WorldWideScience

Sample records for anti-pseudomonas therapeutic agent

  1. Plasmids encoding therapeutic agents

    Science.gov (United States)

    Keener, William K.

    2007-08-07

    Plasmids encoding anti-HIV and anti-anthrax therapeutic agents are disclosed. Plasmid pWKK-500 encodes a fusion protein containing DP178 as a targeting moiety, the ricin A chain, an HIV protease cleavable linker, and a truncated ricin B chain. N-terminal extensions of the fusion protein include the maltose binding protein and a Factor Xa protease site. C-terminal extensions include a hydrophobic linker, an L domain motif peptide, a KDEL ER retention signal, another Factor Xa protease site, an out-of-frame buforin II coding sequence, the lacZ.alpha. peptide, and a polyhistidine tag. More than twenty derivatives of plasmid pWKK-500 are described. Plasmids pWKK-700 and pWKK-800 are similar to pWKK-500 wherein the DP178-encoding sequence is substituted by RANTES- and SDF-1-encoding sequences, respectively. Plasmid pWKK-900 is similar to pWKK-500 wherein the HIV protease cleavable linker is substituted by a lethal factor (LF) peptide-cleavable linker.

  2. Mushrooms as therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sushila Rathee

    2012-04-01

    Full Text Available Mushrooms have been known for their nutritional and culinary values and used as medicines and tonics by humans for ages. In modern terms, they can be considered as functional foods which can provide health benefits beyond the traditional nutrients. There are monographs that cover the medicinal and healing properties of some individual traditional mushrooms. There has been a recent upsurge of interest in mushrooms not only as a health food which is rich in protein but also as a source of biologically active compounds of medicinal value which include complementary medicine/dietary supplements for anticancer, antiviral, hepatoprotective, immunopotentiating and hypocholesterolemic agents. However the mechanisms of the various health benefits of mushrooms to humans still require intensive investigation, especially given the emergence of new evidence of their health benefits. In the present paper the medicinal potential of mushrooms is being discussed.

  3. Host modulation by therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sugumari Elavarasu

    2012-01-01

    Full Text Available Periodontal disease susceptible group present advanced periodontal breakdown even though they achieve a high standard of oral hygiene. Various destructive enzymes and inflammatory mediators are involved in destruction. These are elevated in case of periodontal destruction. Host modulation aims at bringing these enzymes and mediators to normal level. Doxycycline, nonsteroidal anti-inflammatory drugs (NSAIDs, bisphosphonates, nitrous oxide (NO synthase inhibitors, recombinant human interleukin-11 (rhIL-11, omega-3 fatty acid, mouse anti-human interleukin-6 receptor antibody (MRA, mitogen-activated protein kinase (MAPK inhibitors, nuclear factor-kappa B (NF-kb inhibitors, osteoprotegerin, and tumor necrosis factor antagonist (TNF-α are some of the therapeutic agents that have host modulation properties.

  4. Coumarin hybrids as novel therapeutic agents.

    Science.gov (United States)

    Sandhu, Sonali; Bansal, Yogita; Silakari, Om; Bansal, Gulshan

    2014-08-01

    Naturally occurring coumarins, having wide spectrum of activities such as antioxidant, anti-inflammatory, anticancer, MAO-B inhibitory and antimicrobial, are frequently used by the researchers to develop novel synthetic and semisynthetic coumarin based therapeutic agents. Many of these agents are hybrid molecules, which are designed through concept of molecular hybridization and have shown multiple pharmacological activities. This multifunctional attribute of these hybrid compounds makes them potential drug candidates for the treatment of multifactorial diseases such as cancer, Alzheimer's disease, metabolic syndromes, AIDS, malaria, and cardiovascular diseases. The present review compiles research reports on development of different coumarin hybrids, classify these on the basis of their therapeutic uses and propose structure-activity relationships. It is intended to help medicinal chemist in designing and synthesizing novel and potent hybrid compounds for the treatment of different disorders. PMID:24934993

  5. Applications of inorganic nanoparticles as therapeutic agents

    Science.gov (United States)

    Kim, Taeho; Hyeon, Taeghwan

    2014-01-01

    During the last decade, various functional nanostructured materials with interesting optical, magnetic, mechanical and chemical properties have been extensively applied to biomedical areas including imaging, diagnosis and therapy. In therapeutics, most research has focused on the application of nanoparticles as potential delivery vehicles for drugs and genes, because nanoparticles in the size range of 2-100 nm can interact with biological systems at the molecular level, and allow targeted delivery and passage through biological barriers. Recent investigations have even revealed that several kinds of nanomaterials are intrinsically therapeutic. Not only can they passively interact with cells, but they can also actively mediate molecular processes to regulate cell functions. This can be seen in the treatment of cancer via anti-angiogenic mechanisms as well as the treatment of neurodegenerative diseases by effectively controlling oxidative stress. This review will present recent applications of inorganic nanoparticles as therapeutic agents in the treatment of disease.

  6. Chelating agents in pharmacology, toxicology and therapeutics

    International Nuclear Information System (INIS)

    The proceedings contain 71 abstracts of papers. Fourteen abstracts were inputted in INIS. The topics covered include: the effects of chelating agents on the retention of 63Ni, 109Cd, 203Hg, 144Ce, 95Nb and the excretion of 210Po, 63Ni, 48V, 239Pu, 241Am, 54Mn; the applications of tracer techniques for studies of the efficacy of chelation therapy in patients with heart and brain disorders; and the treatment of metal poisoning with chelating agents. (J.P.)

  7. Microtubule-binding agents: a dynamic field of cancer therapeutics

    OpenAIRE

    Dumontet, Charles; Jordan, Mary Ann

    2010-01-01

    International audience Microtubules are dynamic filamentous cytoskeletal proteins composed of tubulin and are an important therapeutic target in tumour cells. Agents that bind to microtubules have been part of the pharmacopoeia of anticancer therapy for decades and until the advent of targeted therapy, microtubules were the only alternative to DNA as a therapeutic target in cancer. The screening of a range of botanical species and marine organisms has yielded promising new antitubulin agen...

  8. Natural Compounds as Therapeutic Agents in the Treatment Cystic Fibrosis

    OpenAIRE

    Dey, Isha; Shah, Kalpit; Bradbury, Neil A.

    2016-01-01

    The recent FDA approval of two drugs to treat the basic defect in cystic fibrosis has given hope to patients and their families battling this devastating disease. Over many years, with heavy financial investment from Vertex Pharmaceuticals and the Cystic Fibrosis Foundation, pre-clinical evaluation of thousands of synthetic drugs resulted in the production of Kalydeco and Orkambi. Yet, despite the success of this endeavor, many other compounds have been proposed as therapeutic agents in the t...

  9. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    OpenAIRE

    Fassett, Robert G; Coombes, Jeff S

    2011-01-01

    Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, h...

  10. Magnetic nanoparticles as both imaging probes and therapeutic agents.

    Science.gov (United States)

    Lacroix, Lise-Marie; Ho, Don; Sun, Shouheng

    2010-01-01

    Magnetic nanoparticles (MNPs) have been explored extensively as contrast agents for magnetic resonance imaging (MRI) or as heating agents for magnetic fluid hyperthermia (MFH) [1]. To achieve optimum operation conditions in MRI and MFH, these NPs should have well-controlled magnetic properties and biological functionalities. Although numerous efforts have been dedicated to the investigations on MNPs for biomedical applications [2-5], the NP optimizations for early diagnostics and efficient therapeutics are still far from reached. Recent efforts in NP syntheses have led to some promising MNP systems for sensitive MRI and efficient MFH applications. This review summarizes these advances in the synthesis of monodisperse MNPs as both contrast probes in MRI and as therapeutic agents via MFH. It will first introduce the nanomagnetism and elucidate the critical parameters to optimize the superparamagnetic NPs for MRI and ferromagnetic NPs for MFH. It will further outline the new chemistry developed for making monodisperse MNPs with controlled magnetic properties. The review will finally highlight the NP functionalization with biocompatible molecules and biological targeting agents for tumor diagnosis and therapy. PMID:20388109

  11. Radiopharmaceuticals as therapeutic agents in medical care and treatment

    International Nuclear Information System (INIS)

    Radiation applications in medical research, care, and treatment today are being used to help millions of patients throughout the world. In recent years, the medical community has seen a renaissance of therapeutic radiation applications, particularly of strontium-89 for metastatic bone pain. Radiopharmaceuticals used as therapeutic agents (frequently known as RPTs) are designed to deliver high doses of radiation to selected malignant sites in target organs or tissues, while minimizing the radiation doses to surrounding healthy cells. Over the past several years, several type of RPTs with special properties, including compounds for labelling monoclonal antibodies, have been used in animal and human clinical trials with promising results. The modern trend in radiopharmaceutical research for oncology is the development of RPTs that may be said to be tumour-seeking and tumour-specific. Among the promising RPTs being reported in the medical literature are rhenium-186 and samarium-153. Both can be produced in research reactors available in many countries. 2 tabs

  12. Metathesis access to monocyclic iminocyclitol-based therapeutic agents

    Directory of Open Access Journals (Sweden)

    Albert Demonceau

    2011-05-01

    Full Text Available By focusing on recent developments on natural and non-natural azasugars (iminocyclitols, this review bolsters the case for the role of olefin metathesis reactions (RCM, CM as key transformations in the multistep syntheses of pyrrolidine-, piperidine- and azepane-based iminocyclitols, as important therapeutic agents against a range of common diseases and as tools for studying metabolic disorders. Considerable improvements brought about by introduction of one or more metathesis steps are outlined, with emphasis on the exquisite steric control and atom-economical outcome of the overall process. The comparative performance of several established metathesis catalysts is also highlighted.

  13. Dronedarone for atrial fibrillation: a new therapeutic agent

    Directory of Open Access Journals (Sweden)

    Pawan D Patel

    2009-08-01

    Full Text Available Pawan D Patel, Rohit Bhuriya, Dipal D Patel, Bhaskar L Arora, Param P Singh, Rohit R AroraDepartment of Cardiology, Chicago Medical School, Chicago, IL, USAAbstract: Atrial fibrillation is the most common of the serious cardiac rhythm disturbances and is responsible for substantial morbidity and mortality. Amiodarone is currently one of the most widely used and most effective antiarrhythmic agents for atrial fibrillation. But during chronic usage amiodarone can cause some serious extra cardiac adverse effects, including effects on the thyroid. Dronedarone is a newer therapeutic agent with a structural resemblance to amiodarone, with two molecular changes, and with a better side effect profile. Dronedarone is a multichannel blocker and, like amiodarone, possesses both a rhythm and a rate control property in atrial fibrillation. The US Food and Drug Administration approved dronedarone for atrial fibrillation on July 2, 2009. In this review, we discuss the role of dronedarone in atrial fibrillation.Keywords: dronedarone, amiodarone, atrial fibrillation

  14. Hepatic drug transporters and nuclear receptors: Regulation by therapeutic agents

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The canalicular membrane represents the excretory pole of hepatocytes. Bile is an important route of elimina-tion of potentially toxic endo- and xenobiotics (including drugs and toxins), mediated by the major canalicular transporters: multidrug resistance protein 1 (MDR1, ABCB1), also known as P-glycoprotein, multidrug re-sistance-associated protein 2 (MRP2, ABCC2), and the breast cancer resistance protein (BCRP, ABCG2). Their activities depend on regulation of expression and proper localization at the canalicular membrane, as regulated by transcriptional and post-transcriptional events, re-spectively. At transcriptional level, specific nuclear re-ceptors (NR)s modulated by ligands, co-activators and co-repressors, mediate the physiological requirements of these transporters. This complex system is also re-sponsible for alterations occurring in specific liver pa-thologies. We briefly describe the major Class Ⅱ NRs, pregnane X receptor (PXR) and constitutive androstane receptor (CAR), and their role in regulating expression of multidrug resistance proteins. Several therapeutic agents regulate the expression of relevant drug trans-porters through activation/inactivation of these NRs. We provide some representative examples of the action of therapeutic agents modulating liver drug transporters, which in addition, involve CAR or PXR as mediators.

  15. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer.

    Science.gov (United States)

    Thoppil, Roslin J; Bishayee, Anupam

    2011-09-27

    Despite significant advances in medicine, liver cancer, predominantly hepatocellular carcinoma remains a major cause of death in the United States as well as the rest of the world. As limited treatment options are currently available to patients with liver cancer, novel preventive control and effective therapeutic approaches are considered to be reasonable and decisive measures to combat this disease. Several naturally occurring dietary and non-dietary phytochemicals have shown enormous potential in the prevention and treatment of several cancers, especially those of the gastrointestinal tract. Terpenoids, the largest group of phytochemicals, traditionally used for medicinal purposes in India and China, are currently being explored as anticancer agents in clinical trials. Terpenoids (also called "isoprenoids") are secondary metabolites occurring in most organisms, particularly plants. More than 40 000 individual terpenoids are known to exist in nature with new compounds being discovered every year. A large number of terpenoids exhibit cytotoxicity against a variety of tumor cells and cancer preventive as well as anticancer efficacy in preclinical animal models. This review critically examines the potential role of naturally occurring terpenoids, from diverse origins, in the chemoprevention and treatment of liver tumors. Both in vitro and in vivo effects of these agents and related cellular and molecular mechanisms are highlighted. Potential challenges and future directions involved in the advancement of these promising natural compounds in the chemoprevention and therapy of human liver cancer are also discussed. PMID:21969877

  16. Tackling obesity: new therapeutic agents for assisted weight loss

    Directory of Open Access Journals (Sweden)

    JG Karam

    2010-04-01

    Full Text Available JG Karam1, SI McFarlane21SUNY-Downstate-Kings County Hospital, Brooklyn, NY, USA, Maimonides Medical Center, Brooklyn, NY, USA; 2Division of Endocrinology, College of Medicine, State University of New York-Downstate Medical Center, New York, USAAbstract: The pandemic of overweight and obesity continues to rise in an alarming rate in western countries and around the globe representing a major public health challenge in desperate need for new strategies tackling obesity. In the United States nearly two thirds of the population is overweight or obese. Worldwide the number of persons who are overweight or obese exceeded 1.6 billion. These rising figures have been clearly associated with increased morbidity and mortality. For example, in the Framingham study, the risk of death increases with each additional pound of weight gain even in the relatively younger population between 30 and 42 years of age. Overweight and obesity are also associated with increased co-morbid conditions such as diabetes, hypertension and cardiovascular disease as well as certain types of cancer. In this review we discuss the epidemic of obesity, highlighting the pathophysiologic mechanisms of weight gain. We also provide an overview of the assessment of overweight and obese individuals discussing possible secondary causes of obesity. In a detailed section we discuss the currently approved therapeutic interventions for obesity highlighting their mechanisms of action and evidence of their efficacy and safety as provided in clinical trials. Finally, we discuss novel therapeutic interventions that are in various stages of development with a special section on the weight loss effects of anti-diabetic medications. These agents are particularly attractive options for our growing population of obese diabetic individuals.Keywords: obesity, assisted weight loss, therapy

  17. Characterization of Emodin as a Therapeutic Agent for Diabetic Cataract.

    Science.gov (United States)

    Chang, Kun-Che; Li, Linfeng; Sanborn, Theresa M; Shieh, Biehuoy; Lenhart, Patricia; Ammar, David; LaBarbera, Daniel V; Petrash, J Mark

    2016-05-27

    Aldose reductase (AR) in the lens plays an important role in the pathogenesis of diabetic cataract (DC) by contributing to osmotic and oxidative stress associated with accelerated glucose metabolism through the polyol pathway. Therefore, inhibition of AR in the lens may hold the key to prevent DC formation. Emodin, a bioactive compound isolated from plants, has been implicated as a therapy for diabetes. However, its inhibitory activity against AR remains unclear. Our results showed that emodin has good selectively inhibitory activity against AR (IC50 = 2.69 ± 0.90 μM) but not other aldo-keto reductases and is stable at 37 °C for at least 7 days. Enzyme kinetic studies demonstrated an uncompetitive inhibition against AR with a corresponding inhibition constant of 2.113 ± 0.095 μM. In in vivo studies, oral administration of emodin reduced the incidence and severity of morphological markers of cataract in lenses of AR transgenic mice. Computational modeling of the AR-NADP(+)-emodin ternary complex indicated that the 3-hydroxy group of emodin plays an essential role by interacting with Ser302 through hydrogen bonding in the specificity pocket of AR. All the findings above provide encouraging evidence for emodin as a potential therapeutic agent to prevent cataract in diabetic patients. PMID:27140653

  18. Tetrodotoxin (TTX as a Therapeutic Agent for Pain

    Directory of Open Access Journals (Sweden)

    Cruz Miguel Cendán

    2012-01-01

    Full Text Available Tetrodotoxin (TTX is a potent neurotoxin that blocks voltage-gated sodium channels (VGSCs. VGSCs play a critical role in neuronal function under both physiological and pathological conditions. TTX has been extensively used to functionally characterize VGSCs, which can be classified as TTX-sensitive or TTX-resistant channels according to their sensitivity to this toxin. Alterations in the expression and/or function of some specific TTX-sensitive VGSCs have been implicated in a number of chronic pain conditions. The administration of TTX at doses below those that interfere with the generation and conduction of action potentials in normal (non-injured nerves has been used in humans and experimental animals under different pain conditions. These data indicate a role for TTX as a potential therapeutic agent for pain. This review focuses on the preclinical and clinical evidence supporting a potential analgesic role for TTX. In addition, the contribution of specific TTX-sensitive VGSCs to pain is reviewed.

  19. Astaxanthin: A Potential Therapeutic Agent in Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Robert G. Fassett

    2011-03-01

    Full Text Available Astaxanthin is a xanthophyll carotenoid present in microalgae, fungi, complex plants, seafood, flamingos and quail. It is an antioxidant with anti-inflammatory properties and as such has potential as a therapeutic agent in atherosclerotic cardiovascular disease. Synthetic forms of astaxanthin have been manufactured. The safety, bioavailability and effects of astaxanthin on oxidative stress and inflammation that have relevance to the pathophysiology of atherosclerotic cardiovascular disease, have been assessed in a small number of clinical studies. No adverse events have been reported and there is evidence of a reduction in biomarkers of oxidative stress and inflammation with astaxanthin administration. Experimental studies in several species using an ischaemia-reperfusion myocardial model demonstrated that astaxanthin protects the myocardium when administered both orally or intravenously prior to the induction of the ischaemic event. At this stage we do not know whether astaxanthin is of benefit when administered after a cardiovascular event and no clinical cardiovascular studies in humans have been completed and/or reported. Cardiovascular clinical trials are warranted based on the physicochemical and antioxidant properties, the safety profile and preliminary experimental cardiovascular studies of astaxanthin.

  20. 90Y and 105Rh labelled preparations: Potential therapeutic agents

    International Nuclear Information System (INIS)

    90Y and 105Rh formulations were studied with an aim to prepare therapeutic radiopharmaceuticals. 90Y obtained from a 90Sr-90Y generator as chloride was complexed with known ligands such as DTPA, EDTMP and DOTA as well as a few other phosphonate ligands. Particulates such as 90Y labelled ferric hydroxide macroaggregates (FHMA) and 105Rh-sulphur colloid were prepared and studied for their stability in buffers and human serum. The studies on the complexation of 90Y and the preparation of radiolabelled particulates are described. 90Y complexed nearly quantitatively with DTPA, DOTA and EDTMP under optimised conditions of reaction pH, temperature and ligand concentrations. Both 90Y-FHMA and 105Rh-S colloid could be prepared in high yields under optimised conditions. The labelled particulates were measuring 20-100 μm and 1-20 μm, respectively and were found to be very stable in buffers as well as human serum at 37 deg. C. The particulates have the potential for use as radiosynovectomy agents and for therapy of cancers such as hepatomas. (author)

  1. Radiopharmaceuclicks: from multimodal imaging probes to therapeutic agents

    International Nuclear Information System (INIS)

    Full text of publication follows. The 'click-to-chelate' concept developed recently by Schibli and Coll. allowed the synthesis and biological evaluation of numerous metallic complexes based on a triazole ring for nuclear medicine [Ref.1]. Most of these radio-complexes, prepared by a Copper-catalyzed Alkyne-Azide Cycloaddition reaction (CuAAC reaction), have been used for single photon emission computer tomography applications (SPECT), particularly 99mTc complexes. The CuAAC reaction representing, in our opinion, a very powerful tool, we anticipated that its use could be interesting for the development of dual imaging probes and for the preparation of new therapeutic agents. These compounds, so-called radiopharmaceuclicks, have been developed using (i) a 99mTc(I)/185/187Re metal pairs for the preparation of a novel bimodal SPECT/fluorescence probe and (ii) a 188Re(I) core for the conception of a new Re-radio-complex. Therefore, we developed recently a novel bimodal optical/radiolabelled probe based on a pyridyl-triazole scaffold, so-called pyta [Ref.2]. The final dual imaging agent combines a carboxylate functionalization for bio-molecule conjugation and two distinct metal chelating sites: a pyta-based tricarbonyl-rhenium moiety as fluorescent probe and a 99mTc(CO3)+ core through the tridentate chelating iminodiacetic acid (IDA) clamp as SPECT reporter. The preparation and biological evaluation (in vitro stability, non-toxicity, cell tracking... ) of this complex will be presented here and its potential as a pre- and intra-operative diagnostic probe will be discussed. On the other hand, first investigations about the preparation of a new bifunctional chelating agent based on a triazolyl moiety and specific for the 188Re-tricarbonyl core complexation will be described. To the best of our knowledge, this 188Re(CO)3 complex represents the second example of a chelate in which the 188Re-tricarbonyl core is coordinated by a click ligand, the first one being

  2. Identifying therapeutic chemical agents for osteoarthritis by high throughput screening

    OpenAIRE

    Tsui, YK; Masuda, K.; Cheung, KM; Leung, VY; Kao, RY; CHAN, D

    2009-01-01

    INTRODUCTION: An articular cartilage lesion, notably generated by osteoarthritis (OA), is initiated partly by the loss of proteoglycan content from the extracellular matrix and manifests as pain or disturbed joint function [1]. Strategies that restore the proteoglycan content would be of therapeutic benefit to prevent, delay, or even reverse the progression of the lesion. Numerous clinical and experimental approaches have been widely applied [2-4] to relieve the pain or induce healing of the ...

  3. [Sensitivity of anaerobic bacteria to therapeutic agents (Zurich 1984)].

    Science.gov (United States)

    Wüst, J; Hardegger, U

    1985-12-28

    There are several reports in the literature on resistance of anaerobic bacteria against antimicrobial agents. Therefore, 231 anaerobic strains of various bacterial genera, isolated from clinical specimens during fall 1984, were tested for susceptibility to antimicrobial agents active against anaerobic bacteria. Whereas 23% of the Bacteroides species not belonging to the B. fragilis group were resistant to penicillin, the anaerobic bacteria were still susceptible to chloramphenicol, clindamycin and the nitroimidazoles. The resistance rate against the various new beta-lactam antibiotics was comparable to results of other studies. Due to the increasing resistance it is recommended that the susceptibility of clinically important anaerobes be tested by appropriate techniques. The agar diffusion test must not be used due to unreliable results. Instead, the minimal inhibitory concentration should be determined or the "broth-disk" test performed. PMID:4089587

  4. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  5. Heterocyclic N-Oxides - An Emerging Class of Therapeutic Agents.

    Science.gov (United States)

    Mfuh, A M; Larionov, O V

    2015-01-01

    Heterocyclic N-oxides have emerged as potent compounds with anticancer, antibacterial, antihypertensive, antiparasitic, anti-HIV, anti-inflammatory, herbicidal, neuroprotective, and procognitive activities. The N-oxide motif has been successfully employed in a number of recent drug development projects. This review surveys the emergence of this scaffold in the mainstream medicinal chemistry with a focus on the discovery of the heterocyclic N-oxide drugs, N-oxide-specific mechanisms of action, drug-receptor interactions and synthetic avenues to these compounds. As the first review on this subject that covers the developments since 1950s to date, it is expected that it will inspire wider implementation of the heterocyclic N-oxide motif in the rational design of new medicinal agents. PMID:26087764

  6. Honey: A Potential Therapeutic Agent for Managing Diabetic Wounds

    Directory of Open Access Journals (Sweden)

    Fahmida Alam

    2014-01-01

    Full Text Available Diabetic wounds are unlike typical wounds in that they are slower to heal, making treatment with conventional topical medications an uphill process. Among several different alternative therapies, honey is an effective choice because it provides comparatively rapid wound healing. Although honey has been used as an alternative medicine for wound healing since ancient times, the application of honey to diabetic wounds has only recently been revived. Because honey has some unique natural features as a wound healer, it works even more effectively on diabetic wounds than on normal wounds. In addition, honey is known as an “all in one” remedy for diabetic wound healing because it can combat many microorganisms that are involved in the wound process and because it possesses antioxidant activity and controls inflammation. In this review, the potential role of honey’s antibacterial activity on diabetic wound-related microorganisms and honey’s clinical effectiveness in treating diabetic wounds based on the most recent studies is described. Additionally, ways in which honey can be used as a safer, faster, and effective healing agent for diabetic wounds in comparison with other synthetic medications in terms of microbial resistance and treatment costs are also described to support its traditional claims.

  7. Rituximab: An emerging therapeutic agent for kidney transplantation

    Directory of Open Access Journals (Sweden)

    Joseph Kahwaji

    2009-10-01

    Full Text Available Joseph Kahwaji, Chris Tong, Stanley C Jordan, Ashley A VoComprehensive Transplant Center, Transplant immunology Laboratory, HLA Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, USAAbstract: Rituximab (anti-CD20, anti-B-cell is now emerging as an important drug for modification of B-cell and antibody responses in solid-organ transplant recipients. Its uses are varied and range from facilitating desensitization and ABO blood group-incompatible transplantation to the treatment of antibody-mediated rejection (AMR, post-transplant lymphoproliferative disorder (PTLD, and recurrent glomerular diseases in the renal allograft. Despite these uses, prospective randomized trials are lacking. Only case reports exist in regards to its use in de novo and recurrent diseases in the renal allograft. Recent reports suggests that the addition of rituximab to intravenous immunoglobulin (IVIG may have significant benefits for desensitization and treatment of AMR and chronic rejection. Current dosing recommendations are based on data from United States Food and Drug Administration-approved indications for treatment of B-cell lymphomas and rheumatoid arthritis. From the initial reported experience in solid organ transplant recipients, the drug is well tolerated and not associated with increased infectious risks. However, close monitoring for viral infections is recommended with rituximab use. The occurrence of progressive multifocal leukoencephalopathy (PML has been reported with rituximab use. However, this is rare and not reported in the renal transplant population. Here we will review current information regarding the effectiveness of rituximab as an agent for desensitization of highly human leukocyte antigen-sensitized and ABO-incompatible transplant recipients and its use in treatment of AMR. In addition, the post-transplant use of rituximab for treatment of PTLD and for recurrent and de novo glomerulonephritis in the allograft will be discussed. In

  8. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals

    OpenAIRE

    Ferguson, B. Scott; Hoggarth, David A.; Maliniak, Dan; Ploense, Kyle; White, Ryan J.; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J.; Eisenstein, Michael; Kippin, Tod; Plaxco, Kevin W.; Soh, H. Tom

    2013-01-01

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients’ health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lact...

  9. Nanoparticles as conjugated delivery agents for therapeutic applications

    Science.gov (United States)

    Muroski, Megan Elizabeth

    This dissertation explores the use of nanoparticles as conjugated delivery agents. Chapter 1 is a general introduction. Chapter 2 discusses the delivery by a nanoparticle platform provides a method to manipulate gene activation, by taking advantage of the high surface area of a nanoparticle and the ability to selectively couple a desired biological moiety to the NP surface. The nanoparticle based transfection approach functions by controlled release of gene regulatory elements from a 6 nm AuNP (gold nanoparticle) surface. The endosomal release of the regulatory elements from the nanoparticle surface results in endogenous protein knockdown simultaneously with exogenous protein expression for the first 48 h. The use of fluorescent proteins as the endogenous and exogenous signals for protein expression enables the efficiency of co-delivery of siRNA (small interfering RNA) for GFP (green fluorescent protein) knockdown and a dsRed-express linearized plasmid for induction to be optically analyzed in CRL-2794, a human kidney cell line expressing an unstable green fluorescent protein. Delivery of the bimodal nanoparticle in cationic liposomes results in 20% GFP knockdown within 24 h of delivery and continues exhibiting knockdown for up to 48 h for the bimodal agent. Simultaneous dsRed expression is observed to initiate within the same time frame with expression levels reaching 34% after 25 days although cells have divided approximately 20 times, implying daughter cell transfection has occurred. Fluorescence cell sorting results in a stable colony, as demonstrated by Western blot analysis. The simultaneous delivery of siRNA and linearized plasmid DNA on the surface of a single nanocrystal provides a unique method for definitive genetic control within a single cell and leads to a very efficient cell transfection protocol. In Chapter 3, we wanted to understand the NP complex within the cell, and to look at the dynamics of release utilizing nanometal surface energy transfer as

  10. Multirate delivery of multiple therapeutic agents from metal-organic frameworks

    Directory of Open Access Journals (Sweden)

    Alistair C. McKinlay

    2014-12-01

    Full Text Available The highly porous nature of metal-organic frameworks (MOFs offers great potential for the delivery of therapeutic agents. Here, we show that highly porous metal-organic frameworks can be used to deliver multiple therapeutic agents—a biologically active gas, an antibiotic drug molecule, and an active metal ion—simultaneously but at different rates. The possibilities offered by delivery of multiple agents with different mechanisms of action and, in particular, variable timescales may allow new therapy approaches. Here, we show that the loaded MOFs are highly active against various strains of bacteria.

  11. Curcumin as a therapeutic agent in the chemoprevention of inflammatory bowel disease.

    Science.gov (United States)

    Sreedhar, Remya; Arumugam, Somasundaram; Thandavarayan, Rajarajan A; Karuppagounder, Vengadeshprabhu; Watanabe, Kenichi

    2016-05-01

    Inflammatory bowel diseases (IBD), mainly Crohn's disease (CD) and ulcerative colitis (UC) are chronic ailments of the gastrointestinal tract, characterized by recurrent inflammation. Current therapeutic strategies are based on the mitigation of symptoms, including inflammatory remission and healing of mucosal manifestations. Extensive studies have suggested that continuous oxidative damage can lead to the inflammatory signaling cascade in IBD. Curcumin, a potent modulator of cell signaling, is popular for its antioxidant and anti-inflammatory activities, and has already been shown remarkable therapeutic results in IBD. Here, we review and discuss the effects of curcumin as a therapeutic agent in the chemoprevention of IBD. PMID:26995272

  12. A Recent Perspective on Discovery and Development of Diverse Therapeutic Agents Inspired from Isatin Alkaloids.

    Science.gov (United States)

    Rane, Rajesh A; Karunanidhi, Sivanandhan; Jain, Kavita; Shaikh, Mahamadhanif; Hampannavar, Girish; Karpoormath, Rajshekhar

    2016-01-01

    Isatin as an alkaloidal framework have consistently attracted attention of medicinal chemist towards development of wide range of novel therapeutic agents. This review report has discussed significant isatin lead molecules and their derivatives which have shown promising biological potential in recent times. The substituted isatins showing a potent pharmacological activities such as antimicrobial, antitubercular, anticancer, antioxidant, anti-histaminic, anti-HIV, antiviral, anti-inflammatory, anti-Parkinson's and antidiabetic have been described in this review. The mechanism of action leading to therapeutic activity of the respective isatin derivation has also been recorded. This review reveals that the systematic and rational modifications on isatin motif exhibited significant bio-activities which can be exploited for the development of potent novel therapeutic agents in the future studies. Hence the quest to investigate more structural alterations on isatin scaffold should be continued. PMID:26369813

  13. Effect of Some Therapeutic Agents on the Radionuclides Excretion from Internally Contaminated Rats

    International Nuclear Information System (INIS)

    The present work was oriented to investigate the effectiveness of Prussian blue (PB), vermiculite and diethylenetriaminepentaacetic acid (CaDTPA) as therapeutic agents for the elimination of either 134Cs or 60Co from contaminated rats after intake of one of the isotopes. The study was performed by using 48 adult rats divided into 8 identical groups each of six rats having approximately the same body weight. The groups included a reference group, without isotope or therapeutic agent administration, four groups given one of the isotopes and four groups given the isotopes and treated with different therapeutic regimes. The isotope content of the treated and untreated contaminated rats were followed by daily whole body radiometric counting for three weeks. On plotting log % radionuclide retained as a function of time, elapsed between radionuclide administration and radiometric counting, straight lines were obtained. The results indicate that excretion can mostly be represented by two stages; the first is fast followed by a second slow stage. The % radionuclide excreted, the corresponding rate constant and the biological half-life of each stage was estimated. It was found that the application of PB + vermiculite is more efficient, to remove 134Cs, from contaminated rats, than PB only and CaDTPA is more efficient to remove 60Co. Therefore, it is recommended to use the three therapeutic agents to remove both isotopes when taken simultaneously

  14. Metal chelators coupled with nanoparticles as potential therapeutic agents for Alzheimer's disease

    OpenAIRE

    Liu, Gang; Men, Ping; Perry, George; Smith, Mark A.

    2009-01-01

    Alzheimer's disease (AD) is a devastating neuro-degenerative disorder characterized by the progressive and irreversible loss of memory followed by complete dementia. Despite the disease's high prevalence and great economic and social burden, an explicative etiology or viable cure is not available. Great effort has been made to better understand the disease's pathogenesis, and to develop more effective therapeutic agents. However, success is greatly hampered by the presence of the blood-brain ...

  15. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology

    OpenAIRE

    Ashbee, H. Ruth; Barnes, Rosemary A.; Johnson, Elizabeth M.; Richardson, Malcolm D.; Gorton, Rebecca; Hope, William W.

    2013-01-01

    The burden of human disease related to medically important fungal pathogens is substantial. An improved understanding of antifungal pharmacology and antifungal pharmacokinetics–pharmacodynamics has resulted in therapeutic drug monitoring (TDM) becoming a valuable adjunct to the routine administration of some antifungal agents. TDM may increase the probability of a successful outcome, prevent drug-related toxicity and potentially prevent the emergence of antifungal drug resistance. Much of the...

  16. Efficacy of Several Therapeutic Agents in a Murine Model of Dry Eye Syndrome.

    Science.gov (United States)

    Kilic, Servet; Kulualp, Kadri

    2016-01-01

    In the current study, we used 56 female BALB/c mice with induced dry eye syndrome to evaluate the therapeutic effects of formal saline (FS), sodium hyaluronate (SH), diclofenac sodium (DS), olopatadine (OP), retinoic acid (RA), fluoromethanole (FML), cyclosporine A (CsA), and doxycycline hyclate (DH). All subjects were kept in an evaporative 'dry eye cabinet' for the assessment of blink rate, tear production, tear break-up time, and impression cytology prior to (baseline) and during weeks 2, 4, and 6 of the study. The right eyes of all subjects were treated topically with 5 μL of the test agent twice daily during weeks 2 through 6. Impression cytology and tear break-up time differed between time points in all groups and differed between groups at weeks 4 and 6. Blink rate differed by time point only in the FS, FML, and DH groups. Tear production according to the phenol red cotton thread test differed by time point for all groups except RA, CsA, and DH and differed between groups only at week 6. Among the compounds tested in the present study, DS and CsA were the most effective therapeutic agents in our mouse model of dry eye syndrome; these agents likely exert their therapeutic effect through their antiinflammatory activity. PMID:27053565

  17. Perspectives on Phytochemicals as Antibacterial Agents: An Outstanding Contribution to Modern Therapeutics.

    Science.gov (United States)

    Khatri, Savita; Kumar, Manish; Phougat, Neetu; Chaudhary, Renu; Chhillar, Anil Kumar

    2016-01-01

    Despite the considerable advancements in the development of antimicrobial agents, incidents of epidemics due to multi drug resistance in microorganisms have created a massive hazard to mankind. Due to increased resistance against conventional antibiotics, researchers and pharmaceutical industries are more concerned about novel therapeutic agents for the prevention of bacterial infections. Enormous wealth of traditional system of medicine gains importance in health therapies over again. With ancient credentials of potent medicinal plants, various herbal remedies came forward for the management of bacterial infections. The Ayurvedic approach facilitates the development of new therapeutic agents due to structural and functional diversity among phytochemicals. The abundance and diversity is responsible for the characterization of new lead structures from medicinal plants. Industrial interest has increased due to recent research advancements viz. synergistic and high-throughput screening approach for the evaluation of vast variety of phytochemicals. The review certainly emphasizes on the traditional medicines as alternatives to conventional chemotherapeutic drugs. The review briefly describes mode of action of various antibiotics and resistance mechanisms. This review focuses on the chemical diversity and various mechanisms of action of phytochemicals against bacterial pathogens. PMID:26873345

  18. Production and evaluation of Lutetium-177 maltolate as a possible therapeutic agent

    International Nuclear Information System (INIS)

    Development of oral therapeutic radiopharmaceuticals is a new concept in radiopharmacy. Due to the interesting therapeutic properties of 177Lu and oral bioavailability of maltolate (MAL) metal complexes, 177Lu-maltolate (177Lu-MAL) was developed as a possible therapeutic compound for ultimate oral administration. The specific activity of 2.6-3 GBq/mg was obtained by irradiation of natural Lu2O3 sample with thermal neutron flux of 4x1013 n.cm-2.s-1 for Lu-177. The product was converted into chloride form which was further used for labeling maltol (MAL). At optimized conditions a radiochemical purity of about >99% was obtained for 177Lu-MAL shown by ITLC (specific activity, 970-1000 Mbq/mmole). The stability of the labeled compound as well as the partition coefficient was determined in the final solution up to 24h. Biodistribution studies of Lu-177 chloride and 177Lu-MAL were carried out in wild-type rats for post-oral distribution phase data. Lu-MAL is a possible therapeutic agent in human malignancies for the bone palliation therapy so the efficacy of the compound should be tested in various animal models.

  19. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals.

    Science.gov (United States)

    Ferguson, Brian Scott; Hoggarth, David A; Maliniak, Dan; Ploense, Kyle; White, Ryan J; Woodward, Nick; Hsieh, Kuangwen; Bonham, Andrew J; Eisenstein, Michael; Kippin, Tod E; Plaxco, Kevin W; Soh, Hyongsok Tom

    2013-11-27

    A sensor capable of continuously measuring specific molecules in the bloodstream in vivo would give clinicians a valuable window into patients' health and their response to therapeutics. Such technology would enable truly personalized medicine, wherein therapeutic agents could be tailored with optimal doses for each patient to maximize efficacy and minimize side effects. Unfortunately, continuous, real-time measurement is currently only possible for a handful of targets, such as glucose, lactose, and oxygen, and the few existing platforms for continuous measurement are not generalizable for the monitoring of other analytes, such as small-molecule therapeutics. In response, we have developed a real-time biosensor capable of continuously tracking a wide range of circulating drugs in living subjects. Our microfluidic electrochemical detector for in vivo continuous monitoring (MEDIC) requires no exogenous reagents, operates at room temperature, and can be reconfigured to measure different target molecules by exchanging probes in a modular manner. To demonstrate the system's versatility, we measured therapeutic in vivo concentrations of doxorubicin (a chemotherapeutic) and kanamycin (an antibiotic) in live rats and in human whole blood for several hours with high sensitivity and specificity at subminute temporal resolution. We show that MEDIC can also obtain pharmacokinetic parameters for individual animals in real time. Accordingly, just as continuous glucose monitoring technology is currently revolutionizing diabetes care, we believe that MEDIC could be a powerful enabler for personalized medicine by ensuring delivery of optimal drug doses for individual patients based on direct detection of physiological parameters. PMID:24285484

  20. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    Directory of Open Access Journals (Sweden)

    Zhiguo Zhou

    2013-10-01

    Full Text Available Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no clinical evaluation or human use except in fullerene-based cosmetic products for human skincare. This article summarizes recent advances in liposome formulation of fullerenes for the use in therapeutics and molecular imaging.

  1. Spherical Nucleic Acids as Intracellular Agents for Nucleic Acid Based Therapeutics

    Science.gov (United States)

    Hao, Liangliang

    Recent functional discoveries on the noncoding sequences of human genome and transcriptome could lead to revolutionary treatment modalities because the noncoding RNAs (ncRNAs) can be applied as therapeutic agents to manipulate disease-causing genes. To date few nucleic acid-based therapeutics have been translated into the clinic due to challenges in the delivery of the oligonucleotide agents in an effective, cell specific, and non-toxic fashion. Unmodified oligonucleotide agents are destroyed rapidly in biological fluids by enzymatic degradation and have difficulty crossing the plasma membrane without the aid of transfection reagents, which often cause inflammatory, cytotoxic, or immunogenic side effects. Spherical nucleic acids (SNAs), nanoparticles consisting of densely organized and highly oriented oligonucleotides, pose one possible solution to circumventing these problems in both the antisense and RNA interference (RNAi) pathways. The unique three dimensional architecture of SNAs protects the bioactive oligonucleotides from unspecific degradation during delivery and supports their targeting of class A scavenger receptors and endocytosis via a lipid-raft-dependent, caveolae-mediated pathway. Owing to their unique structure, SNAs are able to cross cell membranes and regulate target genes expression as a single entity, without triggering the cellular innate immune response. Herein, my thesis has focused on understanding the interactions between SNAs and cellular components and developing SNA-based nanostructures to improve therapeutic capabilities. Specifically, I developed a novel SNA-based, nanoscale agent for delivery of therapeutic oligonucleotides to manipulate microRNAs (miRNAs), the endogenous post-transcriptional gene regulators. I investigated the role of SNAs involving miRNAs in anti-cancer or anti-inflammation responses in cells and in in vivo murine disease models via systemic injection. Furthermore, I explored using different strategies to construct

  2. Targeting ferritin receptors for the selective delivery of imaging and therapeutic agents to breast cancer cells

    Science.gov (United States)

    Geninatti Crich, S.; Cadenazzi, M.; Lanzardo, S.; Conti, L.; Ruiu, R.; Alberti, D.; Cavallo, F.; Cutrin, J. C.; Aime, S.

    2015-04-01

    In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation.In this work the selective uptake of native horse spleen ferritin and apoferritin loaded with MRI contrast agents has been assessed in human breast cancer cells (MCF-7 and MDA-MB-231). The higher expression of L-ferritin receptors (SCARA5) led to an enhanced uptake in MCF-7 as shown in T2 and T1 weighted MR images, respectively. The high efficiency of ferritin internalization in MCF-7 has been exploited for the simultaneous delivery of curcumin, a natural therapeutic molecule endowed with antineoplastic and anti-inflammatory action, and the MRI contrast agent Gd-HPDO3A. This theranostic system is able to treat selectively breast cancer cells over-expressing ferritin receptors. By entrapping in apoferritin both Gd-HPDO3A and curcumin, it was possible to deliver a therapeutic dose of 167 μg ml-1 (as calculated by MRI) of this natural drug to MCF-7 cells, thus obtaining a significant reduction of cell proliferation. Electronic supplementary information (ESI) available: Competition studies with free apoferritin, Fig. S1; APO-FITC intracellular distribution by

  3. Recent Advancement of Chitosan-Based Nanoparticles for Oral Controlled Delivery of Insulin and Other Therapeutic Agents

    OpenAIRE

    Chaudhury, Anumita; Das, Surajit

    2010-01-01

    Nanoparticles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nanoparticles for oral controlled delivery of several therapeutic agents. In recent years, the area of focus has shifted from chitosan to chitosan derivatized polymers for th...

  4. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    International Nuclear Information System (INIS)

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  5. Silibinin, dexamethasone, and doxycycline as potential therapeutic agents for treating vesicant-inflicted ocular injuries

    Energy Technology Data Exchange (ETDEWEB)

    Tewari-Singh, Neera, E-mail: Neera.Tewari-Singh@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Jain, Anil K., E-mail: Anil.Jain@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Inturi, Swetha, E-mail: Swetha.Inturi@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Ammar, David A., E-mail: David.Ammar@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Agarwal, Chapla, E-mail: Chapla.Agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Tyagi, Puneet, E-mail: Puneet.Tyagi@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Kompella, Uday B., E-mail: Uday.Kompella@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States); Enzenauer, Robert W., E-mail: Robert.Enzenauer@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Petrash, J. Mark, E-mail: Mark.Petrash@ucdenver.edu [Department of Ophthalmology, University of Colorado School of Medicine, Aurora, CO 80045 (United States); Agarwal, Rajesh, E-mail: Rajesh.Agarwal@ucdenver.edu [Department of Pharmaceutical Sciences, University of Colorado Skaggs School of Pharmacy and Pharmaceutical Sciences, Aurora, CO 80045 (United States)

    2012-10-01

    There are no effective and approved therapies against devastating ocular injuries caused by vesicating chemical agents sulfur mustard (SM) and nitrogen mustard (NM). Herein, studies were carried out in rabbit corneal cultures to establish relevant ocular injury biomarkers with NM for screening potential efficacious agents in laboratory settings. NM (100 nmol) exposure of the corneas for 2 h (cultured for 24 h), showed increases in epithelial thickness, ulceration, apoptotic cell death, epithelial detachment microbullae formation, and the levels of VEGF, cyclooxygenase-2 (COX-2) and matrix metalloproteinase-9 (MMP-9). Employing these biomarkers, efficacy studies were performed with agent treatments 2 h and every 4 h thereafter, for 24 h following NM exposure. Three agents were evaluated, including prescription drugs dexamethasone (0.1%; anti-inflammatory steroid) and doxycycline (100 nmol; antibiotic and MMP inhibitor) that have been studied earlier for treating vesicant-induced eye injuries. We also examined silibinin (100 μg), a non-toxic natural flavanone found to be effective in treating SM analog-induced skin injuries in our earlier studies. Treatments of doxycycline + dexamethasone, and silibinin were more effective than doxycycline or dexamethasone alone in reversing NM-induced epithelial thickening, microbullae formation, apoptotic cell death, and MMP-9 elevation. However, dexamethasone and silibinin alone were more effective in reversing NM-induced VEGF levels. Doxycycline, dexamethasone and silibinin were all effective in reversing NM-induced COX-2 levels. Apart from therapeutic efficacy of doxycycline and dexamethasone, these results show strong multifunctional efficacy of silibinin in reversing NM-induced ocular injuries, which could help develop effective and safe therapeutics against ocular injuries by vesicants. -- Highlights: ► Established injury biomarkers in rabbit corneal culture with nitrogen mustard (NM) ► This NM model is a cost effective

  6. Immunocytes as a Biocarrier to Delivery Therapeutic and Imaging Contrast Agents to Tumors

    Directory of Open Access Journals (Sweden)

    Jinhyang Choi

    2012-01-01

    Full Text Available Radiotherapy for cancer treatment has been used for primary or adjuvant treatment in many types of cancer, and approximately half of all cancer patients are undergoing radiation. However, ionizing radiation exposure induces genetic alterations in cancer cells and results in recruitment of monocytes/macrophages by triggering signals released from these cells. Using this characteristic of monocytes/macrophages, we have attempted to develop a biocarrier loading radiosensitizing anticancer agents that can lead to enhance the therapeutic effect of radiation in cancer treatment. The aim of this study is to demonstrate the proof of this concept. THP-1 labeled with Qdot 800 or iron oxide (IO effectively migrated into tumors of subcutaneous mouse model and increased recruitment after ionizing radiation. Functionalized liposomes carrying a radiosensitizing anticancer agent, doxorubicin, are successfully loaded in THP-1 (THP-1-LP-Dox with reduced cytotoxicity, and THP-1-LP-Dox also was observed in tumors after intravenous administration. Here, we report that monocytes/macrophages as a biocarrier can be used as a selective tool for amplification of the therapeutic effects on radiotherapy for human cancer treatment.

  7. New candidate therapeutic agents for endometrial cancer: potential for clinical practice (review).

    Science.gov (United States)

    Umene, Kiyoko; Banno, Kouji; Kisu, Iori; Yanokura, Megumi; Nogami, Yuya; Tsuji, Kosuke; Masuda, Kenta; Ueki, Arisa; Kobayashi, Yusuke; Yamagami, Wataru; Tominaga, Eiichiro; Susumu, Nobuyuki; Aoki, Daisuke

    2013-03-01

    Cases of endometrial cancer have increased in recent years, but the prognosis of patients with this disease has also been improved by combined modality therapy with surgery, radiotherapy and chemotherapy. However, the development of new therapy is required from the perspectives of conservation of fertility and efficacy for recurrent and intractable cancer. New candidate therapeutic agents for endometrial cancer include fourth-generation progestins for inhibition of growth and differentiation of endometrial glands; metformin for reduction of hTERT expression in the endometrium and inhibition of the mTOR pathway by activation of AMPK, with consequent inhibition of the cell cycle; mTOR inhibitors for supressing growth of cancer cells by G1 cell cycle arrest; microRNAs involved in the molecular mechanisms of oncogenesis and progression; and HDAC inhibitors that block the growth of cancer cells by transcriptional elevation of tumor-suppressor genes, cell cycle arrest and induction of apoptosis. In this study, we review the background and early clinical evidence for these agents as new therapeutic candidates for endometrial cancer. PMID:23291663

  8. Rannasangpei Is a Therapeutic Agent in the Treatment of Vascular Dementia

    Directory of Open Access Journals (Sweden)

    Peng Wu

    2016-01-01

    Full Text Available Rannasangpei (RSNP is used as a therapeutic agent in the treatment of cardiovascular diseases, neurological disorders, and neurodegeneration in China; however, its potential use in the treatment of vascular dementia (VD was unclear. In this study, our aim was to examine the neuroprotective effect of RSNP in a VD rat model, which was induced by permanent bilateral common carotid artery occlusion (2VO. Four-week administration with two doses of RSNP was investigated in our study. Severe cognitive deficit in the VD model, which was confirmed in Morris water maze (MWM test, was significantly restored by the administration of RSNP. ELISA revealed that the treatments with both doses of RSNP could reinstate the cholinergic activity in the VD animals by elevating the production of choline acetyltransferase (ChAT and reducing the acetylcholinesterase (AChE; the treatment of RSNP could also reboot the level of superoxide dismutase (SOD and decrease malondialdehyde (MDA. Moreover, Western blot and quantitative PCR (Q-PCR results indicated that the RSNP could suppress the apoptosis in the hippocampus of the VD animals by increasing the expression ratio of B-cell lymphoma-2 (Bcl-2 to Bcl-2-associated X protein (Bax. These results suggested that RSNP might be a therapeutic agent in the treatment of vascular dementia in the future.

  9. Technical cooperation for the wider uses of Ho-166 therapeutic agents in European countries

    International Nuclear Information System (INIS)

    Czech has put their priority in developing the radiopharmaceuticals based on reactor produced Ho-166 and a related fabrication will be extended to other EU conturies including Germany, France, etc after a development of project. The collaboration will be based on the mutual agreement for developing the between research institutes, industries and academic institutes and further researches should be followed by the issue of developing radiopharmaceuticals using Ho-166. To strengthen the collaboration, detailed discussions for the practical collaboration have been made through the visitation to the research institution of each counter part. For implementing the collaboration between NPI and KAERI, an institutional basis technical cooperation agreement(TCA) will be concluded. Furthermore, agreement for the substantial collaboration on Ho-166 related researches will be made after the conclusion of the TCA. It will accelerate the commercialization of KAERI developed Ho-166 therapeutic agents into other European countries once authorization is acquired in Czech because the regulatory authorization for the approval as a commercialization of radiopharmaceuticals in Czech is very similar to other EU countries. Thereby, its commercialization of Ho-166 products in Czech will lead to potential commercialization on other EU countries and this would be returning to KAERI in the from of investment profits. It is certain that the technical exportation of Ho-166 based therapeutic agents that have been developed KAERI into European countries such as France and Germany, etc. will be ensured through the successful technical collaboration program between KAERI and NPI

  10. Review of therapeutic agents for burns pruritus and protocols for management in adult and paediatric patients using the GRADE classification

    Directory of Open Access Journals (Sweden)

    Goutos Ioannis

    2010-10-01

    Full Text Available To review the current evidence on therapeutic agents for burns pruritus and use the Grading of Recommendations, Assessment, Development and Evaluation (GRADE classification to propose therapeutic protocols for adult and paediatric patients. All published interventions for burns pruritus were analysed by a multidisciplinary panel of burns specialists following the GRADE classification to rate individual agents. Following the collation of results and panel discussion, consensus protocols are presented. Twenty-three studies appraising therapeutic agents in the burns literature were identified. The majority of these studies (16 out of 23 are of an observational nature, making an evidence-based approach to defining optimal therapy not feasible. Our multidisciplinary approach employing the GRADE classification recommends the use of antihistamines (cetirizine and cimetidine and gabapentin as the first-line pharmacological agents for both adult and paediatric patients. Ondansetron and loratadine are the second-line medications in our protocols. We additionally recommend a variety of non-pharmacological adjuncts for the perusal of clinicians in order to maximise symptomatic relief in patients troubled with postburn itch. Most studies in the subject area lack sufficient statistical power to dictate a ′gold standard′ treatment agent for burns itch. We encourage clinicians to employ the GRADE system in order to delineate the most appropriate therapeutic approach for burns pruritus until further research elucidates the most efficacious interventions. This widely adopted classification empowers burns clinicians to tailor therapeutic regimens according to current evidence, patient values, risks and resource considerations in different medical environments.

  11. Avena sativa (Oat), a potential neutraceutical and therapeutic agent: an overview.

    Science.gov (United States)

    Singh, Rajinder; De, Subrata; Belkheir, Asma

    2013-01-01

    The aim of the present review article is to summarize the available information related to the availability, production, chemical composition, pharmacological activity, and traditional uses of Avena sativa to highlight its potential to contribute to human health. Oats are now cultivated worldwide and form an important dietary staple for the people in number of countries. Several varieties of oats are available. It is a rich source of protein, contains a number of important minerals, lipids, β-glucan, a mixed-linkage polysaccharide, which forms an important part of oat dietary fiber, and also contains various other phytoconstituents like avenanthramides, an indole alkaloid-gramine, flavonoids, flavonolignans, triterpenoid saponins, sterols, and tocols. Traditionally oats have been in use since long and are considered as stimulant, antispasmodic, antitumor, diuretic, and neurotonic. Oat possesses different pharmacological activities like antioxidant, anti-inflammatory, wound healing, immunomodulatory, antidiabetic, anticholesterolaemic, etc. A wide spectrum of biological activities indicates that oat is a potential therapeutic agent. PMID:23072529

  12. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential.

    Science.gov (United States)

    Zasloff, Michael; Adams, A Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Weaver, Scott C; Wong, Gerard C L

    2011-09-20

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacity of squalamine, a cationic amphipathic sterol, to neutralize the negative electrostatic surface charge of intracellular membranes in a way that renders the cell less effective in supporting viral replication. Because squalamine can be readily synthesized and has a known safety profile in man, we believe its potential as a broad-spectrum human antiviral agent should be explored. PMID:21930925

  13. Technical cooperation for the wider uses of Ho-166 therapeutic agents in European countries

    CERN Document Server

    Park, K B; Choi, S M; Han, K H; Hong, Y D; Park, W W; Shin, B C

    2002-01-01

    Czech has put their priority in developing the radiopharmaceuticals based on reactor produced Ho-166 and a related fabrication will be extended to other EU conturies including Germany, France, etc after a development of project. The collaboration will be based on the mutual agreement for developing the between research institutes, industries and academic institutes and further researches should be followed by the issue of developing radiopharmaceuticals using Ho-166. To strengthen the collaboration, detailed discussions for the practical collaboration have been made through the visitation to the research institution of each counter part. For implementing the collaboration between NPI and KAERI, an institutional basis technical cooperation agreement(TCA) will be concluded. Furthermore, agreement for the substantial collaboration on Ho-166 related researches will be made after the conclusion of the TCA. It will accelerate the commercialization of KAERI developed Ho-166 therapeutic agents into other European cou...

  14. Preclinical therapeutic potential of a nitrosylating agent in the treatment of ovarian cancer.

    Directory of Open Access Journals (Sweden)

    Shailendra Giri

    Full Text Available This study examines the role of s-nitrosylation in the growth of ovarian cancer using cell culture based and in vivo approaches. Using the nitrosylating agent, S-nitrosoglutathione (GSNO, a physiological nitric oxide molecule, we show that GSNO treatment inhibited proliferation of chemoresponsive and chemoresistant ovarian cancer cell lines (A2780, C200, SKVO3, ID8, OVCAR3, OVCAR4, OVCAR5, OVCAR7, OVCAR8, OVCAR10, PE01 and PE04 in a dose dependent manner. GSNO treatment abrogated growth factor (HB-EGF induced signal transduction including phosphorylation of Akt, p42/44 and STAT3, which are known to play critical roles in ovarian cancer growth and progression. To examine the therapeutic potential of GSNO in vivo, nude mice bearing intra-peritoneal xenografts of human A2780 ovarian carcinoma cell line (2 × 10(6 were orally administered GSNO at the dose of 1 mg/kg body weight. Daily oral administration of GSNO significantly attenuated tumor mass (p<0.001 in the peritoneal cavity compared to vehicle (phosphate buffered saline treated group at 4 weeks. GSNO also potentiated cisplatin mediated tumor toxicity in an A2780 ovarian carcinoma nude mouse model. GSNO's nitrosylating ability was reflected in the induced nitrosylation of various known proteins including NFκB p65, Akt and EGFR. As a novel finding, we observed that GSNO also induced nitrosylation with inverse relationship at tyrosine 705 phosphorylation of STAT3, an established player in chemoresistance and cell proliferation in ovarian cancer and in cancer in general. Overall, our study underlines the significance of S-nitrosylation of key cancer promoting proteins in modulating ovarian cancer and proposes the therapeutic potential of nitrosylating agents (like GSNO for the treatment of ovarian cancer alone or in combination with chemotherapeutic drugs.

