WorldWideScience

Sample records for anti-pseudomonas therapeutic agent

  1. Plasmids encoding therapeutic agents

    Science.gov (United States)

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  2. Mushrooms as therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sushila Rathee

    2012-04-01

    Full Text Available Mushrooms have been known for their nutritional and culinary values and used as medicines and tonics by humans for ages. In modern terms, they can be considered as functional foods which can provide health benefits beyond the traditional nutrients. There are monographs that cover the medicinal and healing properties of some individual traditional mushrooms. There has been a recent upsurge of interest in mushrooms not only as a health food which is rich in protein but also as a source of biologically active compounds of medicinal value which include complementary medicine/dietary supplements for anticancer, antiviral, hepatoprotective, immunopotentiating and hypocholesterolemic agents. However the mechanisms of the various health benefits of mushrooms to humans still require intensive investigation, especially given the emergence of new evidence of their health benefits. In the present paper the medicinal potential of mushrooms is being discussed.

  3. Copper complexes as therapeutic agents.

    Science.gov (United States)

    Duncan, Clare; White, Anthony R

    2012-02-01

    The importance of transition metals in biological processes has been well established. Copper (Cu) is a transition metal that can exist in oxidised and reduced states. This allows it to participate in redox and catalytic chemistry, making it a suitable cofactor for a diverse range of enzymes and molecules. Cu deficiency or toxicity is implicated in a variety of pathological conditions; therefore inorganic complexes of Cu have been investigated for their therapeutic and diagnostic potential. These Cu complexes have been shown to be effective in cancer treatment due to their cytotoxic action on tumour cells. Alternatively, Cu complexes can also modulate Cu homeostasis in the brain, resulting in protective effects in several models of neurodegeneration. In other diseases such as coronary heart disease and skin disease, the success of Cu complexes as potential therapeutics will most likely be due to their ability to increase SOD activity, leading to relief of oxidative stress. This review seeks to provide a broad insight into some of the diverse actions of Cu complexes and demonstrate the strong future for these compounds as potential therapeutic agents.

  4. Host modulation by therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sugumari Elavarasu

    2012-01-01

    Full Text Available Periodontal disease susceptible group present advanced periodontal breakdown even though they achieve a high standard of oral hygiene. Various destructive enzymes and inflammatory mediators are involved in destruction. These are elevated in case of periodontal destruction. Host modulation aims at bringing these enzymes and mediators to normal level. Doxycycline, nonsteroidal anti-inflammatory drugs (NSAIDs, bisphosphonates, nitrous oxide (NO synthase inhibitors, recombinant human interleukin-11 (rhIL-11, omega-3 fatty acid, mouse anti-human interleukin-6 receptor antibody (MRA, mitogen-activated protein kinase (MAPK inhibitors, nuclear factor-kappa B (NF-kb inhibitors, osteoprotegerin, and tumor necrosis factor antagonist (TNF-α are some of the therapeutic agents that have host modulation properties.

  5. Coumarin hybrids as novel therapeutic agents.

    Science.gov (United States)

    Sandhu, Sonali; Bansal, Yogita; Silakari, Om; Bansal, Gulshan

    2014-08-01

    Naturally occurring coumarins, having wide spectrum of activities such as antioxidant, anti-inflammatory, anticancer, MAO-B inhibitory and antimicrobial, are frequently used by the researchers to develop novel synthetic and semisynthetic coumarin based therapeutic agents. Many of these agents are hybrid molecules, which are designed through concept of molecular hybridization and have shown multiple pharmacological activities. This multifunctional attribute of these hybrid compounds makes them potential drug candidates for the treatment of multifactorial diseases such as cancer, Alzheimer's disease, metabolic syndromes, AIDS, malaria, and cardiovascular diseases. The present review compiles research reports on development of different coumarin hybrids, classify these on the basis of their therapeutic uses and propose structure-activity relationships. It is intended to help medicinal chemist in designing and synthesizing novel and potent hybrid compounds for the treatment of different disorders. PMID:24934993

  6. Applications of inorganic nanoparticles as therapeutic agents

    Science.gov (United States)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  7. Therapeutic Potential of HDPs as Immunomodulatory Agents

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Hancock, Robert E.W.

    2010-01-01

    strategies for intervention tailored around the appropriate (selective) stimulation of the host’s immune system, and particularly rapid acting innate immunity, as an alternative to direct targeting of microbial pathogens. One recent player in such an immunomodulatory strategy is the naturally occurring host...... defence peptides (HDP) and their synthetic innate defence regulator (IDR) analogues. In this chapter, we will discuss the potential therapeutic use of HDPs and IDRs as immunomodulatory agents....... decline in the rate of discovery of new antimicrobial intervention strategies in parallel with an increasing incidence of multidrug-resistant pathogens; if these circumstances do not change we will continue to approach the end of the antibiotic era. Facing this dark future, scientists are considering new...

  8. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63Ni, 109Cd, 203Hg, 144Ce, 95Nb and the excretion of 210Po, 63Ni, 48V, 239Pu, 241Am, 54Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  9. Anti-pseudomonas activity of essential oil, total extract, and proanthocyanidins of Pinus eldarica Medw. bark

    Directory of Open Access Journals (Sweden)

    Masoud Sadeghi

    2016-01-01

    Full Text Available Pinus eldarica Medw. (Iranian pine is native to Transcaucasian region and has been vastly planted in Iran, Afghanistan, and Pakistan. Various parts of this plant have been widely used in traditional medicine for the treatment of various diseases including infectious conditions (e.g. infectious wounds. In this study we aimed to investigate the antibacterial activity of P. eldarica bark extract, essential oil and proanthocyanidins on three important bacteria, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. Antibacterial analysis was performed using standard disk diffusion method with different concentrations of essential oil, bark total hydroalcoholic extract, and bark proanthocyanidins (0.5, 1, 2 and 3 mg/ml. After incubation at 37 °C for 24 h, the antibacterial activity was assessed by measuring the zone of growth inhibition surrounding the disks. The results indicated that the essential oil, total hydroalcoholic extract, and proanthocyanidins of the bark of the P. eldarica were effective against the gram negative bacteria, P. aeruginosa, and significantly inhibited its growth in disk diffusion method (P<0.001 of which the essential oil had the most potent inhibitory effect. However, none of the bark preparations could significantly inhibit the growth of S. aureus or E. coli. Our findings showed that P. eldarica bark components have significant anti-pseudomonas activity having potentials for new sources of antibacterial agents or antibacterial herbal preparations.

  10. Microtubule-binding agents: a dynamic field of cancer therapeutics

    OpenAIRE

    Dumontet, Charles; Jordan, Mary Ann

    2010-01-01

    International audience Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agen...

  11. Securinine, a myeloid differentiation agent with therapeutic potential for AML.

    Directory of Open Access Journals (Sweden)

    Kalpana Gupta

    Full Text Available As the defining feature of Acute Myeloid Leukemia (AML is a maturation arrest, a highly desirable therapeutic strategy is to induce leukemic cell maturation. This therapeutic strategy has the potential of avoiding the significant side effects that occur with the traditional AML therapeutics. We identified a natural compound securinine, as a leukemia differentiation-inducing agent. Securinine is a plant-derived alkaloid that has previously been used clinically as a therapeutic for primarily neurological related diseases. Securinine induces monocytic differentiation of a wide range of myeloid leukemia cell lines as well as primary leukemic patient samples. Securinine's clinical potential for AML can be seen from its ability to induce significant growth arrest in cell lines and patient samples as well as its activity in significantly impairing the growth of AML tumors in nude mice. In addition, securinine can synergize with currently employed agents such as ATRA and decitabine to induce differentiation. This study has revealed securinine induces differentiation through the activation of DNA damage signaling. Securinine is a promising new monocytic differentiation inducing agent for AML that has seen previous clinical use for non-related disorders.

  12. Natural Compounds as Therapeutic Agents in the Treatment Cystic Fibrosis

    OpenAIRE

    Dey, Isha; Shah, Kalpit; Bradbury, Neil A.

    2016-01-01

    The recent FDA approval of two drugs to treat the basic defect in cystic fibrosis has given hope to patients and their families battling this devastating disease. Over many years, with heavy financial investment from Vertex Pharmaceuticals and the Cystic Fibrosis Foundation, pre-clinical evaluation of thousands of synthetic drugs resulted in the production of Kalydeco and Orkambi. Yet, despite the success of this endeavor, many other compounds have been proposed as therapeutic agents in the t...

  13. Magnetic nanoparticles as both imaging probes and therapeutic agents.

    Science.gov (United States)

    Lacroix, Lise-Marie; Ho, Don; Sun, Shouheng

    2010-01-01

    Magnetic nanoparticles (MNPs) have been explored extensively as contrast agents for magnetic resonance imaging (MRI) or as heating agents for magnetic fluid hyperthermia (MFH) [1]. To achieve optimum operation conditions in MRI and MFH, these NPs should have well-controlled magnetic properties and biological functionalities. Although numerous efforts have been dedicated to the investigations on MNPs for biomedical applications [2-5], the NP optimizations for early diagnostics and efficient therapeutics are still far from reached. Recent efforts in NP syntheses have led to some promising MNP systems for sensitive MRI and efficient MFH applications. This review summarizes these advances in the synthesis of monodisperse MNPs as both contrast probes in MRI and as therapeutic agents via MFH. It will first introduce the nanomagnetism and elucidate the critical parameters to optimize the superparamagnetic NPs for MRI and ferromagnetic NPs for MFH. It will further outline the new chemistry developed for making monodisperse MNPs with controlled magnetic properties. The review will finally highlight the NP functionalization with biocompatible molecules and biological targeting agents for tumor diagnosis and therapy. PMID:20388109

  14. Radiopharmaceuticals as therapeutic agents in medical care and treatment

    International Nuclear Information System (INIS)

    Radiation applications in medical research, care, and treatment today are being used to help millions of patients throughout the world. In recent years, the medical community has seen a renaissance of therapeutic radiation applications, particularly of strontium-89 for metastatic bone pain. Radiopharmaceuticals used as therapeutic agents (frequently known as RPTs) are designed to deliver high doses of radiation to selected malignant sites in target organs or tissues, while minimizing the radiation doses to surrounding healthy cells. Over the past several years, several type of RPTs with special properties, including compounds for labelling monoclonal antibodies, have been used in animal and human clinical trials with promising results. The modern trend in radiopharmaceutical research for oncology is the development of RPTs that may be said to be tumour-seeking and tumour-specific. Among the promising RPTs being reported in the medical literature are rhenium-186 and samarium-153. Both can be produced in research reactors available in many countries. 2 tabs

  15. Metathesis access to monocyclic iminocyclitol-based therapeutic agents

    Directory of Open Access Journals (Sweden)

    Albert Demonceau

    2011-05-01

    Full Text Available By focusing on recent developments on natural and non-natural azasugars (iminocyclitols, this review bolsters the case for the role of olefin metathesis reactions (RCM, CM as key transformations in the multistep syntheses of pyrrolidine-, piperidine- and azepane-based iminocyclitols, as important therapeutic agents against a range of common diseases and as tools for studying metabolic disorders. Considerable improvements brought about by introduction of one or more metathesis steps are outlined, with emphasis on the exquisite steric control and atom-economical outcome of the overall process. The comparative performance of several established metathesis catalysts is also highlighted.

  16. Dronedarone for atrial fibrillation: a new therapeutic agent

    Directory of Open Access Journals (Sweden)

    Pawan D Patel

    2009-08-01

    Full Text Available Pawan D Patel, Rohit Bhuriya, Dipal D Patel, Bhaskar L Arora, Param P Singh, Rohit R AroraDepartment of Cardiology, Chicago Medical School, Chicago, IL, USAAbstract: Atrial fibrillation is the most common of the serious cardiac rhythm disturbances and is responsible for substantial morbidity and mortality. Amiodarone is currently one of the most widely used and most effective antiarrhythmic agents for atrial fibrillation. But during chronic usage amiodarone can cause some serious extra cardiac adverse effects, including effects on the thyroid. Dronedarone is a newer therapeutic agent with a structural resemblance to amiodarone, with two molecular changes, and with a better side effect profile. Dronedarone is a multichannel blocker and, like amiodarone, possesses both a rhythm and a rate control property in atrial fibrillation. The US Food and Drug Administration approved dronedarone for atrial fibrillation on July 2, 2009. In this review, we discuss the role of dronedarone in atrial fibrillation.Keywords: dronedarone, amiodarone, atrial fibrillation

  17. Therapeutic treatment of Alzheimer's disease using metal complexing agents.

    Science.gov (United States)

    Price, Katherine A; Crouch, Peter J; White, Anthony R

    2007-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by deposition of extracellular amyloid plaques, formation of intracellular neurofibrillary tangles and neuronal dysfunction in the brain. A growing body of evidence indicates a central role for biometals such as copper in many critical aspects of AD. The amyloid beta (Abeta) peptide and its parental molecule, the amyloid precursor protein (APP) both modulate Cu and Zn metabolism in the brain. Therefore, aberrant changes to APP or Abeta metabolism could potentially alter biometal homoestasis in AD, leading to increased free radical production and neuronal oxidative stress. Modulation of metal bioavailability in the brain has been proposed as a potential therapeutic strategy for treatment of AD patients. The lipid permeable metal complexing agent, clioquinol (CQ), has shown promising results in animal models of AD and in small clinical trials involving AD patients. Moreover, a new generation of metal-ligand based therapeutics is currently under development. Patents now cover the generation of novel metal ligand structures designed to modulate metal binding to Abeta and quench metal-mediated free radical generation. However, the mechanism by which CQ and other metal complexing agents slows cognitive decline in AD animal models and patients is unknown. Increasing evidence suggests that ligand-mediated redistribution of metals at a cellular level in the brain may be important. Further research will be necessary to fully understand the complex pathways associated with efficacious metal-based pharmaceuticals for treatment of AD.

  18. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  19. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.

    Science.gov (United States)

    Thoppil, Roslin J; Bishayee, Anupam

    2011-09-27

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called "isoprenoids") are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  20. Tackling obesity: new therapeutic agents for assisted weight loss

    Directory of Open Access Journals (Sweden)

    JG Karam

    2010-04-01

    Full Text Available JG Karam1, SI McFarlane21SUNY-Downstate-Kings County Hospital, Brooklyn, NY, USA, Maimonides Medical Center, Brooklyn, NY, USA; 2Division of Endocrinology, College of Medicine, State University of New York-Downstate Medical Center, New York, USAAbstract: The pandemic of overweight and obesity continues to rise in an alarming rate in western countries and around the globe representing a major public health challenge in desperate need for new strategies tackling obesity. In the United States nearly two thirds of the population is overweight or obese. Worldwide the number of persons who are overweight or obese exceeded 1.6 billion. These rising figures have been clearly associated with increased morbidity and mortality. For example, in the Framingham study, the risk of death increases with each additional pound of weight gain even in the relatively younger population between 30 and 42 years of age. Overweight and obesity are also associated with increased co-morbid conditions such as diabetes, hypertension and cardiovascular disease as well as certain types of cancer. In this review we discuss the epidemic of obesity, highlighting the pathophysiologic mechanisms of weight gain. We also provide an overview of the assessment of overweight and obese individuals discussing possible secondary causes of obesity. In a detailed section we discuss the currently approved therapeutic interventions for obesity highlighting their mechanisms of action and evidence of their efficacy and safety as provided in clinical trials. Finally, we discuss novel therapeutic interventions that are in various stages of development with a special section on the weight loss effects of anti-diabetic medications. These agents are particularly attractive options for our growing population of obese diabetic individuals.Keywords: obesity, assisted weight loss, therapy

  1. Tetrodotoxin (TTX as a Therapeutic Agent for Pain

    Directory of Open Access Journals (Sweden)

    Cruz Miguel Cendán

    2012-01-01

    Full Text Available Tetrodotoxin (TTX is a potent neurotoxin that blocks voltage-gated sodium channels (VGSCs. VGSCs play a critical role in neuronal function under both physiological and pathological conditions. TTX has been extensively used to functionally characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels according to their sensitivity to this toxin. Alterations in the expression and/or function of some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain conditions. The administration of TTX at doses below those that interfere with the generation and conduction of action potentials in normal (non-injured nerves has been used in humans and experimental animals under different pain conditions. These data indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, the contribution of specific TTX-sensitive VGSCs to pain is reviewed.

  2. 78 FR 77471 - Prospective Grant of Exclusive License for: Convection Enhanced Delivery of a Therapeutic Agent...

    Science.gov (United States)

    2013-12-23

    ... macromolecular MRI contrast agents such as chelated Gd(III). These macromolecular imaging agents have clearance... Enhanced Delivery of a Therapeutic Agent With a Surrogate Tracer for Treating Cancer and Urological... Agents'', U.S. Provisional Patent Application 60/413,673 (filed September 24, 2002;...

  3. Radiation-Therapeutic Agent Clinical Trials: Leveraging Advantages of a National Cancer Institute Programmatic Collaboration.

    Science.gov (United States)

    Takebe, Naoko; Ahmed, Mansoor M; Vikram, Bhadrasain; Bernhard, Eric J; Zwiebel, James; Norman Coleman, C; Kunos, Charles A

    2016-10-01

    A number of oncology phase II radiochemotherapy trials with promising results have been conducted late in the overall experimental therapeutic agent development process. Accelerated development and approval of experimental therapeutic agents have stimulated further interest in much earlier radiation-agent studies to increase the likelihood of success in phase III trials. To sustain this interest, more forward-thinking preclinical radiobiology experimental designs are needed to improve discovery of promising radiochemotherapy plus agent combinations for clinical trial testing. These experimental designs should better inform next-step radiation-agent clinical trial dose, schedule, exposure, and therapeutic effect. Recognizing the need for a better strategy to develop preclinical data supporting radiation-agent phase I or II trials, the National Cancer Institute (NCI)-Cancer Therapy Evaluation Program (CTEP) and the NCI-Molecular Radiation Therapeutics Branch of the Radiation Research Program have partnered to promote earlier radiobiology studies of CTEP portfolio agents. In this Seminars in Radiation Oncology article, four key components of this effort are discussed. First, we outline steps for accessing CTEP agents for preclinical testing. Second, we propose radiobiology studies that facilitate transition from preclinical testing to early phase trial activation. Third, we navigate steps that walk through CTEP agent strategic development paths available for radiation-agent testing. Fourth, we highlight a new NCI-sponsored cooperative agreement grant supporting in vitro and in vivo radiation-CTEP agent testing that informs early phase trial designs. Throughout the article, we include contemporary examples of successful radiation-agent development initiatives.

  4. Identifying therapeutic chemical agents for osteoarthritis by high throughput screening

    OpenAIRE

    Tsui, YK; Masuda, K.; Cheung, KM; Leung, VY; Kao, RY; CHAN, D

    2009-01-01

    INTRODUCTION: An articular cartilage lesion, notably generated by osteoarthritis (OA), is initiated partly by the loss of proteoglycan content from the extracellular matrix and manifests as pain or disturbed joint function [1]. Strategies that restore the proteoglycan content would be of therapeutic benefit to prevent, delay, or even reverse the progression of the lesion. Numerous clinical and experimental approaches have been widely applied [2-4] to relieve the pain or induce healing of the ...

  5. Cisplatin encapsulated nanoparticle as a therapeutic agent for anticancer treatment

    Science.gov (United States)

    Eka Putra, Gusti Ngurah Putu; Huang, Leaf; Hsu, Yih-Chih

    2016-03-01

    The knowledge of manipulating size of biomaterials encapsulated drug into nano-scale particles has been researched and developed in treating cancer. Cancer is the second worldwide cause of death, therefore it is critical to treat cancers challenging with therapeutic modality of various mechanisms. Our preliminary investigation has studied cisplatin encapsulated into lipid-based nanoparticle and examined the therapeutic effect on xenografted animal model. We used mice with tumor volume ranging from 195 to 214 mm3 and then few mice were grouped into three groups including: control (PBS), lipid platinum chloride (LPC) nanoparticles and CDDP (cis-diamminedichloroplatinum(II) at dose of 3mg cisplatin /kg body weight. The effect of the treatment was observed for 12 days post-injection. It showed that LPC NPs demonstrated a better therapeutic effect compared to CDDP at same 3mg cisplatin/kg drug dose of tumor size reduction, 96.6% and 11.1% respectively. In addition, mouse body weight loss of LPC, CDDP and PBS treated group are 12.1%, 24.3% and 1.4%. It means that by compared to CDDP group, LPC group demonstrated less side effect as not much reduction of body weight have found. Our findings have shown to be a potential modality to further investigate as a feasible cancer therapy modality.

  6. Clinical Delivery of Therapeutic Agents Based on Metals

    OpenAIRE

    Fox, John

    1997-01-01

    Metals have been used in clinical practice for hundreds of years and for a variety of indications. Although potent agents whose activity may be adapted by manipulation of their chemistry and that of associated ligands, their use has been limited by toxic effects. There is now a burgeoning series of delivery technologies available which may be adapted to the administration of metal based drugs. Together with greater understanding of metal chemistry and their mechanisms of action in disease pro...

  7. Radiation-Therapeutic Agent Clinical Trials: Leveraging Advantages of a National Cancer Institute Programmatic Collaboration.

    Science.gov (United States)

    Takebe, Naoko; Ahmed, Mansoor M; Vikram, Bhadrasain; Bernhard, Eric J; Zwiebel, James; Norman Coleman, C; Kunos, Charles A

    2016-10-01

    A number of oncology phase II radiochemotherapy trials with promising results have been conducted late in the overall experimental therapeutic agent development process. Accelerated development and approval of experimental therapeutic agents have stimulated further interest in much earlier radiation-agent studies to increase the likelihood of success in phase III trials. To sustain this interest, more forward-thinking preclinical radiobiology experimental designs are needed to improve discovery of promising radiochemotherapy plus agent combinations for clinical trial testing. These experimental designs should better inform next-step radiation-agent clinical trial dose, schedule, exposure, and therapeutic effect. Recognizing the need for a better strategy to develop preclinical data supporting radiation-agent phase I or II trials, the National Cancer Institute (NCI)-Cancer Therapy Evaluation Program (CTEP) and the NCI-Molecular Radiation Therapeutics Branch of the Radiation Research Program have partnered to promote earlier radiobiology studies of CTEP portfolio agents. In this Seminars in Radiation Oncology article, four key components of this effort are discussed. First, we outline steps for accessing CTEP agents for preclinical testing. Second, we propose radiobiology studies that facilitate transition from preclinical testing to early phase trial activation. Third, we navigate steps that walk through CTEP agent strategic development paths available for radiation-agent testing. Fourth, we highlight a new NCI-sponsored cooperative agreement grant supporting in vitro and in vivo radiation-CTEP agent testing that informs early phase trial designs. Throughout the article, we include contemporary examples of successful radiation-agent development initiatives. PMID:27619249

  8. Honey: A Therapeutic Agent for Disorders of the Skin

    Directory of Open Access Journals (Sweden)

    Pauline McLoone

    2016-08-01

    Full Text Available Problems with conventional treatments for a range of dermatological disorders have led scientists to search for new compounds of therapeutic value. Efforts have included the evaluation of natural products such as honey. Manuka honey, for example, has been scientifically recognised for its anti-microbial and wound healing properties and is now used clinically as a topical treatment for wound infections. In this review, scientific evidence for the effectiveness of honey in the treatment of wounds and other skin conditions is evaluated. A plethora of in vitro studies have revealed that honeys from all over the world have potent anti-microbial activity against skin relevant microbes. Moreover, a number of in vitro studies suggest that honey is able to modulate the skin immune system. Clinical research has shown honey to be efficacious in promoting the healing of partial thickness burn wounds while its effectiveness in the treatment of non-burn acute wounds and chronic wounds is conflicted. Published research investigating the efficacy of honey in the treatment of other types of skin disorders is limited. Nevertheless, positive effects have been reported, for example, kanuka honey from New Zealand was shown to have therapeutic value in the treatment of rosacea. Anti-carcinogenic effects of honey have also been observed in vitro and in a murine model of melanoma.  It can be concluded that honey is a biologically active and clinically interesting substance but more research is necessary for a comprehensive understanding of its medicinal value in dermatology.

  9. Encapsulation of Cancer Therapeutic Agent Dacarbazine Using Nanostructured Lipid Carrier.

    Science.gov (United States)

    Almoussalam, Musallam; Zhu, Huijun

    2016-01-01

    The only formula of dacarbazine (Dac) in clinical use is intravenous infusion, presenting a poor therapeutic profile due to the low dispersity of the drug in aqueous solution. To overcome this, a nanostructured lipid carrier (NLC) consisting of glyceryl palmitostearate and isopropyl myristate was developed to encapsulate Dac. NLCs with controlled size were achieved using high shear dispersion (HSD) following solidification of oil-in-water emulsion. The synthesis parameters, including surfactant concentration, the speed and time of HSD were optimized to achieve the smallest NLC with size, polydispersion index and zeta potential of 155 ± 10 nm, 0.2 ± 0.01, and -43.4 ± 2 mV, respectively. The optimal parameters were also employed for Dac-loaded NLC preparation. The resultant NLC loaded with Dac possessed size, polydispersion index and zeta potential of 190 ± 10 nm, 0.2 ± 0.01, and -43.5 ± 1.2 mV, respectively. The drug encapsulation efficiency and drug loading reached 98% and 14%, respectively. This is the first report on encapsulation of Dac using NLC, implying that NLC could be a new potential candidate as drug carrier to improve the therapeutic profile of Dac. PMID:27168058

  10. Novel therapeutic agents in the treatment of metastaticcolorectal cancer

    Institute of Scientific and Technical Information of China (English)

    2016-01-01

    Over the past couple of decades considerable progresshas been made in the management of metastaticcolorectal cancers (mCRC) leading to a significant improvementin five-year survival. Although part of thissuccess has been rightly attributed to aggressive surgicalmanagement and advances in other adjunct treatments,our understanding of the pathogenesis of cancer andemergence of newer molecular targets for colon cancerhas created a powerful impact. In this review article wewill discuss various targeted therapies in the managementof mCRC. Newer agents on the horizon soon to beincorporated in clinical practice will be briefly reviewedas well.

  11. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  12. Resveratrol as a Therapeutic Agent for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Teng Ma

    2014-01-01

    Full Text Available Alzheimer’s disease (AD is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in vitro and in vivo. However, the effects of resveratrol are limited by its pool bioavailability; therefore researchers have been trying a variety of methods to improve the efficiency. This review summarizes the recent studies in cell cultures and animal models, mainly discusses the molecular mechanisms of the neuroprotective effects of resveratrol, and thus investigates the therapeutic potential in AD.

  13. Cyclic AMP efflux inhibitors as potential therapeutic agents for leukemia

    Science.gov (United States)

    Perez, Dominique R.; Smagley, Yelena; Garcia, Matthew; Carter, Mark B.; Evangelisti, Annette; Matlawska-Wasowska, Ksenia; Winter, Stuart S.; Sklar, Larry A.; Chigaev, Alexandre

    2016-01-01

    Apoptotic evasion is a hallmark of cancer. We propose that some cancers may evade cell death by regulating 3′-5′-cyclic adenosine monophosphate (cAMP), which is associated with pro-apoptotic signaling. We hypothesize that leukemic cells possess mechanisms that efflux cAMP from the cytoplasm, thus protecting them from apoptosis. Accordingly, cAMP efflux inhibition should result in: cAMP accumulation, activation of cAMP-dependent downstream signaling, viability loss, and apoptosis. We developed a novel assay to assess cAMP efflux and performed screens to identify inhibitors. In an acute myeloid leukemia (AML) model, several identified compounds reduced cAMP efflux, appropriately modulated pathways that are responsive to cAMP elevation (cAMP-responsive element-binding protein phosphorylation, and deactivation of Very Late Antigen-4 integrin), and induced mitochondrial depolarization and caspase activation. Blocking adenylyl cyclase activity was sufficient to reduce effects of the most potent compounds. These compounds also decreased cAMP efflux and viability of B-lineage acute lymphoblastic leukemia (B-ALL) cell lines and primary patient samples, but not of normal primary peripheral blood mononuclear cells. Our data suggest that cAMP efflux is a functional feature that could be therapeutically targeted in leukemia. Furthermore, because some of the identified drugs are currently used for treating other illnesses, this work creates an opportunity for repurposing. PMID:27129155

  14. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    Directory of Open Access Journals (Sweden)

    Fahmida Alam

    2014-01-01

    Full Text Available Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey’s antibacterial activity on diabetic wound-related microorganisms and honey’s clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims.

  15. Nanoparticles as conjugated delivery agents for therapeutic applications

    Science.gov (United States)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  16. Rituximab: An emerging therapeutic agent for kidney transplantation

    Directory of Open Access Journals (Sweden)

    Joseph Kahwaji

    2009-10-01

    Full Text Available Joseph Kahwaji, Chris Tong, Stanley C Jordan, Ashley A VoComprehensive Transplant Center, Transplant immunology Laboratory, HLA Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USAAbstract: Rituximab (anti-CD20, anti-B-cell is now emerging as an important drug for modification of B-cell and antibody responses in solid-organ transplant recipients. Its uses are varied and range from facilitating desensitization and ABO blood group-incompatible transplantation to the treatment of antibody-mediated rejection (AMR, post-transplant lymphoproliferative disorder (PTLD, and recurrent glomerular diseases in the renal allograft. Despite these uses, prospective randomized trials are lacking. Only case reports exist in regards to its use in de novo and recurrent diseases in the renal allograft. Recent reports suggests that the addition of rituximab to intravenous immunoglobulin (IVIG may have significant benefits for desensitization and treatment of AMR and chronic rejection. Current dosing recommendations are based on data from United States Food and Drug Administration-approved indications for treatment of B-cell lymphomas and rheumatoid arthritis. From the initial reported experience in solid organ transplant recipients, the drug is well tolerated and not associated with increased infectious risks. However, close monitoring for viral infections is recommended with rituximab use. The occurrence of progressive multifocal leukoencephalopathy (PML has been reported with rituximab use. However, this is rare and not reported in the renal transplant population. Here we will review current information regarding the effectiveness of rituximab as an agent for desensitization of highly human leukocyte antigen-sensitized and ABO-incompatible transplant recipients and its use in treatment of AMR. In addition, the post-transplant use of rituximab for treatment of PTLD and for recurrent and de novo glomerulonephritis in the allograft will be discussed. In

  17. Recent Progress and Advances in HGF/MET-Targeted Therapeutic Agents for Cancer Treatment

    Directory of Open Access Journals (Sweden)

    Yilong Zhang

    2015-03-01

    Full Text Available The hepatocyte growth factor (HGF: MET axis is a ligand-mediated receptor tyrosine kinase pathway that is involved in multiple cellular functions, including proliferation, survival, motility, and morphogenesis. Aberrancy in the HGF/MET pathway has been reported in multiple tumor types and is associated with tumor stage and prognosis. Thus, targeting the HGF/MET pathway has become a potential therapeutic strategy in oncology development in the last two decades. A number of novel therapeutic agents—either as therapeutic proteins or small molecules that target the HGF/MET pathway—have been tested in patients with different tumor types in clinical studies. In this review, recent progress in HGF/MET pathway-targeted therapy for cancer treatment, the therapeutic potential of HGF/MET-targeted agents, and challenges in the development of such agents will be discussed.

  18. Nanoparticles as conjugated delivery agents for therapeutic applications

    Science.gov (United States)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  19. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals

    OpenAIRE

    Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom

    2013-01-01

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lact...

  20. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Alistair C. McKinlay

    2014-12-01

    Full Text Available The highly porous nature of metal-organic frameworks (MOFs offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  1. Evaluación en animales del efecto protector de una inmunoglobulina anti Pseudomonas aeruginosa para uso terapéutico

    Directory of Open Access Journals (Sweden)

    Bárbara Cedré

    2007-04-01

    Full Text Available Pseudomonas aeruginosa constituye uno de los agentes patógenos oportunistas de mayor frecuencia de aislamiento en los diversos procesos infecciosos, por lo que es reconocido como un gran problema de salud a nivel mundial. Al no existir un fármaco de alta efectividad ni vacunas disponibles contra esta bacteria, se emplea una terapia con inmunoglobulinas polivalentes comerciales que de forma combinada con los antibióticos contribuyen a eliminar la infección, aunque los preparados disponibles en el mercado no contienen concentraciones suficientemente elevadas de anticuerpos específicos contra este microorganismo. En este trabajo se llevó a cabo la evaluación en un modelo animal de una inmunoglobulina anti- Pseudomonas aeruginosa para uso terapéutico mediante un ensayo de reto con una cepa virulenta. Se evaluó dosis y vía de administración de la misma, así como el valor profiláctico o terapéutico de los anticuerpos. Esta gammaglobulina resultó ser protectora en animales mostrando una sobreviviencia cercana a un 75% en comparación con el grupo control no protegido y además se logra eliminar el estado de portador en los individuos infectados.

  2. Drugs as causative agents and therapeutic agents in inflammatory bowel disease

    Directory of Open Access Journals (Sweden)

    Phani Krishna Kondamudi

    2013-09-01

    Full Text Available Ulcerative colitis and Crohn's disease are collectively known as inflammatory bowel diseases (IBD which are chronic inflammatory disorders of gastrointestinal tract. The etiopathogenesis of IBD has been extensively studied but not fully revealed. Recent advances in physiology, molecular biology and pharmacology have provided some insight into the basic etiopathogenetic causes such as genetic, immunologic, etc. This review focuses on drugs involved in the cause of the disease and the investigational new drugs, current therapeutic strategies and their clinical benefits.

  3. 77 FR 62521 - Prospective Grant of Exclusive License: The Development of Therapeutic Agents for the Treatment...

    Science.gov (United States)

    2012-10-15

    ... Therapeutic Agents for the Treatment of Metastatic Breast Cancer and T- cell Lymphoma AGENCY: National... metastatic breast cancer, or ii) incorporating a p53 isoform antisense oligonucleotide as a single biologic... of a p53 Isoform in Regenerative Medicine, Aging and Cancer'' . The patent rights in these...

  4. A Recent Perspective on Discovery and Development of Diverse Therapeutic Agents Inspired from Isatin Alkaloids.

    Science.gov (United States)

    Rane, Rajesh A; Karunanidhi, Sivanandhan; Jain, Kavita; Shaikh, Mahamadhanif; Hampannavar, Girish; Karpoormath, Rajshekhar

    2016-01-01

    Isatin as an alkaloidal framework have consistently attracted attention of medicinal chemist towards development of wide range of novel therapeutic agents. This review report has discussed significant isatin lead molecules and their derivatives which have shown promising biological potential in recent times. The substituted isatins showing a potent pharmacological activities such as antimicrobial, antitubercular, anticancer, antioxidant, anti-histaminic, anti-HIV, antiviral, anti-inflammatory, anti-Parkinson's and antidiabetic have been described in this review. The mechanism of action leading to therapeutic activity of the respective isatin derivation has also been recorded. This review reveals that the systematic and rational modifications on isatin motif exhibited significant bio-activities which can be exploited for the development of potent novel therapeutic agents in the future studies. Hence the quest to investigate more structural alterations on isatin scaffold should be continued. PMID:26369813

  5. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease

    OpenAIRE

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2009-01-01

    Alzheimer's disease (AD) is a devastating neuro-degenerative disorder characterized by the progressive and irreversible loss of memory followed by complete dementia. Despite the disease's high prevalence and great economic and social burden, an explicative etiology or viable cure is not available. Great effort has been made to better understand the disease's pathogenesis, and to develop more effective therapeutic agents. However, success is greatly hampered by the presence of the blood-brain ...

  6. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology

    OpenAIRE

    Ashbee, H. Ruth; Barnes, Rosemary A.; Johnson, Elizabeth M.; Richardson, Malcolm D.; Gorton, Rebecca; Hope, William W.

    2013-01-01

    The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics–pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the...

  7. Effect of therapeutic chemical agents in vitro and on experimental meningoencephalitis due to Naegleria fowleri.

    Science.gov (United States)

    Kim, Jong-Hyun; Jung, Suk-Yul; Lee, Yang-Jin; Song, Kyoung-Ju; Kwon, Daeho; Kim, Kyongmin; Park, Sun; Im, Kyung-Il; Shin, Ho-Joon

    2008-11-01

    Naegleria fowleri is a ubiquitous, pathogenic free-living amoeba; it is the most virulent Naegleria species and causes primary amoebic meningoencephalitis (PAME) in laboratory animals and humans. Although amphotericin B is currently the only agent available for the treatment of PAME, it is a very toxic antibiotic and may cause many adverse effects on other organs. In order to find other potentially therapeutic agents for N. fowleri infection, the present study was undertaken to evaluate the in vitro and in vivo efficacies of miltefosine and chlorpromazine against pathogenic N. fowleri. The result showed that the growth of the amoeba was effectively inhibited by treatment with amphotericin B, miltefosine, and chlorpromazine. When N. fowleri trophozoites were treated with amphotericin B, miltefosine, and chlorpromazine, the MICs of the drug were 0.78, 25, and 12.5 microg/ml, respectively, on day 2. In experimental meningoencephalitis of mice that is caused by N. fowleri, the survival rates of mice treated with amphotericin B, miltefosine, and chlorpromazine were 40, 55, and 75%, respectively, during 1 month. The average mean time to death for the amphotericin B, miltefosine, and chlorpromazine treatments was 17.9 days. In this study, the effect of drugs was found to be optimal when 20 mg/kg was administered three times on days 3, 7, and 11. Finally, chlorpromazine had the best therapeutic activity against N. fowleri in vitro and in vivo. Therefore, it may be a more useful therapeutic agent for the treatment of PAME than amphotericin B.

  8. Perspectives on Phytochemicals as Antibacterial Agents: An Outstanding Contribution to Modern Therapeutics.

    Science.gov (United States)

    Khatri, Savita; Kumar, Manish; Phougat, Neetu; Chaudhary, Renu; Chhillar, Anil Kumar

    2016-01-01

    Despite the considerable advancements in the development of antimicrobial agents, incidents of epidemics due to multi drug resistance in microorganisms have created a massive hazard to mankind. Due to increased resistance against conventional antibiotics, researchers and pharmaceutical industries are more concerned about novel therapeutic agents for the prevention of bacterial infections. Enormous wealth of traditional system of medicine gains importance in health therapies over again. With ancient credentials of potent medicinal plants, various herbal remedies came forward for the management of bacterial infections. The Ayurvedic approach facilitates the development of new therapeutic agents due to structural and functional diversity among phytochemicals. The abundance and diversity is responsible for the characterization of new lead structures from medicinal plants. Industrial interest has increased due to recent research advancements viz. synergistic and high-throughput screening approach for the evaluation of vast variety of phytochemicals. The review certainly emphasizes on the traditional medicines as alternatives to conventional chemotherapeutic drugs. The review briefly describes mode of action of various antibiotics and resistance mechanisms. This review focuses on the chemical diversity and various mechanisms of action of phytochemicals against bacterial pathogens. PMID:26873345

  9. Production and evaluation of Lutetium-177 maltolate as a possible therapeutic agent

    International Nuclear Information System (INIS)

    Development of oral therapeutic radiopharmaceuticals is a new concept in radiopharmacy. Due to the interesting therapeutic properties of 177Lu and oral bioavailability of maltolate (MAL) metal complexes, 177Lu-maltolate (177Lu-MAL) was developed as a possible therapeutic compound for ultimate oral administration. The specific activity of 2.6-3 GBq/mg was obtained by irradiation of natural Lu2O3 sample with thermal neutron flux of 4x1013 n.cm-2.s-1 for Lu-177. The product was converted into chloride form which was further used for labeling maltol (MAL). At optimized conditions a radiochemical purity of about >99% was obtained for 177Lu-MAL shown by ITLC (specific activity, 970-1000 Mbq/mmole). The stability of the labeled compound as well as the partition coefficient was determined in the final solution up to 24h. Biodistribution studies of Lu-177 chloride and 177Lu-MAL were carried out in wild-type rats for post-oral distribution phase data. Lu-MAL is a possible therapeutic agent in human malignancies for the bone palliation therapy so the efficacy of the compound should be tested in various animal models.

  10. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals.

    Science.gov (United States)

    Ferguson, Brian Scott; Hoggarth, David A; Maliniak, Dan; Ploense, Kyle; White, Ryan J; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J; Eisenstein, Michael; Kippin, Tod E; Plaxco, Kevin W; Soh, Hyongsok Tom

    2013-11-27

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients' health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at subminute temporal resolution. We show that MEDIC can also obtain pharmacokinetic parameters for individual animals in real time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe that MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484

  11. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhou

    2013-10-01

    Full Text Available Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging.

  12. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    Science.gov (United States)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  13. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    Science.gov (United States)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  14. Recent Advancement of Chitosan-Based Nanoparticles for Oral Controlled Delivery of Insulin and Other Therapeutic Agents

    OpenAIRE

    Chaudhury, Anumita; Das, Surajit

    2010-01-01

    Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for th...

  15. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    International Nuclear Information System (INIS)

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  16. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    Energy Technology Data Exchange (ETDEWEB)

    Tewari-Singh, Neera, E-mail: Neera.Tewari-Singh@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Jain, Anil K., E-mail: Anil.Jain@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Inturi, Swetha, E-mail: Swetha.Inturi@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Ammar, David A., E-mail: David.Ammar@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Agarwal, Chapla, E-mail: Chapla.Agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Tyagi, Puneet, E-mail: Puneet.Tyagi@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Kompella, Uday B., E-mail: Uday.Kompella@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Enzenauer, Robert W., E-mail: Robert.Enzenauer@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Petrash, J. Mark, E-mail: Mark.Petrash@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States)

    2012-10-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  17. Immunocytes as a Biocarrier to Delivery Therapeutic and Imaging Contrast Agents to Tumors

    Directory of Open Access Journals (Sweden)

    Jinhyang Choi

    2012-01-01

    Full Text Available Radiotherapy for cancer treatment has been used for primary or adjuvant treatment in many types of cancer, and approximately half of all cancer patients are undergoing radiation. However, ionizing radiation exposure induces genetic alterations in cancer cells and results in recruitment of monocytes/macrophages by triggering signals released from these cells. Using this characteristic of monocytes/macrophages, we have attempted to develop a biocarrier loading radiosensitizing anticancer agents that can lead to enhance the therapeutic effect of radiation in cancer treatment. The aim of this study is to demonstrate the proof of this concept. THP-1 labeled with Qdot 800 or iron oxide (IO effectively migrated into tumors of subcutaneous mouse model and increased recruitment after ionizing radiation. Functionalized liposomes carrying a radiosensitizing anticancer agent, doxorubicin, are successfully loaded in THP-1 (THP-1-LP-Dox with reduced cytotoxicity, and THP-1-LP-Dox also was observed in tumors after intravenous administration. Here, we report that monocytes/macrophages as a biocarrier can be used as a selective tool for amplification of the therapeutic effects on radiotherapy for human cancer treatment.

  18. New candidate therapeutic agents for endometrial cancer: potential for clinical practice (review).

    Science.gov (United States)

    Umene, Kiyoko; Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Nogami, Yuya; Tsuji, Kosuke; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Yamagami, Wataru; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2013-03-01

    Cases of endometrial cancer have increased in recent years, but the prognosis of patients with this disease has also been improved by combined modality therapy with surgery, radiotherapy and chemotherapy. However, the development of new therapy is required from the perspectives of conservation of fertility and efficacy for recurrent and intractable cancer. New candidate therapeutic agents for endometrial cancer include fourth-generation progestins for inhibition of growth and differentiation of endometrial glands; metformin for reduction of hTERT expression in the endometrium and inhibition of the mTOR pathway by activation of AMPK, with consequent inhibition of the cell cycle; mTOR inhibitors for supressing growth of cancer cells by G1 cell cycle arrest; microRNAs involved in the molecular mechanisms of oncogenesis and progression; and HDAC inhibitors that block the growth of cancer cells by transcriptional elevation of tumor-suppressor genes, cell cycle arrest and induction of apoptosis. In this study, we review the background and early clinical evidence for these agents as new therapeutic candidates for endometrial cancer. PMID:23291663

  19. Complete genome sequence analysis of two Pseudomonas plecoglossicida phages, potential therapeutic agents.

    Science.gov (United States)

    Kawato, Yasuhiko; Yasuike, Motoshige; Nakamura, Yoji; Shigenobu, Yuya; Fujiwara, Atushi; Sano, Motohiko; Nakai, Toshihiro

    2015-02-01

    Pseudomonas plecoglossicida is a lethal pathogen of ayu (Plecoglossus altivelis) in Japan and is responsible for substantial economic costs to ayu culture. Previously, we demonstrated the efficacy of phage therapy against P. plecoglossicida infection using two lytic phages (PPpW-3 and PPpW-4) (S. C. Park, I. Shimamura, M. Fukunaga, K. Mori, and T. Nakai, Appl Environ Microbiol 66:1416-1422, 2000, http://dx.doi.org/10.1128/AEM.66.4.1416-1422.2000; S. C. Park and T. Nakai, Dis Aquat Org 53:33-39, 2003, http://dx.doi.org/10.3354/dao053033). In the present study, the complete genome sequences of these therapeutic P. plecoglossicida phages were determined and analyzed for deleterious factors as therapeutic agents. The genome of PPpW-3 (myovirus) consisted of 43,564 bp with a GC content of 61.1% and 66 predicted open reading frames (ORFs). Approximately half of the genes were similar to the genes of the Escherichia coli phage vB_EcoM_ECO1230-10 (myovirus). The genome of PPpW-4 (podovirus) consisted of 41,386 bp with a GC content of 56.8% and 50 predicted ORFs. More than 70% of the genes were similar to the genes of Pseudomonas fluorescens phage ϕIBB-PF7A and Pseudomonas putida phage ϕ15 (podoviruses). The whole-genome analysis revealed that no known virulence genes were present in PPpW-3 and PPpW-4. An integrase gene was found in PPpW-3, but other factors used for lysogeny were not confirmed. The PCR detection of phage genes in phage-resistant variants provided no evidence of lysogenic activity in PPpW-3 and PPpW-4. We conclude that these two lytic phages qualify as therapeutic agents.

  20. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis

    Science.gov (United States)

    Tönük, Şükrü Burak; Serin, Erdinc; Ayhan, Fikriye Figen; Yorgancioglu, Zeynep Rezan

    2016-01-01

    Abstract To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA). Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period. After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action. PMID:27583888

  1. The effects of physical therapeutic agents on serum levels of stress hormones in patients with osteoarthritis

    Science.gov (United States)

    Tönük, Şükrü Burak; Serin, Erdinc; Ayhan, Fikriye Figen; Yorgancioglu, Zeynep Rezan

    2016-01-01

    Abstract To investigate the effects of physical agents on the levels of stress hormones in patients with osteoarthritis (OA). Transcutaneous electrical nerve stimulation, hot packs, and therapeutic ultrasound were applied to the lumbar region and knees of patients with OA. Blood samples were taken for the measurement of the serum levels of glucose, insulin (INS), growth hormone (GH), prolactin (PRL), cortisol (COR), and plasma adrenocorticotropic hormone (ACTH) immediately before and after the 1st session, to investigate the acute effects of those physical agents on the endocrine system. The hormone levels were also measured every 5 sessions in a total of 10 sessions. The treatment response was also evaluated by using the visual analogue scale (VAS), Roland Morris Disability Questionnaire (RMDQ), and Western Ontario and McMaster Universities Arthritis Index (WOMAC) throughout the therapy period. After the 1st session, there was a decrease in INS levels and a mild decrease in PRL levels (P = 0.001 and P < 0.05, respectively). Throughout the 10-session therapy period, the INS levels increased, whereas the ACTH and COR levels decreased (P < 0.05 for all). The VAS-spine, RMDQ, VAS-knee, and WOMAC scores decreased (P = 0.001 for VAS-spine and P < 0.001 for all others). A positive correlation was detected between the changes in serum COR and WOMAC-pain score (P < 0.05). Although the combination therapy caused changes in INS level accompanied with steady glucose levels, the application of physical agents did not adversely affect the hormone levels. The decrease in ACTH and COR levels may be attributed to the analgesic effect of agents and may be an indicator of patient comfort through a central action. PMID:27583888

  2. Review of therapeutic agents for burns pruritus and protocols for management in adult and paediatric patients using the GRADE classification

    Directory of Open Access Journals (Sweden)

    Goutos Ioannis

    2010-10-01

    Full Text Available To review the current evidence on therapeutic agents for burns pruritus and use the Grading of Recommendations, Assessment, Development and Evaluation (GRADE classification to propose therapeutic protocols for adult and paediatric patients. All published interventions for burns pruritus were analysed by a multidisciplinary panel of burns specialists following the GRADE classification to rate individual agents. Following the collation of results and panel discussion, consensus protocols are presented. Twenty-three studies appraising therapeutic agents in the burns literature were identified. The majority of these studies (16 out of 23 are of an observational nature, making an evidence-based approach to defining optimal therapy not feasible. Our multidisciplinary approach employing the GRADE classification recommends the use of antihistamines (cetirizine and cimetidine and gabapentin as the first-line pharmacological agents for both adult and paediatric patients. Ondansetron and loratadine are the second-line medications in our protocols. We additionally recommend a variety of non-pharmacological adjuncts for the perusal of clinicians in order to maximise symptomatic relief in patients troubled with postburn itch. Most studies in the subject area lack sufficient statistical power to dictate a ′gold standard′ treatment agent for burns itch. We encourage clinicians to employ the GRADE system in order to delineate the most appropriate therapeutic approach for burns pruritus until further research elucidates the most efficacious interventions. This widely adopted classification empowers burns clinicians to tailor therapeutic regimens according to current evidence, patient values, risks and resource considerations in different medical environments.

  3. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential.

    Science.gov (United States)

    Zasloff, Michael; Adams, A Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Weaver, Scott C; Wong, Gerard C L

    2011-09-20

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  4. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview.

