitive (RifS) background, directly demonstrating antagonistic epistasis between resistance mutations. In the presence of rifampicin, StrepR mutations have contrasting effects in different RifR backgrounds: StrepR mutations have no detectable costs in some RifR backgrounds and massive fitness costs in others. Our results clearly demonstrate the importance of epistasis and genotype-by-environment interactions for the evolution of MDR.

  12. Investigational drugs to treat methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Vuong, Cuong; Yeh, Anthony J; Cheung, Gordon YC; Otto, Michael

    2016-01-01

    Introduction Staphylococcus aureus remains one of the leading causes of morbidity and mortality worldwide. This is to a large extent due to antibiotic-resistant strains, in particular methicillin-resistant S. aureus (MRSA). While the toll of invasive MRSA infections appears to decrease in U.S. hospitals, the rate of community-associated MRSA infections remains constant and there is a surge of MRSA in many other countries. This situation calls for continuing if not increased efforts to find novel strategies to combat MRSA infections. Areas covered This review will provide an overview of current investigational antibiotics in clinical development (up to phase II), and of therapeutic antibodies and alternative drugs against S. aureus in preclinical and clinical development, including a short description of the mechanism of action and a presentation of microbiological and clinical data. Expert opinion Increased recent antibiotic development efforts and results from pathogenesis research have led to several new antibiotics and alternative drugs, as well as a more informed selection of targets for vaccination efforts against MRSA. This developing portfolio of novel anti-staphylococcal drugs will hopefully provide us with additional and more efficient ways to combat MRSA infections in the near future and prevent us from running out of treatment options, even if new resistances arise. PMID:26536498

  13. Mechanisms of first-line antimicrobial resistance in multi-drug and extensively drug resistant strains of Mycobacterium tuberculosis in KwaZulu-Natal, South Africa

    Directory of Open Access Journals (Sweden)

    Navisha Dookie

    2016-10-01

    Full Text Available Abstract Background In South Africa, drug resistant tuberculosis is a major public health crisis in the face of the colossal HIV pandemic. Methods In an attempt to understand the distribution of drug resistance in our setting, we analysed the rpoB, katG, inhA, pncA and embB genes associated with resistance to key drugs used in the treatment of tuberculosis in clinical isolates of Mycobacterium tuberculosis in the KwaZulu-Natal province. Results Classical mutations were detected in the katG, inhA and embB genes associated with resistance to isoniazid and ethambutol. Diverse mutations were recorded in the multidrug resistant (MDR and extensively drug resistant (XDR isolates for the rpoB and pncA gene associated with resistance to rifampicin and pyrazinamide. Conclusions M.tuberculosis strains circulating in our setting display a combination of previously observed mutations, each mediating resistance to a different drug. The MDR and XDR TB isolates analysed in this study displayed classical mutations linked to INH and EMB resistance, whilst diverse mutations were linked to RIF and PZA resistance. The similarity of the XDR strains confirms reports of the clonality of the XDR epidemic. The successful dissemination of the drug resistant strains in the province underscores the need for rapid diagnostics to effectively diagnose drug resistance and guide treatment.

  14. HIV subtype and drug resistance patterns among drug naïve ...

    African Journals Online (AJOL)

    SERVER

    2007-08-20

    Aug 20, 2007 ... To determine HIV-1 subtypes and antiretroviral drug resistance mutations for 16 infected, pregnant women in Jos, Nigeria, part of pol (1040 bp) was amplified from patient PBMC DNA, sequenced and analyzed. Eight of the samples were subtype G, three were CRF02_AG and 2 were unique recombinant.

  15. The prevalence of drug induced hepatotoxicity among HIV positive ...

    African Journals Online (AJOL)

    Introduction: Drug induced hepatotoxicity is a recognized problem associated with the anti-tuberculosis (anti-TB) chemotherapy and is of great concern especially in this era of HIV infection. Objectives: To obtain the prevalence of hepatotoxicity due to anti-TB medications in HIV positive and negative patients with pulmonary ...

  16. Molecular biological studies on the human radioresistance and drug resistance

    International Nuclear Information System (INIS)

    Kim, Chang Min; Hong, Weon Seon

    1992-04-01

    We irradiated the MKN45 and PC14 cell lines with 500 rads and also established the adriamycin-resistant and cis-platinum resistant cell line. The genomic DNA and total RNA were extracted and subjected to the Southern and Northern analysis using various probes including heat shock protein 70, MDR1, fos, TGFb etc. The mRNA transcript was increased 1 hour after the irradiation and sustained during the 48 hours and returned to the level of pre-irradiation. No significant change was observed with the drug resistant cell lines at the level of gene dosage. We suggest that the marked increase of the hsp70 transcript is very important finding and is believed to be a good candidate for the modulation of the cellular response to irradiation and the radioresistance. (Author)

  17. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Mi-Kyung; Wu, Yinan; Li, Zhenmei; Zhao, Ying; Waddell, M. Brett; Ferreira, Antonio M.; Lee, Richard E.; Bashford, Donald; White, Stephen W. (SJCH)

    2013-04-08

    The sulfonamide antibiotics inhibit dihydropteroate synthase (DHPS), a key enzyme in the folate pathway of bacteria and primitive eukaryotes. However, resistance mutations have severely compromised the usefulness of these drugs. We report structural, computational, and mutagenesis studies on the catalytic and resistance mechanisms of DHPS. By performing the enzyme-catalyzed reaction in crystalline DHPS, we have structurally characterized key intermediates along the reaction pathway. Results support an S{sub N}1 reaction mechanism via formation of a novel cationic pterin intermediate. We also show that two conserved loops generate a substructure during catalysis that creates a specific binding pocket for p-aminobenzoic acid, one of the two DHPS substrates. This substructure, together with the pterin-binding pocket, explains the roles of the conserved active-site residues and reveals how sulfonamide resistance arises.

  18. HIV-1 Drug Resistance Mutations: Potential Applications for Point-of-Care Genotypic Resistance Testing.

    Directory of Open Access Journals (Sweden)

    Soo-Yon Rhee

    Full Text Available The increasing prevalence of acquired and transmitted HIV-1 drug resistance is an obstacle to successful antiretroviral therapy (ART in the low- and middle-income countries (LMICs hardest hit by the HIV-1 pandemic. Genotypic drug resistance testing could facilitate the choice of initial ART in areas with rising transmitted drug resistance (TDR and enable care-providers to determine which individuals with virological failure (VF on a first- or second-line ART regimen require a change in treatment. An inexpensive near point-of-care (POC genotypic resistance test would be useful in settings where the resources, capacity, and infrastructure to perform standard genotypic drug resistance testing are limited. Such a test would be particularly useful in conjunction with the POC HIV-1 viral load tests that are currently being introduced in LMICs. A POC genotypic resistance test is likely to involve the use of allele-specific point mutation assays for detecting drug-resistance mutations (DRMs. This study proposes that two major nucleoside reverse transcriptase inhibitor (NRTI-associated DRMs (M184V and K65R and four major NNRTI-associated DRMs (K103N, Y181C, G190A, and V106M would be the most useful for POC genotypic resistance testing in LMIC settings. One or more of these six DRMs was present in 61.2% of analyzed virus sequences from ART-naïve individuals with intermediate or high-level TDR and 98.8% of analyzed virus sequences from individuals on a first-line NRTI/NNRTI-containing regimen with intermediate or high-level acquired drug resistance. The detection of one or more of these DRMs in an ART-naïve individual or in a individual with VF on a first-line NRTI/NNRTI-containing regimen may be considered an indication for a protease inhibitor (PI-containing regimen or closer virological monitoring based on cost-effectiveness or country policy.

  19. Multiple drug resistant tuberculosis in patients addicted to alcohol – a critical issue of the current tuberculosis control

    Directory of Open Access Journals (Sweden)

    I. S. Gelbert

    2015-01-01

    Full Text Available The article presents the comparative description of multiple resistant tuberculosis patients (MDR TB abusing alcohol (group 1 – 169 people, and not abusing alcohol (group 2 – 122 persons; the frequency and specificity of adverse reaction to anti-tuberculosis drugs, immediate and postponed treatment outcomes have been studied. The negative effect of the alcohol abuse on the majority of the studied rates has been found out. Disseminated forms, fibrous cavernous tuberculosis, intoxication syndrome, chronic respiratory, intestinal and liver diseases, as well as incarceration experience are observed more often among alcohol dependent MDR TB patients. It is confidently true that adverse reactions occur more often (84.6% versus 57.6%, including toxic reactions, they are more severe and intractable, especially hepato- and neuro-toxic ones.Efficiency of in-patient treatment is confidently lower in the 1st group – 61.7% versus 82.8%. The cessation of bacillary excretion was lower (69.7% versus 85.6%. The hospital mortality was also higher in the 1st group (8.6% versus 0.9%.The postponed results of 2 – 6 year follow up are worse in the patients abusing alcohol. The successful treatment outcomes with criteria of cured, treatment completed were observed in the 60.4% in the 1st group of patient, while in the 2nd group this rate made 80.8% (p < 0.05, the mortality and disability rates were also higher as well as the number of patients in whom bacillary excretion persisted (38.3% versus 19.2%, p < 0.05.70% of patients demonstrated favorable treatment outcomes. 

  20. Definition of drug resistance of Mycobacterium tuberculosis to antituberculosis drugs in patients with multidrugresistant tuberculosis and TB with extremely drug resistant depending on the case of the disease

    Directory of Open Access Journals (Sweden)

    Kryzhanovsky D.G.

    2014-11-01

    Full Text Available There was studied the profile of drug resistance to the main (I line and reserve (II line antituberculosis drugs in patients with MDR and XDR tuberculosis, depending of the case of the disease. According to the randomized retrospective research 200 patients with MDR and XDR tuberculosis, who received treatment in the clinic of hospital Municipal institution «Dnipropetrovsk rigional clinical association «Phthisiology» Dnipropetrovsk regional Council» during the period 2010 – 2012 were involved. Data about patients contained the data on a case of the disease and the results of the test of drug sensitivity to MBT. XDR – TB was revealed in 7.5% of patients with MDR tuberculosis. In patients with MDR tuberculosis as compared with patients with XDR tuberculosis «new cases» were diagnosed in 19.5% against 18.5% (p <0.05. In patients with MDR tuberculosis and with XDR tuberculosis resistance to the antituberculosis drug more commonly developed to S - 88.5%, E - 55% and Z - 24%. The presence of MDR-TB and XDR-TB prevails in patients, who underwent previous courses of treatment with anti-TB drugs in case history as compared with patients with «new cases» of treatment. The development of resistance to anti-TB drugs depends on the availability of these drugs in the previous treatment regimens.

  1. Effect of common and experimental anti-tuberculosis treatments on Mycobacterium tuberculosis growing as biofilms

    Directory of Open Access Journals (Sweden)

    James P. Dalton

    2016-11-01

    Full Text Available Much is known regarding the antibiotic susceptibility of planktonic cultures of Mycobacterium tuberculosis, the bacterium responsible for the lung disease tuberculosis (TB. As planktonically-grown M. tuberculosis are unlikely to be entirely representative of the bacterium during infection, we set out to determine how effective a range of anti-mycobacterial treatments were against M. tuberculosis growing as a biofilm, a bacterial phenotype known to be more resistant to antibiotic treatment. Light levels from bioluminescently-labelled M. tuberculosis H37Rv (strain BSG001 were used as a surrogate for bacterial viability, and were monitored before and after one week of treatment. After treatment, biofilms were disrupted, washed and inoculated into fresh broth and plated onto solid media to rescue any surviving bacteria. We found that in this phenotypic state M. tuberculosis was resistant to the majority of the compounds tested. Minimum inhibitory concentrations (MICs increased by 20-fold to greater than 1,000-fold, underlying the potential of this phenotype to cause significant problems during treatment.

  2. 75 FR 33317 - Antibacterial Resistance and Diagnostic Device and Drug Development Research for Bacterial...

    Science.gov (United States)

    2010-06-11

    ... scientific and potential research issues in antibacterial drug resistance, rapid diagnostic device... antibacterial drug resistance, mechanisms of resistance, epidemiology of resistance, and issues in the..., 2010, from 8 a.m. to 5 p.m. Location: The public workshop will be held at the Crowne Plaza Hotel, 8777...

  3. Anti-tuberculosis therapy-induced hepatotoxicity among Ethiopian HIV-positive and negative patients.

    Directory of Open Access Journals (Sweden)

    Getnet Yimer

    2008-03-01

    Full Text Available To assess and compare the prevalence, severity and prognosis of anti-TB drug induced hepatotoxicity (DIH in HIV positive and HIV negative tuberculosis (TB patients in Ethiopia.In this study, 103 HIV positive and 94 HIV negative TB patients were enrolled. All patients were evaluated for different risk factors and monitored biochemically and clinically for development of DIH. Sub-clinical hepatotoxicity was observed in 17.3% of the patients and 8 out of the 197 (4.1% developed clinical hepatotoxicity. Seven of the 8 were HIV positive and 2 were positive for HBsAg.Sub-clinical hepatotoxicity was significantly associated with HIV co-infection (p = 0.002, concomitant drug intake (p = 0.008, and decrease in CD4 count (p = 0.001. Stepwise restarting of anti TB treatment was also successful in almost all the patients who developed clinical DIH. We therefore conclude that anti-TB DIH is a major problem in HIV-associated TB with a decline in immune status and that there is a need for a regular biochemical and clinical follow up for those patients who are at risk.

  4. 21 CFR 866.3950 - In vitro human immunodeficiency virus (HIV) drug resistance genotype assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false In vitro human immunodeficiency virus (HIV) drug... Serological Reagents § 866.3950 In vitro human immunodeficiency virus (HIV) drug resistance genotype assay. (a) Identification. The in vitro HIV drug resistance genotype assay is a device that consists of nucleic acid reagent...

  5. The Role of Polymerase Chain Reaction (PCR in Diagnosis of Spine Tuberculosis after Pre-operative Anti-tuberculosis Treatment

    Directory of Open Access Journals (Sweden)

    AH Rasit

    2011-03-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate the role of polymerase chain reaction (PCR in the diagnosis of spinal tuberculosis after 2 weeks of preoperative anti-tuberculosis treatment and to compare PCR to the Löwenstein - Jensen Culture (LJC and histopathological examination (HPE methods. METHODS: Twenty-five patients were included in this study. Sixteen patients were diagnosed and treated for spinal tuberculosis based on clinical and radiological evidence. Nine patients were controls. The LJC method and HPE of the specimen were performed according to hospital protocol. PCR was performed using primer encoding insertion of sequences IS6110 for mycobacterium tuberculosis complex. Clinical findings and radiological features were the gold standard for comparison. RESULTS: PCR results were 15 positive and one negative. The sensitivity and specificity of PCR was 94% and 100% respectively (with 95% confidence interval [CI] 67% to 99% and 63% to 100%, respectively. HPE results showed 13 were positive and 3 negative in the spinal tuberculosis group; for the control group, all were negative. Sensitivity and specificity value of HPE was 82 % and 100% respectively (with 95% confidence interval [CI] 54% to 95% and 63% to 100%, respectively. Use of LJC showed only one was positive and 15 were negative in the spinal tuberculosis group whole all nine in the control group were negative. Sensitivity and specificity value of LJC was 6% and 100% respectively (with 95% confidence interval [CI] 0.3% to 32% and 63% to 100%, respectively. CONCLUSION: Our findings showed that the PCR for Mycobacterium tuberculosis is reliable as a method for diagnosis of spinal tuberculosis, even after of 2 weeks of anti-TB treatment, with an overall sensitivity of 94% and specificity of 100%.

  6. Anti-Tuberculosis Bacteriophage D29 Delivery with a Vibrating Mesh Nebulizer, Jet Nebulizer, and Soft Mist Inhaler.

    Science.gov (United States)

    Carrigy, Nicholas B; Chang, Rachel Y; Leung, Sharon S Y; Harrison, Melissa; Petrova, Zaritza; Pope, Welkin H; Hatfull, Graham F; Britton, Warwick J; Chan, Hak-Kim; Sauvageau, Dominic; Finlay, Warren H; Vehring, Reinhard

    2017-10-01

    To compare titer reduction and delivery rate of active anti-tuberculosis bacteriophage (phage) D29 with three inhalation devices. Phage D29 lysate was amplified to a titer of 11.8 ± 0.3 log 10 (pfu/mL) and diluted 1:100 in isotonic saline. Filters captured the aerosolized saline D29 preparation emitted from three types of inhalation devices: 1) vibrating mesh nebulizer; 2) jet nebulizer; 3) soft mist inhaler. Full-plate plaque assays, performed in triplicate at multiple dilution levels with the surrogate host Mycobacterium smegmatis, were used to quantify phage titer. Respective titer reductions for the vibrating mesh nebulizer, jet nebulizer, and soft mist inhaler were 0.4 ± 0.1, 3.7 ± 0.1, and 0.6 ± 0.3 log 10 (pfu/mL). Active phage delivery rate was significantly greater (p pfu/min) than for the jet nebulizer (5.4x10 4  ± 1.3x10 4 pfu/min). The soft mist inhaler delivered 4.6x10 6  ± 2.0x10 6 pfu per 11.6 ± 1.6 μL ex-actuator dose. Delivering active phage requires a prudent choice of inhalation device. The jet nebulizer was not a good choice for aerosolizing phage D29 under the tested conditions, due to substantial titer reduction likely occurring during droplet production. The vibrating mesh nebulizer is recommended for animal inhalation studies requiring large amounts of D29 aerosol, whereas the soft mist inhaler may be useful for self-administration of D29 aerosol.

  7. Repurposing Clinical Molecule Ebselen to Combat Drug Resistant Pathogens.

    Directory of Open Access Journals (Sweden)

    Shankar Thangamani

    Full Text Available Without a doubt, our current antimicrobials are losing the battle in the fight against newly-emerged multidrug-resistant pathogens. There is a pressing, unmet need for novel antimicrobials and novel approaches to develop them; however, it is becoming increasingly difficult and costly to develop new antimicrobials. One strategy to reduce the time and cost associated with antimicrobial innovation is drug repurposing, which is to find new applications outside the scope of the original medical indication of the drug. Ebselen, an organoselenium clinical molecule, possesses potent antimicrobial activity against clinical multidrug-resistant Gram-positive pathogens, including Staphylococcus, Streptococcus, and Enterococcus, but not against Gram-negative pathogens. Moreover, the activity of ebselen against Gram-positive pathogens exceeded those activities determined for vancomycin and linezolid, drugs of choice for treatment of Enterococcus and Staphylococcus infections. The minimum inhibitory concentrations of ebselen at which 90% of clinical isolates of Enterococcus and Staphylococcus were inhibited (MIC90 were found to be 0.5 and 0.25 mg/L, respectively. Ebselen showed significant clearance of intracellular methicillin-resistant S. aureus (MRSA in comparison to vancomycin and linezolid. We demonstrated that ebselen inhibits the bacterial translation process without affecting mitochondrial biogenesis. Additionally, ebselen was found to exhibit excellent activity in vivo in a Caenorhabditis elegans MRSA-infected whole animal model. Finally, ebselen showed synergistic activities with conventional antimicrobials against MRSA. Taken together, our results demonstrate that ebselen, with its potent antimicrobial activity and safety profiles, can be potentially used to treat multidrug resistant Gram-positive bacterial infections alone or in combination with other antibiotics and should be further clinically evaluated.

  8. "DRUG RESISTANCE PATTERN IN ISOLATED BACTERIA FROM BLOOD CULTURES"

    Directory of Open Access Journals (Sweden)

    A. Sobhani

    2004-05-01

    Full Text Available Bacteremia is an important infectious disease which may lead to death. Common bacteria and pattern of antibiotic resistance in different communities are different and understanding these differences is important. In the present study, relative frequency and pattern of drug resistance have been examined in bacteria isolated from blood cultures in Razi Hospital laboratory. The method of the study was descriptive. Data collection was carried out retrospectively. Total sample consisted of 311 positive blood cultures from 1999 to 2001. Variables under study were bacterial strains, antibiotics examined in antibiogram, microbial resistance, and patients' age and sex. The most common isolated bacteria were Salmonella typhi (22.2% and the least common ones were Citrobacter (1.6%. The highest antibiotic resistance was seen against amoxicillin (88.4%. The proportion of males to females was1: 1/1 and the most common age group was 15-44 (47.3%. Common bacteria and pattern of antibiotic resistance were different in some areas and this subject requires further studies in the future.

  9. Analysis of metal and biocides resistance genes in drug resistance and susceptible Salmonella enterica from food animals

    Science.gov (United States)

    Background Generally drug resistant bacteria carry antibiotic resistance genes and heavy metal and biocide resistance genes on large conjugative plasmids. The presence of these metal and biocide resistance genes in susceptible bacteria are not assessed comprehensively. Hence, WGS data of susceptib...

  10. Drug development against tuberculosis: Impact of alkaloids.

    Science.gov (United States)

    Mishra, Shardendu K; Tripathi, Garima; Kishore, Navneet; Singh, Rakesh K; Singh, Archana; Tiwari, Vinod K

    2017-09-08

    Despite of the advances made in the treatment and management, tuberculosis (TB) still remains one of main public health problem. The contrary effects of first and second-line anti-tuberculosis drugs have generated extended research interest in natural products in the hope of devising new antitubercular leads. Interestingly, plethoras of natural products have been discovered to exhibit activity towards various resistant strains of M. tuberculosis. Extensive applications of alkaloids in the field of therapeutics is well-established and nowday's researches being pursued to develop new potent drugs from natural sources for tuberculosis. Alkaloids are categorized in quite a few groups according to their structures and isolation from both terrestrial and marine sources. These new drugs might be a watershed in the battle against tuberculosis. This review summarizes alkaloids, which were found active against Mycobacteria since last ten years with special attention on the study of structure-activity relationship (SAR) and mode of action with their impact in drug discovery and development against tuberculosis. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Candidate genes for cross-resistance against DNA-damaging drugs

    DEFF Research Database (Denmark)

    Wittig, Rainer; Nessling, Michelle; Will, Rainer D

    2002-01-01

    Drug resistance of tumor cells leads to major drawbacks in the treatment of cancer. To identify candidate genes for drug resistance, we compared the expression patterns of the drug-sensitive human malignant melanoma cell line MeWo and three derived sublines with acquired resistance to the DNA...... as several apoptosis-related genes, in particular STK17A and CRYAB. As MPP1 and CRYAB are also among the 14 genes differentially expressed in all three of the drug-resistant sublines, they represent the strongest candidates for resistance against DNA-damaging drugs....

  12. Using drug exposure for predicting drug resistance - A data-driven genotypic interpretation tool.

    Directory of Open Access Journals (Sweden)

    Alejandro Pironti

    Full Text Available Antiretroviral treatment history and past HIV-1 genotypes have been shown to be useful predictors for the success of antiretroviral therapy. However, this information may be unavailable or inaccurate, particularly for patients with multiple treatment lines often attending different clinics. We trained statistical models for predicting drug exposure from current HIV-1 genotype. These models were trained on 63,742 HIV-1 nucleotide sequences derived from patients with known therapeutic history, and on 6,836 genotype-phenotype pairs (GPPs. The mean performance regarding prediction of drug exposure on two test sets was 0.78 and 0.76 (ROC-AUC, respectively. The mean correlation to phenotypic resistance in GPPs was 0.51 (PhenoSense and 0.46 (Antivirogram. Performance on prediction of therapy-success on two test sets based on genetic susceptibility scores was 0.71 and 0.63 (ROC-AUC, respectively. Compared to geno2pheno[resistance], our novel models display a similar or superior performance. Our models are freely available on the internet via www.geno2pheno.org. They can be used for inferring which drug compounds have previously been used by an HIV-1-infected patient, for predicting drug resistance, and for selecting an optimal antiretroviral therapy. Our data-driven models can be periodically retrained without expert intervention as clinical HIV-1 databases are updated and therefore reduce our dependency on hard-to-obtain GPPs.

  13. Transferable and non-transferable drug resistance in enteric bacteria from hospital and from general practice

    DEFF Research Database (Denmark)

    Møller, JK; Bak, AL; Bülow, P

    1976-01-01

    Drug resistance to 8 different antibiotics in Enterobacteriaceae isolated from different hospitals and two groups of general practitioners was studied. Escherichia coli dominated among the 632 strains investigated. Drug resistance was found in 62% of the 512 hospital strains and in 38% of the 120...... strains from general practice. Multiple resistance was common especially in strains from hospital. R factors was found in 23% of the 317 drug-resistant strains from hospital and in 11% of the 46 drug-resistant strains from general practice. Resistance to streptomycin, sulphonamide and tetracycline either...