  15. Selective Estrogen Receptor β Agonist LY500307 as a Novel Therapeutic Agent for Glioblastoma.

    Science.gov (United States)

    Sareddy, Gangadhara R; Li, Xiaonan; Liu, Jinyou; Viswanadhapalli, Suryavathi; Garcia, Lauren; Gruslova, Aleksandra; Cavazos, David; Garcia, Mike; Strom, Anders M; Gustafsson, Jan-Ake; Tekmal, Rajeshwar Rao; Brenner, Andrew; Vadlamudi, Ratna K

    2016-01-01

    Glioblastomas (GBM), deadly brain tumors, have greater incidence in males than females. Epidemiological evidence supports a tumor suppressive role of estrogen; however, estrogen as a potential therapy for GBM is limited due to safety concerns. Since GBM express ERβ, a second receptor for estrogen, targeting ERβ with a selective agonist may be a potential novel GBM therapy. In the present study, we examined the therapeutic effect of the selective synthetic ERβ agonist LY500307 using in vitro and in vivo GBM models. Treatment with LY500307 significantly reduced the proliferation of GBM cells with no activity on normal astrocytes in vitro. ERβ agonists promoted apoptosis of GBM cells, and mechanistic studies using RNA sequencing revealed that LY500307 modulated several pathways related to apoptosis, cell cycle, and DNA damage response. Further, LY500307 sensitized GBM cells to several FDA-approved chemotherapeutic drugs including cisplatin, lomustine and temozolomide. LY500307 treatment significantly reduced the in vivo tumor growth and promoted apoptosis of GBM tumors in an orthotopic model and improved the overall survival of tumor-bearing mice in the GL26 syngeneic glioma model. Our results demonstrate that LY500307 has potential as a therapeutic agent for GBM. PMID:27126081

  16. 166 Ho-HA Evaluation as therapeutic agent for rheumatoid arthritis treatment

    International Nuclear Information System (INIS)

    Aim: Rheumatoid arthritis is a limiting disease having, among its pathological features, the inflammation of synovial tissue with progressive and later destruction of the articulation. This lead to joint deformation and loss of its function, generating pain and reducing the mobility of the affected articulation. The aim was to evaluate 166Ho-Hydroxyapatite (166 Ho-HA) as potential radiopharmaceutical for the syntomatic treatment of chronic and acute arthritis Materials and Methods: 166Holmiun was produced by irradiation of Ho2O3 at La Reina Research Reactor, Nuclear Chilean Energy Commission. Hydroxyapatite was in-house synthetized. Its labelling and quality controls follows the internationally accepted procedures. An antigen arthritis was induced to eight New Zealand rabbits with the 166Ho-HA radiochemical being administred thereafter in two dosage modalities (single and double). The compound therapeutic efficiency was evaluated based upon clinical improvement and images from the inflamated articulation using 67Ga citrate before and after 166 Ho-HA injection. Results: The radiochemical purity of the innoculated compound was greater than 98% as measured under sterility conditions. Clinically, an inflamation reduction (2 cm), appetite improvement and general well being was observed. The 166 Ho-HA distribution and localization was monitored using gamma camera images taken at 4 and 24 h. There was no evidence of extraarticular leakage. From the 67Ga citrate imaging, the acute group shows an overall improvement of well being corresponding to a lesser uptake at the inflamated articulation, regarding to the chronic group. The 166Ho-HA double dosis, compared to the single dosis, suggest a reduced uptake of 67Ga citrate at the inflamated tissue, meaning an increased therapeutic effect. Conclusions: 166 Ho-HA is usefull as therapeutic agent for the syntomatic treatment of rheumatoideal arthritis as shown by imaging and clinical examination (author)

  17. 166Ho-HA evaluation as therapeutic agent for rheumatoid arthritis treatment

    International Nuclear Information System (INIS)

    Aim: Rheumatoid arthritis is a limiting disease having, among its pathological features, the inflammation of synovial tissue with progressive and later destruction of the articulation. This leads to joint deformation and loss of its function, generating pain and reducing the mobility of the affected articulation. The aim was to evaluate 166Ho-Hydroxyapatite (166 Ho-HA) as potential radiopharmaceutical for the symptomatic treatment of chronic and acute arthritis. Materials and Methods: Holmiun-166 was produced by irradiation of Ho2O3 at La Reina Research Reactor, Nuclear Chilean Energy Commission. Hydroxyapatite was in-house synthesized. Its labelling and quality controls follows the internationally accepted procedures. An antigen's arthritis was induced to eight New Zealand rabbits with the 166 Ho-HA radiochemical being administered thereafter in two dosage modalities (single and double). The compound therapeutic efficiency was evaluated based upon clinical improvement and images from the inflamated articulation using 67Ga citrate before and after 166 Ho-HA injection. Results: The radiochemical purity of the inoculated compound was greater than 98% as measured under sterility conditions. Clinically, an inflammation reduction (2 cm), appetite improvement and general well being was observed. The 166 Ho-HA distribution and localization was monitored using gamma camera images taken at 4 and 24 h. There was no evidence of extra articular leakage. From the 67Ga citrate imaging, the acute group shows an overall improvement of well being corresponding to a lesser uptake at the inflamated articulation, regarding to the chronic group. The 166Ho-HA double doses, compared to the single doses, suggest a reduced uptake of 67Ga citrate at the inflamated tissue, meaning an increased therapeutic effect. Conclusions: 166 Ho-HA is useful as therapeutic agent for the symptomatic treatment of rheumatoid arthritis as shown by imaging and clinical examination

  18. Ho-166 Hydroxyapatite (Ha) as a potential therapeutic agent in the treatment of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Radiation synovectomy is a procedure which is aimed at ablation of the inflamed synovium in rheumatoid arthritis through intraarticular injection of a chemical substance labeled with a beta-emitting radioisotope. The objective of this study was to evaluate Ho-166 Hydoxyapatite (Ho-166 HA) particle as potential therapeutic agent for the treatment of acute and chronic arthritis. Ho-166 was obtained by irradiation of 165Ho2O3 in the 5 MW Research Reactors (RECH1) at the Nuclear Centre La Reina (Chilean Nuclear Energy Commission). The HA synthesis, Ho-166 HA labeling and quality control procedures were performed in the laboratories of Chilean Atomic Energy Commission. Two groups of arthritic (acute and chronic) rabbits with antigen-induced arthritis were administered Ho-166 HA intra-articularly following two different protocols; single dose protocol and double dose protocol. The therapeutic efficacy of Ho-166 HA was assessed by clinical follow-up and evaluation, as well as by serial radionuclide imaging of the inflamed joints with Ga-67 Citrate, before and after treatment. The average radionuclide purity of administered Ho-166 HA in our study was 99%. All animals were followed up by clinical examination. Grades of inflammation, general physical conditions as well as the level of appetite were recorded following treatment. The localization and distribution of the Ho-166 HA were studied by gamma camera imaging at 4 and 24 hrs after-injections. The scans were examined meticulously to look for any evidence of leakage of radiopharmaceutical from the joint space. The group of animals with acute arthritis showed evidence of significant clinical improvement following radionuclide therapy. The animals which received higher doses (double dose) demonstrated better therapeutic response. Based on the preliminary reports from this pilot study it was concluded that Ho-166 HA is a useful radiopharmaceutical for the treatment of rheumatoid arthritis. (author)

  19. Novel therapeutic agents for the management of patients with multiple myeloma and renal impairment.

    Science.gov (United States)

    Chanan-Khan, Asher A; San Miguel, Jesús F; Jagannath, Sundar; Ludwig, Heinz; Dimopoulos, Meletios A

    2012-04-15

    Renal impairment is a major complication of multiple myeloma. Patients presenting with severe renal impairment represent a greater therapeutic challenge and generally have poorer outcome. However, once patients with renal impairment achieve remission, their outcomes are comparable with those of patients without renal impairment. Therapies that offer substantial activity in this setting are needed. Bortezomib, thalidomide, and lenalidomide have substantially improved the survival of patients with multiple myeloma. Here we review the pharmacokinetics, activity, and safety of these agents in patients with renal impairment. Bortezomib can be administered at the full approved dose and schedule in renally impaired patients; similarly, no dose reductions are required with thalidomide. The pharmacokinetics of lenalidomide is affected by its renal route of excretion, and dose adjustments are recommended for moderate/severe impairment. Substantial evidence has emerged showing that these novel agents improve outcomes of patients with renal impairment, including impairment reversal. Bortezomib, thalidomide, and lenalidomide (at the recommended doses) are active options for patients with mild to moderate impairment, although limited data are available for thalidomide. Information on lenalidomide-based combinations is still emerging, but the available data indicate considerable activity. Substantial evidence indicates that bortezomib-high-dose dexamethasone with or without a third drug (e.g., cyclophosphamide, thalidomide, or doxorubicin) is an appropriate option for patients with any degree of renal impairment. PMID:22328563

  20. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents.

    Science.gov (United States)

    Karimi, Mahdi; Eslami, Masoud; Sahandi-Zangabad, Parham; Mirab, Fereshteh; Farajisafiloo, Negar; Shafaei, Zahra; Ghosh, Deepanjan; Bozorgomid, Mahnaz; Dashkhaneh, Fariba; Hamblin, Michael R

    2016-09-01

    In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website. PMID:26762467

  1. A review of experimental studies of hydrogen as a new therapeutic agent in emergency and critical care medicine

    OpenAIRE

    Shen, Meihua; Zhang, Hongying; Yu, Congjun; Wang, Fan; Sun, Xuejun

    2014-01-01

    Hydrogen is the most abundant chemical element in the Universe, but is seldom regarded as a therapeutic agent. Recent evidence has shown that hydrogen is a potent antioxidative, antiapoptotic and anti-inflammatory agent and so may have potential medical applications in cells, tissues and organs. There are several methods to administer hydrogen, such as inhalation of hydrogen gas, aerosol inhalation of a hydrogen-rich solution, drinking hydrogen dissolved in water, injecting hydrogen-rich sali...

  2. Injectable actarit-loaded solid lipid nanoparticles as passive targeting therapeutic agents for rheumatoid arthritis.

    Science.gov (United States)

    Ye, Jiesheng; Wang, Qun; Zhou, Xuefeng; Zhang, Na

    2008-03-20

    This work systematically studied the intravenous injection formulation of solid lipid nanoparticles (SLNs) loaded with actarit, a poor water soluble anti-rheumatic drug. The goal of this study was to design passive targeting nanoparticles which could improve therapeutic efficacy and reduce side-effects such as nephrotoxicity and gastrointestinal disorders commonly associated with oral formulations of actarit. Based on the optimized results of single-factor and orthogonal design, actarit-loaded SLNs were prepared by a modified solvent diffusion-evaporation method. The formulated SLNs were found to be relatively uniform in size (241+/-23 nm) with a negative zeta potential (-17.14+/-1.6 mV). The average drug entrapment efficiency and loading were (50.87+/-0.25)% and (8.48+/-0.14)%, respectively. The actarit-loaded SLNs exhibited a longer mean retention time in vivo (t(1/2(beta)), 9.373 h; MRT, 13.53 h) compared with the actarit 50% propylene glycol solution (t(1/2(ke)), 0.917 h; MRT, 1.323 h) after intravenous injection to New Zealand rabbits. The area under curve of plasma concentration-time (AUC) of actarit-loaded SLNs was 1.88 times greater than that of the actarit in 50% propylene glycol solution. The overall targeting efficiency (TE(C)) of the actarit-loaded SLNs was enhanced from 6.31% to 16.29% in spleen while the renal distribution of actarit was significantly reduced as compared to that of the actarit solution after intravenous administration to mice. These results indicated that injectable actarit-loaded solid lipid nanoparticles were promising passive targeting therapeutic agents for rheumatoid arthritis. PMID:18054182

  3. [Weighing use and safety of therapeutic agents and feed additives (author's transl)].

    Science.gov (United States)

    van der Wal, P

    1982-02-01

    (1) The pros and cons of using feed additives and therapeutic agents may be successfully weighed in the light of carefully considered consumer requirements. (2) The socio-economic interests of the producer and the welfare of the animal will also determine the response of the production apparatus to consumer requirements. (3) Consumption of the current amounts of products of animal origin and maintenance of price and quality will only be feasible in the event of rational large-scale production in which constituents used in nutrition, prophylaxis and therapeutics are highly important factors. (4) Using these ingredients should be preceded by accurate evaluation of their use and safety. Testing facilities, conduct of studies and reporting should be such as to make the results nationally and internationally acceptable to all those concerned. (5) In deciding whether feed constituents are acceptable in view of the established use and safety, compliance will have to be sought with those standards which are accepted in other fields of society. Measures which result in raising the price of food without actually helping to reduce the risks to the safety of man, animals and environment, are likely to be rejected by any well-informed consumer who is aware of the facts. (6) For accurate weighing of use and safety at a national level, possibilities are hardly adequate in Europe. Decisions reached within the framework of the European Community, also tuned to U.S.A.- conditions are rightly encouraged. A centrally managed professionally staffed and equipped test system in the European Community would appear to be indispensable. PMID:7058519

  4. Zinc as a possible preventive and therapeutic agent in pancreatic, prostate, and breast cancer.

    Science.gov (United States)

    Hoang, Ba X; Han, Bo; Shaw, David Graeme; Nimni, Marcel

    2016-09-01

    Zinc is a vital nutrient for human health. Over 300 biological functions in the human body rely on zinc. Even though zinc is incredibly important for our physiology and pathology, our current understanding of zinc, as it relates to tumor cell biology, leaves much to be desired. As with other natural, nonpatentable, and inexpensive agents, zinc remains a subject of explorative research for scientific interest rather than being promoted for practical use. To date, more than 5000 studies with the keywords 'zinc' and 'cancer' have been indexed in the Web of Knowledge portal. Although the numbers of papers have increased 2.5-fold during the last decade, these vast research data have not generated a single recommendation for the incorporation of zinc use in cancer prevention and treatment. In this review, we intend to analyze the current available research data and epidemiological and clinical evidence on the role of zinc in human cancer prevention and treatment. We focus on the cancers - prostate, breast, and pancreatic - for which the most basic and epidemiological studies with zinc have been carried out. The pancreas, and prostate and mammary glands are secretory tissues that have unusual zinc requirements; they tightly regulate zinc metabolism through integration of zinc import, sequestration, and export mechanisms. This suggests to us that zinc could play an important role in the physiology and pathology of these organs. The objective of this review was to stimulate more interest in the research field, focusing on the role of zinc as a possible preventive and therapeutic agent and the accelerated application of this inexpensive and easily accessible nutrient in clinical oncology. PMID:26317381

  5. Interactions between radiopharmaceuticals and therapeutic agents: Animal experiments on the influence of therapeutic agents on the pharmacokinetics of 99m-Tc-methylene diphosphonate

    International Nuclear Information System (INIS)

    In this study examined if skeletal uptake, distribution or excretion of 99m-Tc-methylene-diphosphonate (99m-Tc- MDP) will change under the influence of different therapeutic drugs or the state of dehydration. As therapeutic drugs we chose tetracyclines, sympathomimetic drugs, sympatholytic drugs, diuretics, a Ca-antagonist and a corticosteroid. The state of dehydration of the laboratory animals (female Wistar-rats) was achieved by withdrawal of drinking water for 48 hours. The activity was measured in the organs or body compartments blood, kidney, lung, liver, skeletal muscle and femur. The measurements were performed 2 hours after the application of the radiopharmaceutical. (orig./MG)

  6. Therapeutic potential of thiazolidinedione-8 as an antibiofilm agent against Candida albicans.

    Directory of Open Access Journals (Sweden)

    Mark Feldman

    Full Text Available Candida albicans is known as a commensal microorganism but it is also the most common fungal pathogen in humans, causing both mucosal and systemic infections. Biofilm-associated C. albicans infections present clinically important features due to their high levels of resistance to traditional antifungal agents. Quorum sensing is closely associated with biofilm formation and increasing fungal pathogenicity. We investigated the ability of the novel bacterial quorum sensing quencher thiazolidinedione-8 (S-8 to inhibit the formation of, and eradication of mature C. albicans biofilms. In addition, the capability of S-8 to alter fungal adhesion to mammalian cells was checked. S-8 exhibited specific antibiofilm and antiadhesion activities against C. albicans, at four- to eightfold lower concentrations than the minimum inhibitory concentration (MIC. Using fluorescence microscopy, we observed that S-8 dose-dependently reduces C. albicans-GFP binding to RAW macrophages. S-8 at sub-MICs also interfered with fungal morphogenesis by inhibiting the yeast-to-hyphal form transition. In addition, the tested agent strongly affected fungal cell wall characteristics by modulating its hydrophobicity. We evaluated the molecular mode of S-8 antibiofilm and antiadhesion activities using real-time RT-PCR. The expression levels of genes associated with biofilm formation, adhesion and filamentation, HWP1, ALS3 and EAP1, respectively, were dose-dependently downregulated by S-8. Transcript levels of UME6, responsible for long-term hyphal maintenance, were also significantly decreased by the tested agent. Both signaling pathways of hyphal formation-cAMP-PKA and MAPK-were interrupted by S-8. Their upstream general regulator RAS1 was markedly suppressed by S-8. In addition, the expression levels of MAPK cascade components CST20, HST7 and CPH1 were downregulated by S-8. Finally, transcriptional repressors of filament formation, TUP1 and NRG1, were dramatically upregulated by our

  7. Natural fatty acid synthase inhibitors as potent therapeutic agents for cancers: A review.

    Science.gov (United States)

    Zhang, Jia-Sui; Lei, Jie-Ping; Wei, Guo-Qing; Chen, Hui; Ma, Chao-Ying; Jiang, He-Zhong

    2016-09-01

    Context Fatty acid synthase (FAS) is the only mammalian enzyme to catalyse the synthesis of fatty acid. The expression level of FAS is related to cancer progression, aggressiveness and metastasis. In recent years, research on natural FAS inhibitors with significant bioactivities and low side effects has increasingly become a new trend. Herein, we present recent research progress on natural fatty acid synthase inhibitors as potent therapeutic agents. Objective This paper is a mini overview of the typical natural FAS inhibitors and their possible mechanism of action in the past 10 years (2004-2014). Method The information was collected and compiled through major databases including Web of Science, PubMed, and CNKI. Results Many natural products induce cancer cells apoptosis by inhibiting FAS expression, with fewer side effects than synthetic inhibitors. Conclusion Natural FAS inhibitors are widely distributed in plants (especially in herbs and foods). Some natural products (mainly phenolics) possessing potent biological activities and stable structures are available as lead compounds to synthesise promising FAS inhibitors. PMID:26864638

  8. Efficient refolding of the bifunctional therapeutic fusion protein VAS-TRAIL by a triple agent solution.

    Science.gov (United States)

    Fan, Jiying; Wang, Zhanqing; Huang, Liying; Shen, Yaling

    2016-09-01

    VAS-TRAIL is a bifunctional fusion protein that combines anti-angiogenic activity with tumor-selective apoptotic activity for enhanced anti-tumor efficacy. VAS-TRAIL is expressed as inclusion body in Escherichia coli, but protein refolding is difficult to achieve and results in low yields of bioactive protein. In this study, we describe an efficient method for VAS-TRAIL refolding. The solubilization of aggregated VAS-TRAIL was achieved by a triple agent solution, which consists of an alkaline solution (pH 11.5) containing 0.4M l-arginine and 2M urea. The solubilized protein showed high purity and preserved secondary structure according to fluorescence properties. VAS-TRAIL refolding was performed through stepwise dialysis and resulted in more than 50% recovery of the soluble protein. The function of l-arginine was additive with alkaline pH, as shown by the significant improvement in refolding yield (≈30%) by l-arginine-containing solubilization solutions compared with alkaline solubilization solutions without l-arginine. The refolded VAS-TRAIL also showed β-sheet structures and the propensity for oligomerization. Bioassays showed that the refolded fusion protein exhibited the expected activities, including its apoptotic activities toward tumor and endothelial cells, which proposed its promising therapeutic potential. PMID:26358405

  9. Mesoporous silica nanoparticles with organo-bridged silsesquioxane framework as innovative platforms for bioimaging and therapeutic agent delivery.

    Science.gov (United States)

    Du, Xin; Li, Xiaoyu; Xiong, Lin; Zhang, Xueji; Kleitz, Freddy; Qiao, Shi Zhang

    2016-06-01

    Mesoporous silica material with organo-bridged silsesquioxane frameworks is a kind of synergistic combination of inorganic silica, mesopores and organics, resulting in some novel or enhanced physicochemical and biocompatible properties compared with conventional mesoporous silica materials with pure Si-O composition. With the rapid development of nanotechnology, monodispersed nanoscale periodic mesoporous organosilica nanoparticles (PMO NPs) and organo-bridged mesoporous silica nanoparticles (MSNs) with various organic groups and structures have recently been synthesized from 100%, or less, bridged organosilica precursors, respectively. Since then, these materials have been employed as carrier platforms to construct bioimaging and/or therapeutic agent delivery nanosystems for nano-biomedical application, and they demonstrate some unique and/or enhanced properties and performances. This review article provides a comprehensive overview of the controlled synthesis of PMO NPs and organo-bridged MSNs, physicochemical and biocompatible properties, and their nano-biomedical application as bioimaging agent and/or therapeutic agent delivery system. PMID:27017579

  10. New therapeutic agent for radiation synovectomy - preparation of 166Ho-EDTMP-HA particle

    International Nuclear Information System (INIS)

    In order to prepare new therapeutical agent for radiation synovectomy, Hydroxyapatite (HA) was labelled with 166Ho by EDTMP that had high affinity to HA particles. Radiolabelling of HA particles was divided into two steps, 166Ho-EDTMP was prepared first; then mixed with HA particles completely and vibrated for 15 minutes on the micromixer at room temperature, washed 3 times with deionized water. Radiolabelling particle was separated from free 166Ho via centrifugation to determine its radiolabelling efficiency. 166Ho-EDTMP-HA and 166Ho-EDTMP were injected into knee joint of normal rabbits respectively, every group was killed at different time postinjection, took out major organ and collected urine and blood, then weighted and determined their radio counts. HA particles, as a natural component of bone was known to have good compatibility with soft tissue and biodegrade into calcium and phosphate in vivo. It was readily prepared from common chemical and formed into particles of desired size range in a controlled process, it had high stability in vitro and vivo. Radiolabelling of HA particle with 166Ho by EDTMP was simple to perform and provides an excellent labelling yield that was more than 95% under the optimal labelling condition. The optimal labelling condition at room temperature was pH 6.0-8.0 and vibration time 15 minutes. The absorbed capacity of HA particle was 5 mg Ho/g HA particle and size of radiolabelling particle was at range of 2-5,μm that is suitable for therapy of radiation synovectomy. 166Ho-EDTMP-HA particle demonstrated high in vitro stability in either normal saline or 1% BSA solution, but instability under extremely acidic condition (pH 1-2). The control studies performed with 166Ho-EDTMP not bound to HA particle provided information on the distribution of radioactivity that would occur upon leakage of the radiochemical compound from joint. Its short half-life, its extremely low leakage from the joint and its even distribution throughout the

  11. Evaluation of flaxseed formulation as a potential therapeutic agent in mitigation of dyslipidemia

    Directory of Open Access Journals (Sweden)

    Sonali Saxena

    2014-12-01

    Full Text Available Background: Cardiovascular diseases (CVDs are an increasing health problem all over the world. The search for natural hypolipidemic agents that can be used besides the synthetic drugs is still in its experimental stage. Plant seeds, particularly flaxseed (Linum usitatissimum, which is a rich source of n-3 fatty acids, lignans and phenolic compounds, have also received increasing attention for their potential role in preventing lipid disorders. The present study was undertaken to evaluate the therapeutic potential of flaxseeds in dyslipidemia. Methods: The study included 50 dyslipidemic subjects selected by purposive random sampling and were divided into two groups, a control and an experimental group. Both the groups were prescribed similar dietary guidelines. Subjects in the experimental group received 30 g of roasted flaxseed powder for 3 months. Anthropometric parameters, blood pressure, and blood lipid profile were estimated before the study and after completion of the study. Results: Flaxseed supplementation resulted in a remarkable improvement in anthropometric measurements, blood pressure, and lipid profile in the experimental group. Body weight and body mass index (BMI of the experimental group were significantly reduced (p < 0.01. A lowering of systolic and diastolic blood pressure (p < 0.05 was also recorded in the dyslipidemic subjects. Concomitantly, a highly significant reduction (p < 0.01 in total cholesterol, triglycerides, low density lipoprotein-cholesterol (LDL-C, and very low density lipoprotein-cholesterol (VLDL-C levels, with simultaneous elevation (p < 0.01 in high density lipoprotein-cholesterol (HDL-C levels was observed. Improvement in lipid levels resulted in reduction of atherogenic indices. Conclusions: The supplementation of roasted flaxseed powder for 3 months improved the BMI, blood pressure, and lipid profile of dyslipidemic subjects, thus exhibiting cardio protective effect.

  12. The evidence for natural therapeutics as potential anti-scarring agents in burn-related scarring.

    Science.gov (United States)

    Mehta, M; Branford, O A; Rolfe, K J

    2016-01-01

    Though survival rate following severe thermal injuries has improved, the incidence and treatment of scarring have not improved at the same speed. This review discusses the formation of scars and in particular the formation of hypertrophic scars. Further, though there is as yet no gold standard treatment for the prevention or treatment of scarring, a brief overview is included. A number of natural therapeutics have shown beneficial effects both in vivo and in vitro with the potential of becoming clinical therapeutics in the future. These natural therapeutics include both plant-based products such as resveratrol, quercetin and epigallocatechin gallate as examples and includes the non-plant-based therapeutic honey. The review also includes potential mechanism of action for the therapeutics, any recorded adverse events and current administration of the therapeutics used. This review discusses a number of potential 'treatments' that may reduce or even prevent scarring particularly hypertrophic scarring, which is associated with thermal injuries without compromising wound repair. PMID:27574685

  13. Novel anti-glioblastoma agents and therapeutic combinations identified from a collection of FDA approved drugs

    OpenAIRE

    Jiang, Pengfei; Mukthavavam, Rajesh; Chao, Ying; Bharati, Ila Sri; Fogal, Valentina; Pastorino, Sandra; Cong, Xiuli; Nomura, Natsuko; Gallagher, Matt; Abbasi, Taher; Vali, Shireen; Pingle, Sandeep C; Makale, Milan; Kesari, Santosh

    2014-01-01

    Background Glioblastoma (GBM) is a therapeutic challenge, associated with high mortality. More effective GBM therapeutic options are urgently needed. Hence, we screened a large multi-class drug panel comprising the NIH clinical collection (NCC) that includes 446 FDA-approved drugs, with the goal of identifying new GBM therapeutics for rapid entry into clinical trials for GBM. Methods Screens using human GBM cell lines revealed 22 drugs with potent anti-GBM activity, including serotonergic blo...

  14. Development of new estrogen receptor-targeting therapeutic agents for tamoxifen-resistant breast cancer

    OpenAIRE

    Jiang, Quan; Zheng, Shilong; Wang, Guangdi

    2013-01-01

    Despite our deepening understanding of the mechanisms of resistance and intensive efforts to develop therapeutic solutions to combat resistance, de novo and acquired tamoxifen resistance remains a clinical challenge, and few effective regimens exist to treat tamoxifen-resistant breast cancer. The complexity of tamoxifen resistance calls for diverse therapeutic approaches. This review presents several therapeutic strategies and lead compounds targeting the estrogen receptor signaling pathways ...

  15. Magnetically Targeted Delivery of Therapeutic Agents to Injured Blood Vessels for Prevention of In-Stent Stenosis

    OpenAIRE

    Chorny, Michael; Fishbein, Ilia; Adamo, Richard F.; Forbes, Scott P.; Folchman-Wagner, Zoë; Alferiev, Ivan S.

    2012-01-01

    Magnetic guidance is a physical targeting strategy with the potential to improve the safety and efficacy of a variety of therapeutic agents — including small-molecule pharmaceuticals, proteins, gene vectors, and cells — by enabling their site-specific delivery. The application of magnetic targeting for in-stent restenosis can address the need for safer and more efficient treatment strategies. However, its translation to humans may not be possible without revising the traditional magnetic targ...

  16. Development of radiolanthanide labeled porphyrin complexes as possible therapeutic agents in beast carcinoma xenografts

    Energy Technology Data Exchange (ETDEWEB)

    Vahidfar, Nasim; Aghanejad, Ayuob; Beiki, Davood; Khalaj, Ali [Tehran University of Medical Sciences, Tehran (Iran, Islamic Republic of). Faculty of Pharmacy; Jalilian, Amir R.; Fazaeli, Yousef; Bahrami-Samani, Ali; Alirezapour, Behrooz; Erfani, Mostafa [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiopharmacy Research Group

    2014-10-01

    Radiolabeled porphyrins are potential tumor avid radiopharmaceuticals because of their behaviour in the human body, ability to complex various radionuclides, water solubility, low toxicity etc., in this work radio ytterbium/samarium porphyrin complexes have been developed. {sup 175}Yb and {sup 153}Sm labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrins ([{sup 175}Yb]-TDMPP/[{sup 153}Sm]-TDMPP) were prepared using 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin (H{sub 2}TDMPP) and [{sup 175}Yb]YbCl{sub 3} or [{sup 153}Sm]SmCl{sub 3} in 12-24 h at 60 C. Stability of the complexes were checked in final formulation and human serum for 24 h, followed by partition coefficient determination and biodistribution studies in wild type and breast carcinoma-bearing mice. The radiocomplexes were obtained with acceptable radiochemical purity (> 95% (paper chromatography) and > 96% (HPLC) for [{sup 175}Yb]-TDMPP and > 97% (paper chromatography) and > 98% (HPLC) for [{sup 153}Sm]-TDMPP) with specific activities of 12-15 GBq/mmol and 278 GBq/mmol at the end of bombardment for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP respectively. The partition coefficients were determined for [{sup 175}Yb]-TDMPP and [{sup 153}Sm]-TDMPP (log P = 0.63 and log P = 0.96 respectively). The [{sup 175}Yb]-TDMPP complex is mostly washed out from the circulation through kidneys. Liver and spleen also demonstrated significant activity uptake in 72 h post injection. Also [{sup 153}Sm]-TDMPP, is mostly washed out from the circulation through kidneys, however lungs are the major accumulation sites. The [{sup 153}Sm]-TDMPP complex demonstrated significant targeted uptake in breast carcinoma xenografts with tumor: blood ratios of 10.67, 10.47 and 19.01 in 24, 48 and 72 h respectively. Also interesting tumor: kidney/liver ratios were obtained. {sup 153}Sm-TDMPP properties suggest an efficient tumor targeting agent with high tumor-avidity. Further investigation on the therapeutic properties must be

  17. Novel antibody-based therapeutic agents targeting CD70: a potential approach for treating Waldenström's macroglobulinemia.

    Science.gov (United States)

    Law, Che-Leung; McEarchern, Julie A; Grewal, Iqbal S

    2009-03-01

    Targeting leukocyte differentiation antigens is a validated approach to develop therapeutic agents for the treatment of cancer, autoimmunity, and inflammatory diseases. A subset of activation antigens transiently induced on leukocytes is particularly interesting because many of them are absent from normal tissues, including those of most vital organs, and therapeutic agents' targeting of such antigens is expected to impart limited toxicity. One such antigen, CD70, has recently emerged as an attractive potential drug target for the treatment of cancers. Whereas CD70 is only transiently expressed on activation T and B cells and mature dendritic cells, it is found to be aberrantly expressed on a variety of tumor cells, including Waldenström's macroglobulinemia. In this report, we discuss potential antibody-based therapeutic approaches targeting CD70 for tumor elimination where various mechanisms such as antibody effector functions, immune enhancement, blockade of paracrine growth loop, and delivery of cytotoxic payloads can be exploited to achieve efficacy. Indeed, early clinical trials with therapeutic anti-CD70 antibodies are currently in progress, and those for anti-CD70 drug conjugates will soon follow. PMID:19362984

  18. Choline and Geranate Deep Eutectic Solvent as a Broad-Spectrum Antiseptic Agent for Preventive and Therapeutic Applications.

    Science.gov (United States)

    Zakrewsky, Michael; Banerjee, Amrita; Apte, Sanjana; Kern, Theresa L; Jones, Mattie R; Sesto, Rico E Del; Koppisch, Andrew T; Fox, David T; Mitragotri, Samir

    2016-06-01

    Antiseptic agents are the primary arsenal to disinfect skin and prevent pathogens spreading within the host as well as into the surroundings; however the Food and Drug Administration published a report in 2015 requiring additional validation of nearly all current antiseptic agents before their continued use can be allowed. This vulnerable position calls for urgent identification of novel antiseptic agents. Recently, the ability of a deep eutectic, Choline And Geranate (CAGE), to treat biofilms of Pseudomonas aeruginosa and Salmonella enterica was demonstrated. Here it is reported that CAGE exhibits broad-spectrum antimicrobial activity against a number of drug-resistant bacteria, fungi, and viruses including clinical isolates of Mycobacterium tuberculosis, Staphylococcus aureus, and Candida albicans as well as laboratory strains of Herpes Simplex Virus. Studies in human keratinocytes and mice show that CAGE affords negligible local or systemic toxicity, and an ≈180-14 000-fold improved efficacy/toxicity ratio over currently used antiseptic agents. Further, CAGE penetrates deep into the dermis and treats pathogens located in deep skin layers as confirmed by the ability of CAGE in vivo to treat Propionibacterium acnes infection. In combination, the results clearly demonstrate CAGE holds promise as a transformative platform antiseptic agent for preventive as well as therapeutic applications. PMID:26959835

  19. Aptámeros: agentes diagnósticos y terapéuticos = Aptamers: diagnostic and therapeutic agents

    Directory of Open Access Journals (Sweden)

    Frank J Hernandez

    2012-04-01

    Full Text Available Los aptámeros son ácidos nucleicos de cadena sencilla, ADN o ARN, que reconocen una gran variedad de moléculas. Cada aptámero posee una estructura tridimensional particular que le permite unirse con afinidad y especificidad altas a la molécula diana. Los aptámeros tienen propiedades de reconocimiento equiparables a las de los anticuerpos; sin embargo, por la naturaleza de su composición tienen ventajas significativas en cuanto a su tamaño, producción y modificación. Estas características los hacen excelentes candidatos para el desarrollo de nuevas plataformas biotecnológicas. Se han identificado aptámeros con propiedades terapéuticas que han sido evaluados exitosamente en modelos animales; entre ellos, algunos se encuentran en fase clínica y uno ya fue aprobado para tratamiento por la FDA (Food and Drug Administration. Todos estos avances ocurridos durante las dos últimas décadas permiten anticipar el protagonismo que tendrán los aptámeros como agentes diagnósticos y terapéuticos en un futuro cercano.

  20. Novel compounds in the treatment of lung cancer: current and developing therapeutic agents

    OpenAIRE

    Bao, Rudi; Chan, PokMan

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the United States. Though incremental advances have been made in the treatment of this devastating disease during the past decade, new therapies are urgently needed. Traditional cytotoxic agents have been combined with other modalities with improved survival for early-stage patients. Newer cytotoxic agents targeting the same or different mechanisms have been developed at different stages. Optimization of various chemotherapy regimens...

  1. Novel compounds in the treatment of lung cancer: current and developing therapeutic agents

    OpenAIRE

    Bao, Rudi

    2011-01-01

    Rudi Bao, Pokman ChanOncology, Curis Inc, Lexington, MA, USAAbstract: Lung cancer is the leading cause of cancer-related death in the United States. Though incremental advances have been made in the treatment of this devastating disease during the past decade, new therapies are urgently needed. Traditional cytotoxic agents have been combined with other modalities with improved survival for early-stage patients. Newer cytotoxic agents targeting the same or different mechanisms have been develo...

  2. Preparation and Preliminary Biological Evaluation of {sup 177}Lu-DOTA folate as Potential Folate Receptor Targeting Therapeutic Agent

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kang-Hyuk; Hong, Young-Don; Pyun, Mi-Sun; Lee, So-Young; Felipe, Fenelope; Yoon, Sun-Ha; Choi, Sun-Ju [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Folic Acid (FA) and FA derivatives are overexpressed on several tumor cells. The cell-membrane folic acid receptors are known to be responsible for the cellular accumulation of FA and FA analogs, such as methotrexate and folic acid. Folate has been characterized to have high affinity for the folate-receptor positive cells and tissues and considered to be useful as diagnostic imaging and therapeutic agent. In 1940s, Folate analogue, aminopterin, was first used for treatment of leukemia and recently, many folate derivatives were tried for cancer-treatment agent as well as visualization of folate receptor. Many researchers tried to conjugate folic acid with macromolecules or low molecular weight chelators through its alpha or gamma carboxylate. However, despite the reduced binding affinity, FAs are still recognized by the folate receptor. Therefore, we focused to develop folate-based radiopharmaceutical that has the potential to be used as a therapeutic agent. We report here the synthesis and the radiolabeling of {sup 177}Lu-DOTA as well as the biodistribution data of our developed compound.

  3. Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma

    Energy Technology Data Exchange (ETDEWEB)

    Maes, Ken, E-mail: kemaes@vub.ac.be; Menu, Eline; Van Valckenborgh, Els [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel (Belgium); Van Riet, Ivan [Stem Cell Laboratory, Department Clinical Hematology, Universitair Ziekenhuis Brussel (UZ Brussel), Laarbeeklaan 101, 1090 Brussel (Belgium); Vanderkerken, Karin; De Bruyne, Elke, E-mail: kemaes@vub.ac.be [Department of Hematology and Immunology, Myeloma Center Brussels, Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussel (Belgium)

    2013-04-15

    Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment.

  4. Epigenetic Modulating Agents as a New Therapeutic Approach in Multiple Myeloma

    International Nuclear Information System (INIS)

    Multiple myeloma (MM) is an incurable B-cell malignancy. Therefore, new targets and drugs are urgently needed to improve patient outcome. Epigenetic aberrations play a crucial role in development and progression in cancer, including MM. To target these aberrations, epigenetic modulating agents, such as DNA methyltransferase inhibitors (DNMTi) and histone deacetylase inhibitors (HDACi), are under intense investigation in solid and hematological cancers. A clinical benefit of the use of these agents as single agents and in combination regimens has been suggested based on numerous studies in pre-clinical tumor models, including MM models. The mechanisms of action are not yet fully understood but appear to involve a combination of true epigenetic changes and cytotoxic actions. In addition, the interactions with the BM niche are also affected by epigenetic modulating agents that will further determine the in vivo efficacy and thus patient outcome. A better understanding of the molecular events underlying the anti-tumor activity of the epigenetic drugs will lead to more rational drug combinations. This review focuses on the involvement of epigenetic changes in MM pathogenesis and how the use of DNMTi and HDACi affect the myeloma tumor itself and its interactions with the microenvironment

  5. Novel compounds in the treatment of lung cancer: current and developing therapeutic agents

    Science.gov (United States)

    Bao, Rudi; Chan, Pokman

    2011-01-01

    Lung cancer is the leading cause of cancer-related death in the United States. Though incremental advances have been made in the treatment of this devastating disease during the past decade, new therapies are urgently needed. Traditional cytotoxic agents have been combined with other modalities with improved survival for early-stage patients. Newer cytotoxic agents targeting the same or different mechanisms have been developed at different stages. Optimization of various chemotherapy regimens in different settings is one of the aims of current clinical trials. Some predictive biomarkers (eg, excision repair cross-complementing 1, ERCC1) and histotypes (eg, adenocarcinoma) are found to be associated with resistance/response to some cytotoxic drugs. Another notable advance is the addition of targeted therapy to lung cancer treatment. Targeted agents such as erlotinib and bevacizumab have demonstrated clinical benefits and gained Food and Drug Administration approval for lung cancer. More agents targeting various signaling pathways critical to lung cancer are at different stages of development. Along with the effort of new targeted drug discovery, biomarkers such as epidermal growth factor receptor and anaplastic lymphoma kinase mutations have proven useful for patient selection, and more predictive biomarkers have been actively evaluated in non-small cell lung cancer. The paradigm of lung cancer treatment has shifted towards biomarker-based personalized medicine.

  6. Phytochemical Modulators of Mitochondria: The Search for Chemopreventive Agents and Supportive Therapeutics

    Directory of Open Access Journals (Sweden)

    Maja M. Grabacka

    2014-09-01

    Full Text Available Mitochondria are crucially important for maintaining not only the energy homeostasis, but the proper cellular functions in a general sense. Impairment of mitochondrial functions is observed in a broad variety of pathological states such as neoplastic transformations and cancer, neurodegenerative diseases, metabolic disorders and chronic inflammation. Currently, in parallel to the classical drug design approaches, there is an increasing interest in the screening for natural bioactive substances, mainly phytochemicals, in order to develop new therapeutic solutions for the mentioned pathologies. Dietary phytochemicals such as resveratrol, curcumin and sulforaphane are very well tolerated and can effectively complement classical pharmacological therapeutic regimens. In this paper we disscuss the effect of the chosen phytochemicals (e.g., resveratrol, curcumin, sulforaphane on various aspects of mitochondrial biology, namely mitochondrial biogenesis, membrane potential and reactive oxygen species production, signaling to and from the nucleus and unfolded protein response.

  7. Thioglycosides as inhibitors of hSGLT1 and hSGLT2: Potential therapeutic agents for the control of hyperglycemia in diabetes

    OpenAIRE

    Castaneda, Francisco; Burse, Antje; Boland, Wilhelm; Kinne, Rolf K-H.

    2007-01-01

    The treatment of diabetes has been mainly focused on maintaining normal blood glucose concentrations. Insulin and hypoglycemic agents have been used as standard therapeutic strategies. However, these are characterized by limited efficacy and adverse side effects, making the development of new therapeutic alternatives mandatory. Inhibition of glucose reabsorption in the kidney, mediated by SGLT1 or SGLT2, represents a promising therapeutic approach. Therefore, the aim of the present study was ...

  8. Squalamine as a broad-spectrum systemic antiviral agent with therapeutic potential

    OpenAIRE

    Zasloff, Michael; Adams, A. Paige; Beckerman, Bernard; Campbell, Ann; Han, Ziying; Luijten, Erik; Meza, Isaura; Julander, Justin; Mishra, Abhijit; Qu, Wei; Taylor, John M; Scott C Weaver; Wong, Gerard C. L.

    2011-01-01

    Antiviral compounds that increase the resistance of host tissues represent an attractive class of therapeutic. Here, we show that squalamine, a compound previously isolated from the tissues of the dogfish shark (Squalus acanthias) and the sea lamprey (Petromyzon marinus), exhibits broad-spectrum antiviral activity against human pathogens, which were studied in vitro as well as in vivo. Both RNA- and DNA-enveloped viruses are shown to be susceptible. The proposed mechanism involves the capacit...

  9. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    OpenAIRE

    John Burke; Ravindra Kolhe; Monte Hunter; Carlos Isales; Mark Hamrick; Sadanand Fulzele

    2016-01-01

    Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to...

  10. Is pimecrolimus cream (1%) an appropriate therapeutic agent for the treatment of external ear atopic dermatitis?

    OpenAIRE

    Beriat, Güçlü Kaan; Akmansu, Şefik Halit; Doğan, Cem; Taştan, Eren; Topal, Ferda; Sabuncuoğlu, Bizden

    2012-01-01

    Summary Background In recent years, pimecrolimus 1% cream has been demonstrated to reduce symptoms of atopic dermatitis in patients when applied topically. Material/Methods In our study we compared the therapeutic effects of local 1% pimecrolimus to 1% hydrocortisone, and to a control group in a mouse model with atopic dermatitis in the external ear canals. Atopic dermatitis was created by application of Dinitrochlorobenzene in the external ear canals of mice. The development of atopic dermat...

  11. The botulinum toxin as a therapeutic agent: molecular and pharmacological insights

    Directory of Open Access Journals (Sweden)

    Kukreja R

    2015-12-01

    Full Text Available Roshan Kukreja,1 Bal Ram Singh2 1Department of Chemistry and Biochemistry, University of Massachusetts, 2Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA, USA Abstract: Botulinum neurotoxins (BoNTs, the most potent toxins known to mankind, are metalloproteases that act on nerve–muscle junctions to block exocytosis through a very specific and exclusive endopeptidase activity against soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE proteins of presynaptic vesicle fusion machinery. This very ability of the toxins to produce flaccid muscle paralysis through chemical denervation has been put to good use, and these potentially lethal toxins have been licensed to treat an ever expanding list of medical disorders and more popularly in the field of esthetic medicine. In most cases, therapeutic BoNT preparations are high-molecular-weight protein complexes consisting of BoNT, complexing proteins, and excipients. There is at least one isolated BoNT, which is free of complexing proteins in the market (Xeomin®. Each commercially available BoNT formulation is unique, differing mainly in molecular size and composition of complexing proteins, biological activity, and antigenicity. BoNT serotype A is marketed as Botox®, Dysport®, and Xeomin®, while BoNT type B is commercially available as Myobloc®. Nerve terminal intoxication by BoNTs is completely reversible, and the duration of therapeutic effects of BoNTs varies for different serotypes. Depending on the target tissue, BoNTs can block the cholinergic neuromuscular or cholinergic autonomic innervation of exocrine glands and smooth muscles. Therapeutic BoNTs exhibit a high safety and very limited adverse effects profile. Despite their established efficacy, the greatest concern with the use of therapeutic BoNTs is their propensity to elicit immunogenic reactions that might render the patient unresponsive to subsequent treatments, particularly in chronic

  12. Aurora kinases as druggable targets in pediatric leukemia: heterogeneity in target modulation activities and cytotoxicity by diverse novel therapeutic agents.

    Directory of Open Access Journals (Sweden)

    Aarthi Jayanthan

    Full Text Available Leukemia is the most common pediatric malignancy, constituting more than 30% of all childhood cancers. Although cure rates have improved greatly, approximately one in five children relapse and poor survival rates post relapse remain a challenge. Given this, more effective and innovative therapeutic strategies are needed in order to improve prognosis. Aurora kinases, a family of serine/threonine kinases essential for the regulation of several mitotic processes, have been identified as potential targets for cancer therapeutics. Elevated expression of Aurora kinases has been demonstrated in several malignancies and is associated with aberrant mitotic activity, aneuploidy and alterations in chromosomal structure and genome instability. Based on this rationale, a number of small molecule inhibitors have been formulated and advanced to human studies in the recent past. A comparative analysis of these agents in cytotoxicity and target modulation analyses against a panel of leukemia cells provides novel insights into the unique mechanisms and codependent activity pathways involved in targeting Aurora kinases, constituting a distinctive preclinical experimental framework to identify appropriate agents and combinations in future clinical studies.

  13. Vascular-targeted photodynamic therapy with BF2-chelated Tetraaryl-Azadipyrromethene agents: a multi-modality molecular imaging approach to therapeutic assessment.

    LENUS (Irish Health Repository)

    Byrne, A T

    2009-11-03

    Photodynamic therapy (PDT) is a treatment modality for a range of diseases including cancer. The BF(2)-chelated tetraaryl-azadipyrromethenes (ADPMs) are an emerging class of non-porphyrin PDT agent, which have previously shown excellent photochemical and photophysical properties for therapeutic application. Herein, in vivo efficacy and mechanism of action studies have been completed for the lead agent, ADMP06.

  14. Liposome Formulation of Fullerene-Based Molecular Diagnostic and Therapeutic Agents

    OpenAIRE

    Zhiguo Zhou

    2013-01-01

    Fullerene medicine is a new but rapidly growing research subject. Fullerene has a number of desired structural, physical and chemical properties to be adapted for biological use including antioxidants, anti-aging, anti-inflammation, photodynamic therapy, drug delivery, and magnetic resonance imaging contrast agents. Chemical functionalization of fullerenes has led to several interesting compounds with very promising preclinical efficacy, pharmacokinetic and safety data. However, there is no c...

  15. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (Review)

    OpenAIRE

    MÖHLER, HANS; PFIRMAN, ROLF W.; Frei, Karl

    2014-01-01

    Targeting the oxygen stress response pathway is considered a promising strategy to exert antineoplastic activity in a broad spectrum of tumor types. Supporting this view, we summarize the mechanism of action of Taurolidine and Piperlongumine, two antineoplastic agents with strikingly broad tumor selectivity. Taurolidine enhances the oxidative stress (ROS) selectively in tumor cells. Its cytotoxicity for various tumor cells in vitro and in vivo, which includes tumor stem cells, is based on the...

  16. Lipopeptides as the Antifungal and Antibacterial Agents: Applications in Food Safety and Therapeutics

    OpenAIRE

    Khem Raj Meena; Kanwar, Shamsher S.

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause ext...

  17. Some novel antimicrobial therapeutic agents for acetylcholinesterase inhibitors; synthesis of hydroxyquinoline ester involving amino acid

    OpenAIRE

    Şakıyan, İffet; Aynacı, Elif; Arslan, Fatma; Öğütcü, Hatice; Sarı, Nurşen

    2015-01-01

    The aim of this work was to investigate the new effective agents candidate for treatment of the Alzheimer’s disease. So, a series of new and highly active acetylcholinesterase inhibitors derived from hydroxyquinoline ester containing amino acid were synthesized. Antibacterial activities of the molecules were studied by the well-diffusion method against Listeria monocytogenes 4b, Staphylococcus aureus, Escherichia coli, Salmonella typhi H, Brucella abortus, Staphylococcus epidermis sp., ...

  18. Redox-directed cancer therapeutics: Taurolidine and Piperlongumine as broadly effective antineoplastic agents (review).

    Science.gov (United States)

    Möhler, Hanns; Pfirrmann, Rolf W; Frei, Karl

    2014-10-01

    Targeting the oxygen stress response pathway is considered a promising strategy to exert antineoplastic activity in a broad spectrum of tumor types. Supporting this view, we summarize the mechanism of action of Taurolidine and Piperlongumine, two antineoplastic agents with strikingly broad tumor selectivity. Taurolidine enhances the oxidative stress (ROS) selectively in tumor cells. Its cytotoxicity for various tumor cells in vitro and in vivo, which includes tumor stem cells, is based on the induction of programmed cell death, largely via apoptosis but also necroptosis and autophagy. The redox-directed mechanism of action of Taurolidine is apparent from the finding that reducing agents e.g., N-acetylcysteine or glutathione impair its cytotoxicity, while its effectiveness is enhanced by agents which inhibit the cellular anti‑oxidant capacity. A similar redox-directed antineoplastic action is shown by Piperlongumine, a recently described experimental drug of plant origin. Taurolidine is particularly advantageous in surgical oncology as this taurine-derivative can be applied perioperatively or systemically with good tolerability as shown in initial clinical applications. PMID:25175943

  19. Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics.

    Science.gov (United States)

    Meena, Khem Raj; Kanwar, Shamsher S

    2015-01-01

    A lot of crops are destroyed by the phytopathogens such as fungi, bacteria, and yeast leading to economic losses to the farmers. Members of the Bacillus genus are considered as the factories for the production of biologically active molecules that are potential inhibitors of growth of phytopathogens. Plant diseases constitute an emerging threat to global food security. Many of the currently available antimicrobial agents for agriculture are highly toxic and nonbiodegradable and thus cause extended environmental pollution. Moreover, an increasing number of phytopathogens have developed resistance to antimicrobial agents. The lipopeptides have been tried as potent versatile weapons to deal with a variety of phytopathogens. All the three families of Bacillus lipopeptides, namely, Surfactins, Iturins and Fengycins, have been explored for their antagonistic activities towards a wide range of phytopathogens including bacteria, fungi, and oomycetes. Iturin and Fengycin have antifungal activities, while Surfactin has broad range of potent antibacterial activities and this has also been used as larvicidal agent. Interestingly, lipopeptides being the molecules of biological origin are environmentally acceptable. PMID:25632392

  20. Bioprospecting the Curculigoside-Cinnamic Acid-Rich Fraction from Molineria latifolia Rhizome as a Potential Antioxidant Therapeutic Agent.

    Science.gov (United States)

    Ooi, Der Jiun; Chan, Kim Wei; Sarega, Nadarajan; Alitheen, Noorjahan Banu; Ithnin, Hairuszah; Ismail, Maznah

    2016-01-01

    Increasing evidence from both experimental and clinical studies depicts the involvement of oxidative stress in the pathogenesis of various diseases. Specifically, disruption of homeostatic redox balance in accumulated body fat mass leads to obesity-associated metabolic syndrome. Strategies for the restoration of redox balance, potentially by exploring potent plant bioactives, have thus become the focus of therapeutic intervention. The present study aimed to bioprospect the potential use of the curculigoside-cinnamic acid-rich fraction from Molineria latifolia rhizome as an antioxidant therapeutic agent. The ethyl acetate fraction (EAF) isolated from M. latifolia rhizome methanolic extract (RME) contained the highest amount of phenolic compounds, particularly curculigoside and cinnamic acid. EAF demonstrated glycation inhibitory activities in both glucose- and fructose-mediated glycation models. In addition, in vitro chemical-based and cellular-based antioxidant assays showed that EAF exhibited high antioxidant activities and a protective effect against oxidative damage in 3T3-L1 preadipocytes. Although the efficacies of individual phenolics differed depending on the structure and concentration, a correlational study revealed strong correlations between total phenolic contents and antioxidant capacities. The results concluded that enriched phenolic contents in EAF (curculigoside-cinnamic acid-rich fraction) contributed to the overall better reactivity. Our data suggest that this bioactive-rich fraction warrants therapeutic potential against oxidative stress-related disorders. PMID:27322226

  1. Vitamin B12: a tunable, long wavelength, light-responsive platform for launching therapeutic agents.

    Science.gov (United States)

    Shell, Thomas A; Lawrence, David S

    2015-11-17

    Light-responsive agents offer the promise of targeted therapy, whose benefits include (i) prolonged action at the target site, (ii) overall reduced systemic dosage, (iii) reduced adverse effects, and (iv) localized delivery of multiple agents. Although photoactivated prodrugs have been reported, these species generally require short wavelengths (property that is unique to light. However, discrimination between existing photoresponsive moieties has thus far proven to be limited. We have developed a vitamin B12/light-facilitated strategy for controlling drug action using red, far-red, and NIR light. The technology is based on a light-triggered reaction displayed by a subset of B12 derivatives: alkyl-cob(III)alamins suffer photohomolysis of the C-Co(III) bond. The C-Co(III) bond is weak (600 nm) is readily captured and used to separate the Co-appended ligand (e.g., a drug) from B12. Consequently, it is now feasible to preassign the wavelength of homolysis by simply installing a fluorescent antenna with the desired photophysical properties. The wavelength malleability inherent within this strategy has been used to construct photoresponsive compounds that launch different drugs by simply modulating the wavelength of illumination. In addition, these phototherapeutics have been installed on the surface and interior of cells, such as erythrocytes or neural stem cells, and released upon expoure to the appropriate wavelength. We have shown that cytotoxic agents, such as doxorubicin, anti-inflammatories, such as dexamethasone, and anti- and pro-vascular agents are readily released from cellular vehicles as biologically active agents. We have also demonstrated that the concept of "optical window of tissue" phototherapeutics is not just limited to prodrugs. For example, stem cells have received considerable attention in the area of regenerative medicine. Hydrogels serve as scaffolds for stem cell growth and differentiation. We have shown that the formation of hydrogels can be

  2. Application of Disposable Bag Bioreactors in Tissue Engineering and for the Production of Therapeutic Agents

    Science.gov (United States)

    Eibl, R.; Eibl, D.

    In order to increase process efficiency, many pharmaceutical and biotechnology companies have introduced disposable bag technology over the last 10 years. Because this technology also greatly reduces the risk of cross-contamination, disposable bags are preferred in applications in which an absolute or improved process safety is a necessity, namely the production of functional tissue for implantation (tissue engineering), the production of human cells for the treatment of cancer and immune system diseases (cellular therapy), the production of viruses for gene therapies, the production of therapeutic proteins, and veterinary as well as human vaccines.

  3. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2015-01-01

    female CDF1 mice or foot-implanted C3H mammary carcinomas were locally irradiated (230 kV X-rays) and heated (41.5 °C for 60 min) by foot immersion in a water bath. OXi4503 (50 mg/kg) was injected intraperitoneally 1.5 h before irradiating. Irradiation was performed either in the middle of the heating...... seen with the sequential treatment. CONCLUSION: Combining OXi4503 with a sequential radiation and heat treatment resulted in a 1.4-fold therapeutic gain....

  4. Lactic acid as a new therapeutic peeling agent in the treatment of lifa disease (frictional dermal melanosis

    Directory of Open Access Journals (Sweden)

    Khalifa E Sharquie

    2012-01-01

    Full Text Available Background: Lifa disease (frictional dermal melanosis is a common dermatological problem. Full strength lactic acid has been proved to be effective and safe peeling agent in the treatment of melasma. Objective: To assess the effectiveness and the safety of lactic acid chemical peeling in the treatment of lifa disease. Materials and Methods: This open label therapeutic trial was conducted in Department of Dermatology in Najaf and Baghdad Teaching Hospitals, from March 2007-October 2008. Full strength lactic acid (92%, pH 3.5 was used as a peeling agent. The treatment sessions were done every 2 weeks until the desired response was achieved (but not more than 6 sessions. The response to therapy was evaluated by objective and subjective methods. All patients were followed monthly for 3 months after the last treatment session. Results: 52 patients with typical clinical features of lifa disease were included. All patients were slim with prominent bones and low body mass index, and gave history of using the lifa (washing agent during bathing. The number of sessions ranged from 2-6 sessions. The pigmentation was improved in all patients as revealed by objective and subjective methods, and this response was statistically highly significant. No significant side effects were recorded in all treated patients. The improvement has been sustained without any obvious relapse throughout the follow-up period. Conclusion: Lactic acid peel is a new, non-costly mode of therapy in treating dermal melanosis in patients with lifa disease.

  5. Novel therapeutic agents for HbF induction: a new era for treatment of β thalassemia?

    Directory of Open Access Journals (Sweden)

    S.P. Perrine

    2011-12-01

    Full Text Available Fetal globin is endogenous, normally integrated in hematopoietic stem cells in all humans, and available for reactivation. Inducing expression of fetal globin (g-globin gene expression to 60-70% of a globin synthesis produces β-thalassemia trait globin synthetic ratios, and has been shown to reduce anemia to mild levels which do not require regular blood transfusion. Several classes of therapeutics have induced g-globin expression in β thalassemia patients, raised total hemoglobin levels, and even eliminated transfusion requirements in formerly transfusion-dependent patients, demonstrating proof-of-concept of the approach. However, prior generations of therapeutics were not readily feasible for widespread use. Currently, several recently discovered oral therapeutic candidates are more potent and/ or patientfriendly, requiring low oral doses, have distinct molecular mechanisms of action, and can be used in combination regimens. Tailoring therapeutic regimens to patient subsets stratified for solely β+ or a β0 globin mutation, and for quantitative trait loci (QTL which modulate HbF and clinical severity, can guide more effective and informative clinical trials. These advancements provide methods for a rational approach to applying fetal globin gene induction in therapeutic regimens suitable for use in diverse thalassemia patient populations world-wide. 胎儿珠蛋白是内生的,通常结合在所有人类的造血干细胞中,并可进行再激活。 包括胎儿珠蛋白的表达(g-珠蛋白),60%-70% 珠蛋白合成基因表达产生 β地中海贫血特征珠蛋白合成比率,并且已经显示将贫血降低至轻度水平,这不需要常规输血 几类疗法诱导β地中海贫血患者中的g-珠蛋白的表达,升高了血红蛋白的总体水平,甚至让以前依靠输血的患者不再需要输血,这演示了此方法的概念验证。 不过,先前几代疗法未能进行广泛使用。 目前,最近发

  6. Bypassing the blood-brain barrier: delivery of therapeutic agents by macrophages

    Science.gov (United States)

    Hirschberg, Henry; Baek, Seung-Kuk; Kwon, Young Jik; Sun, Chung-Ho; Madsen, Steen J.

    2010-02-01

    Introduction: Failure to eradicate infiltrating glioma cells using conventional treatment regimens results in tumor recurrence and is responsible for the dismal prognosis of patients with glioblastoma multiforme (GBM). This is due to the fact that these migratory cells are protected by the blood-brain barrier (BBB) and the blood brain tumor barrier (BBTB) which prevents the delivery of most anti-cancer agents. We have evaluated the ability of monocytes/macrophages (Mo/Ma) to cross the BBB in rats. This will permit access of anti-cancer agents such as nanoparticles to effectively target the infiltrating tumor cells, and potentially improve the treatment effectiveness for malignant gliomas. Materials and Methods: The infiltration of Mo/Ma into brain tumor spheroids in vitro was determined using fluorescent stained Mo/Ma. Tumors were also established in the brains of inbred rats and ALA-PDT was given 18 days following tumor induction. The degredation of the BBTB and quantification of the number of infiltrating Mo/Ma was examined on histological sections from removed brains. Results & Conclusion: PDT was highly effective in locally opening the BBTB and inducing macrophage migration into the irradiated portions of brain tumors.

  7. Novel compounds for the treatment of Duchenne muscular dystrophy: emerging therapeutic agents.

    Science.gov (United States)

    Wilton, Steve D; Fletcher, Sue

    2011-01-01

    The identification of dystrophin and the causative role of mutations in this gene in Duchenne and Becker muscular dystrophies (D/BMD) was expected to lead to timely development of effective therapies. Despite over 20 years of research, corticosteroids remain the only available pharmacological treatment for DMD, although significant benefits and extended life have resulted from advances in the clinical care and management of DMD individuals. Effective treatment of DMD will require dystrophin restitution in skeletal, cardiac, and smooth muscles and nonmuscle tissues; however, modulation of muscle loss and regeneration has the potential to play an important role in altering the natural history of DMD, particularly in combination with other treatments. Emerging biological, molecular, and small molecule therapeutics are showing promise in ameliorating this devastating disease, and it is anticipated that regulatory environments will need to display some flexibility in order to accommodate the new treatment paradigms. PMID:23776365

  8. Molecular mechanisms and biomedical applications of glucosamine as a potential multifunctional therapeutic agent.

    Science.gov (United States)

    Dalirfardouei, Razieh; Karimi, Gholamreza; Jamialahmadi, Khadijeh

    2016-05-01

    Glucosamine and its acetylated derivative, N-acetyl glucosamine, are naturally occurring amino sugars found in human body. They are important components of glycoproteins, proteoglycans and glycosaminoglycans. Scientific studies have supported that glucosamine has the beneficial pharmacological effects to relieve osteoarthritis symptoms. Glucosamine can also be as a promising candidate for the prevention and/or treatment of some other diseases due to its anti-oxidant and anti-inflammatory activities. Most of its function is exerted by modulation of inflammatory responses especially through Nuclear Factor-κB (NF-κB) that can control inflammatory cytokine production and cell survival. In this review, we present a concise update on additional new therapeutic applications of glucosamine including treatment of cardiovascular disease, neurological deficits, skin disorders, cancer and the molecular mechanistic rationale for these uses. This article will also examine safety profile and adverse effects of glucosamine in human. PMID:27012765

  9. Alpha-1 antitrypsin: a potent anti-inflammatory and potential novel therapeutic agent.

    LENUS (Irish Health Repository)

    Bergin, David A

    2012-04-01

    Alpha-1 antitrypsin (AAT) has long been thought of as an important anti-protease in the lung where it is known to decrease the destructive effects of major proteases such as neutrophil elastase. In recent years, the perception of this protein in this simple one dimensional capacity as an anti-protease has evolved and it is now recognised that AAT has significant anti-inflammatory properties affecting a wide range of inflammatory cells, leading to its potential therapeutic use in a number of important diseases. This present review aims to discuss the described anti-inflammatory actions of AAT in modulating key immune cell functions, delineate known signalling pathways and specifically to identify the models of disease in which AAT has been shown to be effective as a therapy.