    Science.gov (United States)

    Singh, Rajinder; De, Subrata; Belkheir, Asma

    2013-01-01

    The aim of the present review article is to summarize the available information related to the availability, production, chemical composition, pharmacological activity, and traditional uses of Avena sativa to highlight its potential to contribute to human health. Oats are now cultivated worldwide and form an important dietary staple for the people in number of countries. Several varieties of oats are available. It is a rich source of protein, contains a number of important minerals, lipids, β-glucan, a mixed-linkage polysaccharide, which forms an important part of oat dietary fiber, and also contains various other phytoconstituents like avenanthramides, an indole alkaloid-gramine, flavonoids, flavonolignans, triterpenoid saponins, sterols, and tocols. Traditionally oats have been in use since long and are considered as stimulant, antispasmodic, antitumor, diuretic, and neurotonic. Oat possesses different pharmacological activities like antioxidant, anti-inflammatory, wound healing, immunomodulatory, antidiabetic, anticholesterolaemic, etc. A wide spectrum of biological activities indicates that oat is a potential therapeutic agent. PMID:23072529

  5. Pentosan polysulfate as a prophylactic and therapeutic agent against prion disease.

    Science.gov (United States)

    Dealler, Stephen; Rainov, Nikolai G

    2003-05-01

    Pentosan polysulfate (PPS) acts by imitating the physiological roles of the heparans. It binds to heparan binding sites on proteins and alters the physiological actions of these proteins. PPS acts as a prophylactic agent against infection with prions both in vivo and in vitro. Low concentrations (10 mg/ml) are needed extracellularly for this effect to be seen but, due to cellular uptake, it is believed that a much higher concentration is found intracellularly. The prophylactic effect of PPS is observed if the drug is administered to mice between 3 months before and approximately 30 days after the inoculation of the disease. After that point it is considered that the infection has entered the nervous system, and that the drug cannot penetrate the blood-brain barrier. The prophylaxis of humans with oral PPS and the current therapeutic activity of the drug when given by intracerebroventricular infusion to symptomatic, prion-infected animals are discussed.

  6. Novel enterobactin analogues as potential therapeutic chelating agents: Synthesis, thermodynamic and antioxidant studies

    Science.gov (United States)

    Zhang, Qingchun; Jin, Bo; Shi, Zhaotao; Wang, Xiaofang; Liu, Qiangqiang; Lei, Shan; Peng, Rufang

    2016-09-01

    A series of novel hexadentate enterobactin analogues, which contain three catechol chelating moieties attached to different molecular scaffolds with flexible alkyl chain lengths, were prepared. The solution thermodynamic stabilities of the complexes with uranyl, ferric(III), and zinc(II) ions were then investigated. The hexadentate ligands demonstrate effective binding ability to uranyl ion, and the average uranyl affinities are two orders of magnitude higher than 2,3-dihydroxy-N1,N4-bis[(1,2-hydroxypyridinone-6-carboxamide)ethyl]terephthalamide [TMA(2Li-1,2-HOPO)2] ligand with similar denticity. The high affinity of hexadentate ligands could be due to the presence of the flexible scaffold, which favors the geometric agreement between the ligand and the uranyl coordination preference. The hexadentate ligands also exhibit higher antiradical efficiency than butylated hydroxyanisole (BHA). These results provide a basis for further studies on the potential applications of hexadentate ligands as therapeutic chelating agents.

  7. Use of Integrated Computational Approaches in the Search for New Therapeutic Agents.

    Science.gov (United States)

    Persico, Marco; Di Dato, Antonio; Orteca, Nausicaa; Cimino, Paola; Novellino, Ettore; Fattorusso, Caterina

    2016-09-01

    Computer-aided drug discovery plays a strategic role in the development of new potential therapeutic agents. Nevertheless, the modeling of biological systems still represents a challenge for computational chemists and at present a single computational method able to face such challenge is not available. This prompted us, as computational medicinal chemists, to develop in-house methodologies by mixing various bioinformatics and computational tools. Importantly, thanks to multi-disciplinary collaborations, our computational studies were integrated and validated by experimental data in an iterative process. In this review, we describe some recent applications of such integrated approaches and how they were successfully applied in i) the search of new allosteric inhibitors of protein-protein interactions and ii) the development of new redox-active antimalarials from natural leads.

  8. Technical cooperation for the wider uses of Ho-166 therapeutic agents in European countries

    CERN Document Server

    Park, K B; Choi, S M; Han, K H; Hong, Y D; Park, W W; Shin, B C

    2002-01-01

    Czech has put their priority in developing the radiopharmaceuticals based on reactor produced Ho-166 and a related fabrication will be extended to other EU conturies including Germany, France, etc after a development of project. The collaboration will be based on the mutual agreement for developing the between research institutes, industries and academic institutes and further researches should be followed by the issue of developing radiopharmaceuticals using Ho-166. To strengthen the collaboration, detailed discussions for the practical collaboration have been made through the visitation to the research institution of each counter part. For implementing the collaboration between NPI and KAERI, an institutional basis technical cooperation agreement(TCA) will be concluded. Furthermore, agreement for the substantial collaboration on Ho-166 related researches will be made after the conclusion of the TCA. It will accelerate the commercialization of KAERI developed Ho-166 therapeutic agents into other European cou...

  9. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview.

    Science.gov (United States)

    Singh, Rajinder; De, Subrata; Belkheir, Asma

    2013-01-01

    The aim of the present review article is to summarize the available information related to the availability, production, chemical composition, pharmacological activity, and traditional uses of Avena sativa to highlight its potential to contribute to human health. Oats are now cultivated worldwide and form an important dietary staple for the people in number of countries. Several varieties of oats are available. It is a rich source of protein, contains a number of important minerals, lipids, β-glucan, a mixed-linkage polysaccharide, which forms an important part of oat dietary fiber, and also contains various other phytoconstituents like avenanthramides, an indole alkaloid-gramine, flavonoids, flavonolignans, triterpenoid saponins, sterols, and tocols. Traditionally oats have been in use since long and are considered as stimulant, antispasmodic, antitumor, diuretic, and neurotonic. Oat possesses different pharmacological activities like antioxidant, anti-inflammatory, wound healing, immunomodulatory, antidiabetic, anticholesterolaemic, etc. A wide spectrum of biological activities indicates that oat is a potential therapeutic agent.

  10. Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Shailendra Giri

    Full Text Available This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO, a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04 in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2 × 10(6 were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001 in the peritoneal cavity compared to vehicle (phosphate buffered saline treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO's nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.

  11. ADVANCED MOLECULAR DESIGN OF BIOPOLYMERS FOR TRANSMUCOSAL AND INTRACELLULAR DELIVERY OF CHEMOTHERAPEUTIC AGENTS AND BIOLOGICAL THERAPEUTICS

    Science.gov (United States)

    Liechty, William B.; Caldorera-Moore, Mary; Phillips, Margaret A.; Schoener, Cody; Peppas, Nicholas A.

    2011-01-01

    Hydrogels have been instrumental in the development of polymeric systems for controlled release of therapeutic agents. These materials are attractive for transmucosal and intracellular drug delivery because of their facile synthesis, inherent biocompatibility, tunable physicochemical properties, and capacity to respond to various physiological stimuli. In this contribution, we outline a multifaceted hydrogel-based approach for expanding the range of therapeutics in oral formulations from classical small-molecule drugs to include proteins, chemotherapeutics, and nucleic acids. Through judicious materials selection and careful design of copolymer composition and molecular architecture, we can engineer systems capable of responding to distinct physiological cues, with tunable physicochemical properties that are optimized to load, protect, and deliver valuable macromolecular payloads to their intended site of action. These hydrogel carriers, including complexation hydrogels, tethered hydrogels, interpenetrating networks, nanoscale hydrogels, and hydrogels with decorated structures are investigated for their ability respond to changes in pH, to load and release insulin and fluorescein, and remain non-toxic to Caco-2 cells. Our results suggest these novel hydrogel networks have great potential for controlled delivery of proteins, chemotherapeutics, and nucleic acids. PMID:21699934

  12. Imaging Therapeutic PARP Inhibition In Vivo through Bioorthogonally Developed Companion Imaging Agents

    Directory of Open Access Journals (Sweden)

    Thomas Reiner

    2012-03-01

    Full Text Available A number of small-molecule poly (ADP-ribose polymerase (PARP inhibitors are currently undergoing advanced clinical trials. Determining the distribution and target inhibitory activity of these drugs in individual subjects, however, has proven problematic. Here, we used a PARP agent for positron emission tomography-computed tomography (PET-CT imaging (18F-BO, which we developed based on the Olaparib scaffold using rapid bioorthogonal conjugation chemistries. We show that the bioorthogonal 18F modification of the parent molecule is simple, highly efficient, and well tolerated, resulting in a half maximal inhibitory concentration (IC50 of 17.9 ± 1.1 nM. Intravital imaging showed ubiquitous distribution of the drug and uptake into cancer cells, with ultimate localization within the nucleus, all of which were inhibitable. Whole-body PET-CT imaging showed tumoral uptake of the drug, which decreased significantly, after a daily dose of Olaparib. Standard 18F-fludeoxyglucose imaging, however, failed to detect such therapy-induced changes. This research represents a step toward developing a more generic approach for the rapid codevelopment of companion imaging agents based on small-molecule therapeutic inhibitors.

  13. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.

    Science.gov (United States)

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R

    2016-09-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website. PMID:26762467

  14. Targeting Potassium Channels for Increasing Delivery of Imaging Agents and Therapeutics to Brain Tumors

    Directory of Open Access Journals (Sweden)

    Nagendra Sanyasihally Ningaraj

    2013-05-01

    Full Text Available Every year in the US, 20,000 new primary and nearly 200,000 metastatic brain tumor cases are reported. The cerebral microvessels/ capillaries that form the blood–brain barrier (BBB not only protect the brain from toxic agents in the blood but also pose a significant hindrance to the delivery of small and large therapeutic molecules. Different strategies have been employed to circumvent the physiological barrier posed by blood-brain tumor barrier (BTB. Studies in our laboratory have identified significant differences in the expression levels of certain genes and proteins between normal and brain tumor capillary endothelial cells. In this study, we validated the non-invasive and clinically relevant Dynamic Contrast Enhancing-Magnetic Resonance Imaging (DCE-MRI method with invasive, clinically irrelevant but highly accurate Quantitative Autoradiography (QAR method using rat glioma model. We also showed that DCE-MRI metric of tissue vessel perfusion-permeability is sensitive to changes in blood vessel permeability following administration of calcium-activated potassium (BKCa channel activator NS-1619. Our results show that human gliomas and brain tumor endothelial cells that overexpress BKCa channels can be targeted for increased BTB permeability for MRI enhancing agents to brain tumors. We conclude that monitoring the outcome of increased MRI enhancing agents’ delivery to microsatellites and leading tumor edges in glioma patients would lead to beneficial clinical outcome.

  15. Renal cell carcinoma: review of novel single-agent therapeutics and combination regimens.

    Science.gov (United States)

    Amato, R J

    2005-01-01

    A search of the Medline database and ASCO 2003 conference proceedings was conducted to identify clinical trials currently underway using single-agent therapy for renal cell carcinoma (RCC). Combination trials were identified using the ASCO 2003 conference proceedings. Fourteen single-agent therapies employing different mechanisms of action were identified in the published literature: imatinib mesylate (Gleevec); bevacizumab (Avastin); thalidomide (Thalomid); gefitinib (ZD1839) (Iressa); cetuximab (IMC-C225) (Erbitux); bortezomib (PS-341) (Velcade); HSPPC-96 (Oncophage); BAY 59-8862; ABT-510; G250; CCI-779; SU5416; PTK/ZK; and ABX-EGF. Six distinct fields of clinical research have emerged: monoclonal antibodies, small molecules, vaccines, second-generation taxanes, nonapeptides and immunomodulators. Five combination regimens, primarily biological response modifiers (interleukin-2 or interferon-alpha), chemotherapy- or thalidomide-based, were identified. All therapies demonstrated acceptable toxicity profiles. Clinical benefit was assessed based on each study's reported criteria: antitumor response (regression or stability) ranged from 5% to 71%. In the past several years, significant advances in the underlying biological mechanisms of RCC, particularly the role of tumor angiogenesis, have permitted the design of molecularly targeted therapeutics. Based on preliminary and limited studies, combination therapies offer the greatest clinical benefit in the management of this malignancy, although additional basic research is still warranted.

  16. A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine

    OpenAIRE

    Shen, Meihua; Zhang, Hongying; Yu, Congjun; Wang, Fan; Sun, Xuejun

    2014-01-01

    Hydrogen is the most abundant chemical element in the Universe, but is seldom regarded as a therapeutic agent. Recent evidence has shown that hydrogen is a potent antioxidative, antiapoptotic and anti-inflammatory agent and so may have potential medical applications in cells, tissues and organs. There are several methods to administer hydrogen, such as inhalation of hydrogen gas, aerosol inhalation of a hydrogen-rich solution, drinking hydrogen dissolved in water, injecting hydrogen-rich sali...

  17. [Weighing use and safety of therapeutic agents and feed additives (author's transl)].

    Science.gov (United States)

    van der Wal, P

    1982-02-01

    (1) The pros and cons of using feed additives and therapeutic agents may be successfully weighed in the light of carefully considered consumer requirements. (2) The socio-economic interests of the producer and the welfare of the animal will also determine the response of the production apparatus to consumer requirements. (3) Consumption of the current amounts of products of animal origin and maintenance of price and quality will only be feasible in the event of rational large-scale production in which constituents used in nutrition, prophylaxis and therapeutics are highly important factors. (4) Using these ingredients should be preceded by accurate evaluation of their use and safety. Testing facilities, conduct of studies and reporting should be such as to make the results nationally and internationally acceptable to all those concerned. (5) In deciding whether feed constituents are acceptable in view of the established use and safety, compliance will have to be sought with those standards which are accepted in other fields of society. Measures which result in raising the price of food without actually helping to reduce the risks to the safety of man, animals and environment, are likely to be rejected by any well-informed consumer who is aware of the facts. (6) For accurate weighing of use and safety at a national level, possibilities are hardly adequate in Europe. Decisions reached within the framework of the European Community, also tuned to U.S.A.- conditions are rightly encouraged. A centrally managed professionally staffed and equipped test system in the European Community would appear to be indispensable. PMID:7058519

  18. Zinc as a possible preventive and therapeutic agent in pancreatic, prostate, and breast cancer.

    Science.gov (United States)

    Hoang, Ba X; Han, Bo; Shaw, David Graeme; Nimni, Marcel

    2016-09-01

    Zinc is a vital nutrient for human health. Over 300 biological functions in the human body rely on zinc. Even though zinc is incredibly important for our physiology and pathology, our current understanding of zinc, as it relates to tumor cell biology, leaves much to be desired. As with other natural, nonpatentable, and inexpensive agents, zinc remains a subject of explorative research for scientific interest rather than being promoted for practical use. To date, more than 5000 studies with the keywords 'zinc' and 'cancer' have been indexed in the Web of Knowledge portal. Although the numbers of papers have increased 2.5-fold during the last decade, these vast research data have not generated a single recommendation for the incorporation of zinc use in cancer prevention and treatment. In this review, we intend to analyze the current available research data and epidemiological and clinical evidence on the role of zinc in human cancer prevention and treatment. We focus on the cancers - prostate, breast, and pancreatic - for which the most basic and epidemiological studies with zinc have been carried out. The pancreas, and prostate and mammary glands are secretory tissues that have unusual zinc requirements; they tightly regulate zinc metabolism through integration of zinc import, sequestration, and export mechanisms. This suggests to us that zinc could play an important role in the physiology and pathology of these organs. The objective of this review was to stimulate more interest in the research field, focusing on the role of zinc as a possible preventive and therapeutic agent and the accelerated application of this inexpensive and easily accessible nutrient in clinical oncology. PMID:26317381

  19. Interactions between radiopharmaceuticals and therapeutic agents: Animal experiments on the influence of therapeutic agents on the pharmacokinetics of 99m-Tc-methylene diphosphonate

    International Nuclear Information System (INIS)

    In this study examined if skeletal uptake, distribution or excretion of 99m-Tc-methylene-diphosphonate (99m-Tc- MDP) will change under the influence of different therapeutic drugs or the state of dehydration. As therapeutic drugs we chose tetracyclines, sympathomimetic drugs, sympatholytic drugs, diuretics, a Ca-antagonist and a corticosteroid. The state of dehydration of the laboratory animals (female Wistar-rats) was achieved by withdrawal of drinking water for 48 hours. The activity was measured in the organs or body compartments blood, kidney, lung, liver, skeletal muscle and femur. The measurements were performed 2 hours after the application of the radiopharmaceutical. (orig./MG)

  20. Discovery of Narrow Spectrum Kinase Inhibitors: New Therapeutic Agents for the Treatment of COPD and Steroid-Resistant Asthma.

    Science.gov (United States)

    Onions, Stuart T; Ito, Kazuhiro; Charron, Catherine E; Brown, Richard J; Colucci, Marie; Frickel, Fritz; Hardy, George; Joly, Kevin; King-Underwood, John; Kizawa, Yasuo; Knowles, Ian; Murray, P John; Novak, Andrew; Rani, Anjna; Rapeport, Garth; Smith, Alun; Strong, Peter; Taddei, David M; Williams, Jonathan G

    2016-03-10

    The discovery of a novel series of therapeutic agents that has been designed and optimized for treating chronic obstructive pulmonary disease is reported. The pharmacological strategy was based on the identification of compounds that inhibit a defined subset of kinase enzymes modulating inflammatory processes that would be effective against steroid refractory disease and exhibit a sustained duration of action after inhaled delivery. PMID:26800309

  1. Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Mark Feldman

    Full Text Available Candida albicans is known as a commensal microorganism but it is also the most common fungal pathogen in humans, causing both mucosal and systemic infections. Biofilm-associated C. albicans infections present clinically important features due to their high levels of resistance to traditional antifungal agents. Quorum sensing is closely associated with biofilm formation and increasing fungal pathogenicity. We investigated the ability of the novel bacterial quorum sensing quencher thiazolidinedione-8 (S-8 to inhibit the formation of, and eradication of mature C. albicans biofilms. In addition, the capability of S-8 to alter fungal adhesion to mammalian cells was checked. S-8 exhibited specific antibiofilm and antiadhesion activities against C. albicans, at four- to eightfold lower concentrations than the minimum inhibitory concentration (MIC. Using fluorescence microscopy, we observed that S-8 dose-dependently reduces C. albicans-GFP binding to RAW macrophages. S-8 at sub-MICs also interfered with fungal morphogenesis by inhibiting the yeast-to-hyphal form transition. In addition, the tested agent strongly affected fungal cell wall characteristics by modulating its hydrophobicity. We evaluated the molecular mode of S-8 antibiofilm and antiadhesion activities using real-time RT-PCR. The expression levels of genes associated with biofilm formation, adhesion and filamentation, HWP1, ALS3 and EAP1, respectively, were dose-dependently downregulated by S-8. Transcript levels of UME6, responsible for long-term hyphal maintenance, were also significantly decreased by the tested agent. Both signaling pathways of hyphal formation-cAMP-PKA and MAPK-were interrupted by S-8. Their upstream general regulator RAS1 was markedly suppressed by S-8. In addition, the expression levels of MAPK cascade components CST20, HST7 and CPH1 were downregulated by S-8. Finally, transcriptional repressors of filament formation, TUP1 and NRG1, were dramatically upregulated by our

  2. Natural therapeutic agents for neurodegenerative diseases from a traditional herbal medicine Pongamia pinnata (L.) Pierre.

    Science.gov (United States)

    Li, Jiayuan; Jiang, Zhe; Li, Xuezheng; Hou, Yue; Liu, Fen; Li, Ning; Liu, Xia; Yang, Lihua

    2015-01-01

    Neurodegenerative diseases are associated with neuroinflammation, manifested by over-production of nitric oxide (NO) by microglial cells. Now there still lack effective treatment and prevention for the neurodegenerative diseases. Concerning neuroinflammation mediated by microglia cell, bioactivity-guided phytochemical research of Pongamia pinnata (L.) Pierre was performed in this study. A new chlorinated flavonoid, 2′,6′-dichlore-3′, 5′-dimethoxy-[2′′,3′′:7,8]-furanoflavone (1) was identified together with 29 known compounds, including flavonoids (compounds 2-17), isoflavonoids (compounds 18-23), chalcones (compounds 24-25), flavonones (compounds 26-27), triterpenes (28-29) and alkaloid (30) from the effective dichloride methane extract of dry stem of P. pinnata (L.) Pierre. Their structures were elucidated by physicochemical and spectral methods. The anti-neuroinflammatory activities were assayed in BV-2 cells by assessing LPS-induced NO production. Then pongaglabol methyl ether (2), lonchocarpin (24) and glabrachromene II (25) were selected as potential therapeutic agents for neurodegenerative diseases because of their significant anti-neuroinflammatory activities. Furthermore, the characteristics of structure type existing in P. pinnata (L.) Pierre and brief SAR were summarized, respectively.

  3. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors.

  4. Human recombinant truncated RNASET2, devoid of RNase activity; A potential cancer therapeutic agent

    Science.gov (United States)

    Nesiel-Nuttman, Liron; Schwartz, Betty; Shoseyov, Oded

    2014-01-01

    Human RNASET2 has been implicated in antitumorigenic and antiangiogenic activities, independent of its ribonuclease capacities. We constructed a truncated version of human RNASET2, starting at E50 (trT2-50) and devoid of ribonuclease activity. trT2-50 maintained its ability to bind actin and to inhibit angiogenesis and tumorigenesis. trT2-50 binds to cell surface actin and formed a complex with actin in vitro. The antiangiogenic effect of this protein was demonstrated in human umbilical vein endothelial cells (HUVECs) by its ability to arrest tube formation on Matrigel, induced by angiogenic factors. Immunofluorescence staining of HUVECs showed nuclear and cytosolic RNASET2 protein that was no longer detectable inside the cell following trT2-50 treatment. This effect was associated with disruption of the intracellular actin network. trT2-50 co-localized with angiogenin, suggesting that both molecules bind (or compete) for similar cellular epitopes. Moreover, trT2-50 led to a significant inhibition of tumor development. Histological analysis demonstrated abundant necrotic tissue and a substantial loss of endothelial structure in trT2-50-treated tumors. Collectively, the present results indicate that trT2-50, a molecule engineered to be deficient of its catalytic activity, still maintained its actin binding and anticancer-related biological activities. We therefore suggest that trT2-50 may serve as a potential cancer therapeutic agent. PMID:25426551

  5. Coordination of platinum therapeutic agents to met-rich motifs of human copper transport protein1.

    Science.gov (United States)

    Crider, Sarah E; Holbrook, Robert J; Franz, Katherine J

    2010-01-01

    Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

  6. Chemically modified tetracyclines: Novel therapeutic agents in the management of chronic periodontitis

    Directory of Open Access Journals (Sweden)

    Rupali Agnihotri

    2012-01-01

    Full Text Available Chronic periodontitis is a complex infection initiated by gram-negative bacteria which destroy the supporting structures of the tooth. Recently, it has been recognized that it is the host response to bacterial infection which causes greater destruction of the connective tissue elements, periodontal ligament and alveolar bone in periodontitis. This has led to the development of various host modulating approaches to target cells and their destructive mediators involved in tissue degradation. Chemically modified tetracyclines (CMTs are derivatives of tetracycline group of drugs which lack antimicrobial action but have potent host modulating affects. They inhibit pathologically elevated matrix metal loproteinases, pro-inflammtory cytokines and other destructive mediators. Bone resorption is also suppressed due to their combined anti-proteinase and apoptotic affects on osteoblasts and osteoclasts, respectively. Development of resistant bacteria and gastrointestinal toxicity seen with parent tetracyclines is not produced by CMTs. Hence, CMTs are viewed as potential therapeutic agents in the management of chronic diseases like periodontitis that involve destruction of connective tissue and bone.

  7. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors. PMID:26864638

  8. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution.

    Science.gov (United States)

    Fan, Jiying; Wang, Zhanqing; Huang, Liying; Shen, Yaling

    2016-09-01

    VAS-TRAIL is a bifunctional fusion protein that combines anti-angiogenic activity with tumor-selective apoptotic activity for enhanced anti-tumor efficacy. VAS-TRAIL is expressed as inclusion body in Escherichia coli, but protein refolding is difficult to achieve and results in low yields of bioactive protein. In this study, we describe an efficient method for VAS-TRAIL refolding. The solubilization of aggregated VAS-TRAIL was achieved by a triple agent solution, which consists of an alkaline solution (pH 11.5) containing 0.4M l-arginine and 2M urea. The solubilized protein showed high purity and preserved secondary structure according to fluorescence properties. VAS-TRAIL refolding was performed through stepwise dialysis and resulted in more than 50% recovery of the soluble protein. The function of l-arginine was additive with alkaline pH, as shown by the significant improvement in refolding yield (≈30%) by l-arginine-containing solubilization solutions compared with alkaline solubilization solutions without l-arginine. The refolded VAS-TRAIL also showed β-sheet structures and the propensity for oligomerization. Bioassays showed that the refolded fusion protein exhibited the expected activities, including its apoptotic activities toward tumor and endothelial cells, which proposed its promising therapeutic potential. PMID:26358405

  9. Crystal structures of Two Potential Tumor Imaging Agents and Therapeutic Agents-Copper(II)Ternary Complexes With Salicylidene-tyrosinato Schiff Base and Nitrogen-donor Chelating Lewis Base

    Institute of Scientific and Technical Information of China (English)

    Ming Zhao WANG; Guan Liang CAI; Ling XIA; Jun Jian YAO; Hong Yan CHEN; Zhao Xing MENG; Bo Li LIU

    2004-01-01

    The crystal structures of two potential tumor imaging agents and therapeutic agents -copper(II) complexes with salicylidene-tyrosinato Schiff base and nitrogen-donor chelating Lewis base,[Cu(sal-tyr)(bipy)] 1 and [Cu(sal-tyr)(phen)]·2CH3OH 2, are presented. Our work is helpful to get deep understanding of novel 64Cu tumor imaging agents and therapeutic agents.

  10. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    Science.gov (United States)

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system. PMID:27017579

  11. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    Science.gov (United States)

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair. PMID:27574685

  12. Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer

    OpenAIRE

    Jiang, Quan; Zheng, Shilong; Wang, Guangdi

    2013-01-01

    Despite our deepening understanding of the mechanisms of resistance and intensive efforts to develop therapeutic solutions to combat resistance, de novo and acquired tamoxifen resistance remains a clinical challenge, and few effective regimens exist to treat tamoxifen-resistant breast cancer. The complexity of tamoxifen resistance calls for diverse therapeutic approaches. This review presents several therapeutic strategies and lead compounds targeting the estrogen receptor signaling pathways ...

  13. Aptámeros: agentes diagnósticos y terapéuticos = Aptamers: diagnostic and therapeutic agents

    Directory of Open Access Journals (Sweden)

    Frank J Hernandez

    2012-04-01

    Full Text Available Los aptámeros son ácidos nucleicos de cadena sencilla, ADN o ARN, que reconocen una gran variedad de moléculas. Cada aptámero posee una estructura tridimensional particular que le permite unirse con afinidad y especificidad altas a la molécula diana. Los aptámeros tienen propiedades de reconocimiento equiparables a las de los anticuerpos; sin embargo, por la naturaleza de su composición tienen ventajas significativas en cuanto a su tamaño, producción y modificación. Estas características los hacen excelentes candidatos para el desarrollo de nuevas plataformas biotecnológicas. Se han identificado aptámeros con propiedades terapéuticas que han sido evaluados exitosamente en modelos animales; entre ellos, algunos se encuentran en fase clínica y uno ya fue aprobado para tratamiento por la FDA (Food and Drug Administration. Todos estos avances ocurridos durante las dos últimas décadas permiten anticipar el protagonismo que tendrán los aptámeros como agentes diagnósticos y terapéuticos en un futuro cercano.

  14. Choline and Geranate Deep Eutectic Solvent as a Broad-Spectrum Antiseptic Agent for Preventive and Therapeutic Applications.

    Science.gov (United States)

    Zakrewsky, Michael; Banerjee, Amrita; Apte, Sanjana; Kern, Theresa L; Jones, Mattie R; Sesto, Rico E Del; Koppisch, Andrew T; Fox, David T; Mitragotri, Samir

    2016-06-01

    Antiseptic agents are the primary arsenal to disinfect skin and prevent pathogens spreading within the host as well as into the surroundings; however the Food and Drug Administration published a report in 2015 requiring additional validation of nearly all current antiseptic agents before their continued use can be allowed. This vulnerable position calls for urgent identification of novel antiseptic agents. Recently, the ability of a deep eutectic, Choline And Geranate (CAGE), to treat biofilms of Pseudomonas aeruginosa and Salmonella enterica was demonstrated. Here it is reported that CAGE exhibits broad-spectrum antimicrobial activity against a number of drug-resistant bacteria, fungi, and viruses including clinical isolates of Mycobacterium tuberculosis, Staphylococcus aureus, and Candida albicans as well as laboratory strains of Herpes Simplex Virus. Studies in human keratinocytes and mice show that CAGE affords negligible local or systemic toxicity, and an ≈180-14 000-fold improved efficacy/toxicity ratio over currently used antiseptic agents. Further, CAGE penetrates deep into the dermis and treats pathogens located in deep skin layers as confirmed by the ability of CAGE in vivo to treat Propionibacterium acnes infection. In combination, the results clearly demonstrate CAGE holds promise as a transformative platform antiseptic agent for preventive as well as therapeutic applications. PMID:26959835

  15. Novel compounds in the treatment of lung cancer: current and developing therapeutic agents

    OpenAIRE

    Bao, Rudi

    2011-01-01

    Rudi Bao, Pokman ChanOncology, Curis Inc, Lexington, MA, USAAbstract: Lung cancer is the leading cause of cancer-related death in the United States. Though incremental advances have been made in the treatment of this devastating disease during the past decade, new therapies are urgently needed. Traditional cytotoxic agents have been combined with other modalities with improved survival for early-stage patients. Newer cytotoxic agents targeting the same or different mechanisms have been develo...

  16. Preparation and Preliminary Biological Evaluation of {sup 177}Lu-DOTA folate as Potential Folate Receptor Targeting Therapeutic Agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang-Hyuk; Hong, Young-Don; Pyun, Mi-Sun; Lee, So-Young; Felipe, Fenelope; Yoon, Sun-Ha; Choi, Sun-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Folic Acid (FA) and FA derivatives are overexpressed on several tumor cells. The cell-membrane folic acid receptors are known to be responsible for the cellular accumulation of FA and FA analogs, such as methotrexate and folic acid. Folate has been characterized to have high affinity for the folate-receptor positive cells and tissues and considered to be useful as diagnostic imaging and therapeutic agent. In 1940s, Folate analogue, aminopterin, was first used for treatment of leukemia and recently, many folate derivatives were tried for cancer-treatment agent as well as visualization of folate receptor. Many researchers tried to conjugate folic acid with macromolecules or low molecular weight chelators through its alpha or gamma carboxylate. However, despite the reduced binding affinity, FAs are still recognized by the folate receptor. Therefore, we focused to develop folate-based radiopharmaceutical that has the potential to be used as a therapeutic agent. We report here the synthesis and the radiolabeling of {sup 177}Lu-DOTA as well as the biodistribution data of our developed compound.

  17. Nurses as therapeutic agents in the extreme environment of the desert war, 1940-44

    OpenAIRE

    Jane Brooks

    2015-01-01

    Aims: The purpose of this article is to explore therapeutic nursing with combatants in the extreme environment of the desert in World War II. Background: The notion of nursing as therapy gained credence in the 1990s and is currently experiencing resurgence, as nurses seek to find meaning in their work and improve patient care in the post-Francis environment. Design: This discussion paper will use the hostile space of the desert war zone in World War II to explore nurses’ therapeutic e...

  18. Topical erythropoietin as a novel preventive and therapeutic agent in bisphosphonate-related osteonecrosis of the jaw

    Directory of Open Access Journals (Sweden)

    Pantea Nazeman

    2016-01-01

    Full Text Available Introduction: One of the most common side effects of bisphosphonate intake is osteonecrosis of the jaw (ONJ which may develop following dentoalveolar interventions. Despite the vast available protocols, there is no clear guideline in the management of this condition. In osteonecrosis, the number and proliferation of bone-forming cells as well as vascularity are disturbed. Erythropoietin (EPO is a hematopoietic hormone with angiogenic, osteogenic, and antiapoptotic properties. The Hypothesis: It is suggested to utilize poly lactic-co-glycolic acid hydrogel containing 1500-3000 IU/kg EPO following dentoalveolar surgery in samples receiving bisphosphonates as a preventive or therapeutic agent. Evaluation of the Hypothesis: Considering the pathophysiology of ONJ and therapeutic properties of EPO, it is assumed that EPO may be effective in treatment of ONJ. Furthermore, as a preventive measure, utilizing EPO following dentoalveolar surgery may be beneficial in the patients at risk of ONJ.

  19. Nanoceria: a rare-earth nanoparticle as a novel anti-angiogenic therapeutic agent in ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Shailendra Giri

    Full Text Available Ovarian cancer (OvCa is the fifth most common cause of death from all cancers among women in United Sates and the leading cause of death from gynecological malignancies. While most OvCa patients initially respond to surgical debulking and chemotherapy, 75% of patients later succumb to the disease. Thus, there is an urgent need to test novel therapeutic agents to counteract the high mortality rate associated with OvCa. In this context, we have developed and engineered Nanoceria (NCe, nanoparticles of cerium oxide, possessing anti-oxidant properties, to be used as a therapeutic agent in OvCa. We show for the first time that NCe significantly inhibited production of reactive oxygen species (ROS in A2780 cells, attenuated growth factor (SDF1, HB-EGF, VEGF(165 and HGF mediated cell migration and invasion of SKOV3 cells, without affecting the cell proliferation. NCe treatment also inhibited VEGF(165 induced proliferation, capillary tube formation, activation of VEGFR2 and MMP2 in human umbilical vascular endothelial cells (HUVEC. NCe (0.1 mg/kg body weigh treatment of A2780 ovarian cancer cells injected intra-peritoneally in nude mice showed significant reduction (p<0.002 in tumor growth accompanied by decreased tumor cell proliferation as evident from reduced tumor size and Ki67 staining. Accumulation of NCe was found in tumors isolated from treated group using transmission electron microscopy (TEM and inductively coupled plasma mass spectroscopy (ICP-MS. Reduction of the tumor mass was accompanied by attenuation of angiogenesis, as observed by reduced CD31 staining and specific apoptosis of vascular endothelial cells. Collectively, these results indicate that cerium oxide based NCe is a novel nanoparticle that can potentially be used as an anti-angiogenic therapeutic agent in ovarian cancer.

  20. 77 FR 26772 - Prospective Grant of Exclusive License: Ocular Therapeutics Agent Delivery Devices and Methods...

    Science.gov (United States)

    2012-05-07

    ... compared to drugs applied systemically. Data are available for rodents, rabbits, dogs, and horses. The... HUMAN SERVICES National Institutes of Health Prospective Grant of Exclusive License: Ocular Therapeutics... Health and Human Services, is contemplating the grant of an exclusive patent license to practice...

  1. Use of flubendazole as a therapeutic agent against rotifers (Brachionus plicatilis) in intensive cultures of the harpacticoid copepod Tisbe holothuriae

    DEFF Research Database (Denmark)

    Steenfeldt, Svend Jørgen; Nielsen, Johan W.

    2010-01-01

    holothuria). Flubendazole was lethal to rotifers in concentrations as low as 0.05 mg L−1. There was no significant effect on the concentration of copepods, even at the highest concentration tested, i.e. 5.0 mg L−1 flubendazole. We conclude that flubendazole is an effective drug for control of B. plicatilis...... down production and subsequently use a therapeutic agent to eliminate all zooplankton in the system before restart with a stock culture free of rotifers. We tested flubendazole as a mean of controlling rotifers (Brachionus plicatilis) in intensive laboratory cultures of the harpacticoid copepod (Tisbe...

  2. Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Ken, E-mail: kemaes@vub.ac.be; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel (Belgium); Van Riet, Ivan [Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussel (Belgium); Vanderkerken, Karin; De Bruyne, Elke, E-mail: kemaes@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel (Belgium)

    2013-04-15

    Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment.

  3. Therapeutic modulation of endogenous gene function by agents with designed DNA-sequence specificities

    NARCIS (Netherlands)

    Uil, T.G.; Haisma, H.J.; Rots, Marianne

    2003-01-01

    Designer molecules that can specifically target pre-determined DNA sequences provide a means to modulate endogenous gene function. Different classes of sequence-specific DNA-binding agents have been developed, including triplex-forming molecules, synthetic polyamides and designer zinc finger protein

  4. Phytochemical Modulators of Mitochondria: The Search for Chemopreventive Agents and Supportive Therapeutics

    Directory of Open Access Journals (Sweden)

    Maja M. Grabacka

    2014-09-01

    Full Text Available Mitochondria are crucially important for maintaining not only the energy homeostasis, but the proper cellular functions in a general sense. Impairment of mitochondrial functions is observed in a broad variety of pathological states such as neoplastic transformations and cancer, neurodegenerative diseases, metabolic disorders and chronic inflammation. Currently, in parallel to the classical drug design approaches, there is an increasing interest in the screening for natural bioactive substances, mainly phytochemicals, in order to develop new therapeutic solutions for the mentioned pathologies. Dietary phytochemicals such as resveratrol, curcumin and sulforaphane are very well tolerated and can effectively complement classical pharmacological therapeutic regimens. In this paper we disscuss the effect of the chosen phytochemicals (e.g., resveratrol, curcumin, sulforaphane on various aspects of mitochondrial biology, namely mitochondrial biogenesis, membrane potential and reactive oxygen species production, signaling to and from the nucleus and unfolded protein response.

  5. Is pimecrolimus cream (1%) an appropriate therapeutic agent for the treatment of external ear atopic dermatitis?

    OpenAIRE

    Beriat, Güçlü Kaan; Akmansu, Şefik Halit; Doğan, Cem; Taştan, Eren; Topal, Ferda; Sabuncuoğlu, Bizden

    2012-01-01

    Summary Background In recent years, pimecrolimus 1% cream has been demonstrated to reduce symptoms of atopic dermatitis in patients when applied topically. Material/Methods In our study we compared the therapeutic effects of local 1% pimecrolimus to 1% hydrocortisone, and to a control group in a mouse model with atopic dermatitis in the external ear canals. Atopic dermatitis was created by application of Dinitrochlorobenzene in the external ear canals of mice. The development of atopic dermat...

  6. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    OpenAIRE

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Scott C Weaver; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacit...

  7. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    OpenAIRE

    John Burke; Ravindra Kolhe; Monte Hunter; Carlos Isales; Mark Hamrick; Sadanand Fulzele

    2016-01-01

    Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to...

  8. Thioglycosides as inhibitors of hSGLT1 and hSGLT2: Potential therapeutic agents for the control of hyperglycemia in diabetes

    OpenAIRE

    Castaneda, Francisco; Burse, Antje; Boland, Wilhelm; Kinne, Rolf K-H.

    2007-01-01

    The treatment of diabetes has been mainly focused on maintaining normal blood glucose concentrations. Insulin and hypoglycemic agents have been used as standard therapeutic strategies. However, these are characterized by limited efficacy and adverse side effects, making the development of new therapeutic alternatives mandatory. Inhibition of glucose reabsorption in the kidney, mediated by SGLT1 or SGLT2, represents a promising therapeutic approach. Therefore, the aim of the present study was ...

  9. Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment.

    LENUS (Irish Health Repository)

    Byrne, A T

    2009-11-03

    Photodynamic therapy (PDT) is a treatment modality for a range of diseases including cancer. The BF(2)-chelated tetraaryl-azadipyrromethenes (ADPMs) are an emerging class of non-porphyrin PDT agent, which have previously shown excellent photochemical and photophysical properties for therapeutic application. Herein, in vivo efficacy and mechanism of action studies have been completed for the lead agent, ADMP06.

  10. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    OpenAIRE

    Zhiguo Zhou

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no c...

  11. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (Review)

    OpenAIRE

    MÖHLER, HANS; PFIRMAN, ROLF W.; Frei, Karl

    2014-01-01

    Targeting the oxygen stress response pathway is considered a promising strategy to exert antineoplastic activity in a broad spectrum of tumor types. Supporting this view, we summarize the mechanism of action of Taurolidine and Piperlongumine, two antineoplastic agents with strikingly broad tumor selectivity. Taurolidine enhances the oxidative stress (ROS) selectively in tumor cells. Its cytotoxicity for various tumor cells in vitro and in vivo, which includes tumor stem cells, is based on the...

  12. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (review).

    Science.gov (United States)

    Möhler, Hanns; Pfirrmann, Rolf W; Frei, Karl

    2014-10-01

    Targeting the oxygen stress response pathway is considered a promising strategy to exert antineoplastic activity in a broad spectrum of tumor types. Supporting this view, we summarize the mechanism of action of Taurolidine and Piperlongumine, two antineoplastic agents with strikingly broad tumor selectivity. Taurolidine enhances the oxidative stress (ROS) selectively in tumor cells. Its cytotoxicity for various tumor cells in vitro and in vivo, which includes tumor stem cells, is based on the induction of programmed cell death, largely via apoptosis but also necroptosis and autophagy. The redox-directed mechanism of action of Taurolidine is apparent from the finding that reducing agents e.g., N-acetylcysteine or glutathione impair its cytotoxicity, while its effectiveness is enhanced by agents which inhibit the cellular anti‑oxidant capacity. A similar redox-directed antineoplastic action is shown by Piperlongumine, a recently described experimental drug of plant origin. Taurolidine is particularly advantageous in surgical oncology as this taurine-derivative can be applied perioperatively or systemically with good tolerability as shown in initial clinical applications. PMID:25175943

  13. Factors affecting the sensitivity and detection limits of MRI, CT, and SPECT for multimodal diagnostic and therapeutic agents.

    Science.gov (United States)

    Seevinck, Peter R; Seppenwoolde, Jan-Henry; de Wit, Tim C; Nijsen, Johannes F W; Beekman, Freek J; van Het Schip, Alfred D; Bakker, Chris J G

    2007-05-01

    Noninvasive imaging techniques like magnetic resonance imaging (MRI), computed tomography (CT) and single photon emission computed tomography (SPECT) play an increasingly important role in the diagnostic workup and treatment of cancerous disease. In this context, a distinct trend can be observed towards the development of contrast agents and radiopharmaceuticals that open up perspectives on a multimodality imaging approach, involving all three aforementioned techniques. To promote insight into the potentialities of such an approach, we prepared an overview of the strengths and limitations of the various imaging techniques, in particular with regard to their capability to quantify the spatial distribution of a multimodal diagnostic agent. To accomplish this task, we used a two-step approach. In the first step, we examined the situation for a particular therapeutic anti-cancer agent with multimodal imaging opportunities, viz. holmium-loaded microspheres (HoMS). Physical phantom experiments were performed to enable a comparative evaluation of the three modalities assuming the use of standard equipment, standard clinical scan protocols, and signal-known-exactly conditions. These phantom data were then analyzed so as to obtain first order estimates of the sensitivity and detection limits of MRI, CT and SPECT for HoMS. In the second step, the results for HoMS were taken as a starting point for a discussion of the factors affecting the sensitivity and detection limits of MRI, CT and SPECT for multimodal agents in general. In this, emphasis was put on the factors that must be taken into account when extrapolating the findings for HoMS to other diagnostic tasks, other contrast agents, other experimental conditions, and other scan protocols.

  14. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    Science.gov (United States)

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  15. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Der Jiun Ooi

    2016-06-01

    Full Text Available Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF isolated from M. latifolia rhizome methanolic extract (RME contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  16. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    Science.gov (United States)

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders.

  17. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents

    Directory of Open Access Journals (Sweden)

    Steve D Wilton

    2011-03-01

    Full Text Available Steve D Wilton, Sue FletcherCentre for Neuromuscular and Neurological Disorders, University of Western Australia, Crawley, Perth, WA, AustraliaAbstract: The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms.Keywords: Duchenne muscular dystrophy, molecular therapeutics, small molecules

  18. Novel therapeutic agents for HbF induction: a new era for treatment of β thalassemia?

    Directory of Open Access Journals (Sweden)

    S.P. Perrine

    2011-12-01

    Full Text Available Fetal globin is endogenous, normally integrated in hematopoietic stem cells in all humans, and available for reactivation. Inducing expression of fetal globin (g-globin gene expression to 60-70% of a globin synthesis produces β-thalassemia trait globin synthetic ratios, and has been shown to reduce anemia to mild levels which do not require regular blood transfusion. Several classes of therapeutics have induced g-globin expression in β thalassemia patients, raised total hemoglobin levels, and even eliminated transfusion requirements in formerly transfusion-dependent patients, demonstrating proof-of-concept of the approach. However, prior generations of therapeutics were not readily feasible for widespread use. Currently, several recently discovered oral therapeutic candidates are more potent and/ or patientfriendly, requiring low oral doses, have distinct molecular mechanisms of action, and can be used in combination regimens. Tailoring therapeutic regimens to patient subsets stratified for solely β+ or a β0 globin mutation, and for quantitative trait loci (QTL which modulate HbF and clinical severity, can guide more effective and informative clinical trials. These advancements provide methods for a rational approach to applying fetal globin gene induction in therapeutic regimens suitable for use in diverse thalassemia patient populations world-wide. 胎儿珠蛋白是内生的,通常结合在所有人类的造血干细胞中,并可进行再激活。 包括胎儿珠蛋白的表达(g-珠蛋白),60%-70% 珠蛋白合成基因表达产生 β地中海贫血特征珠蛋白合成比率,并且已经显示将贫血降低至轻度水平,这不需要常规输血 几类疗法诱导β地中海贫血患者中的g-珠蛋白的表达,升高了血红蛋白的总体水平,甚至让以前依靠输血的患者不再需要输血,这演示了此方法的概念验证。 不过,先前几代疗法未能进行广泛使用。 目前,最近发

  19. Bypassing the blood-brain barrier: delivery of therapeutic agents by macrophages

    Science.gov (United States)

    Hirschberg, Henry; Baek, Seung-Kuk; Kwon, Young Jik; Sun, Chung-Ho; Madsen, Steen J.

    2010-02-01

    Introduction: Failure to eradicate infiltrating glioma cells using conventional treatment regimens results in tumor recurrence and is responsible for the dismal prognosis of patients with glioblastoma multiforme (GBM). This is due to the fact that these migratory cells are protected by the blood-brain barrier (BBB) and the blood brain tumor barrier (BBTB) which prevents the delivery of most anti-cancer agents. We have evaluated the ability of monocytes/macrophages (Mo/Ma) to cross the BBB in rats. This will permit access of anti-cancer agents such as nanoparticles to effectively target the infiltrating tumor cells, and potentially improve the treatment effectiveness for malignant gliomas. Materials and Methods: The infiltration of Mo/Ma into brain tumor spheroids in vitro was determined using fluorescent stained Mo/Ma. Tumors were also established in the brains of inbred rats and ALA-PDT was given 18 days following tumor induction. The degredation of the BBTB and quantification of the number of infiltrating Mo/Ma was examined on histological sections from removed brains. Results & Conclusion: PDT was highly effective in locally opening the BBTB and inducing macrophage migration into the irradiated portions of brain tumors.

  20. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents.

    Science.gov (United States)

    Wilton, Steve D; Fletcher, Sue

    2011-01-01

    The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms. PMID:23776365

  1. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent.

    LENUS (Irish Health Repository)

    Bergin, David A

    2012-04-01

    Alpha-1 antitrypsin (AAT) has long been thought of as an important anti-protease in the lung where it is known to decrease the destructive effects of major proteases such as neutrophil elastase. In recent years, the perception of this protein in this simple one dimensional capacity as an anti-protease has evolved and it is now recognised that AAT has significant anti-inflammatory properties affecting a wide range of inflammatory cells, leading to its potential therapeutic use in a number of important diseases. This present review aims to discuss the described anti-inflammatory actions of AAT in modulating key immune cell functions, delineate known signalling pathways and specifically to identify the models of disease in which AAT has been shown to be effective as a therapy.

  2. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetes

    Directory of Open Access Journals (Sweden)

    MacRury Sandra M

    2011-05-01

    Full Text Available Abstract Background Platelet hyperaggregability is a pro-thrombotic feature of type-2 diabetes, associated with low levels of the antioxidant glutathione (GSH. Clinical delivery of N-acetylcysteine (NAC, a biosynthetic precursor of GSH, may help redress a GSH shortfall in platelets, thereby reducing thrombotic risk in type-2 diabetes patients. We investigated the effect of NAC in vitro, at concentrations attainable with tolerable oral dosing, on platelet GSH concentrations and aggregation propensity in blood from patients with type-2 diabetes. Methods Blood samples (n = 13 were incubated (2 h, 37°C with NAC (10-100 micromolar in vitro. Platelet aggregation in response to thrombin and ADP (whole blood aggregometry was assessed, together with platelet GSH concentration (reduced and oxidized, antioxidant status, reactive oxygen species (ROS generation, and plasma NOx (a surrogate measure of platelet-derived nitric oxide; NO. Results At therapeutically relevant concentrations (10-100 micromolar, NAC increased intraplatelet GSH levels, enhanced the antioxidant effects of platelets, and reduced ROS generation in blood from type-2 diabetes patients. Critically, NAC inhibited thrombin- and ADP-induced platelet aggregation in vitro. Plasma NOx was enhanced by 30 micromolar NAC. Conclusions Our results suggest that NAC reduces thrombotic propensity in type-2 diabetes patients by increasing platelet antioxidant status as a result of elevated GSH synthesis, thereby lowering platelet-derived ROS. This may increase bioavailability of protective NO in a narrow therapeutic range. Therefore, NAC might represent an alternative or additional therapy to aspirin that could reduce thrombotic risk in type-2 diabetes.