  14. Accelerating resistance, inadequate antibacterial drug pipelines and international responses.

    Science.gov (United States)

    Theuretzbacher, Ursula

    2012-04-01

    The pandemic of multidrug-resistant (MDR) pathogens and their continuing spread is beyond dispute. In contrast to the past, today's antibacterial research and development (R&D) pipelines are nearly dry, failing to provide the flow of novel antibiotics required to match the clinical challenges of the multidrug resistance (MDR) crisis. Concerned over the rapidly worsening potential global healthcare crisis caused by MDR bacteria and the lack of robust drug pipelines, several multinational campaigns have issued policy recommendations and have initiated broad discussion with a goal of stimulating the development of novel antibacterial drugs and technologies. These activities have resulted in intensified co-operation between the USA and the EU. The recently announced extensive 'Action plan against the rising threats from antimicrobial resistance' substantially ramps up action within the EU. In recognising the potential crisis caused by MDR and the limited treatment options, the European Commission decided on an unprecedented approach to drive the search for novel antibiotics by integrating the pharmaceutical industry, the research capacities of universities and small companies supported by public funding along with pricing/reimbursement and regulatory bodies. The European Commission has shown leadership and put action plans in place. Only the future will tell whether these initiatives will help curb the impact of the MDR pandemic. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. [Tiagabine in drug-resistant epilepsy in children: preliminary study].

    Science.gov (United States)

    Wendorff, J; Popielarczyk, M; Zubiel, M; Sokołowska, D

    2000-01-01

    The aim of the study was the presentation of our preliminary experiences and the data concerning the efficacy and safety of tiagabine in patients below the 12-th year of life. 4 cases of drug--resistant epilepsy--with partial complex attacks in 3 and simple in 1 (frontal epilepsy from supplementary motor area) with multiple seizures in the day were the subject of the study. Tiagabine add-one therapy to CBZ or to VPA was used. Initial period--the dose titration lasted 4 weeks. The stable dosis period amounted to 5 months. The effective dosis of tiagabine was 1 mg/kg/day. In 1 case the seizures completely disappeared and in 3 the frequency decreased to 2-4 times in comparison to frequency per day before the treatment. There were not any side-effects reported which would be the cause of the drug discontinuation. Tiagabine appeared to be an effective and safe drug in resistant epilepsy in children below 12 years of age.

  16. From multidrug-resistant to extensively drug-resistant tuberculosis in Lisbon, Portugal: the stepwise mode of resistance acquisition.

    Science.gov (United States)

    Perdigão, João; Macedo, Rita; Silva, Carla; Machado, Diana; Couto, Isabel; Viveiros, Miguel; Jordao, Luisa; Portugal, Isabel

    2013-01-01

    The development and transmission of extensively drug-resistant (XDR) tuberculosis (TB) constitutes a serious threat to the effective control of TB in several countries. Here, in an attempt to further elucidate the dynamics of the acquisition of resistance to second-line drugs and investigate an eventual role for eis promoter mutations in aminoglycoside resistance, we have studied a set of multidrug-resistant (MDR)/XDR-TB isolates circulating in Lisbon, Portugal. Forty-four MDR-TB or XDR-TB isolates were genotyped and screened for mutations in genes associated with second-line drug resistance, namely tlyA, gyrA, rrs and eis. The most prevalent mutations found in each gene were Ins755GT in tlyA, A1401G in rrs, G-10A in eis and S91P in gyrA. Additionally, two genetic clusters were found in this study: Lisboa3 and Q1. The characteristic mutational profile found among recent XDR-TB circulating in Lisbon was also found in MDR-TB strains isolated in the 1990s. Also investigated was the resistance level conferred by eis G-10A mutations, revealing that eis G-10A mutations may result in amikacin resistance undetectable by widely used phenotypic assays. The analysis of the distribution of the mutations found by genetic clustering showed that in the Q1 cluster, two mutations, gyrA D94A and rrs A1401G, were enough to ensure development of XDR-TB from an MDR strain. Moreover, in the Lisboa3 cluster it was possible to elaborate a model in which the development of low-level kanamycin resistance was at the origin of the emergence of XDR-TB strains that can be discriminated by tlyA mutations.

  17. Persistence of Transmitted Drug Resistance among Subjects with Primary Human Immunodeficiency Virus Infection▿

    Science.gov (United States)

    Little, Susan J.; Frost, Simon D. W.; Wong, Joseph K.; Smith, Davey M.; Pond, Sergei L. Kosakovsky; Ignacio, Caroline C.; Parkin, Neil T.; Petropoulos, Christos J.; Richman, Douglas D.

    2008-01-01

    Following interruption of antiretroviral therapy among individuals with acquired drug resistance, preexisting drug-sensitive virus emerges relatively rapidly. In contrast, wild-type virus is not archived in individuals infected with drug-resistant human immunodeficiency virus (HIV) and thus cannot emerge rapidly in the absence of selective drug pressure. Fourteen recently HIV-infected patients with transmitted drug-resistant virus were followed for a median of 2.1 years after the estimated date of infection (EDI) without receiving antiretroviral therapy. HIV drug resistance and pol replication capacity (RC) in longitudinal plasma samples were assayed. Resistance mutations were characterized as pure populations or mixtures. The mean time to first detection of a mixture of wild-type and drug-resistant viruses was 96 weeks (1.8 years) (95% confidence interval, 48 to 192 weeks) after the EDI. The median time to loss of detectable drug resistance using population-based assays ranged from 4.1 years (conservative estimate) to longer than the lifetime of the individual (less conservative estimate). The transmission of drug-resistant virus was not associated with virus with reduced RC. Sexual transmission of HIV selects for highly fit drug-resistant variants that persist for years. The prolonged persistence of transmitted drug resistance strongly supports the routine use of HIV resistance genotyping for all newly diagnosed individuals. PMID:18353964

  18. Antimicrobial drug resistance: "Prediction is very difficult, especially about the future".

    Science.gov (United States)

    Courvalin, Patrice

    2005-10-01

    Evolution of bacteria towards resistance to antimicrobial drugs, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. Resistance to antimicrobial drugs in bacteria can result from mutations in housekeeping structural or regulatory genes. Alternatively, resistance can result from the horizontal acquisition of foreign genetic information. The 2 phenomena are not mutually exclusive and can be associated in the emergence and more efficient spread of resistance. This review discusses the predictable future of the relationship between antimicrobial drugs and bacteria.

  19. Factors Associated with Fatality during the Intensive Phase of Anti-Tuberculosis Treatment

    Science.gov (United States)

    Casals, M.; Caminero, J. A.; García-García, J. M.; Jiménez-Fuentes, M. A.; Medina, J. F.; Millet, J. P.; Ruiz-Manzano, J.; Caylá, J.

    2016-01-01

    Objective To determine the case-fatality rate (CFR) at the end of the intensive phase of tuberculosis (TB) treatment, and factors associated with fatality. Methods TB patients diagnosed between 2006 and 2013 were followed-up during treatment. We computed the CFR at the end of the intensive phase of TB treatment, and the incidence of death per 100 person-days (pd) of follow-up. We performed survival analysis using the Kaplan-Meier method and Cox regression, and calculate hazard ratios (HR) and 95% confidence intervals (CI). Results A total of 5,182 patients were included, of whom 180 (3.5%) died; 87 of these deaths (48.3%) occurred during the intensive phase of treatment, with a CFR of 1.7%. The incidence of death was 0.028/100 pd. The following factors were associated with death during the intensive phase: being >50 years (HR = 36.9;CI:4.8–283.4); being retired (HR = 2.4;CI:1.1–5.1); having visited the emergency department (HR = 3.1;CI:1.2–7.7); HIV infection (HR = 3.4;CI:1.6–7.2); initial standard treatment with 3 drugs (HR = 2.0;CI:1.2–3.3) or non-standard treatments (HR = 2.68;CI:1.36–5.25); comprehension difficulties (HR = 2.8;CI:1.3–6.1); and smear-positive sputum (HR = 2.3-CI:1.0–4.8). Conclusion There is a non-negligible CFR during the intensive phase of TB, whose reduction should be prioritised. The CFR could be a useful indicator for evaluating TB programs. PMID:27487189

  20. Risk Factors for Acquisition of Drug Resistance during Multidrug-Resistant Tuberculosis Treatment, Arkhangelsk Oblast, Russia, 2005–2010

    Science.gov (United States)

    Ershova, Julia; Vlasova, Natalia; Nikishova, Elena; Tarasova, Irina; Eliseev, Platon; Maryandyshev, Andrey O.; Shemyakin, Igor G.; Kurbatova, Ekaterina; Cegielski, J. Peter

    2015-01-01

    Acquired resistance to antituberculosis drugs decreases effective treatment options and the likelihood of treatment success. We identified risk factors for acquisition of drug resistance during treatment for multidrug-resistant tuberculosis (MDR TB) and evaluated the effect on treatment outcomes. Data were collected prospectively from adults from Arkhangelsk Oblast, Russia, who had pulmonary MDR TB during 2005–2008. Acquisition of resistance to capreomycin and of extensively drug-resistant TB were more likely among patients who received 3 effective drugs (9.4% vs. 0% and 8.6% vs. 0.8%, respectively). Poor outcomes were more likely among patients with acquired capreomycin resistance (100% vs. 25.9%), acquired ofloxacin resistance (83.6% vs. 22.7%), or acquired extensive drug resistance (100% vs. 24.4%). To prevent acquired drug resistance and poor outcomes, baseline susceptibility to first- and second-line drugs should be determined quickly, and treatment should be adjusted to contain >3 effective drugs. PMID:25988954

  1. Rapid diagnosis of tuberculosis. Detection of drug resistance mechanisms.

    Science.gov (United States)

    Viñuelas-Bayón, Jesús; Vitoria, María Asunción; Samper, Sofía

    2017-10-01

    Tuberculosis is still a serious public health problem, with 10.8 million new cases and 1.8 million deaths worldwide in 2015. The diversity among members of the Mycobacterium tuberculosis complex, the causal agent of tuberculosis, is conducive to the design of different methods for rapid diagnosis. Mutations in the genes involved in resistance mechanisms enable the bacteria to elude the treatment. We have reviewed the methods for the rapid diagnosis of M. tuberculosis complex and the detection of susceptibility to drugs, both of which are necessary to prevent the onset of new resistance and to establish early, appropriate treatment. Copyright © 2017 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  2. Low-level quinolone-resistance in multi-drug resistant typhoid

    International Nuclear Information System (INIS)

    Mirza, S.H.; Khan, M.A.

    2008-01-01

    To find out the frequency of low-level quinolone-resistance in Multi-Drug Resistant (MDR) typhoid using nalidixic acid screening disc. Blood was obtained from suspected cases of typhoid fever and cultured in to BacT/ALERT. The positive blood cultures bottles were subcultured. The isolates were identified by colony morphology and biochemical tests using API-20E galleries. Susceptibility testing of isolates was done by modified Kirby-Bauer disc diffusion method on Muellar Hinton Agar. For the isolates, which were resistant to nalidixic acid by disc diffusion method, Minimal Inhibitory Concentrations (MICs) of ciprofloxacin and nalidixic acid were determined by using the E-test strips. Disc diffusion susceptibility tests and MICs were interpreted according to the guidelines provided by National Committee for Control Laboratory Standard (NCCLS). A total of 21(65.5%) out of 32 isolates of Salmonellae were nalidixic acid-resistant by disk diffusion method. All the nalidixic acid-resistant isolates by disc diffusion method were confirmed by MICs for both ciprofloxacin and nalidixic acid. All the nalidixic acid-resistant isolates had a ciprofloxacin MIC of 0.25-1 microg/ml (reduced susceptibility) and nalidixic acid MICs > 32 microg (resistant). Out of all Salmonella isolates, 24 (75%) were found to be MDR, and all were S. typbi. Low-level quinolone-resistance in typhoid was high in this small series. Screening for nalidixic acid resistance with a 30 microg nalidixic acid disk is a reliable and cost-effective method to detect low-level fluoroquinolone resistance, especially in the developing countries. (author)

  3. Consensus drug resistance mutations for epidemiological surveillance: basic principles and potential controversies

    OpenAIRE

    Shafer, Robert W; Rhee, Soo-Yon; Bennett, Diane E

    2008-01-01

    Programmes that monitor local, national and regional levels of transmitted HIV-1 drug resistance inform treatment guidelines and provide feedback on the success of HIV-1 treatment and prevention programmes. The World Health Organization (WHO) has established a global programme for genotypic surveillance of HIV-1 drug resistance and has recommended the adoption of a consensus definition of genotypic drug resistance. Such a definition is necessary to accurately compare transmitted drug resistan...

  4. Treatment Options for Carbapenem-Resistant and Extensively Drug-Resistant Acinetobacter baumannii Infections

    Science.gov (United States)

    Viehman, J. Alexander; Nguyen, Minh-Hong; Doi, Yohei

    2014-01-01

    Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Due to various intrinsic and acquired mechanisms of resistance, most β-lactam agents are not effective against many strains, and carbapenems have played an important role in therapy. Recent trends show many infections are caused by carbapenem-resistant, or even extensively drug-resistant (XDR) strains, for which effective therapy is not well established. Evidence to date suggests that colistin constitutes the backbone of therapy, but the unique pharmacokinetic properties of colistin have led many to suggest the use of combination antimicrobial therapy. However, the combination of agents and dosing regimens that delivers the best clinical efficacy while minimizing toxicity is yet to be defined. Carbapenems, sulbactam, rifampin and tigecycline have been the most studied in the context of combination therapy. Most data regarding therapy for invasive, resistant A. baumannii infections come from uncontrolled case series and retrospective analyses, though some clinical trials have been completed and others are underway. Early institution of appropriate antimicrobial therapy is shown to consistently improve survival of patients with carbapenem-resistant and XDR A. baumannii infection, but the choice of empiric therapy in these infections remains an open question. This review summarizes the most current knowledge regarding the epidemiology, mechanisms of resistance, and treatment considerations of carbapenem-resistant and XDR A. baumannii. PMID:25091170

  5. Deciphering an outbreak of drug-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Dahle, Ulf R; Sandven, Per; Heldal, Einar; Mannsaaker, Turid; Caugant, Dominique A

    2003-01-01

    There have been ample warnings that multidrug-resistant (MDR) tuberculosis (TB) will continue to emerge if countries do not strengthen their control of TB. In low-incidence European countries, however, these warnings have been substantiated mainly by outbreaks in association with human immunodeficiency virus (HIV)-positive patients. The aim of this study was to investigate an outbreak of infection with MDR and drug-resistant Mycobacterium tuberculosis that was diagnosed among 20 HIV-negative patients living in Norway. Of these, 19 were immigrants from East Africa and one was an ethnic Norwegian. We wanted to find out if transmission had taken place in Norway or abroad and to identify the genetic basis of drug resistance. The strains were analyzed by IS6110 restriction fragment length polymorphism, antibiotic susceptibility tests, spoligotyping, reverse hybridization to regions of the rpoB gene, and sequencing of the katG gene. Epidemiological links between the patients were mapped, and the strains were compared to those isolated in 36 other countries and regions. All strains were resistant to isoniazid and carried Ala234Gly, Ser315Thr, and Arg463Leu substitutions in the katG gene. Eleven strains were MDR and carried a Ser531Leu substitution in the rpoB gene. MDR was acquired in the index patient after arrival in Norway. Links were found among 14 patients. The strain was imported from Somalia but acquired MDR and was transmitted in Norway. This demonstrated that MDR strains are not necessarily imported from high-incidence countries and can be highly communicable. The outbreak underscores a deficiency in the TB control measures employed in many countries and challenges the adequacy of the policy of screening immigrants for TB only on arrival.

  6. QTF-Gold assay for monitoring of anti-tuberculosis therapy in subjects with active TB

    Directory of Open Access Journals (Sweden)

    Ilaria Sauzullo

    2008-09-01

    Full Text Available Introduction: The identification and characterization of two M. tuberculosis-specific antigens (ESAT-6 and CFP- 10 has led to the development of a whole blood new generation of M. tuberculosis specific diagnostic tests, that have several advantages over tuberculin skin test (TST, in terms of higher specificity, better correlation with surrogate measures of exposure to M. tuberculosis in low-incidence setting, and less cross-reactivity with M. bovis (BCG vaccine and environmental mycobacteria.The role of these new tests in evaluating post-therapy tuberculosis eradication has not been investigated yet. Aim of this longitudinal study was to determinate changes of response to M. tuberculosis-specific antigens in patients during the standard tuberculosis treatment and to investigate the in vitro effects of tuberculosis drugs on the IFN-γ release. Methods: 23 individuals with active tuberculosis were enrolled and followed over time.They were tested with QuantiFERON TB-Gold (QFT-Gold at four time points: at diagnosis (t0, after 3 and 6 months of treatment (t1- t2 and at the end of the specific treatment (t3. Results: At baseline all patients were positive by QFT-Gold.At second time-point 17 out of 23 (74% were positive, at third time-point 11 of 23 (47% were positive, at treatment completion 3/23 (13% were positive.The conversion to negative response to M. tuberculosis-specific antigens was found in 87% patients analyzed after successful therapy. Longitudinal QFT-Gold testing shown a significant decrease (p<0.001 of IFN-γ response during the therapy. No inhibitory effect on IFN-γ release was noted in vitro for chemotherapy using at concentrations compatible with those achieved in serum of treated patients.We have revealed an inhibitory effect only at concentrations 2-3 times greater than those previously tested. Conclusion: A successful therapy for tuberculosis causes a significant decrease of the ESAT-6 and CFP-10 response and this data suggest

  7. Role of integrated cancer nanomedicine in overcoming drug resistance.

    Science.gov (United States)

    Iyer, Arun K; Singh, Amit; Ganta, Srinivas; Amiji, Mansoor M

    2013-11-01

    Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed. © 2013.

  8. ENCAPSULATION OF ANTITUBERCULAR DRUGS BY BIOPOLYMERS AND POLYELECTROLYTE MULTILAYERS

    Directory of Open Access Journals (Sweden)

    B. H. Mussabayeva

    2017-01-01

    Full Text Available The problem of drug-resistant tuberculosis treatment is complex and urgent: the standardof treatment includes the oral administration of six names of antibiotics, i.e. up totwenty tablets a day by the patient. This causes severe side effects, including those appeareddue to the formation of toxic products of drug interactions in the body. Therefore, itis important that some drugs dissolve in a stomach, and others – in the intestine, which willlead to increased bioavailability, reduced dosage and toxicity. The development of targeteddelivery systems for drugs with controlled release, targeted delivery and minimization ofside effects are of interest. One of the promising methods is polyelectrolytic multilayersand the technology of creating such layers by a step-by-step adsorption of heterogeneouslycharged polyelectrolytes.The aim of this article is the microencapsulation of anti-tuberculousdrugs into biopolymers coated with polyelectrolytic multilayers, and the solubilitystudy of microcapsules at pH values simulating various parts of the gastrointestinal tract.Materials and methods. Drugs as isoniazide, pyrazinamide, moxifloxacin, and biopolymers:gellan, pectin and sodium alginate, chitosan and dextran sulfate, as well as EudragitS are used to prepare microcapsules. The obtained microcapsules are studied by a methodof scanning electron microscopy. Quantitative determination of the effectiveness of the inclusionof drugs in microcapsules was carried out using pharmacopoeial methods.Results and discussion. The inclusion efficiency rises with an increase of biopolymer concentration. The inclusion efficiency increases in the row isoniazide anti-tuberculosis drugs of pyrazinamide, isoniazide and moxifloxacin by means of coating with polyelectrolytic multilayers is shown.At pH = 7.4, the degree of release of the drugs from microcapsules without applied multilayersfor 12 hours was

  9. Identification of New Drug Targets in Multi-Drug Resistant Bacterial Infections

    Science.gov (United States)

    2012-10-01

    plants (12), and the chorismate pathway is absent in humans. Therefore, our hypothesis is that these proteins are potential therapeutic targets in...Tyr, and other aromatic compounds (e.g. folate, alkaloids ) (13, 14). Although PSCVT has been previously suggested as a drug target for antibacterials...most research in this field has concentrated on Plasmodium falciparum (antimalarials) and glyphosate resistant plants (12, 15, 16

  10. HIV subtype and drug resistance patterns among drug naïve ...

    African Journals Online (AJOL)

    In the 14 drug-naïve subjects, no primary resistance-associated mutations were found, but secondary mutations were identified in 7 different codons of the gene coding for protease: PR K20I, M36I, L63A/P/V, V82I, L10M/I and I93L. In addition, the K238R mutation was identified in the reverse transcriptase gene of 3 viruses.

  11. Detection of First-Line Drug Resistance Mutations and Drug-Protein Interaction Dynamics from Tuberculosis Patients in South India.

    Science.gov (United States)

    Nachappa, Somanna Ajjamada; Neelambike, Sumana M; Amruthavalli, Chokkanna; Ramachandra, Nallur B

    2017-08-16

    Diagnosis of drug-resistant tuberculosis predominantly relies on culture-based drug susceptibility testing, which take weeks to produce a result and a more time-efficient alternative method is multiplex allele-specific PCR (MAS-PCR). Also, understanding the role of mutations in causing resistance helps better drug designing. To evaluate the ability of MAS-PCR in the detection of drug resistance and to understand the mechanism of interaction of drugs with mutant proteins in Mycobacterium tuberculosis. Detection of drug-resistant mutations using MAS-PCR and validation through DNA sequencing. MAS-PCR targeted five loci on three genes, katG 315 and inhA -15 for the drug isoniazid (INH), and rpoB 516, 526, and 531 for rifampicin (RIF). Furthermore, the sequence data were analyzed to study the effect on interaction of the anti-TB drug molecule with the target protein using in silico docking. We identified drug-resistant mutations in 8 out of 114 isolates with 2 of them as multidrug-resistant TB using MAS-PCR. DNA sequencing confirmed only six of these, recording a sensitivity of 85.7% and specificity of 99.3% for MAS-PCR. Molecular docking showed estimated free energy of binding (ΔG) being higher for RIF binding with RpoB S531L mutant. Codon 315 in KatG does not directly interact with INH but blocks the drug access to active site. We propose DNA sequencing-based drug resistance detection for TB, which is more accurate than MAS-PCR. Understanding the action of resistant mutations in disrupting the normal drug-protein interaction aids in designing effective drug alternatives.

  12. Extensively and Pre-Extensively Drug Resistant Tuberculosis in Clinical Isolates of Multi-Drug Resistant Tuberculosis Using Classical Second Line Drugs (Levofloxacin and Amikacin)

    International Nuclear Information System (INIS)

    Mirza, I. A.; Khan, F. A.; Khan, K. A.; Satti, L.; Ghafoor, T.; Fayyaz, M.

    2015-01-01

    Objective:To find out the frequency of Extensively Drug Resistant (XDR) and pre-XDR tuberculosis in clinical isolates of Multi-Drug Resistant (MDR) Tuberculosis (TB) by determining the susceptibilities against Levofloxacin and Amikacin (classical second line antituberculosis drugs). Study Design: A descriptive cross-sectional study. Place and Duration of Study: Microbiology Department, Armed Forces Institute of Pathology (AFIP), Rawalpindi, from September 2011 to August 2013. Methodology: Amikacin (AK) and Levofloxacin (LEVO) were obtained in chemically pure form from Sigma (Taufkirchen, Germany). The breakpoint concentration used for AK was 1.0 micro g/ml and for LEVO 2.0 micro g/ml. Mycobacterial Growth Indicator Tube (MGIT) 960 system was used to carry out drug susceptibility testing as per recommended protocol. Results: A total of 3 MDR-TB isolates (3 percentage) turned out to be XDR-TB based upon simultaneous resistance to injectable second line antituberculosis drug AK and one of the fluoro-quinolones (LEVO). A total of 24 MDR-TB isolates (24 percentage) were found to be pre-XDR based upon resistance to LEVO alone. Treatment status record of patients with XDR and pre-XDRTB isolates revealed that majority of patients had received fluoroquinolones (FQs) during the course of treatment. Conclusion: XDR-TB has started to emerge in MDR-TB isolates in our set up. The worrying sign is the high frequency of pre-XDR tuberculosis. Urgent steps need to be taken to stem the tide of pre-XDR-TB in our population. It is thus recommended to develop facilities to carry out drug susceptibility testing to monitor the status of pre-XDR and XDR-TB in our population. (author)

  13. Overcoming drug resistance in hormone- and drug-refractory prostate cancer cell line, PC-3 by docetaxel and gossypol combination.