  10. Orexin Receptor Antagonists: New Therapeutic Agents for the Treatment of Insomnia.

    Science.gov (United States)

    Roecker, Anthony J; Cox, Christopher D; Coleman, Paul J

    2016-01-28

    Since its discovery in 1998, the orexin system, composed of two G-protein coupled receptors, orexins 1 and 2, and two neuropeptide agonists, orexins A and B, has captured the attention of the scientific community as a potential therapeutic target for the treatment of obesity, anxiety, and sleep/wake disorders. Genetic evidence in rodents, dogs, and humans was revealed between 1999 and 2000, demonstrating a causal link between dysfunction or deletion of the orexin system and narcolepsy, a disorder characterized by hypersomnolence during normal wakefulness. These findings encouraged efforts to discover agonists to treat narcolepsy and, alternatively, antagonists to treat insomnia. This perspective will focus on the discovery and development of structurally diverse orexin antagonists suitable for preclinical pharmacology studies and human clinical trials. The work described herein culminated in the 2014 FDA approval of suvorexant as a first-in-class dual orexin receptor antagonist for the treatment of insomnia. PMID:26317591

  11. Radiosynthesis and biological evaluation of 166Ho labeled methoxylated porphyrins as possible therapeutic agents

    International Nuclear Information System (INIS)

    166Ho labeled 5,10,15,20-tetrakis(3,4-dimethoxyphenyl) porphyrin, and 5,10,15,20-tetrakis(3,4,5-trimethoxyphenyl) porphyrin ([166Ho]-TDMPP and [166Ho]-TTMPP respectively) were prepared with acceptable radiochemical purity and specific activities. Stability and partition coefficient of the complexes were determined in the final formulations and biodistribution studies in mouse demonstrated high accumulation of [166Ho]-TDMPP in the lung and liver and less excretion through the kidney. while [166Ho]-TTMPP was mostly excreted into intestines and kidneys while lungs were a minor accumulation site. In contrast to other reported radiolanthanide labeled porphyrins these two complexes showed less liver accumulation. Further investigation of their potential therapeutic properties is of interest. (author)

  12. Therapeutic potential of N-acetylcysteine as an antiplatelet agent in patients with type-2 diabetes

    Directory of Open Access Journals (Sweden)

    MacRury Sandra M

    2011-05-01

    Full Text Available Abstract Background Platelet hyperaggregability is a pro-thrombotic feature of type-2 diabetes, associated with low levels of the antioxidant glutathione (GSH. Clinical delivery of N-acetylcysteine (NAC, a biosynthetic precursor of GSH, may help redress a GSH shortfall in platelets, thereby reducing thrombotic risk in type-2 diabetes patients. We investigated the effect of NAC in vitro, at concentrations attainable with tolerable oral dosing, on platelet GSH concentrations and aggregation propensity in blood from patients with type-2 diabetes. Methods Blood samples (n = 13 were incubated (2 h, 37°C with NAC (10-100 micromolar in vitro. Platelet aggregation in response to thrombin and ADP (whole blood aggregometry was assessed, together with platelet GSH concentration (reduced and oxidized, antioxidant status, reactive oxygen species (ROS generation, and plasma NOx (a surrogate measure of platelet-derived nitric oxide; NO. Results At therapeutically relevant concentrations (10-100 micromolar, NAC increased intraplatelet GSH levels, enhanced the antioxidant effects of platelets, and reduced ROS generation in blood from type-2 diabetes patients. Critically, NAC inhibited thrombin- and ADP-induced platelet aggregation in vitro. Plasma NOx was enhanced by 30 micromolar NAC. Conclusions Our results suggest that NAC reduces thrombotic propensity in type-2 diabetes patients by increasing platelet antioxidant status as a result of elevated GSH synthesis, thereby lowering platelet-derived ROS. This may increase bioavailability of protective NO in a narrow therapeutic range. Therefore, NAC might represent an alternative or additional therapy to aspirin that could reduce thrombotic risk in type-2 diabetes.

  13. Fate of water borne therapeutic agents and associated effects on nitrifying biofilters in recirculating aquaculture systems

    DEFF Research Database (Denmark)

    Pedersen, Lars-Flemming

    of these agents on biofilter nitrification performance. All experiments were conducted through addition of chemical additives to closed pilot scale recirculating aquaculture systems (RAS) with fixed media submerged biofilters under controlled operating conditions with rainbow trout (Oncorhynchus mykiss......) in a factorial design with true replicates. Biofilter nitrification performances were evaluated by changes in chemical processes, and nitrifying populations were identified by fluorescence in situ hybridisation (FISH) analysis. FA was degraded at a constant rate immediately after addition, and found......Recent discharge restrictions on antibiotics and chemotherapeutant residuals used in aquaculture have several implications to the aquaculture industry. Better management practices have to be adopted, and documentation and further knowledge of the chemical fate is required for proper administration...

  14. Antiretroviral Drug Interactions: Overview of Interactions Involving New and Investigational Agents and the Role of Therapeutic Drug Monitoring for Management

    Directory of Open Access Journals (Sweden)

    R. Chris Rathbun

    2011-10-01

    Full Text Available Antiretrovirals are prone to drug-drug and drug-food interactions that can result in subtherapeutic or supratherapeutic concentrations. Interactions between antiretrovirals and medications for other diseases are common due to shared metabolism through cytochrome P450 (CYP450 and uridine diphosphate glucuronosyltransferase (UGT enzymes and transport by membrane proteins (e.g., p-glycoprotein, organic anion-transporting polypeptide. The clinical significance of antiretroviral drug interactions is reviewed, with a focus on new and investigational agents. An overview of the mechanistic basis for drug interactions and the effect of individual antiretrovirals on CYP450 and UGT isoforms are provided. Interactions between antiretrovirals and medications for other co-morbidities are summarized. The role of therapeutic drug monitoring in the detection and management of antiretroviral drug interactions is also briefly discussed.

  15. Preparation and standardization of a herbal agent for the therapeutic management of asthma.

    Science.gov (United States)

    Emeje, Martins; Izuka, Amaka; Isimi, Christiana; Ofoefule, Sabinus; Kunle, Olobayo

    2011-04-01

    This study aims to develop a suitable single tablet dosage form containing a mixture of hot water stem back extracts of Anogeissus leiocarpus and Prosopis africana (AA1), suitable for use in the therapeutic management of asthma. The compaction characteristics of the oven-dried hot water extract (HWE) were studied using the Heckel equation. The mechanical properties as well as disintegration and dissolution profile of the compacts were also assessed. The results showed that AA1 exhibited high densification due to dye filling while the subsequent rearrangement of the granules did not contribute, significantly, to their densification. The granules had enhanced plasticity as shown by the low yield point, Py. The tablets produced from the extract had good mechanical properties, with hardness increasing with compression pressure while the friability decreased. Of the four disintegrants tested, tablets containing Explotab had the shortest disintegration time of 11 min while tablets containing Prosolv had the longest disintegration time of 40 min. The order of disintegrant property is Explotab > Cellactose > Emcocel > Maize starch > Prosolv. Dissolution results (t(90%)) show that tablets containing Explotab released 100% of the drug in 20 min proving to be the most suitable in acute asthma attack. The order of dissolution is Explotab > Cellactose > Maize starch > Prosolv > Emcocel. It is concluded that incorporation of Explotab (10%w/w) as a disintegrant in AA1 preparation produced tablets of suitable compressional properties and ensured adequate drug release for the management of acute asthma. PMID:20141501

  16. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics.

    Science.gov (United States)

    Burke, John; Kolhe, Ravindra; Hunter, Monte; Isales, Carlos; Hamrick, Mark; Fulzele, Sadanand

    2016-01-01

    Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells) have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics. PMID:26904130

  17. Stem Cell-Derived Exosomes: A Potential Alternative Therapeutic Agent in Orthopaedics

    Directory of Open Access Journals (Sweden)

    John Burke

    2016-01-01

    Full Text Available Within the field of regenerative medicine, many have sought to use stem cells as a promising way to heal human tissue; however, in the past few years, exosomes (packaged vesicles released from cells have shown more exciting promise. Specifically, stem cell-derived exosomes have demonstrated great ability to provide therapeutical benefits. Exosomal products can include miRNA, other genetic products, proteins, and various factors. They are released from cells in a paracrine fashion in order to combat local cellular stress. Because of this, there are vast benefits that medicine can obtain from stem cell-derived exosomes. If exosomes could be extracted from stem cells in an efficient manner and packaged with particular regenerative products, then diseases such as rheumatoid arthritis, osteoarthritis, bone fractures, and other maladies could be treated with cell-free regenerative medicine via exosomes. Many advances must be made to get to this point, and the following review highlights the current advances of stem cell-derived exosomes with particular attention to regenerative medicine in orthopaedics.

  18. Glutathione-Garlic Sulfur Conjugates: Slow Hydrogen Sulfide Releasing Agents for Therapeutic Applications

    Directory of Open Access Journals (Sweden)

    Ashif Iqbal Bhuiyan

    2015-01-01

    Full Text Available Natural organosulfur compounds (OSCs from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS or without (GaWS glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S, also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications.

  19. Glutathione-garlic sulfur conjugates: slow hydrogen sulfide releasing agents for therapeutic applications.

    Science.gov (United States)

    Bhuiyan, Ashif Iqbal; Papajani, Vilma Toska; Paci, Maurizio; Melino, Sonia

    2015-01-01

    Natural organosulfur compounds (OSCs) from Allium sativum L. display antioxidant and chemo-sensitization properties, including the in vitro inhibition of tumor cell proliferation through the induction of apoptosis. Garlic water- and oil-soluble allyl sulfur compounds show distinct properties and the capability to inhibit the proliferation of tumor cells. In the present study, we optimized a new protocol for the extraction of water-soluble compounds from garlic at low temperatures and the production of glutathionyl-OSC conjugates during the extraction. Spontaneously, Cys/GSH-mixed-disulfide conjugates are produced by in vivo metabolism of OSCs and represent active molecules able to affect cellular metabolism. Water-soluble extracts, with (GSGaWS) or without (GaWS) glutathione conjugates, were here produced and tested for their ability to release hydrogen sulfide (H2S), also in the presence of reductants and of thiosulfate:cyanide sulfurtransferase (TST) enzyme. Thus, the TST catalysis of the H2S-release from garlic OSCs and their conjugates has been investigated by molecular in vitro experiments. The antiproliferative properties of these extracts on the human T-cell lymphoma cell line, HuT 78, were observed and related to histone hyperacetylation and downregulation of GAPDH expression. Altogether, the results presented here pave the way for the production of a GSGaWS as new, slowly-releasing hydrogen sulfide extract for potential therapeutic applications. PMID:25608858

  20. NADPH oxidase enzymes in skin fibrosis: molecular targets and therapeutic agents.

    Science.gov (United States)

    Babalola, Olubukola; Mamalis, Andrew; Lev-Tov, Hadar; Jagdeo, Jared

    2014-05-01

    Fibrosis is characterized by the excessive deposition of extracellular matrix components eventually resulting in organ dysfunction and failure. In dermatology, fibrosis is the hallmark component of many skin diseases, including systemic sclerosis, graft-versus-host disease, hypertrophic scars, keloids, nephrogenic systemic fibrosis, porphyria cutanea tarda, restrictive dermopathy and other conditions. Fibrotic skin disorders may be debilitating and impair quality of life. There are few FDA-approved anti-fibrotic drugs; thus, research in this area is crucial in addressing this deficiency. Recent investigations elucidating the pathogenesis of skin fibrosis have implicated endogenous reactive oxygen species produced by the multicomponent nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzyme complex. In this review, we discuss Nox enzymes and their role in skin fibrosis. An overview of the Nox enzyme family is presented and their role in the pathogenesis of skin fibrosis is discussed. The mechanisms by which Nox enzymes influence specific fibrotic skin disorders are also reviewed. Finally, we describe the therapeutic approaches to ameliorate skin fibrosis by directly targeting Nox enzymes with the use of statins, p47phox subunit modulators, or GKT137831, a competitive inhibitor of Nox enzymes. Nox enzymes can also be targeted indirectly via scavenging ROS with antioxidants. We believe that Nox modulators are worthy of further investigation and have the potential to transform the management of skin fibrosis by dermatologists. PMID:24155025

  1. Ferulic Acid as A Potential Antioxidant Therapeutic Agent in Gamma-Irradiated Rats

    International Nuclear Information System (INIS)

    Ferulic Acid (FA) is widespread in plant foods. It possesses important biological and pharmacological properties, some of which were shown to be effective in the treatment of oxidative disorders. To investigate the therapeutic potentiality of FA on an antioxidant system of 4 Gy gamma-irradiated male rats, rats were orally administrated FA at a dosage of 200 mg/ kg body wt for 7 consecutive days. At this dose, the activities of hepatic and intestine superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), were raised after administration of FA compared with the irradiated group (P< 0.05). Oxidized glutathione (GSSG) levels were significantly lower in the liver of rats treated with FA after irradiation, whereas reduced glutathione (GSH) was markedly higher in the same group. The liver homogenates obtained from rats that had been treated with FA had higher oxygen radical absorbance capacity (ORAC) than those obtained from irradiated rats. Peripheral leukocyte analysis revealed an increased count and restoration body wt of rats by FA treatments. These experiments show that recovery of oxidative status by FA may play an important role in the recovery from adverse effects related to gamma-rays induced oxidative damage in rats.

  2. Current and Future Therapeutic Agents in the Management of Heart Failure

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Congestive heart failare is a disease in which initially compensutory changes in car-diac, vascular, and renal functions become detrimental over time. The changes are mediated by a largenamber of neurohormones and cytokines. Counter-regalutory hormones also play a role, but ave general-ly insuffwient to offset the adverse effects of the neurohormones or progression of the disease. Symp-toms of heart failure occurs in the presence of systolic dysfunction, usually documented by a decrease inejection fraction, or can present with impaired diastolic function occasionally labeled as heart failureuith preserved systolic function of the left ventricle. Heart failure and its treatment represent a medicalproblem of significant importance because of the high mortality associated with it despite the current ther-apy, which has substantial evidence of reduction in mortality and morbidity. Prevention or slowing of theprogressive deterioration in function of the heart and other organs involved through utilizing new agentsthat affect more or differentneurohormonal pathways may be beneficial and forms the focus of heartfailure research and drug development. However, the multiplicity of hormonal effects mandate the useof complex therapy in the management of congestive heart failure( CHF ). The new agents in addition tothe conventional therapy used in the management of heart failure are; Human B-type natriuretic peptide(in the treatment of decompensated CHF), endothelin receptor antagonists, calcium sensitizers, neutralendopeptidase ( NEP ) and vasopeptidase inhibitors, vasopressin antagonists and cytokine inhibitors.

  3. A role for plasma cell targeting agents in immune tolerance induction in autoimmune disease and antibody responses to therapeutic proteins.

    Science.gov (United States)

    Rosenberg, A S; Pariser, A R; Diamond, B; Yao, L; Turka, L A; Lacana, E; Kishnani, P S

    2016-04-01

    Antibody responses to life saving therapeutic protein products, such as enzyme replacement therapies (ERT) in the setting of lysosomal storage diseases, have nullified product efficacy and caused clinical deterioration and death despite treatment with immune-suppressive therapies. Moreover, in some autoimmune diseases, pathology is mediated by a robust antibody response to endogenous proteins such as is the case in pulmonary alveolar proteinosis, mediated by antibodies to Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF). In this work, we make the case that in such settings, when the antibody response is high titered, sustained, and refractory to immune suppressive treatments, the antibody response is mediated by long-lived plasma cells which are relatively unperturbed by immune suppressants including rituximab. However, long-lived plasma cells can be targeted by proteasome inhibitors such as bortezomib. Recent reports of successful reversal of antibody responses with bortezomib in the settings of ERT and Thrombotic Thrombocytopenic Purpura (TTP) argue that the safety and efficacy of such plasma cell targeting agents should be evaluated in larger scale clinical trials to delineate the risks and benefits of such therapies in the settings of antibody-mediated adverse effects to therapeutic proteins and autoantibody mediated pathology. PMID:26928739

  4. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    International Nuclear Information System (INIS)

    Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s) of action. In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM) cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3), transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1) or inflammation and the immune response (IL-6, COX-2). RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines. Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling. These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment

  5. Onconase responsive genes in human mesothelioma cells: implications for an RNA damaging therapeutic agent

    Directory of Open Access Journals (Sweden)

    Maizel Jacob V

    2010-02-01

    Full Text Available Abstract Background Onconase represents a new class of RNA-damaging drugs. Mechanistically, Onconase is thought to internalize, where it degrades intracellular RNAs such as tRNA and double-stranded RNA, and thereby suppresses protein synthesis. However, there may be additional or alternative mechanism(s of action. Methods In this study, microarray analysis was used to compare gene expression profiles in untreated human malignant mesothelioma (MM cell lines and cells exposed to 5 μg/ml Onconase for 24 h. A total of 155 genes were found to be regulated by Onconase that were common to both epithelial and biphasic MM cell lines. Some of these genes are known to significantly affect apoptosis (IL-24, TNFAIP3, transcription (ATF3, DDIT3, MAFF, HDAC9, SNAPC1 or inflammation and the immune response (IL-6, COX-2. RT-PCR analysis of selected up- or down-regulated genes treated with varying doses and times of Onconase generally confirmed the expression array findings in four MM cell lines. Results Onconase treatment consistently resulted in up-regulation of IL-24, previously shown to have tumor suppressive activity, as well as ATF3 and IL-6. Induction of ATF3 and the pro-apoptotic factor IL-24 by Onconase was highest in the two most responsive MM cell lines, as defined by DNA fragmentation analysis. In addition to apoptosis, gene ontology analysis indicated that pathways impacted by Onconase include MAPK signaling, cytokine-cytokine-receptor interactions, and Jak-STAT signaling. Conclusions These results provide a broad picture of gene activity after treatment with a drug that targets small non-coding RNAs and contribute to our overall understanding of MM cell response to Onconase as a therapeutic strategy. The findings provide insights regarding mechanisms that may contribute to the efficacy of this novel drug in clinical trials of MM patients who have failed first line chemotherapy or radiation treatment.

  6. Botulinum Toxin Type a as a Therapeutic Agent against Headache and Related Disorders.

    Science.gov (United States)

    Luvisetto, Siro; Gazerani, Parisa; Cianchetti, Carlo; Pavone, Flaminia

    2015-09-01

    Botulinum neurotoxin A (BoNT/A) is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a "glamour" drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A. PMID:26404377

  7. Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

    Science.gov (United States)

    Fasinu, Pius S; Phillips, Sarah; ElSohly, Mahmoud A; Walker, Larry A

    2016-07-01

    States and the federal government are under growing pressure to legalize the use of cannabis products for medical purposes in the United States. Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted ∆(9) -tetrahydrocannabinol (∆(9) -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader. This review provides an overview of the pharmacology and toxicology of CBD; summarizes some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and assesses the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States. Unlike Δ(9) -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors, whose activation results in the psychotropic effects characteristic of Δ(9) -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use. CBD exhibits neuroprotective, antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties. In combination with Δ(9) -THC, CBD has received regulatory approvals in several European countries and is currently under study in trials registered by the U.S. Food and Drug Administration in the United States. A number of states have passed legislation to allow for the use of CBD-rich, limited Δ(9) -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications. Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain

  8. Cabazitaxel-loaded human serum albumin nanoparticles as a therapeutic agent against prostate cancer

    Directory of Open Access Journals (Sweden)

    Qu N

    2016-07-01

    Full Text Available Na Qu,1 Robert J Lee,1,2 Yating Sun,1 Guangsheng Cai,1 Junyang Wang,1 Mengqiao Wang,1 Jiahui Lu,1 Qingfan Meng,1 Lirong Teng,1 Di Wang,1 Lesheng Teng1,3 1School of Life Sciences, Jilin University, Changchun, People’s Republic of China; 2Division of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH, USA; 3State Key Laboratory of Long-acting and Targeting Drug Delivery System, Yantai, People’s Republic of China Abstract: Cabazitaxel-loaded human serum albumin nanoparticles (Cbz-NPs were synthesized to overcome vehicle-related toxicity of current clinical formulation of the drug based on Tween-80 (Cbz-Tween. A salting-out method was used for NP synthesis that avoids the use of chlorinated organic solvent and is simpler compared to the methods based on emulsion-solvent evaporation. Cbz-NPs had a narrow particle size distribution, suitable drug loading content (4.9%, and superior blood biocompatibility based on in vitro hemolysis assay. Blood circulation, tumor uptake, and antitumor activity of Cbz-NPs were assessed in prostatic cancer xenograft-bearing nude mice. Cbz-NPs exhibited prolonged blood circulation and greater accumulation of Cbz in tumors along with reduced toxicity compared to Cbz-Tween. Moreover, hematoxylin and eosin histopathological staining of organs revealed consistent results. The levels of blood urea nitrogen and serum creatinine in drug-treated mice showed that Cbz-NPs were less toxic than Cbz-Tween to the kidneys. In conclusion, Cbz-NPs provide a promising therapeutic for prostate cancer. Keywords: cabazitaxel, human serum albumin, nanoparticle, drug delivery, toxicity, pros­tate cancer

  9. Melatonin: A Potential Anti-Oxidant Therapeutic Agent for Mitochondrial Dysfunctions and Related Disorders.

    Science.gov (United States)

    Ganie, Showkat Ahmad; Dar, Tanveer Ali; Bhat, Aashiq Hussain; Dar, Khalid B; Anees, Suhail; Zargar, Mohammad Afzal; Masood, Akbar

    2016-02-01

    Mitochondria play a central role in cellular physiology. Besides their classic function of energy metabolism, mitochondria are involved in multiple cell functions, including energy distribution through the cell, energy/heat modulation, regulation of reactive oxygen species (ROS), calcium homeostasis, and control of apoptosis. Simultaneously, mitochondria are the main producer and target of ROS with the result that multiple mitochondrial diseases are related to ROS-induced mitochondrial injuries. Increased free radical generation, enhanced mitochondrial inducible nitric oxide synthase (iNOS) activity, enhanced nitric oxide (NO) production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pores have all been suggested as factors responsible for impaired mitochondrial function. Because of these, neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and aging, are caused by ROS-induced mitochondrial dysfunctions. Melatonin, the major hormone of the pineal gland, also acts as an anti-oxidant and as a regulator of mitochondrial bioenergetic function. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other anti-oxidants, and thus has emerged as a major potential therapeutic tool for treating neurodegenerative disorders. Multiple in vitro and in vivo experiments have shown the protective role of melatonin for preventing oxidative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. With these functions in mind, this article reviews the protective role of melatonin with mechanistic insights against mitochondrial diseases and suggests new avenues for safe and effective treatment modalities against these devastating neurodegenerative diseases. Future insights are also discussed. PMID:26087000

  10. Anti-microRNAs as Novel Therapeutic Agents in the Clinical Management of Alzheimer's Disease.

    Science.gov (United States)

    Zhao, Yuhai; Alexandrov, Peter N; Lukiw, Walter J

    2016-01-01

    Overview- One hundred and ten years since its first description Alzheimer's disease (AD) still retains its prominent status: (i) as the industrialized world's number one cause of age-related intellectual impairment and cognitive decline; (ii) as this country's most rapidly expanding socioeconomic and healthcare concern; and (iii) as an insidious, progressive and lethal neurological disorder of the human central nervous system (CNS) for which there is currently no adequate treatment or cure (Alzheimer, 1991; Alzheimer et al., 1991, 1995) [https://www.alz.org/facts/downloads/facts_figures_2015.pdf (2015)]. The concept of small non-coding RNAs (ncRNAs) as being involved in the etiopathogenesis of AD and age-related human neurodegenerative disease was first proposed about 25 years ago, however it was not until 2007 that specific microRNA (miRNA) abundance, speciation and localization to the hippocampal CA1 region (an anatomical area of the human CNS specifically targeted by the AD process) was shown to strongly associate with AD-type change when compared to age-matched controls (Lukiw et al., 1992; Lukiw, 2007; Schipper et al., 2007; Cogswell et al., 2008; Guerreiro et al., 2012). Currently about 400 reports address the potential link between disruptions in miRNA signaling and the development of various features associated with AD neuropathology (http://www.ncbi.nlm.nih.gov/pubmed/?term=micro+RNA+alzheimer's+disease). In this "Perspectives" paper we will highlight some of the most recent literature on anti-miRNA (AM; antagomir) therapeutic strategies and some very recent technological advances in the analysis and characterization of defective miRNA signaling pathways in AD compared to neurologically normal age-matched controls. PMID:26941600

  11. Botulinum Toxin Type A as a Therapeutic Agent against Headache and Related Disorders

    Directory of Open Access Journals (Sweden)

    Siro Luvisetto

    2015-09-01

    Full Text Available Botulinum neurotoxin A (BoNT/A is a toxin produced by the naturally-occurring Clostridium botulinum that causes botulism. The potential of BoNT/A as a useful medical intervention was discovered by scientists developing a vaccine to protect against botulism. They found that, when injected into a muscle, BoNT/A causes a flaccid paralysis. Following this discovery, BoNT/A has been used for many years in the treatment of conditions of pathological muscle hyperactivity, like dystonias and spasticities. In parallel, the toxin has become a “glamour” drug due to its power to ward off facial wrinkles, particularly frontal, due to the activity of the mimic muscles. After the discovery that the drug also appeared to have a preventive effect on headache, scientists spent many efforts to study the potentially-therapeutic action of BoNT/A against pain. BoNT/A is effective at reducing pain in a number of disease states, including cervical dystonia, neuropathic pain, lower back pain, spasticity, myofascial pain and bladder pain. In 2010, regulatory approval for the treatment of chronic migraine with BoNT/A was given, notwithstanding the fact that the mechanism of action is still not completely elucidated. In the present review, we summarize experimental evidence that may help to clarify the mechanisms of action of BoNT/A in relation to the alleviation of headache pain, with particular emphasis on preclinical studies, both in animals and humans. Moreover, we summarize the latest clinical trials that show evidence on headache conditions that may obtain benefits from therapy with BoNT/A.

  12. An alternative intraarterial therapeutic agent for hepatic tumors. 131I lipiodol/histoacryl mixture

    International Nuclear Information System (INIS)

    Lipiodol has excellent retainable ability in hepatoma cells. This agent can be labeled with radioisotope (131I) and mixed with tissue adhesive (Histoacryl), and then attached on the lesion of liver by intrahepatic arterial administration. In this study, we attempt to obtain the optimal ratio of Lipiodol to Histoacryl and evaluate the consolidation of blood in vitro and toxicity and biodistribution in vivo. The ratio of 131I Lipiodol/Histoacryl mixture (L/H), concentration of heparin and flow rate of blood are varied by simulating the installation of bloodstream to test the time of consolidation. In addition, the optimal ratios of the L/H mixtures are assessed in vitro in heparinized human blood. According to those results, Lipiodol and Histoacryl mixed with 1:1 or 2:1 ratio have an ideal time of 13 to 15 seconds in vitro; in addition, 1.2:1 ratio is an optimal ratio in the biodistribution study. Interestingly, heparin and acetic acid does not alter the consolidation time, in addition, no variation occurs when varying the flow rate of blood. The consolidation of L/H mixture with blood is incubated in the 37 deg C, normal saline bath for 24 hours. No dissociation of free 131I is found. The optimal mixture is also injected into the hepatic artery of the Sprague-Dawley rats carrying hepatocellular carcinoma (N1S1 cell line). Radioactive consolidate is well confined in the tumor without evidence of leakage of the mixture to the lung or distribution of free 131I in the thyroid. In conclusion, this mixture has the merits of both irradiation and embolization of the tumor. The 131I Lipiodol/Histoacryl mixture (1.2:1) is a promising alternative for intrahepatic arterial administration to treat hepatic tumors. Histoacryl can confine the 131I and, also, embolize the tumor vessels. (author)

  13. Barnase as a new therapeutic agent triggering apoptosis in human cancer cells.

    Directory of Open Access Journals (Sweden)

    Evelina Edelweiss

    Full Text Available BACKGROUND: RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by ribonuclease inhibitor (RI presented in the cytoplasm of mammalian cells. METHODOLOGY/PRINCIPAL FINDINGS: In search of new effective anticancer RNases we studied the effects of barnase, a ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC(50 ranging from 0.2 to 13 microM and to leukemia cell lines with IC(50 values ranging from 2.4 to 82 microM. Also, we characterized the cytotoxic effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the single-chain variable fragment (scFv of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC(50 = 1.8 nM was three orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3 cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidylserine on the outer leaflet of the plasma membrane, and the activation of caspase-3. CONCLUSIONS/SIGNIFICANCE: These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells.

  14. Surface modification of medical implant materials with hydrophilic polymers for enhanced biocompatibility and delivery of therapeutic agents

    Science.gov (United States)

    Urbaniak, Daniel J.

    2004-11-01

    In the research reported here, the surface modification of medical grade poly(dimethyl siloxane), polyetherurethane, and stainless steel through gamma-radiation grafting of hydrophilic polymers was investigated. Emphasis was placed on developing improved and simplified surface modification methods that produce more stable and more bioacceptible hydrophilic graft surfaces. As a result of this research, new surface modification techniques were developed that yield significantly improved surface stability unachievable using previous surface modification techniques. The surface modification of poly(dimethyl siloxane) with hydrophilic polymers was carried out using gamma radiation initiated graft polymerization. The addition of alkali metal hydroxides afforded a unique way to enhance the grafting of N-vinyl-2 pyrrolidone, dimethylacryamide, 2-methacryloyloxyethyl phosphoryl choline, N,N-dimethyl-N-(methacryloyloxyethyl)-N-(3-sulfopropyl)-ammonium-betaine, N,N-dimethyl-N-(methacrylamidopropyl)-N-(3-sulfopropyl)-ammonium-betaine, and copolymers thereof to silicones. Ethanolamine was found to further enhance the grafting of some hydrophilic polymers to silicone. The resulting hydrophilic surface grafts were resistant to hydrophobic surface rearrangement. This process overcomes previous problems inherent in silicone surface modification. The technique was also found to moderately enhance the grafting of hydrophilic monomers to polyetherurethane and to 316-L stainless steel. The surface modification of 316-L stainless steel was further enhanced by treating the substrates with a chromium III methacrylate bonding agent prior to irradiation. The coatings were evaluated for their potential use as depots for delivering therapeutic agents. The release of ofloxacin from surface-modified poly(dimethyl siloxane) and dexamethasone from surface-modified 316-L stainless steel was evaluated by in-vitro experiments. Therapeutic levels of drugs were released from surface-modified specimens

  15. Topical Treatment With an Agent Disruptive to P. acnes Biofilm Provides Positive Therapeutic Response: Results of a Randomized Clinical Trial.

    Science.gov (United States)

    Bernhardt, Michael J; Myntti, Matthew F

    2016-06-01

    The traditional disease model of acne has been one of follicular plugging due to 'sticky epithelial cells' associated with increased sebum production with deep follicular anaerobic conditions favoring P. acnes- generated inflammation. P. acnes biofilms have been found more frequently in patients with acne than controls. Biofilms are genetically coded to create adhesion to the pilosebaceous unit followed by production of a mucopolysaccharide coating capable of binding to lipid surfaces. Traditional therapies for acne have involved mixtures of oral and topical antibiotics admixed with topical keratolytics and retinoids, which are aimed at traditional bacterial reduction as well as downregulating the inflammatory cascade. These approaches are limited by side effect and compliance/tolerability issues. As the P. acnes biofilm may, in fact, be the instigator of this process, we studied the use of a topical agent designed to reduce the P. acnes biofilm to see if reducing the biofilm would be therapeutically efficacious. We present data of a proprietary topical non-prescription agent with a novel pharmaco mechanism designed to attack the biofilm produced by P. acnes. Our data shows a decrease of inflammatory lesions by 44% and non-inflammatory lesions by 32% after 12 weeks and also provided for a meaningful improvement in the quality of life of the patients in the study. These improvements were achieved with a product that was not associated with burning, chafing, irritation, or erythema, which can be seen with topical treatments. It is apparent from this study that by addressing the biofilm which protects the P. acnes bacteria through the use of the Acne Gel, the incidence of acne symptoms can be greatly reduced, while having no negative impacts on the patients' skin (ClinicalTrials.gov registry number NCT02404285). J Drugs Dermatol. 2016;15(6):677-683. PMID:27272073

  16. Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors

    Science.gov (United States)

    Barth, Rolf F; Wu, Gong; Meisen, W Hans; Nakkula, Robin J; Yang, Weilian; Huo, Tianyao; Kellough, David A; Kaumaya, Pravin; Turro, Claudia; Agius, Lawrence M; Kaur, Balveen

    2016-01-01

    The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP]) fragment and epidermal growth factor receptor (EGFR)-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR) to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux®) as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5) and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt) employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic) convection-enhanced delivery (CED) to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP382-Pt and PEP455-Pt bioconjugates were cytotoxic in vitro and, based on this, a pilot study was initiated using PEP455-Pt. The end point for this study was tumor size at 6 weeks following tumor cell implantation and 4 weeks following ic CED of PEP455-Pt to F98 glioma-bearing rats. Neuropathologic examination revealed that five of seven rats were either tumor-free or only had microscopic tumors at 42 days following tumor implantation compared to a mean survival time of 20.5 and 26.3 days for untreated controls. In conclusion, we have succeeded in reformatting the

  17. First In Vivo Evaluation of Liposome-encapsulated 223Ra as a Potential Alpha-particle-emitting Cancer Therapeutic Agent

    Energy Technology Data Exchange (ETDEWEB)

    Jonasdottir, Thora J.; Fisher, Darrell R.; Borrebaek, Jorgen; Bruland, Oyvind S.; Larsen, Roy H.

    2006-09-13

    Liposomes carrying chemotherapeutics have had some success in cancer treatment and may be suitable carriers for therapeutic radionuclides. This study was designed to evaluate the biodistribution of and to estimate the radiation doses from the alpha emitter 223Ra loaded into pegylated liposomes in selected tissues. 223Ra was encapsulated in pegylated liposomal doxorubicin by ionophore-mediated loading. The biodistribution of liposomal 223Ra was compared to free cationic 223Ra in Balb/C mice. We showed that liposomal 223 Ra circulated in the blood with an initial half-time in excess of 24 hours, which agreed well with that reported for liposomal doxorubicin in rodents, while the blood half-time of cationic 223Ra was considerably less than one hour. When liposomal 223 Ra was catabolized, the released 223Ra was either excreted or taken up in the skeleton. This skeletal uptake increased up to 14 days after treatment, but did not reach the level seen with free 223Ra. Pre-treatment with non-radioactive liposomal doxorubicin 4 days in advance lessened the liver uptake of liposomal 223 Ra. Dose estimates showed that the spleen, followed by bone surfaces, received the highest absorbed doses. Liposomal 223 Ra was relatively stable in vivo and may have potential for radionuclide therapy and combination therapy with chemotherapeutic agents.

  18. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wen-wen; Yu, Jia-ying; Xu, Huai-long [School of Life Sciences and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064 (China); Bao, Jin-ku, E-mail: jinkubao@yahoo.com [School of Life Sciences and State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610064 (China)

    2011-10-22

    Highlights: {yields} ConA induces cancer cell death targeting apoptosis and autophagy. {yields} ConA inhibits cancer cell angiogenesis. {yields} ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca{sup 2+}/Mn{sup 2+}-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-{kappa}B-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  19. Copper(II)-Bis(Thiosemicarbazonato) Complexes as Antibacterial Agents: Insights into Their Mode of Action and Potential as Therapeutics.

    Science.gov (United States)

    Djoko, Karrera Y; Goytia, Maira M; Donnelly, Paul S; Schembri, Mark A; Shafer, William M; McEwan, Alastair G

    2015-10-01

    There is increasing interest in the use of lipophilic copper (Cu)-containing complexes to combat bacterial infections. In this work, we showed that Cu complexes with bis(thiosemicarbazone) ligands [Cu(btsc)] exert antibacterial activity against a range of medically significant pathogens. Previous work using Neisseria gonorrhoeae showed that Cu(btsc) complexes may act as inhibitors of respiratory dehydrogenases in the electron transport chain. We now show that these complexes are also toxic against pathogens that lack a respiratory chain. Respiration in Escherichia coli was slightly affected by Cu(btsc) complexes, but our results indicate that, in this model bacterium, the complexes act primarily as agents that deliver toxic Cu ions efficiently into the cytoplasm. Although the chemistry of Cu(btsc) complexes may dictate their mechanism of action, their efficacy depends heavily on bacterial physiology. This is linked to the ability of the target bacterium to tolerate Cu and, additionally, the susceptibility of the respiratory chain to direct inhibition by Cu(btsc) complexes. The physiology of N. gonorrhoeae, including multidrug-resistant strains, makes it highly susceptible to damage by Cu ions and Cu(btsc) complexes, highlighting the potential of Cu(btsc) complexes (and Cu-based therapeutics) as a promising treatment against this important bacterial pathogen. PMID:26239980

  20. Concanavalin A: A potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis for cancer therapeutics

    International Nuclear Information System (INIS)

    Highlights: → ConA induces cancer cell death targeting apoptosis and autophagy. → ConA inhibits cancer cell angiogenesis. → ConA is utilized in pre-clinical and clinical trials. -- Abstract: Concanavalin A (ConA), a Ca2+/Mn2+-dependent and mannose/glucose-binding legume lectin, has drawn a rising attention for its remarkable anti-proliferative and anti-tumor activities to a variety of cancer cells. ConA induces programmed cell death via mitochondria-mediated, P73-Foxo1a-Bim apoptosis and BNIP3-mediated mitochondrial autophagy. Through IKK-NF-κB-COX-2, SHP-2-MEK-1-ERK, and SHP-2-Ras-ERK anti-angiogenic pathways, ConA would inhibit cancer cell survival. In addition, ConA stimulates cell immunity and generates an immune memory, resisting to the same genotypic tumor. These biological findings shed light on new perspectives of ConA as a potential anti-neoplastic agent targeting apoptosis, autophagy and anti-angiogenesis in pre-clinical or clinical trials for cancer therapeutics.

  1. Preparation of 125IUdR and its evaluation in animal tumour model as a potential therapeutic agent

    International Nuclear Information System (INIS)

    5-Iodo-2'-deoxyuridine or iodoxyuridine (IUdR), an analogue of thymidine, is taken up by the proliferating cells during DNA synthesis. Radioiodinated IUdR is a potential therapeutic agent since radiohalogenated thymidine analogues are used for in-vivo tumour targeting and Auger electrons from radionuclides such as 123I and 125I are very effective in cell destruction when internalised. 125IUdR was prepared and studied for its suitability as an in-vivo tumour therapy agent. 125IUdR was prepared both by direct iodination of 2'-deoxyuridine and iododemercuration of 5-chloromercury-2'-deoxyuridine. Radioiodination yields were between 60-80% at pH 7. Iododemercuration was preferred since with direct iodination poor yields were observed when high specific activity product was desired and also the purification procedure was lengthier. The identity of 125IUdR was established by comparison of TLC and HPLC patterns with those of authentic IUdR. The purified 125IUdR had radiochemical purity >95% and was stable for 20 days at 4 deg. C and for a week at 23 deg. C and 37 deg. C. Bio-uptake of 125IUdR was studied by injecting the tracer in tumour bearing mice (Sarcoma S-180). The uptake in tumour cells was 4.28 +- 2.7% per gram at 3 h and 1.48 +- 0.19% at 24 h post injection. In-vivo deiodination of the product was observed as seen by the uptake of the activity in the thyroid. About 40% the activity from all other organs was excreted in 70 h. The optimum time for injection of the tracer for therapy was studied by observing the delay in tumour growth and survival rate in mice injected at 0,3,9 and 12 days after tumour induction. Injection of the tracer on the third day was found to be the most beneficial for retardation of tumour growth, while injection of the activity on the zeroth and ninth day had no effect. (author)

  2. siRNA Against KIR3DL1 as a Potential Gene Therapeutic Agent in Controlling HIV-1 Infection

    Science.gov (United States)

    Fu, Geng-Feng; Pan, Ji-Cheng; Lin, Nan; Hu, Hai-Yang; Tang, Wei-Ming; Xu, Jin-Shui; Wang, Xiao-Liang; Xu, Xiao-Qin; Qiu, Tao; Liu, Xiao-Yan; Chen, Guo-Hong; Mahapatra, Tanmay; Huan, Xi-Ping

    2014-01-01

    Abstract Objectives: The aim of this study was to develop a small interfering RNA (siRNA) against the expression of KIR3DL1 receptor on natural killer (NK) cells, in order to promote the ability of NK cells to destroy human immunodeficiency virus (HIV)-infected cells and thus prevent failure of siRNA therapy targeting human immunodeficiency virus type 1 (HIV-1) virus among HIV-1 infected patients in vitro. Methods: A siRNA targeting KIR3DL1 was synthesized and then modified with cholesterol, methylene, and sulfate. The inhibitory action of the siRNAs on primary cultured NK cells was detected. The amount of IFN-γ and TNF-α secretions in NK cells was measured. The intended functions of NK cells in vitro were analyzed by CFSE and PI methods. Results: There were no significant differences in inhibiting the expression of KIR3DL1 on NK cells between the modified and unmodified siRNAs, while inhibition by each of them differed significantly from controls. The amount of IFN-γ and TNF-α secretions in the NK cells was abundant due to unsuccessful expression of KIR3DL1 on NK cells, which further promoted function of the NK cells. Conclusion: The siRNA against KIR3DL1 could enhance the ability of the NK cells to kill the HIV-1 infected cells in vitro and successfully prevented the failure of siRNA therapy targeting the HIV-1 virus. Therefore, it can act as a potential gene therapeutic agent among HIV-1 infected people. PMID:24834927

  3. Design, synthesis, and evaluation of cisplatin-containing EGFR targeting bioconjugates as potential therapeutic agents for brain tumors

    Directory of Open Access Journals (Sweden)

    Barth RF

    2016-05-01

    Full Text Available Rolf F Barth,1 Gong Wu,1 W Hans Meisen,2 Robin J Nakkula,1 Weilian Yang,1 Tianyao Huo,1 David A Kellough,1 Pravin Kaumaya,3–5 Claudia Turro,6 Lawrence M Agius,7 Balveen Kaur2 1Department of Pathology, 2Department of Neurological Surgery, 3Department of Obstetrics and Gynecology, 4Department of Molecular and Cellular Biochemistry, 5Department of Microbiology, 6Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA; 7Department of Pathology, Mater Dei Hospital, University of Malta Medical School, Msida, Malta Abstract: The aim of this study was to evaluate four different platinated bioconjugates containing a cisplatin (cis-diamminedichloroplatinum [cis-DDP] fragment and epidermal growth factor receptor (EGFR-targeting moieties as potential therapeutic agents for the treatment of brain tumors using a human EGFR-expressing transfectant of the F98 rat glioma (F98EGFR to assess their efficacy. The first two bioconjugates employed the monoclonal antibody cetuximab (C225 or Erbitux® as the targeting moiety, and the second two used genetically engineered EGF peptides. C225-G5-Pt was produced by reacting cis-DDP with a fifth-generation polyamidoamine dendrimer (G5 and then linking it to C225 by means of two heterobifunctional reagents. The second bioconjugate (C225-PG-Pt employed the same methodology except that polyglutamic acid was used as the carrier. The third and fourth bioconjugates used two different EGF peptides, PEP382 and PEP455, with direct coordination to the Pt center of the cis-DDP fragment. In vivo studies with C225-G5-Pt failed to demonstrate therapeutic activity following intracerebral (ic convection-enhanced delivery (CED to F98EGFR glioma-bearing rats. The second bioconjugate, C225-PG-Pt, failed to show in vitro cytotoxicity. Furthermore, because of its high molecular weight, we decided that lower molecular weight peptides might provide better targeting and microdistribution within the tumor. Both PEP

  4. Use of Sr-90 beta emitter as an antifungal agent - an innovative dimension in therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    The use of ionizing radiation in dermatological practice has been well recognized for many years. However, its routine practice has markedly decreased owing to either the development of more efficient medications and / or to the increased awareness of potential genetic and somatic hazard of radiation. In treating onychomycosis, the therapeutic limitations of conventional antimycotic agents (in respect of low cure rates, high relapse rate, inherent side effects, long duration of treatment and high expense) have provided clear incentives to explore alternative therapy procedures. Next to 131I, 90Sr is being considered to be one of the most important β emitting therapeutic agents in current practice of nuclear medicine. In this present study, 90Sr has been used for treatment of onychomycosis. The objectives of the present research work were: To use Sr-90 source (beta radiation) as a curative therapy for Onychomycosis, optimisation of its dosages and to promote an innovative clinical development in the field of therapeutic application of nuclear medicine; To assess the efficacy of beta radiation either alone or in combination with conventional antifungal drugs, and; To reduce the duration of drug exposure and cost of treatment for onychomycosis. Using the appropriate statistical formula, sample size of the study population was determined and in each group 92 patients were assigned. With an assumption of patients drop out and for better statistical analysis, a total of 330 patients were randomly allocated to enter in therapeutic regimen. They had all been clinically and mycologically diagnosed to have onychomycosis. The study population was then divided into three groups: Group - A (n =110) received griseofulvin orally 500mg once daily for 12-16 weeks; Group - B (n=110) received beta radiation, 500 rads twice in a week for 3 weeks (total 2500 rads); and Group - C (n=110) received combined beta radiation (total 2500 rads in 3 weeks) and griseofulvin (500 mg daily for 6

  5. Bardoxolone methyl (CDDO-Me as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties

    Directory of Open Access Journals (Sweden)

    Wang YY

    2014-10-01

    Full Text Available Yan-Yang Wang,1,2 Yin-Xue Yang,3 Hong Zhe,1 Zhi-Xu He,4 Shu-Feng Zhou2,4 1Department of Radiation Oncology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 2Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA; 3Department of Colon-rectal Surgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, People’s Republic of China; 4Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People’s Republic of China Abstract: Triterpenoids have been used for medicinal purposes in many Asian countries because of their anti-inflammatory, antioxidant, antiproliferative, anticancer, and anticarcinogenic properties. Bardoxolone methyl, the C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid (CDDO known as CDDO-Me or RTA 402, is one of the derivatives of synthetic triterpenoids. CDDO-Me has been used for the treatment of chronic kidney disease, cancer (including leukemia and solid tumors, and other diseases. In this review, we will update our knowledge of the clinical pharmacokinetics and pharmacodynamics of CDDO-Me, highlighting its clinical benefits and the underlying mechanisms involved. The role of the Kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1/the nuclear factor erythroid 2-related factor 2 (Nrf2 pathway in the therapeutic activities of CDDO-Me will be discussed. CDDO-Me contains a,ß-unsaturated carbonyl groups on rings A and C that can generate reversible adducts with the thiol groups of Cys residues in target proteins such as Keap1 and IκB kinase. At low nanomolar concentrations, CDDO-Me protects the cells against oxidative stress via inhibition of reactive oxygen species generation, while CDDO-Me at low micromolar

  6. Magnetic resonance monitoring of focused ultrasound/magnetic nanoparticle targeting delivery of therapeutic agents to the brain

    OpenAIRE

    Liu, Hao-Li; Hua, Mu-Yi; Yang, Hung-Wei; Huang, Chiung-Yin; Chu, Po-Chun; Wu, Jia-Shin; Tseng, I-Chou; Wang, Jiun-Jie; Yen, Tzu-Chen; Chen, Pin-Yuan; Wei, Kuo-Chen

    2010-01-01

    The superparamagnetic properties of magnetic nanoparticles (MNPs) allow them to be guided by an externally positioned magnet and also provide contrast for MRI. However, their therapeutic use in treating CNS pathologies in vivo is limited by insufficient local accumulation and retention resulting from their inability to traverse biological barriers. The combined use of focused ultrasound and magnetic targeting synergistically delivers therapeutic MNPs across the blood–brain barrier to enter th...

  7. Proton nuclear magnetic resonance measurement of p-boronophenylalanine (BPA): A therapeutic agent for boron neutron capture therapy

    OpenAIRE

    Zuo, C. S.; Prasad, P V; Busse, Paul; L. Tang; Zamenhof, R. G.

    1999-01-01

    Noninvasive in vivo quantitation of boron is necessary for obtaining pharmacokinetic data on candidate boronated delivery agents developed for boron neutron capture therapy (BNCT). Such data, in turn, would facilitate the optimization of the temporal sequence of boronated drug infusion and neutron irradiation. Current approaches to obtaining such pharmacokinetic data include: positron emission tomography employing F-18 labeled boronated delivery agents (e.g., p-boronophenylalanine), ex vivo n...

  8. Flavonoids: Potential therapeutic agents for the inflammatory process [Flavonoides: Potenciais agentes terapêuticos para o processo inflamatório

    OpenAIRE

    Marcela A. S. Coutinho; Michele F. Muzitano; Sônia S. Costa

    2009-01-01

    The inflammatory process, involved in several pathologies, is the natural response of the organism to an infection or to tissue injury. It comprises basically two defense mechanisms: an unspecific response (innate response), responsible for common characteristics of inflammation (redness, edema, a sense of heat, pain and loss of function) and an immunological response that involves the production of specific antibodies against an aggressor agent. The inflammatory response is not always suffic...

  9. MCM-41 mesoporous silica nanoparticles functionalized with aptamer and radiolabelled with 90Y and 159Gd as a potential therapeutic agent against colorectal cancer

    International Nuclear Information System (INIS)

    Colorectal cancer (CRC) is a malignancy that affects large intestine and rectum, and it is the most common malignancy of the gastrointestinal tract, the third most commonly diagnosed type of cancer in the world and the second leading cause of cancer-related death in the United States. Nowadays, available therapeutic procedures for this type of cancer are limited and ineffective. Conventional radiotherapy is not an often used approach in the treatment of CRC due to the fact that peristaltic movements hamper the targeting of ionizing radiation and this type of treatment is used as adjuvant and palliative to control symptoms. Therefore, surgical intervention is the primary therapeutic choice against this disease. Researches based on the combination of radioisotopes and nanostructured carriers systems have demonstrated significant results in improving the selectivity action as well as reducing the radiation dose into healthy tissues. MCM-41 mesoporous silica nanoparticles have unique characteristics such as high surface area and well-defined pore diameters making these nanoparticles an ideal candidate of therapeutic agent carrier. Thus, the objective of this work is to synthesize and characterize MCM-41 mesoporous silica nanoparticles conjugated with yttrium-90 and gadolinium-159 and evaluate this system as a potential therapeutic agent. The nanoparticles were synthesized via sol-gel method. The sample was characterized using FTIR, SAXS, PCS, Zeta Potential analysis, Thermal analysis, CHN elemental analysis, nitrogen adsorption, scanning and transmission electron microscopy. The ability to incorporate Y+3 and Gd+3 ion was determined in vitro using different ratios (1:1, 1:3, 1:5 v/v) of YCL3 and Gd2O3 and silica nanoparticles dispersed in saline, pH 7.4. The non-incorporated Y+3 and Gd+3 ions were removed by ultracentrifugation procedure and the concentration of ions in the supernatant was determined by ICP-AES. Cell viability was assessed by colorimetric MTT assay in

  10. Radiological and physiological studies on the role of some therapeutic agents used for internal decontamination of radionuclides from male albino rats

    International Nuclear Information System (INIS)

    With the earths increasing nuclear arsenal and the growing use of nuclear energy, the possibility of radiological accidents involving release of radioactive materials, internal contamination may consequently occurs via inhalation, ingestion or absorption of radioisotopes.Therefore, the present work was oriented to deal with four topics related to the internal decontamination of two of the most widely used isotopes, namely 134Cs and 60Co from contaminated rats:-In vitro study aimed to select agents that can strongly bind the two metal ions and elucidate the best conditions and the factors affecting this binding. The tested agents were bentonite, vermiculite and Prussian blue (PB). The sorption capacity of PB and vermiculite for both metal ions was high and equivalent to more than 1011 Bq 137Cs or 60Co per gram sorbent. As bentonite has lower capacity to both isotopes, further in vivo experiments were performed with PB and vermiculite.-In vivo studies, via 5 groups of rats, devoted to investigate the kinetics of excretion of 134Cs and/or 60Co from contaminated rats. The biological half lives of excretion, excretion stages for both isotopes and the effect of route of entry on the excretion were estimated.-In vivo studies aimed to investigate the effectiveness of PB + vermiculite and CaDTPA as therapeutic agents for accelerating the elimination of 134Cs and/or 60Co from contaminated rats. The study was performed via 6 groups of rats given different regimes of therapy. The results showed the high efficiency of PB + vermiculite for accelerating elimination of 134Cs and orally administrated 60Co while CaDTPA succeeded in accelerating intraperitoneally administrated 60Co. The study proved that oral administration of PB + vermiculite and injection with CaDTPA at the same time is very effective in accelerating elimination of both contaminants simultaneously.-The physiological studies aimed to evaluate the hazardous effects of 134Cs and/or 60Co incorporation and any side

  11. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice

    OpenAIRE

    Welford, Abigail F.; Biziato, Daniela; Coffelt, Seth B.; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M.; Lewis, Claire E.

    2011-01-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA...

  12. Sulfonate salts of the therapeutic agent dapsone: 4-[(4-aminophenyl)sulfonyl]anilinium benzenesulfonate monohydrate and 4-[(4-aminophenyl)sulfonyl]anilinium methanesulfonate monohydrate.

    Science.gov (United States)

    Gaytán-Barrientos, Nancy Sarahy; Morales-Morales, David; Herrera-Ruiz, Dea; Reyes-Martínez, Reyna; Rivera-Islas, Jesús

    2016-04-01

    Dapsone, formerly used to treat leprosy, now has wider therapeutic applications. As is the case for many therapeutic agents, low aqueous solubility and high toxicity are the main problems associated with its use. Derivatization of its amino groups has been widely explored but shows no significant therapeutic improvements. Cocrystals have been prepared to understand not only its structural properties, but also its solubility and dissolution rate. Few salts of dapsone have been described. The title salts, C12H13N2O2S(+)·C6H5O3S(-)·H2O and C12H13N2O2S(+)·CH3SO3(-)·H2O, crystallize as hydrates and both compounds exhibit the same space group (monoclinic, P21/n). The asymmetric unit of each salt consists of a 4-[(4-aminophenyl)sulfonyl]anilinium monocation, the corresponding sulfonate anion and a water molecule. The cation, anion and water molecule form hydrogen-bonded networks through N-H...O=S, N-H...Owater and Owater-H...O=S hydrogen bonds. For both salts, the water molecules interact with one sulfonate anion and two anilinium cations. The benzenesulfonate salt forms a two-dimensional network, while the hydrogen bonding within the methanesulfonate salt results in a three-dimensional network. PMID:27045177

  13. O atosibano como agente tocolítico: uma nova proposta de esquema terapêutico Atosiban as a tocolytic agent: a new proposal of a therapeutic approach

    Directory of Open Access Journals (Sweden)

    Fábio Roberto Cabar

    2008-02-01

    Full Text Available OBJETIVO: avaliar um novo esquema terapêutico de emprego do atosibano quanto ao efeito tocolítico, eficácia e efeitos colaterais maternos e fetais. MÉTODOS: Estudo prospectivo com 80 gestantes em trabalho de parto prematuro admitidas para tocólise. Critérios de inclusão: gestação única, presença de contrações uterinas regulares, dilatação cervical >1 cm e 50%, idade gestacional entre 23 e 33 semanas e seis dias, membranas ovulares íntegras, índice de líquido amniótico >5 e PURPOSE: to test a therapeutic approach using atosiban for tocolysis, evaluating its safety and maternal and fetal side effects. METHODS: prospective study with 80 pregnant women with preterm labor admitted for tocolysis. Inclusion criteria: singleton pregnancy, regular uterine activity, cervical dilatation between 1 to 3 cm, cervical enfacement greater than 50%, 23 to 33 weeks and six days of gestational age, intact membranes, amniotic fluid index between 5 and 25, no maternal, fetal or placental diseases, no fetal growth restriction, no cervical incompetence, no fever. Exclusion criteria: chorioamnionitis or fever during tocolysis. Atosiban group: women received 6.75 mg atosiban iv in bolus, 300 mcg/min for three hours, then 100 mcg/min for three hours and thirty minutes. If uterine activity persisted, it was maintained iv infusion of 100 mcg/min for 12.5 hand that so for as long as 45 hours. Control group: women received terbutaline (five ampoules, 500 mL crystalloid solution iv infusion, 20 mL/h. If uterine activity persisted, infusion velocity was raised (20 mL/h until uterine contractions were absent. The dose was maintained for 24 hours. RESULTS: gestational age at birth was 29 weeks and five days to 40 weeks and six days. In atosiban group, the proportion of women who had not delivered at 48 hours was 97.5%, mean interval between tocolysis and birth of 28.2 days. In control group, birth occurred before 48 hours in 22.5% of the cases; mean interval

  14. Development of a series of aryl pyrimidine kynurenine monooxygenase inhibitors as potential therapeutic agents for the treatment of Huntington's disease.

    Science.gov (United States)

    Toledo-Sherman, Leticia M; Prime, Michael E; Mrzljak, Ladislav; Beconi, Maria G; Beresford, Alan; Brookfield, Frederick A; Brown, Christopher J; Cardaun, Isabell; Courtney, Stephen M; Dijkman, Ulrike; Hamelin-Flegg, Estelle; Johnson, Peter D; Kempf, Valerie; Lyons, Kathy; Matthews, Kimberly; Mitchell, William L; O'Connell, Catherine; Pena, Paula; Powell, Kendall; Rassoulpour, Arash; Reed, Laura; Reindl, Wolfgang; Selvaratnam, Suganathan; Friley, Weslyn Ward; Weddell, Derek A; Went, Naomi E; Wheelan, Patricia; Winkler, Christin; Winkler, Dirk; Wityak, John; Yarnold, Christopher J; Yates, Dawn; Munoz-Sanjuan, Ignacio; Dominguez, Celia

    2015-02-12

    We report on the development of a series of pyrimidine carboxylic acids that are potent and selective inhibitors of kynurenine monooxygenase and competitive for kynurenine. We describe the SAR for this novel series and report on their inhibition of KMO activity in biochemical and cellular assays and their selectivity against other kynurenine pathway enzymes. We describe the optimization process that led to the identification of a program lead compound with a suitable ADME/PK profile for therapeutic development. We demonstrate that systemic inhibition of KMO in vivo with this lead compound provides pharmacodynamic evidence for modulation of kynurenine pathway metabolites both in the periphery and in the central nervous system. PMID:25590515

  15. Observing the Safety Precautions Against Blood-Borne Infections by Delivery Agents in Therapeutic and Training Hospitals of Tabriz in 2011-2012

    Directory of Open Access Journals (Sweden)

    Soheila Bani

    2014-01-01

    Full Text Available Objectives: Blood transferred disease is one of the great difficulties for human and it is counted as one of the serious problems of public health. Although health care is valuable, it has some risks such as contacting with various pathogens, especially blood transferred pathogens, so the aim of this study is to observe the safety precautions against blood-borne infections by delivery agents in therapeutic and training hospitals of Tabriz in 2012. Materials and Methods: This study is a descriptive research and all of the participants were the childbirth agents in 3 hospital of Tabriz (Alzahra , Taleghani , 29 Bahman. All of sample size was 100 persons. After obtaining informed consent, the questionnaires which contain demographic information and 24 statements that they were related to observance of safety points against blood transferred infections in childbirth rooms were given to participants to complete. The data were analyzed with SPSS software (Ver. 13. Results: Results showed that the rate of total observance of safety precautions against blood transmitted diseases was good in 54% of delivery agents and in 46% of them was average. Conclusion: Observing safety precautions against blood transmitted diseases needs motivation, effective education and necessary, that all of them should be in priority of health care planning by relevant authorities to reduce contaminated individuals and the costs of their treatment.

  16. Xenograft models for undifferentiated pleomorphic sarcoma not otherwise specified are essential for preclinical testing of therapeutic agents

    Science.gov (United States)

    Becker, Marc; Graf, Claudine; Tonak, Marcus; Radsak, Markus P.; Bopp, Tobias; Bals, Robert; Bohle, Rainer M.; Theobald, Matthias; Rommens, Pol-Maria; Proschek, Dirk; Wehler, Thomas C.

    2016-01-01

    Undifferentiated pleomorphic sarcoma not otherwise specified belongs to the heterogeneous group of soft tissue tumors. It is preferentially located in the upper and lower extremities of the body, and surgical resection remains the only curative treatment. Preclinical animal models are crucial to improve the development of novel chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma. However, this approach has been hampered by the lack of reproducible animal models. The present study established two xenograft animal models generated from stable non-clonal cell cultures, and investigated the difference in chemotherapeutic effects on tumor growth between undifferentiated pleomorphic sarcoma in vivo and in vitro. The cell cultures were generated from freshly isolated tumor tissues of two patients with undifferentiated pleomorphic sarcoma. For the in vivo analysis, these cells were injected subcutaneously into immunodeficient mice. The mice were monitored for tumor appearance and treated with the most common or innovative chemotherapeutic agents available to date. Furthermore, the same drugs were administered to in vitro cell cultures. The most effective tumor growth inhibition in vitro was observed with doxorubicin and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as vorinostat. In the in vivo xenograft mouse model, the combination of doxorubicin and the tyrosine kinase inhibitor pazopanib induced a significant tumor reduction. By contrast, treatment with vorinostat did not reduce the tumor growth. Taken together, the results obtained from drug testing in vitro differed significantly from the in vivo results. Therefore, the novel and reproducible xenograft animal model established in the present study demonstrated that in vivo models are required to test potential chemotherapeutic agents for the treatment of undifferentiated pleomorphic sarcoma prior to clinical use, since animal models are more similar

  17. Current Status of Poly(ADP-ribose Polymerase Inhibitors as Novel Therapeutic Agents for Triple-Negative Breast Cancer

    Directory of Open Access Journals (Sweden)

    David J. Hiller

    2012-01-01

    Full Text Available Triple-negative breast cancer (TNBC is an aggressive type of breast cancer that is clinically defined as lacking estrogen and progesterone receptors, as well as being ERBB2 (HER-2 negative. Without specific therapeutic targets, TNBC carries a worse prognosis than other types of breast cancer in the absence of therapy. Research has now further differentiated breast cancer into subtypes based on genetic expression patterns. One of these subtypes, basal-like, frequently overlaps with the clinical picture of TNBC. Additionally, both TNBC and basal-like breast cancer link to BRCA mutations. Recent pharmaceutical advances have created a class of drugs, poly(ADP-ribose polymerase (PARP inhibitors, which are showing potential to effectively treat these patients. The aim of this paper is to summarize the basis behind PARP inhibitors and update the current status of their development in clinical trials for the treatment of TNBC.