  3. Nanodiscs as a therapeutic delivery agent: inhibition of respiratory syncytial virus infection in the lung

    Directory of Open Access Journals (Sweden)

    Numata M

    2013-04-01

    Full Text Available Mari Numata,1 Yelena V Grinkova,2 James R Mitchell,1 Hong Wei Chu,1 Stephen G Sligar,2 Dennis R Voelker1 1Department of Medicine, Program in Cell Biology, National Jewish Health, Denver, CO, USA; 2Department of Biochemistry, University of Illinois, Urbana, IL, USA Abstract: There is increasing interest in the application of nanotechnology to solve the difficult problem of therapeutic administration of pharmaceuticals. Nanodiscs, composed of a stable discoidal lipid bilayer encircled by an amphipathic membrane scaffold protein that is an engineered variant of the human Apo A-I constituent of high-density lipoproteins, have been a successful platform for providing a controlled lipid composition in particles that are especially useful for investigating membrane protein structure and function. In this communication, we demonstrate that nanodiscs are effective in suppressing respiratory syncytial viral (RSV infection both in vitro and in vivo when self-assembled with the minor pulmonary surfactant phospholipid palmitoyloleoylphosphatidylglycerol (POPG. Preparations of nanodiscs containing POPG (nPOPG antagonized interleukin-8 production from Beas2B epithelial cells challenged by RSV infection, with an IC50 of 19.3 µg/mL. In quantitative in vitro plaque assays, nPOPG reduced RSV infection by 93%. In vivo, nPOPG suppressed inflammatory cell infiltration into the lung, as well as IFN-γ production in response to RSV challenge. nPOPG also completely suppressed the histopathological changes in lung tissue elicited by RSV and reduced the amount of virus recovered from lung tissue by 96%. The turnover rate of nPOPG was estimated to have a half-time of 60–120 minutes (m, based upon quantification of the recovery of the human Apo A-I constituent. From these data, we conclude that nPOPG is a potent antagonist of RSV infection and its inflammatory sequelae both in vitro and in vivo. Keywords: nanodiscs, therapeutic delivery, anti-viral, innate immunity

  4. Fate of water borne therapeutic agents and associated effects on nitrifying biofilters in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming

    experience is limited. The two main objectives of this Ph.D. project were to 1) investigate the fate of FA in nitrifying aquaculture biofilters, focusing on factors influencing degradation rates, and 2) investigate the fate of HP and PAA in nitrifying aquaculture biofilters and evaluate the effects...... of these agents on biofilter nitrification performance. All experiments were conducted through addition of chemical additives to closed pilot scale recirculating aquaculture systems (RAS) with fixed media submerged biofilters under controlled operating conditions with rainbow trout (Oncorhynchus mykiss......) in a factorial design with true replicates. Biofilter nitrification performances were evaluated by changes in chemical processes, and nitrifying populations were identified by fluorescence in situ hybridisation (FISH) analysis. FA was degraded at a constant rate immediately after addition, and found...

  5. Antiretroviral Drug Interactions: Overview of Interactions Involving New and Investigational Agents and the Role of Therapeutic Drug Monitoring for Management

    Directory of Open Access Journals (Sweden)

    R. Chris Rathbun

    2011-10-01

    Full Text Available Antiretrovirals are prone to drug-drug and drug-food interactions that can result in subtherapeutic or supratherapeutic concentrations. Interactions between antiretrovirals and medications for other diseases are common due to shared metabolism through cytochrome P450 (CYP450 and uridine diphosphate glucuronosyltransferase (UGT enzymes and transport by membrane proteins (e.g., p-glycoprotein, organic anion-transporting polypeptide. The clinical significance of antiretroviral drug interactions is reviewed, with a focus on new and investigational agents. An overview of the mechanistic basis for drug interactions and the effect of individual antiretrovirals on CYP450 and UGT isoforms are provided. Interactions between antiretrovirals and medications for other co-morbidities are summarized. The role of therapeutic drug monitoring in the detection and management of antiretroviral drug interactions is also briefly discussed.

  6. Glutathione-Garlic Sulfur Conjugates: Slow Hydrogen Sulfide Releasing Agents for Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Ashif Iqbal Bhuiyan

    2015-01-01

    Full Text Available Natural organosulfur compounds (OSCs from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS or without (GaWS glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S, also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications.

  7. Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications.

    Science.gov (United States)

    Bhuiyan, Ashif Iqbal; Papajani, Vilma Toska; Paci, Maurizio; Melino, Sonia

    2015-01-01

    Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications. PMID:25608858

  8. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases.

    Science.gov (United States)

    Basak, Indranil; Patil, Ketan S; Alves, Guido; Larsen, Jan Petter; Møller, Simon Geir

    2016-02-01

    The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.

  9. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists.

  10. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  11. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    Directory of Open Access Journals (Sweden)

    John Burke

    2016-01-01

    Full Text Available Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics.

  12. Preparation and standardization of a herbal agent for the therapeutic management of asthma.

    Science.gov (United States)

    Emeje, Martins; Izuka, Amaka; Isimi, Christiana; Ofoefule, Sabinus; Kunle, Olobayo

    2011-04-01

    This study aims to develop a suitable single tablet dosage form containing a mixture of hot water stem back extracts of Anogeissus leiocarpus and Prosopis africana (AA1), suitable for use in the therapeutic management of asthma. The compaction characteristics of the oven-dried hot water extract (HWE) were studied using the Heckel equation. The mechanical properties as well as disintegration and dissolution profile of the compacts were also assessed. The results showed that AA1 exhibited high densification due to dye filling while the subsequent rearrangement of the granules did not contribute, significantly, to their densification. The granules had enhanced plasticity as shown by the low yield point, Py. The tablets produced from the extract had good mechanical properties, with hardness increasing with compression pressure while the friability decreased. Of the four disintegrants tested, tablets containing Explotab had the shortest disintegration time of 11 min while tablets containing Prosolv had the longest disintegration time of 40 min. The order of disintegrant property is Explotab > Cellactose > Emcocel > Maize starch > Prosolv. Dissolution results (t(90%)) show that tablets containing Explotab released 100% of the drug in 20 min proving to be the most suitable in acute asthma attack. The order of dissolution is Explotab > Cellactose > Maize starch > Prosolv > Emcocel. It is concluded that incorporation of Explotab (10%w/w) as a disintegrant in AA1 preparation produced tablets of suitable compressional properties and ensured adequate drug release for the management of acute asthma. PMID:20141501

  13. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    Science.gov (United States)

    Qu, Na; Lee, Robert J; Sun, Yating; Cai, Guangsheng; Wang, Junyang; Wang, Mengqiao; Lu, Jiahui; Meng, Qingfan; Teng, Lirong; Wang, Di; Teng, Lesheng

    2016-01-01

    Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs) were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween). A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%), and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. PMID:27555767

  14. Current and Future Therapeutic Agents in the Management of Heart Failure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Congestive heart failare is a disease in which initially compensutory changes in car-diac, vascular, and renal functions become detrimental over time. The changes are mediated by a largenamber of neurohormones and cytokines. Counter-regalutory hormones also play a role, but ave general-ly insuffwient to offset the adverse effects of the neurohormones or progression of the disease. Symp-toms of heart failure occurs in the presence of systolic dysfunction, usually documented by a decrease inejection fraction, or can present with impaired diastolic function occasionally labeled as heart failureuith preserved systolic function of the left ventricle. Heart failure and its treatment represent a medicalproblem of significant importance because of the high mortality associated with it despite the current ther-apy, which has substantial evidence of reduction in mortality and morbidity. Prevention or slowing of theprogressive deterioration in function of the heart and other organs involved through utilizing new agentsthat affect more or differentneurohormonal pathways may be beneficial and forms the focus of heartfailure research and drug development. However, the multiplicity of hormonal effects mandate the useof complex therapy in the management of congestive heart failure( CHF ). The new agents in addition tothe conventional therapy used in the management of heart failure are; Human B-type natriuretic peptide(in the treatment of decompensated CHF), endothelin receptor antagonists, calcium sensitizers, neutralendopeptidase ( NEP ) and vasopeptidase inhibitors, vasopressin antagonists and cytokine inhibitors.

  15. A role for plasma cell targeting agents in immune tolerance induction in autoimmune disease and antibody responses to therapeutic proteins.

    Science.gov (United States)

    Rosenberg, A S; Pariser, A R; Diamond, B; Yao, L; Turka, L A; Lacana, E; Kishnani, P S

    2016-04-01

    Antibody responses to life saving therapeutic protein products, such as enzyme replacement therapies (ERT) in the setting of lysosomal storage diseases, have nullified product efficacy and caused clinical deterioration and death despite treatment with immune-suppressive therapies. Moreover, in some autoimmune diseases, pathology is mediated by a robust antibody response to endogenous proteins such as is the case in pulmonary alveolar proteinosis, mediated by antibodies to Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF). In this work, we make the case that in such settings, when the antibody response is high titered, sustained, and refractory to immune suppressive treatments, the antibody response is mediated by long-lived plasma cells which are relatively unperturbed by immune suppressants including rituximab. However, long-lived plasma cells can be targeted by proteasome inhibitors such as bortezomib. Recent reports of successful reversal of antibody responses with bortezomib in the settings of ERT and Thrombotic Thrombocytopenic Purpura (TTP) argue that the safety and efficacy of such plasma cell targeting agents should be evaluated in larger scale clinical trials to delineate the risks and benefits of such therapies in the settings of antibody-mediated adverse effects to therapeutic proteins and autoantibody mediated pathology. PMID:26928739

  16. Anti-microRNAs as Novel Therapeutic Agents in the Clinical Management of Alzheimer's Disease.

    Science.gov (United States)

    Zhao, Yuhai; Alexandrov, Peter N; Lukiw, Walter J

    2016-01-01

    Overview- One hundred and ten years since its first description Alzheimer's disease (AD) still retains its prominent status: (i) as the industrialized world's number one cause of age-related intellectual impairment and cognitive decline; (ii) as this country's most rapidly expanding socioeconomic and healthcare concern; and (iii) as an insidious, progressive and lethal neurological disorder of the human central nervous system (CNS) for which there is currently no adequate treatment or cure (Alzheimer, 1991; Alzheimer et al., 1991, 1995) [https://www.alz.org/facts/downloads/facts_figures_2015.pdf (2015)]. The concept of small non-coding RNAs (ncRNAs) as being involved in the etiopathogenesis of AD and age-related human neurodegenerative disease was first proposed about 25 years ago, however it was not until 2007 that specific microRNA (miRNA) abundance, speciation and localization to the hippocampal CA1 region (an anatomical area of the human CNS specifically targeted by the AD process) was shown to strongly associate with AD-type change when compared to age-matched controls (Lukiw et al., 1992; Lukiw, 2007; Schipper et al., 2007; Cogswell et al., 2008; Guerreiro et al., 2012). Currently about 400 reports address the potential link between disruptions in miRNA signaling and the development of various features associated with AD neuropathology (http://www.ncbi.nlm.nih.gov/pubmed/?term=micro+RNA+alzheimer's+disease). In this "Perspectives" paper we will highlight some of the most recent literature on anti-miRNA (AM; antagomir) therapeutic strategies and some very recent technological advances in the analysis and characterization of defective miRNA signaling pathways in AD compared to neurologically normal age-matched controls. PMID:26941600

  17. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    Directory of Open Access Journals (Sweden)

    Maizel Jacob V

    2010-02-01

    Full Text Available Abstract Background Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s of action. Methods In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3, transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1 or inflammation and the immune response (IL-6, COX-2. RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines. Results Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling. Conclusions These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment.

  18. Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders

    Directory of Open Access Journals (Sweden)

    Siro Luvisetto

    2015-09-01

    Full Text Available Botulinum neurotoxin A (BoNT/A is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a “glamour” drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A.

  19. Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

    Science.gov (United States)

    Fasinu, Pius S; Phillips, Sarah; ElSohly, Mahmoud A; Walker, Larry A

    2016-07-01

    States and the federal government are under growing pressure to legalize the use of cannabis products for medical purposes in the United States. Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted ∆(9) -tetrahydrocannabinol (∆(9) -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader. This review provides an overview of the pharmacology and toxicology of CBD; summarizes some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and assesses the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States. Unlike Δ(9) -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors, whose activation results in the psychotropic effects characteristic of Δ(9) -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use. CBD exhibits neuroprotective, antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties. In combination with Δ(9) -THC, CBD has received regulatory approvals in several European countries and is currently under study in trials registered by the U.S. Food and Drug Administration in the United States. A number of states have passed legislation to allow for the use of CBD-rich, limited Δ(9) -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications. Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain

  20. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    Directory of Open Access Journals (Sweden)

    Qu N

    2016-07-01

    Full Text Available Na Qu,1 Robert J Lee,1,2 Yating Sun,1 Guangsheng Cai,1 Junyang Wang,1 Mengqiao Wang,1 Jiahui Lu,1 Qingfan Meng,1 Lirong Teng,1 Di Wang,1 Lesheng Teng1,3 1School of Life Sciences, Jilin University, Changchun, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, People’s Republic of China Abstract: Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween. A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%, and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. Keywords: cabazitaxel, human serum albumin, nanoparticle, drug delivery, toxicity, pros­tate cancer

  1. Botulinum Toxin Type a as a Therapeutic Agent against Headache and Related Disorders.

    Science.gov (United States)

    Luvisetto, Siro; Gazerani, Parisa; Cianchetti, Carlo; Pavone, Flaminia

    2015-09-01

    Botulinum neurotoxin A (BoNT/A) is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a "glamour" drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A.

  2. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    Science.gov (United States)

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  3. Botulinum Toxin Type a as a Therapeutic Agent against Headache and Related Disorders.

    Science.gov (United States)

    Luvisetto, Siro; Gazerani, Parisa; Cianchetti, Carlo; Pavone, Flaminia

    2015-09-01

    Botulinum neurotoxin A (BoNT/A) is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a "glamour" drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A. PMID:26404377

  4. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    International Nuclear Information System (INIS)

    Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action. In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines. Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling. These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment

  5. An alternative intraarterial therapeutic agent for hepatic tumors. 131I lipiodol/histoacryl mixture

    International Nuclear Information System (INIS)

    Lipiodol has excellent retainable ability in hepatoma cells. This agent can be labeled with radioisotope (131I) and mixed with tissue adhesive (Histoacryl), and then attached on the lesion of liver by intrahepatic arterial administration. In this study, we attempt to obtain the optimal ratio of Lipiodol to Histoacryl and evaluate the consolidation of blood in vitro and toxicity and biodistribution in vivo. The ratio of 131I Lipiodol/Histoacryl mixture (L/H), concentration of heparin and flow rate of blood are varied by simulating the installation of bloodstream to test the time of consolidation. In addition, the optimal ratios of the L/H mixtures are assessed in vitro in heparinized human blood. According to those results, Lipiodol and Histoacryl mixed with 1:1 or 2:1 ratio have an ideal time of 13 to 15 seconds in vitro; in addition, 1.2:1 ratio is an optimal ratio in the biodistribution study. Interestingly, heparin and acetic acid does not alter the consolidation time, in addition, no variation occurs when varying the flow rate of blood. The consolidation of L/H mixture with blood is incubated in the 37 deg C, normal saline bath for 24 hours. No dissociation of free 131I is found. The optimal mixture is also injected into the hepatic artery of the Sprague-Dawley rats carrying hepatocellular carcinoma (N1S1 cell line). Radioactive consolidate is well confined in the tumor without evidence of leakage of the mixture to the lung or distribution of free 131I in the thyroid. In conclusion, this mixture has the merits of both irradiation and embolization of the tumor. The 131I Lipiodol/Histoacryl mixture (1.2:1) is a promising alternative for intrahepatic arterial administration to treat hepatic tumors. Histoacryl can confine the 131I and, also, embolize the tumor vessels. (author)

  6. Liposome-encapsulated ISMN: a novel nitric oxide-based therapeutic agent against Staphylococcus aureus biofilms.

    Directory of Open Access Journals (Sweden)

    Camille Jardeleza

    Full Text Available BACKGROUND: Staphylococcus aureus in its biofilm form has been associated with recalcitrant chronic rhinosinusitis with significant resistance to conventional therapies. This study aims to determine if liposomal-encapsulation of a precursor of the naturally occurring antimicrobial nitric oxide (NO enhances its desired anti-biofilm effects against S. aureus, in the hope that improving its efficacy can provide an effective topical agent for future clinical use. METHODOLOGY: S. aureus ATCC 25923 biofilms were grown in-vitro using the Minimum Biofilm Eradication Concentration (MBEC device and exposed to 3 and 60 mg/mL of the NO donor isosorbide mononitrate (ISMN encapsulated into different anionic liposomal formulations based on particle size (unilamellar ULV, multilamellar MLV and lipid content (5 and 25 mM at 24 h and 5 min exposure times. Biofilms were viewed using Live-Dead Baclight stain and confocal scanning laser microscopy and quantified using the software COMSTAT2. RESULTS: At 3 and 60 mg/mL, ISMN-ULV liposomes had comparable and significant anti-biofilm effects compared to untreated control at 24 h exposure (p = 0.012 and 0.02 respectively. ULV blanks also had significant anti-biofilm effects at both 24 h and 5 min exposure (p = 0.02 and 0.047 respectively. At 5 min exposure, 60 mg/mL ISMN-MLV liposomes appeared to have greater anti-biofilm effects compared to pure ISMN or ULV particles. Increasing liposomal lipid content improved the anti-biofilm efficacy of both MLV and ULVs at 5 min exposure. CONCLUSION: Liposome-encapsulated "nitric oxide" is highly effective in eradicating S. aureus biofilms in-vitro, giving great promise for use in the clinical setting to treat this burdensome infection. Further studies however are needed to assess its safety and efficacy in-vivo before clinical translation is attempted.

  7. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Evelina Edelweiss

    Full Text Available BACKGROUND: RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by ribonuclease inhibitor (RI presented in the cytoplasm of mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: In search of new effective anticancer RNases we studied the effects of barnase, a ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC(50 ranging from 0.2 to 13 microM and to leukemia cell lines with IC(50 values ranging from 2.4 to 82 microM. Also, we characterized the cytotoxic effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the single-chain variable fragment (scFv of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC(50 = 1.8 nM was three orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3 cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidylserine on the outer leaflet of the plasma membrane, and the activation of caspase-3. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells.

  8. Pharmacological treatment of schizophrenia: a critical review of the pharmacology and clinical effects of current and future therapeutic agents.

    Science.gov (United States)

    Miyamoto, S; Miyake, N; Jarskog, L F; Fleischhacker, W W; Lieberman, J A

    2012-12-01

    Since the introduction of chlorpromazine and throughout the development of the new-generation antipsychotic drugs (APDs) beginning with clozapine, the D(2) receptor has been the target for the development of APDs. Pharmacologic actions to reduce neurotransmission through the D(2) receptor have been the only proven therapeutic mechanism for psychoses. A number of novel non-D(2) mechanisms of action of APDs have been explored over the past 40 years but none has definitively been proven effective. At the same time, the effectiveness of treatments and range of outcomes for patients are far from satisfactory. The relative success of antipsychotics in treating positive symptoms is limited by the fact that a substantial number of patients are refractory to current medications and by their lack of efficacy for negative and cognitive symptoms, which often determine the level of functional impairment. In addition, while the newer antipsychotics produce fewer motor side effects, safety and tolerability concerns about weight gain and endocrinopathies have emerged. Consequently, there is an urgent need for more effective and better-tolerated antipsychotic agents, and to identify new molecular targets and develop mechanistically novel compounds that can address the various symptom dimensions of schizophrenia. In recent years, a variety of new experimental pharmacological approaches have emerged, including compounds acting on targets other than the dopamine D(2) receptor. However, there is still an ongoing debate as to whether drugs selective for singe molecular targets (that is, 'magic bullets') or drugs selectively non-selective for several molecular targets (that is, 'magic shotguns', 'multifunctional drugs' or 'intramolecular polypharmacy') will lead to more effective new medications for schizophrenia. In this context, current and future drug development strategies can be seen to fall into three categories: (1) refinement of precedented mechanisms of action to provide drugs

  9. Antibody with an engineered Fc region as a therapeutic agent against dengue virus infection.

    Science.gov (United States)

    Ramadhany, Ririn; Hirai, Itaru; Sasaki, Tadahiro; Ono, Ken-ichiro; Ramasoota, Pongrama; Ikuta, Kazuyoshi; Kurosu, Takeshi

    2015-12-01

    Antibody-dependent enhancement (ADE) of dengue virus (DENV) infectivity is thought to play a crucial role in severe dengue disease. It occurs when pre-existing sub-neutralizing anti-DENV antibody (Ab) produced from a primary infection encounters a DENV serotype different from that of the initial infection and forms immune complexes, which enable the efficient infection of Fcγ receptor-bearing cells. However, the exact role played by Abs during a secondary infection of patients remains unknown. We previously obtained a broadly cross-reactive neutralizing IgG1 human monoclonal anti-DENV envelope (E) Ab (HuMAb) D23-1G7C2-IgG1 from a DENV-infected patient; however, D23-1G7C2-IgG1 had ADE activity. With the aim of being able to reduce the ADE activity, we exchanged the Fc region of D23-1G7C2 to generate Abs bearing each of the three other IgG subclasses (IgG2-4). In addition, N297A, a mutation known to reduce the affinity of the IgG1 Fc region for Fcγ receptors, was introduced into D23-1G7C2-IgG1. Swapping D23-1G7C2-IgG1 to IgG2 or IgG4 subclasses reduced ADE activity in FcγRI and FcγRII-bearing THP-1 cells. By contrast, in FcγRII-bearing K562 cells, the change to IgG2 increased ADE activity. Introducing the N297A mutation into D23-1G7C2-IgG1 resulted in a marked reduction in ADE activity in both cell types. Compared to D23-1G7C2-IgG1, D23-1G7C2-IgG1-N297A was less protective in IFN-α/β/γ receptor knockout mice infected with a lethal dose of recombinant chimeric DENV, carrying prME of DENV-2 in Japanese encephalitis virus (80% vs. 40% survival, respectively). These observations provide valuable information regarding the use of recombinant Abs as therapeutics.

  10. Topical Treatment With an Agent Disruptive to P. acnes Biofilm Provides Positive Therapeutic Response: Results of a Randomized Clinical Trial.

    Science.gov (United States)

    Bernhardt, Michael J; Myntti, Matthew F

    2016-06-01

    The traditional disease model of acne has been one of follicular plugging due to 'sticky epithelial cells' associated with increased sebum production with deep follicular anaerobic conditions favoring P. acnes- generated inflammation. P. acnes biofilms have been found more frequently in patients with acne than controls. Biofilms are genetically coded to create adhesion to the pilosebaceous unit followed by production of a mucopolysaccharide coating capable of binding to lipid surfaces. Traditional therapies for acne have involved mixtures of oral and topical antibiotics admixed with topical keratolytics and retinoids, which are aimed at traditional bacterial reduction as well as downregulating the inflammatory cascade. These approaches are limited by side effect and compliance/tolerability issues. As the P. acnes biofilm may, in fact, be the instigator of this process, we studied the use of a topical agent designed to reduce the P. acnes biofilm to see if reducing the biofilm would be therapeutically efficacious. We present data of a proprietary topical non-prescription agent with a novel pharmaco mechanism designed to attack the biofilm produced by P. acnes. Our data shows a decrease of inflammatory lesions by 44% and non-inflammatory lesions by 32% after 12 weeks and also provided for a meaningful improvement in the quality of life of the patients in the study. These improvements were achieved with a product that was not associated with burning, chafing, irritation, or erythema, which can be seen with topical treatments. It is apparent from this study that by addressing the biofilm which protects the P. acnes bacteria through the use of the Acne Gel, the incidence of acne symptoms can be greatly reduced, while having no negative impacts on the patients' skin (ClinicalTrials.gov registry number NCT02404285). J Drugs Dermatol. 2016;15(6):677-683. PMID:27272073

  11. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    Energy Technology Data Exchange (ETDEWEB)

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  12. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long [School of Life Sciences and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064 (China); Bao, Jin-ku, E-mail: jinkubao@yahoo.com [School of Life Sciences and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064 (China)

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  13. 3H-1,2-dithiole-3-thione as a novel therapeutic agent for the treatment of experimental autoimmune encephalomyelitis.

    Science.gov (United States)

    Kuo, Ping-Chang; Brown, Dennis A; Scofield, Barbara A; Yu, I-Chen; Chang, Fen-Lei; Wang, Pei-Yu; Yen, Jui-Hung

    2016-10-01

    3H-1,2-dithiole-3-thione (D3T), the simplest member of the sulfur-containing dithiolethiones, is found in cruciferous vegetables, and has been previously reported to be a potent inducer of antioxidant genes and glutathione biosynthesis by activation of the transcription factor Nrf2. D3T is a cancer chemopreventive agent and possesses anti-inflammatory properties. Although D3T has been shown to protect against neoplasia, the effect of D3T in the autoimmune inflammatory disease multiple sclerosis/experimental autoimmune encephalomyelitis (EAE) is unknown. The present study is the first report of the therapeutic effect of D3T in EAE. Our results show D3T, administered post immunization, not only delays disease onset but also dramatically reduces disease severity in EAE. Strikingly, D3T, administered post disease onset of EAE, effectively prevents disease progression and exacerbation. Mechanistic studies revealed that D3T suppresses dendritic cell activation and cytokine production, inhibits pathogenic Th1 and Th17 differentiation, represses microglia activation and inflammatory cytokine expression, and promotes microglia phase II enzyme induction. In summary, these results indicate that D3T affects both innate and adaptive immune cells, and the protective effect of D3T in EAE might be attributed to its effects on modulating dendritic cell and microglia activation and pathogenic Th1/Th17 cell differentiation. PMID:27013356

  14. Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics.

    Science.gov (United States)

    Djoko, Karrera Y; Goytia, Maira M; Donnelly, Paul S; Schembri, Mark A; Shafer, William M; McEwan, Alastair G

    2015-10-01

    There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen. PMID:26239980

  15. Hepcidin as a predictive factor and therapeutic target in erythropoiesis-stimulating agent treatment for anemia of chronic disease in rats.

    Science.gov (United States)

    Theurl, Milan; Nairz, Manfred; Schroll, Andrea; Sonnweber, Thomas; Asshoff, Malte; Haschka, David; Seifert, Markus; Willenbacher, Wolfgang; Wilflingseder, Doris; Posch, Wilfried; Murphy, Anthony T; Witcher, Derrick R; Theurl, Igor; Weiss, Günter

    2014-09-01

    Anemia of chronic disease is a multifactorial disorder, resulting mainly from inflammation-driven reticuloendothelial iron retention, impaired erythropoiesis, and reduced biological activity of erythropoietin. Erythropoiesis-stimulating agents have been used for the treatment of anemia of chronic disease, although with varying response rates and potential adverse effects. Serum concentrations of hepcidin, a key regulator of iron homeostasis, are increased in patients with anemia of chronic disease and linked to the pathogenesis of this disease, because hepcidin blocks cellular iron egress, thus limiting availability of iron for erythropoiesis. We tested whether serum hepcidin levels can predict and affect the therapeutic efficacy of erythropoiesis-stimulating agent treatment using a well-established rat model of anemia of chronic disease. We found that high pre-treatment hepcidin levels correlated with an impaired hematologic response to an erythropoiesis-stimulating agent in rats with anemia of chronic disease. Combined treatment with an erythropoiesis-stimulating agent and an inhibitor of hepcidin expression, LDN-193189, significantly reduced serum hepcidin levels, mobilized iron from tissue stores, increased serum iron levels and improved hemoglobin levels more effectively than did the erythropoiesis-stimulating agent or LDN-193189 monotherapy. In parallel, both the erythropoiesis-stimulating agent and erythropoiesis-stimulating agent/LDN-193189 combined reduced the expression of cytokines known to inhibit erythropoiesis. We conclude that serum hepcidin levels can predict the hematologic responsiveness to erythropoiesis-stimulating agent therapy in anemia of chronic disease. Pharmacological inhibition of hepcidin formation improves the erythropoiesis-stimulating agent's therapeutic efficacy, which may favor a reduction of erythropoiesis-stimulating agent dosages, costs and side effects.

  16. Preparation of 125IUdR and its evaluation in animal tumour model as a potential therapeutic agent

    International Nuclear Information System (INIS)

    5-Iodo-2'-deoxyuridine or iodoxyuridine (IUdR), an analogue of thymidine, is taken up by the proliferating cells during DNA synthesis. Radioiodinated IUdR is a potential therapeutic agent since radiohalogenated thymidine analogues are used for in-vivo tumour targeting and Auger electrons from radionuclides such as 123I and 125I are very effective in cell destruction when internalised. 125IUdR was prepared and studied for its suitability as an in-vivo tumour therapy agent. 125IUdR was prepared both by direct iodination of 2'-deoxyuridine and iododemercuration of 5-chloromercury-2'-deoxyuridine. Radioiodination yields were between 60-80% at pH 7. Iododemercuration was preferred since with direct iodination poor yields were observed when high specific activity product was desired and also the purification procedure was lengthier. The identity of 125IUdR was established by comparison of TLC and HPLC patterns with those of authentic IUdR. The purified 125IUdR had radiochemical purity >95% and was stable for 20 days at 4 deg. C and for a week at 23 deg. C and 37 deg. C. Bio-uptake of 125IUdR was studied by injecting the tracer in tumour bearing mice (Sarcoma S-180). The uptake in tumour cells was 4.28 +- 2.7% per gram at 3 h and 1.48 +- 0.19% at 24 h post injection. In-vivo deiodination of the product was observed as seen by the uptake of the activity in the thyroid. About 40% the activity from all other organs was excreted in 70 h. The optimum time for injection of the tracer for therapy was studied by observing the delay in tumour growth and survival rate in mice injected at 0,3,9 and 12 days after tumour induction. Injection of the tracer on the third day was found to be the most beneficial for retardation of tumour growth, while injection of the activity on the zeroth and ninth day had no effect. (author)

  17. siRNA Against KIR3DL1 as a Potential Gene Therapeutic Agent in Controlling HIV-1 Infection

    Science.gov (United States)

    Fu, Geng-Feng; Pan, Ji-Cheng; Lin, Nan; Hu, Hai-Yang; Tang, Wei-Ming; Xu, Jin-Shui; Wang, Xiao-Liang; Xu, Xiao-Qin; Qiu, Tao; Liu, Xiao-Yan; Chen, Guo-Hong; Mahapatra, Tanmay; Huan, Xi-Ping

    2014-01-01

    Abstract Objectives: The aim of this study was to develop a small interfering RNA (siRNA) against the expression of KIR3DL1 receptor on natural killer (NK) cells, in order to promote the ability of NK cells to destroy human immunodeficiency virus (HIV)-infected cells and thus prevent failure of siRNA therapy targeting human immunodeficiency virus type 1 (HIV-1) virus among HIV-1 infected patients in vitro. Methods: A siRNA targeting KIR3DL1 was synthesized and then modified with cholesterol, methylene, and sulfate. The inhibitory action of the siRNAs on primary cultured NK cells was detected. The amount of IFN-γ and TNF-α secretions in NK cells was measured. The intended functions of NK cells in vitro were analyzed by CFSE and PI methods. Results: There were no significant differences in inhibiting the expression of KIR3DL1 on NK cells between the modified and unmodified siRNAs, while inhibition by each of them differed significantly from controls. The amount of IFN-γ and TNF-α secretions in the NK cells was abundant due to unsuccessful expression of KIR3DL1 on NK cells, which further promoted function of the NK cells. Conclusion: The siRNA against KIR3DL1 could enhance the ability of the NK cells to kill the HIV-1 infected cells in vitro and successfully prevented the failure of siRNA therapy targeting the HIV-1 virus. Therefore, it can act as a potential gene therapeutic agent among HIV-1 infected people. PMID:24834927

  18. Use of Sr-90 beta emitter as an antifungal agent - an innovative dimension in therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    The use of ionizing radiation in dermatological practice has been well recognized for many years. However, its routine practice has markedly decreased owing to either the development of more efficient medications and / or to the increased awareness of potential genetic and somatic hazard of radiation. In treating onychomycosis, the therapeutic limitations of conventional antimycotic agents (in respect of low cure rates, high relapse rate, inherent side effects, long duration of treatment and high expense) have provided clear incentives to explore alternative therapy procedures. Next to 131I, 90Sr is being considered to be one of the most important β emitting therapeutic agents in current practice of nuclear medicine. In this present study, 90Sr has been used for treatment of onychomycosis. The objectives of the present research work were: To use Sr-90 source (beta radiation) as a curative therapy for Onychomycosis, optimisation of its dosages and to promote an innovative clinical development in the field of therapeutic application of nuclear medicine; To assess the efficacy of beta radiation either alone or in combination with conventional antifungal drugs, and; To reduce the duration of drug exposure and cost of treatment for onychomycosis. Using the appropriate statistical formula, sample size of the study population was determined and in each group 92 patients were assigned. With an assumption of patients drop out and for better statistical analysis, a total of 330 patients were randomly allocated to enter in therapeutic regimen. They had all been clinically and mycologically diagnosed to have onychomycosis. The study population was then divided into three groups: Group - A (n =110) received griseofulvin orally 500mg once daily for 12-16 weeks; Group - B (n=110) received beta radiation, 500 rads twice in a week for 3 weeks (total 2500 rads); and Group - C (n=110) received combined beta radiation (total 2500 rads in 3 weeks) and griseofulvin (500 mg daily for 6

  19. Bardoxolone methyl (CDDO-Me as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties

    Directory of Open Access Journals (Sweden)

    Wang YY

    2014-10-01

    Full Text Available Yan-Yang Wang,1,2 Yin-Xue Yang,3 Hong Zhe,1 Zhi-Xu He,4 Shu-Feng Zhou2,4 1Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colon-rectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors, and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1/the nuclear factor erythroid 2-related factor 2 (Nrf2 pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains a,ß-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar

  20. In-silico analysis of heat shock protein 47 for identifying the novel therapeutic agents in the management of oral submucous fibrosis

    Directory of Open Access Journals (Sweden)

    Jayasankar P Pillai

    2014-01-01

    Conclusion: HSP47 can be a potential candidate to target, in order to control the production of abundance collagen in OSF. Hence, the binding sites of HSP47 with collagen are identified and some natural compounds with a potential to bind with these binding receptors are also recognized. These natural compounds might act as anti-HSP47 lead molecules in designing novel therapeutic agents for OSF, which are so far unavailable.

  1. Thioglycosides as inhibitors of hSGLT1 and hSGLT2: Potential therapeutic agents for the control of hyperglycemia in diabetes

    Directory of Open Access Journals (Sweden)

    Francisco Castaneda, Antje Burse, Wilhelm Boland, Rolf K-H. Kinne

    2007-01-01

    Full Text Available The treatment of diabetes has been mainly focused on maintaining normal blood glucose concentrations. Insulin and hypoglycemic agents have been used as standard therapeutic strategies. However, these are characterized by limited efficacy and adverse side effects, making the development of new therapeutic alternatives mandatory. Inhibition of glucose reabsorption in the kidney, mediated by SGLT1 or SGLT2, represents a promising therapeutic approach. Therefore, the aim of the present study was to evaluate the effect of thioglycosides on human SGLT1 and SGLT2. For this purpose, stably transfected Chinese hamster ovary (CHO cells expressing human SGLT1 and SGLT2 were used. The inhibitory effect of thioglycosides was assessed in transport studies and membrane potential measurements, using α-methyl-glucoside uptake and fluorescence resonance energy transfer, respectively. We found that some thioglycosides inhibited hSGLT more strongly than phlorizin. Specifically, thioglycoside I (phenyl-1'-thio-β-D-glucopyranoside inhibited hSGLT2 stronger than hSGLT1 and to a larger extent than phlorizin. Thioglycoside VII (2-hydroxymethyl-phenyl-1'-thio-β-D-galacto-pyranoside had a pronounced inhibitory effect on hSGLT1 but not on hSGLT2. Kinetic studies confirmed the inhibitory effect of these thioglycosides on hSGLT1 or hSGLT2, demonstrating competitive inhibition as the mechanism of action. Therefore, these thioglycosides represent promising therapeutic agents for the control of hyperglycemia in patients with diabetes.

  2. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain

    OpenAIRE

    Liu, Hao-Li; Hua, Mu-Yi; Yang, Hung-Wei; Huang, Chiung-Yin; Chu, Po-Chun; Wu, Jia-Shin; Tseng, I-Chou; Wang, Jiun-Jie; Yen, Tzu-Chen; Chen, Pin-Yuan; Wei, Kuo-Chen

    2010-01-01

    The superparamagnetic properties of magnetic nanoparticles (MNPs) allow them to be guided by an externally positioned magnet and also provide contrast for MRI. However, their therapeutic use in treating CNS pathologies in vivo is limited by insufficient local accumulation and retention resulting from their inability to traverse biological barriers. The combined use of focused ultrasound and magnetic targeting synergistically delivers therapeutic MNPs across the blood–brain barrier to enter th...

  3. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy

    OpenAIRE

    Zuo, C. S.; Prasad, P V; Busse, Paul; L. Tang; Zamenhof, R. G.

    1999-01-01

    Noninvasive in vivo quantitation of boron is necessary for obtaining pharmacokinetic data on candidate boronated delivery agents developed for boron neutron capture therapy (BNCT). Such data, in turn, would facilitate the optimization of the temporal sequence of boronated drug infusion and neutron irradiation. Current approaches to obtaining such pharmacokinetic data include: positron emission tomography employing F-18 labeled boronated delivery agents (e.g., p-boronophenylalanine), ex vivo n...

  4. Therapeutic effect of egualen sodium (KT1-32), a new antiulcer agent, on chronic gastritis induced by sodium taurocholate in rats.

    Science.gov (United States)

    Mochizuki, S; Matsumoto, M; Wakabayashi, S; Kosakai, K; Tomiyama, A; Kishimoto, S

    1996-12-01

    We investigated the therapeutic effects of egualen sodium (KT1-32), a new antiulcer agent, on chronic erosive and atrophic gastritis induced by 5 months' administration of sodium taurocholate (TCA; 5 mM) in rats. The chronic gastritis was manifested by mucosal surface injuries (erosions), reduced mucosal thickness, reduction of the number of parietal cells, infiltration of inflammatory cells, and proliferation of collagenous fiber. Egualen sodium, (10-100 mg/kg, t.i.d.) administered orally to the rats for 2 weeks after the withdrawal of TCA, dose-dependently and significantly decreased the total length of erosions. The indicators of atrophic gastritis, i.e., reduced mucosal thickness and reduction in the number of parietal cells, were improved dose-dependently by the administration of this agent. Egualen sodium also reduced the inflammatory cell infiltration and the proliferation of collagenous fiber in the gastric mucosa in a dose-dependent manner. The reduced staining of neutral gastric mucus was improved by a high dose (100 mg/kg) of egualen sodium. The therapeutic effects of egualen sodium on experimental gastritis were superior to those of sofalcone and sodium guaiazulene 3-sulfonate. These results suggest that egualen sodium may be a promising agent for the treatment of erosive and atrophic gastritis. PMID:9027640

  5. MCM-41 mesoporous silica nanoparticles functionalized with aptamer and radiolabelled with 90Y and 159Gd as a potential therapeutic agent against colorectal cancer

    International Nuclear Information System (INIS)

    Colorectal cancer (CRC) is a malignancy that affects large intestine and rectum, and it is the most common malignancy of the gastrointestinal tract, the third most commonly diagnosed type of cancer in the world and the second leading cause of cancer-related death in the United States. Nowadays, available therapeutic procedures for this type of cancer are limited and ineffective. Conventional radiotherapy is not an often used approach in the treatment of CRC due to the fact that peristaltic movements hamper the targeting of ionizing radiation and this type of treatment is used as adjuvant and palliative to control symptoms. Therefore, surgical intervention is the primary therapeutic choice against this disease. Researches based on the combination of radioisotopes and nanostructured carriers systems have demonstrated significant results in improving the selectivity action as well as reducing the radiation dose into healthy tissues. MCM-41 mesoporous silica nanoparticles have unique characteristics such as high surface area and well-defined pore diameters making these nanoparticles an ideal candidate of therapeutic agent carrier. Thus, the objective of this work is to synthesize and characterize MCM-41 mesoporous silica nanoparticles conjugated with yttrium-90 and gadolinium-159 and evaluate this system as a potential therapeutic agent. The nanoparticles were synthesized via sol-gel method. The sample was characterized using FTIR, SAXS, PCS, Zeta Potential analysis, Thermal analysis, CHN elemental analysis, nitrogen adsorption, scanning and transmission electron microscopy. The ability to incorporate Y+3 and Gd+3 ion was determined in vitro using different ratios (1:1, 1:3, 1:5 v/v) of YCL3 and Gd2O3 and silica nanoparticles dispersed in saline, pH 7.4. The non-incorporated Y+3 and Gd+3 ions were removed by ultracentrifugation procedure and the concentration of ions in the supernatant was determined by ICP-AES. Cell viability was assessed by colorimetric MTT assay in

  6. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease.

    Science.gov (United States)

    Toledo-Sherman, Leticia M; Prime, Michael E; Mrzljak, Ladislav; Beconi, Maria G; Beresford, Alan; Brookfield, Frederick A; Brown, Christopher J; Cardaun, Isabell; Courtney, Stephen M; Dijkman, Ulrike; Hamelin-Flegg, Estelle; Johnson, Peter D; Kempf, Valerie; Lyons, Kathy; Matthews, Kimberly; Mitchell, William L; O'Connell, Catherine; Pena, Paula; Powell, Kendall; Rassoulpour, Arash; Reed, Laura; Reindl, Wolfgang; Selvaratnam, Suganathan; Friley, Weslyn Ward; Weddell, Derek A; Went, Naomi E; Wheelan, Patricia; Winkler, Christin; Winkler, Dirk; Wityak, John; Yarnold, Christopher J; Yates, Dawn; Munoz-Sanjuan, Ignacio; Dominguez, Celia

    2015-02-12

    We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system.

  7. Xenograft models for undifferentiated pleomorphic sarcoma not otherwise specified are essential for preclinical testing of therapeutic agents

    Science.gov (United States)

    Becker, Marc; Graf, Claudine; Tonak, Marcus; Radsak, Markus P.; Bopp, Tobias; Bals, Robert; Bohle, Rainer M.; Theobald, Matthias; Rommens, Pol-Maria; Proschek, Dirk; Wehler, Thomas C.

    2016-01-01

    Undifferentiated pleomorphic sarcoma not otherwise specified belongs to the heterogeneous group of soft tissue tumors. It is preferentially located in the upper and lower extremities of the body, and surgical resection remains the only curative treatment. Preclinical animal models are crucial to improve the development of novel chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma. However, this approach has been hampered by the lack of reproducible animal models. The present study established two xenograft animal models generated from stable non-clonal cell cultures, and investigated the difference in chemotherapeutic effects on tumor growth between undifferentiated pleomorphic sarcoma in vivo and in vitro. The cell cultures were generated from freshly isolated tumor tissues of two patients with undifferentiated pleomorphic sarcoma. For the in vivo analysis, these cells were injected subcutaneously into immunodeficient mice. The mice were monitored for tumor appearance and treated with the most common or innovative chemotherapeutic agents available to date. Furthermore, the same drugs were administered to in vitro cell cultures. The most effective tumor growth inhibition in vitro was observed with doxorubicin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as vorinostat. In the in vivo xenograft mouse model, the combination of doxorubicin and the tyrosine kinase inhibitor pazopanib induced a significant tumor reduction. By contrast, treatment with vorinostat did not reduce the tumor growth. Taken together, the results obtained from drug testing in vitro differed significantly from the in vivo results. Therefore, the novel and reproducible xenograft animal model established in the present study demonstrated that in vivo models are required to test potential chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma prior to clinical use, since animal models are more similar

  8. Screening of Streptomycetes for L-Asparaginase, Therapeutic Agent of Lymphocytic Leukemia from Western Ghats of Karnataka, India

    Directory of Open Access Journals (Sweden)

    Mamatha B Salimath

    2016-03-01

    Full Text Available Actinomycetes are the most economically and biotechnologically valuable prokaryotes and are responsible for the production of about half of the discovered bioactive secondary metabolites, antibiotics, anticancer agents and enzymes. The present study was successful in characterizing 25 Streptomycetes isolates inhabiting Agumbe province, of Western Ghats soil of Karnataka, India, for potential source of L-asparaginase enzyme. L- Asparaginase (L-asparagine amido hydrolase E.C.3.5.1.1 is an extracellular enzyme has anti-carcinogenic potential, received increasing awareness in the current years because of its use as an effective agent against Acute Lymphocytic Leukemia (ALL. L-asparagine is a source of essential amino acid necessary for the growth of leukemic cells in higher amounts. Depletion of L-asparagine from the circulatory blood leads to death of malignant cells. Streptomyces isolates have been collected from soil samples by serial dilution and plating method employing Starch Casein Nitrate agar and ISP media. They were identified based on cultural, morphological and biochemical characteristics. When primarily screened for L-asparaginase production by Rapid plate assay using Modified M9 medium containing L-asparagine and Phenol red as indicator, 23 isolates were found to be positive by showing change in color of medium from yellow to pink. Strain V17 isolate proved to be potent producer of the enzyme with higher amount of enzyme up to 22.45 IU/ml. About 92% of the tested isolates were positive for anti-cancerous potential, indicating the Western Ghats soils as potential sources for anti-cancerous agents. Further studies on purification and characterization of enzyme are under progress.

  9. Current Status of Poly(ADP-ribose Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    David J. Hiller

    2012-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer that is clinically defined as lacking estrogen and progesterone receptors, as well as being ERBB2 (HER-2 negative. Without specific therapeutic targets, TNBC carries a worse prognosis than other types of breast cancer in the absence of therapy. Research has now further differentiated breast cancer into subtypes based on genetic expression patterns. One of these subtypes, basal-like, frequently overlaps with the clinical picture of TNBC. Additionally, both TNBC and basal-like breast cancer link to BRCA mutations. Recent pharmaceutical advances have created a class of drugs, poly(ADP-ribose polymerase (PARP inhibitors, which are showing potential to effectively treat these patients. The aim of this paper is to summarize the basis behind PARP inhibitors and update the current status of their development in clinical trials for the treatment of TNBC.

  10. Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents.

    Science.gov (United States)

    Ejtahed, H-S; Soroush, A-R; Angoorani, P; Larijani, B; Hasani-Ranjbar, S

    2016-06-01

    As the prevalence of metabolic disorders increases dramatically, the importance of identifying environmental factors affecting metabolism control becomes greater accordingly. Gut microbiota, a complex ecosystem inhabiting the human gastrointestinal tract, is one of these potential factors. Recently, the evidence has shown the associations between alteration in gut microbiota composition and obesity, diabetes, and osteoporosis. However, the causality of gut microbiota on metabolic health has yet to be explored in intervention studies and the underlying mechanisms need to be investigated more in depth. Gut microbiota plays critical roles in the control of immunity, food intake, lipid accumulation, production of short chain fatty acids, insulin signaling, and regulation of bone mass. The gut microbiota represents a novel potential therapeutic strategy for the treatment of metabolic disorders. In this review, we provide insights into the role of the gut microbiota in metabolic disorders and its modulating interventions such as prebiotics, probiotics, and fecal microbiota transplantation. PMID:27203411

  11. Efficacy of ‘Actovet-CRD’ a Novel Herbal Formulation as Prophylactic and Therapeutic Agent for CRD Complex in Poultry

    Directory of Open Access Journals (Sweden)

    M.S. Rudraswamy

    2013-06-01

    Full Text Available Actovet CRD (A.CRD is a blend of ayurvedic herbs (Glycorrhyza glabra, Adhatoda vasika, Pipper longum, Abis Webbiana, Azadirachta indica, Curcuma longa etc which have known therapeutic effect on respiratory system and other systemic diseases with positive effect to boost immunity. To find the efficacy of A.CRD and to optimize its level of supplementation against the chronic respiratory disease (CRD three age groups of broilers viz., 0 day, 14 day and 28 day representing the age groups of 0-2 weeks (T1, 2-4 weeks (T2 and >4 weeks (T3 of age respectively were isolated for the experiment from a large size group of birds from each of five farmers. The results of the trial indicated that A.CRD improved the body weight gain, survivability, haemoglobin, PCV, total protein levels significantly (P≤0.05. The symptoms of the CRD in the infected birds subsided within a week period of treatment. The birds stopped gasping, rales and other symptoms of the CRD within 4-7 days of treatment at all therapeutic dosage levels. The results indicated that the birds of age group T1, T2 and T3 should be supplemented with A.CRD at the rate of 10, 20 and 40 ml/100 birds respectively. The birds did not show any symptoms of drowsiness, off feed which is usually observed in antibiotic treatment. The results showed that A.CRD can replace antibiotic therapy. Hence, this herbal formulation can be used for prevention and treatment of CRD and a suitable supplement for organic poultry farming.

  12. Cathelicidin-BF, a snake cathelicidin-derived antimicrobial peptide, could be an excellent therapeutic agent for acne vulgaris.