    Science.gov (United States)

    Cengiz, Ercument; Karaca, Burcak; Kucukzeybek, Yuksel; Gorumlu, Gurbuz; Gul, Mustafa K; Erten, Cigdem; Atmaca, Harika; Uzunoglu, Selim; Karabulut, Bulent; Sanli, Ulus A; Uslu, Ruchan

    2010-03-01

    Drug resistance is a significant challenge of daily oncology practice. Docetaxel and gossypol both have antitumoral activity in hormone-refractory prostate cancer (HRPC). Our results revealed that docetaxel and gossypol were synergistically cytotoxic and apoptotic in PC-3 cells in a dose- and time-dependent manner. We further investigated the expression profiles of genes involved in drug resistance and metabolism with a Human Cancer Drug Resistance and Metabolism PCR Array (SuperArray). Six of the 84 genes that are known to regulate drug resistance, metabolism, cell cycle, DNA repair and oncogenesis were downregulated >or=3-fold change by the combination treatment. These results may be important in devising mechanism-based and targeted therapeutic strategies for prostate cancer, especially in devising combination therapy for drug resistant prostate cancers.

  14. Ion channels and transporters in the development of drug resistance in cancer cells

    DEFF Research Database (Denmark)

    Hoffmann, Else Kay; Lambert, Ian Henry

    2014-01-01

    Multi-drug resistance (MDR) to chemotherapy is the major challenge in the treatment of cancer. MDR can develop by numerous mechanisms including decreased drug uptake, increased drug efflux and the failure to undergo drug-induced apoptosis. Evasion of drug-induced apoptosis through modulation of ion...

  15. The Culturable Soil Antibiotic Resistome: A Community of Multi-Drug Resistant Bacteria

    OpenAIRE

    Walsh, Fiona; Duffy, Brion

    2013-01-01

    Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR) mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater ...

  16. Nucleoside Derived Antibiotics to Fight Microbial Drug Resistance: New Utilities for an Established Class of Drugs?

    Science.gov (United States)

    Serpi, Michaela; Ferrari, Valentina; Pertusati, Fabrizio

    2016-12-08

    Novel antibiotics are urgently needed to combat the rise of infections due to drug-resistant microorganisms. Numerous natural nucleosides and their synthetically modified analogues have been reported to have moderate to good antibiotic activity against different bacterial and fungal strains. Nucleoside-based compounds target several crucial processes of bacterial and fungal cells such as nucleoside metabolism and cell wall, nucleic acid, and protein biosynthesis. Nucleoside analogues have also been shown to target many other bacterial and fungal cellular processes although these are not well characterized and may therefore represent opportunities to discover new drugs with unique mechanisms of action. In this Perspective, we demonstrate that nucleoside analogues, cornerstones of anticancer and antiviral treatments, also have great potential to be repurposed as antibiotics so that an old drug can learn new tricks.

  17. Incidence of multidrug-resistant, extensively drug-resistant and pan-drug-resistant bacteria in children hospitalized at Dr. Hasan Sadikin general hospital Bandung Indonesia

    Science.gov (United States)

    Adrizain, R.; Suryaningrat, F.; Alam, A.; Setiabudi, D.

    2018-03-01

    Antibiotic resistance has become a global issue, with 700,000 deaths attributable to multidrug-resistance (MDR) occurring each year. Centers for Disease Control and Prevention (CDC) show rapidly increasing rates of infection due to antibiotic-resistant bacteria. The aim of the study isto describe the incidence of MDR, extensively drug-resistant (XDR) and pan drug-resistant (PDR) in Enterococcus spp., Staphylococcus aureus, K. pneumonia, Acinetobacter baumanii, P. aeruginosin, and Enterobacter spp. (ESKAPE) pathogens in children admitted to Dr. Hasan Sadikin Hospital. All pediatric patients having blood culture drawn from January 2015 to December 2016 were retrospectively studied. Data include the number of drawn blood culture, number of positive results, type of bacteria, sensitivity pattern. International standard definitions for acquired resistance by ECDC and CDC was used as definitions for MDR, XDR and PDR bacteria. From January 2015 to December 2016, 299 from 2.542 (11.7%) blood culture was positive, with Staphylococcus aureus, Enterococcus spp., Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter spp., respectively 5, 6, 24, 5, 20 with total 60 (20%). The MDR and XDR pathogen found were 47 and 13 patients, respectively.

  18. Mycobacteria: laboratory methods for testing drug sensitivity and resistance

    Science.gov (United States)

    Canetti, G.; Froman, S.; Grosset, J.; Hauduroy, P.; Langerová, Miloslava; Mahler, H. T.; Meissner, Gertrud; Mitchison, D. A.; Šula, L.

    1963-01-01

    In its seventh report, published in 1960, the WHO Expert Committee on Tuberculosis “noted the need for international standards for the definition and determination of drug resistance which will permit comparisons to be made from one area to another, and recommended that the World Health Organization take appropriate steps to establish such standards”.10 Acting on this recommendation, WHO took the first step towards standardization by convening in Geneva, in December 1961, an informal international meeting of specialists in the bacteriology of tuberculosis. At this meeting an attempt was made to formulate prerequisites for reliable sensitivity tests and to specify the technical procedures for them. The first part of the present paper is a joint contribution by the participants in the meeting, summarizing the general conclusions reached and recommendations made with regard to tests of sensitivity to the three main antituberculosis drugs—isoniazid, streptomycin and p-aminosalicylic acid. The other three parts describe, in turn, three different tests for determining drug sensitivity—the absolute-concentration method, the resistance-ratio method and the proportion method—that are generally considered to give reasonably accurate results. PMID:14102034

  19. Surgical management of cavernous malformations coursing with drug resistant epilepsy

    Directory of Open Access Journals (Sweden)

    Mario Arturo Alonso-Vanegas

    2012-01-01

    Full Text Available Cerebral cavernous malformations (CM are dynamic lesions characterized by continuous size changes and repeated bleeding. When involving cortical tissue, CM pose a significant risk for the development of drug-resistant epilepsy, which is thought to be result of an altered neuronal network caused by the lesion itself and its blood degradation products. Preoperative evaluation should comprise a complete seizure history, neurological examination, epilepsy-oriented MRI, EEG, video-EEG, completed with SPECT, PET, functional MRI and/or invasive monitoring as needed. Radiosurgery shows variable rates of seizure freedom and a high incidence of complications, thus microsurgical resection remains the optimal treatment for CM coursing with drug-resistant epilepsy.Two thirds of patients reach Engel I class at three-year follow-up, regardless of lobar location. Those with secondarily generalized seizures, a higher seizure frequency, and generalized abnormalities on preoperative or postoperative EEG, show poorer outcomes, while factors such as gender, duration of epilepsy, lesion size, age, bleeding at the time of surgery, do not correlate consistently with seizure outcome. Electrocorticography and a meticulous removal of all cortical hemosiderin –beyond pure lesionectomy– reduce the risk of symptomatic recurrences.

  20. Multidrug-resistant and extensively drug-resistant tuberculosis: a review of current concepts and future challenges.

    Science.gov (United States)

    Günther, Gunar

    2014-06-01

    Multidrug-resistant and extensively drug-resistant tuberculosis are recent global health issues, which makes tuberculosis - after the success of short course treatment during the second half of the last century - a major health challenge. Globalisation, health inequalities, competing economic interests and political instability contribute substantially to the spread of drug-resistant strains, which are associated with high rates of morbidity and mortality. Issues such as increasing transmission of drug-resistant strains, poor diagnostic coverage and a lengthy, toxic treatment need to be overcome by innovative approaches to tuberculosis control, prevention, diagnostics and treatment. This review addresses recent developments and future concepts. © 2014 Royal College of Physicians.

  1. Combinations against combinations: associations of anti-HIV 1 reverse transcriptase drugs challenged by constellations of drug resistance mutations.

    Science.gov (United States)

    Maga, Giovanni; Spadari, Silvio

    2002-02-01

    The reverse transcriptase inhibitors still represent the majority of the clinically used anti-HIV drugs and constitute the main backbone of currently employed combinatorial regimens. A major obstacle to successfull chemotherapic eradication of HIV is the emergence of viral strains resistant to the drugs in use. Counteracting the emergence of resistance necessitates alternating the panel of agents employed. In order to rationally design alternative drug combinations, physicians not only must know the genotype of the emerging viral strains, but should also be able to correlate it with its resistant phenotype. However, resistant viral strains usually carry multiple mutations, whose reciprocal influences on the overall level of resistance are largely unknown. Moreover, the choice of agents to be combined must take in account drug-drug interactions and adverse metabolic effects. This review will outline the main pharmacological and clinical features of the currently utilised anti-reverse transcriptase drugs, as well as the correspondent resistance profiles selected during therapy. A major focus will be on the reciprocal influence of drug associations on their own metabolism as well as on the interacting effects of the selected combinations of drug resistance mutations.

  2. The human multidrug resistance-associated protein MRP is a plasma membrane drug-efflux pump

    NARCIS (Netherlands)

    Zaman, G. J.; Flens, M. J.; van Leusden, M. R.; de Haas, M.; Mülder, H. S.; Lankelma, J.; Pinedo, H. M.; Scheper, R. J.; Baas, F.; Broxterman, H. J.

    1994-01-01

    The multidrug-resistance associated protein MRP is a 180- to 195-kDa membrane protein associated with resistance of human tumor cells to cytotoxic drugs. We have investigated how MRP confers drug resistance in SW-1573 human lung carcinoma cells by generating a subline stably transfected with an

  3. Drug resistance and genetic diversity of Plasmodium falciparum parasites from Suriname

    NARCIS (Netherlands)

    Peek, Ron; van Gool, Tom; Panchoe, Daynand; Greve, Sophie; Bus, Ellen; Resida, Lesley

    2005-01-01

    Plasmodium falciparum in Suriname was studied for the presence of drug resistance and genetic variation in blood samples of 86 patients with symptomatic malaria. Drug resistance was predicted by determining point mutations in the chloroquine resistance marker of the P. falciparum chloroquine

  4. Drug Resistance versus Spiritual Resistance: A Comparative Analysis from the Perspective of Spiritual Health

    Directory of Open Access Journals (Sweden)

    Mohammad Baqer Mohammadi Laini

    2014-12-01

    Full Text Available Background and Objectives: Taking into account a few principles concerning human being, it becomes plausible that the human spirit would also have a similar reaction to spiritual “medicine” provided to it. In order to better understand how this is possible, we must consider the means by which the human spirit becomes resistant to spiritual remedies and compare them with the resistance developed by the body against physical drugs. As such, this research aimed at creating a comparative analysis between the elements that cause the human spirit to become resistant against spiritual remedies in comparison to the body’s resistance against physical treatments (e.g. drugs and other physical treatment. Methods: The research at hand highlights the conclusions of an overall study of the Holy Quran, books of Islamic narration, and extensive Internet research concerning this subject. With these resources, the various aspects of the spirit’s resistance against spiritual remedies were discussed in detail. Results: According to Holy Quran and Islamic narrations: Based on the expectations which God has of man, his heart (i.e. spirit has the potential to fall under one of two categories – positive or negative. An afflicted heart may at times, like an afflicted body, become resistant against a remedy designed to cure it. In both cases of physical or metaphysical resistance, the underlying element that causes this resistance as well as the symptoms which accompany it are similar to one another. Having considered the teachings found in religious texts, this research discovered the underlying causes of spiritual resistance, and outlined some solutions which can prevent this issue from arising in the first place. Conclusion: Based on the standards of health and spiritual wellbeing as outlined in Holy Quran, it is said that some hearts are unhealthy and require treatment and healing. In Holy Quran, there is also no doubt in it, guidance to the God wary

  5. New-Onset Psychosis in a Multi-Drug Resistant Tuberculosis Patient ...

    African Journals Online (AJOL)

    Drug-resistant tuberculosis poses a serious challenge to global control of TB. These forms of TB do not respond to the standard six-month treatment; it can take two years or more to treat with category IV drugs that are less potent, more toxic and much more expensive. Treatment of multi-drug resistant tuberculosis is still ...

  6. A meta-analysis of Drug resistant Tuberculosis in Sub-Saharan Africa

    African Journals Online (AJOL)

    Background: In Sub-Saharan Africa, the fight against tuberculosis (TB) has encountered a great challenge because of the emergence of drug resistant TB strains and the high prevalence of HIV infection. The aim of this meta-analysis was to determine the association of drug-resistant TB with anti-TB drug treatment history ...

  7. Role of Breast Cancer Resistance Protein (BCRP/ABCG2) in Cancer Drug Resistance

    Science.gov (United States)

    Natarajan, Karthika; Xie, Yi; Baer, Maria R.; Ross, Douglas D.

    2012-01-01

    Since cloning of the ATP-binding cassette (ABC) family member breast cancer resistance protein (BCRP/ABCG2) and its characterization as a multidrug resistance efflux transporter in 1998, BCRP has been the subject of more than two thousand scholarly articles. In normal tissues, BCRP functions as a defense mechanism against toxins and xenobiotics, with expression in the gut, bile canaliculi, placenta, blood-testis and blood-brain barriers facilitating excretion and limiting absorption of potentially toxic substrate molecules, including many cancer chemotherapeutic drugs. BCRP also plays a key role in heme and folate homeostasis, which may help normal cells survive under conditions of hypoxia. BCRP expression appears to be a characteristic of certain normal tissue stem cells termed “side population cells,” which are identified on flow cytometric analysis by their ability to exclude Hoechst 33342, a BCRP substrate fluorescent dye. Hence, BCRP expression may contribute to the natural resistance and longevity of these normal stem cells. Malignant tissues can exploit the properties of BCRP to survive hypoxia and to evade exposure to chemotherapeutic drugs. Evidence is mounting that many cancers display subpopulations of stem cells that are responsible for tumor self-renewal. Such stem cells frequently manifest the “side population” phenotype characterized by expression of BCRP and other ABC transporters. Along with other factors, these transporters may contribute to the inherent resistance of these neoplasms and their failure to be cured. PMID:22248732

  8. Drug Resistance in Malaria: Investigation of Mechanisms and Patterns of Drug Resistance and Cross Resistance in Malaria.

    Science.gov (United States)

    1987-10-19

    patients with G6PD deficiency . Furthermore, the increase in fer- riheme may mediate the selective toxicity of menadione for Plasmodium falciparum...may account for the resistance to malaria afforded by G6PD deficiency ." Next, we focused on the process of FP detoxification. Initially, we searched

  9. Childhood Idiopathic Steroid Resistant Nephrotic Syndrome, Different Drugs and Outcome

    International Nuclear Information System (INIS)

    Shah, S. S. H.; Hafeez, F.

    2016-01-01

    Background: The management of steroid resistant nephrotic syndrome (SRNS) is quite difficult in paediatric patients. Not only the remission is difficult but also these patients are at risk of progression to end stage renal disease (ESRD). The goal of treatment is either to achieve complete remission or even partial remission as it is the most important predictor of disease outcome. Methods: This study was conducted at The Children Hospital, Lahore from February 2014 to May 2015. The SRNS patients of either sex between ages of 1-12 years were included with histology showing mesangioproliferative glomerulonephritis (MesangioPGN), focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD). Patients were given different immunosuppressant drugs and steroid 30 mg/m/sup 2/ alternate day therapy on case to case basis and kept on regular follow up to check for response and adverse effects. Results: Total of 105 patients included, 63 (60 percent) male and 42 (40 percent) female patients. The age ranges from 1.08 to 12 years, mean age of 6.53 years and SD of ±3.17. Tacrolimus was the most common drug used 43 (41 percent) patients followed by cyclosporine in 38 (36.2 percent) patients, while Mycophenolate mofetil (MMF) was prescribed in 21 (20 percent) patients. Complete response was in 96 (91.4 percent) initially while partial response was seen in 8 (7.6 percent) patients. On follow up, 92 (87.6 percent) patients showed complete response and partial response was in 5 (4.7 percent) patients. Cushingoid features and hypertrichosis were the most common adverse effect seen. Conclusion: Steroid resistant nephrotic syndrome can be managed well with various immunosuppressant drugs and steroids but treatment should be individualized according to clinical presentation, disease histology and cost/social factors. (author)

  10. Childhood Idiopathic Steroid Resistant Nephrotic Syndrome, Different Drugs And Outcome.

    Science.gov (United States)

    Hussain Shah, Syed Sajid; Hafeez, Farkhanda

    2016-01-01

    The management of steroid resistant nephrotic syndrome (SRNS) is quite difficult in paediatric patients. Not only the remission is difficult but also these patients are at risk of progression to end stage renal disease (ESRD). The goal of treatment is either to achieve complete remission or even partial remission as it is the most important predictor of disease outcome. This study was conducted at The Children's Hospital, Lahore from February 2014 to May 2015. The SRNS patients of either sex between ages of 1-12 years were included with histology showing mesangioproliferative glomerulonephritis (MesangioPGN), focal segmental glomerulosclerosis (FSGS) or minimal change disease (MCD). Patients were given different immunosuppressant drugs and steroid 30 mg/m2 alternate day therapy on case to case basis and kept on regular follow up to check for response and adverse effects. Total of 105 patients included, 63 (60%) male and 42 (40%) female patients. The age ranges from 1.08 to 12 years, mean age of 6.53 years and SD of ±3.17. Tacrolimus was the most common drug used 43 (41%) patients followed by cyclosporine in 38 (36.2%) patients, while Mycophenolate mofetil (MMF) was prescribed in 21 (20%) patients. Complete response was in 96 (91.4%) initially while partial response was seen in 8 (7.6%) patients. On follow up, 92 (87.6%) patients showed complete response and partial response was in 5 (4.7%) patients. Cushingoid features and hypertrichosis were the most common adverse effect seen. Steroid resistant nephrotic syndrome can be managed well with various immunosuppressant drugs and steroids but treatment should be individualized according to clinical presentation, disease histology and cost/social factors.

  11. Triclosan Derivatives: Towards Potent Inhibitors of Drug-Sensitive and Drug-Resistant Mycobacterium tuberculosis

    Energy Technology Data Exchange (ETDEWEB)

    Freundlich, Joel S.; Wang, Feng; Vilchèze, Catherine; Gulten, Gulcin; Langley, Robert; Schiehser, Guy A.; Jacobus, David P.; Jacobs, Jr., William R.; Sacchettini, James C.; (Einstein); (TAM); (Jacobus)

    2009-06-30

    Isoniazid (INH) is a frontline antitubercular drug that inhibits the enoyl acyl carrier protein reductase InhA. Novel inhibitors of InhA that are not cross-resistant to INH represent a significant goal in antitubercular chemotherapy. The design, synthesis, and biological activity of a series of triclosan-based inhibitors is reported, including their promising efficacy against INH-resistant strains of M. tuberculosis. Triclosan has been previously shown to inhibit InhA, an essential enoyl acyl carrier protein reductase involved in mycolic acid biosynthesis, the inhibition of which leads to the lysis of Mycobacterium tuberculosis. Using a structure-based drug design approach, a series of 5-substituted triclosan derivatives was developed. Two groups of derivatives with alkyl and aryl substituents, respectively, were identified with dramatically enhanced potency against purified InhA. The most efficacious inhibitor displayed an IC{sub 50} value of 21 nM, which was 50-fold more potent than triclosan. X-ray crystal structures of InhA in complex with four triclosan derivatives revealed the structural basis for the inhibitory activity. Six selected triclosan derivatives were tested against isoniazid-sensitive and resistant strains of M. tuberculosis. Among those, the best inhibitor had an MIC value of 4.7 {mu}g mL{sup -1} (13 {mu}M), which represents a tenfold improvement over the bacteriocidal activity of triclosan. A subset of these triclosan analogues was more potent than isoniazid against two isoniazid-resistant M. tuberculosis strains, demonstrating the significant potential for structure-based design in the development of next generation antitubercular drugs.

  12. Association of streptomycin resistance mutations with level of drug resistance and Mycobacterium tuberculosis genotypes.

    Science.gov (United States)

    Nhu, N T Q; Lan, N T N; Phuong, N T N; Chau, N van V; Farrar, J; Caws, M

    2012-04-01

    To determine 1) the relationship between specific streptomycin (SM) resistance mutations and the minimum inhibitory concentration (MIC), and 2) whether these mutations are preferentially associated with the Beijing genotype in Viet Nam. A total of 131 consecutive Mycobacterium tuberculosis isolates resistant to either isoniazid (INH) or rifampicin (RMP), collected previously, were tested for SM resistance, spoligotyped and sequenced in the rpsL, rrs and gidB genes. The MIC for 50 mutants was also determined. Overall, 116/131 isolates were SM-resistant. The three most frequently occurring mutation sites in rpsL and rrs were at codon 43 of rpsL (72/116, 62.1%), rpsL88 (22/116, 18.9%) and rrs514 (8/116, 6.9%). Mutations in the rrs910 region were found in two isolates (1.7%), and three isolates had mutations in both rpsL and rrs (2.6%). gidB mutations were found in both resistant and susceptible strains. Among SM-resistant isolates resistant to INH/RMP, the Beijing genotype was strongly associated with rpsL43 mutation (aOR 23.6, 95%CI 2.9-193.4, P = 0.002). The median MIC for each mutation was as follows: rpsL43 = 256 μg/ml, rpsL88 = 16 μg/ml, 515 loop = 4 μg/ml, 910 region = 8 μg/ml, and double mutation = 256 μg/ml. We found a strong association between rpsL43 and high drug resistance levels, with all rpsL43 mutants having an MIC >256 μg/ml (P < 0.001).

  13. Impact of treatment heterogeneity on drug resistance and supply chain costs.

    Science.gov (United States)

    Spiliotopoulou, Eirini; Boni, Maciej F; Yadav, Prashant

    2013-09-01

    The efficacy of scarce drugs for many infectious diseases is threatened by the emergence and spread of resistance. Multiple studies show that available drugs should be used in a socially optimal way to contain drug resistance. This paper studies the tradeoff between risk of drug resistance and operational costs when using multiple drugs for a specific disease. Using a model for disease transmission and resistance spread, we show that treatment with multiple drugs, on a population level, results in better resistance-related health outcomes, but more interestingly, the marginal benefit decreases as the number of drugs used increases. We compare this benefit with the corresponding change in procurement and safety stock holding costs that result from higher drug variety in the supply chain. Using a large-scale simulation based on malaria transmission dynamics, we show that disease prevalence seems to be a less important factor when deciding the optimal width of drug assortment, compared to the duration of one episode of the disease and the price of the drug(s) used. Our analysis shows that under a wide variety of scenarios for disease prevalence and drug cost, it is optimal to simultaneously deploy multiple drugs in the population. If the drug price is high, large volume purchasing discounts are available, and disease prevalence is high, it may be optimal to use only one drug. Our model lends insights to policy makers into the socially optimal size of drug assortment for a given context.

  14. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro

    Science.gov (United States)

    Yoshida, Mari; Reyes, Sabrina Galiñanes; Tsuda, Soichiro; Horinouchi, Takaaki; Furusawa, Chikara; Cronin, Leroy

    2017-06-01

    Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using this data, we develop a simple deterministic model, which allows us to predict the fate of multi-drug evolution in this system. Furthermore, we are able to reverse established drug resistance based on the model prediction by modulating antibiotic selection stresses. Our results support the idea that the development of antibiotic resistance may be potentially controlled via continuous switching of drugs.

  15. Molecular Targets Related Drug Resistance Mechanisms in MDR-, XDR-, and TDR-Mycobacterium tuberculosis Strains

    Directory of Open Access Journals (Sweden)

    H. M. Adnan Hameed

    2018-04-01

    Full Text Available Tuberculosis (TB is a formidable infectious disease that remains a major cause of death worldwide today. Escalating application of genomic techniques has expedited the identification of increasing number of mutations associated with drug resistance in Mycobacterium tuberculosis. Unfortunately the prevalence of bacillary resistance becomes alarming in many parts of the world, with the daunting scenarios of multidrug-resistant tuberculosis (MDR-TB, extensively drug-resistant tuberculosis (XDR-TB and total drug-resistant tuberculosis (TDR-TB, due to number of resistance pathways, alongside some apparently obscure ones. Recent advances in the understanding of the molecular/ genetic basis of drug targets and drug resistance mechanisms have been steadily made. Intriguing findings through whole genome sequencing and other molecular approaches facilitate the further understanding of biology and pathology of M. tuberculosis for the development of new therapeutics to meet the immense challenge of global health.