  18. Gut Microbiota as a Target in the Pathogenesis of Metabolic Disorders: A New Approach to Novel Therapeutic Agents.

    Science.gov (United States)

    Ejtahed, H-S; Soroush, A-R; Angoorani, P; Larijani, B; Hasani-Ranjbar, S

    2016-06-01

    As the prevalence of metabolic disorders increases dramatically, the importance of identifying environmental factors affecting metabolism control becomes greater accordingly. Gut microbiota, a complex ecosystem inhabiting the human gastrointestinal tract, is one of these potential factors. Recently, the evidence has shown the associations between alteration in gut microbiota composition and obesity, diabetes, and osteoporosis. However, the causality of gut microbiota on metabolic health has yet to be explored in intervention studies and the underlying mechanisms need to be investigated more in depth. Gut microbiota plays critical roles in the control of immunity, food intake, lipid accumulation, production of short chain fatty acids, insulin signaling, and regulation of bone mass. The gut microbiota represents a novel potential therapeutic strategy for the treatment of metabolic disorders. In this review, we provide insights into the role of the gut microbiota in metabolic disorders and its modulating interventions such as prebiotics, probiotics, and fecal microbiota transplantation. PMID:27203411

  19. Evaluation of 188Re-labeled PEGylated nanoliposome as a radionuclide therapeutic agent in an orthotopic glioma-bearing rat model

    Directory of Open Access Journals (Sweden)

    Huang FYJ

    2015-01-01

    Full Text Available Feng-Yun J Huang,1 Te-Wei Lee,2 Chih-Hsien Chang,2 Liang-Cheng Chen,2 Wei-Hsin Hsu,2 Chien-Wen Chang,1 Jem-Mau Lo1 1Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan; 2Institute of Nuclear Energy Research, Longtan, Taiwan Purpose: In this study, the 188Re-labeled PEGylated nanoliposome (188Re-liposome was prepared and evaluated as a therapeutic agent for glioma.Materials and methods: The reporter cell line, F98luc was prepared via Lentivector expression kit system and used to set up the orthotopic glioma-bearing rat model for non-invasive bioluminescent imaging. The maximum tolerated dose applicable in Fischer344 rats was explored via body weight monitoring of the rats after single intravenous injection of 188Re-liposome with varying dosages before the treatment study. The OLINDA/EXM 1.1 software was utilized for estimating the radiation dosimetry. To assess the therapeutic efficacy, tumor-bearing rats were intravenously administered 188Re-liposome or normal saline followed by monitoring of the tumor growth and animal survival time. In addition, the histopathological examinations of tumors were conducted on the 188Re-liposome-treated rats.Results: By using bioluminescent imaging, the well-established reporter cell line (F98luc showed a high relationship between cell number and its bioluminescent intensity (R2=0.99 in vitro; furthermore, it could also provide clear tumor imaging for monitoring tumor growth in vivo. The maximum tolerated dose of 188Re-liposome in Fischer344 rats was estimated to be 333 MBq. According to the dosimetry results, higher equivalent doses were observed in spleen and kidneys while very less were in normal brain, red marrow, and thyroid. For therapeutic efficacy study, the progression of tumor growth in terms of tumor volume and/or tumor weight was significantly slower for the 188Re-liposome-treated group than the control group (P<0.05. As a result, the

  20. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice.

    Science.gov (United States)

    Welford, Abigail F; Biziato, Daniela; Coffelt, Seth B; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M; Lewis, Claire E

    2011-05-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies. PMID:21490397

  1. NNZ-2566, a novel analog of (1-3) IGF-1, as a potential therapeutic agent for fragile X syndrome.

    Science.gov (United States)

    Deacon, Robert M J; Glass, Larry; Snape, Mike; Hurley, Michael J; Altimiras, Francisco J; Biekofsky, Rodolfo R; Cogram, Patricia

    2015-03-01

    Fragile X syndrome (FXS) is the most common form of inherited intellectual disability. Previous studies have implicated mGlu5 in the pathogenesis of the disease, and many agents that target the underlying pathophysiology of FXS have focused on mGluR5 modulation. In the present work, a novel pharmacological approach for FXS is investigated. NNZ-2566, a synthetic analog of a naturally occurring neurotrophic peptide derived from insulin-like growth factor-1 (IGF-1), was administered to fmr1 knockout mice correcting learning and memory deficits, abnormal hyperactivity and social interaction, normalizing aberrant dendritic spine density, overactive ERK and Akt signaling, and macroorchidism. Altogether, our results indicate a unique disease-modifying potential for NNZ-2566 in FXS. Most importantly, the present data implicate the IGF-1 molecular pathway in the pathogenesis of FXS. A clinical trial is under way to ascertain whether these findings translate into clinical effects in FXS patients. PMID:25613838

  2. A cell factory of Bacillus subtilis engineered for the simple bioconversion of myo-inositol to scyllo-inositol, a potential therapeutic agent for Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Takenaka Shinji

    2011-09-01

    Full Text Available Abstract Background A stereoisomer of inositol, scyllo-inositol, is known as a promising therapeutic agent for Alzheimer's disease, since it prevents the accumulation of beta-amyloid deposits, a hallmark of the disease. However, this compound is relatively rare in nature, whereas another stereoisomer of inositol, myo-inositol, is abundantly available. Results Bacillus subtilis possesses a unique inositol metabolism involving both stereoisomers. We manipulated the inositol metabolism in B. subtilis to permit the possible bioconversion from myo-inositol to scyllo-inositol. Within 48 h of cultivation, the engineered strain was able to convert almost half of 10 g/L myo-inositol to scyllo-inositol that accumulated in the culture medium. Conclusions The engineered B. subtilis serves as a prototype of cell factory enabling a novel and inexpensive supply of scyllo-inositol.

  3. Computational Study of Quinolone Derivatives to Improve their Therapeutic Index as Anti-malaria Agents: QSAR and QSTR.

    Science.gov (United States)

    Iman, Maryam; Davood, Asghar; Khamesipour, Ali

    2015-01-01

    Malaria is a parasitic disease caused by five different species of Plasmodium. More than 40% of the world's population is at risk and malaria annual incidence is estimated to be more than two hundred million, malaria is one of the most important public health problems especially in children of the poorest parts of the world, annual mortality is about 1 million. The epidemiological status of the disease justifies to search for control measures, new therapeutic options and development of an effective vaccine. Chemotherapy options in malaria are limited, moreover, drug resistant rate is high. In spite of global efforts to develop an effective vaccine yet there is no vaccine available. In the current study, a series of quinolone derivatives were subjected to quantitative structure activity relationship (QSAR) and quantitative structure toxicity relationship (QSTR) analyses to identify the ideal physicochemical characteristics of potential anti-malaria activity and less cytotoxicity. Quinolone with desirable properties was built using HyperChem program, and conformational studies were performed through the semi-empirical method followed by the PM3 force field. Multi linear regression (MLR) was used as a chemo metric tool for quantitative structure activity relationship modeling and the developed models were shown to be statistically significant according to the validation parameters. The obtained QSAR model reveals that the descriptors PJI2, Mv, PCR, nBM, and VAR mainly affect the anti-malaria activity and descriptors MSD, MAXDP, and X1sol affect the cytotoxicity of the series of ligands. PMID:26330866

  4. Potential therapeutic implications of IL-6/IL-6R/gp130-targeting agents in breast cancer

    Science.gov (United States)

    Heo, Tae-Hwe; Wahler, Joseph; Suh, Nanjoo

    2016-01-01

    Interleukin-6 (IL-6) is a pleiotropic cytokine with known multiple functions in immune regulation, inflammation, and oncogenesis. Binding of IL-6 to the IL-6 receptor (IL-6R) induces homodimerization and recruitment of glycoprotein 130 (gp130), which leads to activation of downstream signaling. Emerging evidence suggests that high levels of IL-6 are correlated with poor prognosis in breast cancer patients. IL-6 appears to play a critical role in the growth and metastasis of breast cancer cells, renewal of breast cancer stem cells (BCSCs), and drug resistance of BCSCs, making anti–IL-6/IL-6R/gp130 therapies promising options for the treatment and prevention of breast cancers. However, preclinical and clinical studies of the applications of anti–IL-6/IL-6R/gp130 therapy in breast cancers are limited. In this review, we summarize the structures, preclinical and clinical studies, mechanisms of action of chemical and biological blockers that directly bind to IL-6, IL-6R, or gp130, and the potential clinical applications of these pharmacological agents as breast cancer therapies. PMID:26840088

  5. Aloe vera Gel: Effective Therapeutic Agent against Multidrug-Resistant Pseudomonas aeruginosa Isolates Recovered from Burn Wound Infections

    Directory of Open Access Journals (Sweden)

    Mehdi Goudarzi

    2015-01-01

    Full Text Available Objective. Aloe vera is an herbal medicinal plant with biological activities, such as antimicrobial, anticancer, anti-inflammatory, and antidiabetic ones, and immunomodulatory properties. The purpose of this study was investigation of in vitro antimicrobial activity of A. vera gel against multidrug-resistant (MDR Pseudomonas aeruginosa isolated from patients with burn wound infections. Methods. During a 6-month study, 140 clinical isolates of P. aeruginosa were collected from patients admitted to the burn wards of a hospital in Tehran, Iran. Antimicrobial susceptibility test was carried out against the pathogens using the A. vera gel and antibiotics (imipenem, gentamicin, and ciprofloxacin. Results. The antibiogram revealed that 47 (33.6% of all isolates were MDR P. aeruginosa. The extract isolated from A. vera has antibacterial activity against all of isolates. Also, 42 (89.4% isolates were inhibited by A. vera gel extract at minimum inhibitory concentration (MIC ≤ 200 µg/mL. MIC value of A. vera gel for other isolates (10.6% was 800 µg/mL. All of MDR P. aeruginosa strains were inhibited by A. vera at similar MIC50 and MIC90 200 µg/mL. Conclusion. Based on our results, A. vera gel at various concentrations can be used as an effective antibacterial agent in order to prevent wound infection caused by P. aeruginosa.

  6. Synthesis and antitussive evaluation of verticinone-cholic acid salt, a novel and potential cough therapeutic agent

    Institute of Scientific and Technical Information of China (English)

    Fang-zhou XU; Chang CHEN; Yong-hui ZHANG; Han-li RUAN; Hui-fang PI; Pong ZHANG; Ji-zhou WU

    2007-01-01

    Aim: To seek a novel and potent antitussive drug based on Shedan-Chuanbei powder, a complex of traditional Chinese medicine preparation for cough therapy.Methods: Verticinone-cholic acid (Vet-CA) salt, a novel, salifying derivative of verticinone and cholic acid, both of which are the major bioactive components in Shedan-Chuanbei powder, was synthesized. We then evaluated the antitussive activity and the acute toxicity of the salt. Results: The new compound, with good solubility in water, has much more potent antitussive activity in comparison with the same dose of single verticinone and single cholic acid. The administration 3 mg/kg of Ver-CA could result in over 50% reduction of a citric acid-induced cough.Pretreatment with naloxone (0.8 mg/kg, ip) can only partially antagonize its anti-tussive effect. On the other hand, glybenclamide (3 mg/kg, ip), an ATP-sensitive K+ channel blocker, can also significantly reduce the antitussive effect of Ver-CA.A further acute toxicity study showed that the LD50 values of Ver-CA were 3 times that of verticinone. Conclusion: Based on the studies of pharmacology and acutetoxicity, the salt has a synergic and attenuated toxicity compared with single verticinone and cholic acid. Moreover, the present study also suggests that Ver-CA, a potential novel antitussive agent, may exert its antitussive effect via both the peripheral (modulated by ATP-sensitive K+ channels) and central mechanisms(modulated by the opioid receptor).

  7. Localized sequence-specific release of a chemopreventive agent and an anticancer drug in a time-controllable manner to enhance therapeutic efficacy.

    Science.gov (United States)

    Pan, Wen-Yu; Lin, Kun-Ju; Huang, Chieh-Cheng; Chiang, Wei-Lun; Lin, Yu-Jung; Lin, Wei-Chih; Chuang, Er-Yuan; Chang, Yen; Sung, Hsing-Wen

    2016-09-01

    Combination chemotherapy with multiple drugs commonly requires several injections on various schedules, and the probability that the drug molecules reach the diseased tissues at the proper time and effective therapeutic concentrations is very low. This work elucidates an injectable co-delivery system that is based on cationic liposomes that are adsorbed on anionic hollow microspheres (Lipos-HMs) via electrostatic interaction, from which the localized sequence-specific release of a chemopreventive agent (1,25(OH)2D3) and an anticancer drug (doxorubicin; DOX) can be thermally driven in a time-controllable manner by an externally applied high-frequency magnetic field (HFMF). Lipos-HMs can greatly promote the accumulation of reactive oxygen species (ROS) in tumor cells by reducing their cytoplasmic expression of an antioxidant enzyme (superoxide dismutase) by 1,25(OH)2D3, increasing the susceptibility of cancer cells to the cytotoxic action of DOX. In nude mice that bear xenograft tumors, treatment with Lipos-HMs under exposure to HFMF effectively inhibits tumor growth and is the most effective therapeutic intervention among all the investigated. These empirical results demonstrate that the synergistic anticancer effects of sequential release of 1,25(OH)2D3 and DOX from the Lipos-HMs may have potential for maximizing DOX cytotoxicity, supporting more effective cancer treatment. PMID:27294541

  8. Production, quality control, biodistribution assessment and preliminary dose evaluation of [177Lu]-tetra phenyl porphyrin complex as a possible therapeutic agent

    Directory of Open Access Journals (Sweden)

    Samaneh Zolghadri

    2015-06-01

    Full Text Available Due to interesting therapeutic properties of 177Lu and tumor avidity of tetraphenyl porphyrins (TPPs, 177Lu-tetraphenyl porphyrin was developed as a possible therapeutic compound. 177Lu of 2.6-3 GBq/mg specific activity was obtained by irradiation of natural Lu2O3sample with thermal neutron flux of 4 × 1013 n.cm-2.s-1. Tetraphenyl porphyrin was synthetized and labeled with 177Lu. Radiochemical purity of the complex was studied using Instant thin layer chromatography (ITLC method. Stability of the complex was checked in final formulation and human serum for 48 h. The biodistribution of the labeled compound in vital organs of wild-type rats was studied up to 7 d. The absorbed dose of each human organ was calculated by medical internal radiation dose (MIRD method. A detailed comparative pharmacokinetic study was performed for 177Lu cation and [177Lu]-TPP. The complex was prepared with a radiochemical purity: >97±1% and specific activity: 970-1000 MBq/mmol. Biodistribution data and dosimetric results showed that all tissues receive approximately an insignificant absorbed dose due to rapid excretion of the complex through the urinary tract. [177Lu]-TPP can be an interesting tumor targeting agent due to low liver uptake and very low absorbed dose of approximately 0.036 to the total body of human.

  9. A Thermally Stable Form of Bacterial Cocaine Esterase: A Potential Therapeutic Agent for Treatment of Cocaine Abuse

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Remy L.; Nance, Mark R.; Youngstrom, Daniel W.; Narasimhan, Diwahar; Zhan, Chang-Guo; Tesmer, John J.G.; Sunahara, Roger K.; Woods, James H. (Michigan); (Michigan-Med); (Kentucky)

    2010-09-03

    Rhodococcal cocaine esterase (CocE) is an attractive potential treatment for both cocaine overdose and cocaine addiction. CocE directly degrades cocaine into inactive products, whereas traditional small-molecule approaches require blockade of the inhibitory action of cocaine on a diverse array of monoamine transporters and ion channels. The usefulness of wild-type (wt) cocaine esterase is hampered by its inactivation at 37 C. Herein, we characterize the most thermostable form of this enzyme to date, CocE-L169K/G173Q. In vitro kinetic analyses reveal that CocE-L169K/G173Q displays a half-life of 2.9 days at 37 C, which represents a 340-fold improvement over wt and is 15-fold greater than previously reported mutants. Crystallographic analyses of CocE-L169K/G173Q, determined at 1.6-{angstrom} resolution, suggest that stabilization involves enhanced domain-domain interactions involving van der Waals interactions and hydrogen bonding. In vivo rodent studies reveal that intravenous pretreatment with CocE-L169K/G173Q in mice provides protection from cocaine-induced lethality for longer time periods before cocaine administration than wt CocE. Furthermore, intravenous administration (pretreatment) of CocE-L169K/G173Q prevents self-administration of cocaine in a time-dependent manner. Termination of the in vivo effects of CoCE seems to be dependent on, but not proportional to, its clearance from plasma as its half-life is approximately 2.3 h and similar to that of wt CocE (2.2 h). Taken together these data suggest that CocE-L169K/G173Q possesses many of the properties of a biological therapeutic for treating cocaine abuse but requires additional development to improve its serum half-life.

  10. Gadolinium Nanoparticles Conjugated with Therapeutic Bifunctional Chelate as a Potential T1 Theranostic Magnetic Resonance Imaging Agent.

    Science.gov (United States)

    Kang, Min-Kyoung; Lee, Gang Ho; Jung, Ki-Hye; Jung, Jae-Chang; Kim, Hee-Kyung; Kim, Yeon-Hee; Lee, Jongmin; Ryeom, Hun-Kyu; Kim, Tae-Jeong; Chang, Yongmin

    2016-05-01

    This work is directed toward the synthesis of two types of gadolinium oxide nanoparticles (Gd-oxide NPs), abbreviated as Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA, with diameters of 50-60 nm. The synthesis involves sequential coating of Gd-oxide NPs with tetraethyl orthosilicate (TEOS) and (3-aminopropyl) triethoxysilane (APTES), followed by functionalization of the aminopropylsilane group with 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7,10-tetraazacyclododecane-1,4,7-trisacetic acid conjugates of benzothiazoles (DO3A-BTA). Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA exhibit high water solubility and colloidal stability. The r1 relaxivities of both Gd@SiO2-DO3A and Gd@SiO2-DO2A-BTA are higher than those of the corresponding low-molecular-weight magnetic resonance imaging contrast agents (MRI CAs), and their r2/r1 ratios are close to 1, indicating that both can be used as potential T1 MRI CAs. Biodistribution studies demonstrated that Gd@SiO2-DO2A-BTA was excreted via both hepatobiliary and renal pathways. Gd@SiO2-DO2A-BTA exhibits a strong intracellular uptake property in a series of tumor cell lines, and has significant anticancer characteristics against cell lines such as SK-HEP-1, MDA-MB-231, HeLa, and Hep-3B. PMID:27305813

  11. The impact of novel therapeutic agents before and after frontline autologous stem cell transplantation in patients with multiple myeloma

    Science.gov (United States)

    Lee, Sung-Eun; Yahng, Seung-Ah; Cho, Byung-Sik; Eom, Ki-Seong; Kim, Yoo-Jin; Kim, Hee-Je; Lee, Seok; Cho, Seok-Goo; Kim, Dong-Wook; Lee, Jong-Wook; Min, Woo-Sung; Park, Chong-Won

    2013-01-01

    Background Novel agents (NAs) such as thalidomide and bortezomib have been administered in combination with autologous stem-cell transplantation (ASCT) to effectively treat multiple myeloma (MM). However, whether NAs perform better as induction treatments prior to transplantation, or as post-transplant maintenance therapies remains unclear. Methods We retrospectively analyzed 106 consecutive patients with MM who underwent ASCT within 1 year of diagnosis as first-line therapy. Results Eighty-seven (82.1%) patients received NAs before ASCT, whereas 68 (64.2%) received NAs after ASCT. NAs were administered to each patient as follows: before ASCT alone (N=29, 27.4%), after ASCT alone (N=10, 9.4%) or both before and after ASCT (N=58, 54.7%). High-quality rates before and after ASCT were significantly higher for patients who received NAs as induction treatment compared to those who did not receive pre-transplant NAs. At a median follow-up of 37.9 months, the 3-year progression-free survival (PFS) and overall survival (OS) rates were 42.8% and 70.2%, respectively. The PFS and OS were significantly higher in patients with NAs as post-transplant maintenance treatment (P=0.03 and P=0.04, respectively), but not in those with NAs as pre-transplant induction treatment. The PFS of patients with NAs before and after ASCT was higher than that of the patients with NAs as induction therapy alone (P=0.05). Age, serum β2-microglobulin level, complete response after ASCT, and NA use post-ASCT independently predicted survival outcomes. Conclusion These findings suggest that integration of NAs post-ASCT could benefit patients with MM undergoing ASCT. Induction therapy using NAs also improves high-quality response rates before and after ASCT. PMID:24086940

  12. Mir-34a mimics are potential therapeutic agents for p53-mutated and chemo-resistant brain tumour cells.

    Directory of Open Access Journals (Sweden)

    Yuen Ngan Fan

    Full Text Available Chemotherapeutic drug resistance and relapse remains a major challenge for paediatric (medulloblastoma and adult (glioblastoma brain tumour treatment. Medulloblastoma tumours and cell lines with mutations in the p53 signalling pathway have been shown to be specifically insensitive to DNA damaging agents. The aim of this study was to investigate the potential of triggering cell death in p53 mutated medulloblastoma cells by a direct activation of pro-death signalling downstream of p53 activation. Since non-coding microRNAs (miRNAs have the ability to fine tune the expression of a variety of target genes, orchestrating multiple downstream effects, we hypothesised that triggering the expression of a p53 target miRNA could induce cell death in chemo-resistant cells. Treatment with etoposide, increased miR-34a levels in a p53-dependent fashion and the level of miR-34a transcription was correlated with the cell sensitivity to etoposide. miR-34a activity was validated by measuring the expression levels of one of its well described target: the NADH dependent sirtuin1 (SIRT1. Whilst drugs directly targeting SIRT1, were potent to trigger cell death at high concentrations only, introduction of synthetic miR-34a mimics was able to induce cell death in p53 mutated medulloblastoma and glioblastoma cell lines. Our results show that the need of a functional p53 signaling pathway can be bypassed by direct activation of miR-34a in brain tumour cells.

  13. Potential therapeutic agents for bone pain palliation: Sm-153 EDTMP and Lu-177 EDTMP and their comparison

    International Nuclear Information System (INIS)

    Full text: In a quest for more effective radiopharmaceutical for palliation of pain experienced by metastatic cancer patients, this article relates the results obtained with therapeutic beta emitter radionuclide of Lutetium-177 complexed to bone seeking phosphonate ligand of ethylenediamine tetramethylene phosphonic acid (EDTMP) and then its comparison with Samarium-153 labelled EDTMP. The objective of this study is to formulate and evaluate 177Lu- EDTMP for bone pain palliation and to compare it with 153Sm-EDTMP that is currently being used in many centers of the world. Materials and Methods: The radionuclide was prepared by n, . reaction. Quality control was checked by paper chromatography. Various parameters were optimized to formulate these radiopharmaceuticals with maximum labelling efficiency. Sprague-Dawley male rats were used for biodistribution and imaging study. Results: The labelling efficiency of 153Sm-EDTMP was found to be > 99% at pH 7.5 with 1:5 (Sm: EDTMP) molar ratio incubated for 20 minutes at room temperature. 177Lu- EDTMP showed that the complex can be prepared with radiochemical purity >95% using ligand: molar ratio from 20-30 at pH 7.5. Among biodistribution study for all these radiopharmaceuticals, skeletal uptake was found to be maximum for 177Lu-EDTMP (70±2.4%), followed by 153Sm-EDTMP ( 5 8 . 5 ± 2 . 8 % ) . B o t h t h e s e radiopharmaceuticals showed good renal and rapid blood clearance. The biodistribution study of free radionuclides showed significant uptake of activity by soft tissues including lungs, liver and spleen, with minimal uptake in the skeletal system (153SmCl3: 7.5±0.04%, 177LuCl3: 2.5±0.1%). Imaging study carried out for 153Sm-EDTMP and 177Lu-EDTMP showed good uptake of activity by the skeletal system (including epiphyses, spine and facial bones). Conclusion: It was concluded that labelled complexes of these lanthides can be used effectively in the therapy for bone pain palliation, having more potential for 177Lu

  14. A new insight into viral proteins as Immunomodulatory therapeutic agents: KSHV vOX2 a homolog of human CD200 as a potent anti-inflammatory protein

    Science.gov (United States)

    Mousavinezhad-Moghaddam, Maryam; Amin, Abbas Ali; Rafatpanah, Houshang; Rezaee, Seyed Abdol Rahim

    2016-01-01

    The physiologic function of the immune system is defense against infectious microbes and internal tumour cells, Therefore, need to have precise modulatory mechanisms to maintain the body homeostasis. The mammalian cellular CD200 (OX2)/CD200R interaction is one of such modulatory mechanisms in which myeloid and lymphoid cells are regulated. CD200 and CD200R molecules are membrane proteins that their immunomodulatory effects are able to suppress inflammatory responses, particularly in the privilege sites such as CNS and eyes. Kaposi’s sarcoma-associated herpesvirus (KSHV), encodes a wide variety of immunoregulatory proteins which play central roles in modulating inflammatory and anti-inflammatory responses in favour of virus dissemination. One such protein is a homologue of the, encoded by open reading frame (ORF) K14 and therefore called vOX2. Based on its gene expression profile during the KSHV life cycle, it is hypothesised that vOX2 modulates host inflammatory responses. Moreover, it seems that vOX2 involves in cell adhesion and modulates innate immunity and promotes Th2 immune responses. In this review the activities of mammalian CD200 and KSHV CD200 in cell adhesion and immune system modulation are reviewed in the context of potential therapeutic agents. PMID:27096058

  15. 宁夏马铃薯晚疫病保护剂和治疗剂田间药效研究%Study on the Efficacy of Protective and Therapeutic Agents to Control Potato Late Blight in Ningxia

    Institute of Scientific and Technical Information of China (English)

    刘浩; 张珺; 谢成君; 张宗山; 沈瑞清

    2012-01-01

    The effects of different protective and therapeutic agents to control potato late blight were compared by applying them to the center disease plant in the field. The results showed that among the protective agents, 53.8% cupric hydroxide WDG was the best; among therapeutic agents, 58% Ridomil Gold WP was the best.%在田间中心病株出现马铃薯晚疫病症状后,施用保护剂和治疗剂,对比3种保护剂和15种治疗剂防治马铃薯晚疫病的效果.结果表明,保护剂中53.8%氢氧化铜水分散粒剂防治效果最好,治疗剂中58%金雷多米尔可湿性粉剂的防治效果最好.

  16. Equilibrium solubilization of lipophilic therapeutic agents by aqueous solutions of products of catalytic oxyethylation of Croda-type lanolin as model excipients of the class of non-ionic surface active agents.

    Science.gov (United States)

    Zgoda, Marian Mikołaj; Lukosek, Marek; Nachajski, Michał Jakub

    2007-01-01

    Research was conducted into the properties and identity of the products of Croda-type hypoallergenic lanolin, which were obtained with the use of a selective catalyst (K-4) and a standard alkaline catalyst (Na/NaOH). The 1HNMR method was employed to assess the content of oxyethylated segments and the analytic level of hydrophilic-lipophilic balance (HLB). Surface activity of products soluble in water with n(TE) > or = 40 was examined and the thermodynamic potential for micelle formation deltaGm(o) was calculated. Basic viscosity and hydrodynamic values were determined for the solubilizers and their micellar adduct with ibuprofen, ketoprofen and naproxen. In addition, the amount of solubilized therapeutic agents c/s/ was examined by means of the spectroscopic method and the micellar partition coefficient--Kw(m) was estimated. The results obtained in the course of research served as a basis for determining the solubilization mechanism and the stability of the micellar adduct for the purpose of application. This enabled the commencement of technological work on the design and manufacture of a model dosage form administered to the skin and containing the products of lanolin oxyethylation. PMID:17957947

  17. Agent-based model of therapeutic adipose-derived stromal cell trafficking during ischemia predicts ability to roll on P-selectin.

    Directory of Open Access Journals (Sweden)

    Alexander M Bailey

    2009-02-01

    Full Text Available Intravenous delivery of human adipose-derived stromal cells (hASCs is a promising option for the treatment of ischemia. After delivery, hASCs that reside and persist in the injured extravascular space have been shown to aid recovery of tissue perfusion and function, although low rates of incorporation currently limit the safety and efficacy of these therapies. We submit that a better understanding of the trafficking of therapeutic hASCs through the microcirculation is needed to address this and that selective control over their homing (organ- and injury-specific may be possible by targeting bottlenecks in the homing process. This process, however, is incredibly complex, which merited the use of computational techniques to speed the rate of discovery. We developed a multicell agent-based model (ABM of hASC trafficking during acute skeletal muscle ischemia, based on over 150 literature-based rules instituted in Netlogo and MatLab software programs. In silico, trafficking phenomena within cell populations emerged as a result of the dynamic interactions between adhesion molecule expression, chemokine secretion, integrin affinity states, hemodynamics and microvascular network architectures. As verification, the model reasonably reproduced key aspects of ischemia and trafficking behavior including increases in wall shear stress, upregulation of key cellular adhesion molecules expressed on injured endothelium, increased secretion of inflammatory chemokines and cytokines, quantified levels of monocyte extravasation in selectin knockouts, and circulating monocyte rolling distances. Successful ABM verification prompted us to conduct a series of systematic knockouts in silico aimed at identifying the most critical parameters mediating hASC trafficking. Simulations predicted the necessity of an unknown selectin-binding molecule to achieve hASC extravasation, in addition to any rolling behavior mediated by hASC surface expression of CD15s, CD34, CD62e, CD62p

  18. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    Energy Technology Data Exchange (ETDEWEB)

    Joo, Ijin; Kim, Jung Hoon; Lee, Jeong Min; Choi, Jin Woo; Han, Joon Koo; Choi, Byung Ihn [Dept. of Radiology, Seoul National University Hospital, Seoul (Korea, Republic of)

    2014-03-15

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model. This study was approved by our institutional animal care and use committee. Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516, and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24 hours following their treatment. The tumor perfusion parameters were obtained from the time-intensity curve of the DCE-US data. Repeated measures analysis of variance was performed to assess any significant change in tumor perfusion over time. Relative changes in the DCE-US parameters between the baseline and follow-up assessments were correlated with the relative changes in tumor size over the course of seven days using Pearson correlation. CKD-516 treatment resulted in significant changes in the DCE-US parameters, including the peak intensity, total area under the time-intensity curve (AUCtotal), and AUC during wash-out (AUCout) over time (P<0.05). Pairwise comparison tests revealed that the AUCtotal and AUC during wash-in (AUCin) seen on the two-hour follow-up were significantly lower than the baseline values (P<0.05). However, none of early changes in the DCE-US parameters until 24-hour follow-up showed a significant correlation with the relative changes in tumor size during seven days after CKD-516 treatment. Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor perfusion as early as two hours after treatment and that the therapeutic effect of CKD-516 treatment can be effectively quantified using DCE-US.

  19. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    International Nuclear Information System (INIS)

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model. This study was approved by our institutional animal care and use committee. Eight VX2 liver-tumor-bearing rabbits were treated with intravenous CKD-516, and all underwent DCE-US using SonoVue before and again 2, 4, 6, and 24 hours following their treatment. The tumor perfusion parameters were obtained from the time-intensity curve of the DCE-US data. Repeated measures analysis of variance was performed to assess any significant change in tumor perfusion over time. Relative changes in the DCE-US parameters between the baseline and follow-up assessments were correlated with the relative changes in tumor size over the course of seven days using Pearson correlation. CKD-516 treatment resulted in significant changes in the DCE-US parameters, including the peak intensity, total area under the time-intensity curve (AUCtotal), and AUC during wash-out (AUCout) over time (P<0.05). Pairwise comparison tests revealed that the AUCtotal and AUC during wash-in (AUCin) seen on the two-hour follow-up were significantly lower than the baseline values (P<0.05). However, none of early changes in the DCE-US parameters until 24-hour follow-up showed a significant correlation with the relative changes in tumor size during seven days after CKD-516 treatment. Our results suggest that a novel VDA (CKD-516) can cause disruption of tumor perfusion as early as two hours after treatment and that the therapeutic effect of CKD-516 treatment can be effectively quantified using DCE-US.

  20. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    Energy Technology Data Exchange (ETDEWEB)

    Numata, Kazushi, E-mail: kz-numa@urahp.yokohama-cu.ac.j [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Fukuda, Hiroyuki; Ohto, Masao; Itou, Ryu [Department of Internal Medicine, Naruto General Hospital, 167 Naruto, Sanbu, Chiba 289-1326 (Japan); Nozaki, Akito; Kondou, Masaaki; Morimoto, Manabu [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan); Karasawa, Eii [Department of Gastroenterology, International University of Health and Welfare Atami Hospital, 13-1 Higashi Kaigan-cho, Atami, Shizuoka 413-0012 (Japan); Tanaka, Katsuaki [Gastroenterological Center, Yokohama City University Medical Center, 4-57 Urafune-cho, Minami-ku, Yokohama, Kanagawa 232-0024 (Japan)

    2010-08-15

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  1. Evaluation of the therapeutic efficacy of high-intensity focused ultrasound ablation of hepatocellular carcinoma by three-dimensional sonography with a perflubutane-based contrast agent

    International Nuclear Information System (INIS)

    Objective: We performed contrast-enhanced three-dimensional sonography (CE 3D US) with a perflubutane-based contrast agent to immediately evaluate the completeness of ablation of small hepatocellular carcinoma (HCC) lesions by extracorporeal high-intensity focused ultrasound (HIFU). Subjects and methods: Twenty-one HCC lesions were treated by a single ultrasound-guided HIFU ablation session, and CE 3D US was performed before, immediately after, and 1 week, and 1 month after HIFU, and contrast-enhanced CT (CE CT) or contrast-enhanced MRI (CE MRI) was performed before HIFU, 1 week and 1 month after HIFU, and during the follow-up period. Results: Immediately and 1 month after HIFU, 17 lesions were evaluated as adequately ablated by CE 3D US, and the other 4 lesions as residual tumors. One month after HIFU, 18 were evaluated as adequately ablated by CE CT or CE MRI, and the other 3 as residual tumors. The evaluation by CE 3D US immediately after HIFU and by CE CT or CE MRI 1 month after HIFU was concordant with 20 lesions. The kappa value for agreement between the findings of CE 3D US and other modalities by two blinded observers was 0.83. When the 1-month CE CT or CE MRI findings were used as the reference standard, the sensitivity, specificity, and accuracy of CE 3D US immediately after HIFU for the diagnosis of the adequate ablation were 100%, 75%, and 95%, respectively. Conclusion: CE 3D US appears to be a useful method for immediate evaluation of therapeutic efficacy of HIFU ablation of HCC lesions.

  2. Development of Antisense Therapeutic and Imaging Agents to Detect and Suppress Inducible Nitric Oxide Synthase (iNOS) Expression in Acute Lung Injury (ALI)

    Science.gov (United States)

    Shen, Yuefei

    This dissertation focuses on the development and investigation of antisense imaging and therapeutic agents, combined with nanotechnology, to detect and suppress inducible nitric oxide synthase (iNOS) expression for the diagnosis and treatment of acute lung injury (ALI). To achieve this goal, several efforts were made. The first effort was the identification and characterization of high binding affinity antisense peptide nucleic acids (PNAs) and shell-crosslinked knedel-like nanoparticle (SCK)-PNA conjugates to the iNOS mRNA. Antisense binding sites on the iNOS mRNA were first mapped by a procedure for rapidly generating a library of antisense accessible sites on native mRNAs (MASL) which involves reverse transcription of whole cell mRNA extracts with a random oligodeoxynucleotide primer followed by mRNA-specific PCR. Antisense PNAs against the antisense accessible sites were accordingly synthesized and characterized. The second effort was the investigation of cationic shell crosslinked knedel-like nanoparticle (cSCK)-mediated siRNA delivery to suppress iNOS expression for the treatment of ALI. siRNA with its unique gene-specific properties could serve as a promising therapeutic agent, however success in this area has been challenged by a lack of efficient biocompatible transfection agents. cSCK with its nanometer size and positive charge previously showed efficient cellular delivery of phosphorothioate ODNs (oligodeoxynucleotides), plasmid DNA and PNA. Herein, cSCK showed good siRNA binding and facilitated efficient siRNA transfection in HeLa, a mouse macrophage cell line and other human cell lines. cSCK led to greater silencing efficiency than Lipofectamine 2000 in HeLa cells as determined by the viability following transfection with cytotoxic and non-cytotoxic siRNAs, as well in 293T and HEK cells, and was comparable in BEAS-2B and MCF10a cells. The third effort was the preparation of an iNOS imaging probe through electrostatic complexation between a radiolabeled

  3. A stable explant culture of HER2/neu invasive carcinoma supported by alpha-Smooth Muscle Actin expressing stromal cells to evaluate therapeutic agents

    International Nuclear Information System (INIS)

    To gain a better understanding of the effects of therapeutic agents on the tumor microenvironment in invasive cancers, we developed a co-culture model from an invasive lobular carcinoma. Tumor cells expressing HER2/neu organize in nests surrounded by alpha-Smooth Muscle Actin (α-SMA) expressing tumor stroma to resemble the morphology of an invading tumor. This co-culture, Mammary Adenocarcinoma Model (MAM-1) maintains a 1:1 ratio of HER2/neu positive tumor cells to α-SMA-reactive stromal cells and renews this configuration for over 20 passages in vitro. We characterized the cellular elements of the MAM-1 model by microarray analysis, and immunocytochemistry. We developed flow cytometric assays to evaluate the relative responses of the tumor and stroma to the tyrosine kinase inhibitor, Iressa. The MAM-1 gene expression profile contains clusters that represent the ErbB-2 breast cancer signature and stroma-specific clusters associated with invasive breast cancers. The stability of this model and the ability to antigenically label the tumor and stromal fractions allowed us to determine the specificity of Iressa, a receptor tyrosine kinase inhibitor, for targeting the tumor cell population. Treatment resulted in a selective dose-dependent reduction in phospho-pMEK1/2 and pp44/42MAPK in tumor cells. Within 24 h the tumor cell fraction was reduced 1.9-fold while the stromal cell fraction increased >3-fold, consistent with specific reductions in phospho-pp44/42 MAPK, MEK1/2 and PCNA in tumor cells and reciprocal increases in the stromal cells. Erosion of the tumor cell nests and augmented growth of the stromal cells resembled a fibrotic response. This model demonstrates the specificity of Iressa for HER2/neu expressing tumor cells versus the tumor associated myofibroblasts and is appropriate for delineating effects of therapy on signal transduction in the breast tumor microenvironment and improving strategies that can dually or differentially target the tumor and stromal

  4. NOD/SCID-GAMMA mice are an ideal strain to assess the efficacy of therapeutic agents used in the treatment of myeloma bone disease.

    Directory of Open Access Journals (Sweden)

    Michelle A Lawson

    Full Text Available Animal models of multiple myeloma vary in terms of consistency of onset, degree of tumour burden and degree of myeloma bone disease. Here we describe five pre-clinical models of myeloma in NOD/SCID-GAMMA mice to specifically study the effects of therapeutic agents on myeloma bone disease. Groups of 7-8 week old female irradiated NOD/SCID-GAMMA mice were injected intravenously via the tail vein with either 1x106 JJN3, U266, XG-1 or OPM-2 human myeloma cell lines or patient-derived myeloma cells. At the first signs of morbidity in each tumour group all animals were sacrificed. Tumour load was measured by histological analysis, and bone disease was assessed by micro-CT and standard histomorphometric methods. Mice injected with JJN3, U266 or OPM-2 cells showed high tumour bone marrow infiltration of the long bones with low variability, resulting in osteolytic lesions. In contrast, mice injected with XG-1 or patient-derived myeloma cells showed lower tumour bone marrow infiltration and less bone disease with high variability. Injection of JJN3 cells into NOD/SCID-GAMMA mice resulted in an aggressive, short-term model of myeloma with mice exhibiting signs of morbidity 3 weeks later. Treating these mice with zoledronic acid at the time of tumour cell injection or once tumour was established prevented JJN3-induced bone disease but did not reduce tumour burden, whereas, carfilzomib treatment given once tumour was established significantly reduced tumour burden. Injection of U266, XG-1, OPM-2 and patient-derived myeloma cells resulted in less aggressive longer-term models of myeloma with mice exhibiting signs of morbidity 8 weeks later. Treating U266-induced disease with zoledronic acid prevented the formation of osteolytic lesions and trabecular bone loss as well as reducing tumour burden whereas, carfilzomib treatment only reduced tumour burden. In summary, JJN3, U266 or OPM-2 cells injected into NOD/SCID-GAMMA mice provide robust models to study anti

  5. Structural Studies on Acetylcholinesterase and Paraoxonase Directed Towards Development of Therapeutic Biomolecules for the Treatment of Degenerative Diseases and Protection Against Chemical Threat Agents

    Science.gov (United States)

    Sussman, Joel L.; Silman, Israel

    Acetylcholinesterase and paraoxonase are important targets for treatment of degenerative diseases, Alzheimer's disease and atherosclerosis, respectively, both of which impose major burdens on the health care systems in Western society. Acetylcholinesterase is the target of lethal nerve agents, and paraoxonase is under consideration as a bioscavenger for their detoxification. Both are thus the subject of research and development in the context of nerve agent toxicology. The crystal structures of the two enzymes are described, and structure/function relationships are discussed in the context of drug development and of development of means of protection against chemical threats.

  6. Emerging new therapeutic applications of capecitabine as a first-line chemotherapeutic agent in the management of advanced carcinomas other than colorectal carcinoma

    Directory of Open Access Journals (Sweden)

    Kapoor S

    2012-05-01

    Full Text Available Shailendra KapoorRichmond, VA, USAI read with great interest the recent article by Hameed et al in a recent issue of your journal.1 The article is very interesting. Interestingly, the past few years have seen the emergence of capecitabine as a highly potent first-line chemotherapeutic agent against advanced systemic carcinomas other than colorectal carcinoma. For instance, capecitabine has recently been used successfully as a first-line monotherapeutic agent for HER-2-negative metastatic breast cancer.2 Cotherapy with agents such as sorafenib and paclitaxel for HER-2-negative metastatic breast cancer has also been recently used first-line, and significantly improves progressionfree survival, in addition to being very safe.3,4 Similarly, in patients with advanced gastric carcinoma, capecitabine has been used successfully as first-line therapy in combination with agents such as cisplatin.5 The XELOX regimen comprising capecitabine in conjunction with oxaliplatin is another recent highly effective alternative for gastric carcinoma.6 The modified XELIRI regimen compromising capecitabine and irinotecan is a further option for advanced and unresectable gastric carcinoma.7View original paper by Hameed and colleagues.

  7. Early quantification of the therapeutic efficacy of the vascular disrupting agent, CKD-516, using dynamic contrast-enhanced ultrasonography in rabbit VX2 liver tumors

    OpenAIRE

    Ijin Joo; Jung Hoon Kim; Jeong Min Lee; Jin Woo Choi; Joon Koo Han; Byung Ihn Choi

    2014-01-01

    Purpose:

    To evaluate the usefulness of dynamic contrast-enhanced ultrasonography (DCE-US) in the early quantification of hemodynamic change following administration of the vascular disrupting agent (VDA) CKD-516 using a rabbit VX2 liver tumor model.

    Methods:

    This study was appro...

  8. Radiological features and therapeutic responses of pulmonary nontuberculous mycobacterial disease in rheumatoid arthritis patients receiving biological agents: a retrospective multicenter study in Japan

    OpenAIRE

    Mori, Shunsuke; Tokuda, Hitoshi; Sakai, Fumikazu; Johkoh, Takeshi; Mimori, Akio; Nishimoto, Norihiro; Tasaka, Sadatomo; Hatta, Kazuhiro; Matsushima, Hidekazu; Kaise, Shunji; Kaneko, Atsushi; Makino, Shigeki; Minota, Seiji; Yamada, Takashi; Akagawa, Shinobu

    2011-01-01

    Objective This study was performed to evaluate the radiological features of and therapeutic responses to pulmonary disease caused by nontuberculous mycobacteria (NTM) in the setting of biological therapy for rheumatoid arthritis (RA). Methods We conducted a retrospective chart review of 13 patients from multiple centers who had developed pulmonary NTM disease during biological therapy for RA, including infliximab, etanercept, adalimumab, and tocilizumab. Results Most cases were asymptomatic o...

  9. Phase Ⅲ Clinical Trials of the Cell Differentiation Agent-2 (CDA-2): Therapeutic Efficacy on Breast Cancer, Non-Small Cell Lung Cancer and Primary Hepatoma

    Institute of Scientific and Technical Information of China (English)

    Fengyi Feng; Mingzhong Li; Yunzhong Zhu; Meizhen Zhou; Jun Ren; Yetao Gao; Jingpo Zhao; Rongsheng Zheng; Wenhua Zhao; Zhiqiang Meng; Fang Li; Qing Li; Qizhong Zhang; Dongli Zhao; Liyan Xu; Yongqiang Zhang; Yanjun Zhang; Zhenjiu Wang; Shuanqi Liu; Ming C. Liau; Changquan Ling; Yang Zhang; Fengzhan Qin; Huaqing Wang; Wenxia Huang; Shunchang Jiao; Qiang Chen

    2005-01-01

    OBJECTIVE The objective of this study was to explore the effect of CDA-2, a selective inhibitor of abnormal methylation enzymes in cancer cells, on the therapeutic efficacy of cytotoxic chemotherapy.METHODS Advanced cancer patients, all of whom had previously undergone chemotherapy, were randomly divided into 2 groups, one receiving chemotherapy only as the control group, and the other receiving CDA-2 in addition to chemotherapy as the combination group. The therapeutic efficacies and the toxic manifestations of the 2 groups were compared based on the WHO criteria.RESULTS Of 454 cancer patients enrolled in phase Ⅲ clinical trials of CDA-2, 80, 188, and 186 were breast cancer,NSCLC, and primary hepatoma patients, respectively.Among them 378 patients completed treatments according to the protocols. The results showed that the overall effective rate of the combination group was 2.6 fold that of the control group, 4.8 fold in the case of breast cancer, 2.3 fold in the case of primary hepatoma, and 2.2 fold in the case of NSCLC. Surprisingly, the combination therapy appeared to work better for stage Ⅳ than stage Ⅲ patients. CDA-2 did not contribute additional toxicity. On the contrary, it reduced toxic manifestations of chemotherapy, particularly regarding white blood cells, nausea and vomiting.CONCLUSION Modulation of abnormal methylation enzymes by CDA-2 is definitely helpful to supplement chemotherapy. It significantly increased the therapeutic efficacy and reduced the toxic manifestation of cytotoxic chemotherapy on breast cancer and NSCLC.

  10. The role of lipid and carbohydrate digestive enzyme inhibitors in the management of obesity: a review of current and emerging therapeutic agents

    Directory of Open Access Journals (Sweden)

    Sonia A Tucci

    2010-05-01

    Full Text Available Sonia A Tucci, Emma J Boyland, Jason CG HalfordKissileff Laboratory for the Study of Human Ingestive Behaviour, School of Psychology, University of Liverpool, Liverpool, UKAbstract: Obesity is a global epidemic associated with significant morbidity and mortality in adults and ill health in children. A proven successful approach in weight management has been the disruption of nutrient digestion, with orlistat having been used to treat obesity for the last 10 years. Although orlistat-induced weight loss remains modest, it produces meaningful reductions in risk factors for obesity-related conditions such as diabetes and cardiovascular disease. Moreover, this lipase inhibitor is free of the serious side effects that have dogged appetite-suppressing drugs. This success had driven investigation into new generation nutraceuticals, supplements and pharmaceutical agents that inhibit the breakdown of complex carbohydrates and fats within the gut. This review focuses on agents purported to inhibit intestinal enzymes responsible for macronutrient digestion. Except for some synthetic products, the majority of agents reviewed are either botanical extracts or bacterial products. Currently, carbohydrate digestion inhibitors are under development to improve glycemic control and these may also induce some weight loss. However, colonic fermentation induced side effects, such as excess gas production, remain an issue for these compounds. The α-glucosidase inhibitor acarbose, and the α-amylase inhibitor phaseolamine, have been used in humans with some promising results relating to weight loss. Nonetheless, few of these agents have made it into clinical studies and without any clinical proof of concept or proven efficacy it is unlikely any will enter the market soon.Keywords: lipase, amylase, saccharidases, overweight, orlistat, Alli®, digestion, body weight

  11. Cooperative Therapeutic Effects of Herpes Simplex Virus Thymidine Kinase Gene/Ganciclovir System and Chemotherapeutic Agents on Prostate Cancer in vitro

    Institute of Scientific and Technical Information of China (English)

    XING Yifei; XIAO Yajun; LU Gongcheng; ZENG Fuqing; ZHAO Jun; XIONG Ping; FENG Wei

    2006-01-01

    The killing effects of herpes simplex virus thymidine kinase gene/ganciclovir (HSV-tk/GCV) approach by the addition of several commonly clinical chemotherapeutic agents on hormone refractory prostate cancer (HRPC) cells PC-3m were investigated. After transferring of the HSV-tk gene into PC-3m cells, mRNA and protein expression of HSV-tk was detected by reverse-transcript polymerase chain reaction (RT-PCR) and strept avidin-biotin complex (SABC) immunohistochemical method. The killing effect of GCV, cisplatin (CDDP), etoposide (VP-16), vincristine (VCR), methotrexate (MTX), 5-fluorouracil (5-Fu), and suramin on PC-3m cells was evaluated by morphological assessment analysis, trypan blue exclusion assay and MTT assay respectively. Additionally, the cooperative effect of HSV-tk/GCV system combined with the above agents on the target cancer cells was determined by MTT. Furthermore, apoptosis and necrosis induced by GCV plus 5-Fu or suramin was analyzed by flow cytometry (FCM). The results showed that that there was HSV-tk mRNA and protein expression in pDR2-tk plasmid transduced PC-3m cell. Combination of GCV with VP-16, VCR, 5-Fu or suramin led to an enhanced cellular killing effect, but with CDDP resulted in a reduced one and with MTX in an approximate one. FCM revealed that synergistic use of GCV and 5-fu or suramin resulted in a rather large proportion of apoptosis and necrosis with the apoptosis index being 36.38 % and 35.51%, and the proportion of necrosis being 33.05 % and 28.87 %, respectively. In conclusion, HSV-tk/CGV approach by addition of certain clinical available chemotherapeutic drugs brings on statistically significant enhanced cell killing over single-agent treatment.Our results highlight the potential for such new combination therapies for future treatments of HRPC.

  12. Therapeutic potential of new B cell-targeted agents in the treatment of elderly and unfit patients with chronic lymphocytic leukemia.

    Science.gov (United States)

    Rai, Kanti R

    2015-01-01

    Chronic lymphocytic leukemia (CLL), the most common adult leukemia in the Western world, is primarily a disease of the elderly, with most patients ≥65 years of age and having at least one major comorbidity. Aggressive chemoimmunotherapy regimens recommended to achieve remission and improve survival in young, fit patients are often poorly tolerated in elderly and/or less physiologically fit ("unfit") patients, necessitating alternative treatment options. Although patient age, fitness, and comorbidities are key considerations in the selection of a treatment regimen, historically, clinical trials have been limited to young, fit patients by virtue of the ethical concerns associated with potential end organ toxic effects that could worsen comorbidities. However, the availability of new therapies promises a shift to a research paradigm that encompasses the identification of optimal treatments for elderly and unfit patients. Anti-CD20 monoclonal antibody therapy, which overall has improved response rates and survival in patients with CLL, has only recently been evaluated elderly and unfit patients. B cell-targeted agents such as the Bruton's tyrosine kinase inhibitor ibrutinib and the phosphatidylinositol 3-kinase inhibitor idelalisib are the first of a new generation of oral agents for CLL. Available clinical data suggest that these therapies have the potential to address the unmet need in elderly and unfit patients with CLL and result in clinical remission, and not merely symptom palliation and improved quality of life, which, by themselves, are also a reasonable goal. PMID:26170206

  13. Therapeutic effect of intratumoral injection of 188Re labeled stannic sulfur suspension in liver cancer. A comparative study with chemical agents in nude mice

    International Nuclear Information System (INIS)

    Objectives: Hepatoma is a common disease in some countries. The intervention therapy was used often for non-resectable tumor. The aim of our study was to compare the therapeutic effect of 188Re labeled stannic sulfur suspension to ethanol, acetic acid and the mixture of mitomycin and lipiodol for hepatoma in an animal model by intermittently injection. Methods: Forty-nine nude mice bearing hepatic cell carcinoma were divided into six groups. Group 1 (n=14) was intratumoral y injected with 0.1 ml saline. There were 5 experimental groups (group 2 to 6). Each group consisted of 7 mice. The mice in group 2 was intratumoral y injected with 18.5 MBq/0.1 ml 188Re labeled stannic sulfur suspension each, the mice in group 3 was injected intratumorally with 9.25 MBq/0.1 ml 188Re labeled stannic sulfur suspension each, group 4 was injected intratumorally with 0.1 ml ethanol, the mice in group 5 was injected with 0.1 ml 30% acetic acid and group 6 was injected intratumorally with 30 μg mitomycin in 0.1 ml lipiodol respectively. The mice were sacrificed 7 days post injection and the specimen were collected for pathological analysis. Results: The average tumor weight were 1.75±0.29 g (mean±S.D.), 0.26±0.03 g, 0.44±0.17 g, 1.38±0.25 g, 0.91±0.28 g, 1.38±0.28 g for group 1 to 6 respectively. Tumors in all experimental groups were significantly smaller than group 1 (control group, P88Re labeled stannic sulfur suspension injection had the smallest tumor weight among all the experimental groups (P188Re labeled stannic sulfur suspension shows better therapeutic effect. (authors)

  14. MCM-41 mesoporous silica nanoparticles functionalized with aptamer and radiolabelled with {sup 90}Y and {sup 159}Gd as a potential therapeutic agent against colorectal cancer; Nanoparticulas de silica mesoporosa MCM-41 funcionalizadas com aptamero e radiomarcadas com {sup 90}Y e {sup 159}Gd como um potencial agente terapeutico contra cancer colorretal

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Carolina de Aguiar

    2014-06-01

    Colorectal cancer (CRC) is a malignancy that affects large intestine and rectum, and it is the most common malignancy of the gastrointestinal tract, the third most commonly diagnosed type of cancer in the world and the second leading cause of cancer-related death in the United States. Nowadays, available therapeutic procedures for this type of cancer are limited and ineffective. Conventional radiotherapy is not an often used approach in the treatment of CRC due to the fact that peristaltic movements hamper the targeting of ionizing radiation and this type of treatment is used as adjuvant and palliative to control symptoms. Therefore, surgical intervention is the primary therapeutic choice against this disease. Researches based on the combination of radioisotopes and nanostructured carriers systems have demonstrated significant results in improving the selectivity action as well as reducing the radiation dose into healthy tissues. MCM-41 mesoporous silica nanoparticles have unique characteristics such as high surface area and well-defined pore diameters making these nanoparticles an ideal candidate of therapeutic agent carrier. Thus, the objective of this work is to synthesize and characterize MCM-41 mesoporous silica nanoparticles conjugated with yttrium-90 and gadolinium-159 and evaluate this system as a potential therapeutic agent. The nanoparticles were synthesized via sol-gel method. The sample was characterized using FTIR, SAXS, PCS, Zeta Potential analysis, Thermal analysis, CHN elemental analysis, nitrogen adsorption, scanning and transmission electron microscopy. The ability to incorporate Y{sup +3} and Gd{sup +3} ion was determined in vitro using different ratios (1:1, 1:3, 1:5 v/v) of YCL{sub 3} and Gd{sub 2}O{sub 3} and silica nanoparticles dispersed in saline, pH 7.4. The non-incorporated Y{sup +3} and Gd{sup +3} ions were removed by ultracentrifugation procedure and the concentration of ions in the supernatant was determined by ICP-AES. Cell viability

  15. Inhalable Particles for "Pincer Therapeutics" Targeting Nitazoxanide as Bactericidal and Host-Directed Agent to Macrophages in a Mouse Model of Tuberculosis.

    Science.gov (United States)

    Gupta, Anuradha; Meena, Jairam; Sharma, Deepak; Gupta, Pushpa; Gupta, Umesh Dutta; Kumar, Sadan; Sharma, Sharad; Panda, Amulya K; Misra, Amit

    2016-09-01

    Nitazoxanide (NTZ) has moderate mycobactericidal activity and is also an inducer of autophagy in mammalian cells. High-payload (40-50% w/w) inhalable particles containing NTZ alone or in combination with antituberculosis (TB) agents isoniazid (INH) and rifabutin (RFB) were prepared with high incorporation efficiency of 92%. In vitro drug release was corrected for drug degradation during the course of study and revealed first-order controlled release. Particles were efficiently taken up in vitro by macrophages and maintained intracellular drug concentrations at one order of magnitude higher than NTZ in solution for 6 h. Dose-dependent killing of Mtb and restoration of lung and spleen architecture were observed in experimentally infected mice treated with inhalations containing NTZ. Adjunct NTZ with INH and RFB cleared culturable bacteria from the lung and spleen and markedly healed tissue architecture. NTZ can be used in combination with INH-RFB to kill the pathogen and heal the host. PMID:27463245

  16. 188Re-HTDD-lipiodol solution as a new therapeutic agent for transhepatic arterial administration in liver cancer: a preclinical study using liver-cancer model in rabbit

    International Nuclear Information System (INIS)

    188Re-HTDD-lipiodol solution was developed and reported to be a new therapeutic material for transhepatic arterial embolization (TAE) of liver cancer. In this study we compared the tissue retention of 188Re-HTDD-lipiodol with that of 188Re-TDD-lipiodol using liver-cancer model in rabbit. Cancer cell line VX2 was inoculated into 7 rabbits and grown up to larger than 3 cm. TAE was performed with 188Re-TDD-lipiodol in 3 rabbits and with 188Re-HTDD-lipiodol in 4 rabbits. Conjugated planar scans were performed at 1, 2, 6, 24, 48 hours after TAE. From these images, the mean life of radioactivity retention in tumor was calculated, and the required dose for human application as also calculated from the mean life and MIRDOSE3 software. The mean lifes of radioactivity in liver were 10.2±1.0 hr in TDD group and 17.6±0.8 hr in HTDD group (p188Re-HTDD-lipiodol for 5.7 cm-sized tumor and 88 mCi for 9,7 cm-sized tumor. By the introduction of long chain alkyl group, 188Re-HTDD-lipiodol showed significantly better tumor retention than that of 188Re-TDD-lipiodol. And the required dose of radiation for human application was calculated to be 18 ∼ 88 mCi when using 188Re-HTDD-lipiodol

  17. 系统性红斑狼疮靶向治疗药物研究进展%Development of targeted therapeutic agents for systemic lupus erythematosus

    Institute of Scientific and Technical Information of China (English)

    石平荣

    2013-01-01

    近十年来,随着免疫及分子生物学的发展,针对SLE免疫病理机制或相关靶点的生物靶向治疗药物取得了重大进展,以贝利单抗为标志的生物靶向治疗药物为SLE的治疗开辟了新的途径.目前有近20种SLE靶向治疗药物在进行临床前期或临床研究,根据其作用靶位的不同主要分为以下7类:B细胞特异性靶点药物、T细胞供刺激分子特异性靶点药物、细胞因子抑制剂、天然免疫靶位、耐受原、细胞表面受体抑制剂以及单核细胞趋化蛋白-1/单核细胞趋化因子CC配体2抑制剂、N-乙酰半胱氨酸等其他靶点药物.%With the development of immunology and molecular-biology,great advances have been made in biological therapies targeted at the immunopathological mechanisms or directed against some targets in systemic lupus erythematosus (SLE) in the past decade.These biological agents,with belimumab as a representative,have offered a new approach to the treatment of SLE.At present,there are nearly 20 targeteddrugs for SLE that undergo preclinical research or clinical trials.According to the difference in action targets,they are mainly divided into seven categories:B-cell-targeted drugs,T-cell/costimulatory molecule-targeteddrugs,cytokine inhibitors,innate immunity-targeted drugs,tolerogens,inhibitors of cell surface receptors,and other targeted agents including monocyte chemoattractant protein 1/monocyte chemoattractant CC chemokineligand 2 inhibitors,N-acetyl cysteine,etc.