    Directory of Open Access Journals (Sweden)

    Yipeng Wang

    Full Text Available Cathelicidins are a family of antimicrobial peptides acting as multifunctional effector molecules in innate immunity. Cathelicidin-BF has been purified from the snake venoms of Bungarus fasciatus and it is the first identified cathelicidin antimicrobial peptide in reptiles. In this study, cathelicidin-BF was found exerting strong antibacterial activities against Propionibacterium acnes. Its minimal inhibitory concentration against two strains of P. acnes was 4.7 µg/ml. Cathelicidin-BF also effectively killed other microorganisms including Staphylococcus epidermidis, which was possible pathogen for acne vulgaris. Cathelicidin-BF significantly inhibited pro-inflammatory factors secretion in human monocytic cells and P. acnes-induced O2.- production of human HaCaT keratinocyte cells. Observed by scanning electron microscopy, the surfaces of the treated pathogens underwent obvious morphological changes compared with the untreated controls, suggesting that this antimicrobial peptide exerts its action by disrupting membranes of microorganisms. The efficacy of cathelicidin-BF gel topical administering was evaluated in experimental mice skin colonization model. In vivo anti-inflammatory effects of cathelicidin-BF were confirmed by relieving P. acnes-induced mice ear swelling and granulomatous inflammation. The anti-inflammatory effects combined with potent antimicrobial activities and O2.- production inhibition activities of cathelicidin-BF indicate its potential as a novel therapeutic option for acne vulgaris.

  13. Synthesis and antitussive evaluation of verticinone-cholic acid salt, a novel and potential cough therapeutic agent

    Institute of Scientific and Technical Information of China (English)

    Fang-zhou XU; Chang CHEN; Yong-hui ZHANG; Han-li RUAN; Hui-fang PI; Pong ZHANG; Ji-zhou WU

    2007-01-01

    Aim: To seek a novel and potent antitussive drug based on Shedan-Chuanbei powder, a complex of traditional Chinese medicine preparation for cough therapy.Methods: Verticinone-cholic acid (Vet-CA) salt, a novel, salifying derivative of verticinone and cholic acid, both of which are the major bioactive components in Shedan-Chuanbei powder, was synthesized. We then evaluated the antitussive activity and the acute toxicity of the salt. Results: The new compound, with good solubility in water, has much more potent antitussive activity in comparison with the same dose of single verticinone and single cholic acid. The administration 3 mg/kg of Ver-CA could result in over 50% reduction of a citric acid-induced cough.Pretreatment with naloxone (0.8 mg/kg, ip) can only partially antagonize its anti-tussive effect. On the other hand, glybenclamide (3 mg/kg, ip), an ATP-sensitive K+ channel blocker, can also significantly reduce the antitussive effect of Ver-CA.A further acute toxicity study showed that the LD50 values of Ver-CA were 3 times that of verticinone. Conclusion: Based on the studies of pharmacology and acutetoxicity, the salt has a synergic and attenuated toxicity compared with single verticinone and cholic acid. Moreover, the present study also suggests that Ver-CA, a potential novel antitussive agent, may exert its antitussive effect via both the peripheral (modulated by ATP-sensitive K+ channels) and central mechanisms(modulated by the opioid receptor).

  14. Aloe vera Gel: Effective Therapeutic Agent against Multidrug-Resistant Pseudomonas aeruginosa Isolates Recovered from Burn Wound Infections

    Directory of Open Access Journals (Sweden)

    Mehdi Goudarzi

    2015-01-01

    Full Text Available Objective. Aloe vera is an herbal medicinal plant with biological activities, such as antimicrobial, anticancer, anti-inflammatory, and antidiabetic ones, and immunomodulatory properties. The purpose of this study was investigation of in vitro antimicrobial activity of A. vera gel against multidrug-resistant (MDR Pseudomonas aeruginosa isolated from patients with burn wound infections. Methods. During a 6-month study, 140 clinical isolates of P. aeruginosa were collected from patients admitted to the burn wards of a hospital in Tehran, Iran. Antimicrobial susceptibility test was carried out against the pathogens using the A. vera gel and antibiotics (imipenem, gentamicin, and ciprofloxacin. Results. The antibiogram revealed that 47 (33.6% of all isolates were MDR P. aeruginosa. The extract isolated from A. vera has antibacterial activity against all of isolates. Also, 42 (89.4% isolates were inhibited by A. vera gel extract at minimum inhibitory concentration (MIC ≤ 200 µg/mL. MIC value of A. vera gel for other isolates (10.6% was 800 µg/mL. All of MDR P. aeruginosa strains were inhibited by A. vera at similar MIC50 and MIC90 200 µg/mL. Conclusion. Based on our results, A. vera gel at various concentrations can be used as an effective antibacterial agent in order to prevent wound infection caused by P. aeruginosa.

  15. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer

    Science.gov (United States)

    Heo, Tae-Hwe; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine with known multiple functions in immune regulation, inflammation, and oncogenesis. Binding of IL-6 to the IL-6 receptor (IL-6R) induces homodimerization and recruitment of glycoprotein 130 (gp130), which leads to activation of downstream signaling. Emerging evidence suggests that high levels of IL-6 are correlated with poor prognosis in breast cancer patients. IL-6 appears to play a critical role in the growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSCs), and drug resistance of BCSCs, making anti–IL-6/IL-6R/gp130 therapies promising options for the treatment and prevention of breast cancers. However, preclinical and clinical studies of the applications of anti–IL-6/IL-6R/gp130 therapy in breast cancers are limited. In this review, we summarize the structures, preclinical and clinical studies, mechanisms of action of chemical and biological blockers that directly bind to IL-6, IL-6R, or gp130, and the potential clinical applications of these pharmacological agents as breast cancer therapies. PMID:26840088

  16. Localized sequence-specific release of a chemopreventive agent and an anticancer drug in a time-controllable manner to enhance therapeutic efficacy.

    Science.gov (United States)

    Pan, Wen-Yu; Lin, Kun-Ju; Huang, Chieh-Cheng; Chiang, Wei-Lun; Lin, Yu-Jung; Lin, Wei-Chih; Chuang, Er-Yuan; Chang, Yen; Sung, Hsing-Wen

    2016-09-01

    Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment. PMID:27294541

  17. Development of 17alpha-estradiol as a neuroprotective therapeutic agent: rationale and results from a phase I clinical study.

    Science.gov (United States)

    Dykens, James A; Moos, Walter H; Howell, Neil

    2005-06-01

    17alpha-estradiol (17alpha-E2) differs from its isomer, the potent feminizing hormone 17beta-estradiol (17beta-E2), only in the stereochemistry at one carbon, but this is sufficient to render it at least 200-fold less active as a transactivating hormone. Despite its meager hormonal activity, 17alpha-E2 is as potent as 17beta-E2 in protecting a wide variety of cell types, including primary neurons, from a diverse array of lethal and etiologically relevant stressors, including amyloid toxicity, serum withdrawal, oxidative stress, excitotoxicity, and mitochondrial inhibition, among others. Moreover, both estradiol isomers have shown efficacy in animal models of stroke, Alzheimer's disease (AD), and Parkinson's disease (PD). Data from many labs have yielded a mechanistic model in which 17alpha-E2 intercalates into cell membranes, where it terminates lipid peroxidation chain reactions, thereby preserving membrane integrity, and where it in turn is redox cycled by glutathione or by NADPH through enzymatic coupling. Maintaining membrane integrity is critical to mitochondrial function, where loss of impermeability of the inner membrane initiates both necrotic and apoptotic pathways. Thus, by serving as a mitoprotectant, 17alpha-E2 forestalls cell death and could correspondingly provide therapeutic benefit in a host of degenerative diseases, including AD, PD, Friedreich's ataxia, and amyotrophic lateral sclerosis, while at the same time circumventing the common adverse effects elicited by more hormonally active analogues. Positive safety and pharmacokinetic data from a successful phase I clinical study with oral 17alpha-E2 (sodium sulfate conjugate) are presented here, and several options for its future clinical assessment are discussed. PMID:16024755

  18. Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential T1 Theranostic Magnetic Resonance Imaging Agent.

    Science.gov (United States)

    Kang, Min-Kyoung; Lee, Gang Ho; Jung, Ki-Hye; Jung, Jae-Chang; Kim, Hee-Kyung; Kim, Yeon-Hee; Lee, Jongmin; Ryeom, Hun-Kyu; Kim, Tae-Jeong; Chang, Yongmin

    2016-05-01

    This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B.

  19. Mir-34a mimics are potential therapeutic agents for p53-mutated and chemo-resistant brain tumour cells.

    Directory of Open Access Journals (Sweden)

    Yuen Ngan Fan

    Full Text Available Chemotherapeutic drug resistance and relapse remains a major challenge for paediatric (medulloblastoma and adult (glioblastoma brain tumour treatment. Medulloblastoma tumours and cell lines with mutations in the p53 signalling pathway have been shown to be specifically insensitive to DNA damaging agents. The aim of this study was to investigate the potential of triggering cell death in p53 mutated medulloblastoma cells by a direct activation of pro-death signalling downstream of p53 activation. Since non-coding microRNAs (miRNAs have the ability to fine tune the expression of a variety of target genes, orchestrating multiple downstream effects, we hypothesised that triggering the expression of a p53 target miRNA could induce cell death in chemo-resistant cells. Treatment with etoposide, increased miR-34a levels in a p53-dependent fashion and the level of miR-34a transcription was correlated with the cell sensitivity to etoposide. miR-34a activity was validated by measuring the expression levels of one of its well described target: the NADH dependent sirtuin1 (SIRT1. Whilst drugs directly targeting SIRT1, were potent to trigger cell death at high concentrations only, introduction of synthetic miR-34a mimics was able to induce cell death in p53 mutated medulloblastoma and glioblastoma cell lines. Our results show that the need of a functional p53 signaling pathway can be bypassed by direct activation of miR-34a in brain tumour cells.

  20. Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential T1 Theranostic Magnetic Resonance Imaging Agent.

    Science.gov (United States)

    Kang, Min-Kyoung; Lee, Gang Ho; Jung, Ki-Hye; Jung, Jae-Chang; Kim, Hee-Kyung; Kim, Yeon-Hee; Lee, Jongmin; Ryeom, Hun-Kyu; Kim, Tae-Jeong; Chang, Yongmin

    2016-05-01

    This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B. PMID:27305813

  1. Pharmacological prevention of reperfusion injury in acute myocardial infarction. A potential role for adenosine as a therapeutic agent.

    Science.gov (United States)

    Quintana, Miguel; Kahan, Thomas; Hjemdahl, Paul

    2004-01-01

    last years, three relatively large placebo-controlled clinical trials have been conducted: Acute Myocardial Infarction Study of Adenosine Trial (AMISTAD) I and II and Attenuation by Adenosine of Cardiac Complications (ATTACC). In the AMISTAD trials, the final infarct size was reduced and the LV systolic function was improved by adenosine treatment, mainly in patients with anterior MI localization. However, morbidity and mortality were not affected. In the ATTACC study, the LV systolic function was not affected by adenosine, however, trends towards improved survival were observed in patients with anterior MI localization. The possibility of obtaining a Thrombolysis in Myocardial Infarction (TIMI) grade 3 flow in the infarct-related artery in up to 95% of patients with acute MI (increasing the occurrence of reperfusion injury) has turned back the interest towards the protection of myocardial cells from the impending ischemic and reperfusion injury in which adenosine alone or together with other cardio-protective agents may exert important clinical effects. PMID:15134468

  2. A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein

    Science.gov (United States)

    Mousavinezhad-Moghaddam, Maryam; Amin, Abbas Ali; Rafatpanah, Houshang; Rezaee, Seyed Abdol Rahim

    2016-01-01

    The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi’s sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents. PMID:27096058

  3. Equilibrium solubilization of lipophilic therapeutic agents by aqueous solutions of products of catalytic oxyethylation of Croda-type lanolin as model excipients of the class of non-ionic surface active agents.

    Science.gov (United States)

    Zgoda, Marian Mikołaj; Lukosek, Marek; Nachajski, Michał Jakub

    2007-01-01

    Research was conducted into the properties and identity of the products of Croda-type hypoallergenic lanolin, which were obtained with the use of a selective catalyst (K-4) and a standard alkaline catalyst (Na/NaOH). The 1HNMR method was employed to assess the content of oxyethylated segments and the analytic level of hydrophilic-lipophilic balance (HLB). Surface activity of products soluble in water with n(TE) > or = 40 was examined and the thermodynamic potential for micelle formation deltaGm(o) was calculated. Basic viscosity and hydrodynamic values were determined for the solubilizers and their micellar adduct with ibuprofen, ketoprofen and naproxen. In addition, the amount of solubilized therapeutic agents c/s/ was examined by means of the spectroscopic method and the micellar partition coefficient--Kw(m) was estimated. The results obtained in the course of research served as a basis for determining the solubilization mechanism and the stability of the micellar adduct for the purpose of application. This enabled the commencement of technological work on the design and manufacture of a model dosage form administered to the skin and containing the products of lanolin oxyethylation. PMID:17957947

  4. 宁夏马铃薯晚疫病保护剂和治疗剂田间药效研究%Study on the Efficacy of Protective and Therapeutic Agents to Control Potato Late Blight in Ningxia

    Institute of Scientific and Technical Information of China (English)

    刘浩; 张珺; 谢成君; 张宗山; 沈瑞清

    2012-01-01

    The effects of different protective and therapeutic agents to control potato late blight were compared by applying them to the center disease plant in the field. The results showed that among the protective agents, 53.8% cupric hydroxide WDG was the best; among therapeutic agents, 58% Ridomil Gold WP was the best.%在田间中心病株出现马铃薯晚疫病症状后,施用保护剂和治疗剂,对比3种保护剂和15种治疗剂防治马铃薯晚疫病的效果.结果表明,保护剂中53.8%氢氧化铜水分散粒剂防治效果最好,治疗剂中58%金雷多米尔可湿性粉剂的防治效果最好.

  5. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.

    Science.gov (United States)

    Bailey, Alexander M; Lawrence, Michael B; Shang, Hulan; Katz, Adam J; Peirce, Shayn M

    2009-02-01

    Intravenous delivery of human adipose-derived stromal cells (hASCs) is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific) may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM) of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p, or CD65. In

  6. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.

    Directory of Open Access Journals (Sweden)

    Alexander M Bailey

    2009-02-01

    Full Text Available Intravenous delivery of human adipose-derived stromal cells (hASCs is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p

  7. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ijin; Kim, Jung Hoon; Lee, Jeong Min; Choi, Jin Woo; Han, Joon Koo; Choi, Byung Ihn [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model. This study was approved by our institutional animal care and use committee. Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516, and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24 hours following their treatment. The tumor perfusion parameters were obtained from the time-intensity curve of the DCE-US data. Repeated measures analysis of variance was performed to assess any significant change in tumor perfusion over time. Relative changes in the DCE-US parameters between the baseline and follow-up assessments were correlated with the relative changes in tumor size over the course of seven days using Pearson correlation. CKD-516 treatment resulted in significant changes in the DCE-US parameters, including the peak intensity, total area under the time-intensity curve (AUCtotal), and AUC during wash-out (AUCout) over time (P<0.05). Pairwise comparison tests revealed that the AUCtotal and AUC during wash-in (AUCin) seen on the two-hour follow-up were significantly lower than the baseline values (P<0.05). However, none of early changes in the DCE-US parameters until 24-hour follow-up showed a significant correlation with the relative changes in tumor size during seven days after CKD-516 treatment. Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor perfusion as early as two hours after treatment and that the therapeutic effect of CKD-516 treatment can be effectively quantified using DCE-US.

  8. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    International Nuclear Information System (INIS)

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model. This study was approved by our institutional animal care and use committee. Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516, and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24 hours following their treatment. The tumor perfusion parameters were obtained from the time-intensity curve of the DCE-US data. Repeated measures analysis of variance was performed to assess any significant change in tumor perfusion over time. Relative changes in the DCE-US parameters between the baseline and follow-up assessments were correlated with the relative changes in tumor size over the course of seven days using Pearson correlation. CKD-516 treatment resulted in significant changes in the DCE-US parameters, including the peak intensity, total area under the time-intensity curve (AUCtotal), and AUC during wash-out (AUCout) over time (P<0.05). Pairwise comparison tests revealed that the AUCtotal and AUC during wash-in (AUCin) seen on the two-hour follow-up were significantly lower than the baseline values (P<0.05). However, none of early changes in the DCE-US parameters until 24-hour follow-up showed a significant correlation with the relative changes in tumor size during seven days after CKD-516 treatment. Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor perfusion as early as two hours after treatment and that the therapeutic effect of CKD-516 treatment can be effectively quantified using DCE-US.

  9. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazushi, E-mail: kz-numa@urahp.yokohama-cu.ac.j [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Fukuda, Hiroyuki; Ohto, Masao; Itou, Ryu [Department of Internal Medicine, Naruto General Hospital, 167 Naruto, Sanbu, Chiba 289-1326 (Japan); Nozaki, Akito; Kondou, Masaaki; Morimoto, Manabu [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Karasawa, Eii [Department of Gastroenterology, International University of Health and Welfare Atami Hospital, 13-1 Higashi Kaigan-cho, Atami, Shizuoka 413-0012 (Japan); Tanaka, Katsuaki [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan)

    2010-08-15

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  10. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    Science.gov (United States)

    Shen, Yuefei

    This dissertation focuses on the development and investigation of antisense imaging and therapeutic agents, combined with nanotechnology, to detect and suppress inducible nitric oxide synthase (iNOS) expression for the diagnosis and treatment of acute lung injury (ALI). To achieve this goal, several efforts were made. The first effort was the identification and characterization of high binding affinity antisense peptide nucleic acids (PNAs) and shell-crosslinked knedel-like nanoparticle (SCK)-PNA conjugates to the iNOS mRNA. Antisense binding sites on the iNOS mRNA were first mapped by a procedure for rapidly generating a library of antisense accessible sites on native mRNAs (MASL) which involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific PCR. Antisense PNAs against the antisense accessible sites were accordingly synthesized and characterized. The second effort was the investigation of cationic shell crosslinked knedel-like nanoparticle (cSCK)-mediated siRNA delivery to suppress iNOS expression for the treatment of ALI. siRNA with its unique gene-specific properties could serve as a promising therapeutic agent, however success in this area has been challenged by a lack of efficient biocompatible transfection agents. cSCK with its nanometer size and positive charge previously showed efficient cellular delivery of phosphorothioate ODNs (oligodeoxynucleotides), plasmid DNA and PNA. Herein, cSCK showed good siRNA binding and facilitated efficient siRNA transfection in HeLa, a mouse macrophage cell line and other human cell lines. cSCK led to greater silencing efficiency than Lipofectamine 2000 in HeLa cells as determined by the viability following transfection with cytotoxic and non-cytotoxic siRNAs, as well in 293T and HEK cells, and was comparable in BEAS-2B and MCF10a cells. The third effort was the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabeled

  11. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.

    Science.gov (United States)

    Lawson, Michelle A; Paton-Hough, Julia M; Evans, Holly R; Walker, Rebecca E; Harris, William; Ratnabalan, Dharshi; Snowden, John A; Chantry, Andrew D

    2015-01-01

    Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7-8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti-myeloma therapies

  12. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.

    Directory of Open Access Journals (Sweden)

    Michelle A Lawson

    Full Text Available Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7-8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti

  13. Structural Studies on Acetylcholinesterase and Paraoxonase Directed Towards Development of Therapeutic Biomolecules for the Treatment of Degenerative Diseases and Protection Against Chemical Threat Agents

    Science.gov (United States)

    Sussman, Joel L.; Silman, Israel

    Acetylcholinesterase and paraoxonase are important targets for treatment of degenerative diseases, Alzheimer's disease and atherosclerosis, respectively, both of which impose major burdens on the health care systems in Western society. Acetylcholinesterase is the target of lethal nerve agents, and paraoxonase is under consideration as a bioscavenger for their detoxification. Both are thus the subject of research and development in the context of nerve agent toxicology. The crystal structures of the two enzymes are described, and structure/function relationships are discussed in the context of drug development and of development of means of protection against chemical threats.

  14. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents.

    Science.gov (United States)

    Tucci, Sonia A; Boyland, Emma J; Halford, Jason Cg

    2010-01-01

    Obesity is a global epidemic associated with significant morbidity and mortality in adults and ill health in children. A proven successful approach in weight management has been the disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing drugs. This success had driven investigation into new generation nutraceuticals, supplements and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for macronutrient digestion. Except for some synthetic products, the majority of agents reviewed are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors are under development to improve glycemic control and these may also induce some weight loss. However, colonic fermentation induced side effects, such as excess gas production, remain an issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor phaseolamine, have been used in humans with some promising results relating to weight loss. Nonetheless, few of these agents have made it into clinical studies and without any clinical proof of concept or proven efficacy it is unlikely any will enter the market soon. PMID:21437083

  15. Emerging new therapeutic applications of capecitabine as a first-line chemotherapeutic agent in the management of advanced carcinomas other than colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Kapoor S

    2012-05-01

    Full Text Available Shailendra KapoorRichmond, VA, USAI read with great interest the recent article by Hameed et al in a recent issue of your journal.1 The article is very interesting. Interestingly, the past few years have seen the emergence of capecitabine as a highly potent first-line chemotherapeutic agent against advanced systemic carcinomas other than colorectal carcinoma. For instance, capecitabine has recently been used successfully as a first-line monotherapeutic agent for HER-2-negative metastatic breast cancer.2 Cotherapy with agents such as sorafenib and paclitaxel for HER-2-negative metastatic breast cancer has also been recently used first-line, and significantly improves progressionfree survival, in addition to being very safe.3,4 Similarly, in patients with advanced gastric carcinoma, capecitabine has been used successfully as first-line therapy in combination with agents such as cisplatin.5 The XELOX regimen comprising capecitabine in conjunction with oxaliplatin is another recent highly effective alternative for gastric carcinoma.6 The modified XELIRI regimen compromising capecitabine and irinotecan is a further option for advanced and unresectable gastric carcinoma.7View original paper by Hameed and colleagues.

  16. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    OpenAIRE

    Ijin Joo; Jung Hoon Kim; Jeong Min Lee; Jin Woo Choi; Joon Koo Han; Byung Ihn Choi

    2014-01-01

    Purpose:

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model.

    Methods:

    This study was appro...

  17. Use of the Novel Therapeutic Agent Miltefosine for the Treatment of Primary Amebic Meningoencephalitis: Report of 1 Fatal and 1 Surviving Case.

    Science.gov (United States)

    Cope, Jennifer R; Conrad, Dennis A; Cohen, Naiomi; Cotilla, Manuel; DaSilva, Alexandre; Jackson, Jonathan; Visvesvara, Govinda S

    2016-03-15

    Primary amebic meningoencephalitis (PAM) is a fulminant central nervous system infection caused by the thermophilic free-living ameba Naegleria fowleri. Few survivals have been documented and adequate treatment is lacking. We report 2 PAM cases, 1 fatal and 1 surviving, treated with the novel antiparasitic agent miltefosine.

  18. Phase Ⅲ Clinical Trials of the Cell Differentiation Agent-2 (CDA-2): Therapeutic Efficacy on Breast Cancer, Non-Small Cell Lung Cancer and Primary Hepatoma

    Institute of Scientific and Technical Information of China (English)

    Fengyi Feng; Mingzhong Li; Yunzhong Zhu; Meizhen Zhou; Jun Ren; Yetao Gao; Jingpo Zhao; Rongsheng Zheng; Wenhua Zhao; Zhiqiang Meng; Fang Li; Qing Li; Qizhong Zhang; Dongli Zhao; Liyan Xu; Yongqiang Zhang; Yanjun Zhang; Zhenjiu Wang; Shuanqi Liu; Ming C. Liau; Changquan Ling; Yang Zhang; Fengzhan Qin; Huaqing Wang; Wenxia Huang; Shunchang Jiao; Qiang Chen

    2005-01-01

    OBJECTIVE The objective of this study was to explore the effect of CDA-2, a selective inhibitor of abnormal methylation enzymes in cancer cells, on the therapeutic efficacy of cytotoxic chemotherapy.METHODS Advanced cancer patients, all of whom had previously undergone chemotherapy, were randomly divided into 2 groups, one receiving chemotherapy only as the control group, and the other receiving CDA-2 in addition to chemotherapy as the combination group. The therapeutic efficacies and the toxic manifestations of the 2 groups were compared based on the WHO criteria.RESULTS Of 454 cancer patients enrolled in phase Ⅲ clinical trials of CDA-2, 80, 188, and 186 were breast cancer,NSCLC, and primary hepatoma patients, respectively.Among them 378 patients completed treatments according to the protocols. The results showed that the overall effective rate of the combination group was 2.6 fold that of the control group, 4.8 fold in the case of breast cancer, 2.3 fold in the case of primary hepatoma, and 2.2 fold in the case of NSCLC. Surprisingly, the combination therapy appeared to work better for stage Ⅳ than stage Ⅲ patients. CDA-2 did not contribute additional toxicity. On the contrary, it reduced toxic manifestations of chemotherapy, particularly regarding white blood cells, nausea and vomiting.CONCLUSION Modulation of abnormal methylation enzymes by CDA-2 is definitely helpful to supplement chemotherapy. It significantly increased the therapeutic efficacy and reduced the toxic manifestation of cytotoxic chemotherapy on breast cancer and NSCLC.

  19. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sonia A Tucci

    2010-05-01

    Full Text Available Sonia A Tucci, Emma J Boyland, Jason CG HalfordKissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool, UKAbstract: Obesity is a global epidemic associated with significant morbidity and mortality in adults and ill health in children. A proven successful approach in weight management has been the disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing drugs. This success had driven investigation into new generation nutraceuticals, supplements and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for macronutrient digestion. Except for some synthetic products, the majority of agents reviewed are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors are under development to improve glycemic control and these may also induce some weight loss. However, colonic fermentation induced side effects, such as excess gas production, remain an issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor phaseolamine, have been used in humans with some promising results relating to weight loss. Nonetheless, few of these agents have made it into clinical studies and without any clinical proof of concept or proven efficacy it is unlikely any will enter the market soon.Keywords: lipase, amylase, saccharidases, overweight, orlistat, Alli®, digestion, body weight

  20. Advance of Bacteriophages as Therapeutic Agents in Bacterial Infection%噬茵体制剂治疗细菌感染的研究进展

    Institute of Scientific and Technical Information of China (English)

    张娜; 李书光; 陈金龙; 王金良; 沈志强

    2011-01-01

    Bacteriophage are bacterial parasites,and the use of phage as therapeutics to treat bacterial infection effectually, particularly in an era where antibiotic resistance has become so problematic. Bacteriophagic therapy will educt positive effect in bacterial infection with further research of phage. The progress in research on antisepticize mechanism, advantage as therapeutics , research of treatment bacterial infection and research of phage lysins were reviewed in this article.%噬菌体是一类细菌依赖性病毒,可有效地治疗细菌性感染,尤其是大量耐药菌株的出现使抗生素对细菌病的治疗越来越棘手,噬菌体疗法将对细菌病的控制起更加积极的作用.作者就噬菌体抗菌机理、治疗优势、噬菌体治疗细菌感染的研究及噬菌体裂解素的研究进展进行综述.

  1. Cooperative Therapeutic Effects of Herpes Simplex Virus Thymidine Kinase Gene/Ganciclovir System and Chemotherapeutic Agents on Prostate Cancer in vitro

    Institute of Scientific and Technical Information of China (English)

    XING Yifei; XIAO Yajun; LU Gongcheng; ZENG Fuqing; ZHAO Jun; XIONG Ping; FENG Wei

    2006-01-01

    The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38 % and 35.51%, and the proportion of necrosis being 33.05 % and 28.87 %, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment.Our results highlight the potential for such new combination therapies for future treatments of HRPC.

  2. Folate-targeted pH-responsive calcium zoledronate nanoscale metal-organic frameworks: Turning a bone antiresorptive agent into an anticancer therapeutic.

    Science.gov (United States)

    Au, Kin Man; Satterlee, Andrew; Min, Yuanzeng; Tian, Xi; Kim, Young Seok; Caster, Joseph M; Zhang, Longzhen; Zhang, Tian; Huang, Leaf; Wang, Andrew Z

    2016-03-01

    Zoledronate (Zol) is a third-generation bisphosphonate that is widely used as an anti-resorptive agent for the treatment of cancer bone metastasis. While there is preclinical data indicating that bisphosphonates such as Zol have direct cytotoxic effects on cancer cells, such effect has not been firmly established in the clinical setting. This is likely due to the rapid absorption of bisphosphonates by the skeleton after intravenous (i.v.) administration. Herein, we report the reformulation of Zol using nanotechnology and evaluation of this novel nanoscale metal-organic frameworks (nMOFs) formulation of Zol as an anticancer agent. The nMOF formulation is comprised of a calcium zoledronate (CaZol) core and a polyethylene glycol (PEG) surface. To preferentially deliver CaZol nMOFs to tumors as well as facilitate cellular uptake of Zol, we incorporated folate (Fol)-targeted ligands on the nMOFs. The folate receptor (FR) is known to be overexpressed in several tumor types, including head-and-neck, prostate, and non-small cell lung cancers. We demonstrated that these targeted CaZol nMOFs possess excellent chemical and colloidal stability in physiological conditions. The release of encapsulated Zol from the nMOFs occurs in the mid-endosomes during nMOF endocytosis. In vitro toxicity studies demonstrated that Fol-targeted CaZol nMOFs are more efficient than small molecule Zol in inhibiting cell proliferation and inducing apoptosis in FR-overexpressing H460 non-small cell lung and PC3 prostate cancer cells. Our findings were further validated in vivo using mouse xenograft models of H460 and PC3. We demonstrated that Fol-targeted CaZol nMOFs are effective anticancer agents and increase the direct antitumor activity of Zol by 80-85% in vivo through inhibition of tumor neovasculature, and inhibiting cell proliferation and inducing apoptosis.

  3. Therapeutic effect of intratumoral injection of 188Re labeled stannic sulfur suspension in liver cancer. A comparative study with chemical agents in nude mice

    International Nuclear Information System (INIS)

    Objectives: Hepatoma is a common disease in some countries. The intervention therapy was used often for non-resectable tumor. The aim of our study was to compare the therapeutic effect of 188Re labeled stannic sulfur suspension to ethanol, acetic acid and the mixture of mitomycin and lipiodol for hepatoma in an animal model by intermittently injection. Methods: Forty-nine nude mice bearing hepatic cell carcinoma were divided into six groups. Group 1 (n=14) was intratumoral y injected with 0.1 ml saline. There were 5 experimental groups (group 2 to 6). Each group consisted of 7 mice. The mice in group 2 was intratumoral y injected with 18.5 MBq/0.1 ml 188Re labeled stannic sulfur suspension each, the mice in group 3 was injected intratumorally with 9.25 MBq/0.1 ml 188Re labeled stannic sulfur suspension each, group 4 was injected intratumorally with 0.1 ml ethanol, the mice in group 5 was injected with 0.1 ml 30% acetic acid and group 6 was injected intratumorally with 30 μg mitomycin in 0.1 ml lipiodol respectively. The mice were sacrificed 7 days post injection and the specimen were collected for pathological analysis. Results: The average tumor weight were 1.75±0.29 g (mean±S.D.), 0.26±0.03 g, 0.44±0.17 g, 1.38±0.25 g, 0.91±0.28 g, 1.38±0.28 g for group 1 to 6 respectively. Tumors in all experimental groups were significantly smaller than group 1 (control group, P88Re labeled stannic sulfur suspension injection had the smallest tumor weight among all the experimental groups (P188Re labeled stannic sulfur suspension shows better therapeutic effect. (authors)

  4. MCM-41 mesoporous silica nanoparticles functionalized with aptamer and radiolabelled with {sup 90}Y and {sup 159}Gd as a potential therapeutic agent against colorectal cancer; Nanoparticulas de silica mesoporosa MCM-41 funcionalizadas com aptamero e radiomarcadas com {sup 90}Y e {sup 159}Gd como um potencial agente terapeutico contra cancer colorretal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carolina de Aguiar

    2014-06-01

    Colorectal cancer (CRC) is a malignancy that affects large intestine and rectum, and it is the most common malignancy of the gastrointestinal tract, the third most commonly diagnosed type of cancer in the world and the second leading cause of cancer-related death in the United States. Nowadays, available therapeutic procedures for this type of cancer are limited and ineffective. Conventional radiotherapy is not an often used approach in the treatment of CRC due to the fact that peristaltic movements hamper the targeting of ionizing radiation and this type of treatment is used as adjuvant and palliative to control symptoms. Therefore, surgical intervention is the primary therapeutic choice against this disease. Researches based on the combination of radioisotopes and nanostructured carriers systems have demonstrated significant results in improving the selectivity action as well as reducing the radiation dose into healthy tissues. MCM-41 mesoporous silica nanoparticles have unique characteristics such as high surface area and well-defined pore diameters making these nanoparticles an ideal candidate of therapeutic agent carrier. Thus, the objective of this work is to synthesize and characterize MCM-41 mesoporous silica nanoparticles conjugated with yttrium-90 and gadolinium-159 and evaluate this system as a potential therapeutic agent. The nanoparticles were synthesized via sol-gel method. The sample was characterized using FTIR, SAXS, PCS, Zeta Potential analysis, Thermal analysis, CHN elemental analysis, nitrogen adsorption, scanning and transmission electron microscopy. The ability to incorporate Y{sup +3} and Gd{sup +3} ion was determined in vitro using different ratios (1:1, 1:3, 1:5 v/v) of YCL{sub 3} and Gd{sub 2}O{sub 3} and silica nanoparticles dispersed in saline, pH 7.4. The non-incorporated Y{sup +3} and Gd{sup +3} ions were removed by ultracentrifugation procedure and the concentration of ions in the supernatant was determined by ICP-AES. Cell viability

  5. Inhalable Particles for "Pincer Therapeutics" Targeting Nitazoxanide as Bactericidal and Host-Directed Agent to Macrophages in a Mouse Model of Tuberculosis.

    Science.gov (United States)

    Gupta, Anuradha; Meena, Jairam; Sharma, Deepak; Gupta, Pushpa; Gupta, Umesh Dutta; Kumar, Sadan; Sharma, Sharad; Panda, Amulya K; Misra, Amit

    2016-09-01

    Nitazoxanide (NTZ) has moderate mycobactericidal activity and is also an inducer of autophagy in mammalian cells. High-payload (40-50% w/w) inhalable particles containing NTZ alone or in combination with antituberculosis (TB) agents isoniazid (INH) and rifabutin (RFB) were prepared with high incorporation efficiency of 92%. In vitro drug release was corrected for drug degradation during the course of study and revealed first-order controlled release. Particles were efficiently taken up in vitro by macrophages and maintained intracellular drug concentrations at one order of magnitude higher than NTZ in solution for 6 h. Dose-dependent killing of Mtb and restoration of lung and spleen architecture were observed in experimentally infected mice treated with inhalations containing NTZ. Adjunct NTZ with INH and RFB cleared culturable bacteria from the lung and spleen and markedly healed tissue architecture. NTZ can be used in combination with INH-RFB to kill the pathogen and heal the host. PMID:27463245

  6. Climatic Droplet Keratopathy in Argentina: Involvement of Environmental Agents in Its Genesis Which Would Open the Prospect for New Therapeutic Interventions

    Directory of Open Access Journals (Sweden)

    María Fernanda Suárez

    2015-01-01

    Full Text Available Climatic droplet keratopathy (CDK is a degenerative corneal disease of unknown etiology. We described CDK for the first time in Latin America in the Argentinean Patagonia (El Cuy. A deeper knowledge of CDK pathogenic mechanisms will provide new therapeutic strategies. For that reason we investigated the prevalence of CDK in El Cuy and its existence in other 3 provinces with similar climate. Patients eyes were examined, habits throughout lives were inquired about, and serum ascorbate (sAA was determined. All individuals work outdoors for most of the day. All regions had normal O3 levels. Individuals from regions 1, 2, and 3 had very low consumption of vegetables/fruits and low sAA levels. Conversely, region 4 individuals had balanced diet and higher sAA concentrations. CDK was only found in region 3 where individuals had partial deficiency of sAA and did not use eye protection. No CDK was found in regions 1 and 2 where individuals had similar work activities and dietary habits to those in region 3 but wear eye protection. No disease was found in region 4 where individuals work outdoors, have balanced diet, and use eye protection. To summarize, the CDK existence was related not only to climate but also to the dietary habits and lack of protection from sunlight.

  7. 系统性红斑狼疮靶向治疗药物研究进展%Development of targeted therapeutic agents for systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    石平荣

    2013-01-01

    近十年来,随着免疫及分子生物学的发展,针对SLE免疫病理机制或相关靶点的生物靶向治疗药物取得了重大进展,以贝利单抗为标志的生物靶向治疗药物为SLE的治疗开辟了新的途径.目前有近20种SLE靶向治疗药物在进行临床前期或临床研究,根据其作用靶位的不同主要分为以下7类:B细胞特异性靶点药物、T细胞供刺激分子特异性靶点药物、细胞因子抑制剂、天然免疫靶位、耐受原、细胞表面受体抑制剂以及单核细胞趋化蛋白-1/单核细胞趋化因子CC配体2抑制剂、N-乙酰半胱氨酸等其他靶点药物.%With the development of immunology and molecular-biology,great advances have been made in biological therapies targeted at the immunopathological mechanisms or directed against some targets in systemic lupus erythematosus (SLE) in the past decade.These biological agents,with belimumab as a representative,have offered a new approach to the treatment of SLE.At present,there are nearly 20 targeteddrugs for SLE that undergo preclinical research or clinical trials.According to the difference in action targets,they are mainly divided into seven categories:B-cell-targeted drugs,T-cell/costimulatory molecule-targeteddrugs,cytokine inhibitors,innate immunity-targeted drugs,tolerogens,inhibitors of cell surface receptors,and other targeted agents including monocyte chemoattractant protein 1/monocyte chemoattractant CC chemokineligand 2 inhibitors,N-acetyl cysteine,etc.

  8. Terlipressina como novo recurso terapêutico no choque séptico Terlipressin as a new therapeutic agent in septic shock

    Directory of Open Access Journals (Sweden)

    Valter Nilton Felix

    2006-06-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A terlipressina tem sido inserida em protocolos de suporte hemodinâmico da sepse, como recurso em casos de choque refratário, o que motiva análise crítica a respeito do assunto. CONTEÚDO: Foram revistas para a análise terapias hemodinâmicas com objetivos finais bem delineados e novas recomendações para reanimação volêmica, uso de vasopressores e agentes inotrópicos em adultos e crianças sépticos. CONCLUSÕES: A terlipressina tem sido considerada nova alternativa nos cuidados intensivos da sepse, embora ainda controversa.BACKGROUND AND OBJECTIVES: The hemodynamic support of sepsis is now formulated trying to insert terlipressin as salvage drug in catecholamine resistant shock, justifying a broad critical analysis. CONTENTS: The analysis included hemodynamic therapies with defined specific goals and new recommendations for fluid resuscitation, vasopressor therapy, and inotropic therapy of septic in adult and pediatric patients. CONCLUSIONS: Terlipressin appears as a new but controversial alternative for vasopressor therapy in sepsis.

  9. 酒精依赖综合征治疗药物的研究进展%Research progress on therapeutic agents for alcohol dependence syndrome

    Institute of Scientific and Technical Information of China (English)

    魏守鹏; 梁建辉

    2014-01-01

    Alcohol is widely abused in contemporary social life, which has become a serious medical and social problem because it hurts human health and endangers public safety. Recent re-search has developed several active substances that can effective-ly improve or treat this syndrome via affecting the mesolimbic do-pamine nervous pathway to dampen rewarding effectiveness in-duced by ethanol. This paper reviews the progress in near-term studies of alcoholism-intervening agents, aiming at providing ref-erences for related mechanism exploration and drug development.%当今社会生活中酒精滥用现象普遍存在,已成为危害人类健康与公共安全的医学和社会难题。目前研发的多种活性物质能够影响中脑边缘多巴胺神经通路以降低酒精引起的奖赏效应,从而有效改善或治疗酒精依赖综合征。该文综述了近期酒精依赖干预药物的研究进展,旨在为相关机制研究和药物开发提供参考。

  10. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies.

    Science.gov (United States)

    Kovalevich, Jane; Cornec, Anne-Sophie; Yao, Yuemang; James, Michael; Crowe, Alexander; Lee, Virginia M-Y; Trojanowski, John Q; Smith, Amos B; Ballatore, Carlo; Brunden, Kurt R

    2016-05-01

    The microtubule (MT)-stabilizing protein tau disengages from MTs and forms intracellular inclusions known as neurofibrillary tangles in Alzheimer's disease and related tauopathies. Reduced tau binding to MTs in tauopathies may contribute to neuronal dysfunction through decreased MT stabilization and disrupted axonal transport. Thus, the introduction of brain-penetrant MT-stabilizing compounds might normalize MT dynamics and axonal deficits in these disorders. We previously described a number of phenylpyrimidines and triazolopyrimidines (TPDs) that induce tubulin post-translational modifications indicative of MT stabilization. We now further characterize the biologic properties of these small molecules, and our results reveal that these compounds can be divided into two general classes based on the cellular response they evoke. One group composed of the phenylpyrimidines and several TPD examples showed a bell-shaped concentration-response effect on markers of MT stabilization in cellular assays. Moreover, these compounds induced proteasome-dependent degradation of α- and β-tubulin and caused altered MT morphology in both dividing cells and neuron cultures. In contrast, a second group comprising a subset of TPD molecules (TPD+) increased markers of stable MTs in a concentration-dependent manner in dividing cells and in neurons without affecting total tubulin levels or disrupting MT architecture. Moreover, an example TPD+ compound was shown to increase MTs in a neuron culture model with induced tau hyperphosphorylation and associated MT deficits. Several TPD+ compounds were shown to be both brain penetrant and orally bioavailable, and a TPD+ example increased MT stabilization in the mouse brain, making these compounds potential candidate therapeutics for neurodegenerative tauopathies such as Alzheimer's disease. PMID:26980057

  11. Interleukin-1 and cancer progression: the emerging role of interleukin-1 receptor antagonist as a novel therapeutic agent in cancer treatment

    Directory of Open Access Journals (Sweden)

    Varghese Sheelu

    2006-11-01

    Full Text Available Abstract The tumor microenvironment consists of tumor, immune, stromal, and inflammatory cells which produce cytokines, growth factors, and adhesion molecules that promote tumor progression and metastasis. Of particular interest in this setting is interleukin-1 (IL-1, a pleiotropic cytokine with numerous roles in both physiological and pathological states. It is known to be up regulated in many tumor types and has been implicated as a factor in tumor progression via the expression of metastatic and angiogenic genes and growth factors. A number of studies have reported that high IL-1 concentrations within the tumor microenvironment are associated with a more virulent tumor phenotype. Solid tumors in which IL-1 has been shown to be up regulated include breast, colon, lung, head and neck cancers, and melanomas, and patients with IL-1 producing tumors have generally bad prognoses. The exact mechanisms by which IL-1 promotes tumor growth remain unclear, though the protein is believed to act via induction of pro-metastatic genes such as matrix metalloproteinases and through the stimulation of adjacent cells to produce angiogenic proteins and growth factors such as VEGF, IL-8, IL-6, TNFα, and TGFβ. The IL-1 receptor antagonist (IL-1ra is a naturally occurring inhibitor to IL-1 and acts by binding to the IL-1 receptor without activating it. The protein has been shown to decrease tumor growth, angiogenesis, and metastases in murine xenograft models. Our focus in this review is to summarize the known data on the role of IL-1 in tumor progression and metastasis and the use of IL-1 inhibition as a novel therapeutic approach in the treatment of solid organ malignancies.

  12. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  13. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag+ to Ag0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of AgNPs

  14. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    International Nuclear Information System (INIS)

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  15. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  16. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased the numbers of apoptotic cells in vivo, thus inhibiting

  17. Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    Novel approaches are needed for breast cancer patients in whom standard therapy is not effective. 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG) was evaluated as a potential radiomolecular therapy agent in breast cancer animal models and, retrospectively, in patients with metastatic breast cancer. Polyoma middle T antigen (PyMT) and mouse mammary tumor virus-NeuT transgenic mice with tumors 0.5–1 cm in diameter were imaged with 18F-FDG, and tumor to liver ratios (TLRs) were calculated. The radiotoxicity of 18F-FDG administration was determined in healthy mice. PyMT mice with small (0.15–0.17 cm) and large (more than 1 cm) tumors were treated with 2–4 mCi of 18F-FDG, and control C3H/B6 mice with 3 mCi of 18F-FDG. At 10 days after treatment the tumors and control mammary glands were analyzed for the presence of apoptotic and necrotic cells. Five patients with breast cancer and metastatic disease were evaluated and standardized uptake values (SUVs) in tumors, maximum tolerated dose, and the doses to the tumor were calculated. Doses up to 5 mCi proved to be non-radiotoxic to normal organs. The 18F-FDG uptake in mouse tumors showed an average TLR of 1.6. The treatment of mice resulted in apoptotic cell death in the small tumors. Cell death through the necrotic pathway was seen in large tumors, and was accompanied by tumor fragmentation and infiltration with leukocytes. Normal mammary tissues were not damaged. A human 18F-FDG dose delivering 200 rad to the red marrow (less than 5% damage) was calculated to be 4.76 Ci for a 70 kg woman, and the dose to the tumors was calculated to be 220, 1100 and 2200 rad for SUVs of 1, 5 and 10, respectively. We have shown that positrons delivered by 18F-FDG to mammary tumors have a tumoricidal effect on cancer cells. The study of breast cancer patients suggests that the tumor and normal organ dosimetry of 18F-FDG makes it suitable for therapy of this malignancy

  18. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Luo Qingqiong

    2012-11-01

    Full Text Available Abstract Background Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. Methods OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Results Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased

  19. PENETRATION ENHANCEMENT OF MEDICINAL AGENTS

    OpenAIRE

    Sharma Ganesh N.; Sanadya Jyotsana; Kaushik Avinash; Dwivedi Abha

    2012-01-01

    Many current therapeutic agents like antibiotics, ionizable and peptide drugs are impermeable or do not possess the requisite physicochemical properties for efficient transport through outer tissue barrier to attain therapeutic blood level. For this reason the delivery of such drugs through barriers is currently one of the major interests in pharmaceutical research. Penetration enhancers or promoters are agents that have no therapeutic properties of their own but can transport the sorption of...

  20. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  1. Research progress on target therapeutic agents of HER-2 extracellular ligand-binding domain in breast cancer%乳腺癌HER-2胞外配体结合区靶点治疗的研究进展*

    Institute of Scientific and Technical Information of China (English)

    钟锦绣; 李亚梅(综述); 关晏星(审校)

    2013-01-01

    The target therapeutic agents of HER-2 extracellular ligand-binding domain have become the core of breast cancer research. A small peptide molecule and an anti-HER2 extracellular domain monoclonal antibody conjugated with protein toxins, radioisotopes, and chemotherapeutic drugs (immunoconjugate) can improve efficacy and reduce systemic toxicity. Vaccines based on HER-2 extracellular region should protect patients from HER-2-overexpressing breast cancer growth. In this review, studies on targeted-block therapies of the HER-2 extracellular ligand-binding domain in breast cancer were discussed to provide references for clinical applications.%针对乳腺癌HER-2受体胞外结合区的靶点治疗成为当今研究的热点。小分子多肽、HER-2胞外结合区的单抗药物及其与蛋白毒素、放射性核素,化疗药物的偶联物即免疫偶联物既能增强药物的有效性,又可减少对正常组织的毒害。HER-2胞外区肽疫苗可有效预防HER-2高表达乳腺癌的生长。本文将对乳腺癌HER-2胞外区靶向阻断治疗的研究进行综述,为相应的临床应用提供参考。

  2. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells--The potential of JNX1001 as a therapeutic agent.

    Science.gov (United States)

    Kim, Helena K; Mendonça, Karina M; Howson, Patrick A; Brotchie, Jonathan M; Andreazza, Ana C

    2015-10-01

    Mitochondrial complex I, which is the first member of the electron transport chain responsible for producing ATP, can produce reactive oxygen species and oxidative stress when it becomes dysfunctional. Complex I dysfunction and oxidative stress are strongly implicated in bipolar disorder (BD), a debilitating psychiatric disease, as is decreased levels of brain derived neurotrophic factor (BDNF) found in patients with BD, which is related to complex I activity. JNX1001, a clinical trial ready brain penetrant sapogenin, increases BDNF levels in animal models. Hence, we aimed to examine if JNX1001 can prevent complex I dysfunction-induced alterations produced by rotenone treatment in human neuroblastoma cells (SH-SY5Y). Complex I dysfunction decreased cell viability and increased protein carbonylation and nitration, confirming previous findings. Complex I dysfunction also decreased intracellular and extracellular BDNF levels. JNX1001 pre-treatment prevented complex I dysfunction-induced protein carbonylation and nitration and improved cell viability at concentrations of 30 nM and 300 nM, but more robustly at 300 nM. JNX1001 was also able to prevent decreased intracellular and extracellular BDNF levels, where it produced a ten-fold increase in intracellular BDNF levels at a concentration of 300 nM. While further studies are required to examine the neuroprotective ability of JNX1001 against alterations produced by complex I defect in more complex systems, such as in animal models, the findings of this study demonstrate the potential of JNX1001 to be used as a therapeutic agent to protect against complex I dysfunction-induced alterations that may be highly relevant to BD. PMID:26164791

  3. Multistage vector (MSV) therapeutics.

    Science.gov (United States)

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  4. Bone-seeking therapeutic radiopharmaceuticals

    Directory of Open Access Journals (Sweden)

    Srivastava Suresh C.

    2002-01-01

    Full Text Available Bone-seeking therapeutic radiopharmaceuticals are utilized on the basis of the radionuclide?s particulate emissions (primarily low to intermediate beta emission. The requirements therefore are different from those of bone imaging agents that consist mainly of short-lived single photon emitters. Lately, the therapeutic bone seeking radiopharmaceuticals have attained increasing importance due to their potential role in alleviating pain from osseous metastases in cancer patients, for the treatment of joint pain resulting from inflamed synovium (radiosynoviorthesis, or radiosynovectomy, or from various other forms of arthritic disease. There is, however, a paucity of published data on the bio-pharmacokinetics of these agents when used following intravenous administration for bone pain palliation. This paper will briefly review and summarize the presently available chemical and biopharmacokinetic information on the various clinically approved as well as experimental bone-localizing therapeutic radiopharmaceuticals, and make projections on their clinical application for the treatment of primary/metastatic cancer in bone.