  16. Adaptive and Mutational Resistance: Role of Porins and Efflux Pumps in Drug Resistance

    Science.gov (United States)

    Fernández, Lucía

    2012-01-01

    Summary: The substantial use of antibiotics in the clinic, combined with a dearth of new antibiotic classes, has led to a gradual increase in the resistance of bacterial pathogens to these compounds. Among the various mechanisms by which bacteria endure the action of antibiotics, those affecting influx and efflux are of particular importance, as they limit the interaction of the drug with its intracellular targets and, consequently, its deleterious effects on the cell. This review evaluates the impact of porins and efflux pumps on two major types of resistance, namely, mutational and adaptive types of resistance, both of which are regarded as key phenomena in the global rise of antibiotic resistance among pathogenic microorganisms. In particular, we explain how adaptive and mutational events can dramatically influence the outcome of antibiotic therapy by altering the mechanisms of influx and efflux of antibiotics. The identification of porins and pumps as major resistance markers has opened new possibilities for the development of novel therapeutic strategies directed specifically against these mechanisms. PMID:23034325

  17. Pleuromutilins: Potent Drugs for Resistant Bugs-Mode of Action and Resistance.

    Science.gov (United States)

    Paukner, Susanne; Riedl, Rosemarie

    2017-01-03

    Pleuromutilins are antibiotics that selectively inhibit bacterial translation and are semisynthetic derivatives of the naturally occurring tricyclic diterpenoid pleuromutilin, which received its name from the pleuromutilin-producing fungus Pleurotus mutilus Tiamulin and valnemulin are two established derivatives in veterinary medicine for oral and intramuscular administration. As these early pleuromutilin drugs were developed at a time when companies focused on major antibacterial classes, such as the β-lactams, and resistance was not regarded as an issue, interest in antibiotic research including pleuromutilins was limited. Over the last decade or so, there has been a resurgence in interest to develop this class for human use. This has resulted in a topical derivative, retapamulin, and additional derivatives in clinical development. The most advanced compound is lefamulin, which is in late-stage development for the intravenous and oral treatment of community-acquired bacterial pneumonia and acute bacterial skin infections. Overall, pleuromutilins and, in particular, lefamulin are characterized by potent activity against Gram-positive and fastidious Gram-negative pathogens as well as against mycoplasmas and intracellular organisms, such as Chlamydia spp. and Legionella pneumophila Pleuromutilins are unaffected by resistance to other major antibiotic classes, such as macrolides, fluoroquinolones, tetracyclines, β-lactam antibiotics, and others. Furthermore, pleuromutilins display very low spontaneous mutation frequencies and slow, stepwise resistance development at sub-MIC in vitro. The potential for resistance development in clinic is predicted to be slow as confirmed by extremely low resistance rates to this class despite the use of pleuromutilins in veterinary medicine for >30 years. Although rare, resistant strains have been identified in human- and livestock-associated environments and as with any antibiotic class, require close monitoring as well as prudent

  18. Drug Resistance to EGFR Inhibitors in Lung Cancer | Office of Cancer Genomics

    Science.gov (United States)

    The discovery of mutations in epidermal growth factor receptor (EGFR) has dramatically changed the treatment of patients with non-small-cell lung cancer (NSCLC), the leading cause of cancer deaths worldwide. EGFR-targeted therapies show considerable promise, but drug resistance has become a substantial issue. We reviewed the literature to provide an overview of the drug resistance to EGFR tyrosine kinase inhibitors (TKIs) in NSCLC. The mechanisms causing primary, acquired and persistent drug resistance to TKIs vary.

  19. Trial of Cannabidiol for Drug-Resistant Seizures in the Dravet Syndrome

    OpenAIRE

    Devinsky, O.; Cross, J. H.; Laux, L.; Marsh, E.; Miller, I.; Nabbout, R.; Scheffer, I. E.; Thiele, E. A.; Wright, S.

    2017-01-01

    BACKGROUND: The Dravet syndrome is a complex childhood epilepsy disorder that is associated with drug-resistant seizures and a high mortality rate. We studied cannabidiol for the treatment of drug-resistant seizures in the Dravet syndrome. METHODS: In this double-blind, placebo-controlled trial, we randomly assigned 120 children and young adults with the Dravet syndrome and drug-resistant seizures to receive either cannabidiol oral solution at a dose of 20 mg per kilogram...

  20. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    OpenAIRE

    Shankarkumar, U.; Pawar,Aruna; Ghosh,Kanjaksha

    2009-01-01

    U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR), KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment optio...

  1. Tuberculosis drug resistance isolates from pulmonary tuberculosis patients, Kassala State, Sudan

    Directory of Open Access Journals (Sweden)

    Fatima A Khalid

    2015-01-01

    This study revealed that high resistance to rifampicin was associated with various point mutations in and out of the RRDR of the rpoB gene. Molecular methods are needed for early detection of TB disease and drug resistance.

  2. Resistance to different classes of drugs is associated with impaired apoptosis in childhood acute lymphoblastic leukemia

    NARCIS (Netherlands)

    A. Holleman (Amy); M.L. den Boer (Monique); K.M. Kazemier (Karin); G.E. Janka-Schaub (Gritta); R. Pieters (Rob)

    2003-01-01

    textabstractResistance of leukemic cells to chemotherapeutic agents is associated with an unfavorable outcome in pediatric acute lymphoblastic leukemia (ALL). To investigate the underlying mechanisms of cellular drug resistance, the activation of various apoptotic parameters in

  3. Accelerating the development of therapeutic strategies for drug-resistant tuberculosis.

    Science.gov (United States)

    Vjecha, Michael J; Tiberi, Simon; Zumla, Alimuddin

    2018-03-23

    Recent progress in the discovery, development and evaluation of new drugs and combination regimens for drug-resistant tuberculosis through greater collaboration between industry, donors and academia provides renewed hope for overcoming the challenges in tuberculosis treatment.

  4. World TB Day 2018: The Challenge of Drug Resistant Tuberculosis.

    Science.gov (United States)

    Gupta-Wright, Ankur; Tomlinson, Gillian S; Rangaka, Molebogeng X; Fletcher, Helen A

    2018-01-01

    On 24th March, the world commemorates the day in 1882 when Dr Robert Koch announced his discovery of Mycobacterium tuberculosis (MTB). Over 130 years later, tuberculosis (TB) continues to affect individuals, communities, and entire health systems and economies. Koch unsuccessfully tried to 'cure' TB, and despite major advances in other areas of medicine, control of TB remains elusive- in 2016 TB was the leading infectious cause of death. The STOP TB partnership and World Health Organization (WHO) have announced their theme for World TB Day 2018 "Wanted: Leaders for a TB-Free World. You can make history. End TB." This theme recognizes that TB is much larger than any one person, institute or discipline of research, and provides an opportunity for us to reflect on the major challenges and consider how we, as a scientific community, can work together and take the lead to address the global crisis of drug-resistant TB (DR-TB).

  5. Nanoantibiotics: strategic assets in the fight against drug- resistant superbugs

    Directory of Open Access Journals (Sweden)

    Khurana C

    2018-03-01

    Full Text Available Chandni Khurana, Bhupendra Chudasama Laboratory of Nanomedicine, School of Physics and Materials Science, Thapar University, Patiala, Punjab, India Abstract: Antimicrobial characteristics of metals reveal that Ag despite its economic constraints remains the most popular antibiotic agent. Antimicrobial characteristics of copper nanoparticles (CNPs are not well understood. To our knowledge, no systematic comparative study on microbial properties of silver nanoparticles (SNPs and CNPs exists. In this article, a comparative study on microbial properties of engineered metal nanoantibiotics against clinically important strains has been attempted. Our results indicate that biocidal activities of CNPs are better than SNPs. Minimum inhibitory concentration (MIC values of CNPs are 10 times lower than the corresponding MICs of SNPs. These improved biocidal activities of CNPs would make it affordable and potent nontraditional antibiotics against which microbes are least susceptible to develop any drug resistance. Keywords: antibiotics, silver, copper, nanoparticles

  6. Pattern of primary tuberculosis drug resistance and associated treatment outcomes in Transnistria, Moldova.

    Science.gov (United States)

    Dolgusev, O; Obevzenco, N; Padalco, O; Pankrushev, S; Ramsay, A; Van den Bergh, R; Manzi, M; Denisiuk, O; Zachariah, R

    2014-10-21

    This cohort study assessed drug susceptibility testing (DST) patterns and associated treatment outcomes from Transnistria, Moldova, from 2009 to 2012. Of 1089 newly registered tuberculosis (TB) patients with available DST results, 556 (51%) had some form of drug resistance, while 369 (34%) had multidrug-resistant TB (MDR-TB). There were four cases of extensively drug-resistant TB. MDR-TB patients had poor treatment success (45%); human immunodeficiency virus positivity and a history of incarceration were associated with an unfavourable treatment outcome. This first study from Trans-nistria shows a high level of drug-resistant TB, which constitutes a major public health problem requiring urgent attention.

  7. An analysis of drug resistance among people living with HIV/AIDS in Shanghai, China.

    Directory of Open Access Journals (Sweden)

    Fengdi Zhang

    Full Text Available Understanding the mechanisms of drug resistance can facilitate better management of antiretroviral therapy, helping to prevent transmission and decrease the morbidity and mortality of people living with HIV/AIDS. However, there is little data about transmitted drug resistance and acquired drug resistance for HIV/AIDS patients in Shanghai.A retrospective cohort study of HIV-infected patients who visited the Department of Infectious Disease from June 2008 to June 2015 was conducted in Shanghai, China. Logistic regression analysis was performed to analyze risk factors for drug resistance among HIV-infected people with virological failure. The related collected factors included patient age, gender, marital status, infection route, baseline CD4 count, antiretroviral therapy regimens, time between HIV diagnosis and initiating antiretroviral therapy. Factors with p<0.1 in the univariate logistic regression test were analyzed by multivariate logistic regression test.There were 575 subjects selected for this study and 369 participated in this research. For the antiretroviral therapy drugs, the rates of transmitted drug resistance and acquired drug resistance were significantly different. The non-nucleoside reverse transcriptase inhibitor (NNRTI had the highest drug resistance rate (transmitted drug resistance, 10.9%; acquired drug resistance, 53.3% and protease inhibitors (PIs had the lowest drug resistance rate (transmitted drug resistance, 1.7%; acquired drug resistance, 2.7%. Logistic regression analysis found no factors that were related to drug resistance except marital status (married status for tenofovir: odds ratio = 6.345, 95% confidence interval = 1.553-25.921, P = 0.010 and the time span between HIV diagnosis and initiating antiretroviral therapy (≤6M for stavudine: odds ratio = 0.271, 95% confidence interval = 0.086-0.850, P = 0.025; ≤6M for didanosine: odds ratio = 0.284, 95% confidence interval = 0.096-0.842, P = 0.023; ≤6M for

  8. Disinfectant-susceptibility of multi-drug-resistant Mycobacterium tuberculosis isolated in Japan

    Directory of Open Access Journals (Sweden)

    Noriko Shinoda

    2016-02-01

    Full Text Available Abstract Background Multi-drug-resistant Mycobacterium tuberculosis has been an important problem in public health around the world. However, limited information about disinfectant-susceptibility of multi-drug-resistant strain of M. tuberculosis was available. Findings We studied susceptibility of several Japanese isolates of multi-drug-resistant M. tuberculosis against disinfectants, which are commonly used in clinical and research laboratories. We selected a laboratory reference strain (H37Rv and eight Japanese isolates, containing five drug-susceptible strains and three multi-drug-resistant strains, and determined profiles of susceptibility against eight disinfectants. The M. tuberculosis strains were distinguished into two groups by the susceptibility profile. There was no relationship between multi-drug-resistance and disinfectant-susceptibility in the M. tuberculosis strains. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance. Conclusions Disinfectant-resistance is independent from multi-drug-resistance in M. tuberculosis. Cresol soap and oxydol were effective against all strains we tested, regardless of drug resistance.

  9. Molecular detection methods of resistance to antituberculosis drugs in Mycobacterium tuberculosis.

    Science.gov (United States)

    Brossier, F; Sougakoff, W

    2017-09-01

    Molecular methods predict drug resistance several weeks before phenotypic methods and enable rapid implementation of appropriate therapeutic treatment. We aimed to detail the most representative molecular tools used in routine practice for the rapid detection of resistance to antituberculosis drugs among Mycobacterium tuberculosis strains. The molecular diagnosis of resistance to antituberculosis drugs in clinical samples or from in vitro cultures is based on the detection of the most common mutations in the genes involved in the development of resistance in M. tuberculosis strains (encoding either protein targets of antibiotics, or antibiotic activating enzymes) by commercial molecular kits or by sequencing. Three hypotheses could explain the discrepancies between the genotypic results and the phenotypic drug susceptibility testing results: a low percentage of resistant mutants precluding the detection by genotypic methods on the primary culture; a low level of resistance not detected by phenotypic testing; and other resistance mechanisms not yet characterized. Molecular methods have varying sensitivity with regards to detecting antituberculosis drug resistance; that is why phenotypic susceptibility testing methods are mandatory for detecting antituberculosis drug-resistant isolates that have not been detected by molecular methods. The questionable ability of existing phenotypic and genotypic drug susceptibility testing to properly classify strains as susceptible or resistant, and at what level of resistance, was raised for several antituberculosis agents. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. The role of compensatory mutations in the emergence of drug resistance.

    Directory of Open Access Journals (Sweden)

    Andreas Handel

    2006-10-01

    Full Text Available Pathogens that evolve resistance to drugs usually have reduced fitness. However, mutations that largely compensate for this reduction in fitness often arise. We investigate how these compensatory mutations affect population-wide resistance emergence as a function of drug treatment. Using a model of gonorrhea transmission dynamics, we obtain generally applicable, qualitative results that show how compensatory mutations lead to more likely and faster resistance emergence. We further show that resistance emergence depends on the level of drug use in a strongly nonlinear fashion. We also discuss what data need to be obtained to allow future quantitative predictions of resistance emergence.

  11. Malaria medicines to address drug resistance and support malaria elimination efforts.

    Science.gov (United States)

    Achan, Jane; Mwesigwa, Julia; Edwin, Chinagozi Precious; D'alessandro, Umberto

    2018-01-01

    Antimalarial drugs are essential weapons to fight malaria and have been used effectively since the 17 th century. However, P.falciparum resistance has been reported to almost all available antimalarial drugs, including artemisinin derivatives, raising concerns that this could jeopardize malaria elimination. Areas covered: In this article, we present a historical perspective of antimalarial drug resistance, review current evidence of resistance to available antimalarial drugs and discuss possible mitigating strategies to address this challenge. Expert commentary: The historical approach to drug resistance has been to change the national treatment policy to an alternative treatment. However, alternatives to artemisinin-based combination treatment are currently extremely limited. Innovative approaches utilizing available schizonticidal drugs such as triple combination therapies or multiple first line treatments could delay the emergence and spread of drug resistance. Transmission blocking drugs like primaquine may play a key role if given to a substantial proportion of malaria infected persons. Deploying antimalarial medicines in mass drug administration or mass screening and treatment campaigns could also contribute to containment efforts by eliminating resistant parasites in some settings. Ultimately, response to drug resistance should also include further investment in the development of new antimalarial drugs.

  12. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole

    KAUST Repository

    Campos, Mônica C.

    2017-10-25

    Chagas disease is caused by the protozoan parasite Trypanosoma cruzi and affects 5–8 million people in Latin America. Although the nitroheterocyclic compound benznidazole has been the front-line drug for several decades, treatment failures are common. Benznidazole is a pro-drug and is bio-activated within the parasite by the mitochondrial nitroreductase TcNTR-1, leading to the generation of reactive metabolites that have trypanocidal activity. To better assess drug action and resistance, we sequenced the genomes of T. cruzi Y strain (35.5 Mb) and three benznidazole-resistant clones derived from a single drug-selected population. This revealed the genome-wide accumulation of mutations in the resistant parasites, in addition to variations in DNA copy-number. We observed mutations in DNA repair genes, linked with increased susceptibility to DNA alkylating and inter-strand cross-linking agents. Stop-codon-generating mutations in TcNTR-1 were associated with cross-resistance to other nitroheterocyclic drugs. Unexpectedly, the clones were also highly resistant to the ergosterol biosynthesis inhibitor posaconazole, a drug proposed for use against T. cruzi infections, in combination with benznidazole. Our findings therefore identify the highly mutagenic activity of benznidazole metabolites in T. cruzi, demonstrate that this can result in multi-drug resistance, and indicate that vigilance will be required if benznidazole is used in combination therapy.

  13. Reaching consensus on drug resistance conferring mutations (Part 1

    Directory of Open Access Journals (Sweden)

    Daniela M Cirillo

    2016-01-01

    A user-friendly interface designed for nonexpert or expert operability.A standardized and validated analysis pipeline for variant analyses of M. tuberculosis next-generation sequencing (NGS data.Access to data beyond the published literature with dynamic and iterative updates of new data generated by global surveillance and clinical trials.A well-developed legal structure to ensure intellectual property rights and data ownership remain with contributors.A structured data-sharing architecture to restrict access to sensitive or unpublished data sets.Metadata standardization using CDISC: supports global, platform-independent data standards that enable information system interoperability.An emphasis on data quality and rigorous, expert curation with multiple quality control checks for whole-genome sequencing and other metadata.Validation of NGS analysis output by an expert committee with grading of resistance conferring mutations based on rigorous statistical standards.Regulatory-compliant analysis pipeline and database architecture. Successful execution of such an extensive database platform requires substantial collaboration from scientists investigating the genetic basis for drug resistance worldwide, and from developers with expertise in database design and implementation.

  14. Extensively drug-resistant bacteria: Which ethical issues?

    Science.gov (United States)

    Vassal, P; Berthelot, P; Chaussinand, J P; Jay, S; de Filippis, J P; Auboyer, C; Renoux, F; Bedoin, D

    2017-09-01

    The increased bacterial resistance to antibiotics has now become a public health concern. How can we preserve the well-being of patients presenting with infections caused by extensively drug-resistant bacteria (EDRBs) and that of their contacts without inducing any loss of chance of survival, all the while living together and controlling the spread of these EDRBs? Terre d'éthique, a French territorial ethics committee, was asked to reflect on this topic by the infection control unit of a French University Hospital as it raises many ethical issues. Patients are at the core of any ethical approach, and respecting their autonomy is fundamental. Patients should be adequately informed to be able to give consent. Indeed, the creation and dissemination of a register (list of names of contacts or infected patients) entails responsibility of the infected person and that of the community. This responsibility leads to an ethical dilemma as protecting the group (the whole population) necessarily means limiting individual freedom. The principle of autonomy should thus be compared with that of solidarity. Is medical confidentiality an obstacle to the sharing of information or lists of names? We did not aim to answer our problematic but merely wanted to show the complexity of EDRB spread in a broader societal and economic context, all the while respecting the rights of patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. Future technologies for monitoring HIV drug resistance and cure.

    Science.gov (United States)

    Parikh, Urvi M; McCormick, Kevin; van Zyl, Gert; Mellors, John W

    2017-03-01

    Sensitive, scalable and affordable assays are critically needed for monitoring the success of interventions for preventing, treating and attempting to cure HIV infection. This review evaluates current and emerging technologies that are applicable for both surveillance of HIV drug resistance (HIVDR) and characterization of HIV reservoirs that persist despite antiretroviral therapy and are obstacles to curing HIV infection. Next-generation sequencing (NGS) has the potential to be adapted into high-throughput, cost-efficient approaches for HIVDR surveillance and monitoring during continued scale-up of antiretroviral therapy and rollout of preexposure prophylaxis. Similarly, improvements in PCR and NGS are resulting in higher throughput single genome sequencing to detect intact proviruses and to characterize HIV integration sites and clonal expansions of infected cells. Current population genotyping methods for resistance monitoring are high cost and low throughput. NGS, combined with simpler sample collection and storage matrices (e.g. dried blood spots), has considerable potential to broaden global surveillance and patient monitoring for HIVDR. Recent adaptions of NGS to identify integration sites of HIV in the human genome and to characterize the integrated HIV proviruses are likely to facilitate investigations of the impact of experimental 'curative' interventions on HIV reservoirs.

  16. Status of drug-resistant tuberculosis in China: A systematic review and meta-analysis.

    Science.gov (United States)

    Zhang, Jingya; Gou, Haimei; Hu, Xuejiao; Hu, Xin; Shang, Mengqiao; Zhou, Juan; Zhou, Yi; Ye, Yuanxin; Song, Xingbo; Lu, Xiaojun; Chen, Xuerong; Ying, Binwu; Wang, Lanlan

    2016-06-01

    We conducted a systematic review and meta-analysis on drug-resistant tuberculosis in China to provide useful data for tuberculosis (TB) surveillance and treatment. Several databases, including PubMed, Embase, and the Chinese Biological Medical Database, were systematically searched between January 1, 1999, and August 31, 2015, using strict inclusion and exclusion criteria. The corresponding drug-resistant TB prevalence between the new and previously treated cases was significantly different in almost all of the economic regions. The Eastern coastal region is the most developed economic region with the lowest total drug-resistant TB prevalence (any drug resistance: 28%; 95% confidence interval [CI], 25%-32%; multidrug resistance: 9%; 95% CI, 8%-12%) and the lowest number of new cases (any drug resistance: 21%; 95% CI, 19%-23%; multidrug resistance: 4%; 95% CI, 3%-5%). The Northwest is the least developed area with the lowest drug-resistant TB prevalence for previously treated cases (any drug resistance: 45%; 95% CI, 36%-55%; multidrug resistance: 17%; 95% CI, 11%-26%). The prevalence (multidrug and first-line drug resistance) exhibited a downward trend from 1996-2014. The extensively drug-resistant prevalence in China was 3% (95% CI, 2%-5%) in this review. Overall, the status of drug-resistant tuberculosis in China is notably grim and exhibits regional epidemiologic characteristics. We are in urgent need of several comprehensive and effective control efforts to reverse this situation. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  17. Detection of low frequency multi-drug resistance and novel putative maribavir resistance in immunocompromised paediatric patients with cytomegalovirus

    Directory of Open Access Journals (Sweden)

    Charlotte Jane Houldcroft

    2016-09-01

    Full Text Available Human cytomegalovirus (HCMV is a significant pathogen in immunocompromised individuals, with the potential to cause fatal pneumonitis and colitis, as well as increasing the risk of organ rejection in transplant patients. With the advent of new anti-HCMV drugs there is therefore considerable interest in using virus sequence data to monitor emerging resistance to antiviral drugs in HCMV viraemia and disease, including the identification of putative new mutations. We used target-enrichment to deep sequence HCMV DNA from 11 immunosuppressed paediatric patients receiving single or combination anti-HCMV treatment, serially sampled over 1-27 weeks. Changes in consensus sequence and resistance mutations were analysed for three ORFs targeted by anti-HCMV drugs and the frequencies of drug resistance mutations monitored. Targeted-enriched sequencing of clinical material detected mutations occurring at frequencies of 2%. Seven patients showed no evidence of drug resistance mutations. Four patients developed drug resistance mutations a mean of 16 weeks after starting treatment. In two patients, multiple resistance mutations accumulated at frequencies of 20% or less, including putative maribavir and ganciclovir resistance mutations P522Q (UL54 and C480F (UL97. In one patient, resistance was detected 14 days earlier than by PCR. Phylogenetic analysis suggested recombination or superinfection in one patient. Deep sequencing of HCMV enriched from clinical samples excluded resistance in 7 of eleven subjects and identified resistance mutations earlier than conventional PCR-based resistance testing in 2 patients. Detection of multiple low level resistance mutations was associated with poor outcome.

  18. Nuclear export of proteins and drug resistance in cancer.

    Science.gov (United States)

    Turner, Joel G; Dawson, Jana; Sullivan, Daniel M

    2012-04-15

    The intracellular location of a protein is crucial to its normal functioning in a cell. Cancer cells utilize the normal processes of nuclear-cytoplasmic transport through the nuclear pore complex of a cell to effectively evade anti-neoplastic mechanisms. CRM1-mediated export is increased in various cancers. Proteins that are exported in cancer include tumor-suppressive proteins such as retinoblastoma, APC, p53, BRAC1, FOXO proteins, INI1/hSNF5, galectin-3, Bok, nucleophosmin, RASSF2, Merlin, p21(CIP), p27(KIP1), N-WASP/FAK, estradiol receptor and Tob, drug targets topoisomerase I and IIα and BCR-ABL, and the molecular chaperone protein Hsp90. Here, we review in detail the current processes and known structures involved in the export of a protein through the nuclear pore complex. We also discuss the export receptor molecule CRM1 and its binding to the leucine-rich nuclear export signal of the cargo protein and the formation of a nuclear export trimer with RanGTP. The therapeutic potential of various CRM1 inhibitors will be addressed, including leptomycin B, ratjadone, KOS-2464, and specific small molecule inhibitors of CRM1, N-azolylacrylate analogs, FOXO export inhibitors, valtrate, acetoxychavicol acetate, CBS9106, and SINE inhibitors. We will also discuss examples of how drug resistance may be reversed by targeting the exported proteins topoisomerase IIα, BCR-ABL, and galectin-3. As effective and less toxic CRM1 export inhibitors become available, they may be used as both single agents and in combination with current chemotherapeutic drugs. We believe that the future development of low-toxicity, small-molecule CRM1 inhibitors may provide a new approach to treating cancer. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Drug resistance. K13-propeller mutations confer artemisinin resistance in Plasmodium falciparum clinical isolates.