  18. Terlipressina como novo recurso terapêutico no choque séptico Terlipressin as a new therapeutic agent in septic shock

    Directory of Open Access Journals (Sweden)

    Valter Nilton Felix

    2006-06-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A terlipressina tem sido inserida em protocolos de suporte hemodinâmico da sepse, como recurso em casos de choque refratário, o que motiva análise crítica a respeito do assunto. CONTEÚDO: Foram revistas para a análise terapias hemodinâmicas com objetivos finais bem delineados e novas recomendações para reanimação volêmica, uso de vasopressores e agentes inotrópicos em adultos e crianças sépticos. CONCLUSÕES: A terlipressina tem sido considerada nova alternativa nos cuidados intensivos da sepse, embora ainda controversa.BACKGROUND AND OBJECTIVES: The hemodynamic support of sepsis is now formulated trying to insert terlipressin as salvage drug in catecholamine resistant shock, justifying a broad critical analysis. CONTENTS: The analysis included hemodynamic therapies with defined specific goals and new recommendations for fluid resuscitation, vasopressor therapy, and inotropic therapy of septic in adult and pediatric patients. CONCLUSIONS: Terlipressin appears as a new but controversial alternative for vasopressor therapy in sepsis.

  19. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    International Nuclear Information System (INIS)

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag+ to Ag0 and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC50 value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic apoptosis effect of AgNPs

  20. Bio-synthesis of silver nanoparticles using Potentilla fulgens Wall. ex Hook. and its therapeutic evaluation as anticancer and antimicrobial agent

    Energy Technology Data Exchange (ETDEWEB)

    Mittal, Amit Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Tripathy, Debabrata [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Choudhary, Alka [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Aili, Pavan Kumar [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Chatterjee, Anupam [Department of Biotechnology and Bioinformatics, North Eastern Hill University, Shillong, 793002 Meghalaya (India); Singh, Inder Pal [Department of Natural Products, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India); Banerjee, Uttam Chand, E-mail: ucbanerjee@niper.ac.in [Department of Pharmaceutical Technology Biotechnology, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062 Punjab (India)

    2015-08-01

    The present study aims to develop an easy and eco-friendly method for the synthesis of silver nanoparticles using extracts from the medicinal plant, Potentilla fulgens and evaluation of its anticancer and antimicrobial properties. The various parts of P. fulgens were screened and the root extract was found to have the highest potential for the synthesis of nanoparticles. The root extracts were able to quickly reduce Ag{sup +} to Ag{sup 0} and stabilized the nanoparticles. The synthesis of nanoparticles was confirmed by UV–Visible spectrophotometry and further characterized using Zeta sizer, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). Electron microscopic study showed that the size of the nanoparticle was in the range of 10 to 15 nm and spherical in shape. The studies of phytochemical analysis of nanoparticles indicated that the adsorbed components on the surface of nanoparticles were mainly flavonoid in nature. Furthermore, nanoparticles were evaluated as cytotoxic against various cancer cell lines and 0.2 to 12 μg/mL nanoparticles showed good toxicity. The IC{sub 50} value of nanoparticles was found to be 4.91 and 8.23 μg/mL against MCF-7 and U-87 cell lines, respectively. Additionally, the apoptotic effect of synthesized nanoparticles on normal and cancer cells was studied using trypan blue assay and flow-cytometric analysis. The results indicate the synthesized nanoparticle ability to kill cancer cells compared to normal cells. The nanoparticles also exhibited comparable antimicrobial activity against both Gram-positive and Gram-negative bacteria. - Highlights: • Bio-synthesis of AgNPs using a medicinal plant Potentilla fulgens Wall. ex Hook. • Optimization of NP synthesis and its characterization using various techniques • Determination of therapeutic potential in terms of anticancer and antimicrobial properties • To know the mechanistic

  1. Characterization of Brain-Penetrant Pyrimidine-Containing Molecules with Differential Microtubule-Stabilizing Activities Developed as Potential Therapeutic Agents for Alzheimer's Disease and Related Tauopathies.

    Science.gov (United States)

    Kovalevich, Jane; Cornec, Anne-Sophie; Yao, Yuemang; James, Michael; Crowe, Alexander; Lee, Virginia M-Y; Trojanowski, John Q; Smith, Amos B; Ballatore, Carlo; Brunden, Kurt R

    2016-05-01

    The microtubule (MT)-stabilizing protein tau disengages from MTs and forms intracellular inclusions known as neurofibrillary tangles in Alzheimer's disease and related tauopathies. Reduced tau binding to MTs in tauopathies may contribute to neuronal dysfunction through decreased MT stabilization and disrupted axonal transport. Thus, the introduction of brain-penetrant MT-stabilizing compounds might normalize MT dynamics and axonal deficits in these disorders. We previously described a number of phenylpyrimidines and triazolopyrimidines (TPDs) that induce tubulin post-translational modifications indicative of MT stabilization. We now further characterize the biologic properties of these small molecules, and our results reveal that these compounds can be divided into two general classes based on the cellular response they evoke. One group composed of the phenylpyrimidines and several TPD examples showed a bell-shaped concentration-response effect on markers of MT stabilization in cellular assays. Moreover, these compounds induced proteasome-dependent degradation of α- and β-tubulin and caused altered MT morphology in both dividing cells and neuron cultures. In contrast, a second group comprising a subset of TPD molecules (TPD+) increased markers of stable MTs in a concentration-dependent manner in dividing cells and in neurons without affecting total tubulin levels or disrupting MT architecture. Moreover, an example TPD+ compound was shown to increase MTs in a neuron culture model with induced tau hyperphosphorylation and associated MT deficits. Several TPD+ compounds were shown to be both brain penetrant and orally bioavailable, and a TPD+ example increased MT stabilization in the mouse brain, making these compounds potential candidate therapeutics for neurodegenerative tauopathies such as Alzheimer's disease. PMID:26980057

  2. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    International Nuclear Information System (INIS)

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  3. Therapeutic potential of a non-steroidal bifunctional anti-inflammatory and anti-cholinergic agent against skin injury induced by sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Yoke-Chen; Wang, James D.; Hahn, Rita A.; Gordon, Marion K.; Joseph, Laurie B. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Heck, Diane E. [Department of Environmental Science, New York Medical College, Valhalla, NY (United States); Heindel, Ned D. [Department of Chemistry, Lehigh University, Bethlehem, PA (United States); Young, Sherri C. [Department of Chemistry, Muhlenberg College, Allentown, PA (United States); Sinko, Patrick J. [Department of Pharmaceutics, Rutgers University, Piscataway, NJ (United States); Casillas, Robert P. [MRIGlobal, Kansas City, MO (United States); Laskin, Jeffrey D. [Environmental and Occupational Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ (United States); Laskin, Debra L. [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States); Gerecke, Donald R., E-mail: gerecke@eohsi.rutgers.edu [Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ (United States)

    2014-10-15

    Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal–epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure. - Highlights: • Bifunctional anti-inflammatory prodrug (NDH4338) tested on SM exposed mouse skin • The prodrug NDH4338 was designed to target COX2 and acetylcholinesterase. • The application of NDH4338 improved cutaneous wound repair after SM induced injury. • NDH4338 treatment demonstrated a reduction in COX2 expression on SM injured skin. • Changes of skin repair

  4. In vitro and in vivo anti-tumor effect of metformin as a novel therapeutic agent in human oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Metformin, which is widely used as an antidiabetic agent, has recently been reported to reduce cancer risk and improve prognosis in certain malignancies. However, the specific mechanisms underlying the effect of metformin on the development and progression of several cancers including oral squamous cell carcinoma (OSCC) remain unclear. In the present study, we investigated the effects of metformin on OSCC cells in vitro and in vivo. OSCC cells treated with or without metformin were counted using a hemocytometer. The clonogenic ability of OSCC cells after metformin treatment was determined by colony formation assay. Cell cycle progression and apoptosis were assessed by flow cytometry, and the activation of related signaling pathways was examined by immunoblotting. The in vivo anti-tumor effect of metformin was examined using a xenograft mouse model. Immunohistochemistry and TUNEL staining were used to determine the expression of cyclin D1 and the presence of apoptotic cells in tumors from mice treated with or without metformin. Metformin inhibited proliferation in the OSCC cell lines CAL27, WSU-HN6 and SCC25 in a time- and dose-dependent manner, and significantly reduced the colony formation of OSCC cells in vitro. Metformin induced an apparent cell cycle arrest at the G0/G1 phase, which was accompanied by an obvious activation of the AMP kinase pathway and a strongly decreased activation of mammalian target of rapamycin and S6 kinase. Metformin treatment led to a remarkable decrease of cyclin D1, cyclin-dependent kinase (CDK) 4 and CDK6 protein levels and phosphorylation of retinoblastoma protein, but did not affect p21 or p27 protein expression in OSCC cells. In addition, metformin induced apoptosis in OSCC cells, significantly down-regulating the anti-apoptotic proteins Bcl-2 and Bcl-xL and up-regulating the pro-apoptotic protein Bax. Metformin also markedly reduced the expression of cyclin D1 and increased the numbers of apoptotic cells in vivo, thus inhibiting

  5. Positron emission tomography agent 2-deoxy-2-[18F]fluoro-D-glucose has a therapeutic potential in breast cancer

    International Nuclear Information System (INIS)

    Novel approaches are needed for breast cancer patients in whom standard therapy is not effective. 2-Deoxy-2-[18F]fluoro-D-glucose (18F-FDG) was evaluated as a potential radiomolecular therapy agent in breast cancer animal models and, retrospectively, in patients with metastatic breast cancer. Polyoma middle T antigen (PyMT) and mouse mammary tumor virus-NeuT transgenic mice with tumors 0.5–1 cm in diameter were imaged with 18F-FDG, and tumor to liver ratios (TLRs) were calculated. The radiotoxicity of 18F-FDG administration was determined in healthy mice. PyMT mice with small (0.15–0.17 cm) and large (more than 1 cm) tumors were treated with 2–4 mCi of 18F-FDG, and control C3H/B6 mice with 3 mCi of 18F-FDG. At 10 days after treatment the tumors and control mammary glands were analyzed for the presence of apoptotic and necrotic cells. Five patients with breast cancer and metastatic disease were evaluated and standardized uptake values (SUVs) in tumors, maximum tolerated dose, and the doses to the tumor were calculated. Doses up to 5 mCi proved to be non-radiotoxic to normal organs. The 18F-FDG uptake in mouse tumors showed an average TLR of 1.6. The treatment of mice resulted in apoptotic cell death in the small tumors. Cell death through the necrotic pathway was seen in large tumors, and was accompanied by tumor fragmentation and infiltration with leukocytes. Normal mammary tissues were not damaged. A human 18F-FDG dose delivering 200 rad to the red marrow (less than 5% damage) was calculated to be 4.76 Ci for a 70 kg woman, and the dose to the tumors was calculated to be 220, 1100 and 2200 rad for SUVs of 1, 5 and 10, respectively. We have shown that positrons delivered by 18F-FDG to mammary tumors have a tumoricidal effect on cancer cells. The study of breast cancer patients suggests that the tumor and normal organ dosimetry of 18F-FDG makes it suitable for therapy of this malignancy

  6. PENETRATION ENHANCEMENT OF MEDICINAL AGENTS

    OpenAIRE

    Sharma Ganesh N.; Sanadya Jyotsana; Kaushik Avinash; Dwivedi Abha

    2012-01-01

    Many current therapeutic agents like antibiotics, ionizable and peptide drugs are impermeable or do not possess the requisite physicochemical properties for efficient transport through outer tissue barrier to attain therapeutic blood level. For this reason the delivery of such drugs through barriers is currently one of the major interests in pharmaceutical research. Penetration enhancers or promoters are agents that have no therapeutic properties of their own but can transport the sorption of...

  7. Chronic Pseudomonas aeruginosa infection definition: EuroCareCF Working Group report

    DEFF Research Database (Denmark)

    Pressler, T; Bohmova, C; Conway, S; Dumcius, S; Hjelte, L; Høiby, N; Kollberg, H; Tümmler, B; Vavrova, V

    of infection. The initial stage is characteristically followed by the gradual emergence of mucoid variants of the colonizing strains and a rise in anti-Pseudomonas antibodies. In addition to optimizing existing therapeutic strategies, effective new agents need to be identified. Studies in patients...

  8. Therapeutic Potential of HDPs as Immunomodulatory Agents

    DEFF Research Database (Denmark)

    Jenssen, Håvard; Hancock, Robert E.W.

    2010-01-01

    decline in the rate of discovery of new antimicrobial intervention strategies in parallel with an increasing incidence of multidrug-resistant pathogens; if these circumstances do not change we will continue to approach the end of the antibiotic era. Facing this dark future, scientists are considering new...

  9. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  10. The link between mitochondrial complex I and brain-derived neurotrophic factor in SH-SY5Y cells--The potential of JNX1001 as a therapeutic agent.

    Science.gov (United States)

    Kim, Helena K; Mendonça, Karina M; Howson, Patrick A; Brotchie, Jonathan M; Andreazza, Ana C

    2015-10-01

    Mitochondrial complex I, which is the first member of the electron transport chain responsible for producing ATP, can produce reactive oxygen species and oxidative stress when it becomes dysfunctional. Complex I dysfunction and oxidative stress are strongly implicated in bipolar disorder (BD), a debilitating psychiatric disease, as is decreased levels of brain derived neurotrophic factor (BDNF) found in patients with BD, which is related to complex I activity. JNX1001, a clinical trial ready brain penetrant sapogenin, increases BDNF levels in animal models. Hence, we aimed to examine if JNX1001 can prevent complex I dysfunction-induced alterations produced by rotenone treatment in human neuroblastoma cells (SH-SY5Y). Complex I dysfunction decreased cell viability and increased protein carbonylation and nitration, confirming previous findings. Complex I dysfunction also decreased intracellular and extracellular BDNF levels. JNX1001 pre-treatment prevented complex I dysfunction-induced protein carbonylation and nitration and improved cell viability at concentrations of 30 nM and 300 nM, but more robustly at 300 nM. JNX1001 was also able to prevent decreased intracellular and extracellular BDNF levels, where it produced a ten-fold increase in intracellular BDNF levels at a concentration of 300 nM. While further studies are required to examine the neuroprotective ability of JNX1001 against alterations produced by complex I defect in more complex systems, such as in animal models, the findings of this study demonstrate the potential of JNX1001 to be used as a therapeutic agent to protect against complex I dysfunction-induced alterations that may be highly relevant to BD. PMID:26164791

  11. Therapeutic Nanodevices

    Science.gov (United States)

    Lee, Stephen; Ruegsegger, Mark; Barnes, Philip; Smith, Bryan; Ferrari, Mauro

    Therapeutic nanotechnology offers minimally invasive therapies with high densities of function concentrated in small volumes, features that may reduce patient morbidity and mortality. Unlike other areas of nanotechnology, novel physical properties associated with nanoscale dimensionality are not the raison d'être of therapeutic nanotechnology, whereas the aggregation of multiple biochemical (or comparably precise) functions into controlled nanoarchitectures is. Multifunctionality is a hallmark of emerging nanotherapeutic devices, and multifunctionality can allow nanotherapeutic devices to perform multistep work processes, with each functional component contributing to one or more nanodevice subroutine such that, in aggregate, subroutines sum to a cogent work process. Cannonical nanotherapeutic subroutines include tethering (targeting) to sites of disease, dispensing measured doses of drug (or bioactive compound), detection of residual disease after therapy and communication with an external clinician/operator. Emerging nanotherapeutics thus blur the boundaries between medical devices and traditional pharmaceuticals. Assembly of therapeutic nanodevices generally exploits either (bio)material self-assembly properties or chemoselective bioconjugation techniques, or both. Given the complexity, composition, and the necessity for their tight chemical and structural definition inherent in the nature of nanotherapeutics, their cost of goods (COGs) might exceed that of (already expensive) biologics. Early therapeutic nanodevices will likely be applied to disease states which exhibit significant unmet patient need (cancer and cardiovascular disease), while application to other disease states well-served by conventional therapy may await perfection of nanotherapeutic design and assembly protocols.

  12. Feedlot therapeutics.

    Science.gov (United States)

    Apley, M D; Fajt, V R

    1998-07-01

    This article discusses therapeutic approaches to conditions commonly encountered in feedlots. Challenges discussed include bovine respiratory complex, tracheal edema, atypical interstitial pneumonia, footrot, toe abscesses, mycoplasma arthritis, cardiovascular disease, lactic acidosis, bloat, coccidiosis, central nervous system diseases, abscesses and cellulitis, pregnancy management and abortion, and ocular disease. PMID:9704416

  13. Multistage vector (MSV) therapeutics.

    Science.gov (United States)

    Wolfram, Joy; Shen, Haifa; Ferrari, Mauro

    2015-12-10

    One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836

  14. Therapeutic ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Crum, Lawrence A [Center for Industrial and Medical Ultrasound, 1013 NE 40th Street, University of Washington, Seattle, WA 98105 (United States)

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  15. Therapeutic alliance.

    Science.gov (United States)

    Fox, Valerie

    2002-01-01

    I have been very fortunate in my journey of mental illness. I respond well to medication, but I don't think that is the complete answer to living successfully with serious, persistent mental illness. I believe a person's environment is also of utmost importance, enabling the person suffering with mental illness to continually grow in life. I found early in my struggle with mental illness a psychiatrist with whom I have always had a very good rapport. Until recently I didn't know that what I have with this psychiatrist is professionally known as a therapeutic alliance. Over the years, when I need someone to talk over anything that is troubling to me, I seek my psychiatrist. A therapeutic alliance is non-judgmental; it is nourishing; and finally it is a relationship of complete trust. Perhaps persons reading this article who have never experienced this alliance will seek it. I believe it can make an insecure person secure; a frightened person less frightened; and allow a person to continue the journey of mental health with a sense of belief in oneself. PMID:12433224

  16. Therapeutic ultrasound

    International Nuclear Information System (INIS)

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques. (amum lecture)

  17. Polycyclic peptide therapeutics.

    Science.gov (United States)

    Baeriswyl, Vanessa; Heinis, Christian

    2013-03-01

    Owing to their excellent binding properties, high stability, and low off-target toxicity, polycyclic peptides are an attractive molecule format for the development of therapeutics. Currently, only a handful of polycyclic peptides are used in the clinic; examples include the antibiotic vancomycin, the anticancer drugs actinomycin D and romidepsin, and the analgesic agent ziconotide. All clinically used polycyclic peptide drugs are derived from natural sources, such as soil bacteria in the case of vancomycin, actinomycin D and romidepsin, or the venom of a fish-hunting coil snail in the case of ziconotide. Unfortunately, nature provides peptide macrocyclic ligands for only a small fraction of therapeutic targets. For the generation of ligands of targets of choice, researchers have inserted artificial binding sites into natural polycyclic peptide scaffolds, such as cystine knot proteins, using rational design or directed evolution approaches. More recently, large combinatorial libraries of genetically encoded bicyclic peptides have been generated de novo and screened by phage display. In this Minireview, the properties of existing polycyclic peptide drugs are discussed and related to their interesting molecular architectures. Furthermore, technologies that allow the development of unnatural polycyclic peptide ligands are discussed. Recent application of these technologies has generated promising results, suggesting that polycyclic peptide therapeutics could potentially be developed for a broad range of diseases. PMID:23355488

  18. Agent engineering

    CERN Document Server

    Liu, Jiming; Zhong, Ning; Wang, Patrick S P

    2001-01-01

    Agent engineering concerns the development of autonomous computational or physical entities capable of perceiving, reasoning, adapting, learning, cooperating and delegating in a dynamic environment. It is one of the most promising areas of research and development in information technology, computer science and engineering. This book addresses some of the key issues in agent engineering: What is meant by "autonomous agents"? How can we build agents with autonomy? What are the desirable capabilities of agents with respect to surviving (they will not die) and living (they will furthermore enjoy

  19. Engineering therapeutic protein disaggregases

    Science.gov (United States)

    Shorter, James

    2016-01-01

    Therapeutic agents are urgently required to cure several common and fatal neurodegenerative disorders caused by protein misfolding and aggregation, including amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Protein disaggregases that reverse protein misfolding and restore proteins to native structure, function, and localization could mitigate neurodegeneration by simultaneously reversing 1) any toxic gain of function of the misfolded form and 2) any loss of function due to misfolding. Potentiated variants of Hsp104, a hexameric AAA+ ATPase and protein disaggregase from yeast, have been engineered to robustly disaggregate misfolded proteins connected with ALS (e.g., TDP-43 and FUS) and PD (e.g., α-synuclein). However, Hsp104 has no metazoan homologue. Metazoa possess protein disaggregase systems distinct from Hsp104, including Hsp110, Hsp70, and Hsp40, as well as HtrA1, which might be harnessed to reverse deleterious protein misfolding. Nevertheless, vicissitudes of aging, environment, or genetics conspire to negate these disaggregase systems in neurodegenerative disease. Thus, engineering potentiated human protein disaggregases or isolating small-molecule enhancers of their activity could yield transformative therapeutics for ALS, PD, and AD. PMID:27255695

  20. Antibiotic Agents

    Science.gov (United States)

    ... either as public health or as non-public health antimicrobial agents. What is the difference between bacteriostats, sanitizers, disinfectants ... bacteria, however, there is considerable controversy surrounding their health benefits. The ... producing agents (Table of Antibacterials) have been used for many ...

  1. Aptamers as Therapeutics in Cardiovascular Diseases

    OpenAIRE

    Wang, Pu; Yang, Yunan; Hong, Hao; Zhang, Yin; Cai, Weibo; Fang, Dianchun

    2011-01-01

    With many advantages over other therapeutic agents such as monoclonal antibodies, aptamers have recently emerged as a novel and powerful class of ligands with excellent potential for diagnostic and therapeutic applications. Typically generated through Systematic Evolution of Ligands by EXponential enrichment (SELEX), aptamers have been selected against a wide range of targets such as proteins, phospholipids, sugars, nucleic acids, as well as whole cells. DNA/RNA aptamers are single-stranded D...

  2. Synergistic drug combinations improve therapeutic selectivity

    OpenAIRE

    Lehàr, Joseph; Krueger, Andrew S.; Avery, William; Heilbut, Adrian M; Johansen, Lisa M.; Price, E. Roydon; Rickles, Richard J.; Short, Glenn F; Staunton, Jane E.; jin, xiaowei; Lee, Margaret S.; Zimmermann, Grant R; Borisy, Alexis A.

    2009-01-01

    Prevailing drug discovery approaches focus on compounds with molecular selectivity, inhibiting disease-relevant targets over others in vitro. However in vivo, many such agents are not therapeutically selective, either because of undesirable activity at effective doses or because the biological system responds to compensate. In theory, drug combinations should permit increased control of such complex biology, but there is a common concern that therapeutic synergy will generally be mirrored by ...

  3. The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project: An open-label pragmatic randomised control trial comparing the efficacy of differing therapeutic agents for primary care detoxification from either street heroin or methadone [ISRCTN07752728

    Directory of Open Access Journals (Sweden)

    Sheard Laura

    2004-04-01

    Full Text Available Abstract Background Heroin is a synthetic opioid with an extensive illicit market leading to large numbers of people becoming addicted. Heroin users often present to community treatment services requesting detoxification and in the UK various agents are used to control symptoms of withdrawal. Dissatisfaction with methadone detoxification 8 has lead to the use of clonidine, lofexidine, buprenorphine and dihydrocodeine; however, there remains limited evaluative research. In Leeds, a city of 700,000 people in the North of England, dihydrocodeine is the detoxification agent of choice. Sublingual buprenorphine, however, is being introduced. The comparative value of these two drugs for helping people successfully and comfortably withdraw from heroin has never been compared in a randomised trial. Additionally, there is a paucity of research evaluating interventions among drug users in the primary care setting. This study seeks to address this by randomising drug users presenting in primary care to receive either dihydrocodeine or buprenorphine. Methods/design The Leeds Evaluation of Efficacy of Detoxification Study (LEEDS project is a pragmatic randomised trial which will compare the open use of buprenorphine with dihydrocodeine for illicit opiate detoxification, in the UK primary care setting. The LEEDS project will involve consenting adults and will be run in specialist general practice surgeries throughout Leeds. The primary outcome will be the results of a urine opiate screening at the end of the detoxification regimen. Adverse effects and limited data to three and six months will be acquired.

  4. The potential therapeutic targets for cervical cancer

    Directory of Open Access Journals (Sweden)

    L Priyanka Dwarampudi

    2013-01-01

    Full Text Available In case of invasive cervical carcinoma several molecular events were reported and these molecular events resulting in multiple genetic abnormalities. In order to control these tumors multiple molecular therapeutic targets are needed with different molecular mechanisms. Unfortunately, these molecular targets were in early stages of development. Because of less degree of success of conventional therapeutics for late stages of cervical cancer and lowering of prognosis of patients there is an increase in interest for the development of potential therapeutic targets for cervical cancer. This review article emphasizes the current molecular targeted agents; with special attention to estrogen receptors for human papilloma virus infected cervical cancer.

  5. Reactor-produced therapeutic radioisotopes

    International Nuclear Information System (INIS)

    The significant worldwide increase in therapeutic radioisotope applications in nuclear medicine, oncology and interventional cardiology requires the dependable production of sufficient levels of radioisotopes for these applications (Reba, 2000; J. Nucl. Med., 1998; Nuclear News, 1999; Adelstein and Manning, 1994). The issues associated with both accelerator- and reactor-production of therapeutic radioisotopes is important. Clinical applications of therapeutic radioisotopes include the use of both sealed sources and unsealed radiopharmaceutical sources. Targeted radiopharmaceutical agents include those for cancer therapy and palliation of bone pain from metastatic disease, ablation of bone marrow prior to stem cell transplantation, treatment modalities for mono and oligo- and polyarthritis, for cancer therapy (including brachytherapy) and for the inhibition of the hyperplastic response following coronary angioplasty and other interventional procedures (For example, see Volkert and Hoffman, 1999). Sealed sources involve the use of radiolabeled devices for cancer therapy (brachytherapy) and also for the inhibition of the hyperplasia which is often encountered after angioplasty, especially with the exponential increase in the use of coronary stents and stents for the peripheral vasculature and other anatomical applications. Since neutron-rich radioisotopes often decay by beta decay or decay to beta-emitting daughter radioisotopes which serve as the basis for radionuclide generator systems, reactors are expected to play an increasingly important role for the production of a large variety of therapeutic radioisotopes required for these and other developing therapeutic applications. Because of the importance of the availability of reactor-produced radioisotopes for these applications, an understanding of the contribution of neutron spectra for radioisotope production and determination of those cross sections which have not yet been established is important. This

  6. [Therapeutic use of cannabis derivatives].

    Science.gov (United States)

    Benyamina, Amine; Reynaud, Michel

    2014-02-01

    The therapeutic use of cannabis has generated a lot of interest in the past years, leading to a better understanding of its mechanisms of action. Countries like the United States and Canada have modified their laws in order to make cannabinoid use legal in the medical context. It's also the case in France now, where a recent decree was issued, authorizing the prescription of medication containing "therapeutic cannabis" (decree no. 2013-473, June 5, 2013). Cannabinoids such as dronabinol, Sativex and nabilone have been tested for the treatment of acute and chronic pain. These agents are most promising to relieve chronic pain associated with cancer, with human immunodeficiency virus infection and with multiple sclerosis. However, longer-term studies are required to determine potential long-term adverse effects and risks of misuse and addiction. PMID:24701869

  7. 组蛋白去乙酰化酶抑制剂治疗多聚谷氨酰胺病的研究进展%Histone deacetylase inhibitors as therapeutic agents for polyglutamine disorders

    Institute of Scientific and Technical Information of China (English)

    江泓; 贾丹丹; 唐北沙

    2010-01-01

    During the past few years, gene expression studies have shown that the perturbation of transcription frequently results in neuronal dysfunction in polyglutamine (PolyQ) diseases such as Huntington's disease (HD). Histone deacetylases (HDACs) act as repressors of transcription through interaction with co-repressor complexes, leading to chromatin remodelling. Aberrant interaction between PolyQ proteins and regulators of transcription could be one mechanism by which transcriptional dysregulation occurs. Here, the authors discuss the possible mechanism of transcriptional dysfunction in PolyQ disease, including the effect of histone acetyltransferases (HATs) and HDACs on pathogenesis, and the potential therapeutic pathways through which histone deacetylase inhibitors (HDACIs) might act to correct the aberrant transcription observed in HD and other PolyQ diseases.%近年研究发现基因转录异常可导致亨廷顿病(Huntington's disease,HD)等多聚谷氨酰胺(polyglutamine,PolyQ)病中的神经元功能异常.组蛋白去乙酰化酶(histone deacetylases,HDACs)作为一种转录抑制因子,可与辅阻遏物复合体相互作用导致染色质重塑,最终抑制目的基因的转录.PolyQ蛋白与基因转录调控因子异常的相互作用可能是PolyQ病转录失调的原因之一.作者就PolyQ病转录失调的可能发生机制,尤其是组蛋白乙酰转移酶(histone acetyltransferases,HATs)和HDACs在其中所起的作用,以及组蛋白去乙酰化酶抑制剂(histone deacetylases inhibitors,HDACIs)的治疗潜能等方面予以综述.

  8. Emerging therapeutic options for asthma.

    Science.gov (United States)

    Colice, Gene L

    2011-04-01

    Asthma is characterized by eosinophilic airway inflammation and elevated serum immunoglobulin E (IgE) levels. Due to these pathologic features, the foundation of asthma treatment has historically been anti-inflammatory therapy with inhaled corticosteroids (ICSs). Numerous factors in addition to IgE and eosinophils, however, likely play important roles in mediating the airway inflammatory response characteristic of asthma. ICSs are effective therapy for some patients with persistent asthma, but clinical trials have shown that even increasing doses of ICSs under carefully controlled situations does not always result in acceptable asthma control. Consequently, other classes of medications, in addition to ICSs, are recommended in those patients with more severe asthma. The class of medication most commonly used in more severe asthma, along with ICSs, is long-acting inhaled beta2-agonists, but leukotriene modifying agents and anti-IgE monoclonal antibodies may also be used. Agents such as tiotropium, a long-acting inhaled anti-muscarinic agent, and those aimed at inhibiting cytokines, such as mepoluzimab, daclizumab, and etanercept, hold promise in the treatment of asthma. Other agents under investigation include phosphodiesterase type 4 inhibitors and oligonucleotides. Bronchial thermoplasty, a nonpharmacologic option, may also be beneficial in patients with poorly controlled asthma. As our understanding of the complex pathophysiology of asthma increases, it will enable the development of novel therapeutic approaches for patients who are not responding well to traditional treatments. Although more studies are necessary to ensure the efficacy and safety of both pharmacologic and nonpharmacologic approaches, there is future promise for therapeutic advances in severe, persistent asthma. PMID:21761958

  9. Agent, autonomous

    OpenAIRE

    Luciani, Annie

    2007-01-01

    The expression autonomous agents, widely used in virtual reality, computer graphics, artificial intelligence and artificial life, corresponds to the simulation of autonomous creatures, virtual (i.e. totally computed by a program), or embodied in a physical envelope, as done in autonomous robots.

  10. American Therapeutic Recreation Association

    Science.gov (United States)

    ... Remember Me I forgot my password American Therapeutic Recreation Association Promoting Health & Wellness Services Annual Conference 2016 ... and leave your opinion Join thousands of Therapeutic Recreation specialists today Join Now Renew your membership today ...

  11. Interactions of ionic and nonionic contrast agents with thrombolytic agents

    International Nuclear Information System (INIS)

    Both the ionic and nonionic intravascular contrast media have been used before and after the administration of thrombolytic agents to evaluate clot lysis during angioplasty and the treatment of myocardial infarction. In experimental animal models, the authors found that the clot lytic efficacy of streptokinase, streptokinase-plasminogen complex, and tissue plasminogen activator (t-PA) is markedly augmented if these agents are administered within 1 hour after the angiographic producers. Furthermore, contrast agents injected after the administration of t-Pa exhibit a synergistic action. In stimulated models administration of one ionic contrast medium (Angiovist, Berlex, Wayne, NJ) and two nonionic contrast agents (Isovue-370, Squibb Diagnostics, New Brunswick, NJ; Omnipaque-350, Winthrop, NY) 15 minutes before the administration of t-PA resulted in marked enhancement of the lytic activity. Although the mechanism of this interaction is unknown at this time, it should be taken into consideration in the treatment of patients with myocardial infarction, in whom contrast agents are continually used to evaluate the therapeutic lysis. Furthermore, this interaction may be partly related to the therapeutic efficacy and/or hemorrhagic actions observed

  12. Behavior of platelets stained by 5,6-CF-encapsulated PEGylated liposomes after laser irradiation of vessel wall: an in-vivo model for studying site-selective delivery of diagnostic or therapeutic agents

    Science.gov (United States)

    Mordon, Serge R.; Begu, Sylvie; Buys, Bruno; Tourne-Peteilh, Corine; Devoisselle, Jean-Marie

    2001-05-01

    Vascular endothelium serves as an extensive interface between circulating blood and various tissues and organs of the body. As such, it offers an accessible target for blood-borne pharmacological and genetic manipulations that can mediate both local and systemic effects. Thus, targeting of liposomes to activated vascular endothelial cells may provide a strategy for site-selective delivery in the vascular system with broad therapeutic applicability. This study aimed to evaluate an intravital fluorescence imaging technique to visualize in-situ and in real-time the activation of platelets after staining by 5,6-CF- encapsulated PEGylated liposomes injected intravenously. The study was performed on skin by using a dorsal skin-fold chamber implanted in golden hamsters using intravital microscopy. The skin micro circulation was observed with an intravital microscope (using x25 and x40 magnification) fitted with a Xenon light source and an epi-fluorescence assembly. An ultra-high sensitivity video-camera mounted on the microscope projected the image onto a monitor, and the images were recorded for play-back analysis with a digital video cassette recorder. An inflammatory response was induced by an Argon laser emitting at 514.5nm. The 80micrometers laser beam was focused on a vessel and its position was controlled with the microscope imaging system, it was possible to see individual platelets flowing in blood vessels. As liposomes were labeled with a fluorescent probe which was hydrophilic (located in the aqueous phase), the fluorescence of platelets was due only to the uptake of liposomes. After laser irradiation, platelets activation at sites of vascular injury was obtained. Tethering, translocation of some platelets inside the irradiated zone were clearly seen. At last, detachment and extravasation of platelets were observed. A perivascular fluorescence confirmed that platelets migrated across the basal lamina into the dermal connective tissue. In conclusion, staining of

  13. Therapeutics in Huntington's Disease.

    Science.gov (United States)

    Killoran, Annie; Biglan, Kevin M

    2012-02-01

    OPINION STATEMENT: There is no specific treatment for Huntington's disease (HD). Its many symptoms of motor, psychiatric, and cognitive deterioration are managed with symptomatic relief, rehabilitation, and support. The only drug approved by the US Food and Drug Administration (FDA) for the treatment of HD is an antichoreic agent, tetrabenazine, but this drug is used sparingly because of uneasiness regarding its propensity to cause depression and suicidality in this population, which is already at risk for these complications. Neuroleptics are still first-line treatments for chorea accompanied by comorbid depression and/or behavioral or psychotic symptoms, as is often the case. Psychiatric features, which have a significant impact on a patient's professional and personal life, often become the major focus of management. In addition to neuroleptics, commonly used medications include antidepressants, mood stabilizers, anxiolytics, and psychostimulants. In contrast, few treatment options are available for cognitive impairment in HD; this remains an important and largely unmet therapeutic need. HD patients typically lack insight into their disease manifestations, failing to recognize their need for treatment, and possibly even arguing against it. Multipurpose medications are employed advantageously to simplify the medication regimen, so as to facilitate compliance and not overwhelm the patient. For example, haloperidol can be prescribed for a patient with chorea, agitation, and anorexia, rather than targeting each symptom with a different drug. This approach also limits the potential for adverse effects, which can be difficult to distinguish from the features of the disease itself. With HD's complexity, it is best managed with a multidisciplinary approach that includes a movement disorders specialist, a genetic counselor, a mental health professional, a physical therapist, and a social worker for support and coordination of services. As the disease progresses, there

  14. Therapeutic Tools in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Christopher J Hoimes

    2009-03-01

    Full Text Available Pancreatic cancer is the fourth leading cause of cancer death in the United States and has a lower survival rate than other digestive tract tumors. It remains a therapeutic challenge with limited active agents. Honing our current understanding of markers of toxicity and response, and individualizing treatment with the prognostic and therapeutic tools available are important to make a worthy impact on a patient’s course. The authors summarize selected abstracts from the ASCO Gastrointestinal Cancers Symposium, San Francisco, CA, USA, January 15-17, 2009. The Symposium featured pancreatic cancer in 84 research abstracts, of which, seven are reviewed that focus on markers of toxicity: cytidine deaminase (Abstract #151 and haptogloin (Abstract #167 as markers of gemcitabine toxicity; markers of response: use of PET scan for prognosis (Abstract #157, and correlations with CA 19-9 to postchemo-radiation resectability (Abstract #215 and time to progression (Abstract #160; and individualized applications: characterizing the phenotypic similarities between a patient tumor and the direct xenograft (Abstract #154 and a report about the poor outcome of patients with ascites (Abstract #220. Validated clinical tools that can assist in managing patients through the narrow therapeutic window are needed.

  15. Avian Diagnostic and Therapeutic Antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, David Sherman [UND SMHS

    2012-12-31

    A number of infectious agents have the potential of causing significant clinical symptomology and even death, but dispite this, the number of incidence remain below the level that supports producing a vaccine. Therapeutic antibodies provide a viable treatment option for many of these diseases. We proposed that antibodies derived from West Nile Virus (WNV) immunized geese would be able to treat WNV infection in mammals and potential humans. We demonstrated that WNV specific goose antibodies are indeed successful in treating WNV infection both prophylactically and therapeutically in a golden hamster model. We demonstrated that the goose derived antibodies are non-reactogenic, i.e. do not cause an inflammatory response with multiple exposures in mammals. We also developed both a specific pathogen free facility to house the geese during the antibody production phase and a patent-pending purification process to purify the antibodies to greater than 99% purity. Therefore, the success of these study will allow a cost effective rapidly producible therapeutic toward clinical testing with the necessary infrastructure and processes developed and in place.

  16. Concentração de sódio e glicose em soro de reidratação oral preparado por Agentes Comunitários de Saúde Sodium and glucose concentration in therapeutical solution for oral rehydration prepared by Community Health Agents

    OpenAIRE

    Liliane Fernandes do Carmo; Lilian Maciel Rosa Pereira; Camilo Adalton Mariano da Silva; Aureliano Claret da Cunha; Kesia Diego Quintaes

    2012-01-01

    A diarreia infantil é importante causa de morbimortalidade, sendo indicativo para terapia de reidratação oral (TRO). Este estudo objetivou avaliar o teor de sódio e glicose em soro de reidratação oral preparado por Agentes Comunitários de Saúde (ACS) que atuam em Unidades Básicas de Saúde (UBS), caracterizando o perfil e o conhecimento destes sobre a TRO. Após responderem questionário com informações profissionais e sobre a TRO, os ACS a prepararam por três métodos. O teor de glicose e de sód...

  17. Antifungal agents.

    Science.gov (United States)

    Ryder, N S

    1999-12-01

    At this year's ICAAC Meeting, new data on approximately 20 different antifungal agents were presented, while no new agents were disclosed. Drugs in late development include the triazoles, voriconazole (Pfizer Ltd) and Sch-56592 (Schering-Plough Corp), and the echinocandins, caspofungin (Merck & Co Inc) and FK-463 (Fujisawa Pharmaceutical Co Ltd). In contrast to previous years, presentations on these and earlier developmental compounds were relatively modest in scope, with few significant new data. Little new information appeared on the most recent novel class of agents, the sordarins (Glaxo Wellcome plc). Early clinical results were presented for FK-463, showing acceptable tolerability and dose-dependent efficacy in AIDS-associated esophageal candidiasis. A new liposomal formulation of nystatin (Nyotran; Aronex Pharmaceuticals Inc) was shown to be equivalent to conventional amphotericin B in empiric therapy of presumed fungal infection in neutropenic patients, but with reduced toxicity. Intravenous itraconazole (Janssen Pharmaceutica NV) was an effective prophylactic therapy in invasive pulmonary aspergillosis, while oral itraconazole was discussed as a treatment for fungal infection in heart and liver transplant patients. The allylamine compound, terbinafine (Novartis AG), showed good clinical efficacy against fungal mycetoma, a serious tropical infection. A major highlight was the first presentation of inhibitors of fungal efflux pumps as a strategy for overcoming resistance. MC-510027 (milbemycin alpha-9; Microcide Pharmaceuticals Inc) and its derivatives, potentiated the antifungal activity of triazoles and terbinafine in a number of Candida spp. Another pump inhibitor, MC-005172 (Microcide Pharmaceuticals Inc) showed in vivo potentiation of fluconazole in a mouse kidney infection model. Microcide Pharmaceuticals Inc also presented inhibitors of bacterial efflux pumps. PMID:16113946

  18. Trading Agents

    CERN Document Server

    Wellman, Michael

    2011-01-01

    Automated trading in electronic markets is one of the most common and consequential applications of autonomous software agents. Design of effective trading strategies requires thorough understanding of how market mechanisms operate, and appreciation of strategic issues that commonly manifest in trading scenarios. Drawing on research in auction theory and artificial intelligence, this book presents core principles of strategic reasoning that apply to market situations. The author illustrates trading strategy choices through examples of concrete market environments, such as eBay, as well as abst

  19. Therapeutic potential of biosimilars in dermatology

    Directory of Open Access Journals (Sweden)

    Vishal Gupta

    2015-01-01

    Full Text Available The introduction of biologic therapy has revolutionized the treatment of many chronic diseases, including several dermatological disorders. Biological agents promise to satisfy medical needs previously unmet by conventional medicines. Unfortunately, these agents are expensive and out of reach for the majority of patients who need them. Biosimilars are copies of the innovator biological agents and represent an important advance in the field of biological therapeutics. Although they are similar to the original biologic, differences in terms of structure, efficacy, safety and immunogenicity remain a concern. Thus, biosimilars cannot be regarded as bio-generics. Awareness of the key differences between a biosimilar and its reference biological agent is essential for optimal treatment and safety of patients. The increasing availability of biosimilars provides patients and doctors with less expensive alternatives and increases the accessibility of biologic therapy to needy patients. In this review, we discuss the concept of biosimilars, the need for appropriate regulatory pathways and their current status in dermatology.

  20. MORBIDITY AGENTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    Shrivastava Neelesh

    2011-09-01

    Full Text Available This paper discuss on clinical representation of morbid jealousy which often termed delusional jealousy or ‘Othello Syndrome’ is a psychiatric condition where a lover believes against all reason and their beloved is being sexually unfaithful. Patients will be preoccupied with their partner’s perceived lack of sexual fidelity and will often behave in an unacceptable or extreme way as they endeavor to prove their ideas. Misuse of any psychomotor is an important association cause morbidity jealousy agents, like CNS stimulants that release the catecholamine, particularly dopamine, from pre synaptic terminals substance should be treated as a priority. Where higher levels of violence are reported Sildenafil may be useful as a diagnostic as well as therapeutic test in such cases .Many studies have shown an association between high alcohol consumption and developing morbid jealousy. Amphetamine-induced psychosis has been extensively studied because of its close resemblance to schizophrenia.

  1. Comparative evaluation of therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Radionuclide therapy employing unsealed radiotherapeutic agents has emerged as an important tool for cancer management. The development of therapeutic radiopharmaceuticals based on different types of carrier molecule and a variety of radioisotopes is being actively pursued worldwide. There have been many significant advances in this field, and many of the technical problems involved in labelling biomolecules with a variety of radionuclides have been solved. However, the assessment of the relative effectiveness of different radiopharmaceuticals for cancer therapy is a difficult task owing to the large number of variables that must be considered, some related to the biological carrier and others to the radioisotope. Comparing the therapeutic efficacy in patients is not feasible in most cases for ethical and regulatory reasons. Hence, it is important to develop laboratory methods that can be used for reliable and efficient comparative evaluation of promising therapeutic radiopharmaceuticals. The IAEA has organized several coordinated research projects (CRPs) in the field of radiopharmaceuticals that have helped Member States to acquire technologies for the production of useful radiopharmaceuticals. In one such CRP on techniques for labelling biomolecules for targeted therapy, conducted from 1998 to 2001, the participants developed several protocols and standard operating procedures for labelling peptides and antibodies with therapeutic radioisotopes. During the course of the CRP, it was recognized that successful development of therapeutic radiopharmaceuticals will require in vitro biological assays as well as appropriate tumour models for carrying out biodistribution studies of the products in order to collect data for preclinical studies. Two meetings, held in 1999 and 2001, recommended the organization of a CRP for the development of laboratory methods for comparative evaluation of therapeutic radiopharmaceuticals. Fifteen countries - Brazil, Cuba, the Czech

  2. Radioprotective Agents

    Directory of Open Access Journals (Sweden)

    Ilker Kelle

    2008-01-01

    Full Text Available Since1949, a great deal of research has been carried out on the radioprotective activity of various chemical substances. Thiol compounds, compounds which contain –SH radical, different classes of pharmacological agents and other compounds such as vitamine C and WR-2721 have been shown to reduce mortality when administered prior to exposure to a lethal dose of radiation. Recently, honey bee venom as well as that of its components melittin and histamine have shown to be valuable in reduction of radiation-induced damage and also provide prophylactic alternative treatment for serious side effects related with radiotherapy. It has been suggested that the radioprotective activity of bee venom components is related with the stimulation of the hematopoetic system.

  3. APPLICATION OF STEM CELL THERAPEUTIC AGENTS TO CONTROL CRITICAL DISEASE

    Directory of Open Access Journals (Sweden)

    Sonam Sharma

    2012-01-01

    Full Text Available Stem cell research has been hailed for the potential to revolutionize the future of medicine with the ability to regenerate damaged and diseased organs. On the other hand, stem cell research has been highly controversial due to the ethical issues concerned with the culture and use of stem cells derived from human embryos. This article presents an overview of what stem cells are, what roles they play in normal processes such as development and cancer, and how stem cells could have the potential to treat incurable diseases. Ethical issues are not the subject of this review. In addition to offering unprecedented hope in treating many debilitating diseases, stem cells have advanced our understanding of basic biological processes. This review looks at two major aspects of stem cells. Three processes in which stem cells play a central role in an organism, development, repair of damaged tissue, and cancer resulting from stem cell division going awry. II. Research and clinical applications of cultured stem cells: this includes the types of stem cells used, their characteristics, and the uses of stem cells in studying biological processes, drug development and stem cell therapy; heart disease, diabetes and Parkinson's disease are used as examples.

  4. The Chemistry of Curcumin: From Extraction to Therapeutic Agent

    Directory of Open Access Journals (Sweden)

    Kavirayani Indira Priyadarsini

    2014-12-01

    Full Text Available Curcumin, a pigment from turmeric, is one of the very few promising natural products that has been extensively investigated by researchers from both the biological and chemical point of view. While there are several reviews on the biological and pharmacological effects of curcumin, chemistry reviews are comparatively scarcer. In this article, an overview of different aspects of the unique chemistry research on curcumin will be discussed. These include methods for the extraction from turmeric, laboratory synthesis methods, chemical and photochemical degradation and the chemistry behind its metabolism. Additionally other chemical reactions that have biological relevance like nucleophilic addition reactions, and metal chelation will be discussed. Recent advances in the preparation of new curcumin nanoconjugates with metal and metal oxide nanoparticles will also be mentioned. Directions for future investigations to be undertaken in the chemistry of curcumin have also been suggested.

  5. APPLICATION OF STEM CELL THERAPEUTIC AGENTS TO CONTROL CRITICAL DISEASE

    OpenAIRE

    Sonam Sharma

    2012-01-01

    Stem cell research has been hailed for the potential to revolutionize the future of medicine with the ability to regenerate damaged and diseased organs. On the other hand, stem cell research has been highly controversial due to the ethical issues concerned with the culture and use of stem cells derived from human embryos. This article presents an overview of what stem cells are, what roles they play in normal processes such as development and cancer, and how stem cells could have the potentia...

  6. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    Directory of Open Access Journals (Sweden)

    Palaniselvam Kuppusamy

    2014-06-01

    Full Text Available Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.

  7. Bromocriptine as a new therapeutic agent for peripartum cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Sandeep Chopra

    2012-01-01

    Full Text Available Peripartum cardiomyopathy (PPCM is a poorly understood, rare disorder in which left ventricular systolic dysfunction and symptoms of heart failure occur between the last month of pregnancy and the first 5 months postpartum. Recent data suggest that uncontrolled oxidative stress leads to the activation of the prolactin cleaving enzyme cathepsin D that in turn leads to an increase in a cleaved 16 kDa prolactin. This cleaved form that has an angiostatic and proapoptotic role appears to drive the disease by adversely impacting the endothelium and cardiomyocyte. Bromocriptine that reduces the prolactin production by dopamine agonist actions may improve outcomes in patients with peripartum cardiomyopathy by eliminating the cleaved form of prolactin despite the activation of the cleaving enzyme. In limited case reports and proof of concept studies use of bromocriptine in the early stages has been shown to improve outcomes in patients with peripartum cardiomyopathy. However, larger randomized control study is still awaited.

  8. Ethnobotany and the identification of therapeutic agents from the rainforest.

    Science.gov (United States)

    Balick, M J

    1990-01-01

    Many rainforest plant species, including trees and herbaceous plants, are employed as medicines by indigenous people. In much of the American tropics, locally harvested herbal medicines are used for a significant portion of the primary health care, in both rural and urban areas. An experienced curandero or herbal healer is familiar with those species with marked biological activity, which are often classified as 'powerful plants'. Examples are given from studies in progress since 1987 in Belize, Central America. The Institute of Economic Botany of The New York Botanical Garden is collaborating with the National Cancer Institute in Bethesda, Maryland (USA) in the search for higher plants with anti-AIDS and anticancer activity. Several strategies are cited for identification of promising leads from among the circa 110,000 species of higher plants that are present in the neotropics, the focus of this search. Recommendations are offered for the design of future efforts to identify plant leads for pharmaceutical testing. PMID:2086039

  9. Microtubule-targeting agents: a therapeutic strategy in neurodegenerative diseases

    OpenAIRE

    Apóstolo, Nuno Miguel Ferreira Morais

    2014-01-01

    A presença de microtúbulos instáveis é um fenómeno recorrente em várias doenças neurodegenerativas. Alterações anormais, de origem genética ou ambiental, induzidas na tubulina ou em moléculas relacionadas com os microtúbulos tais como MAPs, proteínas motoras, +TIPs dos microtúbulos ou mesmo enzimas responsáveis por cortar os microtúbulos, estão associadas com a reduzida estabilidade e hiperdinâmica dos microtúbulos em neurónios que degeneram. Os microtúbulos constituem grande parte das estrut...

  10. Tackling obesity: new therapeutic agents for assisted weight loss

    OpenAIRE

    JG Karam; SI McFarlane

    2010-01-01

    JG Karam1, SI McFarlane21SUNY-Downstate-Kings County Hospital, Brooklyn, NY, USA, Maimonides Medical Center, Brooklyn, NY, USA; 2Division of Endocrinology, College of Medicine, State University of New York-Downstate Medical Center, New York, USAAbstract: The pandemic of overweight and obesity continues to rise in an alarming rate in western countries and around the globe representing a major public health challenge in desperate need for new strategies tackling obesity. In the United States ne...

  11. Nutraceuticals as therapeutic agents for holistic treatment of diabetes

    Directory of Open Access Journals (Sweden)

    Ashish Baldi

    2013-01-01

    Full Text Available Nutraceuticals is one of the promising approaches for prevention and treatment of a large number of ailments. Nutrients, herbals and dietary supplements are major constituents of nutraceuticals, which make it instrumental in maintaining health, acting against various diseased conditions and thus to promote the quality of life. Diabetes mellitus is one of them. It is a multi-factorial metabolic disorder reflected by high blood sugar/glucose level. In spite of significant development in drug discovery to treat this disease, extensive efforts are on for finding a holistic approach by combining compounds from natural and synthetic drugs. Botanicals, vitamins, anti-oxidants, minerals, amino acids and fatty acids, collectively referred as ′nutraceuticals′, are important sources of new therapies for type 2 diabetes and insulin resistance. This review summarises nutraceuticals with proven anti-diabetic potential in pre-clinical and clinical studies and explores the possibility of a new approach, ′polypathy′ for synergistic management of diabetes.

  12. Flavonoids as Chemopreventive and Therapeutic Agents Against Lung Cancer

    Directory of Open Access Journals (Sweden)

    Albert Cabrera

    2014-05-01

    Full Text Available The objective of the present review is to study the relationship between flavonoids and lung cancer, proposing that their regular consumption in Western diets could be beneficial for protecting patients against lung cancer. An extensive search of the scientific literature was performed in the following electronic specialized databases (PubMed central (PMC-NBCI, Elsevier Journal, SciELO Spain, Scirus, Science Direct, including studies in animals, cells, and humans, in order to establish the effect of flavonoids in the prevention and development of lung cancer. Although in vitro and animal studies show the potential ability of flavonoids to act against different types of cancers, especially against lung cancers, the diverse results reported within epidemiological studies, together with the lack of experiments in humans, are the major factors in limiting making dietary recommendations based on scientific evidence for the management of patients with lung cancer. Therefore, the authors of the present study recommend following the dietary health practice guidelines which promotes the consumption of food enriched in flavonoids and reflects the current state of knowledge of an effective and appropriate diet in lung cancer patients.Erratum in: Rev Esp Nutr Hum Diet. 2013;17(2:91-92Link: http://www.renhyd.org/index.php/renhyd/article/view/6/17

  13. Orexin receptor antagonists as therapeutic agents for insomnia

    OpenAIRE

    Ana Clementina Equihua; Alberto K De La Herrán-Arita; RENE eDRUCKER-COLIN

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. The use of thes...

  14. Orexin receptor antagonists as therapeutic agents for insomnia

    OpenAIRE

    Equihua, Ana C.; Alberto K De La Herrán-Arita; Drucker-Colin, Rene

    2013-01-01

    Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning. Currently, treatment for insomnia involves a combination of cognitive behavioral therapy (CBTi) and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine (BZD) receptor agonist drugs (GABAA receptor), although concerns persist regarding their safety and their limited efficacy. T...

  15. Nutraceuticals as therapeutic agents for holistic treatment of diabetes

    OpenAIRE

    Ashish Baldi; Naveen Choudhary; Sumit Kumar

    2013-01-01

    Nutraceuticals is one of the promising approaches for prevention and treatment of a large number of ailments. Nutrients, herbals and dietary supplements are major constituents of nutraceuticals, which make it instrumental in maintaining health, acting against various diseased conditions and thus to promote the quality of life. Diabetes mellitus is one of them. It is a multi-factorial metabolic disorder reflected by high blood sugar/glucose level. In spite of significant development in drug di...

  16. Current therapeutic agents and anesthetic considerations for diabetes mellitus

    OpenAIRE

    Kang, Hyoseok

    2012-01-01

    As the incidence of diabetes mellitus (DM) continues to increase worldwide, more diabetic patients will be presented for surgery and anesthesia. This increase of DM is a consequence of the rise in new patients of type 2 DM, and is likely attributable to rapid economic development, improved living standards, aging population, obesity, and lack of exercise. The primary goal of management in DM is to delay, or prevent the macro- and microvascular complications by achieving good glycemic control....

  17. Nutraceuticals as potential therapeutic agents for colon cancer: a review

    OpenAIRE

    Palaniselvam Kuppusamy; Yusoff, Mashitah M.; Gaanty Pragas Maniam; Solachuddin Jauhari Arief Ichwan; Ilavenil Soundharrajan; Natanamurugaraj Govindan

    2014-01-01

    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment o...

  18. Resveratrol as a Therapeutic Agent for Alzheimer's Disease

    OpenAIRE

    2014-01-01

    Alzheimer’s disease (AD) is the most common cause of dementia, but there is no effective therapy till now. The pathogenic mechanisms of AD are considerably complex, including Aβ accumulation, tau protein phosphorylation, oxidative stress, and inflammation. Exactly, resveratrol, a polyphenol in red wine and many plants, is indicated to show the neuroprotective effect on mechanisms mostly above. Recent years, there are numerous researches about resveratrol acting on AD in many models, both in v...

  19. Long-circulating bacteriophage as antibacterial agents.

    OpenAIRE

    Merril, C.R.; B. Biswas; Carlton, R; Jensen, N C; Creed, G J; Zullo, S; Adhya, S

    1996-01-01

    The increased prevalence of multidrug-resistant bacterial pathogens motivated us to attempt to enhance the therapeutic efficacy of bacteriophages. The therapeutic application of phages as antibacterial agents was impeded by several factors: (i) the failure to recognize the relatively narrow host range of phages; (ii) the presence of toxins in crude phage lysates; and (iii) a lack of appreciation for the capacity of mammalian host defense systems, particularly the organs of the reticuloendothe...

  20. Concentração de sódio e glicose em soro de reidratação oral preparado por Agentes Comunitários de Saúde Sodium and glucose concentration in therapeutical solution for oral rehydration prepared by Community Health Agents

    Directory of Open Access Journals (Sweden)

    Liliane Fernandes do Carmo

    2012-02-01

    Full Text Available A diarreia infantil é importante causa de morbimortalidade, sendo indicativo para terapia de reidratação oral (TRO. Este estudo objetivou avaliar o teor de sódio e glicose em soro de reidratação oral preparado por Agentes Comunitários de Saúde (ACS que atuam em Unidades Básicas de Saúde (UBS, caracterizando o perfil e o conhecimento destes sobre a TRO. Após responderem questionário com informações profissionais e sobre a TRO, os ACS a prepararam por três métodos. O teor de glicose e de sódio das TRO foi determinado e comparado ao proposto pela OMS. Na análise estatística foram utilizados ANOVA, Tukey e odds ratio. Participaram do estudo 52 ACS, majoritariamente mulheres e com ensino médio completo (90,4%. A adequação da TRO foi de 3,9; 9,8 e 28,9% para a colher caseira, colher medida e punhado pitada, respectivamente. O preparo da TRO com a colher caseira resultou em 88,0% das amostras com teor de sódio perigoso à saúde (>101 mmol/L. Entre os ACS, 38,5% tinham menos de 2 anos de trabalho, com risco 4,8 vezes maior de preparar TRO inadequada em sódio. Os ACS referiram indicar a TRO no tratamento da diarreia infantil, desconhecendo efeitos colaterais do preparo inadequado. A composição da TRO produzida pelos ACS foi inadequada em todos os métodos. É recomendável treinamento dos ACS no preparo da TRO.Infant Diarrhea is a major cause of morbidity and mortality in children and oral rehydration therapy (ORT is required. This study evaluates the composition of ORT prepared by Community Health Agents (CHAs working in Basic Health Units, assessing their profile and knowledge about ORT. After the CHAs answer specific questions, they are invited to prepare ORT using three methods. Glucose and sodium levels were then quantified and compared with WHO recommendations. ANOVA, Tukey and odds ratio were used for statistical analysis. 52 CHAs participated, mainly females, and 90.4% with full high school education. The adequacy of

  1. Therapeutic Recreation Practicum Manual.

    Science.gov (United States)

    Schneegas, Kay

    This manual provides information on the practicum program offered by Moraine Valley Community College (MVCC) for students in its therapeutic recreation program. Sections I and II outline the rationale and goals for providing practical, on-the-job work experiences for therapeutic recreation students. Section III specifies MVCC's responsibilities…

  2. Chicanoizing the Therapeutic Community

    Science.gov (United States)

    Aron, William S.; And Others

    1974-01-01

    Focusing on the drug addiction problem and its antecedent conditions in a Chicano population, the article examines several therapeutic interventions suggested by these conditions and indicates how they might be incorporated into a drug addiction Therapeutic Community treatment program designed to meet the needs of Chicano drug addicts. (Author/NQ)

  3. Cytokines and therapeutic oligonucleotides.

    Science.gov (United States)

    Hartmann, G; Bidlingmaier, M; Eigler, A; Hacker, U; Endres, S

    1997-12-01

    Therapeutic oligonucleotides - short strands of synthetic nucleic acids - encompass antisense and aptamer oligonucleotides. Antisense oligonucleotides are designed to bind to target RNA by complementary base pairing and to inhibit translation of the target protein. Antisense oligonucleotides enable specific inhibition of cytokine synthesis. In contrast, aptamer oligonucleotides are able to bind directly to specific proteins. This binding depends on the sequence of the oligonucleotide. Aptamer oligonucleotides with CpG motifs can exert strong immunostimulatory effects. Both kinds of therapeutic oligonucleotides - antisense and aptamer oligonucleotides - provide promising tools to modulate immunological functions. Recently, therapeutic oligonucleotides have moved towards clinical application. An antisense oligonucleotide directed against the proinflammatory intercellular adhesion molecule 1 (ICAM-1) is currently being tested in clinical trials for therapy of inflammatory disease. Immunostimulatory aptamer oligonucleotides are in preclinical development for immunotherapy. In the present review we summarize the application of therapeutic oligonucleotides to modulate immunological functions. We include technological aspects as well as current therapeutic concepts and clinical studies. PMID:9740353

  4. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  5. Therapeutic strategies targeting cancer stem cells.