  5. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  6. Therapeutic alliance.

    Science.gov (United States)

    Fox, Valerie

    2002-01-01

    I have been very fortunate in my journey of mental illness. I respond well to medication, but I don't think that is the complete answer to living successfully with serious, persistent mental illness. I believe a person's environment is also of utmost importance, enabling the person suffering with mental illness to continually grow in life. I found early in my struggle with mental illness a psychiatrist with whom I have always had a very good rapport. Until recently I didn't know that what I have with this psychiatrist is professionally known as a therapeutic alliance. Over the years, when I need someone to talk over anything that is troubling to me, I seek my psychiatrist. A therapeutic alliance is non-judgmental; it is nourishing; and finally it is a relationship of complete trust. Perhaps persons reading this article who have never experienced this alliance will seek it. I believe it can make an insecure person secure; a frightened person less frightened; and allow a person to continue the journey of mental health with a sense of belief in oneself. PMID:12433224

  7. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  8. 18F-FDG对于乳腺癌模型小鼠治疗作用的研究%Therapeutic effect of positron emission tomography agent 18F-FDG on MCF-7 in nude mice

    Institute of Scientific and Technical Information of China (English)

    许秦风; 郭万华; 李爱梅; 林夏雯; 贾支俊

    2012-01-01

    To study the therapeutic potential of PET agent [ 18F] labeled 2 - deoxy - 2 - fluoro - D - glucose (18F - FDG) to MCF - 7 in nude mice and its molecular mechanism. [ Methods] The breast cancer cell line MCF -7 was cultured with 18F - FDG in different doses (0 -7.4 × 106 Bq/mL). The y - ray high energy counting machine was used to detect uptake of -γ - ray by MCF - 7 cells. The MCF - 7 cells were inoculated in nude mice. The tumor - bearing mice were treated with normal saline, 3.7 MBq, 11. 1 MBq and 37 MBq 18F-FDG, respectively. Dynamic changes of xenogafts volume were calculated. Then these mice were imaged by microPET with I8F - FDG. Tumors were analyzed for expression of cleaved CASPASE - 3 and BCL - 2 by western blot. [ Results] In vitro uptake of l8 F - FDG by MCF - 7 cells was linear dose dependence. All treatment groups showed significant reduction of tumor growth rate compared with the control group ( P 0. 05 ) , but the expression levels of BCL-2 in the two groups were both lower than that in 3.7 MBq group(P <0. 05) , and the expression levels of cleaved CASPASE - 3 were higher than that in 3. 7 MBq group (P < 0.05 ). [ Conclusions ] The study suggested that 18 F - FDG had a therapeutic effect in breast cancer by decreasing of BCL - 2 expression and increasing of cleaved CASPASE - 3 expression.%[目的]探讨18氟-氟代脱氧葡萄糖(18F-FDG)诱导乳腺癌细胞的凋亡作用及分子机制.[方法]使用0~7.4 × 106 Bq/mL18F-FDG作用于体外培养乳腺癌细胞MCF-7,应用γ高能计数仪测定细胞摄取射线量;接种MCF-7细胞至24只雌性裸鼠腋下构建小鼠乳腺癌模型,成瘤后分别由尾静脉注射生理盐水、3.7 MBq、11.1 MBq和37 MBq18F-FDG,观察肿瘤生长情况,Micro-animal PET进行瘤体显像;Western Blot方法检测肿瘤瘤体凋亡相关蛋白BCL-2及cleaved CASPASE-3表达情况.[结果]体外MCF-7细胞摄取实验表明,在一定剂量范围内,随着射线剂量的增加,对数生长期的MCF-7细胞

  9. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  10. Therapeutic apheresis in autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Bambauer R

    2013-11-01

    Full Text Available Rolf Bambauer,1 Reinhard Latza,2 Carolin Bambauer,3 Daniel Burgard,4 Ralf Schiel5 1Institute for Blood Purification, Homburg, 2Laboratorium of Medicine, St Ingbert, 3Main Hospital Darmstadt, Darmstadt, 4Herz Zentrum, Cardiology, Völklingen, 5Inselklinik Heringsdorf GmbH, Seeheilbad Heringsdorf, Germany Abstract: Systemic autoimmune diseases based on an immune pathogenesis produce autoantibodies and circulating immune complexes, which cause inflammation in the tissues of various organs. In most cases, these diseases have a bad prognosis without treatment. Therapeutic apheresis in combination with immunosuppressive therapies has led to a steady increase in survival rates over the last 35 years. Here we provide an overview of the most important pathogenic aspects indicating that therapeutic apheresis can be a supportive therapy in some systemic autoimmune diseases, such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, and inflammatory eye disease. With the introduction of novel and effective biologic agents, therapeutic apheresis is indicated only in severe cases, such as in rapid progression despite immunosuppressive therapy and/or biologic agents, and in patients with renal involvement, acute generalized vasculitis, thrombocytopenia, leucopenia, pulmonary, cardiac, or cerebral involvement. In mild forms of autoimmune disease, treatment with immunosuppressive therapies and/or biologic agents seems to be sufficient. The prognosis of autoimmune diseases with varying organ manifestations has improved considerably in recent years, due in part to very aggressive therapy schemes. Keywords: therapeutic apheresis, autoimmune diseases, systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, inflammatory eye disease

  11. Relational agents in clinical psychiatry.

    Science.gov (United States)

    Bickmore, Timothy; Gruber, Amanda

    2010-01-01

    Relational agents are computational artifacts, such as animated, screen-based characters or social robots, that are designed to establish a sense of rapport, trust, and even therapeutic alliance with patients, using ideal therapeutic relationships between human counselors and patients as role models. We describe the development and evaluation of several such agents designed for health counseling and behavioral-change interventions, in which a therapeutic alliance is established with patients in order to enhance the efficacy of the intervention. We also discuss the promise of using such agents as adjuncts to clinical psychiatry, a range of possible applications, and some of the challenges and ethical issues in developing and fielding them in psychiatric interventions.

  12. Antibiotic Agents

    Science.gov (United States)

    ... either as public health or as non-public health antimicrobial agents. What is the difference between bacteriostats, sanitizers, disinfectants ... bacteria, however, there is considerable controversy surrounding their health benefits. The ... producing agents (Table of Antibacterials) have been used for many ...

  13. Natural products as antimitotic agents.

    Science.gov (United States)

    Dall'Acqua, Stefano

    2014-01-01

    Natural products still play an important role in the medicinal chemistry, especially in some therapeutic areas. As example more than 60% of currently-used anticancer agents are derives from natural sources including plants, marine organisms or micro-organism. Thus natural products (NP) are an high-impact source of new "lead compounds" or new potential therapeutic agents despite the large development of biotechnology and combinatorial chemistry in the drug discovery and development. Many examples of anticancer drugs as paclitaxel, combretastatin, bryostatin and discodermolide have shown the importance of NP in the anticancer chemotherapy through many years. Many organisms have been studied as sources of drugs namely plants, micro-organisms and marine organisms and the obtained NP can be considered a group of "privileged chemical structures" evolved in nature to interact with other organisms. For this reason NP are a good starting points for pharmaceutical research and also for library design. Tubulin and microtubules are one of the most studied targets for the search of anticancer compounds. Microtubule targeting agents (MTA) also named antimitotic agents are compounds that are able to perturb mitosis but are also able to arrest cell growing during interphase. The anticancer drugs, taxanes and vinca alkaloids have established tubulin as important target in cancer therapy. More recently the vascular disrupting agents (VDA) combretastatin analogues were studied for their antimitotics properties. This review will consider the anti mitotic NP and their potential impact in the development of new therapeutic agents.

  14. Therapeutic apheresis in autoimmune diseases

    Science.gov (United States)

    Bambauer, Rolf; Latza, Reinhard; Bambauer, Carolin; Burgard, Daniel; Schiel, Ralf

    2013-01-01

    Systemic autoimmune diseases based on an immune pathogenesis produce autoantibodies and circulating immune complexes, which cause inflammation in the tissues of various organs. In most cases, these diseases have a bad prognosis without treatment. Therapeutic apheresis in combination with immunosuppressive therapies has led to a steady increase in survival rates over the last 35 years. Here we provide an overview of the most important pathogenic aspects indicating that therapeutic apheresis can be a supportive therapy in some systemic autoimmune diseases, such as systemic lupus erythematosus, antiphospholipid syndrome, rheumatoid arthritis, and inflammatory eye disease. With the introduction of novel and effective biologic agents, therapeutic apheresis is indicated only in severe cases, such as in rapid progression despite immunosuppressive therapy and/or biologic agents, and in patients with renal involvement, acute generalized vasculitis, thrombocytopenia, leucopenia, pulmonary, cardiac, or cerebral involvement. In mild forms of autoimmune disease, treatment with immunosuppressive therapies and/or biologic agents seems to be sufficient. The prognosis of autoimmune diseases with varying organ manifestations has improved considerably in recent years, due in part to very aggressive therapy schemes.

  15. Engineering therapeutic protein disaggregases

    Science.gov (United States)

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  16. The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project: An open-label pragmatic randomised control trial comparing the efficacy of differing therapeutic agents for primary care detoxification from either street heroin or methadone [ISRCTN07752728

    Directory of Open Access Journals (Sweden)

    Sheard Laura

    2004-04-01

    Full Text Available Abstract Background Heroin is a synthetic opioid with an extensive illicit market leading to large numbers of people becoming addicted. Heroin users often present to community treatment services requesting detoxification and in the UK various agents are used to control symptoms of withdrawal. Dissatisfaction with methadone detoxification 8 has lead to the use of clonidine, lofexidine, buprenorphine and dihydrocodeine; however, there remains limited evaluative research. In Leeds, a city of 700,000 people in the North of England, dihydrocodeine is the detoxification agent of choice. Sublingual buprenorphine, however, is being introduced. The comparative value of these two drugs for helping people successfully and comfortably withdraw from heroin has never been compared in a randomised trial. Additionally, there is a paucity of research evaluating interventions among drug users in the primary care setting. This study seeks to address this by randomising drug users presenting in primary care to receive either dihydrocodeine or buprenorphine. Methods/design The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project is a pragmatic randomised trial which will compare the open use of buprenorphine with dihydrocodeine for illicit opiate detoxification, in the UK primary care setting. The LEEDS project will involve consenting adults and will be run in specialist general practice surgeries throughout Leeds. The primary outcome will be the results of a urine opiate screening at the end of the detoxification regimen. Adverse effects and limited data to three and six months will be acquired.

  17. Aptamers as Therapeutics in Cardiovascular Diseases

    OpenAIRE

    Wang, Pu; Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo; Fang, Dianchun

    2011-01-01

    With many advantages over other therapeutic agents such as monoclonal antibodies, aptamers have recently emerged as a novel and powerful class of ligands with excellent potential for diagnostic and therapeutic applications. Typically generated through Systematic Evolution of Ligands by EXponential enrichment (SELEX), aptamers have been selected against a wide range of targets such as proteins, phospholipids, sugars, nucleic acids, as well as whole cells. DNA/RNA aptamers are single-stranded D...

  18. Synergistic drug combinations improve therapeutic selectivity

    OpenAIRE

    Lehàr, Joseph; Krueger, Andrew S.; Avery, William; Heilbut, Adrian M; Johansen, Lisa M.; Price, E. Roydon; Rickles, Richard J.; Short, Glenn F; Staunton, Jane E.; jin, xiaowei; Lee, Margaret S.; Zimmermann, Grant R; Borisy, Alexis A.

    2009-01-01

    Prevailing drug discovery approaches focus on compounds with molecular selectivity, inhibiting disease-relevant targets over others in vitro. However in vivo, many such agents are not therapeutically selective, either because of undesirable activity at effective doses or because the biological system responds to compensate. In theory, drug combinations should permit increased control of such complex biology, but there is a common concern that therapeutic synergy will generally be mirrored by ...

  19. The potential therapeutic targets for cervical cancer

    Directory of Open Access Journals (Sweden)

    L Priyanka Dwarampudi

    2013-01-01

    Full Text Available In case of invasive cervical carcinoma several molecular events were reported and these molecular events resulting in multiple genetic abnormalities. In order to control these tumors multiple molecular therapeutic targets are needed with different molecular mechanisms. Unfortunately, these molecular targets were in early stages of development. Because of less degree of success of conventional therapeutics for late stages of cervical cancer and lowering of prognosis of patients there is an increase in interest for the development of potential therapeutic targets for cervical cancer. This review article emphasizes the current molecular targeted agents; with special attention to estrogen receptors for human papilloma virus infected cervical cancer.

  20. Agent, autonomous

    OpenAIRE

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  1. 组蛋白去乙酰化酶抑制剂治疗多聚谷氨酰胺病的研究进展%Histone deacetylase inhibitors as therapeutic agents for polyglutamine disorders

    Institute of Scientific and Technical Information of China (English)

    江泓; 贾丹丹; 唐北沙

    2010-01-01

    During the past few years, gene expression studies have shown that the perturbation of transcription frequently results in neuronal dysfunction in polyglutamine (PolyQ) diseases such as Huntington's disease (HD). Histone deacetylases (HDACs) act as repressors of transcription through interaction with co-repressor complexes, leading to chromatin remodelling. Aberrant interaction between PolyQ proteins and regulators of transcription could be one mechanism by which transcriptional dysregulation occurs. Here, the authors discuss the possible mechanism of transcriptional dysfunction in PolyQ disease, including the effect of histone acetyltransferases (HATs) and HDACs on pathogenesis, and the potential therapeutic pathways through which histone deacetylase inhibitors (HDACIs) might act to correct the aberrant transcription observed in HD and other PolyQ diseases.%近年研究发现基因转录异常可导致亨廷顿病(Huntington's disease,HD)等多聚谷氨酰胺(polyglutamine,PolyQ)病中的神经元功能异常.组蛋白去乙酰化酶(histone deacetylases,HDACs)作为一种转录抑制因子,可与辅阻遏物复合体相互作用导致染色质重塑,最终抑制目的基因的转录.PolyQ蛋白与基因转录调控因子异常的相互作用可能是PolyQ病转录失调的原因之一.作者就PolyQ病转录失调的可能发生机制,尤其是组蛋白乙酰转移酶(histone acetyltransferases,HATs)和HDACs在其中所起的作用,以及组蛋白去乙酰化酶抑制剂(histone deacetylases inhibitors,HDACIs)的治疗潜能等方面予以综述.

  2. {sup 188}Re-HTDD-lipiodol solution as a new therapeutic agent for transhepatic arterial administration in liver cancer: a preclinical study using liver-cancer model in rabbit

    Energy Technology Data Exchange (ETDEWEB)

    Paeng, J. C.; Jeong, J. M.; Lee, Y. S. [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)] [and others

    2001-07-01

    {sup 188}Re-HTDD-lipiodol solution was developed and reported to be a new therapeutic material for transhepatic arterial embolization (TAE) of liver cancer. In this study we compared the tissue retention of {sup 188}Re-HTDD-lipiodol with that of {sup 188}Re-TDD-lipiodol using liver-cancer model in rabbit. Cancer cell line VX2 was inoculated into 7 rabbits and grown up to larger than 3 cm. TAE was performed with {sup 188}Re-TDD-lipiodol in 3 rabbits and with {sup 188}Re-HTDD-lipiodol in 4 rabbits. Conjugated planar scans were performed at 1, 2, 6, 24, 48 hours after TAE. From these images, the mean life of radioactivity retention in tumor was calculated, and the required dose for human application as also calculated from the mean life and MIRDOSE3 software. The mean lifes of radioactivity in liver were 10.2{+-}1.0 hr in TDD group and 17.6{+-}0.8 hr in HTDD group (p<0.001). The required dose for the tumor to be irradiated 50 Gy of radiation was calculated to be 18 mCi of {sup 188}Re-HTDD-lipiodol for 5.7 cm-sized tumor and 88 mCi for 9,7 cm-sized tumor. By the introduction of long chain alkyl group, {sup 188}Re-HTDD-lipiodol showed significantly better tumor retention than that of {sup 188}Re-TDD-lipiodol. And the required dose of radiation for human application was calculated to be 18 {approx} 88 mCi when using {sup 188}Re-HTDD-lipiodol.

  3. [Therapeutic use of cannabis derivatives].

    Science.gov (United States)

    Benyamina, Amine; Reynaud, Michel

    2014-02-01

    The therapeutic use of cannabis has generated a lot of interest in the past years, leading to a better understanding of its mechanisms of action. Countries like the United States and Canada have modified their laws in order to make cannabinoid use legal in the medical context. It's also the case in France now, where a recent decree was issued, authorizing the prescription of medication containing "therapeutic cannabis" (decree no. 2013-473, June 5, 2013). Cannabinoids such as dronabinol, Sativex and nabilone have been tested for the treatment of acute and chronic pain. These agents are most promising to relieve chronic pain associated with cancer, with human immunodeficiency virus infection and with multiple sclerosis. However, longer-term studies are required to determine potential long-term adverse effects and risks of misuse and addiction. PMID:24701869

  4. Impairment of the ubiquitin-proteasome pathway by methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate leads to a potent cytotoxic effect in tumor cells: a novel antiproliferative agent with a potential therapeutic implication.

    Science.gov (United States)

    Dogra, Nilambra; Mukhopadhyay, Tapas

    2012-08-31

    In recent years, there has been a great deal of interest in proteasome inhibitors as a novel class of anticancer drugs. We report that fenbendazole (FZ) (methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate) exhibits a potent growth-inhibitory activity against cancer cell lines but not normal cells. We show here, using fluorogenic substrates, that FZ treatment leads to the inhibition of proteasomal activity in the cells. Succinyl-Leu-Leu-Val-Tyr-methylcoumarinamide (MCA), benzyloxycarbonyl-Leu-Leu-Glu-7-amido-4-MCA, and t-butoxycarbonyl-Gln-Ala-Arg-7-amido-4-MCA fluorescent derivatives were used to assess chymotrypsin-like, post-glutamyl peptidyl-hydrolyzing, and trypsin-like protease activities, respectively. Non-small cell lung cancer cells transiently transfected with an expression plasmid encoding pd1EGFP and treated with FZ showed an accumulation of the green fluorescent protein in the cells due to an increase in its half-life. A number of apoptosis regulatory proteins that are normally degraded by the ubiquitin-proteasome pathway like cyclins, p53, and IκBα were found to be accumulated in FZ-treated cells. In addition, FZ induced distinct ER stress-associated genes like GRP78, GADD153, ATF3, IRE1α, and NOXA in these cells. Thus, treatment of human NSCLC cells with fenbendazole induced endoplasmic reticulum stress, reactive oxygen species production, decreased mitochondrial membrane potential, and cytochrome c release that eventually led to cancer cell death. This is the first report to demonstrate the inhibition of proteasome function and induction of endoplasmic reticulum stress/reactive oxygen species-dependent apoptosis in human lung cancer cell lines by fenbendazole, which may represent a new class of anticancer agents showing selective toxicity against cancer cells.

  5. Repositioning of Memantine as a Potential Novel Therapeutic Agent against Meningitic E. coli-Induced Pathogenicities through Disease-Associated Alpha7 Cholinergic Pathway and RNA Sequencing-Based Transcriptome Analysis of Host Inflammatory Responses.

    Directory of Open Access Journals (Sweden)

    Jing-Yi Yu

    Full Text Available Neonatal sepsis and meningitis (NSM remains a leading cause worldwide of mortality and morbidity in newborn infants despite the availability of antibiotics over the last several decades. E. coli is the most common gram-negative pathogen causing NSM. Our previous studies show that α7 nicotinic receptor (α7 nAChR, an essential regulator of inflammation, plays a detrimental role in the host defense against NSM. Despite notable successes, there still exists an unmet need for new effective therapeutic approaches to treat this disease. Using the in vitro/in vivo models of the blood-brain barrier (BBB and RNA-seq, we undertook a drug repositioning study to identify unknown antimicrobial activities for known drugs. We have demonstrated for the first time that memantine (MEM, a FDA-approved drug for treatment of Alzheimer's disease, could very efficiently block E. coli-caused bacteremia and meningitis in a mouse model of NSM in a manner dependent on α7 nAChR. MEM was able to synergistically enhance the antibacterial activity of ampicillin in HBMEC infected with E. coli K1 (E44 and in neonatal mice with E44-caused bacteremia and meningitis. Differential gene expression analysis of RNA-Seq data from mouse BMEC infected with E. coli K1 showed that several E44-increased inflammatory factors, including IL33, IL18rap, MMP10 and Irs1, were significantly reduced by MEM compared to the infected cells without drug treatment. MEM could also significantly up-regulate anti-inflammatory factors, including Tnfaip3, CISH, Ptgds and Zfp36. Most interestingly, these factors may positively and negatively contribute to regulation of NF-κB, which is a hallmark feature of bacterial meningitis. Furthermore, we have demonstrated that circulating BMEC (cBMEC are the potential novel biomarkers for NSM. MEM could significantly reduce E44-increased blood level of cBMEC in mice. Taken together, our data suggest that memantine can efficiently block host inflammatory responses to

  6. Emerging therapeutic options for asthma.

    Science.gov (United States)

    Colice, Gene L

    2011-04-01

    Asthma is characterized by eosinophilic airway inflammation and elevated serum immunoglobulin E (IgE) levels. Due to these pathologic features, the foundation of asthma treatment has historically been anti-inflammatory therapy with inhaled corticosteroids (ICSs). Numerous factors in addition to IgE and eosinophils, however, likely play important roles in mediating the airway inflammatory response characteristic of asthma. ICSs are effective therapy for some patients with persistent asthma, but clinical trials have shown that even increasing doses of ICSs under carefully controlled situations does not always result in acceptable asthma control. Consequently, other classes of medications, in addition to ICSs, are recommended in those patients with more severe asthma. The class of medication most commonly used in more severe asthma, along with ICSs, is long-acting inhaled beta2-agonists, but leukotriene modifying agents and anti-IgE monoclonal antibodies may also be used. Agents such as tiotropium, a long-acting inhaled anti-muscarinic agent, and those aimed at inhibiting cytokines, such as mepoluzimab, daclizumab, and etanercept, hold promise in the treatment of asthma. Other agents under investigation include phosphodiesterase type 4 inhibitors and oligonucleotides. Bronchial thermoplasty, a nonpharmacologic option, may also be beneficial in patients with poorly controlled asthma. As our understanding of the complex pathophysiology of asthma increases, it will enable the development of novel therapeutic approaches for patients who are not responding well to traditional treatments. Although more studies are necessary to ensure the efficacy and safety of both pharmacologic and nonpharmacologic approaches, there is future promise for therapeutic advances in severe, persistent asthma. PMID:21761958

  7. Behavior of platelets stained by 5,6-CF-encapsulated PEGylated liposomes after laser irradiation of vessel wall: an in-vivo model for studying site-selective delivery of diagnostic or therapeutic agents

    Science.gov (United States)

    Mordon, Serge R.; Begu, Sylvie; Buys, Bruno; Tourne-Peteilh, Corine; Devoisselle, Jean-Marie

    2001-05-01

    Vascular endothelium serves as an extensive interface between circulating blood and various tissues and organs of the body. As such, it offers an accessible target for blood-borne pharmacological and genetic manipulations that can mediate both local and systemic effects. Thus, targeting of liposomes to activated vascular endothelial cells may provide a strategy for site-selective delivery in the vascular system with broad therapeutic applicability. This study aimed to evaluate an intravital fluorescence imaging technique to visualize in-situ and in real-time the activation of platelets after staining by 5,6-CF- encapsulated PEGylated liposomes injected intravenously. The study was performed on skin by using a dorsal skin-fold chamber implanted in golden hamsters using intravital microscopy. The skin micro circulation was observed with an intravital microscope (using x25 and x40 magnification) fitted with a Xenon light source and an epi-fluorescence assembly. An ultra-high sensitivity video-camera mounted on the microscope projected the image onto a monitor, and the images were recorded for play-back analysis with a digital video cassette recorder. An inflammatory response was induced by an Argon laser emitting at 514.5nm. The 80micrometers laser beam was focused on a vessel and its position was controlled with the microscope imaging system, it was possible to see individual platelets flowing in blood vessels. As liposomes were labeled with a fluorescent probe which was hydrophilic (located in the aqueous phase), the fluorescence of platelets was due only to the uptake of liposomes. After laser irradiation, platelets activation at sites of vascular injury was obtained. Tethering, translocation of some platelets inside the irradiated zone were clearly seen. At last, detachment and extravasation of platelets were observed. A perivascular fluorescence confirmed that platelets migrated across the basal lamina into the dermal connective tissue. In conclusion, staining of

  8. Trading Agents

    CERN Document Server

    Wellman, Michael

    2011-01-01

    Automated trading in electronic markets is one of the most common and consequential applications of autonomous software agents. Design of effective trading strategies requires thorough understanding of how market mechanisms operate, and appreciation of strategic issues that commonly manifest in trading scenarios. Drawing on research in auction theory and artificial intelligence, this book presents core principles of strategic reasoning that apply to market situations. The author illustrates trading strategy choices through examples of concrete market environments, such as eBay, as well as abst

  9. Therapeutics in Huntington's Disease.

    Science.gov (United States)

    Killoran, Annie; Biglan, Kevin M

    2012-02-01

    OPINION STATEMENT: There is no specific treatment for Huntington's disease (HD). Its many symptoms of motor, psychiatric, and cognitive deterioration are managed with symptomatic relief, rehabilitation, and support. The only drug approved by the US Food and Drug Administration (FDA) for the treatment of HD is an antichoreic agent, tetrabenazine, but this drug is used sparingly because of uneasiness regarding its propensity to cause depression and suicidality in this population, which is already at risk for these complications. Neuroleptics are still first-line treatments for chorea accompanied by comorbid depression and/or behavioral or psychotic symptoms, as is often the case. Psychiatric features, which have a significant impact on a patient's professional and personal life, often become the major focus of management. In addition to neuroleptics, commonly used medications include antidepressants, mood stabilizers, anxiolytics, and psychostimulants. In contrast, few treatment options are available for cognitive impairment in HD; this remains an important and largely unmet therapeutic need. HD patients typically lack insight into their disease manifestations, failing to recognize their need for treatment, and possibly even arguing against it. Multipurpose medications are employed advantageously to simplify the medication regimen, so as to facilitate compliance and not overwhelm the patient. For example, haloperidol can be prescribed for a patient with chorea, agitation, and anorexia, rather than targeting each symptom with a different drug. This approach also limits the potential for adverse effects, which can be difficult to distinguish from the features of the disease itself. With HD's complexity, it is best managed with a multidisciplinary approach that includes a movement disorders specialist, a genetic counselor, a mental health professional, a physical therapist, and a social worker for support and coordination of services. As the disease progresses, there

  10. Therapeutic Tools in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Christopher J Hoimes

    2009-03-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer death in the United States and has a lower survival rate than other digestive tract tumors. It remains a therapeutic challenge with limited active agents. Honing our current understanding of markers of toxicity and response, and individualizing treatment with the prognostic and therapeutic tools available are important to make a worthy impact on a patient’s course. The authors summarize selected abstracts from the ASCO Gastrointestinal Cancers Symposium, San Francisco, CA, USA, January 15-17, 2009. The Symposium featured pancreatic cancer in 84 research abstracts, of which, seven are reviewed that focus on markers of toxicity: cytidine deaminase (Abstract #151 and haptogloin (Abstract #167 as markers of gemcitabine toxicity; markers of response: use of PET scan for prognosis (Abstract #157, and correlations with CA 19-9 to postchemo-radiation resectability (Abstract #215 and time to progression (Abstract #160; and individualized applications: characterizing the phenotypic similarities between a patient tumor and the direct xenograft (Abstract #154 and a report about the poor outcome of patients with ascites (Abstract #220. Validated clinical tools that can assist in managing patients through the narrow therapeutic window are needed.

  11. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  12. MORBIDITY AGENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Shrivastava Neelesh

    2011-09-01

    Full Text Available This paper discuss on clinical representation of morbid jealousy which often termed delusional jealousy or ‘Othello Syndrome’ is a psychiatric condition where a lover believes against all reason and their beloved is being sexually unfaithful. Patients will be preoccupied with their partner’s perceived lack of sexual fidelity and will often behave in an unacceptable or extreme way as they endeavor to prove their ideas. Misuse of any psychomotor is an important association cause morbidity jealousy agents, like CNS stimulants that release the catecholamine, particularly dopamine, from pre synaptic terminals substance should be treated as a priority. Where higher levels of violence are reported Sildenafil may be useful as a diagnostic as well as therapeutic test in such cases .Many studies have shown an association between high alcohol consumption and developing morbid jealousy. Amphetamine-induced psychosis has been extensively studied because of its close resemblance to schizophrenia.

  13. Newer Hemostatic Agents.

    Science.gov (United States)

    Franchini, Massimo; Favaloro, Emmanuel J; Lippi, Giuseppe

    2015-10-01

    The mainstay of treatment of inherited coagulation disorders is based on the infusion of the deficient clotting factor, when available. Significant advances have been made over the past two decades in the production and availability of factor replacement products. In spite of such progression, several issue are still unsolved, the most important being the need for frequent factor concentrate infusions and the development of inhibitory alloantibodies. To overcome these important limitations, several newer hemostatic agents with an extended half-life are at an advanced stage of clinical development. After a brief overview of hemostasis, this narrative review summarizes the current knowledge on the most promising novel products for hemostasis. The current status of gene therapy for hemophilia, the only therapeutic option to definitively cure this inherited bleeding disorder, is also concisely discussed. PMID:25893779

  14. Radioprotective Agents

    Directory of Open Access Journals (Sweden)

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  15. Oncolytic Viruses: Therapeutics With an Identity Crisis

    Directory of Open Access Journals (Sweden)

    Caroline J. Breitbach

    2016-07-01

    Full Text Available Oncolytic viruses (OV are replicating viral therapeutics for the treatment of cancer and have been in laboratory development for about twenty years. Recently, the FDA approved Imlygic, a herpes virus based therapeutic for the treatment of melanoma and thus OVs have entered a new era where they are a weapon in the armament of the oncologist. OVs are unique therapeutics with multiple mechanisms of therapeutic activity. The exact path for their development and eventual uptake by pharmaceutical companies is somewhat clouded by an uncertain identity. Are they vaccines, tumour lysing therapeutics, inducers of innate immunity, gene therapy vectors, anti-vascular agents or all of the above? Should they be developed as stand-alone loco-regional therapeutics, systemically delivered tumour hunters or immune modulators best tested as combination therapeutics? We summarize data here supporting the idea, depending upon the virus, that OVs can be any or all of these things. Pursuing a “one-size fits all” approach is counter-productive to their clinical development and instead as a field we should build on the strengths of individual virus platforms.

  16. Therapeutic potential of biosimilars in dermatology

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2015-01-01

    Full Text Available The introduction of biologic therapy has revolutionized the treatment of many chronic diseases, including several dermatological disorders. Biological agents promise to satisfy medical needs previously unmet by conventional medicines. Unfortunately, these agents are expensive and out of reach for the majority of patients who need them. Biosimilars are copies of the innovator biological agents and represent an important advance in the field of biological therapeutics. Although they are similar to the original biologic, differences in terms of structure, efficacy, safety and immunogenicity remain a concern. Thus, biosimilars cannot be regarded as bio-generics. Awareness of the key differences between a biosimilar and its reference biological agent is essential for optimal treatment and safety of patients. The increasing availability of biosimilars provides patients and doctors with less expensive alternatives and increases the accessibility of biologic therapy to needy patients. In this review, we discuss the concept of biosimilars, the need for appropriate regulatory pathways and their current status in dermatology.

  17. Lipid-lowering agents.

    Science.gov (United States)

    Ewang-Emukowhate, Mfon; Wierzbicki, Anthony S

    2013-09-01

    The role of lipid lowering in reducing the risk of mortality and morbidity from cardiovascular disease (CVD) is well established. Treatment particularly aimed at decreasing low-density lipoprotein cholesterol (LDL-C) is effective in reducing the risk of death from coronary heart disease and stroke. Statins form the cornerstone of treatment. However, in some individuals with a high risk of CVD who are unable to achieve their target LDL-C due to either intolerance or lack of efficacy, there is the need for alternative therapies. This review provides an overview of the different classes of currently available lipid-lowering medications including statins, fibrates, bile acid sequestrants (resins), and omega-3 fatty acids. Data are presented on their indications, pharmacology, and the relevant end point clinical trial data with these drugs. It also discusses the human trial data on some novel therapeutic agents that are being developed including those for homozygous familial hypercholesterolemia--the antisense oligonucleotide mipomersen and the microsomal transfer protein inhibitor lomitapide. Data are presented on phase II and III trials on agents with potentially wider applications, cholesterol ester transfer protein inhibitors and proprotein convertase subtilisin kexin 9 inhibitors. The data on a licensed gene therapy for lipoprotein lipase deficiency are also presented.

  18. New agents: great expectations not realized.

    Science.gov (United States)

    Lancet, Jeffrey E

    2013-09-01

    A number of new agents in acute myeloid leukemia (AML) have held much promise in recent years, but most have failed to change the therapeutic landscape. Indeed, with the exception of gemtuzumab ozogamicin (which was subsequently voluntarily withdrawn from the commercial market), no new agent has been approved for acute myeloid leukemia (AML) beyond the 7 + 3 regimen, which was has been in use for over 40 years. This review touches upon the potential reasons for these failures and explores the newer therapeutic approaches being pursued in AML.

  19. An agent framework for dynamic agent retraining: Agent academy

    OpenAIRE

    Mitkas, P.; A. Symeonidis; Kechagias, D.; Athanasiadis, I.N.; Laleci, G.; KURT, G.; Kabak, Y.; Acar, A.; Dogac, A.

    2004-01-01

    Agent Academy (AA) aims to develop a multi-agent society that can train new agents for specific or general tasks, while constantly retraining existing agents in a recursive mode. The system is based on collecting information both from the environment and the behaviors of the acting agents and their related successes/failures to generate a body of data, stored in the Agent Use Repository, which is mined by the Data Miner module, in order to generate useful knowledge about the application domai...

  20. Therapeutic effects of sofalcone on experimental gastritis.

    Science.gov (United States)

    Kishimoto, S; Okamoto, K; Kambara, A; Kajiyama, G; Miyoshi, A; Suwa, T

    1987-08-01

    A study was made on the therapeutic effects of sofalcone (SU-88), an antiulcer agent, on erosive and atrophic gastritis induced experimentally by 6-month administration of 5 mmol/l of sodium taurocholate (TCA) in rats. A standard meal including sofalcone of 0.25% and 1.0% shortened the total length of erosions, normalized the mucosal thickness, and reduced collagenous fibers in the gastric mucosa in one month. The doses administered were 116.3 mg and 486.1 mg/kg/week for one month. Sofalcone, thus, had a good therapeutic effect on experimental erosive and atrophic gastritis in rats. PMID:3675690

  1. Concentração de sódio e glicose em soro de reidratação oral preparado por Agentes Comunitários de Saúde Sodium and glucose concentration in therapeutical solution for oral rehydration prepared by Community Health Agents

    Directory of Open Access Journals (Sweden)

    Liliane Fernandes do Carmo

    2012-02-01

    Full Text Available A diarreia infantil é importante causa de morbimortalidade, sendo indicativo para terapia de reidratação oral (TRO. Este estudo objetivou avaliar o teor de sódio e glicose em soro de reidratação oral preparado por Agentes Comunitários de Saúde (ACS que atuam em Unidades Básicas de Saúde (UBS, caracterizando o perfil e o conhecimento destes sobre a TRO. Após responderem questionário com informações profissionais e sobre a TRO, os ACS a prepararam por três métodos. O teor de glicose e de sódio das TRO foi determinado e comparado ao proposto pela OMS. Na análise estatística foram utilizados ANOVA, Tukey e odds ratio. Participaram do estudo 52 ACS, majoritariamente mulheres e com ensino médio completo (90,4%. A adequação da TRO foi de 3,9; 9,8 e 28,9% para a colher caseira, colher medida e punhado pitada, respectivamente. O preparo da TRO com a colher caseira resultou em 88,0% das amostras com teor de sódio perigoso à saúde (>101 mmol/L. Entre os ACS, 38,5% tinham menos de 2 anos de trabalho, com risco 4,8 vezes maior de preparar TRO inadequada em sódio. Os ACS referiram indicar a TRO no tratamento da diarreia infantil, desconhecendo efeitos colaterais do preparo inadequado. A composição da TRO produzida pelos ACS foi inadequada em todos os métodos. É recomendável treinamento dos ACS no preparo da TRO.Infant Diarrhea is a major cause of morbidity and mortality in children and oral rehydration therapy (ORT is required. This study evaluates the composition of ORT prepared by Community Health Agents (CHAs working in Basic Health Units, assessing their profile and knowledge about ORT. After the CHAs answer specific questions, they are invited to prepare ORT using three methods. Glucose and sodium levels were then quantified and compared with WHO recommendations. ANOVA, Tukey and odds ratio were used for statistical analysis. 52 CHAs participated, mainly females, and 90.4% with full high school education. The adequacy of

  2. Ethnobotany and the identification of therapeutic agents from the rainforest.

    Science.gov (United States)

    Balick, M J

    1990-01-01

    Many rainforest plant species, including trees and herbaceous plants, are employed as medicines by indigenous people. In much of the American tropics, locally harvested herbal medicines are used for a significant portion of the primary health care, in both rural and urban areas. An experienced curandero or herbal healer is familiar with those species with marked biological activity, which are often classified as 'powerful plants'. Examples are given from studies in progress since 1987 in Belize, Central America. The Institute of Economic Botany of The New York Botanical Garden is collaborating with the National Cancer Institute in Bethesda, Maryland (USA) in the search for higher plants with anti-AIDS and anticancer activity. Several strategies are cited for identification of promising leads from among the circa 110,000 species of higher plants that are present in the neotropics, the focus of this search. Recommendations are offered for the design of future efforts to identify plant leads for pharmaceutical testing. PMID:2086039

  3. Flavonoids as Chemopreventive and Therapeutic Agents Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Albert Cabrera

    2014-05-01

    Full Text Available The objective of the present review is to study the relationship between flavonoids and lung cancer, proposing that their regular consumption in Western diets could be beneficial for protecting patients against lung cancer. An extensive search of the scientific literature was performed in the following electronic specialized databases (PubMed central (PMC-NBCI, Elsevier Journal, SciELO Spain, Scirus, Science Direct, including studies in animals, cells, and humans, in order to establish the effect of flavonoids in the prevention and development of lung cancer. Although in vitro and animal studies show the potential ability of flavonoids to act against different types of cancers, especially against lung cancers, the diverse results reported within epidemiological studies, together with the lack of experiments in humans, are the major factors in limiting making dietary recommendations based on scientific evidence for the management of patients with lung cancer. Therefore, the authors of the present study recommend following the dietary health practice guidelines which promotes the consumption of food enriched in flavonoids and reflects the current state of knowledge of an effective and appropriate diet in lung cancer patients.Erratum in: Rev Esp Nutr Hum Diet. 2013;17(2:91-92Link: http://www.renhyd.org/index.php/renhyd/article/view/6/17

  4. Nutraceuticals as therapeutic agents for holistic treatment of diabetes

    Directory of Open Access Journals (Sweden)

    Ashish Baldi

    2013-01-01

    Full Text Available Nutraceuticals is one of the promising approaches for prevention and treatment of a large number of ailments. Nutrients, herbals and dietary supplements are major constituents of nutraceuticals, which make it instrumental in maintaining health, acting against various diseased conditions and thus to promote the quality of life. Diabetes mellitus is one of them. It is a multi-factorial metabolic disorder reflected by high blood sugar/glucose level. In spite of significant development in drug discovery to treat this disease, extensive efforts are on for finding a holistic approach by combining compounds from natural and synthetic drugs. Botanicals, vitamins, anti-oxidants, minerals, amino acids and fatty acids, collectively referred as ′nutraceuticals′, are important sources of new therapies for type 2 diabetes and insulin resistance. This review summarises nutraceuticals with proven anti-diabetic potential in pre-clinical and clinical studies and explores the possibility of a new approach, ′polypathy′ for synergistic management of diabetes.

  5. The Chemistry of Curcumin: From Extraction to Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Kavirayani Indira Priyadarsini

    2014-12-01

    Full Text Available Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  6. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    Directory of Open Access Journals (Sweden)

    Palaniselvam Kuppusamy

    2014-06-01

    Full Text Available Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.

  7. APPLICATION OF STEM CELL THERAPEUTIC AGENTS TO CONTROL CRITICAL DISEASE

    Directory of Open Access Journals (Sweden)

    Sonam Sharma

    2012-01-01

    Full Text Available Stem cell research has been hailed for the potential to revolutionize the future of medicine with the ability to regenerate damaged and diseased organs. On the other hand, stem cell research has been highly controversial due to the ethical issues concerned with the culture and use of stem cells derived from human embryos. This article presents an overview of what stem cells are, what roles they play in normal processes such as development and cancer, and how stem cells could have the potential to treat incurable diseases. Ethical issues are not the subject of this review. In addition to offering unprecedented hope in treating many debilitating diseases, stem cells have advanced our understanding of basic biological processes. This review looks at two major aspects of stem cells. Three processes in which stem cells play a central role in an organism, development, repair of damaged tissue, and cancer resulting from stem cell division going awry. II. Research and clinical applications of cultured stem cells: this includes the types of stem cells used, their characteristics, and the uses of stem cells in studying biological processes, drug development and stem cell therapy; heart disease, diabetes and Parkinson's disease are used as examples.

  8. The chemistry of curcumin: from extraction to therapeutic agent.

    Science.gov (United States)

    Priyadarsini, Kavirayani Indira

    2014-12-01

    Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  9. Microtubule-targeting agents: a therapeutic strategy in neurodegenerative diseases

    OpenAIRE

    Apóstolo, Nuno Miguel Ferreira Morais

    2014-01-01

    A presença de microtúbulos instáveis é um fenómeno recorrente em várias doenças neurodegenerativas. Alterações anormais, de origem genética ou ambiental, induzidas na tubulina ou em moléculas relacionadas com os microtúbulos tais como MAPs, proteínas motoras, +TIPs dos microtúbulos ou mesmo enzimas responsáveis por cortar os microtúbulos, estão associadas com a reduzida estabilidade e hiperdinâmica dos microtúbulos em neurónios que degeneram. Os microtúbulos constituem grande parte das estrut...

  10. APPLICATION OF STEM CELL THERAPEUTIC AGENTS TO CONTROL CRITICAL DISEASE

    OpenAIRE

    Sonam Sharma

    2012-01-01

    Stem cell research has been hailed for the potential to revolutionize the future of medicine with the ability to regenerate damaged and diseased organs. On the other hand, stem cell research has been highly controversial due to the ethical issues concerned with the culture and use of stem cells derived from human embryos. This article presents an overview of what stem cells are, what roles they play in normal processes such as development and cancer, and how stem cells could have the potentia...

  11. The importance of exercise as a therapeutic agent.

    Science.gov (United States)

    Singh, Rabindarjeet

    2002-07-01

    Adaptations in the structural and/or functional properties of cells, tissues and organ systems in the human body occurs when exposed to various stimuli. While there is unanimous agreement that regular physical activity is essential for optimal function of the human body, it is evident that extrinsic factors, such as diet, smoking, exercise habits, are reflected in the morbidity and mortality statistics of the population. Ageing is obligatorily associated with reduced maximal aerobic power and reduced muscle strength, i.e. with reduced physical fitness. As a consequence of diminished exercise tolerance, a large and increasing number of the aged population will be living below, at or just above 'threshold' of physical ability, needing only a minor illness to render them completely dependent. Physical training can readily produce a profound improvement of functions essential for physical fitness in old age. Adaptation to regular physical activity causes less disruption of the cells' internal environment and minimises fatigue which enhances performances and the economy of energy output during daily physical activity. Regular physical exercise reduces the risk of premature mortality in general, and of coronary heart disease, hypertension and diabetes mellitus. Physical activity also improves mental health and is important for health and optimal function of muscles, bones and joints. The most recent recommendations advice the people of all ages to include a minimum of 30 minutes of physical activity of moderate intensity, such as brisk walking, on most, if not all, days of the week. PMID:22844219

  12. Orexin receptor antagonists as therapeutic agents for insomnia

    OpenAIRE

    Ana Clementina Equihua; Alberto K De La Herrán-Arita; RENE eDRUCKER-COLIN

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of thes...

  13. Orexin receptor antagonists as therapeutic agents for insomnia

    OpenAIRE

    Equihua, Ana C.; Alberto K De La Herrán-Arita; Drucker-Colin, Rene

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. T...

  14. Bromocriptine as a new therapeutic agent for peripartum cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Sandeep Chopra

    2012-01-01

    Full Text Available Peripartum cardiomyopathy (PPCM is a poorly understood, rare disorder in which left ventricular systolic dysfunction and symptoms of heart failure occur between the last month of pregnancy and the first 5 months postpartum. Recent data suggest that uncontrolled oxidative stress leads to the activation of the prolactin cleaving enzyme cathepsin D that in turn leads to an increase in a cleaved 16 kDa prolactin. This cleaved form that has an angiostatic and proapoptotic role appears to drive the disease by adversely impacting the endothelium and cardiomyocyte. Bromocriptine that reduces the prolactin production by dopamine agonist actions may improve outcomes in patients with peripartum cardiomyopathy by eliminating the cleaved form of prolactin despite the activation of the cleaving enzyme. In limited case reports and proof of concept studies use of bromocriptine in the early stages has been shown to improve outcomes in patients with peripartum cardiomyopathy. However, larger randomized control study is still awaited.

  15. An insight on genistein as potential pharmacological and therapeutic agent

    Institute of Scientific and Technical Information of China (English)

    Shahedur Rahman; Rezuanul Islam; AM Swaraz; Anesa Ansari; Anowar Khasru Parvez; Depak Kumar Paul

    2012-01-01

    Genistein recognized as phytoestrogens is one of the most extensively studied isoflavones. It comprises of significant portion of Asian diet including Japanese and Chinese cuisine in the form of Soy food products. Evidence showed that geinstein increases osteoblasts formation as well as decreases osteoclast production. It plays an important role in immunity; such as suppression of delayed hypersensitivity and increases host resistance to B16F10 tumor by proliferating cytotoxic T and NK cells. It also decreases the activity of lipoprotein lipase which in turn inhibits lipogenesis and prevents the uptake of glucose in type 2 diabetic in rats. Geinstein play important role in reproductive system where it regulates the productive of oestrogen and progesterone. Moreover Geinstein has the ability to inhibit the tumor and cancer cell proliferation. Numerous beneficial effect of Geinstein including cancer treatment and function in immunity, obesity, diabetes and reproductivity Geinstein proves the potentiality of phytoestrogens as a source of bioactive substance.

  16. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    OpenAIRE

    Palaniselvam Kuppusamy; Yusoff, Mashitah M.; Gaanty Pragas Maniam; Solachuddin Jauhari Arief Ichwan; Ilavenil Soundharrajan; Natanamurugaraj Govindan

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment o...

  17. Juvenile rheumatoid arthritis: therapeutic perspectives.

    Science.gov (United States)

    Chikanza, Ian C

    2002-01-01

    Juvenile rheumatoid arthritis (JRA) is the most common childhood chronic systemic autoimmune inflammatory disease. The therapeutic approach to JRA has, to date, been casual and based on extensions of clinical experiences gained in the management of adult rheumatoid arthritis (RA). The physiology of inflammation has been systemically studied and this has led to the identification of specific therapeutic targets and the development of novel approaches to the management of JRA. The classical treatments of the disease such as methotrexate, sodium aurothiomalate and sulfasalazine, are not always effective in controlling RA and JRA. This has necessitated the development of novel agents for treating RA, most of which are biological in nature and are targeted at specific sites of the inflammatory cascades. These biological therapeutic strategies in RA have proved successful and are being applied in the management of JRA. These developments have been facilitated by the advances in molecular biology which have heralded the advent of biodrugs (recombinant proteins) and gene therapy, in which specific genes can be introduced locally to enhance in vivo gene expression or suppress gene(s) of interest with a view to down-regulating inflammation. Some of these biodrugs, such as anti-tumor necrosis factor alpha (anti-TNFalpha), monoclonal antibodies (infliximab, adalimumab), TNF soluble receptor constructs (etanercept) and interleukin-1 receptor antagonist (IL-1Ra) have been tested and shown to be effective in RA. Etanercept has now been licensed for JRA. Clinical trials of infliximab in JRA are planned. Studies show that the clinical effects are transient, necessitating repeated treatments and the risk of vaccination effects. Anti-inflammatory cytokines such as IL-4, IL-10, transforming growth factor-beta and interferon-beta (IFN-beta) are undergoing clinical trials. Many of these agents have to be administered parenterally and production costs are very high; thus, there is a need

  18. Comparative evaluation of therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Radionuclide therapy employing unsealed radiotherapeutic agents has emerged as an important tool for cancer management. The development of therapeutic radiopharmaceuticals based on different types of carrier molecule and a variety of radioisotopes is being actively pursued worldwide. There have been many significant advances in this field, and many of the technical problems involved in labelling biomolecules with a variety of radionuclides have been solved. However, the assessment of the relative effectiveness of different radiopharmaceuticals for cancer therapy is a difficult task owing to the large number of variables that must be considered, some related to the biological carrier and others to the radioisotope. Comparing the therapeutic efficacy in patients is not feasible in most cases for ethical and regulatory reasons. Hence, it is important to develop laboratory methods that can be used for reliable and efficient comparative evaluation of promising therapeutic radiopharmaceuticals. The IAEA has organized several coordinated research projects (CRPs) in the field of radiopharmaceuticals that have helped Member States to acquire technologies for the production of useful radiopharmaceuticals. In one such CRP on techniques for labelling biomolecules for targeted therapy, conducted from 1998 to 2001, the participants developed several protocols and standard operating procedures for labelling peptides and antibodies with therapeutic radioisotopes. During the course of the CRP, it was recognized that successful development of therapeutic radiopharmaceuticals will require in vitro biological assays as well as appropriate tumour models for carrying out biodistribution studies of the products in order to collect data for preclinical studies. Two meetings, held in 1999 and 2001, recommended the organization of a CRP for the development of laboratory methods for comparative evaluation of therapeutic radiopharmaceuticals. Fifteen countries - Brazil, Cuba, the Czech

  19. Therapeutic Recreation Practicum Manual.

    Science.gov (United States)

    Schneegas, Kay

    This manual provides information on the practicum program offered by Moraine Valley Community College (MVCC) for students in its therapeutic recreation program. Sections I and II outline the rationale and goals for providing practical, on-the-job work experiences for therapeutic recreation students. Section III specifies MVCC's responsibilities…

  20. Psychobiology and therapeutic approaches to anxiety States.

    Science.gov (United States)

    Pradhan, N

    1986-04-01

    The current psychobiology and the therapeutic principles of anxiety states have been reviewed. The seprohippocampal system probably operates as the organ of match-mismatch comparator. A dysfunction of this internal comparator could possibly be the source of anxiety. There seem to be two distinct psychobiologic models for pain disorder and chronic anxiety state. The therapeutic responses of panic disorder to TCA and MAOI and the response to the chronic anxiety state to benzodiazepines supports the classification ot two distinct syndromes. However different provocative challenge tests have not clearly delineated the role of nor-adrenergic (NF) mechanisms in panic disorder and benzodiazepine receptor theory for chronic anxiety state. Challenge tests with receptor specific pharmacologic agents may reveal the molecular basis of these disorders unlike the tests with non-specific agents like lactate and caffeine.