    Science.gov (United States)

    Straimer, Judith; Gnädig, Nina F; Witkowski, Benoit; Amaratunga, Chanaki; Duru, Valentine; Ramadani, Arba Pramundita; Dacheux, Mélanie; Khim, Nimol; Zhang, Lei; Lam, Stephen; Gregory, Philip D; Urnov, Fyodor D; Mercereau-Puijalon, Odile; Benoit-Vical, Françoise; Fairhurst, Rick M; Ménard, Didier; Fidock, David A

    2015-01-23

    The emergence of artemisinin resistance in Southeast Asia imperils efforts to reduce the global malaria burden. We genetically modified the Plasmodium falciparum K13 locus using zinc-finger nucleases and measured ring-stage survival rates after drug exposure in vitro; these rates correlate with parasite clearance half-lives in artemisinin-treated patients. With isolates from Cambodia, where resistance first emerged, survival rates decreased from 13 to 49% to 0.3 to 2.4% after the removal of K13 mutations. Conversely, survival rates in wild-type parasites increased from ≤0.6% to 2 to 29% after the insertion of K13 mutations. These mutations conferred elevated resistance to recent Cambodian isolates compared with that of reference lines, suggesting a contemporary contribution of additional genetic factors. Our data provide a conclusive rationale for worldwide K13-propeller sequencing to identify and eliminate artemisinin-resistant parasites. Copyright © 2015, American Association for the Advancement of Science.

  20. Smac combined with DDP can inhibit drug resistance of ovarian cancer through regulation of Survivin expression.

    Science.gov (United States)

    Chen, Qi; Zhang, Hong

    2018-02-28

    Ovarian cancer has the highest mortality rate among gynecological malignancies, presenting a major threat to women's life and health. It is essential to study the mechanisms of drug resistance to chemotherapy to identify ways to enhance drug-sensitivity. In recent years, many studies have shown that Smac/DIABLO is closely related to tumor drug resistance. Smac/DIABLO expression is markedly different between drug-resistant and chemo sensitive tumor cells. Up-regulation of Smac/DIABLO has been shown to increase tumor cell chemotherapy sensitivity. We found that Smac, combined with DDP greatly inhibited proliferation of subcutaneous xenografts of ovarian cancer cell line SKOV3/DDP without side effects. Mechanistic studies showed that Smac can inhibit the expression of Survivin, promote cell apoptosis of drug-resistant ovarian cancer cells and reverse the drug resistance.

  1. Higher Desolvation Energy Reduces Molecular Recognition in Multi-Drug Resistant HIV-1 Protease

    Directory of Open Access Journals (Sweden)

    Ladislau C. Kovari

    2012-05-01

    Full Text Available Designing HIV-1 protease inhibitors that overcome drug-resistance is still a challenging task. In this study, four clinical isolates of multi-drug resistant HIV-1 proteases that exhibit resistance to all the US FDA-approved HIV-1 protease inhibitors and also reduce the substrate recognition ability were examined. A multi-drug resistant HIV-1 protease isolate, MDR 769, was co-crystallized with the p2/NC substrate and the mutated CA/p2 substrate, CA/p2 P1’F. Both substrates display different levels of molecular recognition by the wild-type and multi-drug resistant HIV-1 protease. From the crystal structures, only limited differences can be identified between the wild-type and multi-drug resistant protease. Therefore, a wild-type HIV-1 protease and four multi-drug resistant HIV-1 proteases in complex with the two peptides were modeled based on the crystal structures and examined during a 10 ns-molecular dynamics simulation. The simulation results reveal that the multi-drug resistant HIV-1 proteases require higher desolvation energy to form complexes with the peptides. This result suggests that the desolvation of the HIV-1 protease active site is an important step of protease-ligand complex formation as well as drug resistance. Therefore, desolvation energy could be considered as a parameter in the evaluation of future HIV-1 protease inhibitor candidates.

  2. Epidemiology and patterns of drug resistance among tuberculosis patients in Northwestern Iran

    Directory of Open Access Journals (Sweden)

    L Sahebi

    2016-01-01

    Full Text Available Background: Multidrug-resistant tuberculosis (MDR-TB has emerged as an important global health concern and is on the rise throughout the world. Objective: The aim of this study was to examine the epidemiology and pattern of TB drug resistance. Methods: In this cross-sectional study, 180 pulmonary TB patients from two Northwestern provinces of Iran were selected. The first and second line drug susceptibility testing was carried out using the 1% proportion method on the Lφwenstein-Jensen medium. Full demographic, environmental and clinical history was evaluated. Results: Prevalence of resistance to any TB drug was 13.8%. Eight (4.4% patients had MDR-TB (2.4% in the province of East Azerbaijan and 9.3% in the province of Ardabil and one patient had extensively drug-resistant TB. Patient resistance to both isoniazid and streptomycin was the most prevalent at a rate of 8.3%. Patients showed the least resistance to ethambutol (2.8%. There was a significant relationship between the previous history of TB drug treatment and TB drug resistance. Migrants from rural to urban areas were in high-risk groups for the occurrence of TB drug resistance. Conclusion: In our study, prevalence of MDR was less than the global average. It is essential to monitor the patients with previous history of TB treatment and migrants by rapid and accurate techniques in terms of drug-resistance odds.

  3. Pan Drug-Resistant Environmental Isolate of Acinetobacter baumannii from Croatia.

    Science.gov (United States)

    Goic-Barisic, Ivana; Seruga Music, Martina; Kovacic, Ana; Tonkic, Marija; Hrenovic, Jasna

    2017-06-01

    Acinetobacter baumannii is an emerging nosocomial pathogen with also emerging resistance to different antibiotics. Multidrug and pan drug-resistant clinical isolates were reported worldwide. Here we report the first evidence of pan drug-resistant environmental isolate of A. baumannii. The isolate was recovered from the effluent of secondary treated municipal wastewater of the City of Zagreb, Croatia. The isolate was resistant to penicillins/β-lactamase inhibitors, carbapenems, fluoroquinolones, aminoglycosides, folate pathway inhibitors, and polymyxins, except intermediately susceptible to minocycline and tigecycline. Intrinsic chromosomally located bla OXA-51-like gene and acquired plasmid-located bla OXA-23-like gene were related to clinical isolates. Pan drug-resistant A. baumannii can occur in natural environments outside of the hospital. Secondary treated municipal wastewater represents a potential epidemiological reservoir of pan drug-resistant A. baumannii and carbapenem resistance gene.

  4. The emerging threat of pre-extensively drug-resistant tuberculosis in West Africa: preparing for large-scale tuberculosis research and drug resistance surveillance.

    Science.gov (United States)

    Gehre, Florian; Otu, Jacob; Kendall, Lindsay; Forson, Audrey; Kwara, Awewura; Kudzawu, Samuel; Kehinde, Aderemi O; Adebiyi, Oludele; Salako, Kayode; Baldeh, Ignatius; Jallow, Aisha; Jallow, Mamadou; Dagnra, Anoumou; Dissé, Kodjo; Kadanga, Essosimna A; Idigbe, Emmanuel Oni; Onubogu, Catherine; Onyejepu, Nneka; Gaye-Diallo, Aissatou; Ba-Diallo, Awa; Rabna, Paulo; Mane, Morto; Sanogo, Moumine; Diarra, Bassirou; Dezemon, Zingue; Sanou, Adama; Senghore, Madikay; Kwambana-Adams, Brenda A; Demba, Edward; Faal-Jawara, Tutty; Kumar, Samrat; Tientcheu, Leopold D; Jallow, Adama; Ceesay, Samba; Adetifa, Ifedayo; Jaye, Assan; Pallen, Mark J; D'Alessandro, Umberto; Kampmann, Beate; Adegbola, Richard A; Mboup, Souleymane; Corrah, Tumani; de Jong, Bouke C; Antonio, Martin

    2016-11-03

    Drug-resistant tuberculosis (TB) is a global public health problem. Adequate management requires baseline drug-resistance prevalence data. In West Africa, due to a poor laboratory infrastructure and inadequate capacity, such data are scarce. Therefore, the true extent of drug-resistant TB was hitherto undetermined. In 2008, a new research network, the West African Network of Excellence for Tuberculosis, AIDS and Malaria (WANETAM), was founded, comprising nine study sites from eight West African countries (Burkina Faso, The Gambia, Ghana, Guinea-Bissau, Mali, Nigeria, Senegal and Togo). The goal was to establish Good Clinical Laboratory Practice (GCLP) principles and build capacity in standardised smear microscopy and mycobacterial culture across partnering laboratories to generate the first comprehensive West African drug-resistance data. Following GCLP and laboratory training sessions, TB isolates were collected at sentinel referral sites between 2009-2013 and tested for first- and second-line drug resistance. From the analysis of 974 isolates, an unexpectedly high prevalence of multi-drug-resistant (MDR) strains was found in new (6 %) and retreatment patients (35 %) across all sentinel sites, with the highest prevalence amongst retreatment patients in Bamako, Mali (59 %) and the two Nigerian sites in Ibadan and Lagos (39 % and 66 %). In Lagos, MDR is already spreading actively amongst 32 % of new patients. Pre-extensively drug-resistant (pre-XDR) isolates are present in all sites, with Ghana showing the highest proportion (35 % of MDR). In Ghana and Togo, pre-XDR isolates are circulating amongst new patients. West African drug-resistance prevalence poses a previously underestimated, yet serious public health threat, and our estimates obtained differ significantly from previous World Health Organisation (WHO) estimates. Therefore, our data are reshaping current concepts and are essential in informing WHO and public health strategists to implement urgently

  5. Time-programmable drug dosing allows the manipulation, suppression and reversal of antibiotic drug resistance in vitro

    OpenAIRE

    Yoshida, Mari; Galiñanes Reyes, Sabrina Galiñanes; Tsuda, Soichiro; Horinouchi, Takaaki; Furusawa, Chikara; Cronin, Leroy

    2017-01-01

    Multi-drug strategies have been attempted to prolong the efficacy of existing antibiotics, but with limited success. Here we show that the evolution of multi-drug-resistant Escherichia coli can be manipulated in vitro by administering pairs of antibiotics and switching between them in ON/OFF manner. Using a multiplexed cell culture system, we find that switching between certain combinations of antibiotics completely suppresses the development of resistance to one of the antibiotics. Using thi...

  6. Infectious drug resistance during an outbreak of salmonellosis

    International Nuclear Information System (INIS)

    Botha, P.; Hirsch, S.; Harley, E.; Elisha, G.; Pratt, K.; Bain, A.; Destroo, L.

    1980-01-01

    The sudden acquisition of aminoglycoside resistance among Salmonella group C 1 isolates causing summer diarrhoea raised the possibility of plasmid-mediated resistance. The demonstration of circular DNA species in the resistant, but not in the sensitive salmonellae and the transfer by conjugation of antibiotic resistance to a sensitive strain of Escherichia coli, was consistent with plasmid-mediated resistance

  7. [Mycobacterium tuberculosis drug resistance in HIV patients in Baixada Santista, São Paulo, Brazil].

    Science.gov (United States)

    Rozman, Luciana Martins; Santo, Augusto Hasiak; Rozman, Mauro Abrahão

    2007-05-01

    Since the early 1990s, an increase in Mycobacterium tuberculosis drug resistance has been reported, with high prevalence among HIV+ patients. We evaluated the sensitivity patterns of M. tuberculosis, resistance rate, and predisposing factors among HIV+ patients in Santos, São Vicente, Cubatão, Praia Grande, and Guarujá, São Paulo State, Brazil. The medical charts of 301 patients with positive cultures for M. tuberculosis from 1993 to 2003 were reviewed. Resistance occurred in 57 patients (18.9%), as follows: 32 (10.6%) displayed multidrug-resistant tuberculosis (resistant to at least Rifampicin and Isoniazid); 4 (1.3%) were resistant to two or more drugs; and 21 (7%) were resistant to a single drug. Acquired resistance was observed in 70.1% of cases. Drug resistance was significantly associated with previous tuberculosis treatment, duration of HIV diagnosis, and previous hospitalization. In logistic regression analysis, only previous tuberculosis treatment adjusted by age remained as an independent risk factor (OR = 5.49; 95%CI: 2.60-11.60). Drug resistance to at least one drug in 18.9% and multidrug resistance in 10.6% of cases highlight the relevance of this problem in HIV patients in the Baixada Santista.

  8. Drug ratio-dependent antagonism: a new category of multidrug resistance and strategies for its circumvention.

    Science.gov (United States)

    Harasym, Troy O; Liboiron, Barry D; Mayer, Lawrence D

    2010-01-01

    A newly identified form of multidrug resistance (MDR) in tumor cells is presented, pertaining to the commonly encountered resistance of cancer cells to anticancer drug combinations at discrete drug:drug ratios. In vitro studies have revealed that whether anticancer drug combinations interact synergistically or antagonistically can depend on the ratio of the combined agents. Failure to control drug ratios in vivo due to uncoordinated pharmacokinetics could therefore lead to drug resistance if tumor cells are exposed to antagonistic drug ratios. Consequently, the most efficacious drug combination may not occur at the typically employed maximum tolerated doses of the combined drugs if this leads to antagonistic ratios in vivo after administration and resistance to therapeutic effects of the drug combination. Our approach to systematically screen a wide range of drug ratios and concentrations and encapsulate the drug combination in a liposomal delivery vehicle at identified synergistic ratios represents a means to mitigate this drug ratio-dependent MDR mechanism. The in vivo efficacy of the improved agents (CombiPlex formulations) is demonstrated and contrasted with the decreased efficacy when drug combinations are exposed to tumor cells in vivo at antagonistic ratios.

  9. Primary antiretroviral drug resistance among HIV type 1-infected individuals in Brazil.

    Science.gov (United States)

    Sprinz, Eduardo; Netto, Eduardo M; Patelli, Maria; Lima, J S; Lima, Maria Patelli J S; Furtado, Juvênao J D; da Eira, Margareth; Zajdenverg, Roberto; Madruga, José V; Lewi, David S; Machado, Alcyone A; Pedro, Rogério J; Soares, Marcelo A

    2009-09-01

    Infection with drug-resistant human immunodeficiency virus type 1 (HIV-1) has been documented in all countries that have surveyed for it and may result in an unfavorable response to therapy. The prevalence and characteristics of individuals with transmitted resistance to antiretroviral drugs have been scarcely described in Brazil. We performed antiretroviral resistance testing prior to initiation of therapy in 400 subjects enrolled from 20 centers in 13 Brazilian cities between March and September 2007. Genotyping was conducted using PCR-amplified HIV pol products by automated sequencing, and genotype interpretation was done according to the IAS-USA consensus. Of 400 eligible participants, 387 (95.8%) were successfully tested. Seven percent of antiretroviral-naive patients carried viruses with one or more major mutation associated with drug resistance. The prevalence of these mutations was 1.0% for protease inhibitors, 4.4% for nonnucleoside reverse transcriptase inhibitors, and 1.3% for nucleoside reverse transcriptase inhibitors. The frequency of multidrug resistance among the resistant strains was 13.6%. Among subjects infected with drug-resistant virus, the majority were infected with subtype B viruses (91%). Subjects from the city of São Paulo had higher transmitted resistance mutations compared to the rest of the country. Reporting a partner taking antiretroviral medications was associated with a higher chance of harboring HIV variants with major drug resistance mutations [odds ratio = 2.57 (95% confidence interval, 1.07-6.16); p = 0.014]. Resistance testing in drug-naive individuals identified 7% of subjects with mutations associated with reduced susceptibility to antiretroviral drugs. Continued surveillance of drug-resistant HIV-1 in Brazil is warranted when guidelines for HIV prophylaxis and treatment are updated. Resistance testing among drug-naive patients prior to treatment initiation should be considered, mainly directed at subjects whose partners are

  10. Glucuronidation as a mechanism of intrinsic drug resistance in colon cancer cells: contribution of drug transport proteins

    NARCIS (Netherlands)

    Cummings, Jeffrey; Zelcer, Noam; Allen, John D.; Yao, Denggao; Boyd, Gary; Maliepaard, Mark; Friedberg, Thomas H.; Smyth, John F.; Jodrell, Duncan I.

    2004-01-01

    We have recently shown that drug conjugation catalysed by UDP-glucuronosyltransferases (UGTs) functions as an intrinsic mechanism of resistance to the topoisomerase I inhibitors 7-ethyl-10-hydroxycamptothecin and NU/ICRF 505 in human colon cancer cells and now report on the role of drug transport in

  11. Automated sequence analysis and editing software for HIV drug resistance testing

    NARCIS (Netherlands)

    Struck, Daniel; Wallis, Carole L.; Denisov, Gennady; Lambert, Christine; Servais, Jean-Yves; Viana, Raquel V.; Letsoalo, Esrom; Bronze, Michelle; Aitken, Sue C.; Schuurman, Rob; Stevens, Wendy; Schmit, Jean Claude; Rinke de Wit, Tobias; Perez Bercoff, Danielle

    2012-01-01

    Background: Access to antiretroviral treatment in resource-limited-settings is inevitably paralleled by the emergence of HIV drug resistance. Monitoring treatment efficacy and HIV drugs resistance testing are therefore of increasing importance in resource-limited settings. Yet low-cost technologies

  12. Surveillance of extensively drug-resistant tuberculosis in Europe, 2003-2007.

    NARCIS (Netherlands)

    Devaux, I.; Manissero, D.; Fernandez de la Hoz, K.; Kremer, K.; Soolingen, D. van

    2010-01-01

    This paper describes the results of second-line drug (SLD) susceptibility tests among multidrug-resistant tuberculosis (MDR TB) cases reported in 20 European countries aiming to identify extensively drug-resistant tuberculosis (XDR TB) cases. A project on molecular surveillance of MDR TB cases was

  13. Exploring Culturally Specific Drug Resistance Strategies of Hawaiian Youth in Rural Communities

    Science.gov (United States)

    Okamoto, Scott K.; Po'a-Kekuawela, Ka'ohinani; Chin, Coralee I. H.; Nebre, La Risa H.; Helm, Susana

    2010-01-01

    This qualitative study examined the drug resistance strategies of Hawaiian youth residing in rural communities in Hawai'i. Forty seven youth participated in 14 focus groups which focused on the social and environmental context of drug use for these youth. The findings indicated that there were 47 references to resistance strategies used in drug…

  14. Extremely Drug-Resistant Salmonella enterica Serovar Senftenberg Infections in Patients in Zambia

    DEFF Research Database (Denmark)

    Hendriksen, Rene S.; Joensen, Katrine Grimstrup; Lukwesa-Musyani, Chileshe

    2013-01-01

    Two cases of extremely drug-resistant Salmonella enterica serovar Senftenberg isolated from patients in Zambia were investigated by utilizing MIC determinations and whole-genome sequencing. The isolates were resistant to, and harbored genes toward, nine drug classes, including fluoroquinolones an...... and extended-spectrum cephalosporins, contained two plasmid replicons, and differed by 93 single-nucleotide polymorphisms....

  15. Relationship between National TB program and prevalence of TB drug resistance in Algeria, 1965 to 2013

    Directory of Open Access Journals (Sweden)

    Fadila Boulahbal

    2015-01-01

    The different steps will be presented of the development of the National TB program in Algeria between 1964 and 2014, and in the same way the variations of the prevalence rate of TB drug resistance to demonstrate that the drug resistance surveillance is an acceptable indicator of the performance of TB control program in the country.

  16. Efficacy of verapamil as an adjunctive treatment in children with drug-resistant epilepsy

    DEFF Research Database (Denmark)

    Nicita, Francesco; Spalice, Alberto; Papetti, Laura

    2014-01-01

    Verapamil, a voltage-gated calcium channel blocker, has been occasionally reported to have some effect on reducing seizure frequency in drug-resistant epilepsy or status epilepticus. We aimed to investigate the efficacy of verapamil as add-on treatment in children with drug-resistant epilepsy....

  17. Multi-drug resistant tuberculosis in the Netherlands : Personalised treatment and outcome

    NARCIS (Netherlands)

    van Altena, Richard

    2016-01-01

    Tuberculosis (TB) caused by bacilli that are resistant to the two major drugs, rifampicin and isoniazid is defined as Multi-Drug Resistant TB or MDRTB. MDRTB kills around 50% of people affected around the world. In contrast, treatment results of MDR-TB in the Netherlands (1985-2013) have

  18. Antituberculosis drug resistance in the south of Vietnam: prevalence and trends

    NARCIS (Netherlands)

    Huong, Nguyen T.; Lan, Nguyen T. N.; Cobelens, Frank G. J.; Duong, Bui D.; Co, Nguyen V.; Bosman, Maarten C.; Kim, Sang-Jae; van Soolingen, Dick; Borgdorff, Martien W.

    2006-01-01

    BACKGROUND: There is limited evidence that the DOTS (directly observed therapy, short course) strategy for tuberculosis (TB) control can contain the emergence and spread of drug resistance in the absence of second-line treatment. We compared drug-resistance levels between 1996 and 2001 in the south

  19. Primary drug resistance among pulmonary treatment-naïve tuberculosis patients in Amazonas State, Brazil.

    Science.gov (United States)

    da Silva Garrido, M; Ramasawmy, R; Perez-Porcuna, T M; Zaranza, E; Chrusciak Talhari, A; Martinez-Espinosa, F E; Bührer-Sékula, S

    2014-05-01

    Multidrug-resistant tuberculosis (MDR-TB) is the main indicator of previous treatment in tuberculosis (TB) patients. MDR-TB among treatment-naïve patients indicates infection with drug-resistant Mycobacterium tuberculosis strains, and such cases are considered primary drug-resistant cases. To estimate the prevalence of drug resistance in pulmonary TB (PTB) treatment-naïve patients and to identify the socio-demographic and clinical characteristics of the resistant population. A total of 205 treatment-naïve PTB patients from Manaus, Amazonas State, Brazil, were enrolled. Drug susceptibility testing (DST) was performed on all positive mycobacterial cultures using the 1% proportion method. Positive M. tuberculosis cultures were obtained from only 175 patients for DST. The prevalence of primary MDR-TB was 1.7% (3/175); 14.3% (25/175) of the cultures presented resistance to at least one of the drugs. Resistance to streptomycin, isoniazid, rifampicin and ethambutol was respectively 8.6%, 6.9%, 3.4% and 2.3%. An association between TB patients with resistance to more than one drug and known previous household contact with a TB patient was observed (P= 0.008, OR 6.7, 95%CI 1.2-67.3). Although the prevalence of primary MDR-TB currently is relatively low, it may become a major public health problem if tailored treatment is not provided, as resistance to more than one drug is significantly associated with household contact.

  20. Fitness trade-offs in the evolution of dihydrofolate reductase and drug resistance in Plasmodium falciparum.

    Directory of Open Access Journals (Sweden)

    Marna S Costanzo

    Full Text Available Patterns of emerging drug resistance reflect the underlying adaptive landscapes for specific drugs. In Plasmodium falciparum, the parasite that causes the most serious form of malaria, antifolate drugs inhibit the function of essential enzymes in the folate pathway. However, a handful of mutations in the gene coding for one such enzyme, dihydrofolate reductase, confer drug resistance. Understanding how evolution proceeds from drug susceptibility to drug resistance is critical if new antifolate treatments are to have sustained usefulness.We use a transgenic yeast expression system to build on previous studies that described the adaptive landscape for the antifolate drug pyrimethamine, and we describe the most likely evolutionary trajectories for the evolution of drug resistance to the antifolate chlorcycloguanil. We find that the adaptive landscape for chlorcycloguanil is multi-peaked, not all highly resistant alleles are equally accessible by evolution, and there are both commonalities and differences in adaptive landscapes for chlorcycloguanil and pyrimethamine.Our findings suggest that cross-resistance between drugs targeting the same enzyme reflect the fitness landscapes associated with each particular drug and the position of the genotype on both landscapes. The possible public health implications of these findings are discussed.