    Science.gov (United States)

    Ning, Xiaoyan; Shu, Jianchang; Du, Yiqi; Ben, Qiwen; Li, Zhaoshen

    2013-04-01

    Increasing studies have demonstrated a small proportion of cancer stem cells (CSCs) exist in the cancer cell population. CSCs have powerful self-renewal capacity and tumor-initiating ability and are resistant to chemotherapy and radiation. Conventional anticancer therapies kill the rapidly proliferating bulk cancer cells but spare the relatively quiescent CSCs, which cause cancer recurrence. So it is necessary to develop therapeutic strategies acting specifically on CSCs. In recent years, studies have shown that therapeutic agents such as metformin, salinomycin, DECA-14, rapamycin, oncostatin M (OSM), some natural compounds, oncolytic viruses, microRNAs, cell signaling pathway inhibitors, TNF-related apoptosis inducing ligand (TRAIL), interferon (IFN), telomerase inhibitors, all-trans retinoic acid (ATRA) and monoclonal antibodies can suppress the self-renewal of CSCs in vitro and in vivo. A combination of these agents and conventional chemotherapy drugs can significantly inhibit tumor growth, metastasis and recurrence. These strategies targeting CSCs may bring new hopes to cancer therapy. PMID:23358473

  6. Labelling and biological evaluation of therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    The paper describes research aimed at developing radiolabelled agents using 'bone seeking' molecules and peptides as the target specific moieties. For the study of bone seeking molecules, hydroxyethylene diphosphonate (HEDP) and dimercaptosuccinic acid (DMSA) (V) were labelled with 188Re. For peptide radiolabelling, 99mTc and 111In were used as the diagnostic radioisotopes, and 90Y was used as the therapeutic radioisotope. The labelling yielded agents with high radiochemical purity. The labelled compounds - 188Re- HEDP, 188Re-DMSA(V), 111In-DOTATOC, 99mTc-HYNIC-TATE, 90Y-DOTATOC and 90Y-DOTATATE - were evaluated in mice, rats and healthy beagle dogs. All compounds were also tested in dogs with spontaneous tumours as pathological models. Biodistribution studies showed that the molecules accumulated in their respective target cells. Spontaneous tumours in dogs offered a unique opportunity to investigate the diagnostic utility and therapeutic behaviour of the radiopharmaceuticals. (author)

  7. An agent framework for dynamic agent retraining: Agent academy

    OpenAIRE

    Mitkas, P.; A. Symeonidis; Kechagias, D.; Athanasiadis, I.N.; Laleci, G.; KURT, G.; Kabak, Y.; Acar, A.; Dogac, A.

    2004-01-01

    Agent Academy (AA) aims to develop a multi-agent society that can train new agents for specific or general tasks, while constantly retraining existing agents in a recursive mode. The system is based on collecting information both from the environment and the behaviors of the acting agents and their related successes/failures to generate a body of data, stored in the Agent Use Repository, which is mined by the Data Miner module, in order to generate useful knowledge about the application domai...

  8. Scope of nanotechnology in ovarian cancer therapeutics

    OpenAIRE

    Yallapu Murali M; Jaggi Meena; Chauhan Subhash C

    2010-01-01

    Abstract This review describes the use of polymer micelle nanotechnology based chemotherapies for ovarian cancer. While various chemotherapeutic agents can be utilized to improve the survival rate of patients with ovarian cancer, their distribution throughout the entire body results in high normal organ toxicity. Polymer micelle nanotechnology aims to improve the therapeutic efficacy of anti-cancer drugs while minimizing the side effects. Herein, different types of polymer micelle technology ...

  9. Prophylactic and therapeutic vaccines for obesity

    OpenAIRE

    Na, Ha-Na; Kim, Hun; Nam, Jae-Hwan

    2013-01-01

    Chronic diseases such as obesity and diabetes are major causes of death and disability throughout the world. Many causes are known to trigger these chronic diseases, and infectious agents such as viruses are also pathological factors. In particular, it is considered that adenovirus 36 infections may be associated with obesity. If this is the case, a vaccine against adenovirus 36 may be a form of prophylaxis to combat obesity. Other types of therapeutic vaccines to combat obesity are also bein...

  10. Pandemic and Seasonal Influenza: Therapeutic Challenges

    OpenAIRE

    Memoli, Matthew J.; Morens, David M.; Jeffery K Taubenberger

    2008-01-01

    Influenza A viruses cause significant morbidity and mortality annually, and the threat of a pandemic underscores the need for new therapeutic strategies. Here we briefly discuss novel antiviral agents under investigation, the limitations of current antiviral therapy and stress the importance of secondary bacterial infections in seasonal and pandemic influenza. Additionally, the lack of new antibiotics available to treat increasingly drug resistant organisms such as methicillin-resistant Staph...

  11. Seaweed extracts as antimicrobial agents in aquaculture

    OpenAIRE

    Vatsos, Ioannis N.; Rebours, Celine

    2014-01-01

    In the last 20 years, there has been an increasing interest in using various seaweed extracts as prophylactic and/or therapeutic agents in aquaculture. Up until now, most studies on the direct antimicrobial effect of seaweeds have taken place in various parts of Asia, particularly in India. All groups of seaweeds exhibit significant antimicrobial properties against many infectious agents of fish and shrimp, but the genera that appear to exhibit a broader range of antibacterial proper...

  12. Antiviral Polymer Therapeutics

    DEFF Research Database (Denmark)

    Smith, Anton Allen Abbotsford

    2014-01-01

    The field of drug delivery is in essence an exercise in engineered pharmacokinetics. Methods of doing so have been developed through the introduction of a vehicle carrying the drug, either by encapsulation or covalent attachment. The emergence of polymer therapeutics in anticancer therapy has...... the examples of polymer therapeutics being applied as an antiviral treatment are few and far in-between. This work aims to explore antiviral therapeutics, specifically in context of hepatitis virus C (HCV) and HIV. The current treatment of hepatitis C consists of a combination of drugs, of which ribavirin...

  13. Therapeutic embolization in pulmonary hemorrhage

    International Nuclear Information System (INIS)

    The author's purpose was to evaluate the efficacy of therapeutic embolization in pulmonary hemorrage performed with fibrin foam (Spongostan) suspended in sclerosing agents (hidroxy-poliethoxy-dodecano 3%, or natrium morruate 5%), and electrocoagulation (Bitrol, spa) as an alternative to surgery. Twenty patients were embolized: 17 with fibrin foam and sclerosing agents only, 2 with the addition of electrocoagulation and a Gianturco coil respectively, and 1 with electrocoagulation alone. The follow-up ranges from 3 to 42 months (average 22). A patient affected by aspergilloma died a few days after hemoptysis. The patient treated by electrocoagulation alone suffers from periodical hematic expectoration (spitting). The remaining 18 patients have not shown any pathological findings. In 2 cases the arterial occlusion was confirmed by angiography, while in 1 case partial arterial recanalization was observed. Such a finding was due to the vessel dimensions and to hyperflux values. In similar cases, obstruction must be completed different techniques (e.g. Gianturco coils, electrocoagulation, detachable balloons, etc.). The absence of flux resulting from embolization improves electrocoagulation efficiency, which should be considered as the technique of choice. Even though additional trials are needed, the techniques have proven quite reliable and suitable to replace surgery in low-aggression lesions

  14. [Glucomannan: properties and therapeutic applications].

    Science.gov (United States)

    González Canga, A; Fernández Martínez, N; Sahagún, A M; García Vieitez, J J; Díez Liébana, M J; Calle Pardo, A P; Castro Robles, L J; Sierra Vega, M

    2004-01-01

    Glucomannan is a dietary fiber employed quite frequently in the western countries since two decades now, as its ingestion plays an important role in human health. However, eastern people have used this fiber for more than a thousand years. This dietary fiber is the main polysaccharide obtain from the tubers of the Amorphophallus konjac plant, a member of the family Araceae found in east Asia. The chemical structure of glucomannan consists, mainly, in mannose and glucose in the ratio 8:5 linked by beta (1-->4) glycosidic bonds. This soluble fiber has a extraordinarily high waterholding capacity, forming highly viscous solutions when dissolved in water. It has the highest molecular weight and viscosity of any known dietary fiber. It has been demonstrated that this product is highly effective in the treatment of obesity due to the satiety sensation that it produces; as a remedy for constipation, because it increases the faeces volume; as hypocholesterolemic agent, interfering in the transport of cholesterol and of bile acids and as hypoglycemic and hypoinsulinemic agent, probably, by delaying gastric emptying and slowering glucose delivery to the intestinal mucosa. To the beneficial properties of this fiber, several disadvantages can be added as the production of flatulence, abdominal pain, esophageal obstruction, lower gastrointestinal obstruction or even the possible modification of the bioavailability of other drugs. This paper reviews the main characteristics of glucomannan, as well as its properties, physiologic effects and therapeutic uses. PMID:14983741

  15. New concept in nutrition for the maintenance of the aging eye redox regulation and therapeutic treatment of cataract disease; synergism of natural antioxidant imidazole-containing amino acid-based compounds, chaperone, and glutathione boosting agents: a systemic perspective on aging and longevity emerged from studies in humans.

    Science.gov (United States)

    Babizhayev, Mark A

    2010-01-01

    Cataract, opacification of the lens, is one of the commonest causes of loss of useful vision during aging, with an estimated 16 million people world-wide affected. The role of nutritional supplementation in prevention of onset or progression of ocular disease is of interest to health care professionals and patients. The aging eye seems to be at considerable risk from oxidative stress. This review outlines the potential role of the new nutritional strategy on redox balance in age-related eye diseases and detail how the synergism and interaction of imidazole-containing amino acid-based compounds (nonhydrolized L-carnosine, histidine), chaperone agents (such as, L-carnosine, D-pantethine), glutathione-boosting agents (N-acetylcysteine, vitamin E, methionine), and N-acetylcarnosine eye drops plays key roles in the function and maintenance of the redox systems in the aging eye and in the treatment of human cataract disease. A novel patented oral health supplement is presented which enhances the anticataract activity of eye drops and activates functional visual acuity. The clinical data demonstrate the effectiveness and safety of a combined oral health care treatment with amino acids possessing chaperone-like activity with N-acetylcarnosine lubricant eye drops. L-carnosine and N-acetylcarnosine protected the chaperone activity of alpha-crystallin and reduced the increased posttranslational modifications of lens proteins. Biological activities of the nonhydrolyzed carnosine in the oral formulation are based on its antioxidant and antiglycating (transglycating) action that, in addition to heavy metal chelation and pH-buffering ability, makes carnosine an essential factor for preventing sight-threatening eye disorders having oxidative stress in their pathogenesis, neurodegeneration, and accumulation of senile features. The findings suggest that synergism is required between carnosine or other imidazole-containing compounds and reduced glutathione in tissues and cells for

  16. Engineering antibody therapeutics.

    Science.gov (United States)

    Chiu, Mark L; Gilliland, Gary L

    2016-06-01

    The successful introduction of antibody-based protein therapeutics into the arsenal of treatments for patients has within a few decades fostered intense innovation in the production and engineering of antibodies. Reviewed here are the methods currently used to produce antibodies along with how our knowledge of the structural and functional characterization of immunoglobulins has resulted in the engineering of antibodies to produce protein therapeutics with unique properties, both biological and biophysical, that are leading to novel therapeutic approaches. Antibody engineering includes the introduction of the antibody combining site (variable regions) into a host of architectures including bi and multi-specific formats that further impact the therapeutic properties leading to further advantages and successes in patient treatment. PMID:27525816

  17. Paraprofessionals as Psychotherapeutic Agents with Moderately Disturbed Children

    Science.gov (United States)

    Vander Kolk, Charles J.

    1973-01-01

    The present study investigated the effects of paraprofessionals used as therapeutic agents with moderately disturbed elementary-school children. The impact of this program on individual children and the aides was evaluated in several ways. (Author)

  18. Study on the Effects of Different Therapeutic Doses of Immunosuppressive Agents on the Growth and Development of Rats%不同治疗剂量的免疫抑制剂对大鼠生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    陈林强; 何绿茵; 徐邦牢; 仉智; 林华欣; 李淼沅; 陈业辉

    2012-01-01

    Objective To observe the effects of different therapeutic doses of immunosuppressive agents on rat growth. Methods To establish different therapeutic doses of immunosuppressive agents in SD rat model, after renal transplantation, the first agent treatment doses of cyclosporine A (Cyclosporin A,CsA) (Tacrolimus,FK506) ,tacrolimus and rapamycin (Rapa-mycin,Rapa) were converted into the therapeutic dose of rats,respectively,by the formula. 25 mg/kg/d,0. 8 mg/kg/d and 2 mg/kg/d gastric feeding were set as drug intervention group, saline gastric feeding as the control group, 8 rats in each group. The rats were fed by the gastric feeding for 8 weeks. Each rat growth and body weight changes were observed. Results There were no significant difference of the rats weight before the experiment began. 8 weeks after modeling,cyclosporin A treated rats showed marked weight loss,anorexia,irritable,sparse hair. The control group,cyclosporine A (CsA) (FK506), tacrolimus and rapamycin (Rapa) treated rats showed increased weight, respectively, 339. 62± 11. 97 g, 296. 50±22. 69 g, 335. 30±17. 51 g and 342.56 + 15.29 g; weight gain were 158.75 + 15.68 g, 112. 24 ±20. 16 g, 154. 78 ± 11. 32 g,and 160. 91 + 13. 51g,respectively. Cyclosporin A (CsA) treated rats bodyweight growth was significantly lower than that of the control group (P0. 05). Conclusion cyclosporin A (CsA) affected the growth of rat more significantly but FK506 and Rapa had no significant effect on the rats weight.%目的 观察不同治疗剂量的免疫抑制剂对大鼠生长发育的影响.方法 建立不同治疗剂量的免疫抑制剂SD大鼠模型,按公式将肾移植术后环孢素A (Cyclosporin A,CsA)、他克莫司(Tacrolimus,FK506)和雷帕霉素(Rapamycin,Rapa)的首剂治疗剂量换算成大鼠的治疗剂量,分别用25mg/kg/天,0.8mg/kg/天和2mg/kg/天胃饲作为药物干预组,生理盐水胃饲作为对照组,每组8只,胃饲8周.观察并比较各组大鼠生长发育及

  19. Clinical Observation of Therapeutic Efficiency of Insulin Glargine Combined with Oral Hypoglycemic Agents in Elderly Patients with Type 2 Diabetes%甘精胰岛素联合口服降糖药治疗2型糖尿病临床观察

    Institute of Scientific and Technical Information of China (English)

    何启胜

    2011-01-01

    目的 观察甘精胰岛素联合口服降糖药物治疗2型糖尿病的临床疗效和安全性.方法 选择口服降糖药物血糖控制不佳的56例老年2型糖尿病患者,随机分为加用甘精胰岛素治疗组和低精蛋白锌胰岛素组两组,观察治疗前和治疗24周后各组的FBG、P2hBG、HbA1c和BMI的变化.同时对两种方案的安全性进行比较.结果 治疗24周后甘精胰岛素组与低精蛋白锌胰岛素组均能降低FBG、P2hBG、HbAlc,且疗效相当,组内治疗前后比较差异无统计学意义,而BMI均没有明显变化.但甘精胰岛素组的严重低血糖发生率明显低于低精蛋白锌胰岛素组.结论 甘精胰岛素组与低精蛋白锌胰岛素组在降低血糖方面的疗效相当,但甘精胰岛素组比低精蛋白锌胰岛素组治疗安全性高.%Objective To evaluate the clinical observation of therapeutic efficiency and safty of insulin glargine combined with oral hypoglycemic agents in elderly patients with type 2 diabetes. Methods Fifty six elderly patients with type 2 diabetes and poorly glycemic control by oral medication were randomly divided into two groups: insulin glargine( + ) group and isophane insu-lin( + ) group. FBG,P2hBG,HbAlc and BMI in each group were measured before and after 24 weeks of treatment,and the adverse effect were also recorded. Results HbAlc,FBG and P2hBG of the two groups were declined obviously after 24 weeks of treatment,and the therapeutic equivalence between the two groups. No significant change of BMI in the two groups. But the incidence of severe hypoglycemia in the insulin glargine group was lower than that in the isophane insulin group. Conclusion The therapeutic equivalence of insulin glargine and isophane insulin in decreasing the blood sugar was observed,but the security in insulin glargine group was higher than that in the low protamine zinc insulin group.

  20. Therapeutic Vaccination for HPV Induced Cervical Cancers

    Directory of Open Access Journals (Sweden)

    Joeli A. Brinkman

    2007-01-01

    Full Text Available Cervical Cancer is the second leading cause of cancer–related deaths in women worldwide and is associated with Human Papillomavirus (HPV infection, creating a unique opportunity to treat cervical cancer through anti-viral vaccination. Although a prophylactic vaccine may be available within a year, millions of women, already infected, will continue to suffer from HPV-related disease, emphasizing the need to develop therapeutic vaccination strategies. A majority of clinical trials examining therapeutic vaccination have shown limited efficacy due to examining patients with more advanced-stage cancer who tend to have decreased immune function. Current trends in clinical trials with therapeutic agents examine patients with pre-invasive lesions in order to prevent invasive cervical cancer. However, longer follow-up is necessary to correlate immune responses to lesion regression. Meanwhile, preclinical studies in this field include further exploration of peptide or protein vaccination, and the delivery of HPV antigens in DNA-based vaccines or in viral vectors. As long as pre-clinical studies continue to advance, the prospect of therapeutic vaccination to treat existing lesions seem good in the near future. Positive consequences of therapeutic vaccination would include less disfiguring treatment options and fewer instances of recurrent or progressive lesions leading to a reduction in cervical cancer incidence.

  1. A Current Review of Targeted Therapeutics for Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Susana M. Campos

    2010-01-01

    Full Text Available Difficult to detect, ovarian cancer typically presents at an advanced stage. Significant progress has been achieved in the treatment of ovarian cancer with therapeutics focused on DNA replication or cell division. However, despite sensitivity to induction chemotherapy the majority of patients will develop recurrent disease. Conventional agents for recurrent disease offer little in terms of long-term responses. Various targeted therapeutics have been explored in the management of ovarian cancer. These include monoclonal antibodies to epidermal growth factor receptors, small molecule tyrosine kinase inhibitors, monoclonal antibodies directed at the vascular endothelial growth factor (bevacizumab, and the small tyrosine kinase inhibitors that target the vascular endothelial growth factor receptor. Recently, several other agents have come forth as potential therapeutic agents in the management of ovarian cancer. These include monoclonal antibodies to the folate receptor, triple angiokinase inhibitors, PARP inhibitors, aurora kinase inhibitors, inhibitors of the Hedgehog pathway, folate receptor antagonists, and MTOR inhibitors.

  2. Agent Chameleons: Virtual Agents Real Intelligence

    OpenAIRE

    O'Hare, Gregory; Duffy, Brian; Schoen-Phelan, Bianca; Martin, Alan; Bradley, John

    2003-01-01

    Agent Chameleons provides virtual agents powered by real intelligence, delivering next generation autonomic entities that can seamlessly migrate, mutate and evolve on their journey between and within physical and digital information spaces.

  3. Injectable agents affecting subcutaneous fats.

    Science.gov (United States)

    Chen, David Lk; Cohen, Joel L; Green, Jeremy B

    2015-09-01

    Mesotherapy is an intradermal or subcutaneous injection of therapeutic agents to induce local effects, and was pioneered in Europe during the 1950s. For the past 2 decades, there has been significant interest in the use of mesotherapy for minimally invasive local fat contouring. Based on the theorized lipolytic effects of the agent phosphatidylcholine, initial attempts involved its injection into subcutaneous tissue. With further studies, however, it became apparent that the activity attributed to phosphatidylcholine mesotherapy was due to the adipolytic effects of deoxycholate, a detergent used to solubilize phosphatidylcholine. Since then, clinical trials have surfaced that demonstrate the efficacy of a proprietary formulation of deoxycholate for local fat contouring. Current trials on mesotherapy with salmeterol, a b-adrenergic agonist and lipolysis stimulator, are underway-with promising preliminary results as well. PMID:26566569

  4. Next-Generation Therapeutics for Inflammatory Bowel Disease.

    Science.gov (United States)

    Dulai, Parambir S; Sandborn, William J

    2016-09-01

    Tumor necrosis factor (TNF) antagonists are the cornerstone of therapy for moderately to severely active inflammatory bowel disease (IBD). Although our understanding of pharmacokinetics, pharmacodynamics, and treatment optimization for these agents has evolved considerably over the past decade, a substantial majority of individuals fail to respond or lose response to TNF-antagonists over time. A need therefore remains for efficacious treatment options in these patients. Alternative immunological targets have now been identified, and several novel therapeutic agents are in development for IBD. In this review article, we discuss these novel therapeutic agents, with a particular focus on those demonstrated to be efficacious in phase 2 and 3 clinical trials. We further discuss considerations to be made when integrating these agents into routine practice over the next decade. PMID:27461274

  5. Lymphedema and Therapeutic Lymphangiogenesis

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    2013-01-01

    Full Text Available Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return and swelling of the extremities. Lymphedema is divided into primary and secondary forms based on the underlying etiology. Despite substantial advances in both surgical and conservative techniques, therapeutic options for the management of lymphedema are limited. Although rarely lethal, lymphedema is a disfiguring and disabling condition with an associated decrease in the quality of life. The recent impressive expansion of knowledge on the molecular mechanisms governing lymphangiogenesis provides new possibilities for the treatment of lymphedema. This review highlights the lymphatic biology, the pathophysiology of lymphedema, and the therapeutic lymphangiogenesis using hepatocyte growth factor.

  6. Therapeutic HIV Peptide Vaccine

    DEFF Research Database (Denmark)

    Fomsgaard, Anders

    2015-01-01

    Therapeutic vaccines aim to control chronic HIV infection and eliminate the need for lifelong antiretroviral therapy (ART). Therapeutic HIV vaccine is being pursued as part of a functional cure for HIV/AIDS. We have outlined a basic protocol for inducing new T cell immunity during chronic HIV-1...... infection directed to subdominant conserved HIV-1 epitopes restricted to frequent HLA supertypes. The rationale for selecting HIV peptides and adjuvants are provided. Peptide subunit vaccines are regarded as safe due to the simplicity, quality, purity, and low toxicity. The caveat is reduced immunogenicity...

  7. Rhenium Radioisotopes for Therapeutic Radiopharmaceutical Development

    Energy Technology Data Exchange (ETDEWEB)

    Beets, A.L.; Knapp, F.F., Jr.; Kropp, J.; Lin, W.-Y.; Pinkert, J.; Wang, S.-Y.

    1999-01-18

    The availability of therapeutic radioisotopes at reasonable costs is important for applications in nuclear medicine, oncology and interventional cardiology, Rhenium-186 (Re-186) and rhenium-1 88 (Re-188) are two reactor-produced radioisotope which are attractive for a variety of therapeutic applications, Rhenium-186 has a half-life of 90 hours and decays with emission of a &particle with a maximum energy of 1.08 MeV and a 135 keV (9Yo) gamma which permits imaging. In contrast, Re- 188 has a much shorter half-life of 16.9 hours and emits a p-particle with a much higher energy of 2.12 MeV (Em=) and a 155 keV gamma photon (15Yo) for imaging. While Re-186 is unavailable from a generator system and must be directly produced in a nuclear reactor, Re-188 can also be directly produced in a reactor with high specific activity, but is more conveniently and cost-effectively available as carrier-free sodium perrhenate by saline elution of the alumina-based tungsten-188 (W1 88)/Re-l 88 generator system [1-2]. Since a comprehensive overviewofRe-186 and Re-188 therapeutic agents is beyond the scope of this &tended Abstrac4 the goal is to provide key examples of various agents currently in clinical use and those which are being developed for important clinical applications.

  8. CHIRAL SWITCH- AN EMERGING STRATEGY IN THERAPEUTICS

    Directory of Open Access Journals (Sweden)

    SUSHIL SHARMA

    2014-03-01

    Full Text Available During the last decade, drug chirality, more specifically the use of single enantiomers versus racemic mixtures has been in the forefront of discussions in scientific forums. This is because the left and right handed twins of a molecule behave quite differently from each other in a biological environment. This can frequently lead to an improvement in pharmacological and therapeutic profile of the molecule/drug. This understanding of the significance of stereochemistry coupled with advances in chemical technologies and further nudged by regulatory requirements has helped the increase in the development of individual isomers at the expense of racemic mixtures. Apart from the development of novel stereo-selective compounds, a number of racemates have been re-evaluated as potential single enantiomer agents with the possibility of an improved pharmacological/ therapeutic profile. These have been termed as Chiral Switches and have resulted in the re-birth of a number of agents as single enantiomers and have provided significant improvements over the racemic drug. Economic considerations are also playing a part with pharmaceutical companies increasingly using chiral switching as a marketing strategy to increase the patent longevity and profitability period of a drug. However, not all these switches have resulted in therapeutic superiority and in many instances, unpredicted adverse reactions have resulted. Before a switch to clinical use of single enantiomers is made, physicians should satisfy themselves from evidence based on well-conducted clinical trials that the chiral switch is cost-effective and improves the outcomes for patients.

  9. Antioxidants Meet Molecular Targets for Cancer Prevention and Therapeutics

    OpenAIRE

    Ahmad, Nihal; Mukhtar, Hasan

    2013-01-01

    A fine balance between oxidants and antioxidants is required for the normal functioning of living systems. A deregulation of this balance has been implicated in many adverse effects and diseases, including cancer. Extensive research has been done in the area of cancer prevention and therapeutics by a wide range of antioxidants, especially naturally occurring and diet-based agents. However, additional efforts are still needed toward clinical development of the most promising antioxidant agents...

  10. Therapeutic targeting of replicative immortality.

    Science.gov (United States)

    Yaswen, Paul; MacKenzie, Karen L; Keith, W Nicol; Hentosh, Patricia; Rodier, Francis; Zhu, Jiyue; Firestone, Gary L; Matheu, Ander; Carnero, Amancio; Bilsland, Alan; Sundin, Tabetha; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Amedei, Amedeo; Amin, Amr; Helferich, Bill; Boosani, Chandra S; Guha, Gunjan; Ciriolo, Maria Rosa; Chen, Sophie; Mohammed, Sulma I; Azmi, Asfar S; Bhakta, Dipita; Halicka, Dorota; Niccolai, Elena; Aquilano, Katia; Ashraf, S Salman; Nowsheen, Somaira; Yang, Xujuan

    2015-12-01

    One of the hallmarks of malignant cell populations is the ability to undergo continuous proliferation. This property allows clonal lineages to acquire sequential aberrations that can fuel increasingly autonomous growth, invasiveness, and therapeutic resistance. Innate cellular mechanisms have evolved to regulate replicative potential as a hedge against malignant progression. When activated in the absence of normal terminal differentiation cues, these mechanisms can result in a state of persistent cytostasis. This state, termed "senescence," can be triggered by intrinsic cellular processes such as telomere dysfunction and oncogene expression, and by exogenous factors such as DNA damaging agents or oxidative environments. Despite differences in upstream signaling, senescence often involves convergent interdependent activation of tumor suppressors p53 and p16/pRB, but can be induced, albeit with reduced sensitivity, when these suppressors are compromised. Doses of conventional genotoxic drugs required to achieve cancer cell senescence are often much lower than doses required to achieve outright cell death. Additional therapies, such as those targeting cyclin dependent kinases or components of the PI3K signaling pathway, may induce senescence specifically in cancer cells by circumventing defects in tumor suppressor pathways or exploiting cancer cells' heightened requirements for telomerase. Such treatments sufficient to induce cancer cell senescence could provide increased patient survival with fewer and less severe side effects than conventional cytotoxic regimens. This positive aspect is countered by important caveats regarding senescence reversibility, genomic instability, and paracrine effects that may increase heterogeneity and adaptive resistance of surviving cancer cells. Nevertheless, agents that effectively disrupt replicative immortality will likely be valuable components of new combinatorial approaches to cancer therapy. PMID:25869441

  11. Therapeutic Recombinant Monoclonal Antibodies

    Science.gov (United States)

    Bakhtiar, Ray

    2012-01-01

    During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…

  12. Therapeutic applications of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Whether a radiopharmaceutical has diagnostic or therapeutic application depends on both the isotope and pharmaceutical used. For diagnostic applications, the isotope should undergo only γ-decay, since usually only γ-radiation is detected by nuclear medicine cameras. The half-life should be just long enough to allow the procedure to be performed. In contrast, the isotope needed for therapeutic purposes should have particulate radiation, such as a β-particle (electron), since these are locally absorbed an increase the local radiation dose. γ-Radiation, which penetrates the tissues, produces less radiation dose than do Β-particles. Several references dealing with radioactive decay, particulate interactions, and diagnostic and therapeutic applications of radiopharmaceuticals are available. Radiopharmaceuticals can legally be used only by physicians who are qualified by specific training in the safe handling of radionuclides. The experience and training of these physicians must be approved by the Nuclear Regulatory Commission or Agreement State Agency authorized to license the use of radiopharmaceuticals. A list of all byproduct material and procedures is available in the Code of Federal Regulations. Of the many radiopharmaceuticals available for diagnostic and therapeutic use, only those commonly used are discussed in this chapter

  13. Complexity in the therapeutic delivery of RNAi medicines

    DEFF Research Database (Denmark)

    Colombo, Stefano; Zeng, Xianghui; Ragelle, Héloïse;

    2014-01-01

    of this review is to reflect on the complexity in the therapeutic delivery of RNA interference-based drugs emerging from the recent clinical experiences and report the actual technological and analytical advances introduced to solve it. EXPERT OPINION: The complexity in the therapeutic delivery of nucleic acids...... chemical and enzymatic stability in vivo, lack of cellular uptake and insufficient capability to reach intracellular targets. AREAS COVERED: Advanced formulation of nucleic acids in nano-sized carriers may help unlocking their potential as therapeutic agents. Nano-sized matters own specific features...

  14. Cancer stem cells, metabolism, and therapeutic significance.

    Science.gov (United States)

    Yang, Mengqi; Liu, Panpan; Huang, Peng

    2016-05-01

    Cancer stem cells (CSCs) have attracted much attention of the research community in the recent years. Due to their highly tumorigenic and drug-resistant properties, CSCs represent important targets for developing novel anticancer agents and therapeutic strategies. CSCs were first described in hematopoietic malignancies and subsequently identified in various types of solid tumors including brain, breast, lung, colon, melanoma, and ovarian cancer. CSCs possess special biological properties including long-term self-renewal capacity, multi-lineage differentiation, and resistance to conventional chemotherapy and radiotherapy. As such, CSCs are considered as a major source of residual disease after therapy leading to disease occurrence. Thus, it is very important to understand the cellular survival mechanisms specific to CSCs and accordingly develop effective therapeutic approaches to eliminate this subpopulation of cancer cells in order to improve the treatment outcome of cancer patients. Possible therapeutic strategies against CSCs include targeting the self-renewal pathways of CSCs, interrupting the interaction between CSCs and their microenvironment, and exploiting the unique metabolic properties of CSCs. In this review article, we will provide an overview of the biological characteristics of CSCs, with a particular focus on their metabolic properties and potential therapeutic strategies to eliminate CSCs. PMID:26864589

  15. Therapeutic nucleic acids: current clinical status.

    Science.gov (United States)

    Sridharan, Kannan; Gogtay, Nithya Jaideep

    2016-09-01

    Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are simple linear polymers that have been the subject of considerable research in the last two decades and have now moved into the realm of being stand-alone therapeutic agents. Much of this has stemmed from the appreciation that they carry out myriad functions that go beyond mere storage of genetic information and protein synthesis. Therapy with nucleic acids either uses unmodified DNA or RNA or closely related compounds. From both a development and regulatory perspective, they fall somewhere between small molecules and biologics. Several of these compounds are in clinical development and many have received regulatory approval for human use. This review addresses therapeutic uses of DNA based on antisense oligonucleotides, DNA aptamers and gene therapy; and therapeutic uses of RNA including micro RNAs, short interfering RNAs, ribozymes, RNA decoys and circular RNAs. With their specificity, functional diversity and limited toxicity, therapeutic nucleic acids hold enormous promise. However, challenges that need to be addressed include targeted delivery, mass production at low cost, sustaining efficacy and minimizing off-target toxicity. Technological developments will hold the key to this and help accelerate drug approvals in the years to come. PMID:27111518

  16. Ethical Perspectives on RNA Interference Therapeutics

    Directory of Open Access Journals (Sweden)

    Mette Ebbesen, Thomas G. Jensen, Svend Andersen, Finn Skou Pedersen

    2008-01-01

    Full Text Available RNA interference is a mechanism for controlling normal gene expression which has recently begun to be employed as a potential therapeutic agent for a wide range of disorders, including cancer, infectious diseases and metabolic disorders. Clinical trials with RNA interference have begun. However, challenges such as off-target effects, toxicity and safe delivery methods have to be overcome before RNA interference can be considered as a conventional drug. So, if RNA interference is to be used therapeutically, we should perform a risk-benefit analysis. It is ethically relevant to perform a risk-benefit analysis since ethical obligations about not inflicting harm and promoting good are generally accepted. But the ethical issues in RNA interference therapeutics not only include a risk-benefit analysis, but also considerations about respecting the autonomy of the patient and considerations about justice with regard to the inclusion criteria for participation in clinical trials and health care allocation. RNA interference is considered a new and promising therapeutic approach, but the ethical issues of this method have not been greatly discussed, so this article analyses these issues using the bioethical theory of principles of the American bioethicists, Tom L. Beauchamp and James F. Childress.

  17. Mucinous ovarian cancer: A therapeutic review.

    Science.gov (United States)

    Xu, Wen; Rush, Jack; Rickett, Kirsty; Coward, Jermaine I G

    2016-06-01

    Mucinous ovarian cancer represents approximately 3% of epithelial ovarian cancers (EOC). Despite this seemingly low prevalence, it remains a diagnostic and therapeutic conundrum that has resulted in numerous attempts to adopt novel strategies in managing this disease. Anecdotally, there has been a prevailing notion that established gold standard systemic regimens should be substituted for those utilised in cancers such as gastrointestinal (GI) malignancies; tumours that share more biological similarities than other EOC subtypes. This review summarises the plethora of small studies which have adopted this philosophy and influenced the design of the multinational GOG142 study, which was ultimately terminated due to poor accrual. To date, there is a paucity of evidence to support delivering 'GI style' chemotherapy for mucinous ovarian cancer over and above carboplatin-paclitaxel doublet therapy. Hence there is an urge to develop studies focused on targeted therapeutic agents driven by refined mutational analysis and conducted within the context of harmonised international collaborations. PMID:27083591

  18. Therapeutic targets in liver fibrosis.

    Science.gov (United States)

    Fallowfield, Jonathan A

    2011-05-01

    Detailed analysis of the cellular and molecular mechanisms that mediate liver fibrosis has provided a framework for therapeutic approaches to prevent, slow down, or even reverse fibrosis and cirrhosis. A pivotal event in the development of liver fibrosis is the activation of quiescent hepatic stellate cells (HSCs) to scar-forming myofibroblast-like cells. Consequently, HSCs and the factors that regulate HSC activation, proliferation, and function represent important antifibrotic targets. Drugs currently licensed in the US and Europe for other indications target HSC-related components of the fibrotic cascade. Their deployment in the near future looks likely. Ultimately, treatment strategies for liver fibrosis may vary on an individual basis according to etiology, risk of fibrosis progression, and the prevailing pathogenic milieu, meaning that a multiagent approach could be required. The field continues to develop rapidly and starts to identify exciting potential targets in proof-of-concept preclinical studies. Despite this, no antifibrotics are currently licensed for use in humans. With epidemiological predictions for the future prevalence of viral, obesity-related, and alcohol-related cirrhosis painting an increasingly gloomy picture, and a shortfall in donors for liver transplantation, the clinical urgency for new therapies is high. There is growing interest from stakeholders keen to exploit the market potential for antifibrotics. However, the design of future trials for agents in the developmental pipeline will depend on strategies that enable equal patient stratification, techniques to reliably monitor changes in fibrosis over time, and the definition of clinically meaningful end points. PMID:21233278

  19. Secukinumab: a promising therapeutic option in spondyloarthritis.

    Science.gov (United States)

    Maldonado-Ficco, Hernan; Perez-Alamino, Rodolfo; Maldonado-Cocco, José A

    2016-09-01

    Psoriatic arthritis (PsA) is the second most common chronic inflammatory joint disease. Ankylosing spondylitis (AS) is another less common but equally chronic and disabling spondyloarthritis (SpA). Therapeutic agents for the treatment of these diseases have been somewhat lacking as compared with those available for rheumatoid arthritis, which represents a significant challenge for both the treating physician and the pharmaceutical industry. A promising development for our understanding of the physiopathology of PsA and AS involves new targets to interrupt IL-17 and IL-12/IL-23 pathways. Up to 30-40 % of SpA patients have inadequate or poor response, or are intolerant to anti-TNF therapies. Therefore, there has been a clear unmet medical need in an important group of these patients. As a result, new therapeutic targets have emerged for the treatment of both axial and peripheral SpA. Interleukin 17 (IL-17) is a pro-inflammatory cytokine that is increased in psoriatic lesions as well as in the synovial fluid of patients with PsA and in sites of enthesitis in SpA. IL-23 has been shown to play an important role in the polarization of CD4+ T-cells to become IL-17 producers. Based on these evidences, blockade of the cytokine IL-17 or its receptors was considered to have therapeutic implications for the treatment of psoriasis, as well as PsA and AS.This article presents a thorough review of an IL-17 A blocking agent, its mechanism of action, its clinical efficacy and its therapeutic safety. PMID:27437696

  20. Contrast Agent in Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Vu-Quang, Hieu

    2015-01-01

    Nanoparticles have been employed as contrast agent in magnetic resonance imaging (MRI) in order to improve sensitivity and accuracy in diagnosis. In addition, these contrast agents are potentially combined with other therapeutic compounds or near infrared bio-imaging (NIR) fluorophores to obtain...... theranostic or dual imaging purposes, respectively. There were two main types of MRI contrast agent that were synthesized during this PhD project including fluorine containing nanoparticles and magnetic nanoparticles. In regard of fluorine containing nanoparticles, there were two types contrast agent...... cancer cells for cancer diagnosis in MRI. F127-Folate coated SPION were stable in various types of suspension medium for over six months. They could specifically target folate receptor of cancer cells in vitro and in vivo thus enhancing the contrast in MRI T2/T2* weighted images. These are preliminary...

  1. Strategies for therapeutic hypometabothermia

    OpenAIRE

    Liu, Shimin; Chen, Jiang-Fan

    2012-01-01

    Although therapeutic hypothermia and metabolic suppression have shown robust neuroprotection in experimental brain ischemia, systemic complications have limited their use in treating acute stroke patients. The core temperature and basic metabolic rate are tightly regulated and maintained in a very stable level in mammals. Simply lowering body temperature or metabolic rate is actually a brutal therapy that may cause more systemic as well as regional problems other than providing protection. Th...

  2. Lymphedema and Therapeutic Lymphangiogenesis

    OpenAIRE

    Yukihiro Saito; Hironori Nakagami; Yasufumi Kaneda; Ryuichi Morishita

    2013-01-01

    Lymphedema is a disorder of the lymphatic vascular system characterized by impaired lymphatic return and swelling of the extremities. Lymphedema is divided into primary and secondary forms based on the underlying etiology. Despite substantial advances in both surgical and conservative techniques, therapeutic options for the management of lymphedema are limited. Although rarely lethal, lymphedema is a disfiguring and disabling condition with an associated decrease in the quality of life. The r...

  3. PEGylation of therapeutic proteins

    OpenAIRE

    Jevsevar, Simona; Kunstelj, Menci; Gaberc Porekar, Vladka

    2010-01-01

    Abstract PEGylation has been widely used as a post-production modification methodology for improving biomedical efficacy and physicochemical properties of therapeutic proteins since the first PEGylated product was approved by Food and Drug Administration in 1990. Applicability and safety of this technology have been proven by use of various PEGylated pharmaceuticals for many years. It is expected that PEGylation as the most established technology for extension of drug residence in ...

  4. DELIVERY OF THERAPEUTIC PROTEINS

    OpenAIRE

    Pisal, Dipak S.; Kosloski, Matthew P.; Balu-Iyer, Sathy V.

    2010-01-01

    The safety and efficacy of protein therapeutics are limited by three interrelated pharmaceutical issues, in vitro and in vivo instability, immunogenicity and shorter half-lives. Novel drug modifications for overcoming these issues are under investigation and include covalent attachment of poly(ethylene glycol) (PEG), polysialic acid, or glycolic acid, as well as developing new formulations containing nanoparticulate or colloidal systems (e.g. liposomes, polymeric microspheres, polymeric nanop...

  5. Leech Therapeutic Applications

    OpenAIRE

    Abdualkader, A. M.; A M Ghawi; M Alaama; Awang, M.; Merzouk, A.

    2013-01-01

    Hematophagous animals including leeches have been known to possess biologically active compounds in their secretions, especially in their saliva. The blood-sucking annelids, leeches have been used for therapeutic purposes since the beginning of civilization. Ancient Egyptian, Indian, Greek and Arab physicians used leeches for a wide range of diseases starting from the conventional use for bleeding to systemic ailments, such as skin diseases, nervous system abnormalities, urinary and reproduct...

  6. 'Smartening' anticancer therapeutic nanosystems using biomolecules.

    Science.gov (United States)

    Núñez-Lozano, Rebeca; Cano, Manuel; Pimentel, Belén; de la Cueva-Méndez, Guillermo

    2015-12-01

    To be effective, anticancer agents must induce cell killing in a selective manner, something that is proving difficult to achieve. Drug delivery systems could help to solve problems associated with the lack of selectivity of classical chemotherapeutic agents. However, to realize this, such systems must overcome multiple physiological barriers. For instance, they must evade surveillance by the immune system, attach selectively to target cells, and gain access to their interior. Furthermore, there they must escape endosomal entrapment, and release their cargoes in a controlled manner, without affecting their functionality. Here we review recent efforts aiming at using biomolecules to confer these abilities to bare nanoparticles, to transform them into smart anticancer therapeutic nanosystems. PMID:26277646

  7. Therapeutic Uses and Pharmacological Properties of Garlic, Shallot, and Their Biologically Active Compounds

    Directory of Open Access Journals (Sweden)

    Peyman Mikaili

    2013-10-01

    Garlic and shallots are safe and rich sources of biologically active compounds with low toxicity. Further studies are needed to confirm the safety and quality of the plants to be used by clinicians as therapeutic agents.

  8. Editorial: advances in therapeutic glycopeptides.

    Science.gov (United States)

    Zeng, Wenbin; Chen, Yue-Lei

    2014-01-01

    Glycopeptides, peptides containing sugar β-amino acids, have significant impact on medicinal chemistry research and pharmaceutical industr. In 1956, the discovery of one classic glycopeptide, vancomycin, broke the dawn of a new age for antibacterial research. Employing glycopeptides for the therapeutic purposes used to be regarded as proposals. Owing largely to the recent improvements in separation practices, characterization techniques, synthetic methods, and biological research, these proposals have been transformed into ongoing research projects in many laboratories around the world. Previously known as antibiotics, glycopeptides have been used as chemotherapeutic, antiviral, antitubercular, antifungal, antiproliferative and apoptotic agents. Nowadays they are even considered for the development of HIV and cancer vaccines. While several of them are in clinical trials, it could be expected that in the near future, treatment regimen of such difficult diseases might be reformed accordingly. Many interesting preliminary results are being produced in this emerging area. As witnesses and practitioners in this exciting area, however, we notice that the related communication in public domain is still limited due to the relatively small number of researchers involved. Thus, we feel the necessity to compile a timely issue about the special topic "Advances in Therapeutic Glycopeptides", covering state-of-the-art research papers and expert reviews from this area. We are glad that Protein & Peptide Letters is willing to realize the idea with us. The opening paper of this issue by Dr. Voglmeir and coauthor discusses three types of PNGases in respect of their general properties and applications of the commercially available PNGases in glycopeptide and glycoprotein analysis. Dr. Liu and coauthors describe current techniques such as high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and mass spectrometry (MS), for the characterization of

  9. Therapeutic cloning in the mouse

    OpenAIRE

    Mombaerts, Peter

    2003-01-01

    Nuclear transfer technology can be applied to produce autologous differentiated cells for therapeutic purposes, a concept termed therapeutic cloning. Countless articles have been published on the ethics and politics of human therapeutic cloning, reflecting the high expectations from this new opportunity for rejuvenation of the aging or diseased body. Yet the research literature on therapeutic cloning, strictly speaking, is comprised of only four articles, all in the mouse. The efficiency of d...

  10. Person-centered Therapeutics

    OpenAIRE

    Cloninger, C. Robert; Cloninger, Kevin M.

    2011-01-01

    A clinician’s effectiveness in treatment depends substantially on his or her attitude toward -- and understanding of -- the patient as a person endowed with self-awareness and the will to direct his or her own future. The assessment of personality in the therapeutic encounter is a crucial foundation for forming an effective working alliance with shared goals. Helping a person to reflect on their personality provides a mirror image of their strengths and weaknesses in adapting to life’s many c...

  11. AgentChess : An Agent Chess Approach

    OpenAIRE

    Fransson, Henric

    2003-01-01

    The game of chess has many times been discussed and used for test purpose by science departments of Artificial Intelligence (AI). Although the technique of agent and as well multi-agent systems is quite old, the use of these offspring of AI within chess is limited. This report describes the project performed applying the use of agents to a chess program. To measure the performance of the logic has tests between the developed program main parts been performed. Further tests against a tradition...

  12. AMUM LECTURE: Therapeutic ultrasound

    Science.gov (United States)

    Crum, Lawrence A.

    2004-01-01

    The use of ultrasound in medicine is now quite commonplace, especially with the recent introduction of small, portable and relatively inexpensive, hand-held diagnostic imaging devices. Moreover, ultrasound has expanded beyond the imaging realm, with methods and applications extending to novel therapeutic and surgical uses. These applications broadly include: tissue ablation, acoustocautery, lipoplasty, site-specific and ultrasound mediated drug activity, extracorporeal lithotripsy, and the enhancement of natural physiological functions such as wound healing and tissue regeneration. A particularly attractive aspect of this technology is that diagnostic and therapeutic systems can be combined to produce totally non-invasive, imageguided therapy. This general lecture will review a number of these exciting new applications of ultrasound and address some of the basic scientific questions and future challenges in developing these methods and technologies for general use in our society. We shall particularly emphasize the use of High Intensity Focused Ultrasound (HIFU) in the treatment of benign and malignant tumors as well as the introduction of acoustic hemostasis, especially in organs which are difficult to treat using conventional medical and surgical techniques.

  13. Therapeutic nuclear medicine

    Energy Technology Data Exchange (ETDEWEB)

    Baum, Richard P. (ed.) [ENETS Center of Excellence, Bad Berka (Germany). THERANOSTICS Center for Molecular Radiotherapy and Molecular Imaging

    2014-07-01

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  14. Pneumothorax following therapeutic thoracentesis

    International Nuclear Information System (INIS)

    The authors retrospectively studied 319 patients undergoing therapeutic thoracentesis. Of these, 223 patients had malignant pleural effusions and 96 had nonmalignant and noninfected collections. The effusions ranged from 100 to 4,000 mL in size. All patients presented with pain and/or respiratory compromise prompting the need for drainage. Overall there was a t% (22 of 319) incidence of pneumothorax. In six patients (3%) chest tube placement was necessary. Four of these six patients were successfully managed with 7 - 16-French catheters and a Heimlich valve. Persistent pneumothorax in two cases required placement of large, 28-F chest tubes supplemented with Pleura-vac drainage and hospital admission. There was a subset of nine patients with malignant effusions and lymphangitic spread who developed large but asymptomatic pneumothoraces. All but 5% of these patients required no therapy for pneumothorax. The authors' results suggest that pneumothoraces following therapeutic thoracentesis can be managed within the radiology department. The prevalence, mechanism, and management of pneumothoraces in these patients is discussed

  15. Mechanisms of Plasma Therapeutics

    Science.gov (United States)

    Graves, David

    2015-09-01

    In this talk, I address research directed towards biomedical applications of atmospheric pressure plasma such as sterilization, surgery, wound healing and anti-cancer therapy. The field has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that plasmas readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. It is postulated that cold atmospheric plasma (CAP) can trigger a therapeutic shielding response in tissue in part by creating a time- and space-localized, burst-like form of oxy-nitrosative stress on near-surface exposed cells through the flux of plasma-generated RONS. RONS-exposed surface layers of cells communicate to the deeper levels of tissue via a form of the ``bystander effect,'' similar to responses to other forms of cell stress. In this proposed model of CAP therapeutics, the plasma stimulates a cellular survival mechanism through which aerobic organisms shield themselves from infection and other challenges.

  16. Therapeutic nuclear medicine

    International Nuclear Information System (INIS)

    Discusses all aspects of radionuclide therapy, including basic principles, newly available treatments, regulatory requirements, and future trends. Provides the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Explains the role of the therapeutic nuclear physician in effectively coordinating a diverse multidisciplinary team. Written by leading experts. The recent revolution in molecular biology offers exciting new opportunities for targeted radionuclide therapy. The selective irradiation of tumor cells through molecular biological mechanisms is now permitting the radiopharmaceutical control of tumors that are unresectable and unresponsive to either chemotherapy or conventional radiotherapy. In this up-to-date, comprehensive book, world-renowned experts discuss the basic principles of radionuclide therapy, explore in detail the available treatments, explain the regulatory requirements, and examine likely future developments. The full range of clinical applications is considered, including thyroid cancer, hematological malignancies, brain tumors, liver cancer, bone and joint disease, and neuroendocrine tumors. The combination of theoretical background and practical information will provide the reader with all the knowledge required to administer radionuclide therapy safely and effectively in the individual patient. Careful attention is also paid to the important role of the therapeutic nuclear physician in delivering the effective coordination of a diverse multidisciplinary team that is essential to the safe provision of treatment.

  17. Agents in domestic environments

    OpenAIRE

    van Moergestel, Leo; Langerak, Wouter; Meerstra, Glenn; Nieuwenburg, Niels van; Pape, Franc; Telgen, Daniël; Puik, Erik; meyer, john-jules

    2013-01-01

    Athor supplied : "This paper describes an agent-based architecture for domotics. This architecture is based on requirements about expandability and hardware independence. The heart of the system is a multi-agent system. This system is distributed over several platforms to open the possibility to tie the agents directly to the actuators, sensors and devices involved. This way a level of abstraction is created and all intelligence of the system as a whole is related to the agents involved. A pr...

  18. Culturally Aware Agent Communication

    DEFF Research Database (Denmark)

    Rehm, Matthias; Nakano, Yukiko; Koda, Tomoko;

    2012-01-01

    Agent based interaction in the form of Embodied Conversational Agents (ECAs) has matured over the last decade and agents have become more and more sophisticated in terms of their verbal and nonverbal behavior like facial expressions or gestures. Having such “natural” communication channels...

  19. Riot Control Agents

    Science.gov (United States)

    ... a person has been exposed to riot control agents. Long-term health effects of exposure to riot control agents Prolonged ... person is removed from exposure to riot control agents, long-term health effects are unlikely to occur. How you can ...

  20. Reasoning about emotional agents

    NARCIS (Netherlands)

    Meyer, J.-J.

    2008-01-01

    In this paper we discuss the role of emotions in artificial agent design, and the use of logic in reasoning about the emotional or affective states an agent can reside in. We do so by extending the KARO framework for reasoning about rational agents appropriately. In particular we formalize in this f

  1. Limited-Sampling Strategies for Therapeutic Drug Monitoring of Moxifloxacin in Patients With Tuberculosis

    NARCIS (Netherlands)

    Pranger, Arianna D.; Kosterink, Jos G. W.; van Altena, Richard; Aarnoutse, Rob E.; van der Werf, Tjip S.; Uges, Donald R. A.; Alffenaar, Jan-Willem C.

    2011-01-01

    Background: Moxifloxacin (MFX) is a potent drug for multidrug resistant tuberculosis(TB) treatment and is also useful if first-line agents are not tolerated. Therapeutic drug monitoring may help to prevent treatment failure. Obtaining a full concentration-time curve of MFX for therapeutic drug monit

  2. Agents modeling agents in information economies

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, J.M.; Durfee, E.H. [Univ. of Michigan, Ann Arbor, MI (United States)

    1996-12-31

    Our goal is to design and build agents that act intelligently when placed in an agent-based information economy, where agents buy and sell services (e.g. thesaurus, search, task planning services, etc.). The economy we are working in is the University of Michigan Digital Library (UMDL), a large scale multidisciplinary effort to build an infrastructure for the delivery of library services. In contrast with a typical economy, an information economy deals in goods and services that are often derived from unique sources (authors, analysts, etc.), so that many goods and services are not interchangeable. Also, the cost of replicating and transporting goods is usually negligible, and the quality of goods and services is difficult to measure objectively: even two sources with essentially the same information might appeal to different audiences. Thus, each agent has its own assessment of the quality of goods and services delivered.

  3. Inverse agonism and its therapeutic significance

    Directory of Open Access Journals (Sweden)

    Gurudas Khilnani

    2011-01-01

    Full Text Available A large number of G-protein-coupled receptors (GPCRs show varying degrees of basal or constitutive activity. This constitutive activity is usually minimal in natural receptors but is markedly observed in wild type and mutated (naturally or induced receptors. According to conventional two-state drug receptor interaction model, binding of a ligand may initiate activity (agonist with varying degrees of positive intrinsic activity or prevent the effect of an agonist (antagonist with zero intrinsic activity. Inverse agonists bind with the constitutively active receptors, stabilize them, and thus reduce the activity (negative intrinsic activity. Receptors of many classes (α-and β-adrenergic, histaminergic, GABAergic, serotoninergic, opiate, and angiotensin receptors have shown basal activity in suitable in vitro models. Several drugs that have been conventionally classified as antagonists (β-blockers, antihistaminics have shown inverse agonist effects on corresponding constitutively active receptors. Nearly all H 1 and H 2 antihistaminics (antagonists have been shown to be inverse agonists. Among the β-blockers, carvedilol and bucindolol demonstrate low level of inverse agonism as compared to propranolol and nadolol. Several antipsychotic drugs (D 2 receptors antagonist, antihypertensive (AT 1 receptor antagonists, antiserotoninergic drugs and opioid antagonists have significant inverse agonistic activity that contributes partly or wholly to their therapeutic value. Inverse agonism may also help explain the underlying mechanism of beneficial effects of carvedilol in congestive failure, naloxone-induced withdrawal syndrome in opioid dependence, clozapine in psychosis, and candesartan in cardiac hypertrophy. Understanding inverse agonisms has paved a way for newer drug development. It is now possible to develop agents, which have only desired therapeutic value and are devoid of unwanted adverse effect. Pimavanserin (ACP-103, a highly selective 5-HT

  4. Direct therapeutic intervention for advanced pancreatic cancer

    Science.gov (United States)

    Takakura, Kazuki; Koido, Shigeo

    2015-01-01

    Currently, chemotherapy is an accredited, standard treatment for unresectable, advanced pancreatic cancer (PC). However, it has been still showed treatment-resistance and followed dismal prognosis in many cases. Therefore, some sort of new, additional treatments are needed for the better therapeutic results for advanced PC. According to the previous reports, it is obvious that interventional endoscopic ultrasonography (EUS) is a well-established, helpful and low-risky procedure in general. As the additional treatments of the conventional therapy for advanced PC, many therapeutic strategies, such as immunotherapies, molecular biological therapies, physiochemical therapies, radioactive therapies, using siRNA, using autophagy have been developing in recent years. Moreover, the efficacy of the other potential therapeutic targets for PC using EUS-fine needle injection, for example, intra-tumoral chemotherapeutic agents (paclitaxel, irinotecan), several ablative energies (radiofrequency ablation and cryothermal treatment, neodymium-doped yttrium aluminum garnet laser, high-intensity focused ultrasound), etc., has already been showed in animal models. Delivering these promising treatments reliably inside tumor, interventional EUS may probably be indispensable existence for the treatment of locally advanced PC in near future. PMID:26677434

  5. Scope of nanotechnology in ovarian cancer therapeutics

    Directory of Open Access Journals (Sweden)

    Yallapu Murali M

    2010-08-01

    Full Text Available Abstract This review describes the use of polymer micelle nanotechnology based chemotherapies for ovarian cancer. While various chemotherapeutic agents can be utilized to improve the survival rate of patients with ovarian cancer, their distribution throughout the entire body results in high normal organ toxicity. Polymer micelle nanotechnology aims to improve the therapeutic efficacy of anti-cancer drugs while minimizing the side effects. Herein, different types of polymer micelle technology based nanotherapies such as PLGA, polymerosomes, acid cleavable, thermosensitive, pH sensitive, and cross-linked micelles are introduced and structural differences are explained. Additionally, production methods, stability, sustainability, drug incorporation and drug release profiles of various polymer micelle based nanoformulations are discussed. An important feature of polymer micelle nanotechnology is the small size (10-100 nm of particles which improves circulation and enables superior accumulation of the therapeutic drugs at the tumor sites. This review provides a comprehensive evaluation of different types of polymer micelles and their implications in ovarian cancer therapeutics.

  6. Direct therapeutic intervention for advanced pancreatic cancer.

    Science.gov (United States)

    Takakura, Kazuki; Koido, Shigeo

    2015-12-10

    Currently, chemotherapy is an accredited, standard treatment for unresectable, advanced pancreatic cancer (PC). However, it has been still showed treatment-resistance and followed dismal prognosis in many cases. Therefore, some sort of new, additional treatments are needed for the better therapeutic results for advanced PC. According to the previous reports, it is obvious that interventional endoscopic ultrasonography (EUS) is a well-established, helpful and low-risky procedure in general. As the additional treatments of the conventional therapy for advanced PC, many therapeutic strategies, such as immunotherapies, molecular biological therapies, physiochemical therapies, radioactive therapies, using siRNA, using autophagy have been developing in recent years. Moreover, the efficacy of the other potential therapeutic targets for PC using EUS-fine needle injection, for example, intra-tumoral chemotherapeutic agents (paclitaxel, irinotecan), several ablative energies (radiofrequency ablation and cryothermal treatment, neodymium-doped yttrium aluminum garnet laser, high-intensity focused ultrasound), etc., has already been showed in animal models. Delivering these promising treatments reliably inside tumor, interventional EUS may probably be indispensable existence for the treatment of locally advanced PC in near future. PMID:26677434

  7. Homocystinuria: Therapeutic approach.

    Science.gov (United States)

    Kumar, Tarun; Sharma, Gurumayum Suraj; Singh, Laishram Rajendrakumar

    2016-07-01

    Homocystinuria is a disorder of sulfur metabolism pathway caused by deficiency of cystathionine β-synthase (CBS). It is characterized by increased accumulation of homocysteine (Hcy) in the cells and plasma. Increased homocysteine results in various vascular and neurological complications. Present strategies to lower cellular and plasma homocysteine levels include vitamin B6 intake, dietary methionine restriction, betaine supplementation, folate and vitamin B12 administration. However, these strategies are inefficient for treatment of homocystinuria. In recent years, advances have been made towards developing new strategies to treat homocystinuria. These mainly include functional restoration to mutant CBS, enhanced clearance of Hcy from the body, prevention of N-homocysteinylation-induced toxicity and inhibition of homocysteine-induced oxidative stress. In this review, we have exclusively discussed the recent advances that have been achieved towards the treatment of homocystinuria. The review is an attempt to help clinicians in developing effective therapeutic strategies and designing novel drugs against homocystinuria. PMID:27059523

  8. Heterocyclic chalcone analogues as potential anticancer agents.

    Science.gov (United States)

    Sharma, Vikas; Kumar, Vipin; Kumar, Pradeep

    2013-03-01

    Chalcones, aromatic ketones and enones acting as the precursor for flavonoids such as Quercetin, are known for their anticancer effects. Although, parent chalcones consist of two aromatic rings joined by a three-carbon α,β-unsaturated carbonyl system, various synthetic compounds possessing heterocyclic rings like pyrazole, indole etc. are well known and proved to be effective anticancer agents. In addition to their use as anticancer agents in cancer cell lines, heterocyclic analogues are reported to be effective even against resistant cell lines. In this connection, we hereby highlight the potential of various heterocyclic chalcone analogues as anticancer agents with a brief summary about therapeutic potential of chalcones, mechanism of anticancer action of various chalcone analogues, and current and future prospects related to the chalcones-derived anticancer research. Furthermore, some key points regarding chalcone analogues have been reviewed by analyzing their medicinal properties. PMID:22721390

  9. Osteoporosis: Therapeutic Options.

    Science.gov (United States)

    Ivanova, Stefka; Vasileva, Liliya; Ivanova, Stanislava; Peikova, Lily; Obreshkova, Danka

    2016-01-01

    The definition of osteoporosis was originally formulated at a conference of the World Health Organization (WHO) in 1993 as 'a systemic skeletal disease characterized by decreased bone mass and altered micro-architecture of bone tissue, leading to enhanced bone fragility and risk of fractures'. Osteoporosis is characterized by low bone mineral density (BMD) and loss of the structural and bio-mechanical properties that are required to maintain bone homeostasis. This review aims to address the currently available options in prevention and treatment of osteoporosis. Management of osteoporosis includes non-pharmacological treatment - diet rich of calcium and vitamin D, healthy lifestyle, proper exercise plan, and pharmacological therapy. Combination of non-pharmacological and pharmacological treatment options have to be considered for prevention of osteoporosis and minimization of the risk of fractures. Given the heterogeneity of osteoporosis syndrome and lack of significant number of comparative studies, the choice of a pharmacological agents should be individualized. PMID:27180344

  10. FAQ about Recreational Therapy/Therapeutic Recreation

    Science.gov (United States)

    ... is the relationship between recreational therapy and therapeutic recreation? Therapeutic Recreation is the field ​​Recreational ... for individuals with disabilities." About the American Therapeutic Recreation Association: The American Therapeutic Recreation Association (ATRA) is ...