  1. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  2. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  3. Cytokines and therapeutic oligonucleotides.

    Science.gov (United States)

    Hartmann, G; Bidlingmaier, M; Eigler, A; Hacker, U; Endres, S

    1997-12-01

    Therapeutic oligonucleotides - short strands of synthetic nucleic acids - encompass antisense and aptamer oligonucleotides. Antisense oligonucleotides are designed to bind to target RNA by complementary base pairing and to inhibit translation of the target protein. Antisense oligonucleotides enable specific inhibition of cytokine synthesis. In contrast, aptamer oligonucleotides are able to bind directly to specific proteins. This binding depends on the sequence of the oligonucleotide. Aptamer oligonucleotides with CpG motifs can exert strong immunostimulatory effects. Both kinds of therapeutic oligonucleotides - antisense and aptamer oligonucleotides - provide promising tools to modulate immunological functions. Recently, therapeutic oligonucleotides have moved towards clinical application. An antisense oligonucleotide directed against the proinflammatory intercellular adhesion molecule 1 (ICAM-1) is currently being tested in clinical trials for therapy of inflammatory disease. Immunostimulatory aptamer oligonucleotides are in preclinical development for immunotherapy. In the present review we summarize the application of therapeutic oligonucleotides to modulate immunological functions. We include technological aspects as well as current therapeutic concepts and clinical studies. PMID:9740353

  4. Pandemic and Seasonal Influenza: Therapeutic Challenges

    OpenAIRE

    Memoli, Matthew J.; Morens, David M.; Jeffery K Taubenberger

    2008-01-01

    Influenza A viruses cause significant morbidity and mortality annually, and the threat of a pandemic underscores the need for new therapeutic strategies. Here we briefly discuss novel antiviral agents under investigation, the limitations of current antiviral therapy and stress the importance of secondary bacterial infections in seasonal and pandemic influenza. Additionally, the lack of new antibiotics available to treat increasingly drug resistant organisms such as methicillin-resistant Staph...

  5. Inflammatory bowel disease: potential therapeutic strategies

    DEFF Research Database (Denmark)

    Nielsen, O H; Vainer, B; Bregenholt, S;

    1997-01-01

    This review deals with potential and possibly primary therapeutics that, through insight into the inflammatory cascade, result in more rational treatment principles replacing the classical therapy of inflammatory bowel disease (IBD), i.e. Crohn's disease (CD) and ulcerative colitis (UC). These new...... therapies might be useful for IBD patients, especially since the 'classical therapy' with agents like glucocorticoids, sulfasalazine, mesalazine, azathioprine, 6-mercaptopurine, cyclosporin and methotrexate is often only moderately effective and may have important side-effects. Controlled trials...

  6. Paraprofessionals as Psychotherapeutic Agents with Moderately Disturbed Children

    Science.gov (United States)

    Vander Kolk, Charles J.

    1973-01-01

    The present study investigated the effects of paraprofessionals used as therapeutic agents with moderately disturbed elementary-school children. The impact of this program on individual children and the aides was evaluated in several ways. (Author)

  7. New concept in nutrition for the maintenance of the aging eye redox regulation and therapeutic treatment of cataract disease; synergism of natural antioxidant imidazole-containing amino acid-based compounds, chaperone, and glutathione boosting agents: a systemic perspective on aging and longevity emerged from studies in humans.

    Science.gov (United States)

    Babizhayev, Mark A

    2010-01-01

    Cataract, opacification of the lens, is one of the commonest causes of loss of useful vision during aging, with an estimated 16 million people world-wide affected. The role of nutritional supplementation in prevention of onset or progression of ocular disease is of interest to health care professionals and patients. The aging eye seems to be at considerable risk from oxidative stress. This review outlines the potential role of the new nutritional strategy on redox balance in age-related eye diseases and detail how the synergism and interaction of imidazole-containing amino acid-based compounds (nonhydrolized L-carnosine, histidine), chaperone agents (such as, L-carnosine, D-pantethine), glutathione-boosting agents (N-acetylcysteine, vitamin E, methionine), and N-acetylcarnosine eye drops plays key roles in the function and maintenance of the redox systems in the aging eye and in the treatment of human cataract disease. A novel patented oral health supplement is presented which enhances the anticataract activity of eye drops and activates functional visual acuity. The clinical data demonstrate the effectiveness and safety of a combined oral health care treatment with amino acids possessing chaperone-like activity with N-acetylcarnosine lubricant eye drops. L-carnosine and N-acetylcarnosine protected the chaperone activity of alpha-crystallin and reduced the increased posttranslational modifications of lens proteins. Biological activities of the nonhydrolyzed carnosine in the oral formulation are based on its antioxidant and antiglycating (transglycating) action that, in addition to heavy metal chelation and pH-buffering ability, makes carnosine an essential factor for preventing sight-threatening eye disorders having oxidative stress in their pathogenesis, neurodegeneration, and accumulation of senile features. The findings suggest that synergism is required between carnosine or other imidazole-containing compounds and reduced glutathione in tissues and cells for

  8. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  9. Agent Chameleons: Virtual Agents Real Intelligence

    OpenAIRE

    O'Hare, Gregory; Duffy, Brian; Schoen-Phelan, Bianca; Martin, Alan; Bradley, John

    2003-01-01

    Agent Chameleons provides virtual agents powered by real intelligence, delivering next generation autonomic entities that can seamlessly migrate, mutate and evolve on their journey between and within physical and digital information spaces.

  10. [Glucomannan: properties and therapeutic applications].

    Science.gov (United States)

    González Canga, A; Fernández Martínez, N; Sahagún, A M; García Vieitez, J J; Díez Liébana, M J; Calle Pardo, A P; Castro Robles, L J; Sierra Vega, M

    2004-01-01

    Glucomannan is a dietary fiber employed quite frequently in the western countries since two decades now, as its ingestion plays an important role in human health. However, eastern people have used this fiber for more than a thousand years. This dietary fiber is the main polysaccharide obtain from the tubers of the Amorphophallus konjac plant, a member of the family Araceae found in east Asia. The chemical structure of glucomannan consists, mainly, in mannose and glucose in the ratio 8:5 linked by beta (1-->4) glycosidic bonds. This soluble fiber has a extraordinarily high waterholding capacity, forming highly viscous solutions when dissolved in water. It has the highest molecular weight and viscosity of any known dietary fiber. It has been demonstrated that this product is highly effective in the treatment of obesity due to the satiety sensation that it produces; as a remedy for constipation, because it increases the faeces volume; as hypocholesterolemic agent, interfering in the transport of cholesterol and of bile acids and as hypoglycemic and hypoinsulinemic agent, probably, by delaying gastric emptying and slowering glucose delivery to the intestinal mucosa. To the beneficial properties of this fiber, several disadvantages can be added as the production of flatulence, abdominal pain, esophageal obstruction, lower gastrointestinal obstruction or even the possible modification of the bioavailability of other drugs. This paper reviews the main characteristics of glucomannan, as well as its properties, physiologic effects and therapeutic uses.

  11. Study on the Effects of Different Therapeutic Doses of Immunosuppressive Agents on the Growth and Development of Rats%不同治疗剂量的免疫抑制剂对大鼠生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    陈林强; 何绿茵; 徐邦牢; 仉智; 林华欣; 李淼沅; 陈业辉

    2012-01-01

    Objective To observe the effects of different therapeutic doses of immunosuppressive agents on rat growth. Methods To establish different therapeutic doses of immunosuppressive agents in SD rat model, after renal transplantation, the first agent treatment doses of cyclosporine A (Cyclosporin A,CsA) (Tacrolimus,FK506) ,tacrolimus and rapamycin (Rapa-mycin,Rapa) were converted into the therapeutic dose of rats,respectively,by the formula. 25 mg/kg/d,0. 8 mg/kg/d and 2 mg/kg/d gastric feeding were set as drug intervention group, saline gastric feeding as the control group, 8 rats in each group. The rats were fed by the gastric feeding for 8 weeks. Each rat growth and body weight changes were observed. Results There were no significant difference of the rats weight before the experiment began. 8 weeks after modeling,cyclosporin A treated rats showed marked weight loss,anorexia,irritable,sparse hair. The control group,cyclosporine A (CsA) (FK506), tacrolimus and rapamycin (Rapa) treated rats showed increased weight, respectively, 339. 62± 11. 97 g, 296. 50±22. 69 g, 335. 30±17. 51 g and 342.56 + 15.29 g; weight gain were 158.75 + 15.68 g, 112. 24 ±20. 16 g, 154. 78 ± 11. 32 g,and 160. 91 + 13. 51g,respectively. Cyclosporin A (CsA) treated rats bodyweight growth was significantly lower than that of the control group (P0. 05). Conclusion cyclosporin A (CsA) affected the growth of rat more significantly but FK506 and Rapa had no significant effect on the rats weight.%目的 观察不同治疗剂量的免疫抑制剂对大鼠生长发育的影响.方法 建立不同治疗剂量的免疫抑制剂SD大鼠模型,按公式将肾移植术后环孢素A (Cyclosporin A,CsA)、他克莫司(Tacrolimus,FK506)和雷帕霉素(Rapamycin,Rapa)的首剂治疗剂量换算成大鼠的治疗剂量,分别用25mg/kg/天,0.8mg/kg/天和2mg/kg/天胃饲作为药物干预组,生理盐水胃饲作为对照组,每组8只,胃饲8周.观察并比较各组大鼠生长发育及

  12. Clinical Observation of Therapeutic Efficiency of Insulin Glargine Combined with Oral Hypoglycemic Agents in Elderly Patients with Type 2 Diabetes%甘精胰岛素联合口服降糖药治疗2型糖尿病临床观察

    Institute of Scientific and Technical Information of China (English)

    何启胜

    2011-01-01

    目的 观察甘精胰岛素联合口服降糖药物治疗2型糖尿病的临床疗效和安全性.方法 选择口服降糖药物血糖控制不佳的56例老年2型糖尿病患者,随机分为加用甘精胰岛素治疗组和低精蛋白锌胰岛素组两组,观察治疗前和治疗24周后各组的FBG、P2hBG、HbA1c和BMI的变化.同时对两种方案的安全性进行比较.结果 治疗24周后甘精胰岛素组与低精蛋白锌胰岛素组均能降低FBG、P2hBG、HbAlc,且疗效相当,组内治疗前后比较差异无统计学意义,而BMI均没有明显变化.但甘精胰岛素组的严重低血糖发生率明显低于低精蛋白锌胰岛素组.结论 甘精胰岛素组与低精蛋白锌胰岛素组在降低血糖方面的疗效相当,但甘精胰岛素组比低精蛋白锌胰岛素组治疗安全性高.%Objective To evaluate the clinical observation of therapeutic efficiency and safty of insulin glargine combined with oral hypoglycemic agents in elderly patients with type 2 diabetes. Methods Fifty six elderly patients with type 2 diabetes and poorly glycemic control by oral medication were randomly divided into two groups: insulin glargine( + ) group and isophane insu-lin( + ) group. FBG,P2hBG,HbAlc and BMI in each group were measured before and after 24 weeks of treatment,and the adverse effect were also recorded. Results HbAlc,FBG and P2hBG of the two groups were declined obviously after 24 weeks of treatment,and the therapeutic equivalence between the two groups. No significant change of BMI in the two groups. But the incidence of severe hypoglycemia in the insulin glargine group was lower than that in the isophane insulin group. Conclusion The therapeutic equivalence of insulin glargine and isophane insulin in decreasing the blood sugar was observed,but the security in insulin glargine group was higher than that in the low protamine zinc insulin group.

  13. Engineering antibody therapeutics.

    Science.gov (United States)

    Chiu, Mark L; Gilliland, Gary L

    2016-06-01

    The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment. PMID:27525816

  14. Interacting agents in finance

    NARCIS (Netherlands)

    C. Hommes

    2008-01-01

    Interacting agents in finance represent a behavioural, agent-based approach in which financial markets are viewed as complex adaptive systems consisting of many boundedly rational agents interacting through simple heterogeneous investment strategies, constantly adapting their behaviour in response t

  15. Bacteriocins as potential anticancer agents

    Directory of Open Access Journals (Sweden)

    Sukhraj eKaur

    2015-11-01

    Full Text Available Cancer remains one of the leading causes of deaths worldwide, despite advances in its treatment and detection. The conventional chemotherapeutic agents used for the treatment of cancer have nonspecific toxicity towards normal body cells that cause various side effects. Secondly, cancer cells are known to develop chemotherapy resistance in due course of treatment. Thus, the demand for novel anti-cancer agents is increasing day by day. Some of the experimental studies have reported the therapeutic potential of bacteriocins against various types of cancer cell lines. Bacteriocins are ribosomally-synthesized cationic peptides secreted by almost all groups of bacteria. Some bacteriocins have shown selective cytotoxicity towards cancer cells as compared to normal cells. This makes them promising candidates for further investigation and clinical trials. In this review article, we present the overview of the various cancer cell-specific cytotoxic bacteriocins, their mode of action and efficacies.

  16. A Current Review of Targeted Therapeutics for Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Susana M. Campos

    2010-01-01

    Full Text Available Difficult to detect, ovarian cancer typically presents at an advanced stage. Significant progress has been achieved in the treatment of ovarian cancer with therapeutics focused on DNA replication or cell division. However, despite sensitivity to induction chemotherapy the majority of patients will develop recurrent disease. Conventional agents for recurrent disease offer little in terms of long-term responses. Various targeted therapeutics have been explored in the management of ovarian cancer. These include monoclonal antibodies to epidermal growth factor receptors, small molecule tyrosine kinase inhibitors, monoclonal antibodies directed at the vascular endothelial growth factor (bevacizumab, and the small tyrosine kinase inhibitors that target the vascular endothelial growth factor receptor. Recently, several other agents have come forth as potential therapeutic agents in the management of ovarian cancer. These include monoclonal antibodies to the folate receptor, triple angiokinase inhibitors, PARP inhibitors, aurora kinase inhibitors, inhibitors of the Hedgehog pathway, folate receptor antagonists, and MTOR inhibitors.

  17. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  18. Next-Generation Therapeutics for Inflammatory Bowel Disease.

    Science.gov (United States)

    Dulai, Parambir S; Sandborn, William J

    2016-09-01

    Tumor necrosis factor (TNF) antagonists are the cornerstone of therapy for moderately to severely active inflammatory bowel disease (IBD). Although our understanding of pharmacokinetics, pharmacodynamics, and treatment optimization for these agents has evolved considerably over the past decade, a substantial majority of individuals fail to respond or lose response to TNF-antagonists over time. A need therefore remains for efficacious treatment options in these patients. Alternative immunological targets have now been identified, and several novel therapeutic agents are in development for IBD. In this review article, we discuss these novel therapeutic agents, with a particular focus on those demonstrated to be efficacious in phase 2 and 3 clinical trials. We further discuss considerations to be made when integrating these agents into routine practice over the next decade. PMID:27461274

  19. Lymphedema and Therapeutic Lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    2013-01-01

    Full Text Available Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return and swelling of the extremities. Lymphedema is divided into primary and secondary forms based on the underlying etiology. Despite substantial advances in both surgical and conservative techniques, therapeutic options for the management of lymphedema are limited. Although rarely lethal, lymphedema is a disfiguring and disabling condition with an associated decrease in the quality of life. The recent impressive expansion of knowledge on the molecular mechanisms governing lymphangiogenesis provides new possibilities for the treatment of lymphedema. This review highlights the lymphatic biology, the pathophysiology of lymphedema, and the therapeutic lymphangiogenesis using hepatocyte growth factor.

  20. Pluristem Therapeutics, Inc.

    Science.gov (United States)

    Prather, William

    2008-01-01

    Pluristem Therapeutics, Inc., based in Haifa, Israel, is a regenerative, biotherapeutics Company dedicated to the commercialization of nonpersonalized (allogeneic) cell therapy products. The Company is expanding noncontroversial placental-derived mesenchymal stem cells via a proprietary 3D process, named PluriX, into therapeutics for a variety of degenerative, malignant and autoimmune disorders. Pluristem will be conducting Phase I trials in the USA with its first product, PLX-I, which addresses the global shortfall of matched tissue for bone marrow transplantation by improving the engraftment of hematopoietic stem cells contained in umbilical cord blood. PMID:18154467

  1. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    Energy Technology Data Exchange (ETDEWEB)

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.; Lin, W.-Y.; Pinkert, J.; Wang, S.-Y.

    1999-01-18

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo) for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.

  2. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  3. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    for chemotherapy. The nanoparticles were 150 nm in size with spherical shape, which contained PFOB in the inner core and Dox and ICG in the polymeric shell. More importantly, they could target folate receptor expressing cancer cells, which provide positive in vitro and in vivo NIR and 19F MRI results. In project......Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...

  4. Therapeutic nucleic acids: current clinical status.

    Science.gov (United States)

    Sridharan, Kannan; Gogtay, Nithya Jaideep

    2016-09-01

    Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are simple linear polymers that have been the subject of considerable research in the last two decades and have now moved into the realm of being stand-alone therapeutic agents. Much of this has stemmed from the appreciation that they carry out myriad functions that go beyond mere storage of genetic information and protein synthesis. Therapy with nucleic acids either uses unmodified DNA or RNA or closely related compounds. From both a development and regulatory perspective, they fall somewhere between small molecules and biologics. Several of these compounds are in clinical development and many have received regulatory approval for human use. This review addresses therapeutic uses of DNA based on antisense oligonucleotides, DNA aptamers and gene therapy; and therapeutic uses of RNA including micro RNAs, short interfering RNAs, ribozymes, RNA decoys and circular RNAs. With their specificity, functional diversity and limited toxicity, therapeutic nucleic acids hold enormous promise. However, challenges that need to be addressed include targeted delivery, mass production at low cost, sustaining efficacy and minimizing off-target toxicity. Technological developments will hold the key to this and help accelerate drug approvals in the years to come. PMID:27111518

  5. Cancer stem cells, metabolism, and therapeutic significance.

    Science.gov (United States)

    Yang, Mengqi; Liu, Panpan; Huang, Peng

    2016-05-01

    Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs. PMID:26864589

  6. Secukinumab: a promising therapeutic option in spondyloarthritis.

    Science.gov (United States)

    Maldonado-Ficco, Hernan; Perez-Alamino, Rodolfo; Maldonado-Cocco, José A

    2016-09-01

    Psoriatic arthritis (PsA) is the second most common chronic inflammatory joint disease. Ankylosing spondylitis (AS) is another less common but equally chronic and disabling spondyloarthritis (SpA). Therapeutic agents for the treatment of these diseases have been somewhat lacking as compared with those available for rheumatoid arthritis, which represents a significant challenge for both the treating physician and the pharmaceutical industry. A promising development for our understanding of the physiopathology of PsA and AS involves new targets to interrupt IL-17 and IL-12/IL-23 pathways. Up to 30-40 % of SpA patients have inadequate or poor response, or are intolerant to anti-TNF therapies. Therefore, there has been a clear unmet medical need in an important group of these patients. As a result, new therapeutic targets have emerged for the treatment of both axial and peripheral SpA. Interleukin 17 (IL-17) is a pro-inflammatory cytokine that is increased in psoriatic lesions as well as in the synovial fluid of patients with PsA and in sites of enthesitis in SpA. IL-23 has been shown to play an important role in the polarization of CD4+ T-cells to become IL-17 producers. Based on these evidences, blockade of the cytokine IL-17 or its receptors was considered to have therapeutic implications for the treatment of psoriasis, as well as PsA and AS.This article presents a thorough review of an IL-17 A blocking agent, its mechanism of action, its clinical efficacy and its therapeutic safety. PMID:27437696

  7. Therapeutic ultrasound and effectiveness in knee osteoarthritis

    Directory of Open Access Journals (Sweden)

    Emine Ganidagli

    2013-04-01

    Full Text Available In Turkey, ultrasound is one of the most commonly used methods for physical therapy of knee osteoarthritis. Therapeutic ultrasound affects the cells and tissues by thermal and nonthermal ways. As well as being used as an agent for deep heating, it has effects like stimulation of tissue regeneration, soft tissue repair, regulation of blood flow in chronic ischemic tissues, protein synthesis and bone repair.In this manuscript, detailed technical information on ultrasound is given and studies on knee osteoarthritis in recent years are reviewed. [Archives Medical Review Journal 2013; 22(2.000: 170-183

  8. Supramolecular Nanoparticles for Molecular Diagnostics and Therapeutics

    Science.gov (United States)

    Chen, Kuan-Ju

    Over the past decades, significant efforts have been devoted to explore the use of various nanoparticle-based systems in the field of nanomedicine, including molecular imaging and therapy. Supramolecular synthetic approaches have attracted lots of attention due to their flexibility, convenience, and modularity for producing nanoparticles. In this dissertation, the developmental story of our size-controllable supramolecular nanoparticles (SNPs) will be discussed, as well as their use in specific biomedical applications. To achieve the self-assembly of SNPs, the well-characterized molecular recognition system (i.e., cyclodextrin/adamantane recognition) was employed. The resulting SNPs, which were assembled from three molecular building blocks, possess incredible stability in various physiological conditions, reversible size-controllability and dynamic disassembly that were exploited for various in vitro and in vivo applications. An advantage of using the supramolecular approach is that it enables the convenient incorporation of functional ligands onto SNP surface that confers functionality ( e.g., targeting, cell penetration) to SNPs. We utilized SNPs for molecular imaging such as magnetic resonance imaging (MRI) and positron emission tomography (PET) by introducing reporter systems (i.e., radio-isotopes, MR contrast agents, and fluorophores) into SNPs. On the other hand, the incorporation of various payloads, including drugs, genes and proteins, into SNPs showed improved delivery performance and enhanced therapeutic efficacy for these therapeutic agents. Leveraging the powers of (i) a combinatorial synthetic approach based on supramolecular assembly and (ii) a digital microreactor, a rapid developmental pathway was developed that is capable of screening SNP candidates for the ideal structural and functional properties that deliver optimal performance. Moreover, SNP-based theranostic delivery systems that combine reporter systems and therapeutic payloads into a

  9. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity......Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... and hence adjuvants are included to enhance and direct the immune response. Although the vaccine has been tested in ART naïve individuals, we recommend future testing of the vaccine during (early started) ART that improves immune function and to select individuals likely to benefit. Peptides representing...

  10. AgentChess : An Agent Chess Approach

    OpenAIRE

    Fransson, Henric

    2003-01-01

    The game of chess has many times been discussed and used for test purpose by science departments of Artificial Intelligence (AI). Although the technique of agent and as well multi-agent systems is quite old, the use of these offspring of AI within chess is limited. This report describes the project performed applying the use of agents to a chess program. To measure the performance of the logic has tests between the developed program main parts been performed. Further tests against a tradition...

  11. Lymphedema and Therapeutic Lymphangiogenesis

    OpenAIRE

    Yukihiro Saito; Hironori Nakagami; Yasufumi Kaneda; Ryuichi Morishita

    2013-01-01

    Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return and swelling of the extremities. Lymphedema is divided into primary and secondary forms based on the underlying etiology. Despite substantial advances in both surgical and conservative techniques, therapeutic options for the management of lymphedema are limited. Although rarely lethal, lymphedema is a disfiguring and disabling condition with an associated decrease in the quality of life. The r...

  12. Riot Control Agents

    Science.gov (United States)

    ... a person has been exposed to riot control agents. Long-term health effects of exposure to riot control agents Prolonged ... person is removed from exposure to riot control agents, long-term health effects are unlikely to occur. How you can ...

  13. Reasoning about emotional agents

    NARCIS (Netherlands)

    Meyer, J.-J.

    2008-01-01

    In this paper we discuss the role of emotions in artificial agent design, and the use of logic in reasoning about the emotional or affective states an agent can reside in. We do so by extending the KARO framework for reasoning about rational agents appropriately. In particular we formalize in this f

  14. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Peyman Mikaili

    2013-10-01

    Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents.

  15. Agents modeling agents in information economies

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, J.M.; Durfee, E.H. [Univ. of Michigan, Ann Arbor, MI (United States)

    1996-12-31

    Our goal is to design and build agents that act intelligently when placed in an agent-based information economy, where agents buy and sell services (e.g. thesaurus, search, task planning services, etc.). The economy we are working in is the University of Michigan Digital Library (UMDL), a large scale multidisciplinary effort to build an infrastructure for the delivery of library services. In contrast with a typical economy, an information economy deals in goods and services that are often derived from unique sources (authors, analysts, etc.), so that many goods and services are not interchangeable. Also, the cost of replicating and transporting goods is usually negligible, and the quality of goods and services is difficult to measure objectively: even two sources with essentially the same information might appeal to different audiences. Thus, each agent has its own assessment of the quality of goods and services delivered.

  16. Editorial: advances in therapeutic glycopeptides.

    Science.gov (United States)

    Zeng, Wenbin; Chen, Yue-Lei

    2014-01-01

    Glycopeptides, peptides containing sugar β-amino acids, have significant impact on medicinal chemistry research and pharmaceutical industr. In 1956, the discovery of one classic glycopeptide, vancomycin, broke the dawn of a new age for antibacterial research. Employing glycopeptides for the therapeutic purposes used to be regarded as proposals. Owing largely to the recent improvements in separation practices, characterization techniques, synthetic methods, and biological research, these proposals have been transformed into ongoing research projects in many laboratories around the world. Previously known as antibiotics, glycopeptides have been used as chemotherapeutic, antiviral, antitubercular, antifungal, antiproliferative and apoptotic agents. Nowadays they are even considered for the development of HIV and cancer vaccines. While several of them are in clinical trials, it could be expected that in the near future, treatment regimen of such difficult diseases might be reformed accordingly. Many interesting preliminary results are being produced in this emerging area. As witnesses and practitioners in this exciting area, however, we notice that the related communication in public domain is still limited due to the relatively small number of researchers involved. Thus, we feel the necessity to compile a timely issue about the special topic "Advances in Therapeutic Glycopeptides", covering state-of-the-art research papers and expert reviews from this area. We are glad that Protein & Peptide Letters is willing to realize the idea with us. The opening paper of this issue by Dr. Voglmeir and coauthor discusses three types of PNGases in respect of their general properties and applications of the commercially available PNGases in glycopeptide and glycoprotein analysis. Dr. Liu and coauthors describe current techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and mass spectrometry (MS), for the characterization of

  17. Therapeutic cloning in the mouse

    OpenAIRE

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of d...

  18. Limited-Sampling Strategies for Therapeutic Drug Monitoring of Moxifloxacin in Patients With Tuberculosis

    NARCIS (Netherlands)

    Pranger, Arianna D.; Kosterink, Jos G. W.; van Altena, Richard; Aarnoutse, Rob E.; van der Werf, Tjip S.; Uges, Donald R. A.; Alffenaar, Jan-Willem C.

    2011-01-01

    Background: Moxifloxacin (MFX) is a potent drug for multidrug resistant tuberculosis(TB) treatment and is also useful if first-line agents are not tolerated. Therapeutic drug monitoring may help to prevent treatment failure. Obtaining a full concentration-time curve of MFX for therapeutic drug monit

  19. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  20. Pneumothorax following therapeutic thoracentesis

    International Nuclear Information System (INIS)

    The authors retrospectively studied 319 patients undergoing therapeutic thoracentesis. Of these, 223 patients had malignant pleural effusions and 96 had nonmalignant and noninfected collections. The effusions ranged from 100 to 4,000 mL in size. All patients presented with pain and/or respiratory compromise prompting the need for drainage. Overall there was a t% (22 of 319) incidence of pneumothorax. In six patients (3%) chest tube placement was necessary. Four of these six patients were successfully managed with 7 - 16-French catheters and a Heimlich valve. Persistent pneumothorax in two cases required placement of large, 28-F chest tubes supplemented with Pleura-vac drainage and hospital admission. There was a subset of nine patients with malignant effusions and lymphangitic spread who developed large but asymptomatic pneumothoraces. All but 5% of these patients required no therapy for pneumothorax. The authors' results suggest that pneumothoraces following therapeutic thoracentesis can be managed within the radiology department. The prevalence, mechanism, and management of pneumothoraces in these patients is discussed

  1. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  2. Mechanisms of Plasma Therapeutics

    Science.gov (United States)

    Graves, David

    2015-09-01

    In this talk, I address research directed towards biomedical applications of atmospheric pressure plasma such as sterilization, surgery, wound healing and anti-cancer therapy. The field has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that plasmas readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue in part by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated RONS. RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ``bystander effect,'' similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.

  3. Inverse agonism and its therapeutic significance

    Directory of Open Access Journals (Sweden)

    Gurudas Khilnani

    2011-01-01

    Full Text Available A large number of G-protein-coupled receptors (GPCRs show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity or prevent the effect of an agonist (antagonist with zero intrinsic activity. Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity. Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H 1 and H 2 antihistaminics (antagonists have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D 2 receptors antagonist, antihypertensive (AT 1 receptor antagonists, antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103, a highly selective 5-HT

  4. THE INTEGRATED AGENT IN MULTI-AGENT SYSTEMS

    OpenAIRE

    Maleković, Mirko; Čubrilo, Mirko

    2000-01-01

    [n this paper, we characterize the integrated agent in multi-agent systems. The following result is proved: if a multi-agent system is reflexive (symmetric, transitive, Euclidean) then the integrated agent of the multi-agent system is reflexive (symmetric, transitive, Euclidean), respectively. We also prove that the analogous result does not hold for multi-agent system's serial ness. A knowledge relationship between the integrated agent and agents in a multiagent system is presented.

  5. Therapeutic monoclonal antibody for Sporotrichosis

    Directory of Open Access Journals (Sweden)

    Sandro eAlmeida

    2012-11-01

    Full Text Available Sporotrichosis is a chronic subcutaneous mycosis that affects either humans or animals and occurs worldwide. This subcutaneous mycosis had been attributed to a single etiological agent, Sporothrix schenckii. S. schenckii exhibits a considerable genetic variability, where recently, was suggesting that this taxon consists of a complex of species. Sporotrichosis is caused by traumatic inoculation of the fungus, which is a ubiquitous environmental saprophyte that can be isolated from soil and plant debris. The infection is limited to the cutaneous forms but, recently, occurrences of more severe clinical forms of this mycosis were described, especially among immunocompromized individuals. The immunological mechanisms involved in prevention and control of sporotrichosis are still not very well understood. Some works suggest that cell-mediated immunity plays an important role in protecting the host against S. schenckii. In contrast, the role of the humoral immune response in protection against this fungus have not been studied in detail. In a previous study, we showed that antigens secreted by S. schenckii induce a specific humoral response in infected animals, mainly against the 70-kDa molecules, indicating a possible participation of specific antibodies to this molecule in infection control. In an other work of the our group, we produced a mAb against a 70-kDa glycoprotein of S. schenckii in order to better understand the effect of passive immunization of mice infected with S. schenckii. Results showed a significant reduction in the number of CFU in organs of mice when the mAb was injected before and during S. schenckii infection. Similar results were observed when T-cell deficient mice were used. Drugs of choice in the treatment of sporothrichosis require long periods and frequently relapses are observed, mainly in immunocompromized patients. The strong protection induced by mAb against a 70-kDa glycoprotein makes it a strong candidate for a

  6. siRNA delivery: from basics to therapeutic applications.

    Science.gov (United States)

    Musacchio, Tiziana; Torchilin, Vladimir P

    2013-01-01

    The chance to selectively intervene and stop the development of any gene-dependent disease in different organs and pathologies makes siRNA an ideal therapeutic agent. However, serious issues should be addressed before the real therapeutic use of siRNA. The poor pharmacokinetic properties of siRNA, its short half-life, its low in vivo stability, its fast elimination by kidney filtration and its low transfection efficiency complicate the use of siRNA as a therapeutic molecule. In this review, we will describe the latest and most advanced approaches and strategies undertaken to address these limitations and improve siRNA delivery and its gene silencing efficacy as well as the prospects for its therapeutic applications. PMID:23276909

  7. Brain metastasis: new opportunities to tackle therapeutic resistance.

    Science.gov (United States)

    Seoane, Joan; De Mattos-Arruda, Leticia

    2014-09-12

    Brain metastasis is a devastating complication of cancer with unmet therapeutic needs. The incidence of brain metastasis has been rising in cancer patients and its response to treatment is limited due to the singular characteristics of brain metastasis (i.e., blood-brain-barrier, immune system, stroma). Despite improvements in the treatment and control of extracranial disease, the outcomes of patients with brain metastasis remain dismal. The mechanisms that allow tumor cells to promulgate metastases to the brain remain poorly understood. Further work is required to identify the molecular alterations inherent to brain metastasis in order to identify novel therapeutic targets and explicate the mechanisms of resistance to systemic therapeutics. In this article, we review current knowledge of the unique characteristics of brain metastasis, implications in therapeutic resistance, and the possibility of developing biomarkers to rationally guide the use of targeted agents.

  8. Direct therapeutic intervention for advanced pancreatic cancer.

    Science.gov (United States)

    Takakura, Kazuki; Koido, Shigeo

    2015-12-10

    Currently, chemotherapy is an accredited, standard treatment for unresectable, advanced pancreatic cancer (PC). However, it has been still showed treatment-resistance and followed dismal prognosis in many cases. Therefore, some sort of new, additional treatments are needed for the better therapeutic results for advanced PC. According to the previous reports, it is obvious that interventional endoscopic ultrasonography (EUS) is a well-established, helpful and low-risky procedure in general. As the additional treatments of the conventional therapy for advanced PC, many therapeutic strategies, such as immunotherapies, molecular biological therapies, physiochemical therapies, radioactive therapies, using siRNA, using autophagy have been developing in recent years. Moreover, the efficacy of the other potential therapeutic targets for PC using EUS-fine needle injection, for example, intra-tumoral chemotherapeutic agents (paclitaxel, irinotecan), several ablative energies (radiofrequency ablation and cryothermal treatment, neodymium-doped yttrium aluminum garnet laser, high-intensity focused ultrasound), etc., has already been showed in animal models. Delivering these promising treatments reliably inside tumor, interventional EUS may probably be indispensable existence for the treatment of locally advanced PC in near future. PMID:26677434

  9. Chemical crowd control agents.

    Science.gov (United States)

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  10. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions This dataset is associated with the following...

  11. [Therapeutic education didactic techniques].

    Science.gov (United States)

    Valverde, Maite; Vidal, Mercè; Jansa, Margarida

    2012-10-01

    This article includes an introduction to the role of Therapeutic Education for Diabetes treatment according to the recommendations of the American Diabetes Association (ADA), the Diabetes Education Study Group (DESG) of the "European Association for Study of Diabetes (EASD) and the clinical Practice Guidelines (CPG) of the Spanish Ministry of Health. We analyze theoretical models and the differences between teaching vs. learning as well as current trends (including Internet), that can facilitate meaningful learning of people with diabetes and their families and relatives. We analyze the differences, similarities, advantages and disadvantages of individual and group education. Finally, we describe different educational techniques (metaplan, case method, brainstorming, role playing, games, seminars, autobiography, forums, chats,..) applicable to individual, group or virtual education and its application depending on the learning objective.

  12. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    and the drug which increased the potency of the conjugates significantly. A different approach to drug delivery is that of surface mediated drug delivery. Hydrogels of poly(vinyl alcohol) has shown great promise in this regard. The chemical opportunities of this polymer are explored through the virtues...... of reversible-addition-fragmentation chain transfer polymerization, which not only controls the size of polymer, but also allows the introduction of a terminal amine on the polymer which can be used for further conjugation. This has allowed for not only fluorescent labeling of the polymer, but also protein......The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...

  13. Homocystinuria: Therapeutic approach.

    Science.gov (United States)

    Kumar, Tarun; Sharma, Gurumayum Suraj; Singh, Laishram Rajendrakumar

    2016-07-01

    Homocystinuria is a disorder of sulfur metabolism pathway caused by deficiency of cystathionine β-synthase (CBS). It is characterized by increased accumulation of homocysteine (Hcy) in the cells and plasma. Increased homocysteine results in various vascular and neurological complications. Present strategies to lower cellular and plasma homocysteine levels include vitamin B6 intake, dietary methionine restriction, betaine supplementation, folate and vitamin B12 administration. However, these strategies are inefficient for treatment of homocystinuria. In recent years, advances have been made towards developing new strategies to treat homocystinuria. These mainly include functional restoration to mutant CBS, enhanced clearance of Hcy from the body, prevention of N-homocysteinylation-induced toxicity and inhibition of homocysteine-induced oxidative stress. In this review, we have exclusively discussed the recent advances that have been achieved towards the treatment of homocystinuria. The review is an attempt to help clinicians in developing effective therapeutic strategies and designing novel drugs against homocystinuria. PMID:27059523

  14. On being therapeutic.

    Science.gov (United States)

    Greben, S E

    1977-11-01

    Psychotherapy is both an art and a science. The art deserves as careful study as does the science. In this paper the author puts forward the view that the effectiveness of psychotherapy is dependent to a marked degree upon certain innate characteristics of the therapist: these include his character structure, his personal values, and his spontaneous personality style. In order to explore this thesis, the author examines what has been written about some successful and well-known psychotherapists, by their patients, their colleagues, and their friends. He concludes that these therapists strongly evidenced the following characteristics: empathy and concern, caring and protectiveness, warmth, therapeutic forcefulness, expectation of improvement, freedom from despair, reliability, friendliness and respectfulness. It is felt that such factors in the therapist must be taken into account in order to achieve a view of psychotherapy which is not reductionistic. PMID:589551

  15. Development of secreted proteins as biotherapeutic agents.

    Science.gov (United States)

    Bonin-Debs, Angelika L; Boche, Irene; Gille, Hendrik; Brinkmann, Ulrich

    2004-04-01

    As one of the most important classes of proteins, secreted factors account for about one-tenth of the human genome, 3000 - 4000 in total, including factors of signalling pathways, blood coagulation and immune defence, as well as digestive enzymes and components of the extracellular matrix. Secreted proteins are a rich source of new therapeutics and drug targets, and are currently the focus of major drug discovery programmes throughout the industry. Many of the most important novel drugs developed in biotechnology have resulted from the application of secreted proteins as therapeutics. Secreted proteins often circulate throughout the body and, therefore, have access to most organs and tissues. Because of that, many of the factors are themselves therapeutic agents. This paper gives an overview on the features and functions of human secreted proteins and peptides, as well as strategies by which to discover additional therapeutic proteins from the human 'secretome'. Furthermore, a variety of examples are provided for the therapeutic use of recombinant secreted proteins as 'biologicals', including features and applications of recombinant antibodies, erythropoietin, insulin, interferon, plasminogen activators, growth hormone and colony-stimulating factors. PMID:15102604

  16. Therapeutic approaches in patients with inflammatory myopathies.

    Science.gov (United States)

    Dalakas, Marinos C

    2003-06-01

    Among the group of inflammatory myopathies, dermatomyositis (DM) remains the most treatable subset responding, in the majority of the cases, to steroids, intravenous immunoglobulin (IVIg), or immunosuppressants. Inclusion-body myositis (IBM) remains the most difficult disease to treat; in uncontrolled studies immunosuppressants and steroids have not helped, and controlled trials with IVIg have been disappointing. Polymyositis (PM) is a very uncommon, although still overdiagnosed, disorder and its rarity poses difficulties in performing large-scale therapeutic studies; based on small series, however, PM seems to variably respond to immunotherapeutic interventions. The most consistent problem in the treatment of inflammatory myopathies remains the distinction of true PM from the difficult-to-treat cases of IBM, or from necrotizing myopathies and dystrophic processes where secondary endomysial inflammation may be prominent. The future in the management of PM, DM, and IBM seems promising because of the availability of new agents directed at T-cell activation molecules, cytokines, chemokines, and adhesion receptors. In IBM, the use of such immunomodulatory drugs may be combined with agents that block cytokine-enhancing amyloid or with agents that inhibit the formation and polymerization of amyloid fibrils.

  17. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    OpenAIRE

    Deepa Gupta; Jain, D. K.

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antif...

  18. Radiographic scintiscanning agent

    International Nuclear Information System (INIS)

    A new technetium-based scintiscanning agent has been prepared comprising a water soluble sup(99m)Tc-methanehydroxydiphosphonate in combination with a reducing agent selected from stannous, ferrous, chromous and titanous salts. As an additional stabilizer salts and esters of gentisic or ascorbic acids have been used. (E.G.)

  19. Agent Development Toolkits

    CERN Document Server

    Singh, Aarti; Sharma, A K

    2011-01-01

    Development of agents as well as their wide usage requires good underlying infrastructure. Literature indicates scarcity of agent development tools in initial years of research which limited the exploitation of this beneficial technology. However, today a wide variety of tools are available, for developing robust infrastructure. This technical note provides a deep overview of such tools and contrasts features provided by them.

  20. Asimovian Adaptive Agents

    CERN Document Server

    Gordon, D F

    2011-01-01

    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: ...

  1. How do agents represent?

    Science.gov (United States)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  2. FAQ about Recreational Therapy/Therapeutic Recreation

    Science.gov (United States)

    ... is the relationship between recreational therapy and therapeutic recreation? Therapeutic Recreation is the field ​​Recreational ... for individuals with disabilities." About the American Therapeutic Recreation Association: The American Therapeutic Recreation Association (ATRA) is ...

  3. Therapeutic cloning: The ethical limits

    International Nuclear Information System (INIS)

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated

  4. Clinical applications of therapeutic phlebotomy

    Science.gov (United States)

    Kim, Kyung Hee; Oh, Ki Young

    2016-01-01

    Phlebotomy is the removal of blood from the body, and therapeutic phlebotomy is the preferred treatment for blood disorders in which the removal of red blood cells or serum iron is the most efficient method for managing the symptoms and complications. Therapeutic phlebotomy is currently indicated for the treatment of hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, and nonalcoholic fatty liver disease with hyperferritinemia. This review discusses therapeutic phlebotomy and the related disorders and also offers guidelines for establishing a therapeutic phlebotomy program. PMID:27486346

  5. Clinical applications of therapeutic phlebotomy.

    Science.gov (United States)

    Kim, Kyung Hee; Oh, Ki Young

    2016-01-01

    Phlebotomy is the removal of blood from the body, and therapeutic phlebotomy is the preferred treatment for blood disorders in which the removal of red blood cells or serum iron is the most efficient method for managing the symptoms and complications. Therapeutic phlebotomy is currently indicated for the treatment of hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, and nonalcoholic fatty liver disease with hyperferritinemia. This review discusses therapeutic phlebotomy and the related disorders and also offers guidelines for establishing a therapeutic phlebotomy program.

  6. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sarah K Tasian

    2014-03-01

    Full Text Available Approximately two thirds of children with acute myeloid leukemia (AML are cured with intensive multi-agent chemotherapy. However, primary chemorefractory and relapsed AML remains a significant source of childhood cancer mortality, highlighting the need for new therapies. Further therapy intensification with traditional cytotoxic agents is not feasible given the potential for significant toxicity to normal tissues with conventional chemotherapy and the risk for long-term end-organ dysfunction. Significant emphasis has been placed upon the development of molecularly targeted therapeutic approaches for adults and children with high-risk subtypes of AML with the goal of improving remission induction and minimizing relapse. Several promising agents are currently in clinical testing or late preclinical development for AML, including monoclonal antibodies against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these therapies have been specifically tested in children with relapsed/refractory AML via phase 1 and 2 trials with a smaller number of new agents under phase 3 evaluation for children with de novo AML. Although successful identification and implementation of new drugs for children with AML remains a formidable challenge, enthusiasm for novel molecular therapeutic approaches is great given the potential for significant clinical benefit for children who will otherwise fail standard therapy.

  7. [Liver metastasis: therapeutic strategy].

    Science.gov (United States)

    Gennari, L; Doci, R; Bignami, P

    1996-01-01

    The liver is one of the most frequent sites of metastatic growth, in particular from digestive malignancies (DM). The first goal is to reduce the incidence of metastases. Adjuvant systemic chemotherapies have been demonstrated to reduce the recurrence rate and to improve survival in Dukes C colon cancer. Fluorouracil is the pivot of adjuvant treatment modulated by Leucovorin or Levamisol. A short postoperative administration of fluorouracil by intraportal route has been tested, but the results are controversial. Adjuvant treatments for different DM are under investigation. When hepatic metastases are clinically evident, therapeutic decisions depend on several factors: site and nature of primary, extent of hepatic and extrahepatic disease, patient characteristics, efficacy of treatments. A staging system should be adopted to allow a rational approach. In selected cases a locoregional treatment can achieve consistent results. Hepatic Intrarterial Chemotherapy (HIAC) for colorectal metastases achieves objective responses in more than 50% of patients. Survival seems positively affected. When feasible, Ro hepatic resection is the most effective treatment, five-year survival rate being about 30% when metastases are from colorectal cancer. Since the liver is the most frequent site of recurrence after resection, repeat resection have been successfully performed. PMID:9214269

  8. EAACI IG Biologicals task force paper on the use of biologic agents in allergic disorders

    NARCIS (Netherlands)

    Boyman, O.; Kaegi, C.; Akdis, M.; Bavbek, S.; Bossios, A.; Chatzipetrou, A.; Eiwegger, T.; Firinu, D.; Harr, T.; Knol, E.; Matucci, A.; Palomares, O.; Schmidt-Weber, C.; Simon, H. U.; Steiner, U. C.; Vultaggio, A.; Akdis, C. A.; Spertini, F.

    2015-01-01

    Biologic agents (also termed biologicals or biologics) are therapeutics that are synthesized by living organisms and directed against a specific determinant, for example, a cytokine or receptor. In inflammatory and autoimmune diseases, biologicals have revolutionized the treatment of several immune-

  9. Radioprotective Agents: Strategies and Translational Advances.

    Science.gov (United States)

    Kamran, Mohammad Zahid; Ranjan, Atul; Kaur, Navrinder; Sur, Souvik; Tandon, Vibha

    2016-04-01

    Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed. PMID:26807693

  10. Biological agents targeting beyond TNF-alpha

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2008-01-01

    Full Text Available Biological agents represent an important addition to the therapies for immuno-inflammatory conditions and have a great impact on the disease course and quality of life of these patients. However, recent reports of serious infections like tuberculosis, demyelinating and neurodegenerative diseases, pancytopenia, cardiovascular diseases, etc. after anti-TNF therapy raised questions on their safety. Hence, focus is shifted towards drugs targeting cytokine checkpoints in the inflammatory cascades beyond TNF-a. Existing therapeutic targets include the biological agents acting as antagonists of various inflammatory cytokines (Anakinra, Tocilizumab, Atlizumab and modulators of CD80 or CD86-CD28 co-stimulatory signal (Abatacept, CD2 receptors on T-cells (Alefacept, CD11a, subunit of leukocyte function-associated antigen 1 (Efalizumab, vitronectin receptor and CD20 antigen on pre-B, immature and mature B cells (Rituximab. With the introduction of these novel molecules the future for immunomodulatory intervention in rheumatology, asthma, crohn′s disease, septic shock etc. looks very promising. These novel therapeutic agents could truly give a new hope to the clinician to modify the disease and achieve tangible improvements in the lives of the patients.

  11. Biological warfare agents

    Directory of Open Access Journals (Sweden)

    Duraipandian Thavaselvam

    2010-01-01

    Full Text Available The recent bioterrorist attacks using anthrax spores have emphasized the need to detect and decontaminate critical facilities in the shortest possible time. There has been a remarkable progress in the detection, protection and decontamination of biological warfare agents as many instrumentation platforms and detection methodologies are developed and commissioned. Even then the threat of biological warfare agents and their use in bioterrorist attacks still remain a leading cause of global concern. Furthermore in the past decade there have been threats due to the emerging new diseases and also the re-emergence of old diseases and development of antimicrobial resistance and spread to new geographical regions. The preparedness against these agents need complete knowledge about the disease, better research and training facilities, diagnostic facilities and improved public health system. This review on the biological warfare agents will provide information on the biological warfare agents, their mode of transmission and spread and also the detection systems available to detect them. In addition the current information on the availability of commercially available and developing technologies against biological warfare agents has also been discussed. The risk that arise due to the use of these agents in warfare or bioterrorism related scenario can be mitigated with the availability of improved detection technologies.