  1. Antimalarial Drug Resistance: Literature Review and Activities and Findings of the ICEMR Network.

    Science.gov (United States)

    Cui, Liwang; Mharakurwa, Sungano; Ndiaye, Daouda; Rathod, Pradipsinh K; Rosenthal, Philip J

    2015-09-01

    Antimalarial drugs are key tools for the control and elimination of malaria. Recent decreases in the global malaria burden are likely due, in part, to the deployment of artemisinin-based combination therapies. Therefore, the emergence and potential spread of artemisinin-resistant parasites in southeast Asia and changes in sensitivities to artemisinin partner drugs have raised concerns. In recognition of this urgent threat, the International Centers of Excellence for Malaria Research (ICEMRs) are closely monitoring antimalarial drug efficacy and studying the mechanisms underlying drug resistance. At multiple sentinel sites of the global ICEMR network, research activities include clinical studies to track the efficacies of antimalarial drugs, ex vivo/in vitro assays to measure drug susceptibilities of parasite isolates, and characterization of resistance-mediating parasite polymorphisms. Taken together, these efforts offer an increasingly comprehensive assessment of the efficacies of antimalarial therapies, and enable us to predict the emergence of drug resistance and to guide local antimalarial drug policies. Here we briefly review worldwide antimalarial drug resistance concerns, summarize research activities of the ICEMRs related to drug resistance, and assess the global impacts of the ICEMR programs. © The American Society of Tropical Medicine and Hygiene.

  2. Pretreatment HIV drug resistance results in virological failure and accumulation of additional resistance mutations in Ugandan children

    NARCIS (Netherlands)

    Kityo, Cissy; Boerma, Ragna S.; Sigaloff, Kim C. E.; Kaudha, Elizabeth; Calis, Job C. J.; Musiime, Victor; Balinda, Sheila; Nakanjako, Rita; Boender, T. Sonia; Mugyenyi, Peter N.; Rinke de Wit, Tobias F.

    2017-01-01

    Background: Pretreatment HIV drug resistance (PDR) can impair virological response to ART, jeopardizing effective treatment for children. Methods: Children aged <12 years initiated first-line ART in Uganda during 2010-11. Baseline and 6 monthly viral load (VL) and genotypic resistance testing if VL.

  3. HIV drug resistance in infants increases with changing prevention of mother-to-child transmission regimens.

    Science.gov (United States)

    Poppe, Lisa K; Chunda-Liyoka, Catherine; Kwon, Eun H; Gondwe, Clement; West, John T; Kankasa, Chipepo; Ndongmo, Clement B; Wood, Charles

    2017-08-24

    The objectives of this study were to determine HIV drug resistance (HIVDR) prevalence in Zambian infants upon diagnosis, and to determine how changing prevention of mother-to-child transmission (PMTCT) drug regimens affect drug resistance. Dried blood spot (DBS) samples from infants in the Lusaka District of Zambia, obtained during routine diagnostic screening, were collected during four different years representing three different PMTCT drug treatment regimens. DNA extracted from dried blood spot samples was used to sequence a 1493 bp region of the reverse transcriptase gene. Sequences were analyzed via the Stanford HIVDRdatabase (http://hivdb.standford.edu) to screen for resistance mutations. HIVDR in infants increased from 21.5 in 2007/2009 to 40.2% in 2014. Nonnucleoside reverse transcriptase inhibitor resistance increased steadily over the sampling period, whereas nucleoside reverse transcriptase inhibitor resistance and dual class resistance both increased more than threefold in 2014. Analysis of drug resistance scores in each group revealed increasing strength of resistance over time. In 2014, children with reported PMTCT exposure, defined as infant prophylaxis and/or maternal treatment, showed a higher prevalence and strength of resistance compared to those with no reported exposure. HIVDR is on the rise in Zambia and presents a serious problem for the successful lifelong treatment of HIV-infected children. PMTCT affects both the prevalence and strength of resistance and further research is needed to determine how to mitigate its role leading to resistance.

  4. (MRSA) and E. coli Multiple Drug Resistance (MDR)

    African Journals Online (AJOL)

    Background: Staphylococcus aureus, methicillin-resistant and Escherichia coli, multidrug-resistant included in the list of antibiotic-resistant priority pathogens from WHO. As multidrug-resistant bacteria problem is increasing, it is necessary to probe new sources for identifying antimicrobial compounds. Medicinal plants ...

  5. Combination Effect of Antituberculosis Drugs and Ethanolic Extract of Selected Medicinal Plants against Multi-Drug Resistant Mycobacterium tuberculosis Isolates

    Science.gov (United States)

    Fauziyah, Prabasiwi Nur; Sukandar, Elin Yulinah; Ayuningtyas, Dhyan Kusuma

    2017-01-01

    Adverse drug reaction and resistance to antituberculosis drugs remain the causes of tuberculosis therapeutic failure. This research aimed to find the combination effect of standard antituberculosis drugs with Hibiscus sabdariffa L., Kaempferia galanga L., and Piper crocatum N.E. Br against multi-drug resistant (MDR) Mycobacterium tuberculosis isolates. Two MDR strains (i.e., isoniazid/ethambutol resistant and rifampicin/streptomycin resistant) of M. tuberculosis were inoculated in Löwenstein–Jensen medium containing a combination of standard antituberculosis drugs and ethanolic extracts of H. sabdariffa calyces, K. galanga rhizomes, and P. crocatum leaves using various concentration combinations of drug and extract. The colony numbers were observed for 8 weeks. The effect of the combination was analyzed using the proportion method which was calculated by the mean percentage of inhibition reduction in a number of colonies on drug–extract containing medium compared to extract-free control medium. The results showed that all three plant extracts achieved good combination effects with rifampicin against the rifampicin/streptomycin resistant strain. Antagonistic effects were, however, observed with streptomycin, ethambutol and isoniazid, therefore calling for caution when using these plants in combination with antituberculosis treatment. PMID:28335544

  6. Tumor Heterogeneity, Single-Cell Sequencing, and Drug Resistance

    Directory of Open Access Journals (Sweden)

    Felix Schmidt

    2016-06-01

    Full Text Available Tumor heterogeneity has been compared with Darwinian evolution and survival of the fittest. The evolutionary ecosystem of tumors consisting of heterogeneous tumor cell populations represents a considerable challenge to tumor therapy, since all genetically and phenotypically different subpopulations have to be efficiently killed by therapy. Otherwise, even small surviving subpopulations may cause repopulation and refractory tumors. Single-cell sequencing allows for a better understanding of the genomic principles of tumor heterogeneity and represents the basis for more successful tumor treatments. The isolation and sequencing of single tumor cells still represents a considerable technical challenge and consists of three major steps: (1 single cell isolation (e.g., by laser-capture microdissection, fluorescence-activated cell sorting, micromanipulation, whole genome amplification (e.g., with the help of Phi29 DNA polymerase, and transcriptome-wide next generation sequencing technologies (e.g., 454 pyrosequencing, Illumina sequencing, and other systems. Data demonstrating the feasibility of single-cell sequencing for monitoring the emergence of drug-resistant cell clones in patient samples are discussed herein. It is envisioned that single-cell sequencing will be a valuable asset to assist the design of regimens for personalized tumor therapies based on tumor subpopulation-specific genetic alterations in individual patients.

  7. Mitochondrial ROS and cancer drug resistance: Implications for therapy.

    Science.gov (United States)

    Okon, Imoh S; Zou, Ming-Hui

    2015-10-01

    Under physiological conditions, a well-coordinated and balanced redox system exists to ensure that reactive oxygen species (ROS) are appropriately utilized to accomplish specific functions, such as signaling and protein regulation. The influence of ROS within malignant cells, whether for good or bad may depend on several factors, such as tumor and tissue type, disease stage, treatment strategy, as well as duration, specificity and levels of ROS. What then are the known roles of ROS in cancer? Firstly, ROS significantly impacts cancer phenotypes. Secondly, the oxidative ROS property responsible for killing cancer cells, also impact secondary signaling networks. Thirdly, a strong correlation exist between ROS and genetic instability which may promote mutations. Finally, emerging observations suggest a role for mitochondrial ROS in cancer drug resistance, with implications for therapy. The mitochondria is a key regulator of metabolic-redox (meta-redox) alterations within cancer cells. Like a double-edged sword, mitochondrial ROS perturbations in cancer therapy may be beneficial or detrimental. However, harnessing ROS-specific cancer-targeting benefits remain a major challenge. Published by Elsevier Ltd.

  8. Multimodal neuroimaging in presurgical evaluation of drug-resistant epilepsy.

    Science.gov (United States)

    Zhang, Jing; Liu, Weifang; Chen, Hui; Xia, Hong; Zhou, Zhen; Mei, Shanshan; Liu, Qingzhu; Li, Yunlin

    2014-01-01

    Intracranial EEG (icEEG) monitoring is critical in epilepsy surgical planning, but it has limitations. The advances of neuroimaging have made it possible to reveal epileptic abnormalities that could not be identified previously and improve the localization of the seizure focus and the vital cortex. A frequently asked question in the field is whether non-invasive neuroimaging could replace invasive icEEG or reduce the need for icEEG in presurgical evaluation. This review considers promising neuroimaging techniques in epilepsy presurgical assessment in order to address this question. In addition, due to large variations in the accuracies of neuroimaging across epilepsy centers, multicenter neuroimaging studies are reviewed, and there is much need for randomized controlled trials (RCTs) to better reveal the utility of presurgical neuroimaging. The results of multiple studies indicate that non-invasive neuroimaging could not replace invasive icEEG in surgical planning especially in non-lesional or extratemporal lobe epilepsies, but it could reduce the need for icEEG in certain cases. With technical advances, multimodal neuroimaging may play a greater role in presurgical evaluation to reduce the costs and risks of epilepsy surgery, and provide surgical options for more patients with drug-resistant epilepsy.

  9. A Nanolayer Copper Coating for Prevention Nosocomial Multi-Drug Resistant Infections

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-2-0066 TITLE: A Nanolayer Copper Coating for Prevention Nosocomial Multi- drug Resistant Infections PRINCIPAL...SUBTITLE A Nanolayer Copper Coating for Prevention Nosocomial Multi- drug Resistant Infections 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-2-0066 5c...for in vitro antimicrobial efficacy and mammalian cell cytotoxicity potential using standardized assays that are approved by the Food and Drug

  10. Antimicrobial Drug Resistance: "Prediction Is Very Difficult, Especially about the Future"1

    Science.gov (United States)

    2005-01-01

    Evolution of bacteria towards resistance to antimicrobial drugs, including multidrug resistance, is unavoidable because it represents a particular aspect of the general evolution of bacteria that is unstoppable. Therefore, the only means of dealing with this situation is to delay the emergence and subsequent dissemination of resistant bacteria or resistance genes. Resistance to antimicrobial drugs in bacteria can result from mutations in housekeeping structural or regulatory genes. Alternatively, resistance can result from the horizontal acquisition of foreign genetic information. The 2 phenomena are not mutually exclusive and can be associated in the emergence and more efficient spread of resistance. This review discusses the predictable future of the relationship between antimicrobial drugs and bacteria. PMID:16318687

  11. Antimicrobial Drug-Resistant Shiga Toxin-Producing Escherichia coli Infections, Michigan, USA.

    Science.gov (United States)

    Mukherjee, Sanjana; Mosci, Rebekah E; Anderson, Chase M; Snyder, Brian A; Collins, James; Rudrik, James T; Manning, Shannon D

    2017-09-01

    High frequencies of antimicrobial drug resistance were observed in O157 and non-O157 Shiga toxin-producing E. coli strains recovered from patients in Michigan during 2010-2014. Resistance was more common in non-O157 strains and independently associated with hospitalization, indicating that resistance could contribute to more severe disease outcomes.

  12. Engineered reversal of drug resistance in cancer cells--metastases suppressor factors as change agents.

    Science.gov (United States)

    Yadav, Vinod Kumar; Kumar, Akinchan; Mann, Anita; Aggarwal, Suruchi; Kumar, Maneesh; Roy, Sumitabho Deb; Pore, Subrata Kumar; Banerjee, Rajkumar; Mahesh Kumar, Jerald; Thakur, Ram Krishna; Chowdhury, Shantanu

    2014-01-01

    Building molecular correlates of drug resistance in cancer and exploiting them for therapeutic intervention remains a pressing clinical need. To identify factors that impact drug resistance herein we built a model that couples inherent cell-based response toward drugs with transcriptomes of resistant/sensitive cells. To test this model, we focused on a group of genes called metastasis suppressor genes (MSGs) that influence aggressiveness and metastatic potential of cancers. Interestingly, modeling of 84 000 drug response transcriptome combinations predicted multiple MSGs to be associated with resistance of different cell types and drugs. As a case study, on inducing MSG levels in a drug resistant breast cancer line resistance to anticancer drugs caerulomycin, camptothecin and topotecan decreased by more than 50-60%, in both culture conditions and also in tumors generated in mice, in contrast to control un-induced cells. To our knowledge, this is the first demonstration of engineered reversal of drug resistance in cancer cells based on a model that exploits inherent cellular response profiles.

  13. Overcoming ABC transporter-mediated multidrug resistance: Molecular mechanisms and novel therapeutic drug strategies.

    Science.gov (United States)

    Li, Wen; Zhang, Han; Assaraf, Yehuda G; Zhao, Kun; Xu, Xiaojun; Xie, Jinbing; Yang, Dong-Hua; Chen, Zhe-Sheng

    2016-07-01

    Multidrug resistance is a key determinant of cancer chemotherapy failure. One of the major causes of multidrug resistance is the enhanced efflux of drugs by membrane ABC transporters. Targeting ABC transporters projects a promising approach to eliminating or suppressing drug resistance in cancer treatment. To reveal the functional mechanisms of ABC transporters in drug resistance, extensive studies have been conducted from identifying drug binding sites to elucidating structural dynamics. In this review article, we examined the recent crystal structures of ABC proteins to depict the functionally important structural elements, such as domains, conserved motifs, and critical amino acids that are involved in ATP-binding and drug efflux. We inspected the drug-binding sites on ABC proteins and the molecular mechanisms of various substrate interactions with the drug binding pocket. While our continuous battle against drug resistance is far from over, new approaches and technologies have emerged to push forward our frontier. Most recent developments in anti-MDR strategies include P-gp inhibitors, RNA-interference, nano-medicines, and delivering combination strategies. With the advent of the 'Omics' era - genomics, epigenomics, transcriptomics, proteomics, and metabolomics - these disciplines play an important role in fighting the battle against chemoresistance by further unraveling the molecular mechanisms of drug resistance and shed light on medical therapies that specifically target MDR. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Bedaquiline and Linezolid for Extensively Drug-Resistant Tuberculosis in Pregnant Woman.

    Science.gov (United States)

    Jaspard, Marie; Elefant-Amoura, Elisabeth; Melonio, Isabelle; De Montgolfier, Inés; Veziris, Nicolas; Caumes, Eric

    2017-10-01

    A woman with extremely drug-resistant tuberculosis treated with a drug regimen including linezolid and bedaquiline during her last 3 weeks of pregnancy gave birth to a child without abnormalities. No fetal toxicities were noted by 2 years after delivery. This drug combination might be safe during the late third trimester of pregnancy.

  15. Genotypic drug resistance and long-term mortality in patients with triple-class antiretroviral drug failure

    DEFF Research Database (Denmark)

    Lohse, Nicolai; Jørgensen, Louise B; Kronborg, Gitte

    2007-01-01

    . The median number of resistance mutations was eight (interquartile range 2-10), and 81 (61%) patients had mutations conferring resistance towards all three major drug classes. In a regression model adjusted for CD4+ T-cell count, HIV RNA, year of TCF, age, gender and previous inferior antiretroviral therapy...... of death according to the number of mutations and individual mutations was estimated by Cox regression analysis and adjusted for potential confounders. RESULTS: Resistance tests were done for 133 of the 179 patients who experienced TCF. The median number of resistance mutations was eight (interquartile...... range 2-10), and 81 (61%) patients had mutations conferring resistance towards all three major drug classes. In a regression model adjusted for CD4+ T-cell count, HIV RNA, year of TCF, age, gender and previous inferior antiretroviral therapy, harbouring > or =9 versus

  16. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Science.gov (United States)

    Jezmir, Julia; Cohen, Ted; Zignol, Matteo; Nyakan, Edwin; Hedt-Gauthier, Bethany L; Gardner, Adrian; Kamle, Lydia; Injera, Wilfred; Carter, E Jane

    2016-01-01

    To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB) in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS) methodology. The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance. This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains. Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  17. Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya.

    Directory of Open Access Journals (Sweden)

    Julia Jezmir

    Full Text Available To classify the prevalence of multi-drug resistant tuberculosis (MDR-TB in two different geographic settings in western Kenya using the Lot Quality Assurance Sampling (LQAS methodology.The prevalence of drug resistance was classified among treatment-naïve smear positive TB patients in two settings, one rural and one urban. These regions were classified as having high or low prevalence of MDR-TB according to a static, two-way LQAS sampling plan selected to classify high resistance regions at greater than 5% resistance and low resistance regions at less than 1% resistance.This study classified both the urban and rural settings as having low levels of TB drug resistance. Out of the 105 patients screened in each setting, two patients were diagnosed with MDR-TB in the urban setting and one patient was diagnosed with MDR-TB in the rural setting. An additional 27 patients were diagnosed with a variety of mono- and poly- resistant strains.Further drug resistance surveillance using LQAS may help identify the levels and geographical distribution of drug resistance in Kenya and may have applications in other countries in the African Region facing similar resource constraints.

  18. A review of mechanisms of circumvention and modulation of chemotherapeutic drug resistance.

    Science.gov (United States)

    O'Connor, R

    2009-05-01

    Drug resistance is a serious limitation to the effective treatment of a number of common malignancies. Thirty years of laboratory and clinical research have greatly defined the molecular alterations underlying many drug resistance processes in cancer. Based on this knowledge, strategies to overcome the impact of resistance and increase the efficacy of cancer treatment have been translated from laboratory models to clinical trials. This article reviews laboratory and, in particular, clinical attempts at drug resistance circumvention from early forays in the inhibition of cellular efflux pump-mediated drug resistance through to more selective circumvention agent strategies and into inhibition of the other important mechanisms which can allow cancer cells to survive therapy, such as apoptosis resistance. Despite some promising results to date, resistance inhibition strategies have largely failed due to poor understanding of the pharmacology, dynamics and complexity of the resistance phenotype. With the realisation that new molecularly-targeted agents can also be rendered ineffectual by the actions of resistance mechanisms, a major focus is once again emerging on identifying new strategies/pharmaceuticals which can augment the activity of the arsenal of more conventional cytotoxics and newer targeted anti-cancer drugs. Future tactical directions where old and new resistance strategies may merge to overcome this challenge are discussed.

  19. Different frequencies of drug resistance mutations among HIV-1 subtypes circulating in China: a comprehensive study.

    Directory of Open Access Journals (Sweden)

    Hongshuai Sui

    Full Text Available The rapid spreading of HIV drug resistance is threatening the overall success of free HAART in China. Much work has been done on drug-resistant mutations, however, most of which were based on subtype B. Due to different genetic background, subtypes difference would have an effect on the development of drug-resistant mutations, which has already been proved by more and more studies. In China, the main epidemic subtypes are CRF07_BC, CRF08_BC, Thai B and CRF01_AE. The depiction of drug resistance mutations in those subtypes will be helpful for the selection of regimens for Chinese. In this study, the distributions difference of amino acids at sites related to HIV drug resistance were compared among subtype B, CRF01_AE, CRF07_BC and CRF08_BC strains prevalent in China. The amino acid composition of sequences belonging to different subtypes, which were obtained from untreated and treated individuals separately, were also compared. The amino acids proportions of 19 sites in RT among subtype B, CRF01_AE and CRF08_BC have significant difference in drug resistance groups (chi-square test, p<0.05. Genetic barriers analysis revealed that sites 69, 138, 181, 215 and 238 were significantly different among subtypes (Kruskal Wallis test, p<0.05. All subtypes shared three highest prevalent drug resistance sites 103, 181 and 184 in common. Many drug resistant sites in protease show surprising high proportions in almost all subtypes in drug-naïve patients. This is the first comprehensive study in China on different development of drug resistance among different subtypes. The detailed data will lay a foundation for HIV treatment regimens design and improve HIV therapy in China.

  20. Combating mutations in genetic disease and drug resistance: understanding molecular mechanisms to guide drug design.

    Science.gov (United States)

    Albanaz, Amanda T S; Rodrigues, Carlos H M; Pires, Douglas E V; Ascher, David B

    2017-06-01

    Mutations introduce diversity into genomes, leading to selective changes and driving evolution. These changes have contributed to the emergence of many of the current major health concerns of the 21st century, from the development of genetic diseases and cancers to the rise and spread of drug resistance. The experimental systematic testing of all mutations in a system of interest is impractical and not cost-effective, which has created interest in the development of computational tools to understand the molecular consequences of mutations to aid and guide rational experimentation. Areas covered: Here, the authors discuss the recent development of computational methods to understand the effects of coding mutations to protein function and interactions, particularly in the context of the 3D structure of the protein. Expert opinion: While significant progress has been made in terms of innovative tools to understand and quantify the different range of effects in which a mutation or a set of mutations can give rise to a phenotype, a great gap still exists when integrating these predictions and drawing causality conclusions linking variants. This often requires a detailed understanding of the system being perturbed. However, as part of the drug development process it can be used preemptively in a similar fashion to pharmacokinetics predictions, to guide development of therapeutics to help guide the design and analysis of clinical trials, patient treatment and public health policy strategies.

  1. Label-free recognition of drug resistance via impedimetric screening of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Bilge Eker

    Full Text Available We present a novel study on label-free recognition and distinction of drug resistant breast cancer cells (MCF-7 DOX from their parental cells (MCF-7 WT via impedimetric measurements. Drug resistant cells exhibited significant differences in their dielectric properties compared to wild-type cells, exerting much higher extracellular resistance (Rextra . Immunostaining revealed that MCF-7 DOX cells gained a much denser F-actin network upon acquiring drug resistance indicating that remodeling of actin cytoskeleton is probably the reason behind higher Rextra , providing stronger cell architecture. Moreover, having exposed both cell types to doxorubicin, we were able to distinguish these two phenotypes based on their substantially different drug response. Interestingly, impedimetric measurements identified a concentration-dependent and reversible increase in cell stiffness in the presence of low non-lethal drug doses. Combined with a profound frequency analysis, these findings enabled distinguishing distinct cellular responses during drug exposure within four concentration ranges without using any labeling. Overall, this study highlights the possibility to differentiate drug resistant phenotypes from their parental cells and to assess their drug response by using microelectrodes, offering direct, real-time and noninvasive measurements of cell dependent parameters under drug exposure, hence providing a promising step for personalized medicine applications such as evaluation of the disease progress and optimization of the drug treatment of a patient during chemotherapy.

  2. Assessing the potential impact of artemisinin and partner drug resistance in sub-Saharan Africa.

    Science.gov (United States)

    Slater, Hannah C; Griffin, Jamie T; Ghani, Azra C; Okell, Lucy C

    2016-01-06

    Artemisinin and partner drug resistant malaria parasites have emerged in Southeast Asia. If resistance were to emerge in Africa it could have a devastating impact on malaria-related morbidity and mortality. This study estimates the potential impact of artemisinin and partner drug resistance on disease burden in Africa if it were to emerge. Using data from Asia and Africa, five possible artemisinin and partner drug resistance scenarios are characterized. An individual-based malaria transmission model is used to estimate the impact of each resistance scenario on clinical incidence and parasite prevalence across Africa. Artemisinin resistance is characterized by slow parasite clearance and partner drug resistance is associated with late clinical failure or late parasitological failure. Scenarios with high levels of recrudescent infections resulted in far greater increases in clinical incidence compared to scenarios with high levels of slow parasite clearance. Across Africa, it is estimated that artemisinin and partner drug resistance at levels similar to those observed in Oddar Meanchey province in Cambodia could result in an additional 78 million cases over a 5 year period, a 7% increase in cases compared to a scenario with no resistance. A scenario with high levels of slow clearance but no recrudescence resulted in an additional 10 million additional cases over the same period. Artemisinin resistance is potentially a more pressing concern than partner drug resistance due to the lack of viable alternatives. However, it is predicted that a failing partner drug will result in greater increases in malaria cases and morbidity than would be observed from artemisinin resistance only.