  11. Particulate Systems for Targeting of Macrophages: Basic and Therapeutic Concepts

    DEFF Research Database (Denmark)

    Moghimi, Seyed Moien; Parhamifar, Ladan; Ahmadvand, Davoud;

    2012-01-01

    Particulate systems in the form of liposomes, polymeric micelles, polymeric nano- and microparticles, and many others offer a rational approach for selective delivery of therapeutic agents to the macrophage from different physiological portals of entry. Particulate targeting of macrophages and...... intracellular drug release processes can be optimized through modifications of the drug carrier physicochemical properties, which include hydrodynamic size, shape, composition and surface characteristics. Through such modifications together with understanding of macrophage cell biology, targeting may be aimed...... at a particular subset of macrophages. Advances in basic and therapeutic concepts of particulate targeting of macrophages and related nanotechnology approaches for immune cell modifications are discussed.Copyright © 2012 S. Karger AG, Basel...

  12. Clinical applications of therapeutic phlebotomy

    Science.gov (United States)

    Kim, Kyung Hee; Oh, Ki Young

    2016-01-01

    Phlebotomy is the removal of blood from the body, and therapeutic phlebotomy is the preferred treatment for blood disorders in which the removal of red blood cells or serum iron is the most efficient method for managing the symptoms and complications. Therapeutic phlebotomy is currently indicated for the treatment of hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, and nonalcoholic fatty liver disease with hyperferritinemia. This review discusses therapeutic phlebotomy and the related disorders and also offers guidelines for establishing a therapeutic phlebotomy program. PMID:27486346

  13. Therapeutic cloning: The ethical limits

    International Nuclear Information System (INIS)

    A brief outline of stem cells, stem cell therapy and therapeutic cloning is given. The position of therapeutic cloning with regard to other embryonic manipulations - IVF-based reproduction, embryonic stem formation from IVF embryos and reproductive cloning - is indicated. The main ethically challenging stages in therapeutic cloning are considered to be the nuclear transfer process including the source of eggs for this and the destruction of an embryo to provide stem cells for therapeutic use. The extremely polarised nature of the debate regarding the status of an early human embryo is noted, and some potential alternative strategies for preparing immunocompatible pluripotent stem cells are indicated

  14. Development of secreted proteins as biotherapeutic agents.

    Science.gov (United States)

    Bonin-Debs, Angelika L; Boche, Irene; Gille, Hendrik; Brinkmann, Ulrich

    2004-04-01

    As one of the most important classes of proteins, secreted factors account for about one-tenth of the human genome, 3000 - 4000 in total, including factors of signalling pathways, blood coagulation and immune defence, as well as digestive enzymes and components of the extracellular matrix. Secreted proteins are a rich source of new therapeutics and drug targets, and are currently the focus of major drug discovery programmes throughout the industry. Many of the most important novel drugs developed in biotechnology have resulted from the application of secreted proteins as therapeutics. Secreted proteins often circulate throughout the body and, therefore, have access to most organs and tissues. Because of that, many of the factors are themselves therapeutic agents. This paper gives an overview on the features and functions of human secreted proteins and peptides, as well as strategies by which to discover additional therapeutic proteins from the human 'secretome'. Furthermore, a variety of examples are provided for the therapeutic use of recombinant secreted proteins as 'biologicals', including features and applications of recombinant antibodies, erythropoietin, insulin, interferon, plasminogen activators, growth hormone and colony-stimulating factors. PMID:15102604

  15. Radiopharmaceuticals: therapeutic applications

    International Nuclear Information System (INIS)

    Radiopharmaceuticals are chemical compounds incorporating appropriate radionuclides, which are rendered suitable for human administration. It is the artificial production of radionuclide that laid the foundation of nuclear medicine. The basic principle in designing radiolabeled compounds for therapy is to achieve a high concentration of radioactivity in the target tissue which would be capable of delivering a desirable radiation dose with minimal exposure to the critical organ (usually bone marrow). With the availability of artificially produced radionuclides, therapeutic applications were initiated. Iodine-131 for the treatment of thyroid disorders has remained the most important one. Recent advances over the past 10 years are quite dramatic. There are three important areas where considerable research work is in progress. Intraarticular administration radiocolloids appear to be valuable for the management of synovitis in patients with rheumatoid arthritis. Palliative treatment of bone metastases and total-body bone marrow irradiation seem to be feasible with bone-seeking radiopharmaceuticals. Design and development of radiolabeled compounds for targeted delivery is important, such as (a) monoclonal antibodies for specific antigens, (b) peptides for specific receptors and (c) conjugated drugs for specific tumours. Radionuclide therapy is still in its infancy and present research activities reflect future potentials. (author). 76 refs., 4 figs., 2 tabs

  16. Leech therapeutic applications

    Directory of Open Access Journals (Sweden)

    A M Abdualkader

    2013-01-01

    Full Text Available Hematophagous animals including leeches have been known to possess biologically active compounds in their secretions, especially in their saliva. The blood-sucking annelids, leeches have been used for therapeutic purposes since the beginning of civilization. Ancient Egyptian, Indian, Greek and Arab physicians used leeches for a wide range of diseases starting from the conventional use for bleeding to systemic ailments, such as skin diseases, nervous system abnormalities, urinary and reproductive system problems, inflammation, and dental problems. Recently, extensive researches on leech saliva unveiled the presence of a variety of bioactive peptides and proteins involving antithrombin (hirudin, bufrudin, antiplatelet (calin, saratin, factor Xa inhibitors (lefaxin, antibacterial (theromacin, theromyzin and others. Consequently, leech has made a comeback as a new remedy for many chronic and life-threatening abnormalities, such as cardiovascular problems, cancer, metastasis, and infectious diseases. In the 20 th century, leech therapy has established itself in plastic and microsurgery as a protective tool against venous congestion and served to salvage the replanted digits and flaps. Many clinics for plastic surgery all over the world started to use leeches for cosmetic purposes. Despite the efficacious properties of leech therapy, the safety, and complications of leeching are still controversial.

  17. Molecularly targeted therapeutic radiopharmaceuticals

    International Nuclear Information System (INIS)

    Full text: It is generally agreed that current focus of nuclear medicine development should be on molecular imaging and therapy. Though, the widespread use of the terminology 'molecular imaging' is quite recent, nuclear medicine has used molecular imaging techniques for more than 20 years ago. A variety of radiopharmaceuticals have been introduced for the internal therapy of malignant and inflammatory lesions in nuclear medicine. In the field of bio/medical imaging, nuclear medicine is one of the disciplines which has the privilege of organized and well developed chemistry/ pharmacy section; radio-chemistry/radiopharmacy. Fundamental principles have been developed more than 40 years ago and advanced research is going well into postgenomic era. The genomic revolution and dramatically increased insight in the molecular mechanisms underlying pathology have led to paradigm shift in drug development. Likewise does in the nuclear medicine. Here, the author will present current clinical and pre-clinical therapeutic radiopharmaceuticals based on molecular targets such as membrane-bound receptors, enzymes, nucleic acids, sodium iodide symporter, etc, in correlation with fundamentals of radiopharmacy. (author)

  18. Therapeutic Cancer Vaccines.

    Science.gov (United States)

    Ye, Zhenlong; Li, Zhong; Jin, Huajun; Qian, Qijun

    2016-01-01

    Cancer is one of the major leading death causes of diseases. Prevention and treatment of cancer is an important way to decrease the incidence of tumorigenesis and prolong patients' lives. Subversive achievements on cancer immunotherapy have recently been paid much attention after many failures in basic and clinical researches. Based on deep analysis of genomics and proteomics of tumor antigens, a variety of cancer vaccines targeting tumor antigens have been tested in preclinical and human clinical trials. Many therapeutic cancer vaccines alone or combination with other conventional treatments for cancer obtained spectacular efficacy, indicating the tremendously potential application in clinic. With the illustration of underlying mechanisms of cancer immune regulation, valid, controllable, and persistent cancer vaccines will play important roles in cancer treatment, survival extension and relapse and cancer prevention. This chapter mainly summarizes the recent progresses and developments on cancer vaccine research and clinical application, thus exploring the existing obstacles in cancer vaccine research and promoting the efficacy of cancer vaccine. PMID:27240458

  19. [Liver metastasis: therapeutic strategy].

    Science.gov (United States)

    Gennari, L; Doci, R; Bignami, P

    1996-01-01

    The liver is one of the most frequent sites of metastatic growth, in particular from digestive malignancies (DM). The first goal is to reduce the incidence of metastases. Adjuvant systemic chemotherapies have been demonstrated to reduce the recurrence rate and to improve survival in Dukes C colon cancer. Fluorouracil is the pivot of adjuvant treatment modulated by Leucovorin or Levamisol. A short postoperative administration of fluorouracil by intraportal route has been tested, but the results are controversial. Adjuvant treatments for different DM are under investigation. When hepatic metastases are clinically evident, therapeutic decisions depend on several factors: site and nature of primary, extent of hepatic and extrahepatic disease, patient characteristics, efficacy of treatments. A staging system should be adopted to allow a rational approach. In selected cases a locoregional treatment can achieve consistent results. Hepatic Intrarterial Chemotherapy (HIAC) for colorectal metastases achieves objective responses in more than 50% of patients. Survival seems positively affected. When feasible, Ro hepatic resection is the most effective treatment, five-year survival rate being about 30% when metastases are from colorectal cancer. Since the liver is the most frequent site of recurrence after resection, repeat resection have been successfully performed. PMID:9214269

  20. Metronidazole. A therapeutic review and update.

    Science.gov (United States)

    Freeman, C D; Klutman, N E; Lamp, K C

    1997-11-01

    effectiveness in treating anaerobic brain abscesses. Metronidazole is a cost-effective agent due to its low acquisition cost, its pharmacokinetics and pharmacodynamics, an acceptable adverse effect profile, and its undiminished antimicrobial activity. While its role as part of a therapeutic regimen for treating mixed aerobic/anaerobic infections has been reduced by newer, more expensive combination therapies, these new combinations have not been shown to have any therapeutic advantage over metronidazole. Although the use of metronidazole on a global scale has been curtailed by newer agents for various infections, metronidazole still has a role for these and other therapeutic uses. Many clinicians still consider metronidazole to be the 'gold standard' antibiotic against which all other antibiotics with anaerobic activity should be compared. PMID:9360057

  1. Chemical crowd control agents.

    Science.gov (United States)

    Menezes, Ritesh G; Hussain, Syed Ather; Rameez, Mansoor Ali Merchant; Kharoshah, Magdy A; Madadin, Mohammed; Anwar, Naureen; Senthilkumaran, Subramanian

    2016-03-01

    Chemical crowd control agents are also referred to as riot control agents and are mainly used by civil authorities and government agencies to curtail civil disobedience gatherings or processions by large crowds. Common riot control agents used to disperse large numbers of individuals into smaller, less destructive, and more easily controllable numbers include chloroacetophenone, chlorobenzylidenemalononitrile, dibenzoxazepine, diphenylaminearsine, and oleoresin capsicum. In this paper, we discuss the emergency medical care needed by sufferers of acute chemical agent contamination and raise important issues concerning toxicology, safety and health. PMID:26658556

  2. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions This dataset is associated with the following...

  3. Chalcone derivatives as potential antifungal agents: Synthesis, and antifungal activity

    OpenAIRE

    Deepa Gupta; Jain, D. K.

    2015-01-01

    Much research has been carried out with the aim to discover the therapeutic values of chalcone derivatives. Chalcones possess wide range of pharmacological activity such as antibacterial, antimalarial, antiprotozoal, antitubercular, anticancer, and antifungal agents etc. The presence of reactive α,β-unsaturated keto group in chalcones is found to be responsible for their biological activity. The rapid developments of resistance to antifungal agents, led to design, and synthesize the new antif...

  4. Interaction of Radiation Therapy With Molecular Targeted Agents

    OpenAIRE

    Morris, Zachary S.; Harari, Paul M.

    2014-01-01

    The development of molecular targeted therapeutics in oncology builds on many years of scientific investigation into the cellular mechanics of malignant transformation and progression. The past two decades have brought an accelerating pace to the clinical investigation of new molecular targeted agents, particularly in the setting of metastatic disease. The integration of molecular targeted agents into phase III clinical trial design has lagged in the curative treatment setting, particularly i...

  5. Molecular Therapeutic Approaches for Pediatric Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Sarah K Tasian

    2014-03-01

    Full Text Available Approximately two thirds of children with acute myeloid leukemia (AML are cured with intensive multi-agent chemotherapy. However, primary chemorefractory and relapsed AML remains a significant source of childhood cancer mortality, highlighting the need for new therapies. Further therapy intensification with traditional cytotoxic agents is not feasible given the potential for significant toxicity to normal tissues with conventional chemotherapy and the risk for long-term end-organ dysfunction. Significant emphasis has been placed upon the development of molecularly targeted therapeutic approaches for adults and children with high-risk subtypes of AML with the goal of improving remission induction and minimizing relapse. Several promising agents are currently in clinical testing or late preclinical development for AML, including monoclonal antibodies against leukemia cell surface proteins, kinase inhibitors, proteasome inhibitors, epigenetic agents, and chimeric antigen receptor engineered T cell immunotherapies. Many of these therapies have been specifically tested in children with relapsed/refractory AML via phase 1 and 2 trials with a smaller number of new agents under phase 3 evaluation for children with de novo AML. Although successful identification and implementation of new drugs for children with AML remains a formidable challenge, enthusiasm for novel molecular therapeutic approaches is great given the potential for significant clinical benefit for children who will otherwise fail standard therapy.

  6. Human Factor in Therapeutic Relationship

    OpenAIRE

    AKDOĞAN, Ramazan; Esra CEYHAN

    2011-01-01

    Therapeutic relationship is a professional relationship that has been structured based on theoretical props. This relationship is a complicated, wide and unique relationship which develops between two people, where both sides\\' personality and attitudes inevitably interfere. Therapist-client relationship experienced through transference and counter transference, especially in psychodynamic approaches, is accepted as the main aspect of therapeutic process. However, the approaches without dynam...

  7. Clinical applications of therapeutic phlebotomy

    Directory of Open Access Journals (Sweden)

    Kim KH

    2016-07-01

    Full Text Available Kyung Hee Kim,1 Ki Young Oh,2 1Department of Laboratory Medicine, Gachon University Gil Medical Center, Incheon, 2Department of Physical Medicine and Rehabilitation, Soonchunhyang University, Cheonan Hospital, Cheonan, South Korea Abstract: Phlebotomy is the removal of blood from the body, and therapeutic phlebotomy is the preferred treatment for blood disorders in which the removal of red blood cells or serum iron is the most efficient method for managing the symptoms and complications. Therapeutic phlebotomy is currently indicated for the treatment of hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, and nonalcoholic fatty liver disease with hyperferritinemia. This review discusses therapeutic phlebotomy and the related disorders and also offers guidelines for establishing a therapeutic phlebotomy program. Keywords: therapeutic phlebotomy, hemochromatosis, polycythemia vera, porphyria cutanea tarda, sickle cell disease, nonalcoholic fatty liver disease

  8. Metrics for antibody therapeutics development.

    Science.gov (United States)

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approved in the United States, were derived from analysis of a dataset of over 600 therapeutic mAbs that entered clinical study sponsored, at least in part, by commercial firms. The results presented provide an overview of the field and context for the evaluation of on-going and prospective mAb development programs. The expansion of therapeutic antibody use through supplemental marketing approvals and the increase in the study of therapeutics derived from alternative antibody formats are discussed. PMID:20930555

  9. Epigenetic Pathways of Oncogenic Viruses: Therapeutic Promises.

    Science.gov (United States)

    El-Araby, Amr M; Fouad, Abdelrahman A; Hanbal, Amr M; Abdelwahab, Sara M; Qassem, Omar M; El-Araby, Moustafa E

    2016-02-01

    Cancerous transformation comprises different events that are both genetic and epigenetic. The ultimate goal for such events is to maintain cell survival and proliferation. This transformation occurs as a consequence of different features such as environmental and genetic factors, as well as some types of infection. Many viral infections are considered to be causative agents of a number of different malignancies. To convert normal cells into cancerous cells, oncogenic viruses must function at the epigenetic level to communicate with their host cells. Oncogenic viruses encode certain epigenetic factors that lead to the immortality and proliferation of infected cells. The epigenetic effectors produced by oncogenic viruses constitute appealing targets to prevent and treat malignant diseases caused by these viruses. In this review, we highlight the importance of epigenetic reprogramming for virus-induced oncogenesis, with special emphasis on viral epigenetic oncoproteins as therapeutic targets. The discovery of molecular components that target epigenetic pathways, especially viral factors, is also discussed. PMID:26754591

  10. Agent Development Toolkits

    CERN Document Server

    Singh, Aarti; Sharma, A K

    2011-01-01

    Development of agents as well as their wide usage requires good underlying infrastructure. Literature indicates scarcity of agent development tools in initial years of research which limited the exploitation of this beneficial technology. However, today a wide variety of tools are available, for developing robust infrastructure. This technical note provides a deep overview of such tools and contrasts features provided by them.

  11. Radiographic scintiscanning agent

    International Nuclear Information System (INIS)

    A new technetium-based scintiscanning agent has been prepared comprising a water soluble sup(99m)Tc-methanehydroxydiphosphonate in combination with a reducing agent selected from stannous, ferrous, chromous and titanous salts. As an additional stabilizer salts and esters of gentisic or ascorbic acids have been used. (E.G.)

  12. Asimovian Adaptive Agents

    CERN Document Server

    Gordon, D F

    2011-01-01

    The goal of this research is to develop agents that are adaptive and predictable and timely. At first blush, these three requirements seem contradictory. For example, adaptation risks introducing undesirable side effects, thereby making agents' behavior less predictable. Furthermore, although formal verification can assist in ensuring behavioral predictability, it is known to be time-consuming. Our solution to the challenge of satisfying all three requirements is the following. Agents have finite-state automaton plans, which are adapted online via evolutionary learning (perturbation) operators. To ensure that critical behavioral constraints are always satisfied, agents' plans are first formally verified. They are then reverified after every adaptation. If reverification concludes that constraints are violated, the plans are repaired. The main objective of this paper is to improve the efficiency of reverification after learning, so that agents have a sufficiently rapid response time. We present two solutions: ...

  13. How do agents represent?

    Science.gov (United States)

    Ryan, Alex

    Representation is inherent to the concept of an agent, but its importance in complex systems has not yet been widely recognised. In this paper I introduce Peirce's theory of signs, which facilitates a definition of representation in general. In summary, representation means that for some agent, a model is used to stand in for another entity in a way that shapes the behaviour of the agent with respect to that entity. Representation in general is then related to the theories of representation that have developed within different disciplines. I compare theories of representation from metaphysics, military theory and systems theory. Additional complications arise in explaining the special case of mental representations, which is the focus of cognitive science. I consider the dominant theory of cognition — that the brain is a representational device — as well as the sceptical anti-representational response. Finally, I argue that representation distinguishes agents from non-representational objects: agents are objects capable of representation.

  14. Hyperthermia and chemotherapy agent

    International Nuclear Information System (INIS)

    The use of chemotherapeutic agents for the treatment of cancer dates back to the late 19th century, but the modern era of chemotherapy drugs was ushered in during the 1940's with the development of the polyfunctional alkylating agent. Since then, numerous classes of drugs have evolved and the combined use of antineoplastic agents with other treatment modalities such as radiation or heat, remains a large relatively unexplored area. This approach, combining local hyperthermia with chemotherapy agents affords a measure of targeting and selective toxicity not previously available for drugs. In this paper, the effects of adriamycin, bleomycin and cis-platinum are examined. The adjuvant use of heat may also reverse the resistance of hypoxic cells noted for some chemotherapy agents

  15. Anti-Pseudomonas aeruginosa IgY antibodies augment bacterial clearance in a murine pneumonia model

    DEFF Research Database (Denmark)

    Thomsen, K; Christophersen, L; Bjarnsholt, T;

    2016-01-01

    -P. aeruginosa IgY antibodies on bacterial eradication in a murine pneumonia model. METHODS: P. aeruginosa pneumonia was established in Balb/c mice and the effects of prophylactic IgY administration on lung bacteriology, clinical parameters and subsequent inflammation were compared to controls. RESULTS...

  16. Anti-pseudomona and Anti-bacilli Activity of Some Medicinal Plants of Iran

    OpenAIRE

    Gholam Hosein Shahidi Bonjar; Ashraf Karimi Nik; Mohammad Reza Heydari; Mohammad Hassan Ghasemzadeh; Parvin Rashid Farrokhi; Mahmood Reza Moein; Shahla Mansouri; Alireza Foroumadi

    2003-01-01

    The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by In Vitro bioassays using agar diffusion-method against standard strains of Pseudomonas aeruginosa, P. fluorescens, Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. From 180 plant species of 72 families, 78 spec...

  17. Anti-pseudomona and Anti-bacilli Activity of Some Medicinal Plants of Iran

    Directory of Open Access Journals (Sweden)

    Gholam Hosein Shahidi Bonjar

    2003-10-01

    Full Text Available The use of plants in treatment of burns, dermatophytes, and infectious diseases is common in traditional medicine of Iran. Based on ethno pharmacological and taxonomic information, antibacterial activities of methanol extracts of some medicinal plants of Iran were determined by In Vitro bioassays using agar diffusion-method against standard strains of Pseudomonas aeruginosa, P. fluorescens, Bacillus subtilis, B. cereus and B. pumilis at 20 mg/ml. From 180 plant species of 72 families, 78 species (43.3% in 42 families (58.3% showed antibacterial activities against B. cereus (88.4%, B. subtilis (39.7%, B. pumilis (37.1%, P. fluorescens (37.1% and P. aeruginos (10.2%. The most active plant families were Apiaceae, Compositae and Labiatae with 9, 8 and 7 active plant species respectively. Minimum inhibitory concentrations (MIC of the active plants were determined using two fold serial dilutions. Most active plant against Bacilli was Myrtus communis L. with MIC of 1.87 mg/ml. For Pseudomonas species, Dianthus caryophyllus L. and Terminalia chebula (Gaertner Retz. were more active with the MIC of 0.46 mg/ml for P. fluorescens and of 1.87 mg/ml for P. aeruginosa respectively.

  18. Therapeutic postprostatectomy irradiation.

    Science.gov (United States)

    Youssef, Emad; Forman, Jeffrey D; Tekyi-Mensah, Samuel; Bolton, Susan; Hart, Kim

    2002-06-01

    factors. The results of therapeutic radiation for patients with elevated postprostatectomy PSA levels are sufficiently poor; other strategies should be explored as alternatives, including early adjuvant postprostatectomy irradiation or the use of combined hormonal and radiation therapy in the salvage situation. PMID:15046710

  19. Molecular Selection, Modification and Development of Therapeutic Oligonucleotide Aptamers

    OpenAIRE

    Yuanyuan Yu; Chao Liang; Quanxia Lv; Defang Li; Xuegong Xu; Baoqin Liu; Aiping Lu; Ge Zhang

    2016-01-01

    Monoclonal antibodies are the dominant agents used in inhibition of biological target molecules for disease therapeutics, but there are concerns of immunogenicity, production, cost and stability. Oligonucleotide aptamers have comparable affinity and specificity to targets with monoclonal antibodies whilst they have minimal immunogenicity, high production, low cost and high stability, thus are promising inhibitors to rival antibodies for disease therapy. In this review, we will compare the det...

  20. Galectins as therapeutic targets for hematological malignancies: a hopeful sweetness.

    Science.gov (United States)

    Pena, Camilo; Mirandola, Leonardo; Figueroa, Jose A; Hosiriluck, Nattamol; Suvorava, Natallia; Trotter, Kayley; Reidy, Adair; Rakhshanda, Rahman; Payne, Drew; Jenkins, Marjorie; Grizzi, Fabio; Littlefield, Lauren; Chiriva-Internati, Maurizio; Cobos, Everardo

    2014-09-01

    Galectins are family of galactose-binding proteins known to play critical roles in inflammation and neoplastic progression. Galectins facilitate the growth and survival of neoplastic cells by regulating their cross-talk with the extracellular microenvironment and hampering anti-neoplastic immunity. Here, we review the role of galectins in the biology of hematological malignancies and their promise as potential therapeutic agents in these diseases. PMID:25405162

  1. Cold-Adapted Proteases as an Emerging Class of Therapeutics

    OpenAIRE

    Fornbacke, Marcus; Clarsund, Mats

    2013-01-01

    Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments—cold-adapted or psychrophilic proteases—generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible...

  2. PHYTOCHEMICAL AND THERAPEUTIC POTENTIAL OF PIPER LONGUM LINN A REVIEW

    OpenAIRE

    Chauhan Khushbu; Solanki Roshni; Patel Anar; Macwan Carol; Patel Mayuree

    2011-01-01

    Medicinal plants have shown tremendous potential for the development of the new drug molecules for various serious diseases. Many plant derived products have found to play an important role in various disease conditions. Piper longum Linn. is a native of the Indo-Malaya region, belongs to family Piperaceae. Piper longum Linn. (Piperaceae) has been used as a therapeutic agent in the treatment of various pathological conditions. The tribal population uses the plant for cardiovascular activities...

  3. The therapeutic value of glycolic acid peels in dermatology

    OpenAIRE

    Grover C; Reddu B

    2003-01-01

    Chemical peeling or chemexfoliation has become increasingly popular in recent years for treatment of a number of cosmetic skin problems. Topical glycolic acid in the concentration of 10-30% for 3-5 minutes at fortnightly intervals was investigated as a therapeutic peeling agent in 41 patients having acne (39%), melasma (36.5%), post inflammatory hyperpigmentation (12%) and superficial scarring of varied etiology (12%). A final evaluation done at 16 weeks rev...

  4. Emerging clinical and therapeutic applications of Nigella sativa in gastroenterology

    OpenAIRE

    2009-01-01

    Nigella sativa (N. sativa) decreases DNA damage and thereby prevents initiation of carcinogenesis in colonic tissue secondary to exposure to toxic agents such as azoxymethane. N. sativa is of immense therapeutic benefit in diabetic individuals and those with glucose intolerance as it accentuates glucose-induced secretion of insulin besides having a negative impact on glucose absorption from the intestinal mucosa. N. sativa administration protects hepatic tissue from deleterious effects of tox...

  5. Multicenter Study of Voriconazole Pharmacokinetics and Therapeutic Drug Monitoring

    OpenAIRE

    Dolton, Michael J.; Ray, John E; Chen, Sharon C.-A.; Ng, Kingsley; Pont, Lisa G.; McLachlan, Andrew J.

    2012-01-01

    Voriconazole is a first-line agent in the treatment of many invasive fungal infections and is known to display highly variable pharmacokinetics. Previous studies of voriconazole therapeutic drug monitoring (TDM) have suggested concentration monitoring to be clinically useful but have been limited by small patient samples at a single institution. This multicenter retrospective study aimed to investigate relationships between voriconazole concentration and clinical outcomes and adverse events a...

  6. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation†

    OpenAIRE

    Kamaly, Nazila; Xiao, Zeyu; Valencia, Pedro M.; Radovic-Moreno, Aleksandar F.; Farokhzad, Omid C.

    2012-01-01

    Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newe...

  7. Radioprotective Agents: Strategies and Translational Advances.

    Science.gov (United States)

    Kamran, Mohammad Zahid; Ranjan, Atul; Kaur, Navrinder; Sur, Souvik; Tandon, Vibha

    2016-04-01

    Radioprotectors are agents required to protect biological system exposed to radiation, either naturally or through radiation leakage, and they protect normal cells from radiation injury in cancer patients undergoing radiotherapy. It is imperative to study radioprotectors and their mechanism of action comprehensively, looking at their potential therapeutic applications. This review intimately chronicles the rich intellectual, pharmacological story of natural and synthetic radioprotectors. A continuous effort is going on by researchers to develop clinically promising radioprotective agents. In this article, for the first time we have discussed the impact of radioprotectors on different signaling pathways in cells, which will create a basis for scientific community working in this area to develop novel molecules with better therapeutic efficacy. The bright future of exceptionally noncytotoxic derivatives of bisbenzimidazoles is also described as radiomodulators. Amifostine, an effective radioprotectant, has been approved by the FDA for limited clinical use. However, due to its adverse side effects, it is not routinely used clinically. Recently, CBLB502 and several analog of a peptide are under clinical trial and showed high success against radiotherapy in cancer. This article reviews the different types of radioprotective agents with emphasis on the strategies for the development of novel radioprotectors for drug development. In addition, direction for future strategies relevant to the development of radioprotectors is also addressed. PMID:26807693

  8. Biological agents targeting beyond TNF-alpha

    Directory of Open Access Journals (Sweden)

    Sharma Rashmi

    2008-01-01

    Full Text Available Biological agents represent an important addition to the therapies for immuno-inflammatory conditions and have a great impact on the disease course and quality of life of these patients. However, recent reports of serious infections like tuberculosis, demyelinating and neurodegenerative diseases, pancytopenia, cardiovascular diseases, etc. after anti-TNF therapy raised questions on their safety. Hence, focus is shifted towards drugs targeting cytokine checkpoints in the inflammatory cascades beyond TNF-a. Existing therapeutic targets include the biological agents acting as antagonists of various inflammatory cytokines (Anakinra, Tocilizumab, Atlizumab and modulators of CD80 or CD86-CD28 co-stimulatory signal (Abatacept, CD2 receptors on T-cells (Alefacept, CD11a, subunit of leukocyte function-associated antigen 1 (Efalizumab, vitronectin receptor and CD20 antigen on pre-B, immature and mature B cells (Rituximab. With the introduction of these novel molecules the future for immunomodulatory intervention in rheumatology, asthma, crohn′s disease, septic shock etc. looks very promising. These novel therapeutic agents could truly give a new hope to the clinician to modify the disease and achieve tangible improvements in the lives of the patients.

  9. Ondansetron. Therapeutic use as an antiemetic

    Energy Technology Data Exchange (ETDEWEB)

    Milne, R.J.; Heel, R.C. (Adis Drug Information Services, Auckland (New Zealand))

    1991-04-01

    Ondansetron (GR 38032F) is a highly selective 5-HT3 receptor antagonist, one of a new class of compounds which may have several therapeutic applications. Animal and clinical studies show that ondansetron reduces the 24-hour incidence and severity of nausea and vomiting induced by cytotoxic drugs, including cisplatin, and by single exposure, high dose radiation. Ondansetron is more effective than high dose metoclopramide in the 24 hours following chemotherapy, and preliminary clinical evidence suggests that it is equally effective in the following 4 days. It is also more effective than the moderate doses of metoclopramide used to suppress emesis following radiotherapy. The antiemetic efficacy of ondansetron is enhanced by dexamethasone in cisplatin-treated patients. Importantly, extrapyramidal effects have not been reported with ondansetron. Further comparisons are required with standard combination antiemetic therapy to complement the data presently available. Thus, ondansetron is a promising new agent for prophylaxis against nausea and vomiting in chemotherapy and radiotherapy. It may be particularly useful in young and elderly patients who are more susceptible to extrapyramidal symptoms induced by high dose metoclopramide. With its improved tolerability and clinical response profiles, ondansetron represents an important advance in a difficult area of therapeutics. 101 refs.

  10. Ondansetron. Therapeutic use as an antiemetic

    International Nuclear Information System (INIS)

    Ondansetron (GR 38032F) is a highly selective 5-HT3 receptor antagonist, one of a new class of compounds which may have several therapeutic applications. Animal and clinical studies show that ondansetron reduces the 24-hour incidence and severity of nausea and vomiting induced by cytotoxic drugs, including cisplatin, and by single exposure, high dose radiation. Ondansetron is more effective than high dose metoclopramide in the 24 hours following chemotherapy, and preliminary clinical evidence suggests that it is equally effective in the following 4 days. It is also more effective than the moderate doses of metoclopramide used to suppress emesis following radiotherapy. The antiemetic efficacy of ondansetron is enhanced by dexamethasone in cisplatin-treated patients. Importantly, extrapyramidal effects have not been reported with ondansetron. Further comparisons are required with standard combination antiemetic therapy to complement the data presently available. Thus, ondansetron is a promising new agent for prophylaxis against nausea and vomiting in chemotherapy and radiotherapy. It may be particularly useful in young and elderly patients who are more susceptible to extrapyramidal symptoms induced by high dose metoclopramide. With its improved tolerability and clinical response profiles, ondansetron represents an important advance in a difficult area of therapeutics. 101 refs

  11. Human Factor in Therapeutic Relationship

    Directory of Open Access Journals (Sweden)

    Ramazan Akdogan

    2011-03-01

    Full Text Available herapeutic relationship is a professional relationship that has been structured based on theoretical props. This relationship is a complicated, wide and unique relationship which develops between two people, where both sides' personality and attitudes inevitably interfere. Therapist-client relationship experienced through transference and counter transference, especially in psychodynamic approaches, is accepted as the main aspect of therapeutic process. However, the approaches without dynamic/deterministic tendency also take therapist-client relationship into account seriously and stress uniqueness of interaction between two people. Being a person and a human naturally sometimes may negatively influence the relationship between the therapist and client and result in a relationship going out of the theoretical frame at times. As effective components of a therapeutic process, the factors that stem from being human include the unique personalities of the therapist and the client, their values and their attitude either made consciously or subconsciously. Literature has shown that the human-related factors are too effective to be denied in therapeutic relationship process. Ethical and theoretical knowledge can be inefficient to prevent the negative effects of these factors in therapeutic process at which point a deep insight and supervision would have a critical role in continuing an acceptable therapeutic relationship. This review is focused on the reflection of some therapeutic factors resulting from being human and development of counter transference onto the therapeutic process.

  12. Challenges to oligonucleotides-based therapeutics for Duchenne muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Goyenvalle Aurélie

    2011-02-01

    Full Text Available Abstract Antisense oligonucleotides are short nucleic acids designed to bind to specific messenger RNAs in order to modulate splicing patterns or inhibit protein translation. As such, they represent promising therapeutic tools for many disorders and have been actively developed for more than 20 years as a form of molecular medicine. Although significant progress has been made in developing these agents as drugs, they are yet not recognized as effective therapeutics and several hurdles remain to be overcome. Within the last few years, however, the prospect of successful oligonucleotides-based therapies has moved a step closer, in particular for Duchenne muscular dystrophy. Clinical trials have recently been conducted for this myopathy, where exon skipping is being used to achieve therapeutic outcomes. In this review, the recent developments and clinical trials using antisense oligonucleotides for Duchenne muscular dystrophy are discussed, with emphasis on the challenges ahead for this type of therapy, especially with regards to delivery and regulatory issues.

  13. MicroRNA therapeutics: principles, expectations, and challenges

    Institute of Scientific and Technical Information of China (English)

    Rajesha Rupaimoole; Hee-Dong Han; Gabriel Lopez-Berestein; Anil K. Sood

    2011-01-01

    MicroRNAs (miRNAs) are a class of highly abundant non-coding RNA molecules that are involved in several biological processes. Many miRNAs are often deregulated in several diseases including cancer. There is substantial interest in exploiting miRNAs for therapeutic applications. In this editorial, we briefly review current advances in the use of miRNAs or antisense oligonucleotides (antagomirs) for such therapies. One of the key issues related to therapy using miRNAs is degradation of naked particles in vivo. To overcome this limitation, delivery systems for miRNA-based therapeutic agents have been developed, which hold tremendous potential for improving therapeutic outcome of cancer patients.

  14. The use of novel agents in multiple myeloma patients with hepatic impairment

    OpenAIRE

    Stansfield, Lindsay C; Gonsalves, Wilson I.; Buadi, Francis K.

    2015-01-01

    Novel drugs such as immunomodulators and proteasome inhibitors have improved the survival of patients with multiple myeloma. Like all therapeutic agents, appropriate dosing based on metabolism and clearance is important to maintain efficacy while avoiding toxicity. Hepatic impairment (HI) in multiple myeloma patients is rare but well described either due to disease or therapy-related factors. However, limited data are available on the appropriate use and dosing of the novel agent therapeutics...

  15. Exubera. Inhale therapeutic systems.

    Science.gov (United States)

    Bindra, Sanjit; Cefalu, William T

    2002-05-01

    Inhale, in colaboration with Pfizer and Aventis Pharma (formerly Hoechst Marion Roussel; HMR), is developing an insulin formulation utilizing its pulmonary delivery technology for macromolecules for the potential treatment of type I and II diabetes. By July 2001, the phase III program had been completed and the companies had begun to assemble data for MAA and NDA filings; however, it was already clear at this time that additional data might be required for filing. By December 2001, it had been decided that the NDA should include an increased level of controlled, long-term pulmonary safety data in diabetic patients and a major study was planned to be completed in 2002, with the NDA filed thereafter (during 2002). US-05997848 was issued to Inhale Therapeutic Systems in December 1999, and corresponds to WO-09524183, filed in February 1995. Equivalent applications have appeared to date in Australia, Brazil, Canada, China, Czech Republic, Europe, Finland, Hungary, Japan, Norway, New Zealand, Poland and South Africa. This family of applications is specific to pulmonary delivery of insulin. In February 1999, Lehman Brothers gave this inhaled insulin a 60% probability of reaching market, with a possible launch date of 2001. The analysts estimated peak sales at $3 billion in 2011. In May 2000, Aventis predicted that estimated peak sales would be in excess of $1 billion. In February 2000, Merrill Lynch expected product launch in 2002 and predicted that it would be a multibillion-dollar product. Analysts Merril Lynch predicted, in September and November 2000, that the product would be launched by 2002, with sales in that year of e75 million, rising to euro 500 million in 2004. In April 2001, Merrill Lynch predicted that filing for this drug would occur in 2001. Following the report of the potential delay in regulatory filing, issued in July 2001, Deutsche Banc Alex Brown predicted a filing would take place in the fourth quarter of 2002 and launch would take place in the first

  16. Reinforcing targeted therapeutics with phenotypic stability factors.

    Science.gov (United States)

    Yaswen, Paul

    2014-01-01

    Deregulated cell cycle progression can often be traced to intrinsic defects in specific regulatory proteins in cancer cells. Knowledge of these primary defects has led to targeted approaches that exploit the defects and spare normal cells. However, the success of such targeted approaches is still hit-or-miss. Genetic and epigenetic variability inherent in most tumors often results in phenotypic heterogeneity that, in turn, results in de novo or acquired resistance to therapeutic agents. The ability of cells to compensate and adapt to the inhibition of a specific cell cycle mediator is not remarkable. What is novel and of great potential importance is that the ability of cells to exhibit such adaptability varies markedly. "Phenotypic stability factors" that restrict the ability of cells to undergo epithelial-mesenchymal transitions (EMT) may dictate the success or failure of targeted therapies by interfering with compensatory changes such as deregulation of CDK2 activity. Identification of existing and new agents that induce and maintain phenotypic stability factors will inform and enable synergistic approaches to the eradication of even the most aggressive tumors. PMID:25483053

  17. Users, Bystanders and Agents

    DEFF Research Database (Denmark)

    Krummheuer, Antonia Lina

    2015-01-01

    Human-agent interaction (HAI), especially in the field of embodied conversational agents (ECA), is mainly construed as dyadic communication between a human user and a virtual agent. This is despite the fact that many application scenarios for future ECAs involve the presence of others. This paper...... the construction of the agent’s identity, and (3) how HAI, as a mediated interaction, is framed by an asymmetric participation framework. The paper concludes by suggesting various participation roles, which may inform development of ECAs....

  18. Agent-Based Optimization

    CERN Document Server

    Jędrzejowicz, Piotr; Kacprzyk, Janusz

    2013-01-01

    This volume presents a collection of original research works by leading specialists focusing on novel and promising approaches in which the multi-agent system paradigm is used to support, enhance or replace traditional approaches to solving difficult optimization problems. The editors have invited several well-known specialists to present their solutions, tools, and models falling under the common denominator of the agent-based optimization. The book consists of eight chapters covering examples of application of the multi-agent paradigm and respective customized tools to solve  difficult optimization problems arising in different areas such as machine learning, scheduling, transportation and, more generally, distributed and cooperative problem solving.

  19. Epigenetic associations in relation to cardiovascular prevention and therapeutics.

    Science.gov (United States)

    Voelter-Mahlknecht, Susanne

    2016-01-01

    Cardiovascular diseases (CVD) increasingly burden societies with vast financial and health care problems. Therefore, the importance of improving preventive and therapeutic measures against cardiovascular diseases is continually growing. To accomplish such improvements, research must focus particularly on understanding the underlying mechanisms of such diseases, as in the field of epigenetics, and pay more attention to strengthening primary prevention. To date, preliminary research has found a connection between DNA methylation, histone modifications, RNA-based mechanisms and the development of CVD like atherosclerosis, cardiac hypertrophy, myocardial infarction, and heart failure. Several therapeutic agents based on the findings of such research projects are currently being tested for use in clinical practice. Although these tests have produced promising data so far, no epigenetically active agents or drugs targeting histone acetylation and/or methylation have actually entered clinical trials for CVDs, nor have they been approved by the FDA. To ensure the most effective prevention and treatment possible, further studies are required to understand the complex relationship between epigenetic regulation and the development of CVD. Similarly, several classes of RNA therapeutics are currently under development. The use of miRNAs and their targets as diagnostic or prognostic markers for CVDs is promising, but has not yet been realized. Further studies are necessary to improve our understanding of the involvement of lncRNA in regulating gene expression changes underlying heart failure. Through the data obtained from such studies, specific therapeutic strategies to avoid heart failure based on interference with incRNA pathways could be developed. Together, research and testing findings raise hope for enhancing the therapeutic armamentarium. This review presents the currently available data concerning epigenetic mechanisms and compounds involved in cardiovascular diseases

  20. Modafinil as a catecholaminergic agent: empirical evidence and unanswered questions

    Directory of Open Access Journals (Sweden)

    Jonathan P Wisor

    2013-10-01

    Full Text Available Modafinil, in its two clinical formulations (Provigil® and Nuvigil®, is a widely prescribed wake-promoting therapeutic agent. It binds competitively to the cell membrane dopamine transporter and is dependent on catecholaminergic (dopaminergic and adrenergic signaling for its wake-promoting effects. The clinical spectrum of effects for modafinil is distinct from the effects seen with other catecholaminergic agents. Relative to other commonly used agents that act through catecholaminergic mechanisms, modafinil has a relatively low abuse potential, produces wakefulness with an attenuated compensatory sleep recovery thereafter, and does not ameliorate cataplexy in narcolepsy. These clinically relevant phenomenological differences between modafinil and agents such as amphetamines and cocaine do not eliminate catecholaminergic effects as a possible mediator of its wake-promoting action; they merely reflect its unique pharmacological profile. Modafinil is an exceptionally weak, but apparently very selective, dopamine transporter inhibitor. The pharmacodynamic response to modafinil, as measured by dopamine levels in brain microdialysate, is protracted relative to other agents that act via catecholaminergic mechanisms. The conformational constraints on the interaction of modafinil with the dopamine transporter—and probably, as a consequence, its effects on trace amine receptor signaling in the catecholaminergic cell—are unique among catecholaminergic agents. These unique pharmacological properties of modafinil should be considered both in seeking to thoroughly understand its putatively elusive mechanism of action and in the design of novel therapeutic agents.

  1. Agent Standards Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation of the work herein proposed is the development of standards for software autonomous agents. These standards are essential to achieve software...

  2. Attachment theory and therapeutic relationships

    OpenAIRE

    Boysan, Zehra

    2015-01-01

    The aims of this study were to examine the associations between current self-reported attachment styles, retrospective reports of childhood experiences, and the development of the therapeutic alliance. It was hypothesised that anxious and avoidant attachment would be correlated with negative childhood experiences and that both attachment anxiety and avoidance would be inversely correlated with the therapeutic alliance. The third hypothesis stated that negative childhood recollections would co...

  3. Bioengineering Beige Adipose Tissue Therapeutics

    OpenAIRE

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiolog...

  4. Therapeutic Vaccines for Chronic Infections

    Science.gov (United States)

    Autran, Brigitte; Carcelain, Guislaine; Combadiere, Béhazine; Debre, Patrice

    2004-07-01

    Therapeutic vaccines aim to prevent severe complications of a chronic infection by reinforcing host defenses when some immune control, albeit insufficient, can already be demonstrated and when a conventional antimicrobial therapy either is not available or has limited efficacy. We focus on the rationale and challenges behind this still controversial strategy and provide examples from three major chronic infectious diseases-human immunodeficiency virus, hepatitis B virus, and human papillomavirus-for which the efficacy of therapeutic vaccines is currently being evaluated.

  5. Therapeutic cloning: promises and issues

    OpenAIRE

    Kfoury, Charlotte

    2007-01-01

    Advances in biotechnology necessitate both an understanding of scientific principles and ethical implications to be clinically applicable in medicine. In this regard, therapeutic cloning offers significant potential in regenerative medicine by circumventing immunorejection, and in the cure of genetic disorders when used in conjunction with gene therapy. Therapeutic cloning in the context of cell replacement therapy holds a huge potential for de novo organogenesis and the permanent treatment o...

  6. Metrics for antibody therapeutics development

    OpenAIRE

    Reichert, Janice M

    2010-01-01

    A wide variety of full-size monoclonal antibodies (mAbs) and therapeutics derived from alternative antibody formats can be produced through genetic and biological engineering techniques. These molecules are now filling the preclinical and clinical pipelines of every major pharmaceutical company and many biotechnology firms. Metrics for the development of antibody therapeutics, including averages for the number of candidates entering clinical study and development phase lengths for mAbs approv...

  7. [Therapeutic touch and anorexia nervosa].

    Science.gov (United States)

    Satori, Nadine

    2016-01-01

    An innovative practice, therapeutic touch has been used for around ten years in the treatment of eating disorders. Delivered by nurse clinicians having received specific training, this approach is based on nursing diagnoses which identify the major symptoms of this pathology. The support is built around the body and its perceptions. Through the helping relationship, it mobilises the patient's resources to favour a relationship of trust, a letting-go, physical, psychological and emotional relaxation, and improves the therapeutic alliance. PMID:27615696

  8. Antibody Engineering and Therapeutics Conference

    OpenAIRE

    Larrick, James W; Parren, Paul WHI; Huston, James S; Plückthun, Andreas; Bradbury, Andrew; Tomlinson, Ian M; Chester, Kerry A.; Burton, Dennis R.; Adams, Gregory P; Weiner, Louis M.; Scott, Jamie K; Alfenito, Mark R; Veldman, Trudi; Reichert, Janice M

    2013-01-01

    The Antibody Engineering and Therapeutics conference, which serves as the annual meeting of The Antibody Society, will be held in Huntington Beach, CA from Sunday December 8 through Thursday December 12, 2013. The scientific program will cover the full spectrum of challenges in antibody research and development, and provide updates on recent progress in areas from basic science through approval of antibody therapeutics. Keynote presentations will be given by Leroy Hood (Institute of System Bi...

  9. Therapeutic trials in digital osteoarthritis. A critical review.

    Science.gov (United States)

    Trêves, R; Maheu, E; Dreiser, R L

    1995-06-01

    Although common, hand osteoarthritis is controversial and rarely used as a model for clinical trials in osteoarthritis. We found only 13 therapeutic trials conducted in digital or trapeziometacarpal osteoarthritis between 1983 and 1994. Eleven of these trials were published. Seven were on nonsteroidal antiinflammatory drugs given either per os (two trials, meclofenamate and ibuprofen) or percutaneously (one trial each on etofenamate, ibuprofen, and ketoprofen gel, and two trials on niflumic acid gel), three were on symptomatic slow-acting drugs (glycosaminoglycanes in two trials and chondroitin sulfate in one), and three were on miscellaneous agents (the muscle relaxant idrocilamide, as a gel; the antisubstance P agent capsaicin, also as a gel; and a spa treatment). We have reviewed the methodology and findings of these trials with the goal of determining the optimal approach to realize better standardized trials in the next future for identifying symptomatic slow-acting drugs and/or "chondroprotective" agents with beneficial effects in digital osteoarthritis. PMID:7583181

  10. Programming Service Oriented Agents

    OpenAIRE

    Hirsch, Benjamin; Konnerth, Thomas; Burkhardt, Michael; Albayrak, Sahin

    2010-01-01

    This paper introduces a programming language for service-oriented agents. JADL++ combines the ease of use of scripting-languages with a state-of-the-art service oriented approach which allows the seamless integration of web-services. Furthermore, the language includes OWL-based ontologies for semantic descriptions of data and services, thus allowing agents to make intelligent decisions about service calls.

  11. Adrenal imaging agents

    International Nuclear Information System (INIS)

    The goals of this proposal are the development of selenium-containing analogs of the aromatic amino acids as imaging agents for the pancreas and of the adrenal cortex enzyme inhibitors as imaging agents for adrenal pathology. The objects for this year include (a) the synthesis of methylseleno derivatives of phenylalanine and tryptophan, and (b) the preparation and evaluation of radiolabeled iodobenzoyl derivatives of the selenazole and thiazole analogs of metyrapone and SU-9055

  12. X-ray phase computed tomography for nanoparticulated imaging probes and therapeutics: preliminary feasibility study

    Science.gov (United States)

    Tang, Xiangyang; Yang, Yi; Tang, Shaojie

    2011-03-01

    With the scientific progress in cancer biology, pharmacology and biomedical engineering, the nano-biotechnology based imaging probes and therapeutical agents (namely probes/agents) - a form of theranostics - are among the strategic solutions bearing the hope for the cure of cancer. The key feature distinguishing the nanoparticulated probes/agents from their conventional counterparts is their targeting capability. A large surface-to-volume ratio in nanoparticulated probes/agents enables the accommodation of multiple targeting, imaging and therapeutic components to cope with the intra- and inter-tumor heterogeneity. Most nanoparticulated probes/agents are synthesized with low atomic number materials and thus their x-ray attenuation are very similar to biological tissues. However, their microscopic structures are very different, which may result in significant differences in their refractive properties. Recently, the investigation in the x-ray grating-based differential phase contrast (DPC) CT has demonstrated its advantages in differentiating low-atomic materials over the conventional attenuation-based CT. We believe that a synergy of x-ray grating-based DPC CT and nanoparticulated imaging probes and therapeutic agents may play a significant role in extensive preclinical and clinical applications, or even become a modality for molecular imaging. Hence, we propose to image the refractive property of nanoparticulated imaging probes and therapeutical agents using x-ray grating-based DPC CT. In this work, we conduct a preliminary feasibility study with a focus to characterize the contrast-to-noise ratio (CNR) and contrast-detail behavior of the x-ray grating-based DPC CT. The obtained data may be instructive to the architecture design and performance optimization of the x-ray grating-based DPC CT for imaging biomarker-targeted imaging probes and therapeutic agents, and even informative to the translation of preclinical research in theranostics into clinical applications.

  13. Targeted Anticancer Immunotoxins and Cytotoxic Agents with Direct Killing Moieties

    Directory of Open Access Journals (Sweden)

    Koji Kawakami

    2006-01-01

    Full Text Available Despite the progress of the bioinformatics approach to characterize cell-surface antigens and receptors on tumor cells, it remains difficult to generate novel cancer vaccines or neutralizing monoclonal antibody therapeutics. Among targeted cancer therapeutics, biologicals with targetable antibodies or ligands conjugated or fused to toxins or chemicals for direct cell-killing ability have been developed over the last 2 decades. These conjugated or fused chimeric proteins are termed immunotoxins or cytotoxic agents. Two agents, DAB389IL-2 (ONTAKTM targeting the interleukin-2 receptor and CD33-calicheamicin (Mylotarg®, have been approved by the FDA for cutaneous T-cell lymphoma (CTCL and relapsed acute myeloid leukemia (AML, respectively. Such targetable agents, including RFB4(dsFv-PE38 (BL22, IL13-PE38QQR, and Tf-CRM107, are being tested in clinical trials. Several agents using unique technology such as a cleavable adapter or immunoliposomes with antibodies are also in the preclinical stage. This review summarizes the generation, mechanism, and development of these agents. In addition, possible future directions of this therapeutic approach are discussed.

  14. Agent amplified communication

    Energy Technology Data Exchange (ETDEWEB)

    Kautz, H.; Selman, B.; Milewski, A. [AT& T Laboratories, Murray Hill, NJ (United States)

    1996-12-31

    We propose an agent-based framework for assisting and simplifying person-to-person communication for information gathering tasks. As an example, we focus on locating experts for any specified topic. In our approach, the informal person-to-person networks that exist within an organization are used to {open_quotes}referral chain{close_quotes} requests for expertise. User-agents help automate this process. The agents generate referrals by analyzing records of e-mail communication patterns. Simulation results show that the higher responsiveness of an agent-based system can be effectively traded for the higher accuracy of a completely manual approach. Furthermore, preliminary experience with a group of users on a prototype system has shown that useful automatic referrals can be found in practice. Our experience with actual users has also shown that privacy concerns are central to the successful deployment of personal agents: an advanced agent-based system will therefore need to reason about issues involving trust and authority.

  15. Natural product derived immune-regulatory agents.

    Science.gov (United States)

    Talmadge, James E

    2016-08-01

    We can now declare that the clinical goal of immune intervention as a therapeutic strategy for neoplastic, infectious, autoimmune and inflammatory diseases, has been achieved and in many instances obtained regulatory approval. Although, interest in and optimism for this approach has fluctuated, in the last 20years, immunotherapy has progressed from trials with crude microbial mixtures and extracts to the sophisticated use of pure cultured bacterial, synthetized active moieties identified from crude extracts, analogues therefrom and agonists and antagonists identified during screening resulting in reproducible pharmacologically active compounds with multiple mechanisms of action. Our current understanding of the mechanism of action for immunoregulatory agents contributes to the future discovery of improved strategies to use these and future immunotherapies. In this review we have identified and discussed, those drugs that have been approved and or are in clinical development as immunoregulatory agents, emphasizing those derived from or associated with natural product. PMID:26968760

  16. Radio-protective role of antioxidant agents

    Directory of Open Access Journals (Sweden)

    Alireza Shirazi

    2012-10-01

    Full Text Available Ionizing radiation interacts with biological systems to produce reactive oxygen species and reactive nitrogen species which attack various cellular components. Radio-protectors act as prophylactic agents to shield healthy cells and tissues from the harmful effects of radiation. Past research on synthetic radio-protectors has brought little success, primarily due to the various toxicity-related problems. Results of experimental research show that antioxidant nutrients, such as vitamin E and herbal products and melatonin, are protective against the damaging effects of radiation, with less toxicity and side effects. Therefore, we propose that in the future, antioxidant radio-protective agents may improve the therapeutic index in radiation oncology treatments.

  17. Second generation photodynamic agents: a review.

    Science.gov (United States)

    Sternberg, E D; Dolphin, D

    1993-10-01

    Over the last decade, laser treatment of neoplastic diseases has become routine. The ability of these light-induced therapies to effect positive results is increased with the utilization of photosensitizing dyes. The approval of Photofrin in Canada as a first generation photodynamic therapeutic agent for the treatment of some forms of bladder cancer is being followed by the development of other agents with improved properties. At this time a number of second generation photosensitizing dyes are under study in phase I/II clinical trials. A review of the status of these trials along with mechanistic aspects is reviewed in this article. In addition, a review of the status of lasers to be utilized for photodynamic therapy gives some indication of which instruments could be considered for this therapy in the future. PMID:10146514

  18. Therapeutic radionuclides: production and decay property considerations.

    Science.gov (United States)

    Volkert, W A; Goeckeler, W F; Ehrhardt, G J; Ketring, A R

    1991-01-01

    The development of effective therapeutic radiopharmaceuticals requires careful consideration in the selection of the radionuclide. The in vivo targeting and clearance properties of the carrier molecule must be balanced with the decay properties of the attached radionuclide. Radionuclides for therapeutic applications fall into three general categories: beta-particle emitters, alpha-particle emitters, and Auger and Coster-Kronig-electron emitters following electron capture. Alpha particles and Auger electrons deposit their energy over short distances with a high LET that limits the ability of cells to repair damage to DNA. Despite their high levels of cytotoxicity, the relatively short range of alpha particles requires binding of the carrier molecule to most cancer cells within a tumor in order to be effective. Because of the extremely short range of Auger electrons, the radionuclide must be carried directly into the nucleus to elicit high radiotoxicity, making it necessary to deliver the radionuclide to every cell within a tumor cell population. These characteristics impose rigid restrictions on the nature of the carrier molecules for these types of particle emitters but successful targeting of these types of radionuclides could result in high therapeutic ratios. Most beta-emitting radionuclides are produced in nuclear rectors via neutron capture reactions; however, a few are produced in charged-particle accelerators. For radionuclides produced by direct neutron activation, the quantities and specific activities that can be produced are determined in large part by the cross-section of the target isotope and the flux of the reactor. Many applications (e.g., therapeutic bone agents, radiolabeled microspheres, radiocolloids) do not require high-specific activities and can therefore utilize the wide range of radionuclides that can be produced in sufficient quantity by direct neutron activation. Other applications (e.g., MAb labeling) require high-specific activity

  19. Report on the Technical Meeting on Therapeutic Radiopharmaceuticals

    International Nuclear Information System (INIS)

    The purpose of the TM was to provide an experts' platform to facilitate exploring the current status and future directions on therapeutic radiopharmaceuticals. The invited talks and presentations in the TM were in the following topics: - Radionuclide Production; - Production and availability of alpha emitters and their radiopharmaceuticals; - Therapeutic radiopharmaceutical chemistry; - Targets and biological evaluation; - Medical physics and dosimetry; - Clinical applications including radioimmunotherapy and clinical needs; - Peptide receptor mediated therapy Panel discussions: - Radionuclide therapy using alpha emitters; - Regulatory challenges with therapeutic radiopharmaceuticals; - International activities in radionuclide therapy. he technical meeting generated a large interest among scientists and physicians working in the field of targeted therapy using radiopharmaceuticals. Participants from both developed and developing MS reported on recent developments on the research work and clinical studies going on in the field and provided their views on the future developments in this field. The unexpected high number of participants and the high number of presentations with exceptional quality underlines the great interest of scientists and professionals in therapeutic applications using radiolabelled drugs / biomolecules. The intensive discussions including panels specified the challenges in the future on developing novel agents and to finally use them for the benefit of patients. The IAEA can play as vital role in streamlining developments and to provide tools to overcome scientific, professional and regulatory challenges in the field of therapeutic radiopharmaceuticals

  20. Aptamer therapeutics: A review of current practice

    International Nuclear Information System (INIS)

    Full text: The development of nuclease resistant oligonucleotide agents known as aptamers, offers an alternative to antibodies as targeting, diagnostic and delivery agents. The production technique of specific receptor binding molecules based on defined nucleic acid sequences is known as systematic evolution of ligands by exponential enrichment (SELEX). Using this technique, aptamers can be produced rapidly and with high homogeneity. Furthermore, they are stable over long term storage at ambient room temperatures. A monomeric aptamer is small in size, with a molecular weight as low as 5 to 10 kDa. However, the aptamer molecule may be used as a building block for custom designed targeting agents, offering several advantages. Aptamers have been found to bind their targets with high specificity and with dissociation constants in the subnanomolar or picomolar range. The first pharmaceutical aptamer formulation, Macugen (pegaptanib sodium injection) was approved in the United States in December of 2004. This is an anti-VEGF aptamer formulation used for the treatment of Neovascular agerelated macular degeneration. Other possibilities in cardiovascular, neurodegenerative and tropical medicine are apparent. As tumour targeting agents, aptamers penetrate tissues readily, reach peak levels quickly and clear from the body rapidly, thus having properties of low toxicity and immunoreactivity. Work with radiolabelled aptamers is limited to pre-clinical studies, but the body of evidence is steadily growing and aptamers are emerging as valuable clinical products for diagnostic imaging and therapy. Peptide coupling reactions between amino and carboxylic groups offer the possibility of labelling the aptamers with a number of chelators that, coupled with appropriate radionuclides, would generate novel targeted radiopharmaceuticals for the diagnosis and therapy of disease. The unparalleled combinatorial chemical diversity, small size and modification ability of aptamers is expected to

  1. Agent Oriented Programming进展%Advances in Agent Oriented Programming

    Institute of Scientific and Technical Information of China (English)

    王一川; 石纯一

    2002-01-01

    Agent-oriented programming (AOP) is a framework to develop agents, and it aims to link the gap betweentheory and practical in agent research. The core of an AOP framework is its language and semantics. In this paper,we propose the necessary properties which agents should have, and then give a summary and analysis about differentAOP languages based on these properties.

  2. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor

    OpenAIRE

    Wu, Chia-Yung; Kole T Roybal; Puchner, Elias M.; Onuffer, James; Lim, Wendell A.