  12. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  13. Users, Bystanders and Agents

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina

    2015-01-01

    Human-agent interaction (HAI), especially in the field of embodied conversational agents (ECA), is mainly construed as dyadic communication between a human user and a virtual agent. This is despite the fact that many application scenarios for future ECAs involve the presence of others. This paper...... the construction of the agent’s identity, and (3) how HAI, as a mediated interaction, is framed by an asymmetric participation framework. The paper concludes by suggesting various participation roles, which may inform development of ECAs....

  14. Therapeutical aspect of trichomoniasis

    Directory of Open Access Journals (Sweden)

    Vukićević Jelica

    2003-01-01

    Full Text Available Trichomoniasis is frequent, parasitic and sexually transmitted infection of genitourinary tract. It is treated by metronidazole (5-nitroimidazole according to protocol recommended by Center for Disease Control (CDC formerly called: Communicable Disease Center [19]. The resistance of Trichomonas vaginalis (TV strains to metronidazole (MND was described in USA in 1960, and later on in many European countries [8, 9, 10, 11, 12, 13]. In these cases, due to persistent trichomonas infection, it is necessary to repeat MND treatment with moderate modification of dose and/or length of its application. Nevertheless, oncogenic and toxic effects of MND have to be taken into consideration. OBJECT The aim of this study was to investigate and analyze the incidence of TV in STD and lower susceptibility of certain TV strains to MND were analyzed. MATERIAL AND METHODS In three-year period (1999-2001 612 patients (244 females and 368 males suspected of STD were examined clinically and microbiologically at the Institute of Dermatovenereology in Belgrade. The patients detected for TV were treated according to CDC protocol. The affected were considered cured if there was no manifest clinical infection, and no TV verified by microbiological test. Results TV was isolated in 216 patients (35.29 % of all subjects. Trichomonas infection was found in 90 (36.88 % out of 244 tested females and in 126 (32.34 % of 368 males. Clinically manifested infection, with extensive urethral and vaginal secretion, was recorded in 161 patients, while the asymptomatic form was found in 55 subjects. This result indicates the predominance of manifested trichomonas infections (75.54 % of cases. The difference of distribution of clinical forms of trichomoniasis, in relation to sex, was not statistically significant (c2=0.854; p>0.05. The patients with verified trichomonas infection were treated by metronidazole according to CDC protocol. The recommended therapeutical scheme consisted of three

  15. The use of novel agents in multiple myeloma patients with hepatic impairment

    OpenAIRE

    Stansfield, Lindsay C; Gonsalves, Wilson I.; Buadi, Francis K.

    2015-01-01

    Novel drugs such as immunomodulators and proteasome inhibitors have improved the survival of patients with multiple myeloma. Like all therapeutic agents, appropriate dosing based on metabolism and clearance is important to maintain efficacy while avoiding toxicity. Hepatic impairment (HI) in multiple myeloma patients is rare but well described either due to disease or therapy-related factors. However, limited data are available on the appropriate use and dosing of the novel agent therapeutics...

  16. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  17. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions

    Directory of Open Access Journals (Sweden)

    Jonathan P Wisor

    2013-10-01

    Full Text Available Modafinil, in its two clinical formulations (Provigil® and Nuvigil®, is a widely prescribed wake-promoting therapeutic agent. It binds competitively to the cell membrane dopamine transporter and is dependent on catecholaminergic (dopaminergic and adrenergic signaling for its wake-promoting effects. The clinical spectrum of effects for modafinil is distinct from the effects seen with other catecholaminergic agents. Relative to other commonly used agents that act through catecholaminergic mechanisms, modafinil has a relatively low abuse potential, produces wakefulness with an attenuated compensatory sleep recovery thereafter, and does not ameliorate cataplexy in narcolepsy. These clinically relevant phenomenological differences between modafinil and agents such as amphetamines and cocaine do not eliminate catecholaminergic effects as a possible mediator of its wake-promoting action; they merely reflect its unique pharmacological profile. Modafinil is an exceptionally weak, but apparently very selective, dopamine transporter inhibitor. The pharmacodynamic response to modafinil, as measured by dopamine levels in brain microdialysate, is protracted relative to other agents that act via catecholaminergic mechanisms. The conformational constraints on the interaction of modafinil with the dopamine transporter—and probably, as a consequence, its effects on trace amine receptor signaling in the catecholaminergic cell—are unique among catecholaminergic agents. These unique pharmacological properties of modafinil should be considered both in seeking to thoroughly understand its putatively elusive mechanism of action and in the design of novel therapeutic agents.

  18. Bacteriophage Procurement for Therapeutic Purposes.

    Science.gov (United States)

    Weber-Dąbrowska, Beata; Jończyk-Matysiak, Ewa; Żaczek, Maciej; Łobocka, Małgorzata; Łusiak-Szelachowska, Marzanna; Górski, Andrzej

    2016-01-01

    Bacteriophages (phages), discovered 100 years ago, are able to infect and destroy only bacterial cells. In the current crisis of antibiotic efficacy, phage therapy is considered as a supplementary or even alternative therapeutic approach. Evolution of multidrug-resistant and pandrug-resistant bacterial strains poses a real threat, so it is extremely important to have the possibility to isolate new phages for therapeutic purposes. Our phage laboratory and therapy center has extensive experience with phage isolation, characterization, and therapeutic application. In this article we present current progress in bacteriophages isolation and use for therapeutic purposes, our experience in this field and its practical implications for phage therapy. We attempt to summarize the state of the art: properties of phages, the methods for their isolation, criteria of phage selection for therapeutic purposes and limitations of their use. Perspectives for the use of genetically engineered phages to specifically target bacterial virulence-associated genes are also briefly presented. PMID:27570518

  19. Metrics for antibody therapeutics development.

    Science.gov (United States)

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed. PMID:20930555

  20. Metrics for antibody therapeutics development.

    Science.gov (United States)

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed.

  1. Clinical applications of therapeutic phlebotomy

    Directory of Open Access Journals (Sweden)

    Kim KH

    2016-07-01

    Full Text Available Kyung Hee Kim,1 Ki Young Oh,2 1Department of Laboratory Medicine, Gachon University Gil Medical Center, Incheon, 2Department of Physical Medicine and Rehabilitation, Soonchunhyang University, Cheonan Hospital, Cheonan, South Korea Abstract: Phlebotomy is the removal of blood from the body, and therapeutic phlebotomy is the preferred treatment for blood disorders in which the removal of red blood cells or serum iron is the most efficient method for managing the symptoms and complications. Therapeutic phlebotomy is currently indicated for the treatment of hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, and nonalcoholic fatty liver disease with hyperferritinemia. This review discusses therapeutic phlebotomy and the related disorders and also offers guidelines for establishing a therapeutic phlebotomy program. Keywords: therapeutic phlebotomy, hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, nonalcoholic fatty liver disease

  2. Agent Standards Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the work herein proposed is the development of standards for software autonomous agents. These standards are essential to achieve software...

  3. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model

    DEFF Research Database (Denmark)

    Thomsen, K; Christophersen, L; Bjarnsholt, T;

    2016-01-01

    -P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. METHODS: P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. RESULTS...

  4. Anti-pseudomona and Anti-bacilli Activity of Some Medicinal Plants of Iran

    Directory of Open Access Journals (Sweden)

    Gholam Hosein Shahidi Bonjar

    2003-10-01

    Full Text Available The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by In Vitro bioassays using agar diffusion-method against standard strains of Pseudomonas aeruginosa, P. fluorescens, Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. From 180 plant species of 72 families, 78 species (43.3% in 42 families (58.3% showed antibacterial activities against B. cereus (88.4%, B. subtilis (39.7%, B. pumilis (37.1%, P. fluorescens (37.1% and P. aeruginos (10.2%. The most active plant families were Apiaceae, Compositae and Labiatae with 9, 8 and 7 active plant species respectively. Minimum inhibitory concentrations (MIC of the active plants were determined using two fold serial dilutions. Most active plant against Bacilli was Myrtus communis L. with MIC of 1.87 mg/ml. For Pseudomonas species, Dianthus caryophyllus L. and Terminalia chebula (Gaertner Retz. were more active with the MIC of 0.46 mg/ml for P. fluorescens and of 1.87 mg/ml for P. aeruginosa respectively.

  5. Anti-pseudomona and Anti-bacilli Activity of Some Medicinal Plants of Iran

    OpenAIRE

    Gholam Hosein Shahidi Bonjar; Ashraf Karimi Nik; Mohammad Reza Heydari; Mohammad Hassan Ghasemzadeh; Parvin Rashid Farrokhi; Mahmood Reza Moein; Shahla Mansouri; Alireza Foroumadi

    2003-01-01

    The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by In Vitro bioassays using agar diffusion-method against standard strains of Pseudomonas aeruginosa, P. fluorescens, Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. From 180 plant species of 72 families, 78 spec...

  6. Programming Service Oriented Agents

    OpenAIRE

    Hirsch, Benjamin; Konnerth, Thomas; Burkhardt, Michael; Albayrak, Sahin

    2010-01-01

    This paper introduces a programming language for service-oriented agents. JADL++ combines the ease of use of scripting-languages with a state-of-the-art service oriented approach which allows the seamless integration of web-services. Furthermore, the language includes OWL-based ontologies for semantic descriptions of data and services, thus allowing agents to make intelligent decisions about service calls.

  7. Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers

    OpenAIRE

    Yuanyuan Yu; Chao Liang; Quanxia Lv; Defang Li; Xuegong Xu; Baoqin Liu; Aiping Lu; Ge Zhang

    2016-01-01

    Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the det...

  8. Galectins as therapeutic targets for hematological malignancies: a hopeful sweetness.

    Science.gov (United States)

    Pena, Camilo; Mirandola, Leonardo; Figueroa, Jose A; Hosiriluck, Nattamol; Suvorava, Natallia; Trotter, Kayley; Reidy, Adair; Rakhshanda, Rahman; Payne, Drew; Jenkins, Marjorie; Grizzi, Fabio; Littlefield, Lauren; Chiriva-Internati, Maurizio; Cobos, Everardo

    2014-09-01

    Galectins are family of galactose-binding proteins known to play critical roles in inflammation and neoplastic progression. Galectins facilitate the growth and survival of neoplastic cells by regulating their cross-talk with the extracellular microenvironment and hampering anti-neoplastic immunity. Here, we review the role of galectins in the biology of hematological malignancies and their promise as potential therapeutic agents in these diseases. PMID:25405162

  9. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    OpenAIRE

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2012-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newe...

  10. PHYTOCHEMICAL AND THERAPEUTIC POTENTIAL OF PIPER LONGUM LINN A REVIEW

    OpenAIRE

    Chauhan Khushbu; Solanki Roshni; Patel Anar; Macwan Carol; Patel Mayuree

    2011-01-01

    Medicinal plants have shown tremendous potential for the development of the new drug molecules for various serious diseases. Many plant derived products have found to play an important role in various disease conditions. Piper longum Linn. is a native of the Indo-Malaya region, belongs to family Piperaceae. Piper longum Linn. (Piperaceae) has been used as a therapeutic agent in the treatment of various pathological conditions. The tribal population uses the plant for cardiovascular activities...

  11. Therapeutic postprostatectomy irradiation.

    Science.gov (United States)

    Youssef, Emad; Forman, Jeffrey D; Tekyi-Mensah, Samuel; Bolton, Susan; Hart, Kim

    2002-06-01

    factors. The results of therapeutic radiation for patients with elevated postprostatectomy PSA levels are sufficiently poor; other strategies should be explored as alternatives, including early adjuvant postprostatectomy irradiation or the use of combined hormonal and radiation therapy in the salvage situation. PMID:15046710

  12. Avian cytokines - the natural approach to therapeutics.

    Science.gov (United States)

    Lowenthal, J W; Lambrecht, B; van den Berg, T P; Andrew, M E; Strom, A D; Bean, A G

    2000-01-01

    While the effective use of antibiotics for the control of human disease has saved countless lives and has increased life expectancy over the past few decades, there are concerns arising from their usage in livestock. The use of antibiotic feed additives in food production animals has been linked to the emergence in the food chain of multiple drug-resistant bacteria that appear impervious to even the most powerful antimicrobial agents. Furthermore, the use of chemical antimicrobials has led to concerns involving environmental contamination and unwanted residues in food products. The imminent banning of antibiotic usage in livestock feed has intensified the search for environmentally-friendly alternative methods to control disease. Cytokines, as natural mediators and regulators of the immune response, offer exciting new alternatives to conventional chemical-based therapeutics. The utilisation of cytokines is becoming more feasible, particularly in poultry, with the recent cloning of a number of avian cytokine genes. Chickens offer an attractive small animal model system with which to study the effectiveness of cytokine therapy in the control of disease in intensive livestock. In this report we will review the status of avian cytokines and focus on our recent studies involving the therapeutic potential of chicken interferon gamma (ChIFN-gamma) as a vaccine adjuvant and a growth promoter. PMID:10717298

  13. Mechanisms and therapeutic effectiveness of lactobacilli.

    Science.gov (United States)

    Di Cerbo, Alessandro; Palmieri, Beniamino; Aponte, Maria; Morales-Medina, Julio Cesar; Iannitti, Tommaso

    2016-03-01

    The gut microbiome is not a silent ecosystem but exerts several physiological and immunological functions. For many decades, lactobacilli have been used as an effective therapy for treatment of several pathological conditions displaying an overall positive safety profile. This review summarises the mechanisms and clinical evidence supporting therapeutic efficacy of lactobacilli. We searched Pubmed/Medline using the keyword 'Lactobacillus'. Selected papers from 1950 to 2015 were chosen on the basis of their content. Relevant clinical and experimental articles using lactobacilli as therapeutic agents have been included. Applications of lactobacilli include kidney support for renal insufficiency, pancreas health, management of metabolic imbalance, and cancer treatment and prevention. In vitro and in vivo investigations have shown that prolonged lactobacilli administration induces qualitative and quantitative modifications in the human gastrointestinal microbial ecosystem with encouraging perspectives in counteracting pathology-associated physiological and immunological changes. Few studies have highlighted the risk of translocation with subsequent sepsis and bacteraemia following probiotic administration but there is still a lack of investigations on the dose effect of these compounds. Great care is thus required in the choice of the proper Lactobacillus species, their genetic stability and the translocation risk, mainly related to inflammatory disease-induced gut mucosa enhanced permeability. Finally, we need to determine the adequate amount of bacteria to be delivered in order to achieve the best clinical efficacy decreasing the risk of side effects.

  14. Ondansetron. Therapeutic use as an antiemetic

    Energy Technology Data Exchange (ETDEWEB)

    Milne, R.J.; Heel, R.C. (Adis Drug Information Services, Auckland (New Zealand))

    1991-04-01

    Ondansetron (GR 38032F) is a highly selective 5-HT3 receptor antagonist, one of a new class of compounds which may have several therapeutic applications. Animal and clinical studies show that ondansetron reduces the 24-hour incidence and severity of nausea and vomiting induced by cytotoxic drugs, including cisplatin, and by single exposure, high dose radiation. Ondansetron is more effective than high dose metoclopramide in the 24 hours following chemotherapy, and preliminary clinical evidence suggests that it is equally effective in the following 4 days. It is also more effective than the moderate doses of metoclopramide used to suppress emesis following radiotherapy. The antiemetic efficacy of ondansetron is enhanced by dexamethasone in cisplatin-treated patients. Importantly, extrapyramidal effects have not been reported with ondansetron. Further comparisons are required with standard combination antiemetic therapy to complement the data presently available. Thus, ondansetron is a promising new agent for prophylaxis against nausea and vomiting in chemotherapy and radiotherapy. It may be particularly useful in young and elderly patients who are more susceptible to extrapyramidal symptoms induced by high dose metoclopramide. With its improved tolerability and clinical response profiles, ondansetron represents an important advance in a difficult area of therapeutics. 101 refs.

  15. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami

    2006-01-01

    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  16. MicroRNA therapeutics: principles, expectations, and challenges

    Institute of Scientific and Technical Information of China (English)

    Rajesha Rupaimoole; Hee-Dong Han; Gabriel Lopez-Berestein; Anil K. Sood

    2011-01-01

    MicroRNAs (miRNAs) are a class of highly abundant non-coding RNA molecules that are involved in several biological processes. Many miRNAs are often deregulated in several diseases including cancer. There is substantial interest in exploiting miRNAs for therapeutic applications. In this editorial, we briefly review current advances in the use of miRNAs or antisense oligonucleotides (antagomirs) for such therapies. One of the key issues related to therapy using miRNAs is degradation of naked particles in vivo. To overcome this limitation, delivery systems for miRNA-based therapeutic agents have been developed, which hold tremendous potential for improving therapeutic outcome of cancer patients.

  17. Radio-protective role of antioxidant agents

    Directory of Open Access Journals (Sweden)

    Alireza Shirazi

    2012-10-01

    Full Text Available Ionizing radiation interacts with biological systems to produce reactive oxygen species and reactive nitrogen species which attack various cellular components. Radio-protectors act as prophylactic agents to shield healthy cells and tissues from the harmful effects of radiation. Past research on synthetic radio-protectors has brought little success, primarily due to the various toxicity-related problems. Results of experimental research show that antioxidant nutrients, such as vitamin E and herbal products and melatonin, are protective against the damaging effects of radiation, with less toxicity and side effects. Therefore, we propose that in the future, antioxidant radio-protective agents may improve the therapeutic index in radiation oncology treatments.

  18. Second generation photodynamic agents: a review.

    Science.gov (United States)

    Sternberg, E D; Dolphin, D

    1993-10-01

    Over the last decade, laser treatment of neoplastic diseases has become routine. The ability of these light-induced therapies to effect positive results is increased with the utilization of photosensitizing dyes. The approval of Photofrin in Canada as a first generation photodynamic therapeutic agent for the treatment of some forms of bladder cancer is being followed by the development of other agents with improved properties. At this time a number of second generation photosensitizing dyes are under study in phase I/II clinical trials. A review of the status of these trials along with mechanistic aspects is reviewed in this article. In addition, a review of the status of lasers to be utilized for photodynamic therapy gives some indication of which instruments could be considered for this therapy in the future. PMID:10146514

  19. Potential therapeutic uses of mecamylamine and its stereoisomers.

    Science.gov (United States)

    Nickell, Justin R; Grinevich, Vladimir P; Siripurapu, Kiran B; Smith, Andrew M; Dwoskin, Linda P

    2013-07-01

    Mecamylamine (3-methylaminoisocamphane hydrochloride) is a nicotinic parasympathetic ganglionic blocker, originally utilized as a therapeutic agent to treat hypertension. Mecamylamine administration produces several deleterious side effects at therapeutically relevant doses. As such, mecamylamine's use as an antihypertensive agent was phased out, except in severe hypertension. Mecamylamine easily traverses the blood-brain barrier to reach the central nervous system (CNS), where it acts as a nicotinic acetylcholine receptor (nAChR) antagonist, inhibiting all known nAChR subtypes. Since nAChRs play a major role in numerous physiological and pathological processes, it is not surprising that mecamylamine has been evaluated for its potential therapeutic effects in a wide variety of CNS disorders, including addiction. Importantly, mecamylamine produces its therapeutic effects on the CNS at doses 3-fold lower than those used to treat hypertension, which diminishes the probability of peripheral side effects. This review focuses on the pharmacological properties of mecamylamine, the differential effects of its stereoisomers, S(+)- and R(-)-mecamylamine, and the potential for effectiveness in treating CNS disorders, including nicotine and alcohol addiction, mood disorders, cognitive impairment and attention deficit hyperactivity disorder.

  20. Monoclonal Antibody-Based Therapeutics for Melioidosis and Glanders

    Directory of Open Access Journals (Sweden)

    Hyung-Yong Kim

    2011-01-01

    Full Text Available Problem statement: Burkholderia Pseudomallei (BP and B. Mallei (BM were two closely related pathogenic gram-negative bacteria. They were the causative agents of melioidosis and glanders, respectively and are recognized by CDC as category B select agents. Significant efforts had been devoted to developing the diagnostic and therapeutic measures against these two pathogens. Monoclonal antibody-based therapeutic was a promising targeted therapy to fight against melioidosis and glanders. Valuable findings have been reported by different groups in their attempt to identify vaccine targets against these two pathogens. Approach: Our group has generated neutralizing Monoclonal Antibodies (MAbs against BP and BM and characterized them by both in vitro and in vivo experiments. We present an overview of the MAb-based therapeutic approaches against BP and BM and demonstrate some of our efforts for developing chimeric and fully human MAbs using antibody engineering. Results: Throughout conventional mouse hybridoma technique and antibody engineering (chimerization and in vitro antibody library techniques, we generated 10 chimeric MAbs (3 stable MAbs and 7 transient MAbs and one fully human MAb against BP and BM. In addition, we present the reactive antigen profiles of these MAbs. Our approaches had potentials to accelerate the development of therapeutics for melioidosis and glanders in humans. Conclusion: Our experience and findings presented here will be valuable for choosing the best antigenic targets and ultimately for the production of effective vaccines for these two pathogens.

  1. [Therapeutics for future treatment of uveitis].

    Science.gov (United States)

    Deschênes, J

    2000-01-01

    The increased knowledge in immunology and the progresses of pharmacology have improved our treatment of autoimmune diseases. The main anti-inflammatory effects of corticosteroids are an attenuation of the hypersensibility reactions, a sequestration of intravascular lymphocytes and an inhibition of the production of cytokines and eicosanoids. The non-steroidal anti-inflammatory drugs (NSAID's) form another group of medications particularly useful for the treatment of chronic uveitis. Several Cox-2 inhibitory medications are at the moment under clinical investigation and some are commercially available. One of their characteristics is to present less of the most undesirable side effects seen with conventional NSAID's like irritation of the gastro-intestinal tractus and platelets aggregation inhibition. Agents like cyclophosphamide, leukeran, imuran, methotrexate and cyclosporin have been used extensively for the treatment of severe uveitis. Because of its efficacy and safety, methotrexate is the best immunosuppressive agent to be tried for the treatment of chronic uveitis. However, immunosuppressive treatments and corticosteroids have many side effects and are not very selective. To improve our therapeutic arsenal, other treatments are being investigated for the treatment of severe uveitis. Manipulations of cytokines expression by Th1 lymphocytes will be one of then. PMID:10925522

  2. Epigenetic associations in relation to cardiovascular prevention and therapeutics.

    Science.gov (United States)

    Voelter-Mahlknecht, Susanne

    2016-01-01

    Cardiovascular diseases (CVD) increasingly burden societies with vast financial and health care problems. Therefore, the importance of improving preventive and therapeutic measures against cardiovascular diseases is continually growing. To accomplish such improvements, research must focus particularly on understanding the underlying mechanisms of such diseases, as in the field of epigenetics, and pay more attention to strengthening primary prevention. To date, preliminary research has found a connection between DNA methylation, histone modifications, RNA-based mechanisms and the development of CVD like atherosclerosis, cardiac hypertrophy, myocardial infarction, and heart failure. Several therapeutic agents based on the findings of such research projects are currently being tested for use in clinical practice. Although these tests have produced promising data so far, no epigenetically active agents or drugs targeting histone acetylation and/or methylation have actually entered clinical trials for CVDs, nor have they been approved by the FDA. To ensure the most effective prevention and treatment possible, further studies are required to understand the complex relationship between epigenetic regulation and the development of CVD. Similarly, several classes of RNA therapeutics are currently under development. The use of miRNAs and their targets as diagnostic or prognostic markers for CVDs is promising, but has not yet been realized. Further studies are necessary to improve our understanding of the involvement of lncRNA in regulating gene expression changes underlying heart failure. Through the data obtained from such studies, specific therapeutic strategies to avoid heart failure based on interference with incRNA pathways could be developed. Together, research and testing findings raise hope for enhancing the therapeutic armamentarium. This review presents the currently available data concerning epigenetic mechanisms and compounds involved in cardiovascular diseases

  3. Biological Warfare Agents

    Directory of Open Access Journals (Sweden)

    Dev Vrat Kamboj

    2006-10-01

    Full Text Available There is a long historic record of use of biological warfare (BW agents by warring countriesagainst their enemies. However, the frequency of their use has increased since the beginningof the twentieth century. World war I witnessed the use of anthrax agent against human beingsand animals by Germans, followed by large-scale field trials by Japanese against war prisonersand Chinese population during world war II. Ironically, research and development in biologicalwarfare agents increased tremendously after the Geneva Protocol, signed in 1925, because ofits drawbacks which were overcome by Biological and Toxin Weapons Convention (BTWC in1972. Biological warfare programme took back seat after the 1972 convention but biologicalagents regained their importance after the bioterrorist attacks of anthrax powder in 2001. In thelight of these attacks, many of which turned out to be hoax, general awareness is required aboutbiological warfare agents that can be used against them. This review has been written highlightingimportant biological warfare agents, diseases caused by them, possible therapies and otherprotection measures.

  4. Neuropeptide Y (NPY) as a therapeutic target for neurodegenerative diseases.

    Science.gov (United States)

    Duarte-Neves, Joana; Pereira de Almeida, Luís; Cavadas, Cláudia

    2016-11-01

    Neuropeptide Y (NPY) and NPY receptors are widely expressed in the mammalian central nervous system. Studies in both humans and rodent models revealed that brain NPY levels are altered in some neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease. In this review, we will focus on the roles of NPY in the pathological mechanisms of these disorders, highlighting NPY as a neuroprotective agent, as a neural stem cell proliferative agent, as an agent that increases trophic support, as a stimulator of autophagy and as an inhibitor of excitotoxicity and neuroinflammation. Moreover, the effect of NPY in some clinical manifestations commonly observed in Alzheimer's disease, Parkinson's disease, Huntington's disease and Machado-Joseph disease, such as depressive symptoms and body weight loss, are also discussed. In conclusion, this review highlights NPY system as a potential therapeutic target in neurodegenerative diseases.

  5. How to Use Equipment Therapeutically.

    Science.gov (United States)

    Bowne, Douglas

    1986-01-01

    Shares therapeutic and economic practices surrounding equipment used in New York's Higher Horizons adventure program of therapy for troubled youth. Encourages educators, therapists, and administrators to explore relationship between equipment selection, program goals, and clients. (NEC)

  6. Agent Oriented Programming进展%Advances in Agent Oriented Programming

    Institute of Scientific and Technical Information of China (English)

    王一川; 石纯一

    2002-01-01

    Agent-oriented programming (AOP) is a framework to develop agents, and it aims to link the gap betweentheory and practical in agent research. The core of an AOP framework is its language and semantics. In this paper,we propose the necessary properties which agents should have, and then give a summary and analysis about differentAOP languages based on these properties.

  7. Attachment theory and therapeutic relationships

    OpenAIRE

    Boysan, Zehra

    2015-01-01

    The aims of this study were to examine the associations between current self-reported attachment styles, retrospective reports of childhood experiences, and the development of the therapeutic alliance. It was hypothesised that anxious and avoidant attachment would be correlated with negative childhood experiences and that both attachment anxiety and avoidance would be inversely correlated with the therapeutic alliance. The third hypothesis stated that negative childhood recollections would co...

  8. [Therapeutic touch and anorexia nervosa].

    Science.gov (United States)

    Satori, Nadine

    2016-01-01

    An innovative practice, therapeutic touch has been used for around ten years in the treatment of eating disorders. Delivered by nurse clinicians having received specific training, this approach is based on nursing diagnoses which identify the major symptoms of this pathology. The support is built around the body and its perceptions. Through the helping relationship, it mobilises the patient's resources to favour a relationship of trust, a letting-go, physical, psychological and emotional relaxation, and improves the therapeutic alliance. PMID:27615696

  9. Metrics for antibody therapeutics development

    OpenAIRE

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approv...

  10. Therapeutic cloning: promises and issues

    OpenAIRE

    Kfoury, Charlotte

    2007-01-01

    Advances in biotechnology necessitate both an understanding of scientific principles and ethical implications to be clinically applicable in medicine. In this regard, therapeutic cloning offers significant potential in regenerative medicine by circumventing immunorejection, and in the cure of genetic disorders when used in conjunction with gene therapy. Therapeutic cloning in the context of cell replacement therapy holds a huge potential for de novo organogenesis and the permanent treatment o...

  11. Therapeutic Vaccines for Chronic Infections

    Science.gov (United States)

    Autran, Brigitte; Carcelain, Guislaine; Combadiere, Béhazine; Debre, Patrice

    2004-07-01

    Therapeutic vaccines aim to prevent severe complications of a chronic infection by reinforcing host defenses when some immune control, albeit insufficient, can already be demonstrated and when a conventional antimicrobial therapy either is not available or has limited efficacy. We focus on the rationale and challenges behind this still controversial strategy and provide examples from three major chronic infectious diseases-human immunodeficiency virus, hepatitis B virus, and human papillomavirus-for which the efficacy of therapeutic vaccines is currently being evaluated.

  12. Developing Enculturated Agents

    DEFF Research Database (Denmark)

    Rehm, Matthias

    2010-01-01

    on our cultural profiles that provide us with heuristics of behavior and interpretation. Thus, integrating cultural aspects of communicative behaviors in virtual agents and thus enculturating such systems seems to be inevitable. But culture is a multi-defined domain and thus a number of pitfalls arise......Embodied Conversational Agents (ECAs) are complex multimodal systems with rich verbal and nonverbal repertoires. There human-like appearance raises severe expectations regarding natural communicative behaviors on the side of the user. But what is regarded as “natural” is to a large degree dependent...... that have to be avoided in the endeavor. This chapter presents some of the pitfalls for enculturating interactive systems and presents strategies on how to avoid these pitfalls in relation to the standard development process of Embodied Conversational Agents....

  13. Agents unleashed a public domain look at agent technology

    CERN Document Server

    Wayner, Peter

    1995-01-01

    Agents Unleashed: A Public Domain Look at Agent Technology covers details of building a secure agent realm. The book discusses the technology for creating seamlessly integrated networks that allow programs to move from machine to machine without leaving a trail of havoc; as well as the technical details of how an agent will move through the network, prove its identity, and execute its code without endangering the host. The text also describes the organization of the host's work processing an agent; error messages, bad agent expulsion, and errors in XLISP-agents; and the simulators of errors, f

  14. El agente encubierto

    OpenAIRE

    Anaya Marcos, María del Carmen

    2015-01-01

    [ES] El trabajo versa sobre la figura del agente encubierto. Debemos enmarcar tal medida de investigación dentro del ámbito de la criminalidad organizada. Actualmente, estamos asistiendo a una proliferación de la delincuencia organizada. La sociedad ha evolucionado, y con ella la delincuencia. Fruto de tal evolución fue necesario incluir en nuestra Ley de Enjuiciamiento Criminal medidas extraordinarias de investigación, y una de ellas es el agente encubierto. Se trata de una medida muy polémi...

  15. Programming multi-agent systems

    NARCIS (Netherlands)

    Dastani, Mehdi

    2015-01-01

    With the significant advances in the area of autonomous agents and multi-agent systems in the last decade, promising technologies for the development and engineering of multi-agent systems have emerged. The result is a variety of agent-oriented programming languages, development frameworks, executio

  16. Software Agent Techniques in Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1998-01-01

    This paper briefly presents studies of software agent techniques and outline aspects of these which can be applied in design agents in integrated civil engineering design environments.......This paper briefly presents studies of software agent techniques and outline aspects of these which can be applied in design agents in integrated civil engineering design environments....

  17. Trading Agents for Roaming Users

    OpenAIRE

    Boman, Magnus; Bylund, Markus; Espinoza, Fredrik; Danielson, Mats; Lyback, David

    2002-01-01

    Some roaming users need services to manipulate autonomous processes. Trading agents running on agent trade servers are used as a case in point. We present a solution that provides the agent owners with means to upkeeping their desktop environment, and maintaining their agent trade server processes, via a briefcase service.

  18. Report on the Technical Meeting on Therapeutic Radiopharmaceuticals

    International Nuclear Information System (INIS)

    The purpose of the TM was to provide an experts' platform to facilitate exploring the current status and future directions on therapeutic radiopharmaceuticals. The invited talks and presentations in the TM were in the following topics: - Radionuclide Production; - Production and availability of alpha emitters and their radiopharmaceuticals; - Therapeutic radiopharmaceutical chemistry; - Targets and biological evaluation; - Medical physics and dosimetry; - Clinical applications including radioimmunotherapy and clinical needs; - Peptide receptor mediated therapy Panel discussions: - Radionuclide therapy using alpha emitters; - Regulatory challenges with therapeutic radiopharmaceuticals; - International activities in radionuclide therapy. he technical meeting generated a large interest among scientists and physicians working in the field of targeted therapy using radiopharmaceuticals. Participants from both developed and developing MS reported on recent developments on the research work and clinical studies going on in the field and provided their views on the future developments in this field. The unexpected high number of participants and the high number of presentations with exceptional quality underlines the great interest of scientists and professionals in therapeutic applications using radiolabelled drugs / biomolecules. The intensive discussions including panels specified the challenges in the future on developing novel agents and to finally use them for the benefit of patients. The IAEA can play as vital role in streamlining developments and to provide tools to overcome scientific, professional and regulatory challenges in the field of therapeutic radiopharmaceuticals

  19. Agents of Change

    DEFF Research Database (Denmark)

    Hansen, Jens Aage; Lehmann, Martin

    2004-01-01

    at large, it emphasises universities as key change agents and providers in new learning, including tools such as project based and problem oriented learning (PBL) as well as information and communication technology (ICT); as providers of competent and motivated graduates to fill key positions in society...

  20. Programming Agents with Emotions

    NARCIS (Netherlands)

    Dastani, Mehdi; Floor, Chr.; Meyer, John-Jules Charles

    2014-01-01

    In this paper we show how a cognitive agent programming language can be endowed with ways to program emotions. In particular we show how the programming language 2APL can be augmented so that it can work together with the computational emotion model ALMA to deal with appraisal, emotion/mood generati

  1. The need for agents

    DEFF Research Database (Denmark)

    Abolfazlian, Ali Reza Kian

    1996-01-01

    I denne artikel arbejder vi med begrebet Intelligent Software Agents (ISAs), som autonomous, social, reactive, proactive og subservient computer systemer. Baseret på socialt psykologiske argumenter viser jeg endvidere, hvordan både den menneskelige natur og det teknologiske stadium, som mennesket...

  2. SECOND BUYING AGENT

    CERN Multimedia

    SPL - SERVICES ACHATS

    2000-01-01

    Last year the buying agent LOGITRADE started operations on the CERN site, processing purchasing requests for well-defined families of products up to a certain value. It was planned from the outset that a second buying agent would be brought in to handle the remaining product families. So, according to that plan, the company CHARLES KENDALL will be commencing operations at CERN on 8 May 2000 in Building 73, 1st floor, offices 31 and 35 (phone and fax numbers to be announced).Each buying agent will have its own specific list of product families and will handle purchasing requests up to 10'000 CHF.Whenever possible they will provide the requested supplies at a price (including the cost of their own services) which must be equivalent to or lower than the price mentioned on the purchasing request, changing the supplier if necessary. If a lower price cannot be obtained, agents will provide the necessary administrative support free of charge.To ensure that all orders are processed in the best possible conditions, us...

  3. Build Autonomic Agents with ABLE

    Institute of Scientific and Technical Information of China (English)

    吴吉义

    2007-01-01

    The IBM Agent Building and Learning Environment(ABLE) provides a lightweight Java~(TM) agent frame- work,a comprehensive JavaBeansTM library of intelligent software components,a set of development and test tools, and an agent platform.After the introduction to ABLE,classes and interfaces in the ABLE agent framework were put forward.At last an autonomic agent that is an ABLE-based architecture for incrementally building autonomic systems was discussed.

  4. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    OpenAIRE

    Wu, Chia-Yung; Kole T Roybal; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2015-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen spec...

  5. Conflicts in the therapeutic field

    Directory of Open Access Journals (Sweden)

    Antonino Aprea

    2012-06-01

    Full Text Available How the analytical knowledge that compare human consciousness with that, even more disturbing, moving behind his fifth can be said to be “for peace”? It can be - and this will be the contribution of the proposal - the same tortuous and enigmatic of therapeutic practice, with its hesitations and his impulses, to outline a path crossing and overcoming the conflict? May, finally, peace, in the sense of feasibility of intra-and interpersonal dialectic instead of tearing and hostileconfrontation with oneself and with the other, to be a reference in some crucial pivot of ethical therapeutic work? To these questions the intervention seeks to answer retracing some of the highlights of almost three years of therapeutic work with a young woman and her family.

  6. Therapeutic hypothermia for acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Weber, Uno Jakob; Kammersgaard, Lars Peter

    2003-01-01

    Experimental evidence and clinical experience show that hypothermia protects the brain from damage during ischaemia. There is a growing hope that the prevention of fever in stroke will improve outcome and that hypothermia may be a therapeutic option for the treatment of stroke. Body temperature...... is directly related to stroke severity and outcome, and fever after stroke is associated with substantial increases in morbidity and mortality. Normalisation of temperature in acute stroke by antipyretics is generally recommended, although there is no direct evidence to support this treatment. Despite its...... obvious therapeutic potential, hypothermia as a form of neuroprotection for stroke has been investigated in only a few very small studies. Therapeutic hypothermia is feasible in acute stroke but owing to serious side-effects--such as hypotension, cardiac arrhythmia, and pneumonia--it is still thought...

  7. Multiwalled carbon nanotube hybrids as MRI contrast agents

    Science.gov (United States)

    Tomczyk, Mateusz Michał

    2016-01-01

    Summary Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  8. Multiwalled carbon nanotube hybrids as MRI contrast agents.

    Science.gov (United States)

    Kuźnik, Nikodem; Tomczyk, Mateusz Michał

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  9. Who needs a therapeutic phlebotomy?

    Science.gov (United States)

    Antle, Emily Amy

    2010-12-01

    Many oncology practices treat patients with benign and malignant hematologic diagnoses. As a result, oncology nurses often are required to care for these patients. One common procedure nurses perform is therapeutic phlebotomy, where about 500 ml of blood is removed through a large-bore needle over 15-30 minutes. The procedure is ordered as a treatment for hereditary hemochromatosis, polycythemia vera, and secondary polycythemia. Before initiating the procedure, nurses must be aware of a patient's diagnosis, baseline hemoglobin, hematocrit, ferritin, and therapeutic end points. Reviewing these diagnoses will help nurses understand why phlebotomy is an important part of treatment.

  10. Effects on bone metabolism of new therapeutic strategies with standard chemotherapy and biologic drugs

    OpenAIRE

    Ciolli, Stefania

    2013-01-01

    Recent biological advances have provided the framework for novel therapeutic strategies in oncology. Many new treatments are now based on standard cytotoxic drugs plus biologic agents. In Multiple Myeloma, a plasma cell neoplasm characterized by a severe bone disease, biologic drugs such as proteasome inhibitors and immunomodulatory agents, above their antineoplastic efficacy have a beneficial effects on bone disease. Bortezomib, a clinically available proteasome inhibitor active against myel...

  11. Cold-adapted proteases as an emerging class of therapeutics.

    Science.gov (United States)

    Fornbacke, Marcus; Clarsund, Mats

    2013-06-01

    Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications. PMID:25135820

  12. Present and future therapeutic strategies for melioidosis and glanders.

    Science.gov (United States)

    Estes, D Mark; Dow, Steven W; Schweizer, Herbert P; Torres, Alfredo G

    2010-03-01

    Burkholderia pseudomallei and Burkholderia mallei are the causative agents of melioidosis and glanders, respectively. Both Gram-negative pathogens are endemic in many parts of the world. Although natural acquisition of these pathogens is rare in the majority of countries, these bacteria have recently gained much interest because of their potential as bioterrorism agents. In modern times, their potential destructive impact on public health has escalated owing to the ability of these pathogens to cause opportunistic infections in diabetic and perhaps otherwise immunocompromised people, two growing populations worldwide. For both pathogens, severe infection in humans carries a high mortality rate, both species are recalcitrant to antibiotic therapy - B. pseudomallei more so than B. mallei - and no licensed vaccine exists for either prophylactic or therapeutic use. The potential malicious use of these organisms has accelerated the investigation of new ways to prevent and to treat the diseases. The availability of several B. pseudomallei and B. mallei genome sequences has greatly facilitated target identification and development of new therapeutics. This review provides a compilation of literature covering studies in antimelioidosis and antiglanders antimicrobial drug discovery, with a particular focus on potential novel therapeutic approaches to combat these diseases.

  13. Cold-adapted proteases as an emerging class of therapeutics.

    Science.gov (United States)

    Fornbacke, Marcus; Clarsund, Mats

    2013-06-01

    Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications.

  14. Speciation in Metal Toxicity and Metal-Based Therapeutics

    Directory of Open Access Journals (Sweden)

    Douglas M. Templeton

    2015-04-01

    Full Text Available Metallic elements, ions and compounds produce varying degrees of toxicity in organisms with which they come into contact. Metal speciation is critical to understanding these adverse effects; the adjectives “heavy” and “toxic” are not helpful in describing the biological properties of individual elements, but detailed chemical structures are. As a broad generalization, the metallic form of an element is inert, and the ionic salts are the species that show more significant bioavailability. Yet the salts and other chelates of a metal ion can give rise to quite different toxicities, as exemplified by a range of carcinogenic potential for various nickel species. Another important distinction comes when a metallic element is organified, increasing its lipophilicity and hence its ability to penetrate the blood brain barrier, as is seen, for example, with organic mercury and tin species. Some metallic elements, such as gold and platinum, are themselves useful therapeutic agents in some forms, while other species of the same element can be toxic, thus focusing attention on species interconversions in evaluating metal-based drugs. The therapeutic use of metal-chelating agents introduces new species of the target metal in vivo, and this can affect not only its desired detoxification, but also introduce a potential for further mechanisms of toxicity. Examples of therapeutic iron chelator species are discussed in this context, as well as the more recent aspects of development of chelation therapy for uranium exposure.

  15. Nano/microparticles and ultrasound contrast agents

    Institute of Scientific and Technical Information of China (English)

    Shu-Guang; Zheng; Hui-Xiong; Xu; Hang-Rong; Chen

    2013-01-01

    Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation time(minutes)and relatively large size(two to ten micrometers)of currently used commercial microbubbles do not allow effective extravasation into tumor tissue,preventing efficient tumor targeting.Fortunately,more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications.The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique.Currently a number of nanomaterials,including liposomes,polymers,micelles,dendrimers,emulsions,quantum dots,solid nanoparticles etc.,have already been applied to pre or clinical trials.Multifunctional and theranostic nanoparticles with some special advantages,such as the tumor-targeted(passive or active),multi-mode contrast agents(magnetic resonance imaging,ultrasonography or fluorescence),carrier or enhancer of drug delivery,and combined chemo or thermal therapy etc.,are rapidly gaining popularity and have shown a promising application in the field of cancer treatment.In this mini review,the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.

  16. Rational Combinations of Targeted Agents in AML

    Directory of Open Access Journals (Sweden)

    Prithviraj Bose

    2015-04-01

    Full Text Available Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies.

  17. Perioperative allergy: uncommon agents.

    Science.gov (United States)

    Caimmi, S; Caimmi, D; Cardinale, F; Indinnimeo, L; Crisafulli, G; Peroni, D G; Marseglia, G L

    2011-01-01

    Anesthesia may often be considered as a high-risk procedure and anaphylaxis remains a major cause of concern for anesthetists who routinely administer many potentially allergenic agents. Neuromuscular blocking agents, latex and antibiotics are the substances involved in most of the reported reactions. Besides these three agents, a wide variety of substances may cause an anaphylactic reaction during anesthesia. Basically all the administered drugs or substances may be potential causes of anaphylaxis. Among them, those reported the most in literature include hypnotics, opioids, local anesthetics, colloids, dye, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Iodinated Contrast Media (ICM), antiseptics, aprotinin, ethylene oxyde and formaldehyde, and protamine and heparins. No premedication can effectively prevent an allergic reaction and a systematic preoperative screening is not justified for all patients; nevertheless, an allergy specialist should evaluate those patients with a history of anesthesia-related allergy. Patients must be fully informed of investigation results, and advised to provide a detailed report prior to future anesthesia. PMID:22014927

  18. Adapting Drug Approval Pathways for Bacteriophage-Based Therapeutics.

    Science.gov (United States)

    Cooper, Callum J; Khan Mirzaei, Mohammadali; Nilsson, Anders S

    2016-01-01

    The global rise of multi-drug resistant bacteria has resulted in the notion that an "antibiotic apocalypse" is fast approaching. This has led to a number of well publicized calls for global funding initiatives to develop new antibacterial agents. The long clinical history of phage therapy in Eastern Europe, combined with more recent in vitro and in vivo success, demonstrates the potential for whole phage or phage based antibacterial agents. To date, no whole phage or phage derived products are approved for human therapeutic use in the EU or USA. There are at least three reasons for this: (i) phages possess different biological, physical, and pharmacological properties compared to conventional antibiotics. Phages need to replicate in order to achieve a viable antibacterial effect, resulting in complex pharmacodynamics/pharmacokinetics. (ii) The specificity of individual phages requires multiple phages to treat single species infections, often as part of complex cocktails. (iii) The current approval process for antibacterial agents has evolved with the development of chemically based drugs at its core, and is not suitable for phages. Due to similarities with conventional antibiotics, phage derived products such as endolysins are suitable for approval under current processes as biological therapeutic proteins. These criteria render the approval of phages for clinical use theoretically possible but not economically viable. In this review, pitfalls of the current approval process will be discussed for whole phage and phage derived products, in addition to the utilization of alternative approval pathways including adaptive licensing and "Right to try" legislation. PMID:27536293

  19. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  20. Pharmacotherapeutic management of actinic keratosis: focus on newer topical agents.

    Science.gov (United States)

    Samrao, Aman; Cockerell, Clay J

    2013-08-01

    Actinic (solar) keratoses (AK) have the potential for malignant transformation and are the second most common diagnosis in dermatologic practices. No well-established clinical criteria are available to determine which AK are more likely to undergo malignant transformation; therefore, many dermatologists utilize field-directed approaches to treat all visible and subclinical AK on an affected skin surface. Current topical therapeutic agents require lengthy treatment regimens and are less well tolerated than many newer and investigational agents. We review and compare the efficacy and tolerability of well-established topical agents for the management of AK in the United States including 5-fluorouracil, imiquimod 5% cream as well as the newer 2.5 and 3.75% formulations, diclofenac 3% gel, photodynamic therapy, and the recently approved ingenol mebutate gel and discuss the therapeutic potential of investigational agents. Cryotherapy and 5-fluorouracil are efficacious at treating AK but less tolerable than imiquimod cream, particularly at its lower concentrations. The newer agents, diclofenac gel and ingenol mebutate, appear to be more tolerable than cryotherapy and 5- fluorouracil; however, comparative studies regarding efficacy are not available. PMID:23640424

  1. SAM : Semantic Agent Model for SWRL rule-based agents

    OpenAIRE

    Subercaze, Julien; Maret, Pierre

    2010-01-01

    International audience SemanticWeb technologies are part of multi-agent engineering, especially regarding knowledge base support. Recent advances in the field of logic for the semantic web enable a new range of applications. Among them, programming agents based on semantic rules is a promising field. In this paper we present a semantic agent model that allows SWRL programming of agents. Our approach, based on the extended finite state machine concept, results in a three layers architecture...

  2. Development of multifunctional nanoparticles for targeted drug delivery and noninvasive imaging of therapeutic effect.

    Science.gov (United States)

    Sajja, Hari Krishna; East, Michael P; Mao, Hui; Wang, Y Andrew; Nie, Shuming; Yang, Lily

    2009-03-01

    Nanotechnology is a multidisciplinary scientific field undergoing explosive development. Nanometer-sized particles offer novel structural, optical and electronic properties that are not attainable with individual molecules or bulk solids. Advances in nanomedicine can be made by engineering biodegradable nanoparticles such as magnetic iron oxide nanoparticles, polymers, dendrimers and liposomes that are capable of targeted delivery of both imaging agents and anticancer drugs. This leads toward the concept and possibility of personalized medicine for the potential of early detection of cancer lesions, determination of molecular signatures of the tumor by noninvasive imaging and, most importantly, molecular targeted cancer therapy. Increasing evidence suggests that the nanoparticles, whose surface contains a targeting molecule that binds to receptors highly expressed in tumor cells, can serve as cancer image contrast agents to increase sensitivity and specificity in tumor detection. In comparison with other small molecule contrast agents, the advantage of using nanoparticles is their large surface area and the possibility of surface modifications for further conjugation or encapsulation of large amounts of therapeutic agents. Targeted nanoparticles ferry large doses of therapeutic agents into malignant cells while sparing the normal healthy cells. Such multifunctional nanodevices hold the promise of significant improvement of current clinical management of cancer patients. This review explores the development of nanoparticles for enabling and improving the targeted delivery of therapeutic agents, the potential of nanomedicine, and the development of novel and more effective diagnostic and screening techniques to extend the limits of molecular diagnostics providing point-of-care diagnosis and more personalized medicine.

  3. 4-haloethenylphenyl tropane:serotonin transporter imaging agents

    Science.gov (United States)

    Goodman, Mark M.; Martarello, Laurent

    2005-01-18

    A series of compounds in the 4-fluoroalkyl-3-halophenyl nortropanes and 4-haloethenylphenyl tropane families are described as diagnostic and therapeutic agents for diseases associated with serotonin transporter dysfunction. These compounds bind to serotonin transporter protein with high affinity and selectivity. The invention provides methods of synthesis which incorporate radioisotopic halogens at a last step which permit high radiochemical yield and maximum usable product life. The radiolabeled compounds of the invention are useful as imaging agents for visualizing the location and density of serotonin transporter by PET and SPECT imaging.