  3. European recommendations for the clinical use of HIV drug resistance testing: 2011 update

    DEFF Research Database (Denmark)

    Vandamme, Anne-Mieke; Camacho, Ricardo J; Ceccherini-Silberstein, Francesca

    2011-01-01

    is needed after treatment failure. The Panel recommends genotyping in most situations, using updated and clinically evaluated interpretation systems. It is mandatory that laboratories performing HIV resistance tests take part regularly in external quality assurance programs, and that they consider storing......The European HIV Drug Resistance Guidelines Panel, established to make recommendations to clinicians and virologists, felt that sufficient new information has become available to warrant an update of its recommendations, explained in both pocket guidelines and this full paper. The Panel makes...... the following recommendations concerning the indications for resistance testing: for HIV-1 (i) test earliest sample for protease and reverse transcriptase drug resistance in drug-naive patients with acute or chronic infection; (ii) test protease and reverse transcriptase drug resistance at virologic failure...

  4. Genotypic diversity of multidrug-, quinolone- and extensively drug-resistant Mycobacterium tuberculosis isolates in Thailand.

    Science.gov (United States)

    Disratthakit, Areeya; Meada, Shinji; Prammananan, Therdsak; Thaipisuttikul, Iyarit; Doi, Norio; Chaiprasert, Angkana

    2015-06-01

    Drug-resistant tuberculosis (TB), which includes multidrug-resistant (MDR-TB), quinolone-resistant (QR-TB) and extensively drug-resistant tuberculosis (XDR-TB), is a serious threat to TB control. We aimed to characterize the genotypic diversity of drug-resistant TB clinical isolates collected in Thailand to establish whether the emergence of drug-resistant TB is attributable to transmitted resistance or acquired resistance. We constructed the first molecular phylogeny of MDR-TB (n=95), QR-TB (n=69) and XDR-TB (n=28) in Thailand based on spoligotyping and proposed 24-locus multilocus variable-number of tandem repeat analysis (MLVA). Clustering analysis was performed using the unweighted pair group method with arithmetic mean. Spoligotyping identified the Beijing strain (SIT1) as the most predominant genotype (n=139; 72.4%). The discriminatory power of 0.9235 Hunter-Gaston Discriminatory Index (HGDI) with the 15-locus variable-number tandem repeats of mycobacterial interspersed repetitive units typing was improved to a 0.9574 HGDI with proposed 24-locus MLVA, thereby resulting in the subdivision of a large cluster of Beijing strains (SIT1) into 17 subclusters. We identified the spread of drug-resistant TB clones caused by three different MLVA types in the Beijing strain (SIT1) and a specific clone of XDR-TB caused by a rare genotype, the Manu-ancestor strain (SIT523). Overall, 49.5% of all isolates were clustered. These findings suggest that a remarkable transmission of drug-resistant TB occurred in Thailand. The remaining 50% of drug-resistant TB isolates were unique genotypes, which may have arisen from the individual acquisition of drug resistance. Our results suggest that transmitted and acquired resistance have played an equal role in the emergence of drug-resistant TB. Further characterization of whole genome sequences of clonal strains could help to elucidate the mycobacterial genetic factors relevant for drug resistance, transmissibility and virulence

  5. Antimicrobial drug resistance of Salmonella isolates from meat and humans, Denmark

    DEFF Research Database (Denmark)

    Skov, Marianne Nielsine; Andersen, Jens Strodl; Aabo, Søren

    2007-01-01

    We compared 8,144 Salmonella isolates collected from meat imported to or produced in Denmark, as well as from Danish patients. Isolates from imported meat showed a higher rate of antimicrobial drug resistance, including multidrug resistance, than did isolates from domestic meat. Isolates from...... humans showed resistance rates lower than those found in imported meat but higher than in domestic meat. These findings indicate that programs for controlling resistant Salmonella spp. are a global issue...

  6. Adaptive Landscape by Environment Interactions Dictate Evolutionary Dynamics in Models of Drug Resistance

    Science.gov (United States)

    Ogbunugafor, C. Brandon; Wylie, C. Scott; Diakite, Ibrahim; Weinreich, Daniel M.; Hartl, Daniel L.

    2016-01-01

    The adaptive landscape analogy has found practical use in recent years, as many have explored how their understanding can inform therapeutic strategies that subvert the evolution of drug resistance. A major barrier to applications of these concepts is a lack of detail concerning how the environment affects adaptive landscape topography, and consequently, the outcome of drug treatment. Here we combine empirical data, evolutionary theory, and computer simulations towards dissecting adaptive landscape by environment interactions for the evolution of drug resistance in two dimensions—drug concentration and drug type. We do so by studying the resistance mediated by Plasmodium falciparum dihydrofolate reductase (DHFR) to two related inhibitors—pyrimethamine and cycloguanil—across a breadth of drug concentrations. We first examine whether the adaptive landscapes for the two drugs are consistent with common definitions of cross-resistance. We then reconstruct all accessible pathways across the landscape, observing how their structure changes with drug environment. We offer a mechanism for non-linearity in the topography of accessible pathways by calculating of the interaction between mutation effects and drug environment, which reveals rampant patterns of epistasis. We then simulate evolution in several different drug environments to observe how these individual mutation effects (and patterns of epistasis) influence paths taken at evolutionary “forks in the road” that dictate adaptive dynamics in silico. In doing so, we reveal how classic metrics like the IC50 and minimal inhibitory concentration (MIC) are dubious proxies for understanding how evolution will occur across drug environments. We also consider how the findings reveal ambiguities in the cross-resistance concept, as subtle differences in adaptive landscape topography between otherwise equivalent drugs can drive drastically different evolutionary outcomes. Summarizing, we discuss the results with

  7. HIV-1 evolution, drug resistance, and host genetics: The Indian scenario

    Directory of Open Access Journals (Sweden)

    U Shankarkumar

    2009-03-01

    Full Text Available U Shankarkumar, A Pawar, K GhoshNational Institute of Immunohaematology (ICMR, KEM Hospital, Parel, Mumbai, Maharashtra, IndiaAbstract: A regimen with varied side effects and compliance is of paramount importance to prevent viral drug resistance. Most of the drug-resistance studies, as well as interpretation algorithms, are based on sequence data from HIV-1 subtype B viruses. Increased resistance to antiretroviral drugs leads to poor prognosis by restricting treatment options. Due to suboptimal adherence to antiretroviral therapy there is an emergence of drug-resistant HIV-1 strains. The other factors responsible for this viral evolution are antiretroviral drug types and host genetics, especially major histocompatibility complex (MHC. Both primary and secondary drug resistances occur due to mutations in specific epitopes of viral protein regions which may influence the T cell recognition by immune system through MHC Class I and class II alleles. Mutations in viral epitopes enable the virus to escape the immune system. New drugs under clinical trials are being added but their exorbitant costs limit their access in developing countries. Thus the environmental consequences and, the impact of both viral and host genetic variations on the therapy in persons infected with HIV-1 clade C from India need to be determined.Keywords: HIV-1 C drug resistance, virus adaptation, HARRT, India

  8. Prevalence and patterns of HIV transmitted drug resistance in Guatemala.

    Science.gov (United States)

    Avila-Ríos, Santiago; Mejía-Villatoro, Carlos R; García-Morales, Claudia; Soto-Nava, Maribel; Escobar, Ingrid; Mendizabal, Ricardo; Girón, Amalia; García, Leticia; Reyes-Terán, Gustavo

    2011-12-01

    To assess human immunodeficiency virus (HIV) diversity and the prevalence of transmitted drug resistance (TDR) in Guatemala. One hundred forty-five antiretroviral treatment-naïve patients referred to the Roosevelt Hospital in Guatemala City were enrolled from October 2010 to March 2011. Plasma HIV pol sequences were obtained and TDR was assessed with the Stanford algorithm and the World Health Organization (WHO) TDR surveillance mutation list. HIV subtype B was highly prevalent in Guatemala (96.6%, 140/145), and a 2.8% (4/145) prevalence of BF1 recombinants and 0.7% (1/145) prevalence of subtype C viruses were found. TDR prevalence for the study period was 8.3% (12/145) with the Stanford database algorithm (score > 15) and the WHO TDR surveillance mutation list. Most TDR cases were associated with non-nucleoside reverse transcriptase inhibitors (NNRTIs) (83.3%, 10/12); a low prevalence of nucleoside reverse transcriptase inhibitors and protease inhibitors was observed in the cohort (E138K showed higher frequencies than expected in ART-naïve populations. Higher literacy was associated with a greater risk of TDR (odds ratio 4.14, P = 0.0264). This study represents one of the first efforts to describe HIV diversity and TDR prevalence and trends in Guatemala. TDR prevalence in Guatemala was at the intermediate level. Most TDR cases were associated with NNRTIs. Further and continuous TDR surveillance is necessary to gain more indepth knowledge about TDR spread and trends in Guatemala and to optimize treatment outcomes in the country.

  9. Plasmodium falciparum Drug-Resistant Haplotypes and Population Structure in Postearthquake Haiti, 2010

    Science.gov (United States)

    Morton, Lindsay Carol; Huber, Curtis; Okoth, Sheila Akinyi; Griffing, Sean; Lucchi, Naomi; Ljolje, Dragan; Boncy, Jacques; Oscar, Roland; Townes, David; McMorrow, Meredith; Chang, Michelle A.; Udhayakumar, Venkatachalam; Barnwell, John W.

    2016-01-01

    Chloroquine (CQ) remains the first-line treatment of malaria in Haiti. Given the challenges of conducting in vivo drug efficacy trials in low-endemic settings like Haiti, molecular surveillance for drug resistance markers is a reasonable approach for detecting resistant parasites. In this study, 349 blood spots were collected from suspected malaria cases in areas in and around Port-au-Prince from March to July 2010. Among them, 121 samples that were Plasmodium falciparum positive by polymerase chain reaction were genotyped for drug-resistant pfcrt, pfdhfr, pfdhps, and pfmdr1 alleles. Among the 108 samples that were successfully sequenced for CQ resistant markers in pfcrt, 107 were wild type (CVMNK), whereas one sample carried a CQ-resistant allele (CVIET). Neutral microsatellite genotyping revealed that the CQ-resistant isolate was distinct from all other samples in this study. Furthermore, the remaining parasite specimens appeared to be genetically distinct from other reported Central and South American populations. PMID:27430541

  10. The culturable soil antibiotic resistome: a community of multi-drug resistant bacteria.

    Directory of Open Access Journals (Sweden)

    Fiona Walsh

    Full Text Available Understanding the soil bacterial resistome is essential to understanding the evolution and development of antibiotic resistance, and its spread between species and biomes. We have identified and characterized multi-drug resistance (MDR mechanisms in the culturable soil antibiotic resistome and linked the resistance profiles to bacterial species. We isolated 412 antibiotic resistant bacteria from agricultural, urban and pristine soils. All isolates were multi-drug resistant, of which greater than 80% were resistant to 16-23 antibiotics, comprising almost all classes of antibiotic. The mobile resistance genes investigated, (ESBL, bla NDM-1, and plasmid mediated quinolone resistance (PMQR resistance genes were not responsible for the respective resistance phenotypes nor were they present in the extracted soil DNA. Efflux was demonstrated to play an important role in MDR and many resistance phenotypes. Clinically relevant Burkholderia species are intrinsically resistant to ciprofloxacin but the soil Burkholderia species were not intrinsically resistant to ciprofloxacin. Using a phenotypic enzyme assay we identified the antibiotic specific inactivation of trimethoprim in 21 bacteria from different soils. The results of this study identified the importance of the efflux mechanism in the soil resistome and variations between the intrinsic resistance profiles of clinical and soil bacteria of the same family.

  11. Human Immunodeficiency Virus Type 1 Protease and the Emergence of Drug Resistance

    DEFF Research Database (Denmark)

    Poulsen, Nina Rødtness

    in the virus life cycle has made it a major target for drug development and active site competitive inhibitors have been successful in the battle against HIV. Unfortunately, the massive drug pressure along with high-level replication and lack of proofreading by the viral reverse transcriptase have resulted...... in multi-drug-resistant PRs. Computational analysis of a vast number of inhibitor-resistant HIV-1 PR variants can broaden the knowledge of how and why the mutations arise, which would be a great advantage in the design on resistance-evading inhibitors. Here we present a diverse system to select...

  12. The skill and style to model the evolution of resistance to pesticides and drugs.

    Science.gov (United States)

    2010-07-01

    Resistance to pesticides and drugs led to the development of theoretical models aimed at identifying the main factors of resistance evolution and predicting the efficiency of resistance management strategies. We investigated the various ways in which the evolution of resistance has been modelled over the last three decades, by reviewing 187 articles published on models of the evolution of resistance to all major classes of pesticides and drugs. We found that (i) the technical properties of the model were most strongly influenced by the class of pesticide or drug and the target organism, (ii) the resistance management strategies studied were quite similar for the different classes of pesticides or drugs, except that the refuge strategy was mostly used in models of the evolution of resistance to insecticidal proteins, (iii) economic criteria were rarely used to evaluate the evolution of resistance and (iv) the influence of mutation, migration and drift on the speed of resistance development has been poorly investigated. We propose guidelines for the future development of theoretical models of the evolution of resistance. For instance, we stress the potential need to give more emphasis to the three evolutionary forces migration, mutation and genetic drift rather than simply selection.

  13. Taking aim at a moving target: designing drugs to inhibit drug-resistant HIV-1 reverse transcriptases.

    Science.gov (United States)

    Sarafianos, Stefan G; Das, Kalyan; Hughes, Stephen H; Arnold, Eddy

    2004-12-01

    HIV undergoes rapid genetic variation; this variation is caused primarily by the enormous number of viruses produced daily in an infected individual. Because of this variation, HIV presents a moving target for drug and vaccine development. The variation within individuals has led to the generation of diverse HIV-1 subtypes, which further complicates the development of effective drugs and vaccines. In general, it is more difficult to hit a moving target than a stationary target. Two broad strategies for hitting a moving target (in this case, HIV replication) are to understand the movement and to aim at the portions that move the least. In the case of anti-HIV drug development, the first option can be addressed by understanding the mechanism(s) of drug resistance and developing drugs that effectively inhibit mutant viruses. The second can be addressed by designing drugs that interact with portions of the viral machinery that are evolutionarily conserved, such as enzyme active sites.

  14. Changing patterns of drug-resistant Shigella isolates in egypt.

    Science.gov (United States)

    Abd-Elmeged, Ghada M; Khairy, Rasha M; Abo-Eloyoon, Sahar M; Abdelwahab, Sayed F

    2015-06-01

    The emergence of multidrug resistance (MDR) is a serious problem in treating shigellosis. There are limited existing data examining the change in the antimicrobial resistance profile of Shigella in Egypt. We previously reported that 58% of the Shigella isolates in Egypt were resistant to at least one member of the three different antimicrobial groups. This study was performed to determine the antimicrobial resistance profile of Shigella, determine their possible mechanisms of resistance, and compare their resistance profile to those reported 20 years ago. Stool samples were collected from 500 subjects and processed for the isolation and identification of Shigella. The susceptibility of the isolates to 11 different antimicrobials was determined using the disc diffusion method. Of 500 stool cultures, 24 (4.8%) samples were positive for Shigella. There was a high percentage of resistance to ampicillin (88%), tetracycline (83%), and sulfamethoxazole-trimethoprim (75%). Also, there was a moderate percentage of resistance to chloramphenicol (46%), streptomycin (42%), ceftazidime (33%), and cefotaxime (25%). A lower percentage of resistance was recorded for amikacin, nalidixic acid (17% each), and ofloxacin (7%), while no resistance was found to ciprofloxacin (0%). Twenty-one of the isolates (88%) were resistant to at least three different antimicrobial groups (indicating MDR). The average number of antimicrobial agents to which the Shigella isolates were resistant was 4.3±1.4, while it was 3.4±1.5 in the same locality in 1994. These data demonstrate that there is a marked increase in MDR and change in the resistance patterns of Shigella over the past 20 years.

  15. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae.

    Science.gov (United States)

    Phelan, Jody; Maitra, Arundhati; McNerney, Ruth; Nair, Mridul; Gupta, Antima; Coll, Francesc; Pain, Arnab; Bhakta, Sanjib; Clark, Taane G

    2015-09-01

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae. Copyright © 2015 Asian-African Society for Mycobacteriology. Published by Elsevier Ltd. All rights reserved.

  16. The draft genome of Mycobacterium aurum, a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    KAUST Repository

    Phelan, Jody

    2015-06-04

    Mycobacterium aurum (M. aurum) is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related) to 96.2% for rrs (streptomycin, capreomycin). We observed two homologous genes encoding the catalase-peroxidase enzyme (katG) that is associated with resistance to isoniazid. Similarly, two embB homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum, this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  17. The draft genome of Mycobacterium aurum , a potential model organism for investigating drugs against Mycobacterium tuberculosis and Mycobacterium leprae

    Directory of Open Access Journals (Sweden)

    Jody Phelan

    2015-01-01

    Full Text Available Mycobacterium aurum (M. aurum is an environmental mycobacteria that has previously been used in studies of anti-mycobacterial drugs due to its fast growth rate and low pathogenicity. The M. aurum genome has been sequenced and assembled into 46 contigs, with a total length of 6.02 Mb containing 5684 annotated protein-coding genes. A phylogenetic analysis using whole genome alignments positioned M. aurum close to Mycobacterium vaccae and Mycobacterium vanbaalenii, within a clade related to fast-growing mycobacteria. Large-scale genomic rearrangements were identified by comparing the M. aurum genome to those of Mycobacterium tuberculosis and Mycobacterium leprae. M. aurum orthologous genes implicated in resistance to anti-tuberculosis drugs in M. tuberculosis were observed. The sequence identity at the DNA level varied from 68.6% for pncA (pyrazinamide drug-related to 96.2% for rrs (streptomycin, capreomycin. We observed two homologous genes encoding the catalase-peroxidase enzyme (katG that is associated with resistance to isoniazid. Similarly, two emb B homologues were identified in the M. aurum genome. In addition to describing for the first time the genome of M. aurum , this work provides a resource to aid the use of M. aurum in studies to develop improved drugs for the pathogenic mycobacteria M. tuberculosis and M. leprae.

  18. Diagnostic system strengthening for drug resistant tuberculosis in Nigeria: impact and challenges

    Directory of Open Access Journals (Sweden)

    Gambo Aliyu

    2017-03-01

    Full Text Available Background: The increasing prevalence of drug-resistant tuberculosis and the threat of extensively-drug-resistant tuberculosis in HIV hotspots have made the detection and treatment of drug-resistant tuberculosis in the sub-Saharan Africa setting a global public health priority. Objective: We sought to examine the impact and challenges of tuberculosis diagnostic capacity development for the detection of drug-resistant tuberculosis and bio-surveillance using a modular biosafety level 3 (BSL-3 laboratory in Nigeria. Method: In 2010, the United States President’s Emergency Plan for AIDS Relief (PEPFAR programme, through the Institute of Human Virology at the University of Maryland in Baltimore, Maryland, United States, deployed a modular, BSL-3 laboratory to support the national tuberculosis programme in drug-resistant tuberculosis detection and bio-surveillance for effective tuberculosis prevention and control. Results: From 2010 until present, sputum samples from 11 606 suspected cases in 33 states were screened for drug-resistant tuberculosis. Of those, 1500 (12.9% had mono-resistant tuberculosis strains, and 459 (4.0% cases had multidrug-resistant tuberculosis. Over the lastfour years, 133 scientists were trained in a train-the-trainer programme on advanced tuberculosis culture, drug susceptibility testing, line-probe assays and Xpert® MTB/RIF, in addition to safety operations for biosafety facilities. Power instability, running cost and seasonal dust are notable challenges to optimal performance and scale up. Conclusion: Movable BSL-3 containment laboratories can be deployed to improve diagnostic capacity for drug-resistant tuberculosis and bio-surveillance in settings with limited resources.

  19. HIV drug resistance mutations in proviral DNA from a community treatment program.

    Directory of Open Access Journals (Sweden)

    Anne Derache

    Full Text Available Drug resistance mutations archived in resting memory CD4+ cells may persist despite suppression of HIV RNA to <50 copies/ml. We sequenced pol gene from proviral DNA among viremic and suppressed patients to identify drug resistance mutations.The Peninsula AIDS Research Cohort study enrolled and followed over 2 years 120 HIV infected patients from San Mateo and San Francisco Counties. HIV-1 pol genotyping by bulk sequencing was performed on 38 DNA and RNA from viremic patients and DNA only among 82 suppressed patients at baseline. Antiretroviral susceptibility was predicted by HIVDB.stanford.edu.Among 120 subjects, 81% were on antiretroviral therapy and had been treated for a median time of 7 years. Thirty-two viremic patients showed concordant RNA and DNA genotypes (84%; the discordant profiles were mainly observed in patients with low-level viremia. Among suppressed patients, 21 had drug resistance mutations in proviral DNA (26% with potential resistance to one, two or three ARV classes in 16, 4 and 1 samples respectively.The high level of genotype concordance between DNA and RNA in viremic patients suggested that DNA genotyping might be used to assess drug resistance in resource-limited settings, and further investigation of extracted DNA from dried blood spots is needed. Drug resistance mutations in proviral DNA in 26% of subjects with less than 50 copies/ml pose a risk for the transmission of drug resistant virus with virologic failure, treatment interruption or decreased adherence.

  20. [Detection of CRISPR and its relationship to drug resistance in Shigella].

    Science.gov (United States)

    Wang, Linlin; Wang, Yingfang; Duan, Guangcai; Xue, Zerun; Guo, Xiangjiao; Wang, Pengfei; Xi, Yuanlin; Yang, Haiyan

    2015-04-04

    To detect clustered regularly interspaced short palindromic repeats (CRISPR) in Shigella, and to analyze its relationship to drug resistance. Four pairs of primers were used for the detection of convincing CRISPR structures CRISPR-S2 and CRISPR-S4, questionable CRISPR structures CRISPR-S1 and CRISPR-S3 in 60 Shigella strains. All primers were designed using sequences in CRISPR database. CRISPR Finder was used to analyze CRISPR and susceptibilities of Shigella strains were tested by agar diffusion method. Furthermore, we analyzed the relationship between drug resistance and CRISPR-S4. The positive rate of convincing CRISPR structures was 95%. The four CRISPR loci formed 12 spectral patterns (A-L), all of which contained convincing CRISPR structures except type K. We found one new repeat and 12 new spacers. The multi-drug resistance rate was 53. 33% . We found no significant difference between CRISPR-S4 and drug resistant. However, the repeat sequence of CRISPR-S4 in multi- or TE-resistance strains was mainly R4.1 with AC deletions in the 3' end, and the spacer sequences of CRISPR-S4 in multi-drug resistance strains were mainly Sp5.1, Sp6.1 and Sp7. CRISPR was common in Shigella. Variations df repeat sequences and diversities of spacer sequences might be related to drug resistance in Shigella.

  1. Membrane permeabilization of colistin toward pan-drug resistant Gram-negative isolates.

    Science.gov (United States)

    Mohamed, Yasmine Fathy; Abou-Shleib, Hamida Moustafa; Khalil, Amal Mohamed; El-Guink, Nadia Mohamed; El-Nakeeb, Moustafa Ahmed

    2016-01-01

    Pan-drug resistant Gram-negative bacteria, being resistant to most available antibiotics, represent a huge threat to the medical community. Colistin is considered the last therapeutic option for patients in hospital settings. Thus, we were concerned in this study to demonstrate the membrane permeabilizing activity of colistin focusing on investigating its efficiency toward those pan-drug resistant isolates which represent a critical situation. We determined the killing dynamics of colistin against pan-drug resistant isolates. The permeability alteration was confirmed by different techniques as: leakage, electron microscopy and construction of an artificial membrane model; liposomes. Moreover, selectivity of colistin against microbial cells was also elucidated. Colistin was proved to be rapid bactericidal against pan-drug resistant isolates. It interacts with the outer bacterial membrane leading to deformation of its outline, pore formation, leakage of internal contents, cell lysis and finally death. Furthermore, variations in membrane composition of eukaryotic and microbial cells provide a key for colistin selectivity toward bacterial cells. Colistin selectively alters membrane permeability of pan-drug resistant isolates which leads to cell lysis. Colistin was proved to be an efficient last line treatment for pan-drug resistant infections which are hard to treat. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  2. Drug resistance mutation of HIV-1 in HIV/AIDS patients infected by blood transfusion

    Directory of Open Access Journals (Sweden)

    Xin-li LU

    2013-03-01

    Full Text Available Objective  To study the characteristic of HIV-1 gene mutation in HIV/AIDS patients infected by blood transfusion, and analyze the resistance to anti-HIV drugs. Methods  Plasma samples were collected from 37 HIV/AIDS patients infected by blood transfusion for extraction of HIV-1 RNA. The gene fragments of HIV pol domain were amplified by RT-PCR and nested-PCR , and the electrophoresis positive products were sequenced. The sequencing result was landed to the website http:// HIV-1db.stanford.edu to analyze the drug resistance mutations. Results  Drug resistance mutations were found in 20 patients, including 19 cases of virological or immunological failure. Mutation of gene locus V32AV of protease inhibitors (PIs occurred in 3 patients during the treatment, but it did not cause the drug resistance of PIs. Mutation of the coding regions of reverse transcriptase was found in 23 patients, including M184V, TAMs, Q151M complexus, K103N, Y181C and so on. Of the 23 patients mentioned above, the HIV-1 gene mutation induced the resistance to reverse transcriptase inhibitors (RTIs in 20 patients, and the mutation rate of RTIs was 54.05% (20/37. Conclusion  The drug resistance rate of HIV-1 in patients infected by blood transfusion may be high for antiviral therapy, so the drug resistance of HIV-1 should be monitored and treatment plan should be adjusted timely.

  3. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Rajmohan Rajamuthiah

    Full Text Available Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.

  4. Whole animal automated platform for drug discovery against multi-drug resistant Staphylococcus aureus.

    Science.gov (United States)

    Rajamuthiah, Rajmohan; Fuchs, Beth Burgwyn; Jayamani, Elamparithi; Kim, Younghoon; Larkins-Ford, Jonah; Conery, Annie; Ausubel, Frederick M; Mylonakis, Eleftherios

    2014-01-01

    Staphylococcus aureus, the leading cause of hospital-acquired infections in the United States, is also pathogenic to the model nematode Caenorhabditis elegans. The C. elegans-S. aureus infection model was previously carried out on solid agar plates where the bacteriovorous C. elegans feeds on a lawn of S. aureus. However, agar-based assays are not amenable to large scale screens for antibacterial compounds. We have developed a high throughput liquid screening assay that uses robotic instrumentation to dispense a precise amount of methicillin resistant S. aureus (MRSA) and worms in 384-well assay plates, followed by automated microscopy and image analysis. In validation of the liquid assay, an MRSA cell wall defective mutant, MW2ΔtarO, which is attenuated for killing in the agar-based assay, was found to be less virulent in the liquid assay. This robust assay with a Z'-factor consistently greater than 0.5 was utilized to screen the Biomol 4 compound library consisting of 640 small molecules with well characterized bioactivities. As proof of principle, 27 of the 30 clinically used antibiotics present in the library conferred increased C. elegans survival and were identified as hits in the screen. Surprisingly, the antihelminthic drug closantel was also identified as a hit in the screen. In further studies, we confirmed the anti-staphylococcal activity of closantel against vancomycin-resistant S. aureus isolates and other Gram-positive bacteria. The liquid C. elegans-S. aureus assay described here allows screening for anti-staphylococcal compounds that are not toxic to the host.

  5. Drug resistance pattern of M. tuberculosis in category II treatment failure pulmonary tuberculosis patients

    Directory of Open Access Journals (Sweden)

    Fahmida Rahman

    2013-01-01

    Full Text Available This study was designed to determine the extent of drug resistance of M. tuberculosis (MTB isolated from category II treatment failure pulmonary tuberculosis (PTB patients. A total of 100 Ziehl-Neelsen (Z-N smear positive category II failure PTB patients were included in this study. Sputum culture was done in Lowenstein-Jensen (L-J media. Conventional proportion method on Lowenstein-Jensen (L-J media was used to determine the drug susceptibility of M. tuberculosis to isoniazid (INH, rifampicin (RMP, ofloxacin (OFX and kanamycin (KA. Out of 100 sputum samples, a total of 87 samples were positive by culture. Drug susceptibility test (DST revealed that 82 (94.25% isolates were resistant to one or more anti -TB drugs. Resistance to isoniazide (INH, rifampicin (RMP, ofloxacin (OFX and kanamycin (KA was 94.25%, 82.75%, 29.90% and 3.45% respectively. Among these isolates, 79.31% and 3.45% isolates were multi-drug resistant (MDR and extended drug resistant (XDR M. tuberculosis respectively. High rate of anti-tubercular drug resistance was observed among the category II treatment failure TB patients. Ibrahim Med. Coll. J. 2013; 7(1: 9-11

  6. Potential impact of intermittent preventive treatment (IPT on spread of drug-resistant malaria.

    Directory of Open Access Journals (Sweden)

    Wendy Prudhomme O'Meara

    2006-05-01

    Full Text Available Treatment of asymptomatic individuals, regardless of their malaria infection status, with regularly spaced therapeutic doses of antimalarial drugs has been proposed as a method for reducing malaria morbidity and mortality. This strategy, called intermittent preventive treatment (IPT, is currently employed for pregnant women and is being studied for infants (IPTi as well. As with any drug-based intervention strategy, it is important to understand how implementation may affect the spread of drug-resistant parasites. This is a difficult issue to address experimentally because of the limited size and duration of IPTi trials as well as the intractability of distinguishing the spread of resistance due to conventional treatment of malaria episodes versus that due to IPTi when the same drug is used in both contexts.Using a mathematical model, we evaluated the possible impact of treating individuals with antimalarial drugs at regular intervals regardless of their infection status. We translated individual treatment strategies and drug pharmacokinetics into parasite population dynamic effects and show that immunity, treatment rate, drug decay kinetics, and presumptive treatment rate are important factors in the spread of drug-resistant parasites. Our model predicts that partially resistant parasites are more likely to spread in low-transmission areas, but fully resistant parasites are more likely to spread under conditions of high transmission, which is consistent with some epidemiological observations. We were also able to distinguish between spread of resistance due to treatment of symptomatic infections and that due to IPTi. We showed that IPTi could accelerate the spread of resistant parasites, but this effect was only likely to be significant in areas of low or unstable transmission.The results presented here demonstrate the importance of considering both the half-life of a drug and the existing level of resistance when choosing a drug for IPTi

  7. Hypoxia-induced cytotoxic drug resistance in osteosarcoma is independent of HIF-1Alpha.

    Directory of Open Access Journals (Sweden)

    Jennifer Adamski

    Full Text Available Survival rates from childhood cancer have improved dramatically in the last 40 years, such that over 80% of children are now cured. However in certain subgroups, including metastatic osteosarcoma, survival has remained stubbornly poor, despite dose intensive multi-agent chemotherapy regimens, and new therapeutic approaches are needed. Hypoxia is common in adult solid tumours and is associated with treatment resistance and poorer outcome. Hypoxia induces chemotherapy resistance in paediatric tumours including neuroblastoma, rhabdomyosarcoma and Ewing's sarcoma, in vitro, and this drug resistance is dependent on the oxygen-regulated transcription factor hypoxia inducible factor-1 (HIF-1. In this study the effects of hypoxia on the response of the osteosarcoma cell lines 791T, HOS and U2OS to the clinically relevant cytotoxics cisplatin, doxorubicin and etoposide were evaluated. Significant hypoxia-induced resistance to all three agents was seen in all three cell lines and hypoxia significantly reduced drug-induced apoptosis. Hypoxia also attenuated drug-induced activation of p53 in the p53 wild-type U2OS osteosarcoma cells. Drug resistance was not induced by HIF-1α stabilisation in normoxia by cobalt chloride nor reversed by the suppression of HIF-1α in hypoxia by shRNAi, siRNA, dominant negative HIF or inhibition with the small molecule NSC-134754, strongly suggesting that hypoxia-induced drug resistance in osteosarcoma cells is independent of HIF-1α. Inhibition of the phosphoinositide 3-kinase (PI3K pathway using the inhibitor PI-103 did not reverse hypoxia-induced drug resistance, suggesting the hypoxic activation of Akt in osteosarcoma cells does not play a significant role in hypoxia-induced drug resistance. Targeting hypoxia is an exciting prospect to improve current anti-cancer therapy and combat drug resistance. Significant hypoxia-induced drug resistance in osteosarcoma cells highlights the potential importance of hypoxia as a target

  8. Withanolide D Exhibits Similar Cytostatic Effect in Drug-Resistant and Drug-Sensitive Multiple Myeloma Cells

    Directory of Open Access Journals (Sweden)

    Mark E. Issa

    2017-09-01

    Full Text Available In spite of recent therapeutic advances, multiple myeloma (MM remains a malignancy with very low curability. This has been partly attributed to the existence of a drug-resistant subpopulation known as cancer stem cells (CSCs. MM-CSCs are equipped with the necessary tools that render them highly resistant to virtually all conventional therapies. In this study, the growth inhibitory effects of withanolide D (WND, a steroidal lactone isolated from Withania somnifera, on drug-sensitive tumoral plasma cells and drug-resistant MM cells have been investigated. In MTT/XTT assays, WND exhibited similar cytostatic effects between drug-resistant and drug-sensitive cell lines in the nM range. WND also induced cell death and apoptosis in MM-CSCs and RPMI 8226 cells, as examined by the calcein/ethidium homodimer and annexin V/propidium iodide stainings, respectively. To determine whether P-glycoprotein (P-gp efflux affected the cytostatic activity of WND, P-gp was inhibited with verapamil and results indicated that the WND cytostatic effect in MM-CSCs was independent of P-gp efflux. Furthermore, WND did not increase the accumulation of the fluorescent P-gp substrate rhodamine 123 in MM-CSCs, suggesting that WND may not inhibit P-gp at the tested relevant doses. Therefore, the WND-induced cytostatic effect may be independent of P-gp efflux. These findings warrant further investigation of WND in MM-CSC animal models.

  9. Re-sensitizing drug-resistant bacteria to antibiotics by designing Antisense Therapeutics

    Science.gov (United States)

    Courtney, Colleen; Chatterjee, Anushree

    2014-03-01

    ``Super-bugs'' or ``multi-drug resistant organisms'' are a serious international health problem, with devastating consequences to patient health care. The Center for Disease Control has identified antibiotic resistance as one of the world's most pressing public health problems as a significant fraction of bacterial infections contracted are drug resistant. Typically, antibiotic resistance is encoded by ``resistance-genes'' which express proteins that carryout the resistance causing functions inside the bacterium. We present a RNA based therapeutic strategy for designing antimicrobials capable of re-sensitizing resistant bacteria to antibiotics by targeting labile regions of messenger RNAs encoding for resistance-causing proteins. We perform in silico RNA secondary structure modeling to identify labile target regions in an mRNA of interest. A synthetic biology approach is then used to administer antisense nucleic acids to our model system of ampicillin resistant Escherichia coli. Our results show a prolonged lag phase and decrease in viability of drug-resistant E. colitreated with antisense molecules. The antisense strategy can be applied to alter expression of other genes in antibiotic resistance pathways or other pathways of interest.

  10. Identifying co-targets to fight drug resistance based on a random walk model

    Directory of Open Access Journals (Sweden)

    Chen Liang-Chun

    2012-01-01

    Full Text Available Abstract Background Drug resistance has now posed more severe and emergent threats to human health and infectious disease treatment. However, wet-lab approaches alone to counter drug resistance have so far still achieved limited success due to less knowledge about the underlying mechanisms of drug resistance. Our approach apply a heuristic search algorithm in order to extract active network under drug treatment and use a random walk model to identify potential co-targets for effective antibacterial drugs. Results We use interactome network of Mycobacterium tuberculosis and gene expression data which are treated with two kinds of antibiotic, Isoniazid and Ethionamide as our test data. Our analysis shows that the active drug-treated networks are associated with the trigger of fatty acid metabolism and synthesis and nicotinamide adenine dinucleotide (NADH-related processes and those results are consistent with the recent experimental findings. Efflux pumps processes appear to be the major mechanisms of resistance but SOS response is significantly up-regulation under Isoniazid treatment. We also successfully identify the potential co-targets with literature confirmed evidences which are related to the glycine-rich membrane, adenosine triphosphate energy and cell wall processes. Conclusions With gene expression and interactome data supported, our study points out possible pathways leading to the emergence of drug resistance under drug treatment. We develop a computational workflow for giving new insights to bacterial drug resistance which can be gained by a systematic and global analysis of the bacterial regulation network. Our study also discovers the potential co-targets with good properties in biological and graph theory aspects to overcome the problem of drug resistance.

  11. Efficacy of moxifloxacin & econazole against multidrug resistant (MDR Mycobacterium tuberculosis in murine model

    Directory of Open Access Journals (Sweden)

    U D Gupta

    2015-01-01

    Full Text Available Background & objectives: Studies have shown the bactericidal potential of econazole and clotrimazole against Mycobacterium tuberculosis under in vitro and ex vivo conditions along with their synergism with conventional antituberculosis drugs. These molecules were also found to be effective against different multidrug resistant (MDR M. tuberculosis isolates in vitro. Hence the present study was designed to evaluate the in vivo antimycobacterial potential of moxifloxacin and econazole alone and in combination against multidrug resistant tuberculosis (MDR-TB in a mice model. Methods: Mice were infected with 2.5×10 [7] bacilli of MDR strain of M. tuberculosis by aerosol route of infection. After four weeks of infection, chemotherapy was started orally by moxifloxacin 8.0 mg/kg body wt and econazole 3.3 mg/kg alone and in combination, as well as with four first line anti-tuberculosis drugs as a positive control. The animals were sacrificed and the lungs and spleen were excised under aspetic conditions. The tissues were homogenized with sterile normal saline, an aliquot of the homogenate was plated on Middlebrook 7H11 agar supplemented with oleate albumin dextrose catalase (OADC and incubated at 37°C for four weeks. The number of visible and individual colonies were counted. Results: The first line anti-tuberculosis drugs (RIF+INH+EMB+PZA after eight weeks of therapy had no impact as the bacillary load in lungs and spleens remained unchanged. However, econazole, moxifloxacin alone as well as in combination significantly reduced the bacillary load in lungs as well as in spleens of MDR-TB bacilli infected mice. Interpretation & conclusions: Co-administration of the two drugs (econazole and moxifloxacin to MDR-TB strain JAL-7782 infected mice exhibited additive effect, the efficacy of the drugs in combination being higher as compared with ECZ or MOX alone. These results were substantiated by histopathological studies. This study suggests the utility of

  12. Evaluation of the resistance of a geopolymer-based drug delivery system to tampering.

    Science.gov (United States)

    Cai, Bing; Engqvist, Håkan; Bredenberg, Susanne

    2014-04-25

    Tamper-resistance is an important property of controlled-release formulations of opioid drugs. Tamper-resistant formulations aim to increase the degree of effort required to override the controlled release of the drug molecules from extended-release formulations for the purpose of non-medical use. In this study, the resistance of a geopolymer-based formulation to tampering was evaluated by comparing it with a commercial controlled-release tablet using several methods commonly used by drug abusers. Because of its high compressive strength and resistance to heat, much more effort and time was required to extract the drug from the geopolymer-based formulation. Moreover, in the drug-release test, the geopolymer-based formulation maintained its controlled-release characteristics after milling, while the drug was released immediately from the milled commercial tablets, potentially resulting in dose dumping. Although the tampering methods used in this study does not cover all methods that abuser could access, the results obtained by the described methods showed that the geopolymer matrix increased the degree of effort required to override the controlled release of the drug, suggesting that the formulation has improved resistance to some common drug-abuse tampering methods. The geopolymer matrix has the potential to make the opioid product less accessible and attractive to non-medical users. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Repurposing—a ray of hope in tackling extensively drug resistance in tuberculosis

    Directory of Open Access Journals (Sweden)

    Arundhati Maitra

    2015-03-01

    Full Text Available Tuberculosis (TB remains a serious concern more than two decades on from when the World Health Organization declared it a global health emergency. The alarming rise of antibiotic resistance in Mycobacterium tuberculosis, the etiological agent of TB, has made it exceedingly difficult to control the disease with the existing portfolio of anti-TB chemotherapy. The development of effective drugs with novel mechanism(s of action is thus of paramount importance to tackle drug resistance. The development of novel chemical entities requires more than 10 years of research, requiring high-risk investment to become commercially available. Repurposing pre-existing drugs offers a solution to circumvent this mammoth investment in time and funds. In this context, several drugs with known safety and toxicity profiles have been evaluated against the TB pathogen and found to be efficacious against its different physiological states. As the endogenous targets of these drugs in the TB bacillus are most likely to be novel, there is minimal chance of cross-resistance with front-line anti-TB drugs. Also, reports that some of these drugs may potentially have multiple targets means that the possibility of the development of resistance against them is minimal. Thus repurposing existing molecules offers immense promise to tackle extensively drug-resistant TB infections.

  14. Tumor cell heterogeneity: impact on mechanisms of therapeutic drug resistance

    International Nuclear Information System (INIS)

    Richardson, Mary E.; Siemann, Dietmar W.

    1997-01-01

    Purpose: The aim of these studies was to determine whether chemotherapy-resistant tumor cell sublines derived from a single starting cell population with identical treatment protocols, have the same mechanism of resistance. Methods and Materials: Twelve cyclophosphamide-resistant sublines were derived from KHT-iv murine sarcoma cells by repeated exposures to 2, 4, or 8 μg/ml doses of 4-hydroperoxycyclophosphamide (4-OOHCP). To investigate possible mechanisms of resistance, glutathione (GSH) levels, glutathione S-transferase (GST) activity, and aldehyde dehydrogenase (ALDH) activity were determined. In addition, studies with the GSH depletor buthionine sulfoximine (BSO) and the ALDH inhibitor diethylamino-benzaldehyde (DEAB) were undertaken. Results: Resistant factors to 4-OOHCP, assessed at 10% clonogenic cell survival, ranged from 1.5-7.0 for the various cell lines. Crossresistance to melphalan and adriamycin also were commonly observed. Increased GSH levels, GST activity and ALDH activity were detected in the sublines but not all exhibited the same pattern of biochemical alterations. The response to GSH and ALDH inhibitors also varied among the sublines; the resistance being reversible in some cell lines but not others. Conclusion: The present results indicate that when resistant sublines are derived simultaneously from the same starting cell population, the observed mechanisms of resistance may not be the same in each of the variants. These findings support the hypothesis that preexisting cellular heterogeneity may affect mechanisms of acquired resistance

  15. Risk factors and timing of default from treatment for non-multidrug-resistant tuberculosis in Moldova.

    Science.gov (United States)

    Jenkins, H E; Ciobanu, A; Plesca, V; Crudu, V; Galusca, I; Soltan, V; Cohen, T

    2013-03-01

    The Republic of Moldova, in Eastern Europe, has among the highest reported nationwide proportions of tuberculosis (TB) patients with multidrug-resistant tuberculosis (MDR-TB) worldwide. Default has been associated with increased mortality and amplification of drug resistance, and may contribute to the high MDR-TB rates in Moldova. To assess risk factors and timing of default from treatment for non-MDR-TB from 2007 to 2010. A retrospective analysis of routine surveillance data on all non-MDR-TB patients reported. A total of 14.7% of non-MDR-TB patients defaulted from treatment during the study period. Independent risk factors for default included sociodemographic factors, such as homelessness, living alone, less formal education and spending substantial time outside Moldova in the year prior to diagnosis; and health-related factors such as human immunodeficiency virus co-infection, greater lung pathology and increasing TB drug resistance. Anti-tuberculosis treatment is usually initiated within an institutional setting in Moldova, and the default risk was highest in the month following the phase of hospitalized treatment (among civilians) and after leaving prison (among those diagnosed while incarcerated). Targeted interventions to increase treatment adherence for patients at highest risk of default, and improving the continuity of care for patients transitioning from institutional to community care may substantially reduce risk of default.

  16. New developments in the treatment of drug-resistant tuberculosis: clinical utility of bedaquiline and delamanid

    Directory of Open Access Journals (Sweden)

    Brigden G

    2015-10-01

    Full Text Available Grania Brigden,1 Cathy Hewison,2 Francis Varaine21Access Campaign, Médecins Sans Frontières, Geneva, Switzerland; 2Medical Department, Médecins Sans Frontières, Paris, France Abstract: The current treatment for drug-resistant tuberculosis (TB is long, complex, and associated with severe and life-threatening side effects and poor outcomes. For the first time in nearly 50 years, there have been two new drugs registered for use in multidrug-resistant TB (MDR-TB. Bedaquiline, a diarylquinoline, and delamanid, a nitromidoxazole, have received conditional stringent regulatory approval and have World Health Organization interim policy guidance for their use. As countries improve and scale up their diagnostic services, increasing number of patients with MDR-TB and extensively drug-resistant TB are identified. These two new drugs offer a real opportunity to improve the outcomes of these patients. This article reviews the evidence for these two new drugs and discusses the clinical questions raised as they are used outside clinical trial settings. It also reviews the importance of the accompanying drugs used with these new drugs. It is important that barriers hindering the use of these two new drugs are addressed and that the existing clinical experience in using these drugs is shared, such that their routine-use programmatic conditions is scaled up, ensuring maximum benefit for patients and countries battling the MDR-TB crisis. Keywords: MDR-TB, XDR-TB, tuberculosis drugs, group 5 drugs

  17. Managing anthelmintic resistance-Variability in the dose of drug reaching the target worms influences selection for resistance?

    Science.gov (United States)

    Leathwick, Dave M; Luo, Dongwen

    2017-08-30

    The concentration profile of anthelmintic reaching the target worms in the host can vary between animals even when administered doses are tailored to individual liveweight at the manufacturer's recommended rate. Factors contributing to variation in drug concentration include weather, breed of animal, formulation and the route by which drugs are administered. The implications of this variability for the development of anthelmintic resistance was investigated using Monte-Carlo simulation. A model framework was established where 100 animals each received a single drug treatment. The 'dose' of drug allocated to each animal (i.e. the concentration-time profile of drug reaching the target worms) was sampled at random from a distribution of doses with mean m and standard deviation s. For each animal the dose of drug was used in conjunction with pre-determined dose-response relationships, representing single and poly-genetic inheritance, to calculate efficacy against susceptible and resistant genotypes. These data were then used to calculate the overall change in resistance gene frequency for the worm population as a result of the treatment. Values for m and s were varied to reflect differences in both mean dose and the variability in dose, and for each combination of these 100,000 simulations were run. The resistance gene frequency in the population after treatment increased as m decreased and as s increased. This occurred for both single and poly-gene models and for different levels of dominance (survival under treatment) of the heterozygote genotype(s). The results indicate that factors which result in lower and/or more variable concentrations of active reaching the target worms are more likely to select for resistance. The potential of different routes of anthelmintic administration to play a role in the development of anthelmintic resistance is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Monitoring of drug resistance amplification and attenuation with the use of tetracycline-resistant bacteria during wastewater treatment

    Science.gov (United States)

    Harnisz, Monika; Korzeniewska, Ewa; Niestępski, Sebastian; Osińska, Adriana; Nalepa, Beata

    2017-11-01

    The objective of this study was to monitor changes (amplification or attenuation) in antibiotic resistance during wastewater treatment based on the ecology of tetracycline-resistant bacteria. The untreated and treated wastewater were collected in four seasons. Number of tetracycline-(TETR) and oxytetracycline-resistant (OTCR) bacteria, their qualitative composition, minimum inhibitory concentrations (MICs), sensitivity to other antibiotics, and the presence of tet (A, B, C, D, E) resistance genes were determined. TETR and OTCR counts in untreated wastewater were 100 to 1000 higher than in treated effluent. OTCR bacterial counts were higher than TETR populations in both untreated and treated wastewater. TETR isolates were not dominated by a single bacterial genus or species, whereas Aeromonas hydrophila and Aeromonas sobria were the most common in OTCR isolates. The treatment process attenuated the drug resistance of TETR bacteria and amplified the resistance of OTCR bacteria. In both microbial groups, the frequency of tet(A) gene increased in effluent in comparison with untreated wastewater. Our results also indicate that treated wastewater is a reservoir of multiple drug-resistant bacteria as well as resistance determinants which may pose a health hazard for humans and animals when released to the natural environment.

  19. Extensively Drug-Resistant Tuberculosis (XDR-TB): Quarantine and Isolation

    National Research Council Canada - National Science Library

    Swendiman, Kathleen S; Jones, Nancy L

    2007-01-01

    The recent international saga of a traveler with XDR-TB, a drug-resistant form of tuberculosis, has placed a spotlight on existing mechanisms to contain contagious disease threats and raised numerous...

  20. Translational research in ovarian carcinoma : cell biological aspects of drug resistance and tumor aggressiveness

    NARCIS (Netherlands)

    Zee, Ate Gerard Jan van der

    1994-01-01

    In this thesis diverse cell biological features that in cultured (ovarian) tumor cells have been linked to drug resistance and/or tumor aggressiveness are studied in tumor specimens of epithelial ovarian carcinomas.