  4. Guanidinoacetic acid as a performance-enhancing agent.

    Science.gov (United States)

    Ostojic, Sergej M

    2016-08-01

    Guanidinoacetic acid (GAA; also known as glycocyamine or guanidinoacetate) is the natural precursor of creatine, and under investigation as a novel dietary agent. It was first identified as a natural compound in humans ~80 years ago. In the 1950s, GAA's use as a therapeutic agent was explored, showing that supplemental GAA improved patient-reported outcomes and work capacity in clinical populations. Recently, a few studies have examined the safety and efficacy of GAA and suggest potential ergogenic benefits for physically active men and women. The purpose of this review is to examine possible applications of GAA supplementation for exercise performance enhancement, safety, and legislation issues. PMID:26445773

  5. Immunosuppression associated with novel chemotherapy agents and monoclonal antibodies.

    Science.gov (United States)

    Morrison, Vicki A

    2014-11-15

    The introduction of novel agents to the therapeutic armamentarium for oncologic, rheumatologic, and neurologic disorders has resulted in major clinical advances. These agents impact immune function, resulting in a discrete spectrum of infectious complications. Purine analogues and alemtuzumab alter cell-mediated immunity, resulting in opportunistic viral/fungal infections. Herpes zoster incidence increases with bortezomib. Hepatitis B reactivation may occur with rituximab. Cases of progressive multifocal leukoencephalopathy have occurred following monoclonal antibody therapy. Tumor necrosis factor-α inhibitor therapy is complicated by tuberculosis reactivation and fungal infections. We summarize the impact of these therapies on pathogenesis and spectrum of infection complicating their usage. PMID:25352632

  6. THERAPEUTIC APPLICATIONS IN NUCLEAR MEDICINE

    Directory of Open Access Journals (Sweden)

    Cristofer Alan Costa Santos

    2014-12-01

    Full Text Available Due to poor understanding of the role of nuclear medicine in several disease treatments, the aim of this study was to demonstrate the main therapeutic applications of nuclear medicine as well as their characteristics and radiopharmaceuticals usage through scientific literature review. The main therapeutic applications of nuclear medicine are radio-immunotherapy with iodine-131, yttrium-90, lutetium-177 and copper-67, the radiosynovectomy with yttrium-90, rhenium-186 and gold-198 and pain palliation of osseous metastases with samarium-153, strontium-89 and phosphorus-32. The radioiodine therapy with iodine-131 stands out among therapies because it allows a highly selective treatment of thyroid associated with hyperthyroidism and differentiated thyroid cancer with favorable dosimetry to healthy tissues and with great advantage to allow the ablation of disseminated lesions due to metastases, success not achieved by traditional radiotherapy. Thus, the therapeutic nuclear medicine is an alternative tool, and often essential for definitive treatment of various diseases considered incurable once. Thus, therapeutic nuclear medicine is an alternative and often essential tool for definitive treatment of various diseases considered once incurable.

  7. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus;

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5...

  8. Scenario Writing: A Therapeutic Application.

    Science.gov (United States)

    Haddock, Billy D.

    1989-01-01

    Introduces scenario writing as useful therapeutic technique. Presents case study of woman in midst of divorce and custody fight to illustrate context in which technique was applied. Suggests additional applications. Concludes that good response is more likely for clients who possess good writing skills although other clients may use their own…

  9. Macrocyclic bifunctional chelating agents

    Science.gov (United States)

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  10. The Power Trading Agent Competition

    OpenAIRE

    Ketter, W.; Collins, J.; REDDY, P; Flath, C.

    2011-01-01

    This is the specification for the Power Trading Agent Competition for 2011 (Power TAC 2011). Agents are simulations of electrical power brokers, who must compete with each other for both power production and consumption, and manage their portfolios.

  11. Agents Play Mix-game

    CERN Document Server

    Gou, C

    2005-01-01

    In mix-game which is an extension of minority game, there are two groups of agents; group1 plays the majority game, but the group2 plays the minority game. This paper studies the change of the average winnings of agents and volatilities vs. the change of mixture of agents in mix-game model. It finds that the correlations between the average winnings of agents and the mean of local volatilities are different with different combinations of agent memory length when the proportion of agents in group 1 increases. This study result suggests that memory length of agents in group1 be smaller than that of agent in group2 when mix-game model is used to simulate the financial markets.

  12. The Power Trading Agent Competition

    NARCIS (Netherlands)

    W. Ketter (Wolfgang); J. Collins (John); P. Reddy (Prashant); C. Flath (Christoph)

    2011-01-01

    textabstractThis is the specification for the Power Trading Agent Competition for 2011 (Power TAC 2011). Agents are simulations of electrical power brokers, who must compete with each other for both power production and consumption, and manage their portfolios.

  13. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset peripheral neuropathy is related to their exposure to Agent Orange or other herbicides during service when the disease ...

  14. Mediating Performance Through Virtual Agents

    OpenAIRE

    Giannachi, Gabriella; Gillies, Marco; Kaye, Nick; Swapp, David

    2009-01-01

    This paper presents the process of creation of virtual agents used in a virtual reality performance. The performance aimed to investigate how drama and performance could inform the creation of virtual agents and also how virtual reality could raise questions for drama and performance. The virtual agents were based on the performance of 2 actors. This paper describes the process of preparing the actors, capturing their performances and transferring them to the virtual agents. A second set of a...

  15. Polymer therapeutics: Top 10 selling pharmaceuticals - what next?

    Science.gov (United States)

    Duncan, Ruth

    2014-09-28

    At the time of the first issue of the Journal of Controlled Release (JCR), polymeric drugs, polymer-drug and protein conjugates and block copolymer micelles carrying bound drugs, i.e. polymer therapeutics, were still regarded as scientific curiosities with little or no prospect of generating practical to use medicines. How this perception has changed. Many major Pharma now have R&D programmes in this area and in 2013 two polymer therapeutics, Copaxone and Neulasta, are featured in the Top 10 US pharmaceutical sales list. Although there are a growing number of marketed products (e.g. PEGylated proteins, a PEG-aptamer and oral polymeric sequestrants), and the first follow-on (generic products) are emerging, the first polymer-drug conjugates and block copolymer micelle products (as covalent conjugates) have yet to enter routine clinical use. Industrial familiarity and recent advances in the underpinning scientific disciplines will no doubt accelerate the transfer of polymer therapeutics into clinically useful medicines and imaging agents. This short personal perspective reflects on the current status of polymer therapeutics and the future opportunities to improve their successful translation. It adds to recent and historical reviews that comprehensively document the evolution of the field since JCR was born.

  16. Colloidal supramolecular aggregates for therapeutic application in neuromedicine.

    Science.gov (United States)

    Cosco, Donato; Di Marzio, Luisa; Marianecci, Carlotta; Trapasso, Elena; Paolino, Donatella; Celia, Christian; Carafa, Maria; Fresta, Massimo

    2014-01-01

    Neuromedicine has recently been emerging on the research scene and presents interesting challenges in therapeutics. The range of therapies generally used to treat neurological disorders are limited in their efficacy and degree of patient compliance because of the necessity of multiple drug dosages, low drug concentration in the central nervous system and side effects. Moreover, therapeutics require standard drug dosages which cannot be personalized. The limiting obstacle in neuromedicine is still the blood-brain barrier, which prevents the accumulation of endogenous and exogenous compounds inside the brain. Various transporters located on the blood-brain barrier modulate the crossing of endogenous compounds. It has been discovered that these transporters can be used as pathways for the transport of therapeutic agents and macromolecules that pass the blood-brain barrier allowing the uptake of bioactive compounds into the central nervous system. Several attempts have recently been made to develop forms of nanomedicine capable of overcoming the limitations of conventional therapy, above all the crossing of the blood-brain barrier. An outstandingly promising option could be the use of colloidal supramolecular aggregates. These nanodrugs are safe, biodegradable, and biocompatible and can combine biomaterials useful for diagnostic and therapeutical applications. They can be modified using monoclonal antibodies, proteins, peptides and macromolecules, thus providing personalized neuromedicine, which can be used in the treatment of various neurological disorders. In this review, recent advancements of supramolecular colloidal devices as neuromedicines are discussed, with particular focus on the latest developments. PMID:25174931

  17. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  18. Digitoxin and its analogs as novel cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Elbaz Hosam A

    2012-04-01

    Full Text Available Abstract A growing body of evidence indicates that digitoxin cardiac glycoside is a promising anticancer agent when used at therapeutic concentrations. Digitoxin has a prolonged half-life and a well-established clinical profile. New scientific avenues have shown that manipulating the chemical structure of the saccharide moiety of digitoxin leads to synthetic analogs with increased cytotoxic activity. However, the anticancer mechanism of digitoxin or synthetic analogs is still subject to study while concerns about digitoxin's cardiotoxicity preclude its clinical application in cancer therapeutics. This review focuses on digitoxin and its analogs, and their cytotoxicity against cancer cells. Moreover, a new perspective on the pharmacological aspects of digitoxin and its analogs is provided to emphasize new research directions for developing potent chemotherapeutic drugs.

  19. Recent advances in cytokines: Therapeutic implications for inflammatory bowel diseases

    Institute of Scientific and Technical Information of China (English)

    Guillaume Bouguen; Jean-Baptiste Chevaux; Laurent Peyrin-Biroulet

    2011-01-01

    Inflammatory bowel diseases (IBDs) are complex and chronic disabling conditions resulting from a dysregulated dialogue between intestinal microbiota and components of both the innate and adaptive immune systems. Cytokines are essential mediators between activated immune and non-immune cells, including epithelial and mesenchymal cells. They are immunomodulatory peptides released by numerous cells and these have significant effects on immune function leading to the differentiation and survival of T cells. The physiology of IBD is becoming a very attractive field of research for development of new therapeutic agents. These include cytokines involved in intestinal immune inflammation. This review will focus on mechanisms of action of cytokines involved in IBD and new therapeutic opportunities for these diseases.

  20. EGFR-Targeted Therapeutics: Focus on SCCHN and NSCLC

    Directory of Open Access Journals (Sweden)

    Martin Sattler

    2008-01-01

    Full Text Available Cancers of the head and neck and of the lung are associated with high morbidity and mortality rates that have remained relatively unchanged for more than 3 decades, despite advances in radiation therapies and chemotherapies over the same time. It is generally believed that the efficacy of standard therapy regimens has reached a plateau for these cancers. The discovery of specific aberrant molecular signaling pathways in solid tumors has afforded promising new directions for newer “targeted” cancer therapeutics. Among these, the epidermal growth factor receptor (EGFR shows promise as a therapeutic target. Clinical studies have demonstrated that this targeted approach provides clinically meaningful benefit. This article reviews EGFR-targeted therapies in use and in development, with a focus on the role of EGFR in the pathophysiology of head and neck and lung cancer, and new concepts being investigated to improve outcomes with these agents.

  1. Importance of Biofilms in Urinary Tract Infections: New Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Sara M. Soto

    2014-01-01

    Full Text Available Bacterial biofilms play an important role in urinary tract infections (UTIs, being responsible for persistence infections causing relapses and acute prostatitis. Bacterial forming biofilm are difficult to eradicate due to the antimicrobial resistant phenotype that this structure confers being combined therapy recommended for the treatment of biofilm-associated infections. However, the presence of persistent cells showing reduced metabolism that leads to higher levels of antimicrobial resistance makes the search for new therapeutic tools necessary. Here, a review of these new therapeutic approaches is provided including catheters coated with hydrogels or antibiotics, nanoparticles, iontophoresis, biofilm enzyme inhibitors, liposomes, bacterial interference, bacteriophages, quorum sensing inhibitors, low-energy surface acoustic waves, and antiadhesion agents. In conclusion, new antimicrobial drugs that inhibit bacterial virulence and biofilm formation are needed.

  2. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  3. Gynecologic cancer treatment: risk factors for therapeutically induced neoplasia

    International Nuclear Information System (INIS)

    Therapeutic intervention in a course of illness, while producing the desired result, also may have some adverse long-term effects on the patient. Second malignancies are one of the known complications of therapy. The treatments of gynecologic cancers by surgery, irradiation and chemotherapy have been associated with subsequent neoplasms. The use of normal skin from the thigh to fabricate an artificial vagina has resulted in more squamous cell carcinomas than expected. Alkylating agents used in the treatment of ovarian cancer and other diseases have been shown to lead to an increased risk of leukemia. The incidence of lymphoma and uterine, urinary bladder and colon carcinomas has been associated with prior irradiation for gynecologic disease. The literature regarding the therapeutically induced risk factors in gynecologic therapy is reviewed and areas of our knowledge that require more investigation are identified

  4. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  5. Cultural Differentiation of Negotiating Agents

    NARCIS (Netherlands)

    Hofstede, G.J.; Jonker, C.M.; Verwaart, D.

    2012-01-01

    Negotiations proceed differently across cultures. For realistic modeling of agents in multicultural negotiations, the agents must display culturally differentiated behavior. This paper presents an agent-based simulation model that tackles these challenges, based on Hofstede’s model of national cultu

  6. Cultural differentiation of negotiating agents

    NARCIS (Netherlands)

    Hofstede, G.J.; Jonker, C.M.; Verwaart, T.

    2010-01-01

    Negotiations proceed differently across cultures. For realistic modeling of agents in multicultural negotiations, the agents must display culturally differentiated behavior. This paper presents an agent-based simulation model that tackles these challenges, based on Hofstede’s model of national cultu

  7. Assigning agents to a line

    DEFF Research Database (Denmark)

    Hougaard, Jens Leth; Moreno-Ternero, Juan D.; Østerdal, Lars Peter Raahave

    2014-01-01

    We consider the problem of assigning agents to slots on a line, where only one agent can be served at a slot and each agent prefers to be served as close as possible to his target. Our focus is on aggregate gap minimizing methods, i.e., those that minimize the total gap between targets and assigned...

  8. Chemical warfare agents

    Directory of Open Access Journals (Sweden)

    Vijayaraghavan R

    2010-01-01

    Full Text Available Among the Weapons of Mass Destruction, chemical warfare (CW is probably one of the most brutal created by mankind in comparison with biological and nuclear warfare. Chemical weapons are inexpensive and are relatively easy to produce, even by small terrorist groups, to create mass casualties with small quantities. The characteristics of various CW agents, general information relevant to current physical as well as medical protection methods, detection equipment available and decontamination techniques are discussed in this review article. A brief note on Chemical Weapons Convention is also provided.

  9. Secure Mobile Trade Agent

    Directory of Open Access Journals (Sweden)

    Musbah M. Aqe

    2007-01-01

    Full Text Available E-commerce on the internet has the ability to produce millions of transactions and a great number of merchants whose supply merchandise over the internet. As a result, it is difficult for entities to roam over every site on the internet and choose the best merchandise to trade. So, in this paper we introduced a mobile trade agent that visit the sites to gather and evaluate the information from merchant servers and decide to trade goods on behalf of the user. We observed that the combination of public key cryptosystem with distributed object technology make this proposed scheme more secure and efficient than the already existed schemes.

  10. Agentes de información Information Agents

    Directory of Open Access Journals (Sweden)

    Alfonso López Yepes

    2005-12-01

    Full Text Available Este artículo realiza un repaso sobre las tipologías de agentes de información y describe aspectos como movilidad, racionalidad y adaptatividad, y el ajuste final de estos conceptos a entornos distribuidos como Internet, donde este tipo de agentes tienen un amplio grado de aplicación. Asimismo, se propone una arquitectura de agentes para un sistema multiagente de recuperación de información donde se aplica un paradigma documental basado en el concepto de ciclo documental.This article summarizes the main information agent types reflecting on issues such as mobility, rationality, adaptability and the final adjustment of this concepts to distributed environments such as the Internet, where this kind of agents has wide range application. Likewise, an information agent architecture is proposed to create a multi-agent information retrieval system in which a documentary paradigm based on the documentary cycle is developed.

  11. Drug Development of Therapeutic Monoclonal Antibodies.

    Science.gov (United States)

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics. PMID:27342605

  12. Patent perspectives for corticosteroids based ophthalmic therapeutics.

    Science.gov (United States)

    Suresh, Preeti K; Sah, Abhishek K

    2014-01-01

    Eye inflammation, if untreated at right time poses the risk of vision loss. Several categories of drugs are available in the global market, but corticosteroids are still used for the treatment of ocular inflammation including anterior/ posterior uveitis, age related macular degeneration (AMD) and post cataract surgery inflammation. Although corticosteroids have well-documented side effects as compared to non steroidal anti-inflammatory drugs (NSAIDs), but they are still regarded as better anti-inflammatory agents for treating ocular inflammations. The prime concern with conventional formulations such as (ophthalmic solutions, suspensions, ointments) is low drug bioavailability due to precorneal barrier of the eye, tear turnover and rapid drainage of drug via nasolacrimal drainage and drug induced systemic toxicity. To overcome these limitations, various novel formulations of corticosteroids have been explored. These include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), nanomicelles, in-situ gels, iontophoresis, liposomes, nanoemulsions, microemulsions and ocular implants for the effective ophthalmic delivery of the corticosteroids. Topical nanocarriers have also been demonstrated to be promising vectors with potential application in the ophthalmic therapeutics. This review summarizes the clinical findings and patents on various corticosteroids as ocular pharmacotherapeutics. PMID:25020063

  13. Postperfusion lung syndrome: physiopathology and therapeutic options

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2014-09-01

    Full Text Available Postperfusion lung syndrome is rare but can be lethal. The underlying mechanism remains uncertain but triggering inflammatory cascades have become an accepted etiology. A better understanding of the pathophysiology and the roles of inflammatory mediators in the development of the syndrome is imperative in the determination of therapeutic options and promotion of patients' prognosis and survival. Postperfusion lung syndrome is similar to adult respiratory distress syndrome in clinical features, diagnostic approaches and management strategies. However, the etiologies and predisposing risk factors may differ between each other. The prognosis of the postperfusion lung syndrome can be poorer in comparison to acute respiratory distress syndrome due to the secondary multiple organ failure and triple acid-base imbalance. Current management strategies are focusing on attenuating inflammatory responses and preventing from pulmonary ischemia-reperfusion injury. Choices of cardiopulmonary bypass circuit and apparatus, innovative cardiopulmonary bypass techniques, modified surgical maneuvers and several pharmaceutical agents can be potential preventive strategies for acute lung injury during cardiopulmonary bypass.

  14. [New antiepileptic drugs, and therapeutic considerations].

    Science.gov (United States)

    Szupera, Zoltán

    2011-09-30

    Epilepsy is not a singular disease, but a variety of disorders. It affects up to 0.5% of the population. Over the past decade, researchers have made great advances in the field of epilepsy. These have been accompanied by the licensing of a great number of antiepileptic drugs. However, despite these efforts, up to 15-20% of patients have refractory epilepsy. The novel antiepileptic drugs must suit several requirements: higher efficacy, especially in resistant cases, better tolerability, and improved pharmacokinetic properties. Recently, three new drugs have been introduced to the market. Retigabine is a carbamic derivate, and its anticonvulsive properties are largely due to its ability to prolong the opening of neuronal voltage-gated potassium Kv7.2 and Kv7.3 channels. Lacosamide is a functionalized amino acid, and selectively enhances voltage-gated sodium channel slow inactivation. Eslicarbazepine acetate is a new member of the dibenzazepine family, and blocks the fast inactivated voltage-gated sodium channel. All three of them differ from the foregoing agents in several important ways, including new mechanism of action (retigabine, lacosamide), or pharmacokinetics (eslicarbazepine acetate). These novel anticonvulsants appear to be a safe and effective addition to the armamentarium for the treatment of patients with refractory epilepsy. However, it will take the consideration of new concepts in shaping the new therapeutic algorithm. PMID:22059370

  15. Spinal Muscular Atrophy: Current Therapeutic Strategies

    Science.gov (United States)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  16. Therapeutic Effect of Cereal Grains: A Review.

    Science.gov (United States)

    Singhal, Poonam; Kaushik, Geetanjali

    2016-04-01

    Over the last few decades, life style changes have resulted in drastic increase in the incidence of diabetes all over the world, especially in the developing countries. Oral hypoglycemic agents and insulin form the main stay in controlling diabetes but they have prominent side effects and fail to significantly alter the course of diabetic complications. Appropriate diet and exercise programs that form a part of lifestyle modifications have proven to be greatly effective in the management of this disease. Dietary therapy is showing a bright future in the prevention and treatment of diabetes. Cereal grains which form the staple diet for humans in most of the countries are increasingly being used to treat diabetes and other associated disorders in view of their anti-diabetic and anti-lipidemic potential. Given this background, this paper reviews the possible mechanisms of lowering blood sugar and cholesterol levels possessed by various commonly consumed cereal grains. It is concluded that cereal grains are not only the potential sources of energy but also possess the therapeutic role in preventing metabolic disorders and decreasing the risk factors for cardiovascular and renal diseases. PMID:25746052

  17. Therapeutically Active Biomolecules from Marine Actinomycetes

    Directory of Open Access Journals (Sweden)

    Mani Jayaprakashvel

    2012-09-01

    Full Text Available For the past few centuries, the biological sources of terrestrial origin have been explored and exploited for bioactive metabolites. This has resulted in the stagnancy of discovering either novel compounds or compounds with novel bioactivities. Thus, researchers across the globe have started exploring our big Oceans, for the search of bioactive metabolites. During the past few decades, the research on bioactive metabolites from marine biological resources has geared up and among the sources marine actinomycetes are proved to be best. Marine actinomycetes, the filamentous bacteria from marine environment have been intensively studied for bioactive metabolites. The biological diversity of marine actinomycetes was found to be enormous, thanks to culture dependent and culture independent biodiversity approaches. This great diversity of marine actinomycetes has offered greater chemical diversity. The diverse chemical compounds of marine actinomycetes have been found to have various biological activities such as antimicrobial, anti-tumor, anti-malarial, anti-algal, antioxidant, anti-inflammatory etc. These various bioactive metabolites of marine actinomycetes are having scope for developing as potent therapeutic agents. The potential of marine actinomycetes is rightly realized though the current biological wealth of these organisms isrelatively unexplored.

  18. Huntington's disease: effect of cysteamine, a somatostatin-depleting agent.

    Science.gov (United States)

    Shults, C; Steardo, L; Barone, P; Mohr, E; Juncos, J; Serrati, C; Fedio, P; Tamminga, C A; Chase, T N

    1986-08-01

    Somatostatin levels in the basal ganglia are elevated in Huntington's disease. A controlled therapeutic trial of the somatostatin-depleting agent, cysteamine, was therefore conducted in five patients, including one with the rigid-akinetic form. Maximum tolerated dosage for 2 weeks produced no consistent change in extrapyramidal or dementia scores. Somatostatin concentrations were not significantly altered in plasma or CSF. Growth hormone levels, on the other hand, more than doubled, suggesting a functionally significant decrease in central somatostatin levels. PMID:2874527

  19. Cysteamine-related agents could be potential antidepressants through increasing central BDNF levels.

    Science.gov (United States)

    Tsai, Shih-Jen

    2006-01-01

    Major depressive disorder (MDD) is a common mental disease, but with an unknown etiology. Antidepressants are the main biological treatment for MDD. However, current antidepressive agents have a slow onset of effect and a substantial proportion of MDD patients do not clinically improve, despite maximal medication. Thus, the exploration for new antidepressants with novel strategies may help to develop faster and more effective antidepressant agents. Studies in the recent decades have demonstrated that antidepressants increase central brain-derived neurotrophic factor (BDNF) levels and activating the BDNF-signaling pathway may play an important role in their therapeutic mechanism. Cysteamine is a natural product of cells and constitutes the terminal region of the CoA molecule. Recent work has found that cysteamine and a related agent, cystamine, have neuroprotective effects in Huntington's disease (HD) mice, through enhancing central BDNF levels. Furthermore, cystamine or cysteamine injection could increase serum BDNF levels in wild-type mice as well as HD mice. Since activation of the BDNF-dependent pathway plays an important role in the mechanism of antidepressant therapeutic action, cystamine or its derivatives could have potential antidepressant therapeutic effects. Among these agents, pantethine may be one of the most promising agents. It is a naturally occurring compound which can be administered orally with negligible side effects, and is metabolized to cysteamine. Further evaluation of the therapeutic and toxic effects of these cysteamine-related antidepressant agents in MDD animal models is needed before any clinical application. PMID:16797865

  20. Emerging clinical and therapeutic applications of Nigella sativa in gastroenterology

    Institute of Scientific and Technical Information of China (English)

    Shailendra Kapoor

    2009-01-01

    Nigella sativa decreases DNA damage and thereby prevents initiation of carcinogenesis in colonic tissue secondary to exposure to toxic agents such as azoxymethane. N. sativa is of immense therapeutic benefit in diabetic individuals and those with glucose intolerance as it accentuates glucose-induced secretion of insulin besides having a negative impact on glucose absorption from the intestinal mucosa. N. sativa administration protects hepatic tissue from deleterious effects of toxic metals such as lead, and attenuates hepatic lipid peroxidation following exposure to chemicals such as carbon tetrachloride.

  1. Molecular hydrogen in sports medicine: new therapeutic perspectives.

    Science.gov (United States)

    Ostojic, S M

    2015-04-01

    In the past 2 decades, molecular hydrogen emerged as a novel therapeutic agent, with antioxidant, anti-inflammatory and anti-apoptotic effects demonstrated in plethora of animal disease models and human studies. Beneficial effects of molecular hydrogen in clinical environment are observed especially in oxidative stress-mediated diseases, such as diabetes mellitus, brain stem infarction, rheumatoid arthritis, or neurodegenerative diseases. A number of more recent studies have reported that molecular hydrogen affects cell signal transduction and acts as an alkalizing agent, with these newly identified mechanisms of action having the potential to widen its application in clinical medicine even further. In particular, hydrogen therapy may be an effective and specific innovative treatment for exercise-induced oxidative stress and sports injury, with potential for the improvement of exercise performance. This review will summarize recent research findings regarding the clinical aspects of molecular hydrogen use, emphasizing its application in the field of sports medicine.

  2. Advances in antithrombotic agents.

    Science.gov (United States)

    Chakrabarti, Ranjan; Das, Saibal Kumar

    2007-07-01

    Thrombosis is the condition where an imbalance in the homeostatic mechanism results in unwanted intravascular thrombus formation. Imbalances in this highly regulated process of coagulation and anticoagulation can lead to a variety of pathophysiological conditions leading to stroke, pulmonary heart attack and other serious conditions. In the western world, thromboembolic diseases are the leading cause of morbidity and mortality. Remarkable progress has occurred over the last decade in the development of antithrombotic drugs, which can be classified into 3 major categories - Anticoagulants, Antiplatelets and thrombolytics. Increased understanding of the pathobiology of thrombotic and vascular disorders has helped researchers to target novel pathways involving the coagulation, thrombolytic, fibrinolytic and integrin systems. Traditionally aspirin and unfractionated heparin was used for myocardial infarction. Newer antiplatelet agents such as, clopidogrel, GP IIb/IIIa inhibitors, low molecular weight heparin, direct thrombin inhibitors and several improved thrombolytic agents have been introduced for clinical use. This review will discuss different important drugs, which have been launched in recent years and also some new targets pursued by different companies. PMID:17630943

  3. Holograms as Teaching Agents

    Science.gov (United States)

    Walker, Robin A.

    2013-02-01

    Hungarian physicist Dennis Gabor won the Pulitzer Prize for his 1947 introduction of basic holographic principles, but it was not until the invention of the laser in 1960 that research scientists, physicians, technologists and the general public began to seriously consider the interdisciplinary potentiality of holography. Questions around whether and when Three-Dimensional (3-D) images and systems would impact American entertainment and the arts would be answered before educators, instructional designers and students would discover how much Three-Dimensional Hologram Technology (3DHT) would affect teaching practices and learning environments. In the following International Symposium on Display Holograms (ISDH) poster presentation, the author features a traditional board game as well as a reflection hologram to illustrate conventional and evolving Three-Dimensional representations and technology for education. Using elements from the American children's toy Operation® (Hasbro, 2005) as well as a reflection hologram of a human brain (Ko, 1998), this poster design highlights the pedagogical effects of 3-D images, games and systems on learning science. As teaching agents, holograms can be considered substitutes for real objects, (human beings, organs, and animated characters) as well as agents (pedagogical, avatars, reflective) in various learning environments using many systems (direct, emergent, augmented reality) and electronic tools (cellphones, computers, tablets, television). In order to understand the particular importance of utilizing holography in school, clinical and public settings, the author identifies advantages and benefits of using 3-D images and technology as instructional tools.

  4. Gadolinium as a Neutron Capture Therapy Agent

    Science.gov (United States)

    Shih, Jing-Luen Allen

    The clinical results of treating brain tumors with boron neutron capture therapy are very encouraging and researchers around the world are once again making efforts to develop this therapeutic modality. Boron-10 is the agent receiving the most attention for neutron capture therapy but ^{157}Gd is a nuclide that also holds interesting properties of being a neutron capture therapy agent. The objective of this study is to evaluate ^{157}Gd as a neutron capture therapy agent. In this study it is determined that tumor concentrations of about 300 mug ^{157}Gd/g tumor can be achieved in brain tumors with some FDA approved MRI contrast agents such as Gd-DTPA and Gd-DOTA, and up to 628 mug ^{157 }Gd/g tumor can be established in bone tumors with Gd-EDTMP. Monte Carlo calculations show that with only 250 ppm of ^{157}Gd in tumor, neutron capture therapy can deliver 2,000 cGy to a tumor of 2 cm diameter or larger with 5 times 10^{12} n/cm ^2 fluence at the tumor. Dose measurements which were made with films and TLD's in phantoms verified these calculations. More extended Monte Carlo calculations demonstrate that neutron capture therapy with Gd possesses comparable dose distribution to B neutron capture therapy. With 5 times 10^{12 } n/cm^2 thermal neutrons at the tumor, Auger electrons from the Gd produced an optical density enhancement on the films that is similar to the effect caused by about 300 cGy of Gd prompt gamma dose which will further enhance the therapeutic effects. A technique that combines brachytherapy with Gd neutron capture therapy has been evaluated. Monte Carlo calculations show that 5,000 cGy of prompt gamma dose can be delivered to a treatment volume of 40 cm^3 with a 3-plane implant of a total of 9 Gd needles. The tumor to normal tissue advantage of this method is as good as ^{60} Co brachytherapy. Measurements of prompt gamma dose with films and TLD-700's in a lucite phantom verify the Monte Carlo evaluation. A technique which displays the Gd

  5. Agent-oriented Software Engineering

    Institute of Scientific and Technical Information of China (English)

    GUAN Xu; CHENG Ming; LIU Bao

    2001-01-01

    An increasing number of computer systems are being viewed in terms of autonomous agents.Most people believe that agent-oriented approach is well suited to design and build complex systems. Yet. todate, little effort had been devoted to discuss the advantages of agent-oriented approach as a mainstreamsoftware engineering paradigm. Here both of this issues and the relation between object-oriented and agent-oriented will be argued. we describe an agent-oriented methodology and provide a quote for designing anauction system.

  6. Sinigrin and Its Therapeutic Benefits

    Directory of Open Access Journals (Sweden)

    Anisha Mazumder

    2016-03-01

    Full Text Available Sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate is a natural aliphatic glucosinolate present in plants of the Brassicaceae family, such as broccoli and brussels sprouts, and the seeds of Brassica nigra (mustard seeds which contain high amounts of sinigrin. Since ancient times, mustard has been used by mankind for its culinary, as well as medicinal, properties. It has been systematically described and evaluated in the classical Ayurvedic texts. Studies conducted on the pharmacological activities of sinigrin have revealed anti-cancer, antibacterial, antifungal, antioxidant, anti-inflammatory, wound healing properties and biofumigation. This current review will bring concise information about the known therapeutic activities of sinigrin. However, the information on known biological activities is very limited and, hence, further studies still need to be conducted and its molecular mechanisms also need to be explored. This review on the therapeutic benefits of sinigrin can summarize current knowledge about this unique phytocompounds.

  7. Therapeutic approach to sexual abuse.

    OpenAIRE

    Furniss, T; Bingley-Miller, L; Bentovim, A

    1984-01-01

    An account is given of the development of a treatment project for sexually abused children and their families. We review incidence data which indicate that sexual abuse of children is likely to be a far more frequent problem than has been recognised and cause an appreciable degree of psychological damage. Professional responses to this are confused and treatment facilities limited. Sexual abuse is seen as an expression of severe relationship problems in the family and therapeutic provision is...

  8. Bioengineering Beige Adipose Tissue Therapeutics.

    Science.gov (United States)

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  9. Brain plasticity-based therapeutics

    OpenAIRE

    Merzenich, Michael M.; Van Vleet, Thomas M.; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, tra...

  10. Brain Plasticity-Based Therapeutics

    OpenAIRE

    Michael eMerzenich; Mor eNahum; Tom eVan Vleet

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from a) the more-behavioral, trad...

  11. DNA as Therapeutics; an Update

    OpenAIRE

    Saraswat P; Soni R; Bhandari A; Nagori B

    2009-01-01

    Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine′s arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, periphe...

  12. Therapeutic options for severe asthma

    OpenAIRE

    Mathew, Jilcy; Aronow, Wilbert S.; Chandy, Dipak

    2012-01-01

    As the overall prevalence of asthma has escalated in the past decades, so has the population of patients with severe asthma. This condition is often difficult to manage due to the relative limitation of effective therapeutic options for the physician and the social and economic burden of the disease on the patient. Management should include an evaluation and elimination of modifiable risk factors such as smoking, allergen exposure, obesity and non-adherence, as well as therapy for co-morbidit...

  13. Pathogenesis and new therapeutic targets

    OpenAIRE

    Mertens, Michael

    2010-01-01

    Acute lung injury and its pronounced form, acute respiratory distress syndrome, are life-threatening diseases with 190,000 patients and 74,500 deaths per year in the United States. Until now there have been no therapeutic approaches to lower morbidity and mortality, except for ventilation with small tidal volumes. This partially results from a lack of understanding of the underlying mechanism of ventilator induced acute lung injury on the alveolar and alveolar capillary level. In addition, ph...

  14. Therapeutics aspects of music education

    OpenAIRE

    Pesek, Albinca; Čagran, Branka

    2015-01-01

    Disintegration of moral value system in modern society demands changes of educational system. Education takes an important part with its effort to establish integral education. In this way, an individual develops all his potentials: physical, emotional, cognitive and mental. Music education in its therapeutic mission helps at forming harmonious personality and becomes a mediator at different activities where discrepancies do not allow a successful educational process. On the basis of the empi...

  15. Bioengineering Beige Adipose Tissue Therapeutics.

    Science.gov (United States)

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  16. Therapeutic perspectives in atopic dermatitis.

    Science.gov (United States)

    Misery, Laurent

    2011-12-01

    Therapy of atopic dermatitis should comprise emollients, topical glucocorticosteroids, or calcineurin inhibitors, phototherapies, immunosuppressants like cyclosporin A, and other treatments. All these treatments should be improved, thanks to research. But new therapeutic perspectives should be given by topical anti-inflammatory substances, selective glucocorticoid receptor agonists, probiotics, interferon γ, TNFα inhibitors, inhibition of T cells or B cells, inhibition of IgE binding, and many other possibilities.

  17. Bioengineering beige adipose tissue therapeutics

    Directory of Open Access Journals (Sweden)

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  18. Therapeutic advances in muscular dystrophy

    OpenAIRE

    Leung, Doris G.; Wagner, Kathryn R.

    2013-01-01

    The muscular dystrophies comprise a heterogeneous group of genetic disorders that produce progressive skeletal muscle weakness and wasting. There has been rapid growth and change in our understanding of these disorders in recent years, and advances in basic science are being translated into increasing numbers of clinical trials. This review will discuss therapeutic developments in 3 of the most common forms of muscular dystrophy: Duchenne muscular dystrophy, facioscapulohumeral muscular dystr...

  19. Epidermal growth factor receptor-targeted antibody therapy - Mechanisms of action and modulators of therapeutic efficacy

    NARCIS (Netherlands)

    Lammerts van Bueren, Jeroen Jilles

    2008-01-01

    Cancer is an increasing disease in the world population, and in recent years there has been substantial interest in the development of novel therapeutic agents specifically targeting growth factor receptors on tumor cells. The epidermal growth factor receptor (EGFR) represents a tyrosine kinase cell

  20. Small flexible structure for targeted delivery of therapeutic and imaging moieties in precision medicine

    Science.gov (United States)

    Li, Bingjie; Qiu, Xiuchun; Zou, Chaoxia; Ran, Henry; Zhang, Fujun; Ke, Shi

    2016-01-01

    The goals of precision medicine are to link diagnostic and therapeutic agents, improve clinical outcomes, and minimize side effects. We present a simple, small, flexible three-armed core structure that can be conjugated to targeting, imaging, and therapeutic moieties. The targeting molecule can be a peptide, protein, or chemical compound. The diagnostic reporter can be optical and/or nuclear in nature, and can be replaced by chemo- and/or radiotherapeutic compounds for treatment using a single targeting molecule. Imaging components can be used to detect disease biomarkers, monitor treatment response, and guide surgery in real-time to create a tumor-free margin. Isotope impurity can be exploited to visualize whole-body distribution of therapeutic agents. The one-to-one ratio of targeting component to therapeutic agents facilitates dose calculation. The simple synthesis and flexible, modular nature of the agent facilitate high-purity, large-scale production. The core capacity to “seek, treat, and see” may advance precision medicine in the future. PMID:27027441

  1. Conotoxins that Confer Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    John A. C. Archer

    2012-06-01

    Full Text Available Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA approved pharmaceutical drug, Ziconotide (Prialt®; Elan Pharmaceuticals, Inc. that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD was also inferred.

  2. Conotoxins that confer therapeutic possibilities.

    Science.gov (United States)

    Essack, Magbubah; Bajic, Vladimir B; Archer, John A C

    2012-06-01

    Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt(®); Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred. PMID:22822370

  3. DNA as therapeutics; an update.

    Science.gov (United States)

    Saraswat, P; Soni, R R; Bhandari, A; Nagori, B P

    2009-09-01

    Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine's arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research. PMID:20502565

  4. DNA as therapeutics; an update

    Directory of Open Access Journals (Sweden)

    Saraswat P

    2009-01-01

    Full Text Available Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine′s arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research.

  5. Conotoxins that confer therapeutic possibilities

    KAUST Repository

    Essack, Magbubah

    2012-06-04

    Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ?-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred. 2012 by the authors; licensee MDPI.

  6. Enzyme therapeutics for systemic detoxification.

    Science.gov (United States)

    Liu, Yang; Li, Jie; Lu, Yunfeng

    2015-08-01

    Life relies on numerous biochemical processes working synergistically and correctly. Certain substances disrupt these processes, inducing living organism into an abnormal state termed intoxication. Managing intoxication usually requires interventions, which is referred as detoxification. Decades of development on detoxification reveals the potential of enzymes as ideal therapeutics and antidotes, because their high substrate specificity and catalytic efficiency are essential for clearing intoxicating substances without adverse effects. However, intrinsic shortcomings of enzymes including low stability and high immunogenicity are major hurdles, which could be overcome by delivering enzymes with specially designed nanocarriers. Extensive investigations on protein delivery indicate three types of enzyme-nanocarrier architectures that show more promise than others for systemic detoxification, including liposome-wrapped enzymes, polymer-enzyme conjugates, and polymer-encapsulated enzymes. This review highlights recent advances in these nano-architectures and discusses their applications in systemic detoxifications. Therapeutic potential of various enzymes as well as associated challenges in achieving effective delivery of therapeutic enzymes will also be discussed.

  7. EphB4 as a therapeutic target in mesothelioma

    International Nuclear Information System (INIS)

    Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted

  8. NEED FOR NEW HYPOGLYCEMIC AGENTS: AN OVERVIEW

    Directory of Open Access Journals (Sweden)

    V.B. Chaudhary *1 and J. K. Patel 2

    2013-01-01

    Full Text Available Low solubility compounds show dissolution rate limited absorption and hence poor absorption, distribution and target organ delivery. Improvement of aqueous solubility in such a case is valuable goal to improve therapeutic efficacy. Complexation with CDs by different methods like physical mixing, melting, kneding, spray drying, freeze drying, co-evaporation has been reported to enhance the solubility, dissolution rate and bioavability of poorly water soluble drugs. The formation of inclusion complex can be confirmed by DSC, FTIR, XRD and SEM study. This review aims to assess the use of cyclodextrines as complexing agents to enhance the solubility of poorly soluble drugs and hence to resolve the many issues associated with developing and commercializing poorly water soluble drugs.

  9. Some medicinal plants as natural anticancer agents

    Directory of Open Access Journals (Sweden)

    Govind Pandey

    2009-01-01

    Full Text Available India is the largest producer of medicinal plants and is rightly called the "Botanical garden of the World". The medicinal plants, besides having natural therapeutic values against various diseases, also provide high quality of food and raw materials for livelihood. Considerable works have been done on these plants to treat cancer, and some plant products have been marketed as anticancer drugs, based on the traditional uses and scientific reports. These plants may promote host resistance against infection by re-stabilizing body equilibrium and conditioning the body tissues. Several reports describe that the anticancer activity of medicinal plants is due to the presence of antioxidants in them. In fact, the medicinal plants are easily available, cheaper and possess no toxicity as compared to the modern (allopathic drugs. Hence, this review article contains 66 medicinal plants, which are the natural sources of anticancer agents.

  10. DNA damage responses in cancer stem cells: Implications for cancer therapeutic strategies

    Institute of Scientific and Technical Information of China (English)

    Qi-En; Wang

    2015-01-01

    The identification of cancer stem cells(CSCs) that are responsible for tumor initiation, growth, metastasis, and therapeutic resistance might lead to a new thinking on cancer treatments. Similar to stem cells,CSCs also display high resistance to radiotherapy and chemotherapy with genotoxic agents. Thus, conventional therapy may shrink the tumor volume but cannot eliminate cancer. Eradiation of CSCs represents a novel therapeutic strategy. CSCs possess a highly efficient DNA damage response(DDR) system, which is considered as a contributor to the resistance of these cells from exposures to DNA damaging agents. Targeting of enhanced DDR in CSCs is thus proposed to facilitate the eradication of CSCs by conventional therapeutics. To achieve this aim, a better understanding of the cellular responses to DNA damage in CSCs is needed. In addition to the protein kinases and enzymes that are involved in DDR, other processes that affect the DDR including chromatin remodeling should also be explored.

  11. Product and Agent

    DEFF Research Database (Denmark)

    Montecino, Alex; Valero, Paola

    2015-01-01

    In this paper we will explore how the “mathematics teacher” becomes a subject and, at the same time, is subjected as part of diverse dispositive of power. We argue that the mathematics teacher becomes both a product and a social agent, which has been set, within current societies, from the ideas...... of globalization, social progress, and competitive logic. For our approximation, we use the concepts societies of control, dispositive, and discourses from a Foucault–Deleuze toolbox. Our purpose is to cast light on the social and cultural constitution of the ways of thinking about the mathematics teacher. Hence......, our critical examination offers understandings about how mathematics teachers are part of the larger cultural politics of schooling and education....

  12. Microencapsulation of chemotherapeutic agents

    International Nuclear Information System (INIS)

    Mixing various amounts of chemotherapeutic agents such as cisplatinum, 5-fluorouracil, mitomycin-C, and adriamycin with polymers such as poly-d, 1-lactide, ethylhydroxyethylcellulose, and polycaprolactone, several kinds of microcapsules were made. Among them, microcapsule made from ethylhydroxyethylcellulose showed best yield. Under light microscopy, the capsules were observed as particles with refractive properties. For the basic toxicity test, intraarterial administration of cisplatinum was done in 6 adult mongrel dogs. Follow-up angiography was accomplished in 2 wk intervals for 6 wks. Despite no significant difference in the histopathological examination between the embolized and normal kidneys, follow-up angiogram showed atrophy of renal cortex and diminished numbers of arterial branches in the embolized kidneys. In order to identify the structural properties of microcapsules, and to determine the drug content and the rate of release, further experiment is thought to be necessary. (Author)

  13. Hepatocytes as Immunological Agents.

    Science.gov (United States)

    Crispe, Ian N

    2016-01-01

    Hepatocytes are targeted for infection by a number of major human pathogens, including hepatitis B virus, hepatitis C virus, and malaria. However, hepatocytes are also immunological agents in their own right. In systemic immunity, they are central in the acute-phase response, which floods the circulation with defensive proteins during diverse stresses, including ischemia, physical trauma, and sepsis. Hepatocytes express a variety of innate immune receptors and, when challenged with pathogen- or damage-associated molecular patterns, can deliver cell-autonomous innate immune responses that may result in host defense or in immunopathology. Important human pathogens have evolved mechanisms to subvert these responses. Finally, hepatocytes talk directly to T cells, resulting in a bias toward immune tolerance. PMID:26685314

  14. UTBot: A Virtual Agent Platform for Teaching Agent System Design

    Directory of Open Access Journals (Sweden)

    In-Cheol Kim

    2007-02-01

    Full Text Available We introduce UTBot, a virtual agent platform for teaching agent system design. UTBot implements a client for the Unreal Tournament game server and Gamebots system. It provides students with the basic functionality required to start developing their own intelligent virtual agents to play autonomously UT games. UTBot includes a generic agent architecture, CAA (Context-sensitive Agent Architecture, a domain-specific world model, a visualization tool, several basic strategies (represented by internal modes and internal behaviors, and skills (represented by external behaviors. The CAA architecture can support complex long-term behaviors as well as reactive short-term behaviors. It also realizes high context-sensitivity of behaviors. We also discuss our experience using UTBot as a pedagogical tool for teaching agent system design in undergraduate Artificial Intelligence course.

  15. Possible protective effect of procainamide as an epigenetic modifying agent in experimentally induced type 2 diabetes mellitus in rats

    Directory of Open Access Journals (Sweden)

    Wessam F. El-Hadidy

    2015-03-01

    Conclusion: The present work could provide a proof of concept that procainamide could be used as a possible therapeutic potential in type 2 diabetics as an epigenetic demethylating agent to increase insulin levels and it is better to be used in combination with oral hypoglycemic agent e.g. metformin to decrease insulin resistance.

  16. Generation of a droplet inside a microbubble with the aid of an ultrasound contrast agent: First result

    NARCIS (Netherlands)

    M. Postema (Michiel); F.J. ten Cate (Folkert); G. Schmitz (Gerd); N. de Jong (Nico); A. van Wamel (Annemieke)

    2007-01-01

    textabstractNew ultrasound contrast agents that incorporate a therapeutic compound have become of interest. Such an ultrasound contrast agent particle might act as the vehicle to carry a drug or gene load to a perfused region of interest. The load could be released with the assistance of ultrasound.

  17. Integrating subpathway analysis to identify candidate agents for hepatocellular carcinoma.

    Science.gov (United States)

    Wang, Jiye; Li, Mi; Wang, Yun; Liu, Xiaoping

    2016-01-01

    Hepatocellular carcinoma (HCC) is the second most common cause of cancer-associated death worldwide, characterized by a high invasiveness and resistance to normal anticancer treatments. The need to develop new therapeutic agents for HCC is urgent. Here, we developed a bioinformatics method to identify potential novel drugs for HCC by integrating HCC-related and drug-affected subpathways. By using the RNA-seq data from the TCGA (The Cancer Genome Atlas) database, we first identified 1,763 differentially expressed genes between HCC and normal samples. Next, we identified 104 significant HCC-related subpathways. We also identified the subpathways associated with small molecular drugs in the CMap database. Finally, by integrating HCC-related and drug-affected subpathways, we identified 40 novel small molecular drugs capable of targeting these HCC-involved subpathways. In addition to previously reported agents (ie, calmidazolium), our method also identified potentially novel agents for targeting HCC. We experimentally verified that one of these novel agents, prenylamine, induced HCC cell apoptosis using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, an acridine orange/ethidium bromide stain, and electron microscopy. In addition, we found that prenylamine not only affected several classic apoptosis-related proteins, including Bax, Bcl-2, and cytochrome c, but also increased caspase-3 activity. These candidate small molecular drugs identified by us may provide insights into novel therapeutic approaches for HCC. PMID:27022281

  18. Human Health Consequences of Use of Antimicrobial Agents in Aquaculture

    DEFF Research Database (Denmark)

    Heuer, Ole Eske; Kruse, H.; Grave, K.;

    2009-01-01

    Intensive use of antimicrobial agents in aquaculture provides a selective pressure creating reservoirs of drug-resistant bacteria and transferable resistance genes in fish pathogens and other bacteria in the aquatic environment. From these reservoirs, resistance genes may disseminate by horizontal...... gene transfer and reach human pathogens, or drug-resistant pathogens from the aquatic environment may reach humans directly. Horizontal gene transfer may occur in the aquaculture environment, in the food chain, or in the human intestinal tract. Among the antimicrobial agents commonly used...... in aquaculture, several are classified by the World Health Organisation as critically important for use in humans. Occurrence of resistance to these antimicrobial agents in human pathogens severely limits the therapeutic options in human infections. Considering the rapid growth and importance of aquaculture...

  19. Development of (F-18)-Labeled Amyloid Imaging Agents for PET

    International Nuclear Information System (INIS)

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the 'amyloid cascade hypothesis' which holds that amyloid accumulation is the primary cause of AD.

  20. Francisella tularensis as a potential agent of bioterrorism?

    Science.gov (United States)

    Maurin, Max

    2015-02-01

    Francisella tularensis is a category A bioterrorism agent. It is the etiological agent of tularemia, a zoonotic disease found throughout the northern hemisphere. The intentional spread of F. tularensis aerosols would probably lead to severe and often fatal pneumonia cases, but also secondary cases from contaminated animals and environments. We are not ready to face such a situation. No vaccine is currently available. A few antibiotics are active against F. tularensis, but strains resistant to these antibiotics could be used in the context of bioterrorism. We need new therapeutic strategies to fight against category A bioterrorism agents, including development of new drugs inhibiting F. tularensis growth and/or virulence, or enhancing the host response to infection by this pathogen.