    2015-01-01

    There is growing promise in using engineered cells as therapeutic agents. For example, synthetic Chimeric Antigen Receptors (CARs) can redirect T cells to recognize and eliminate tumor cells expressing specific antigens. Despite promising clinical results, excessive activity and poor control over such engineered T cells can cause severe toxicities. We present the design of “ON-switch” CARs that enable small molecule-control over T cell therapeutic functions, while still retaining antigen spec...

  3. Agents unleashed a public domain look at agent technology

    CERN Document Server

    Wayner, Peter

    1995-01-01

    Agents Unleashed: A Public Domain Look at Agent Technology covers details of building a secure agent realm. The book discusses the technology for creating seamlessly integrated networks that allow programs to move from machine to machine without leaving a trail of havoc; as well as the technical details of how an agent will move through the network, prove its identity, and execute its code without endangering the host. The text also describes the organization of the host's work processing an agent; error messages, bad agent expulsion, and errors in XLISP-agents; and the simulators of errors, f

  4. Therapeutic improvement of colonic anastomotic healing under complicated conditions: A systematic review

    Science.gov (United States)

    Nerstrøm, Malene; Krarup, Peter-Martin; Jorgensen, Lars Nannestad; Ågren, Magnus S

    2016-01-01

    AIM: To identify therapeutic agents for the prophylaxis of gastrointestinal anastomotic leakage (AL) under complicated conditions. METHODS: The PubMed and EMBASE databases were searched for English articles published between January 1975 and September 2014. Studies with the primary purpose of improving anastomotic healing in the colon or rectum under complicated preoperative and/or intraoperative conditions were included. We excluded studies investigating the adverse effects or risk assessment of an active intervention. Furthermore, investigations of biophysical materials, sealants, electrical stimulation and nutrients were excluded. The primary study outcome was biomechanical anastomotic strength or AL. The meta-analysis focused on therapeutic agents that were investigated in one animal model using the same outcome by at least three independent research groups. RESULTS: The 65 studies included were divided into 7 different complicated animal models: Bowel ischemia, ischemia/reperfusion, bowel obstruction, obstructive jaundice, peritonitis, chemotherapy and radiotherapy. In total, 48 different therapeutic compounds were examined. The majority of investigated agents (65%) were reported as beneficial for anastomotic healing. Twelve of the agents (25%) were tested more than once in the same model, whereas 13 (27%) of the agents were tested in two or more models of complicated healing. Two therapeutic agents met our inclusion criteria for the meta-analysis. Postoperative hyperbaric oxygen therapy significantly increased anastomotic bursting pressure in ischemic colon anastomoses by a mean of 28 mmHg (95%CI: 17 to 39 mmHg, P < 0.00001). Granulocyte macrophage-colony stimulating factor failed to show a significant increase in anastomotic bursting pressure (95%CI: -20 to 21 mmHg, P = 0.97) vs controls in experimental chemotherapeutic models. CONCLUSION: This systematic review identified potential therapeutic agents, but more studies are needed before concluding that any

  5. [Physiopathology of ALS: therapeutic approach].

    Science.gov (United States)

    Bruneteau, G; Demeret, S; Meininger, V

    2004-02-01

    The finding in 1993 of a mutation of the copper zinc super oxyde dismutase (SOD1) provides a major breakthrough in the understanding of the etiopathogenic mechanism of amyotrophic lateral sclerosis. Various mechanisms are commonly implied in the motor neurons degeneration. Excitotoxicity and calcium metabolism abnormalities are one of the most frequently confirmed hypotheses. It allowed proposing riluzole which remains the only one drug proved to be active in the disease. The role of growth factors remains controversial and all therapeutic trials performed with these molecules remained negative. Oxidative stress abnormalities are demonstrated by number of studies but their direct therapeutic application remains to be demonstrated. Apoptosis and the role of mitochondria has been definitely confirmed and open a new therapeutic avenue for the next few years. PMID:15034483

  6. Therapeutic hypothermia for acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Weber, Uno Jakob; Kammersgaard, Lars Peter

    2003-01-01

    Experimental evidence and clinical experience show that hypothermia protects the brain from damage during ischaemia. There is a growing hope that the prevention of fever in stroke will improve outcome and that hypothermia may be a therapeutic option for the treatment of stroke. Body temperature is...... directly related to stroke severity and outcome, and fever after stroke is associated with substantial increases in morbidity and mortality. Normalisation of temperature in acute stroke by antipyretics is generally recommended, although there is no direct evidence to support this treatment. Despite its...... obvious therapeutic potential, hypothermia as a form of neuroprotection for stroke has been investigated in only a few very small studies. Therapeutic hypothermia is feasible in acute stroke but owing to serious side-effects--such as hypotension, cardiac arrhythmia, and pneumonia--it is still thought of...

  7. Conflicts in the therapeutic field

    Directory of Open Access Journals (Sweden)

    Antonino Aprea

    2012-06-01

    Full Text Available How the analytical knowledge that compare human consciousness with that, even more disturbing, moving behind his fifth can be said to be “for peace”? It can be - and this will be the contribution of the proposal - the same tortuous and enigmatic of therapeutic practice, with its hesitations and his impulses, to outline a path crossing and overcoming the conflict? May, finally, peace, in the sense of feasibility of intra-and interpersonal dialectic instead of tearing and hostileconfrontation with oneself and with the other, to be a reference in some crucial pivot of ethical therapeutic work? To these questions the intervention seeks to answer retracing some of the highlights of almost three years of therapeutic work with a young woman and her family.

  8. El agente encubierto

    OpenAIRE

    Anaya Marcos, María del Carmen

    2015-01-01

    [ES] El trabajo versa sobre la figura del agente encubierto. Debemos enmarcar tal medida de investigación dentro del ámbito de la criminalidad organizada. Actualmente, estamos asistiendo a una proliferación de la delincuencia organizada. La sociedad ha evolucionado, y con ella la delincuencia. Fruto de tal evolución fue necesario incluir en nuestra Ley de Enjuiciamiento Criminal medidas extraordinarias de investigación, y una de ellas es el agente encubierto. Se trata de una medida muy polémi...

  9. The PLS agent : agent behavior validation by partial least squares

    OpenAIRE

    Lorscheid, Iris; Meyer, Matthias; Pakur, Sandra; Ringle, Christian

    2014-01-01

    Agent-based modeling is widely applied in the social sciences. However, the validation of agent behavior is challenging and identified as one of the shortcomings in the field. Methods are required to establish empirical links and support the implementation of valid agent models. This paper contributes to this, by introducing the PLS agent concept. This approach shows a way to transfer results about causalities and decision criteria from empirical surveys into an agent-based decision model, th...

  10. Therapeutic hypothermia for acute stroke

    DEFF Research Database (Denmark)

    Olsen, Tom Skyhøj; Weber, Uno Jakob; Kammersgaard, Lars Peter

    2003-01-01

    directly related to stroke severity and outcome, and fever after stroke is associated with substantial increases in morbidity and mortality. Normalisation of temperature in acute stroke by antipyretics is generally recommended, although there is no direct evidence to support this treatment. Despite its...... obvious therapeutic potential, hypothermia as a form of neuroprotection for stroke has been investigated in only a few very small studies. Therapeutic hypothermia is feasible in acute stroke but owing to serious side-effects--such as hypotension, cardiac arrhythmia, and pneumonia--it is still thought of...

  11. Decorporation of metal ions by chelating agents

    International Nuclear Information System (INIS)

    Simple model designs to simulate the effect of therapeutical chelating agents on the behaviour of metals in mammal organisms with and without excretion have been derived and analytical solutions given for the corresponding differential equations. The possibilities of these models in the short-term description of plasma kinetics of various metals, the competition of the therapeutical ligands with proteins for the metal and of the metabolism of chelating agents were tested and the properties applying extreme conceivable parameters were analyzed. The simple models were successsively expanded in logical sequence, so that it was possible to qualitatively well describe over a long period of time, the metallic kinetics in plasma, organs and urine, the retention of the ligands and their effect on the metal excretion. Two suggestions were given to describe the so-called after-effect, an increased excretion of the metal at times when the ligand is almost completely excreted and their different behaviour after injecting the metal chelate is given. Calculations on the therapy with several ligand data as well as on dose fractionation are described resting on the ratios in the plutonium-239 chosen model parameters and the determining mechanisms analyzed. (orig./MG)

  12. Trading Agents for Roaming Users

    OpenAIRE

    Boman, Magnus; Bylund, Markus; Espinoza, Fredrik; Danielson, Mats; Lyback, David

    2002-01-01

    Some roaming users need services to manipulate autonomous processes. Trading agents running on agent trade servers are used as a case in point. We present a solution that provides the agent owners with means to upkeeping their desktop environment, and maintaining their agent trade server processes, via a briefcase service.

  13. Software Agent Techniques in Design

    DEFF Research Database (Denmark)

    Hartvig, Susanne C

    1998-01-01

    This paper briefly presents studies of software agent techniques and outline aspects of these which can be applied in design agents in integrated civil engineering design environments.......This paper briefly presents studies of software agent techniques and outline aspects of these which can be applied in design agents in integrated civil engineering design environments....

  14. 13 CFR 107.1620 - Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Functions of agents, including Central Registration Agent, Selling Agent and Fiscal Agent. 107.1620 Section 107.1620 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS INVESTMENT COMPANIES SBA Financial Assistance...

  15. Programming multi-agent systems

    NARCIS (Netherlands)

    Dastani, Mehdi

    2015-01-01

    With the significant advances in the area of autonomous agents and multi-agent systems in the last decade, promising technologies for the development and engineering of multi-agent systems have emerged. The result is a variety of agent-oriented programming languages, development frameworks, executio

  16. Autoimmune uveitis: clinical, pathogenetic, and therapeutic features.

    Science.gov (United States)

    Prete, Marcella; Dammacco, Rosanna; Fatone, Maria Celeste; Racanelli, Vito

    2016-05-01

    Autoimmune uveitis (AU), an inflammatory non-infectious process of the vascular layer of the eye, can lead to visual impairment and, in the absence of a timely diagnosis and suitable therapy, can even result in total blindness. The majority of AU cases are idiopathic, whereas fewer than 20 % are associated with systemic diseases. The clinical severity of AU depends on whether the anterior, intermediate, or posterior part of the uvea is involved and may range from almost asymptomatic to rapidly sight-threatening forms. Race, genetic background, and environmental factors can also influence the clinical picture. The pathogenetic mechanism of AU is still poorly defined, given its remarkable heterogeneity and the many discrepancies between experimental and human uveitis. Even so, the onset of AU is thought to be related to an aberrant T cell-mediated immune response, triggered by inflammation and directed against retinal or cross-reactive antigens. B cells may also play a role in uveal antigen presentation and in the subsequent activation of T cells. The management of AU remains a challenge for clinicians, especially because of the paucity of randomized clinical trials that have systematically evaluated the effectiveness of different drugs. In addition to topical treatment, several different therapeutic options are available, although a standardized regimen is thus far lacking. Current guidelines recommend corticosteroids as the first-line therapy for patients with active AU. Immunosuppressive drugs may be subsequently required to treat steroid-resistant AU and for steroid-sparing purposes. The recent introduction of biological agents, such as those targeting tumor necrosis factor-α, is expected to remarkably increase the percentages of responders and to prevent irreversible sight impairment. This paper reviews the clinical features of AU and its crucial pathogenetic targets in relation to the current therapeutic perspectives. Also, the largest clinical trials

  17. Cold-adapted proteases as an emerging class of therapeutics.

    Science.gov (United States)

    Fornbacke, Marcus; Clarsund, Mats

    2013-06-01

    Proteases have been used in medicine for several decades and are an established and well tolerated class of therapeutic agent. These proteases were sourced from mammals or bacteria that exist or have adapted to moderate temperatures (mesophilic organisms); however, proteases derived from organisms from cold environments-cold-adapted or psychrophilic proteases-generally have high specific activity, low substrate affinity, and high catalytic rates at low and moderate temperatures. Made possible by greater flexibility, psychrophilic enzymes interact with and transform the substrate at lower energy costs. Cold-adapted proteases have been used in a wide range of applications, including industrial functions, textiles, cleaning/hygiene products, molecular biology, environmental bioremediations, consumer food products, cosmetics, and pharmaceutical production. In addition to these applications, they have also shown promise as therapeutic modalities for cosmeceutical applications (by reducing glabellar [frown] lines) and a number of disease conditions, including bacterial infections (by disrupting biofilms to prevent bacterial infection), topical wound management (when used as a debridement agent to remove necrotic tissue and fibrin clots), oral/dental health management (by removing plaque and preventing periodontal disease), and in viral infections (by reducing the infectivity of viruses, such as human rhinovirus 16 and herpes simplex virus). Psychrophilic proteases with greater activity and stability (than the original organism-derived variant) have been developed; this coupled with available manufacturing recombinant production techniques suggests that cold-adapted proteases have a promising future as a distinct therapeutic class with diverse clinical applications. PMID:25135820

  18. Effects on bone metabolism of new therapeutic strategies with standard chemotherapy and biologic drugs

    OpenAIRE

    Ciolli, Stefania

    2013-01-01

    Recent biological advances have provided the framework for novel therapeutic strategies in oncology. Many new treatments are now based on standard cytotoxic drugs plus biologic agents. In Multiple Myeloma, a plasma cell neoplasm characterized by a severe bone disease, biologic drugs such as proteasome inhibitors and immunomodulatory agents, above their antineoplastic efficacy have a beneficial effects on bone disease. Bortezomib, a clinically available proteasome inhibitor active against myel...

  19. SECOND BUYING AGENT

    CERN Multimedia

    SPL - SERVICES ACHATS

    2000-01-01

    Last year the buying agent LOGITRADE started operations on the CERN site, processing purchasing requests for well-defined families of products up to a certain value. It was planned from the outset that a second buying agent would be brought in to handle the remaining product families. So, according to that plan, the company CHARLES KENDALL will be commencing operations at CERN on 8 May 2000 in Building 73, 1st floor, offices 31 and 35 (phone and fax numbers to be announced).Each buying agent will have its own specific list of product families and will handle purchasing requests up to 10'000 CHF.Whenever possible they will provide the requested supplies at a price (including the cost of their own services) which must be equivalent to or lower than the price mentioned on the purchasing request, changing the supplier if necessary. If a lower price cannot be obtained, agents will provide the necessary administrative support free of charge.To ensure that all orders are processed in the best possible conditions, us...

  20. Radioactive diagnostic agent

    International Nuclear Information System (INIS)

    A dispersion of denatured aggregates of serum albumin to which tin is attached is prepared and lyophilized. A mixture of polycarboxylic acid and a disaccharide or monosaccharide is included in the dispersion in sufficient amount to reduce degradation during lyophilization and aging. The dispersion is suitable for radioactive labelling and use as a diagnostic agent

  1. Developing Enculturated Agents

    DEFF Research Database (Denmark)

    Rehm, Matthias

    Embodied Conversational Agents (ECAs) are complex multimodal systems with rich verbal and nonverbal repertoires. There human-like appearance raises severe expectations regarding natural communicative behaviors on the side of the user. But what is regarded as “natural” is to a large degree dependent...

  2. Biomimetic Emotional Learning Agents

    OpenAIRE

    Kenyon, Samuel H.

    2005-01-01

    This extended abstract proposes a type of AI agent comprised of: an autonomous real-time control system, low-level emotional learning (including a simple knowledge base that links homeostatic/innate drives to sensory perception states), and a novel sliding-priority drive motivation mechanism. Learning occurs in both phylogenetic and ontogenetic training.

  3. Agents of Change

    DEFF Research Database (Denmark)

    Hansen, Jens Aage; Lehmann, Martin

    2004-01-01

    at large, it emphasises universities as key change agents and providers in new learning, including tools such as project based and problem oriented learning (PBL) as well as information and communication technology (ICT); as providers of competent and motivated graduates to fill key positions in society...

  4. The need for agents

    DEFF Research Database (Denmark)

    Abolfazlian, Ali Reza Kian

    1996-01-01

    I denne artikel arbejder vi med begrebet Intelligent Software Agents (ISAs), som autonomous, social, reactive, proactive og subservient computer systemer. Baseret på socialt psykologiske argumenter viser jeg endvidere, hvordan både den menneskelige natur og det teknologiske stadium, som mennesket...

  5. Antisense oligonucleotides as therapeutics for malignant diseases.

    Science.gov (United States)

    Ho, P T; Parkinson, D R

    1997-04-01

    The continued progress in our understanding of the biology of neoplasia and in the identification, cloning, and sequencing of genes critical to tumor cell function permits the exploitation of this information to develop specific agents that may directly modulate the function of these genes or their protein products. Antisense oligonucleotides are being investigated as a potential therapeutic modality that takes direct advantage of molecular sequencing. The antisense approach uses short oligonucleotides designed to hybridize to a target mRNA transcript through Watson-Crick base pairing. The formation of this oligonucleotide: RNA heteroduplex results in mRNA inactivation and consequent inhibition of synthesis of the protein product. A fundamental attraction of the antisense approach is that this method potentially may be applied to any gene product, in theory, for the treatment of malignant and non-malignant diseases. However, this simple and attractive model has proven to be much more complex in practice. A number of important challenges in the preclinical development of antisense oligonucleotides have been identified, including stability, sequence length, cellular uptake, target sequence selection, appropriate negative controls, oligonucleotide: protein interactions, and cost of manufacture. Although the biological activity of an oligonucleotide against its molecular target is theoretically sequence-dependent, the animal pharmacokinetics and toxicology of phosphorothioate analogues directed against vastly disparate gene products appear relatively non-sequence-specific. In oncology, a number of clinical trials have been initiated with antisense oligonucleotides directed against molecular targets including: p53; bcl-2; raf kinase; protein kinase C-alpha; c-myb. The experience gained from these early clinical trials will be applicable to the next generation of antisense agents in development. These may include molecules with novel backbones or other structural

  6. Monitoring Therapeutic Treatments against Burkholderia Infections Using Imaging Techniques

    Directory of Open Access Journals (Sweden)

    Tiffany M. Mott

    2013-05-01

    Full Text Available Burkholderia mallei, the etiologic agent of glanders, are Category B select agents with biothreat potential, and yet effective therapeutic treatments are lacking. In this study, we showed that CpG administration increased survival, demonstrating protection in the murine glanders model. Bacterial recovery from infected lungs, liver and spleen was significantly reduced in CpG-treated animals as compared with non-treated mice. Reciprocally, lungs of CpG-treated infected animals were infiltrated with higher levels of neutrophils and inflammatory monocytes, as compared to control animals. Employing the B. mallei bioluminescent strain CSM001 and the Neutrophil-Specific Fluorescent Imaging Agent, bacterial dissemination and neutrophil trafficking were monitored in real-time using multimodal in vivo whole body imaging techniques. CpG-treatment increased recruitment of neutrophils to the lungs and reduced bioluminescent bacteria, correlating with decreased bacterial burden and increased protection against acute murine glanders. Our results indicate that protection of CpG-treated animals was associated with recruitment of neutrophils prior to infection and demonstrated, for the first time, simultaneous real time in vivo imaging of neutrophils and bacteria. This study provides experimental evidence supporting the importance of incorporating optimized in vivo imaging methods to monitor disease progression and to evaluate the efficacy of therapeutic treatment during bacterial infections.

  7. Build Autonomic Agents with ABLE

    Institute of Scientific and Technical Information of China (English)

    吴吉义

    2007-01-01

    The IBM Agent Building and Learning Environment(ABLE) provides a lightweight Java~(TM) agent frame- work,a comprehensive JavaBeansTM library of intelligent software components,a set of development and test tools, and an agent platform.After the introduction to ABLE,classes and interfaces in the ABLE agent framework were put forward.At last an autonomic agent that is an ABLE-based architecture for incrementally building autonomic systems was discussed.

  8. Human Factor in Therapeutic Relationship

    OpenAIRE

    Ramazan Akdogan; Esra Ceyhan

    2011-01-01

    herapeutic relationship is a professional relationship that has been structured based on theoretical props. This relationship is a complicated, wide and unique relationship which develops between two people, where both sides' personality and attitudes inevitably interfere. Therapist-client relationship experienced through transference and counter transference, especially in psychodynamic approaches, is accepted as the main aspect of therapeutic process. However, the approaches without dynamic...

  9. Therapeutic Drug Monitoring of Lithium

    DEFF Research Database (Denmark)

    Mose, Tina; Damkier, Per; Petersen, Magnus;

    2015-01-01

    BACKGROUND: Serum lithium is monitored to ensure levels within the narrow therapeutic window. This study examines the interlaboratory variation and inaccuracy of lithium monitoring in Denmark. METHODS: In 16 samples consisting of (1) control materials (n = 4), (2) pooled patient serum (n = 5), an...

  10. THERAPEUTIC APPLICATIONS IN NUCLEAR MEDICINE

    Directory of Open Access Journals (Sweden)

    Cristofer Alan Costa Santos

    2014-12-01

    Full Text Available Due to poor understanding of the role of nuclear medicine in several disease treatments, the aim of this study was to demonstrate the main therapeutic applications of nuclear medicine as well as their characteristics and radiopharmaceuticals usage through scientific literature review. The main therapeutic applications of nuclear medicine are radio-immunotherapy with iodine-131, yttrium-90, lutetium-177 and copper-67, the radiosynovectomy with yttrium-90, rhenium-186 and gold-198 and pain palliation of osseous metastases with samarium-153, strontium-89 and phosphorus-32. The radioiodine therapy with iodine-131 stands out among therapies because it allows a highly selective treatment of thyroid associated with hyperthyroidism and differentiated thyroid cancer with favorable dosimetry to healthy tissues and with great advantage to allow the ablation of disseminated lesions due to metastases, success not achieved by traditional radiotherapy. Thus, the therapeutic nuclear medicine is an alternative tool, and often essential for definitive treatment of various diseases considered incurable once. Thus, therapeutic nuclear medicine is an alternative and often essential tool for definitive treatment of various diseases considered once incurable.

  11. Medicinal agents in the metabolic syndrome.

    Science.gov (United States)

    Baños, G; Pérez-Torres, I; El Hafidi, M

    2008-10-01

    The metabolic syndrome (MS) has become a worldwide health problem. It is difficult for patients to follow a diet/exercise regime that would improve their symptoms, therefore the investigation of agents that may deal with its more serious aspects is an important medical field for research. The cardiovascular consequences associated with the syndrome and some of the therapeutic approaches are discussed. The different agents can be divided into several groups: Inorganic/ organic: Zinc complexes with garlic components as insulino-mimetics; Selenium as antioxidant; Copper, Zinc and Manganese as microcomponents of antioxidant enzymes. Organic: Natural or Synthetic: Glycine is effective in lowering blood pressure, TBARS, intra-abdominal fat tissue and triglycerides in sucrose-fed rats. Pharmaceutical products: Fibrates, Lipid-lowering drugs. Antidiabetics. Anti-gout agents. On the other hand there are natural products such as those of animal origin: Sex hormones (also synthetic) used in the problems of menopause and hypoandrogenism frequently found in the MS, antioxidant Omega-3-oils (fish oils) or Vegetal: for example Digitalis pupurea, century-old cardiovascular medication as well as Magnolia officinalis; Spirulina maxima with beneficial effects as antioxidant and lipid-lowering agent, among others. Prickly Pear Cacti. (Opuntia Ficus- Indica Cochlospermum vitifolium (Willd.) Spreng) whose many properties against diabetes and hypercholesterolemia have been empirically known for many years. Perezone (from Perezia plants, a.k.a. Peonia) described as an antiplatelet aggregating agent. The mixed elements in the Mediterranean diet: Fish, salads (peppers, tomatoes), olive oil, garlic, red wine which combines fish oils, garlic and avocado as well as antioxidants from the rest of its components. PMID:18855636

  12. Multiwalled carbon nanotube hybrids as MRI contrast agents.

    Science.gov (United States)

    Kuźnik, Nikodem; Tomczyk, Mateusz Michał

    2016-01-01

    Magnetic resonance imaging (MRI) is one of the most commonly used tomography techniques in medical diagnosis due to the non-invasive character, the high spatial resolution and the possibility of soft tissue imaging. Contrast agents, such as gadolinium complexes and superparamagnetic iron oxides, are administered to spotlight certain organs and their pathologies. Many new models have been proposed that reduce side effects and required doses of these already clinically approved contrast agents. These new candidates often possess additional functionalities, e.g., the possibility of bioactivation upon action of particular stimuli, thus serving as smart molecular probes, or the coupling with therapeutic agents and therefore combining both a diagnostic and therapeutic role. Nanomaterials have been found to be an excellent scaffold for contrast agents, among which carbon nanotubes offer vast possibilities. The morphology of multiwalled carbon nanotubes (MWCNTs), their magnetic and electronic properties, the possibility of different functionalization and the potential to penetrate cell membranes result in a unique and very attractive candidate for a new MRI contrast agent. In this review we describe the different issues connected with MWCNT hybrids designed for MRI contrast agents, i.e., their synthesis and magnetic and dispersion properties, as well as both in vitro and in vivo behavior, which is important for diagnostic purposes. An introduction to MRI contrast agent theory is elaborated here in order to point to the specific expectations regarding nanomaterials. Finally, we propose a promising, general model of MWCNTs as MRI contrast agent candidates based on the studies presented here and supported by appropriate theories. PMID:27547627

  13. [A compilation of therapeutic and toxic plasma drug concentrations].

    Science.gov (United States)

    Schulz, M; Schmoldt, A

    1994-12-01

    In order to assess the significance of drug levels measured in clinical and forensic toxicology as well as for therapeutic drug monitoring (TDM), it is essential that good collections of data are readily available. For more than 400 frequently used drugs therapeutic and, if data were available, toxic and fatal plasma concentrations as well as elimination half-lives were compiled in a table including, e.g., hypnotics like barbiturates and benzodiazepines, neuroleptics, antidepressants, sedatives, analgesics, anti-inflammatory agents, antihistamines, anti-epileptics, beta-adrenergic antagonists, antibiotics (penicillins, cephalosporins, aminoglycosides, gyrase inhibitors), diuretics, calcium-channel blockers, cardiac glycosides, anti-arrhythmics, anti-asthmatics, angiotensin converting enzyme inhibitors, opioid agonists, and local anaesthetics. Data have been abstracted from published information, both compilations and primary sources, and supplemented with data collected in our own forensic and clinical toxicology laboratories. Wherever possible, ranges for therapeutic plasma concentrations are expressed as trough concentration at steady-state. The range of (or single) half-life values given for each drug are chosen to represent the terminal log-linear phase at most. In addition to the assessment of significance of drug levels for the therapeutic monitoring of patients, this list can assist the diagnostic assessment in cases of intoxication. PMID:7717522

  14. Non-coding RNAs as therapeutic targets in hepatocellular cancer.

    Science.gov (United States)

    Braconi, Chiara; Patel, Tushar

    2012-11-01

    Hepatocellular carcinoma (HCC) is a common malignancy that affects a large number of patients worldwide, with an increasing incidence in the United States and Europe. The therapies that are currently available for patients with inoperable HCC have limited benefits. Although molecular targeted therapies against selected cell signaling pathways have shown some promising results, their impact has been minimal. There is a need to identify and explore other targets for the development of novel therapeutics. Several non-protein coding RNAs (ncRNA) have recently been implicated in hepatocarcinogenesis and tumor progression. These ncRNA genes represent promising targets for cancer. However, therapeutic targeting of ncRNA genes has not been employed for HCC. The use of antisense oligonucleotides and viral vector delivery approaches have been shown to be feasible approaches to modulate ncRNA expression. HCC is an optimal cancer to evaluate novel RNA based therapeutic approaches because of the potential of effective delivery and uptake of therapeutic agents to the liver. In this review, we discuss selected ncRNA that could function as potential targets in HCC treatment and outline approaches to target ncRNA expression. Future challenges include the need to achieve site-specific targeting with acceptable safety and efficacy. PMID:22873215

  15. Colloidal supramolecular aggregates for therapeutic application in neuromedicine.

    Science.gov (United States)

    Cosco, Donato; Di Marzio, Luisa; Marianecci, Carlotta; Trapasso, Elena; Paolino, Donatella; Celia, Christian; Carafa, Maria; Fresta, Massimo

    2014-01-01

    Neuromedicine has recently been emerging on the research scene and presents interesting challenges in therapeutics. The range of therapies generally used to treat neurological disorders are limited in their efficacy and degree of patient compliance because of the necessity of multiple drug dosages, low drug concentration in the central nervous system and side effects. Moreover, therapeutics require standard drug dosages which cannot be personalized. The limiting obstacle in neuromedicine is still the blood-brain barrier, which prevents the accumulation of endogenous and exogenous compounds inside the brain. Various transporters located on the blood-brain barrier modulate the crossing of endogenous compounds. It has been discovered that these transporters can be used as pathways for the transport of therapeutic agents and macromolecules that pass the blood-brain barrier allowing the uptake of bioactive compounds into the central nervous system. Several attempts have recently been made to develop forms of nanomedicine capable of overcoming the limitations of conventional therapy, above all the crossing of the blood-brain barrier. An outstandingly promising option could be the use of colloidal supramolecular aggregates. These nanodrugs are safe, biodegradable, and biocompatible and can combine biomaterials useful for diagnostic and therapeutical applications. They can be modified using monoclonal antibodies, proteins, peptides and macromolecules, thus providing personalized neuromedicine, which can be used in the treatment of various neurological disorders. In this review, recent advancements of supramolecular colloidal devices as neuromedicines are discussed, with particular focus on the latest developments. PMID:25174931

  16. Metabolic alterations in cancer cells and therapeutic implications

    Institute of Scientific and Technical Information of China (English)

    Naima Hammoudi; Kausar Begam Riaz Ahmed; Celia Garcia-Prieto; Peng Huang

    2011-01-01

    Cancer metabolism has emerged as an important area of research in recent years. Elucidation of the metabolic differences between cancer and normal cells and the underlying mechanisms will not only advance our understanding of fundamental cancer cell biology but also provide an important basis for the development of new therapeutic strategies and novel compounds to selectively eliminate cancer cells by targeting their unique metabolism. This article reviews several important metabolic alterations in cancer cells, with an emphasis on increased aerobic glycolysis (the Warburg effect) and glutamine addiction, and discusses the mechanisms that may contribute to such metabolic changes. In addition, metabolic alterations in cancer stem cells, mitochondrial metabolism and its influence on drug sensitivity, and potential therapeutic strategies and agents that target cancer metabolism are also discussed.

  17. Mitochondria as therapeutic targets for cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    In Sung Song; Jeong Yu Jeong; Seung Hun Jeong; Hyoung Kyu Kim; Kyung Soo Ko; Byoung Doo Rhee; Nari Kim; Jin Han

    2015-01-01

    Cancer stem cells (CSCs) are maintained by theirsomatic stem cells and are responsible for tumorinitiation, chemoresistance, and metastasis. Evidencefor the CSCs existence has been reported for a numberof human cancers. The CSC mitochondria have beenshown recently to be an important target for cancertreatment, but clinical significance of CSCs and theirmitochondria properties remain unclear. Mitochondriatargetedagents are considerably more effectivecompared to other agents in triggering apoptosis ofCSCs, as well as general cancer cells, via mitochondrialdysfunction. Mitochondrial metabolism is altered incancer cells because of their reliance on glycolyticintermediates, which are normally destined for oxidativephosphorylation. Therefore, inhibiting cancer-specificmodifications in mitochondrial metabolism, increasingreactive oxygen species production, or stimulatingmitochondrial permeabilization transition could bepromising new therapeutic strategies to activate celldeath in CSCs as well, as in general cancer cells. Thisreview analyzed mitochondrial function and its potentialas a therapeutic target to induce cell death in CSCs.Furthermore, combined treatment with mitochondriatargeteddrugs will be a promising strategy for thetreatment of relapsed and refractory cancer.

  18. EGFR-Targeted Therapeutics: Focus on SCCHN and NSCLC

    Directory of Open Access Journals (Sweden)

    Martin Sattler

    2008-01-01

    Full Text Available Cancers of the head and neck and of the lung are associated with high morbidity and mortality rates that have remained relatively unchanged for more than 3 decades, despite advances in radiation therapies and chemotherapies over the same time. It is generally believed that the efficacy of standard therapy regimens has reached a plateau for these cancers. The discovery of specific aberrant molecular signaling pathways in solid tumors has afforded promising new directions for newer “targeted” cancer therapeutics. Among these, the epidermal growth factor receptor (EGFR shows promise as a therapeutic target. Clinical studies have demonstrated that this targeted approach provides clinically meaningful benefit. This article reviews EGFR-targeted therapies in use and in development, with a focus on the role of EGFR in the pathophysiology of head and neck and lung cancer, and new concepts being investigated to improve outcomes with these agents.

  19. Mesenchymal stem cell subpopulations: phenotype, property and therapeutic potential.

    Science.gov (United States)

    Mo, Miaohua; Wang, Shan; Zhou, Ying; Li, Hong; Wu, Yaojiong

    2016-09-01

    Mesenchymal stem cells (MSC) are capable of differentiating into cells of multiple cell lineages and have potent paracrine effects. Due to their easy preparation and low immunogenicity, MSC have emerged as an extremely promising therapeutic agent in regenerative medicine for diverse diseases. However, MSC are heterogeneous with respect to phenotype and function in current isolation and cultivation regimes, which often lead to incomparable experimental results. In addition, there may be specific stem cell subpopulations with definite differentiation capacity toward certain lineages in addition to stem cells with multi-differentiation potential. Recent studies have identified several subsets of MSC which exhibit distinct features and biological activities, and enhanced therapeutic potentials for certain diseases. In this review, we give an overview of these subsets for their phenotypic, biological and functional properties. PMID:27141940

  20. Graphene in therapeutics delivery: Problems, solutions and future opportunities.

    Science.gov (United States)

    McCallion, Catriona; Burthem, John; Rees-Unwin, Karen; Golovanov, Alexander; Pluen, Alain

    2016-07-01

    Graphene based nanomaterials are being used experimentally to deliver therapeutic agents to cells or tissues both in vitro and in vivo. However, substantial challenges remain before moving to safe and effective use in humans. In particular, it is recognised that graphene molecules undergo complex interactions with solutes, proteins or cellular systems within the body, and that these interactions impact significantly on the behaviour or toxicity of the molecule. Approaches to overcome these problems include modification of the graphene or its combination with other molecules to accentuate favourable characteristics or modify adverse interactions. This has led to an emerging role for graphene as one part of highly-tailored multifunctional delivery vehicles. This review examines the knowledge that underpins present approaches to exploit graphene in therapeutics delivery, discussing both favourable and unfavourable aspects of graphene behaviour in biological systems and how these may be modified; then considers the present place of the molecule and the challenges for its further development. PMID:27113141

  1. Gynecologic cancer treatment: risk factors for therapeutically induced neoplasia

    International Nuclear Information System (INIS)

    Therapeutic intervention in a course of illness, while producing the desired result, also may have some adverse long-term effects on the patient. Second malignancies are one of the known complications of therapy. The treatments of gynecologic cancers by surgery, irradiation and chemotherapy have been associated with subsequent neoplasms. The use of normal skin from the thigh to fabricate an artificial vagina has resulted in more squamous cell carcinomas than expected. Alkylating agents used in the treatment of ovarian cancer and other diseases have been shown to lead to an increased risk of leukemia. The incidence of lymphoma and uterine, urinary bladder and colon carcinomas has been associated with prior irradiation for gynecologic disease. The literature regarding the therapeutically induced risk factors in gynecologic therapy is reviewed and areas of our knowledge that require more investigation are identified

  2. Vitamin A-aldehyde adducts: AMD risk and targeted therapeutics.

    Science.gov (United States)

    Sparrow, Janet R

    2016-04-26

    Although currently available treatment options for age-related macular degeneration (AMD) are limited, particularly for atrophic AMD, the identification of predisposing genetic variations has informed clinical studies addressing therapeutic options such as complement inhibitors and anti-inflammatory agents. To lower risk of early AMD, recommended lifestyle interventions such as the avoidance of smoking and the intake of low glycemic antioxidant-rich diets have largely followed from the identification of nongenetic modifiable factors. On the other hand, the challenge of understanding the complex relationship between aging and cumulative damage leading to AMD has fueled investigations of the visual cycle adducts that accumulate in retinal pigment epithelial (RPE) cells and are a hallmark of aging retina. These studies have revealed properties of these compounds that provide insights into processes that may compromise RPE and could contribute to disease mechanisms in AMD. This work has also led to the design of targeted therapeutics that are currently under investigation. PMID:27071115

  3. Nano/microparticles and ultrasound contrast agents

    Institute of Scientific and Technical Information of China (English)

    Shu-Guang; Zheng; Hui-Xiong; Xu; Hang-Rong; Chen

    2013-01-01

    Microbubbles have been used for many years now in clinical practice as contrast agents in ultrasound imaging.Recently,their therapeutic applications have also attracted more attention.However,the short circulation time(minutes)and relatively large size(two to ten micrometers)of currently used commercial microbubbles do not allow effective extravasation into tumor tissue,preventing efficient tumor targeting.Fortunately,more multifunctional and theranostic nanoparticles with some special advantages over the traditional microbubbles have been widely investigated and explored for biomedical applications.The way to synthesize an ideal ultrasound contrast agent based on nanoparticles in order to achieve an expected effect on contrast imaging is a key technique.Currently a number of nanomaterials,including liposomes,polymers,micelles,dendrimers,emulsions,quantum dots,solid nanoparticles etc.,have already been applied to pre or clinical trials.Multifunctional and theranostic nanoparticles with some special advantages,such as the tumor-targeted(passive or active),multi-mode contrast agents(magnetic resonance imaging,ultrasonography or fluorescence),carrier or enhancer of drug delivery,and combined chemo or thermal therapy etc.,are rapidly gaining popularity and have shown a promising application in the field of cancer treatment.In this mini review,the trends and the advances of multifunctional and theranostic nanoparticles are briefly discussed.

  4. Rational Combinations of Targeted Agents in AML

    Directory of Open Access Journals (Sweden)

    Prithviraj Bose

    2015-04-01

    Full Text Available Despite modest improvements in survival over the last several decades, the treatment of AML continues to present a formidable challenge. Most patients are elderly, and these individuals, as well as those with secondary, therapy-related, or relapsed/refractory AML, are particularly difficult to treat, owing to both aggressive disease biology and the high toxicity of current chemotherapeutic regimens. It has become increasingly apparent in recent years that coordinated interruption of cooperative survival signaling pathways in malignant cells is necessary for optimal therapeutic results. The modest efficacy of monotherapy with both cytotoxic and targeted agents in AML testifies to this. As the complex biology of AML continues to be elucidated, many “synthetic lethal” strategies involving rational combinations of targeted agents have been developed. Unfortunately, relatively few of these have been tested clinically, although there is growing interest in this area. In this article, the preclinical and, where available, clinical data on some of the most promising rational combinations of targeted agents in AML are summarized. While new molecules should continue to be combined with conventional genotoxic drugs of proven efficacy, there is perhaps a need to rethink traditional philosophies of clinical trial development and regulatory approval with a focus on mechanism-based, synergistic strategies.

  5. [Therapeutic approaches in autism spectrum disorders].

    Science.gov (United States)

    Ruggieri, Víctor L; Arberas, Claudia L

    2015-02-25

    Autistic spectrum disorders affect one out of every 68 persons, with a 4:1 dominance in males. Since they are dysfunctions rather than irreversible injuries to the central nervous system, which can be attributed to deficits in the neuronal networks and synaptogenesis and are modifiable thanks to the plasticity of the brain, starting therapy as early as possible is essential for more favourable progress. Very few treatments are backed by solid scientific evidence. We will analyse the therapeutic approaches oriented towards improving autism spectrum disorders which showed a clinical improvement that can be related to neurophysiological or functional changes in the central nervous system. We will classify the behavioural educational treatments and those in the research phase into a hierarchy, highlighting the neurogenetic entities with a high prevalence of autism, in which their pathophysiology and molecular base are known, that attempt to modify the consequences of those alterations by means of pharmacological agents. These entities include fragile X syndrome (GABAergic and metabotropic glutamate receptor inhibitors), tuberous sclerosis (mTOR inhibitors), Phelan-McDermid syndrome and Rett syndrome (insulin-like growth factor 1 inhibitors). Oxytocin, which has been shown to improve social cognition in persons with autism spectrum disorders, is analysed separately. PMID:25726823

  6. Postperfusion lung syndrome: physiopathology and therapeutic options

    Directory of Open Access Journals (Sweden)

    Shi-Min Yuan

    2014-09-01

    Full Text Available Postperfusion lung syndrome is rare but can be lethal. The underlying mechanism remains uncertain but triggering inflammatory cascades have become an accepted etiology. A better understanding of the pathophysiology and the roles of inflammatory mediators in the development of the syndrome is imperative in the determination of therapeutic options and promotion of patients' prognosis and survival. Postperfusion lung syndrome is similar to adult respiratory distress syndrome in clinical features, diagnostic approaches and management strategies. However, the etiologies and predisposing risk factors may differ between each other. The prognosis of the postperfusion lung syndrome can be poorer in comparison to acute respiratory distress syndrome due to the secondary multiple organ failure and triple acid-base imbalance. Current management strategies are focusing on attenuating inflammatory responses and preventing from pulmonary ischemia-reperfusion injury. Choices of cardiopulmonary bypass circuit and apparatus, innovative cardiopulmonary bypass techniques, modified surgical maneuvers and several pharmaceutical agents can be potential preventive strategies for acute lung injury during cardiopulmonary bypass.

  7. Drug Development of Therapeutic Monoclonal Antibodies.

    Science.gov (United States)

    Mould, Diane R; Meibohm, Bernd

    2016-08-01

    Monoclonal antibodies (MAbs) have become a substantial part of many pharmaceutical company portfolios. However, the development process of MAbs for clinical use is quite different than for small-molecule drugs. MAb development programs require careful interdisciplinary evaluations to ensure the pharmacology of both the MAb and the target antigen are well-understood. Selection of appropriate preclinical species must be carefully considered and the potential development of anti-drug antibodies (ADA) during these early studies can limit the value and complicate the performance and possible duration of preclinical studies. In human studies, many of the typical pharmacology studies such as renal or hepatic impairment evaluations may not be needed but the pharmacokinetics and pharmacodynamics of these agents is complex, often necessitating more comprehensive evaluation of clinical data and more complex bioanalytical assays than might be used for small molecules. This paper outlines concerns and strategies for development of MAbs from the early in vitro assessments needed through preclinical and clinical development. This review focuses on how to develop, submit, and comply with regulatory requirements for MAb therapeutics. PMID:27342605

  8. Patent perspectives for corticosteroids based ophthalmic therapeutics.

    Science.gov (United States)

    Suresh, Preeti K; Sah, Abhishek K

    2014-01-01

    Eye inflammation, if untreated at right time poses the risk of vision loss. Several categories of drugs are available in the global market, but corticosteroids are still used for the treatment of ocular inflammation including anterior/ posterior uveitis, age related macular degeneration (AMD) and post cataract surgery inflammation. Although corticosteroids have well-documented side effects as compared to non steroidal anti-inflammatory drugs (NSAIDs), but they are still regarded as better anti-inflammatory agents for treating ocular inflammations. The prime concern with conventional formulations such as (ophthalmic solutions, suspensions, ointments) is low drug bioavailability due to precorneal barrier of the eye, tear turnover and rapid drainage of drug via nasolacrimal drainage and drug induced systemic toxicity. To overcome these limitations, various novel formulations of corticosteroids have been explored. These include nanoparticles, solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC), nanomicelles, in-situ gels, iontophoresis, liposomes, nanoemulsions, microemulsions and ocular implants for the effective ophthalmic delivery of the corticosteroids. Topical nanocarriers have also been demonstrated to be promising vectors with potential application in the ophthalmic therapeutics. This review summarizes the clinical findings and patents on various corticosteroids as ocular pharmacotherapeutics. PMID:25020063

  9. Enhanced spontaneous thrombolysis: a new therapeutic challenge.

    Science.gov (United States)

    Kovacs, I B; Gorog, D A; Yamamoto, J

    2006-06-01

    Spontaneous thrombolysis is an endogenous protective mechanism against lasting arterial thrombotic occlusion, which is implicated in the pathogenesis of myocardial infarction and acute coronary events. Novel therapies for coronary heart disease (CHD) targeting atherosclerosis and thrombosis, together with cardiovascular prevention programs targeting risk-factors and lifestyle provide evidence that CHD is preventable. Although reduced fibrinolytic activity is a recognized risk-factor for ischemic cardiovascular events, it has so far been neglected. Our knowledge of the fibrinolytic effect of drugs commonly used for CHD such as antiplatelet agents (aspirin, ticlopidine, clopidogrel), anti-diabetic biguanides (phenformin, metformin) or anti-hypertensive drugs is scanty and conflicting. This is mainly due to the lack of a global test of spontaneous thrombolysis, as opposed to fibrinolysis of plasma or whole blood, i.e. the assessment of various activators and inhibitors of the fibrinolytic system. A recently described technique allows the measurement of spontaneous thrombolysis, that is, lysis of an autologous platelet-rich thrombus in the absence of added plasminogen activators. Early results suggest that this test may have significant clinical potential both in identifying those at risk of fatal cardiac events and in finding new therapeutic avenues or lifestyles to improve spontaneous thrombolytic activity. PMID:16683213

  10. Therapeutic Effect of Cereal Grains: A Review.

    Science.gov (United States)

    Singhal, Poonam; Kaushik, Geetanjali

    2016-04-01

    Over the last few decades, life style changes have resulted in drastic increase in the incidence of diabetes all over the world, especially in the developing countries. Oral hypoglycemic agents and insulin form the main stay in controlling diabetes but they have prominent side effects and fail to significantly alter the course of diabetic complications. Appropriate diet and exercise programs that form a part of lifestyle modifications have proven to be greatly effective in the management of this disease. Dietary therapy is showing a bright future in the prevention and treatment of diabetes. Cereal grains which form the staple diet for humans in most of the countries are increasingly being used to treat diabetes and other associated disorders in view of their anti-diabetic and anti-lipidemic potential. Given this background, this paper reviews the possible mechanisms of lowering blood sugar and cholesterol levels possessed by various commonly consumed cereal grains. It is concluded that cereal grains are not only the potential sources of energy but also possess the therapeutic role in preventing metabolic disorders and decreasing the risk factors for cardiovascular and renal diseases. PMID:25746052

  11. Therapeutically Active Biomolecules from Marine Actinomycetes

    Directory of Open Access Journals (Sweden)

    Mani Jayaprakashvel

    2012-09-01

    Full Text Available For the past few centuries, the biological sources of terrestrial origin have been explored and exploited for bioactive metabolites. This has resulted in the stagnancy of discovering either novel compounds or compounds with novel bioactivities. Thus, researchers across the globe have started exploring our big Oceans, for the search of bioactive metabolites. During the past few decades, the research on bioactive metabolites from marine biological resources has geared up and among the sources marine actinomycetes are proved to be best. Marine actinomycetes, the filamentous bacteria from marine environment have been intensively studied for bioactive metabolites. The biological diversity of marine actinomycetes was found to be enormous, thanks to culture dependent and culture independent biodiversity approaches. This great diversity of marine actinomycetes has offered greater chemical diversity. The diverse chemical compounds of marine actinomycetes have been found to have various biological activities such as antimicrobial, anti-tumor, anti-malarial, anti-algal, antioxidant, anti-inflammatory etc. These various bioactive metabolites of marine actinomycetes are having scope for developing as potent therapeutic agents. The potential of marine actinomycetes is rightly realized though the current biological wealth of these organisms isrelatively unexplored.

  12. [New antiepileptic drugs, and therapeutic considerations].

    Science.gov (United States)

    Szupera, Zoltán

    2011-09-30

    Epilepsy is not a singular disease, but a variety of disorders. It affects up to 0.5% of the population. Over the past decade, researchers have made great advances in the field of epilepsy. These have been accompanied by the licensing of a great number of antiepileptic drugs. However, despite these efforts, up to 15-20% of patients have refractory epilepsy. The novel antiepileptic drugs must suit several requirements: higher efficacy, especially in resistant cases, better tolerability, and improved pharmacokinetic properties. Recently, three new drugs have been introduced to the market. Retigabine is a carbamic derivate, and its anticonvulsive properties are largely due to its ability to prolong the opening of neuronal voltage-gated potassium Kv7.2 and Kv7.3 channels. Lacosamide is a functionalized amino acid, and selectively enhances voltage-gated sodium channel slow inactivation. Eslicarbazepine acetate is a new member of the dibenzazepine family, and blocks the fast inactivated voltage-gated sodium channel. All three of them differ from the foregoing agents in several important ways, including new mechanism of action (retigabine, lacosamide), or pharmacokinetics (eslicarbazepine acetate). These novel anticonvulsants appear to be a safe and effective addition to the armamentarium for the treatment of patients with refractory epilepsy. However, it will take the consideration of new concepts in shaping the new therapeutic algorithm. PMID:22059370

  13. Conventional anticancer therapeutics and telomere maintenance mechanisms.

    Science.gov (United States)

    Uziel, Orit; Lahav, Meir

    2014-01-01

    The telomere-telomerase system has a unique role in the biology of cancer. Telomere maintenance, mostly affected by the up regulation of telomerase activity, is a prerequisite for perpetuation of malignant cells. This fundamental biologic feature defines telomere maintenance as an attractive therapeutic target for most types of cancer. This review summarizes some critical aspects of telomere biology with special emphasis on the connection to anticancer therapy. In particular, the effects on the telomere - telomerase system of conventional anticancer treatments, including various cytotoxic drugs, targeted biological agents and radiotherapy, and their possible combination with telomerase-directed therapy are discussed. Several potential problems, including side effects and complications inherent to perturbations of telomere biology in normal cells, are also highlighted. In spite of significant progress in this field, there are still several issues that have to be addressed and ultimately resolved in order to obtain a better characterization of the pros and cons of telomerase-directed therapies and, consequently, their clinical relevance. PMID:24975606

  14. Spinal Muscular Atrophy: Current Therapeutic Strategies

    Science.gov (United States)

    Kiselyov, Alex S.; Gurney, Mark E.

    Proximal spinal muscular atrophy (SMA) is an autosomal recessive disorder characterized by death of motor neurons in the spinal cord. SMA is caused by deletion and/or mutation of the survival motor neuron gene (SMN1) on chromosome 5q13. There are variable numbers of copies of a second, related gene named SMN2 located in the proximity to SMN1. Both genes encode the same protein (Smn). Loss of SMN1 and incorrect splicing of SMN2 affect cellular levels of Smn triggering death of motor neurons. The severity of SMA is directly related to the normal number of copies of SMN2 carried by the patient. A considerable effort has been dedicated to identifying modalities including both biological and small molecule agents that increase SMN2 promoter activity to upregulate gene transcription and produce increased quantities of full-length Smn protein. This review summarizes recent progress in the area and suggests potential target product profile for an SMA therapeutic.

  15. Strategies to Optimize Molecularly Targeted Anti-Cancer Agent Combinations

    Directory of Open Access Journals (Sweden)

    Ayse Erdogan

    2015-12-01

    Full Text Available Cytotoxic agents which are used in cancer chemotherapy reduced several times the number of neoplastic cells but not fully. Therefore, usage of and ldquo;targeted therapeutics" which were developed with much more rational approach is increasing markedly in patients with solid cancer. Targeted therapeutics due to selective targets aims cancer cells with specific molecular defect thereby, kils the cancer cells, which makes it possible to continue normal cells in a healthy environment. The rapid emergence of hundreds of new agents that modulates ever-growing list of the cancer-specific molecular targets promise great hope for cancer patients. Evaluation of the target agent individually, in combination with standard therapy and other target agents bring about important development challenges. As possible combinations of drugs number is unlimited, the identification of the most promising combinations and giving priority to assessing their strategies are very important.In this article important elements of the development strategy of the target agent combinations will be considered. Difficulties in this kind of combinations of rational pre-clinical and clinical evaluation and possible approaches to overcome these challenges will be discussed. [Archives Medical Review Journal 2015; 24(4.000: 432-451

  16. Pharmacotherapeutic management of actinic keratosis: focus on newer topical agents.

    Science.gov (United States)

    Samrao, Aman; Cockerell, Clay J

    2013-08-01

    Actinic (solar) keratoses (AK) have the potential for malignant transformation and are the second most common diagnosis in dermatologic practices. No well-established clinical criteria are available to determine which AK are more likely to undergo malignant transformation; therefore, many dermatologists utilize field-directed approaches to treat all visible and subclinical AK on an affected skin surface. Current topical therapeutic agents require lengthy treatment regimens and are less well tolerated than many newer and investigational agents. We review and compare the efficacy and tolerability of well-established topical agents for the management of AK in the United States including 5-fluorouracil, imiquimod 5% cream as well as the newer 2.5 and 3.75% formulations, diclofenac 3% gel, photodynamic therapy, and the recently approved ingenol mebutate gel and discuss the therapeutic potential of investigational agents. Cryotherapy and 5-fluorouracil are efficacious at treating AK but less tolerable than imiquimod cream, particularly at its lower concentrations. The newer agents, diclofenac gel and ingenol mebutate, appear to be more tolerable than cryotherapy and 5- fluorouracil; however, comparative studies regarding efficacy are not available. PMID:23640424

  17. Follicular lymphoma: evolving therapeutic strategies.

    Science.gov (United States)

    Kahl, Brad S; Yang, David T

    2016-04-28

    Follicular lymphoma (FL) is the most common indolent non-Hodgkin lymphoma in the Western hemisphere. After decades of stagnation, the natural history of FL appears to have been favorably impacted by the introduction of rituximab. Randomized clinical trials have demonstrated that the addition of rituximab to standard chemotherapy induction has improved the overall survival. Maintenance rituximab strategies can improve progression-free survival. Even chemotherapy platforms have changed in the past 5 years, as bendamustine combined with rituximab has rapidly become a standard frontline strategy in North America and parts of Europe. Recent discoveries have identified patients at high risk for poor outcomes to first-line therapy (m7-Follicular Lymphoma International Prognostic Index [m7-FLIPI]) and for poor outcomes after frontline therapy (National LymphoCare Study). However, several unmet needs remain, including a better ability to identify high-risk patients at diagnosis, the development of predictive biomarkers for targeted agents, and strategies to reduce the risk of transformation. The development of targeted agents, exploiting our current understanding of FL biology, is a high research priority. A multitude of novel therapies are under investigation in both the frontline and relapsed/refractory settings. It will be critical to identify the most appropriate populations for new agents and to develop validated surrogate end points, so that novel agents can be tested (and adopted, if appropriate) efficiently. PMID:26989204

  18. Actions and Agents

    OpenAIRE

    Alonso, E.

    2014-01-01

    In this chapter the notion of agency in AI is presented..It has been argued that in order to behave rationally in prevalent software applications artificial entities would have to be autonomous and adaptive. Besides, rather than working with single, isolated systems the new trend in AI would need to focus on inherently social entities in the form of multi-agent systems. The chapter begins by introducing the notion of action in traditional AI systems, deliberative and reactive. Next, the i...

  19. Towards Soft Computing Agents

    Czech Academy of Sciences Publication Activity Database

    Neruda, Roman; Krušina, Pavel; Petrová, Zuzana

    2000-01-01

    Roč. 10, č. 5 (2000), s. 859-868. ISSN 1210-0552. [SOFSEM 2000 Workshop on Soft Computing. Milovy, 27.11.2000-28.11.2000] R&D Projects: GA ČR GA201/00/1489; GA ČR GA201/99/P057 Institutional research plan: AV0Z1030915 Keywords : hybrid systems * intelligent agents Subject RIV: BA - General Mathematics

  20. Sunscreening Agents: A Review

    OpenAIRE

    Latha, M. S.; Martis, Jacintha; Shobha, V; Sham Shinde, Rutuja; Bangera, Sudhakar; Krishnankutty, Binny; Bellary, Shantala; Varughese, Sunoj; Rao, Prabhakar; B R Naveen Kumar

    2013-01-01

    The increasing incidence of skin cancers and photodamaging effects caused by ultraviolet radiation has increased the use of sunscreening agents, which have shown beneficial effects in reducing the symptoms and reoccurrence of these problems. Many sunscreen compounds are in use, but their safety and efficacy are still in question. Efficacy is measured through indices, such as sun protection factor, persistent pigment darkening protection factor, and COLIPA guidelines. The United States Food an...

  1. Perioperative allergy: uncommon agents.

    Science.gov (United States)

    Caimmi, S; Caimmi, D; Cardinale, F; Indinnimeo, L; Crisafulli, G; Peroni, D G; Marseglia, G L

    2011-01-01

    Anesthesia may often be considered as a high-risk procedure and anaphylaxis remains a major cause of concern for anesthetists who routinely administer many potentially allergenic agents. Neuromuscular blocking agents, latex and antibiotics are the substances involved in most of the reported reactions. Besides these three agents, a wide variety of substances may cause an anaphylactic reaction during anesthesia. Basically all the administered drugs or substances may be potential causes of anaphylaxis. Among them, those reported the most in literature include hypnotics, opioids, local anesthetics, colloids, dye, Non-Steroidal Anti-Inflammatory Drugs (NSAIDs), Iodinated Contrast Media (ICM), antiseptics, aprotinin, ethylene oxyde and formaldehyde, and protamine and heparins. No premedication can effectively prevent an allergic reaction and a systematic preoperative screening is not justified for all patients; nevertheless, an allergy specialist should evaluate those patients with a history of anesthesia-related allergy. Patients must be fully informed of investigation results, and advised to provide a detailed report prior to future anesthesia. PMID:22014927

  2. Advanced scale conditioning agents

    International Nuclear Information System (INIS)

    A technical description of Advanced Scale Conditioning Agents (ASCA) technology was published in the May-June 2003 edition of the Nuclear Plant Journal. That article described the development of programs of advanced scale conditioning agents and specific types to maintain the secondary side of steam generators within a pressurized water reactor free of deposited corrosion products and corrosion-inducing contaminants to ensure their long-term operation. This article describes the first two plant applications of advanced scale conditioning agents implemented at Southern Nuclear Operating Company's Vogtle Units 1 and 2 during their 2002 scheduled outages to minimize tube degradation and maintain full power operation using the most effective techniques while minimizing outage costs. The goal was to remove three to four fuel cycles of deposits from each steam generator so that after future chemical cleaning activities, ASCAs could be used to maintain the cleanliness of the steam generators without the need for additional chemical cleaning efforts. The goal was achieved as well as several other benefits that resulted in cost savings to the plant

  3. Guanidinoacetic acid as a performance-enhancing agent.

    Science.gov (United States)

    Ostojic, Sergej M

    2016-08-01

    Guanidinoacetic acid (GAA; also known as glycocyamine or guanidinoacetate) is the natural precursor of creatine, and under investigation as a novel dietary agent. It was first identified as a natural compound in humans ~80 years ago. In the 1950s, GAA's use as a therapeutic agent was explored, showing that supplemental GAA improved patient-reported outcomes and work capacity in clinical populations. Recently, a few studies have examined the safety and efficacy of GAA and suggest potential ergogenic benefits for physically active men and women. The purpose of this review is to examine possible applications of GAA supplementation for exercise performance enhancement, safety, and legislation issues. PMID:26445773

  4. Medical chemistry of boron neutron capture agents having pharmacological activity

    International Nuclear Information System (INIS)

    Boron neutron capture therapy (BNCT) is a cancer treatment that selectively destroys cancer cells following administering a cancer-selective drug containing stable isotope boron-10 and neutron irradiation. In clinical trial of BNCT, disodium mercaptoundecahydro-closo-dodecaborate (BSH) and p-boronophenylalanine (BPA) have been used, however, development of a new drugs with high cancer selectivity and therapeutic efficiency is expected. Therefore, we review boron-containing drugs as a boron neutron capture agents having pharmacological activity, BNCT research on boron-modified porphyrin derivatives which have photosensitivity and neutron capture activity and our proposed neutron sensitizing agent. (author)

  5. Immunosuppression associated with novel chemotherapy agents and monoclonal antibodies.

    Science.gov (United States)

    Morrison, Vicki A

    2014-11-15

    The introduction of novel agents to the therapeutic armamentarium for oncologic, rheumatologic, and neurologic disorders has resulted in major clinical advances. These agents impact immune function, resulting in a discrete spectrum of infectious complications. Purine analogues and alemtuzumab alter cell-mediated immunity, resulting in opportunistic viral/fungal infections. Herpes zoster incidence increases with bortezomib. Hepatitis B reactivation may occur with rituximab. Cases of progressive multifocal leukoencephalopathy have occurred following monoclonal antibody therapy. Tumor necrosis factor-α inhibitor therapy is complicated by tuberculosis reactivation and fungal infections. We summarize the impact of these therapies on pathogenesis and spectrum of infection complicating their usage. PMID:25352632

  6. Biomedicines—Moving Biologic Agents into Approved Treatment Options

    Directory of Open Access Journals (Sweden)

    Kenneth Cornetta

    2013-03-01

    Full Text Available The development of biologic agents for therapeutic purposes, or biomedicines, has seen an active area of research both at the bench and in clinical trials. There is mounting evidence that biologic products can provide effective therapy for diseases that have been unresponsive to traditional pharmacologic approaches. Monoclonal antibody therapy for cancer and rheumatologic diseases has become a well accepted part of disease treatment plans. Gene therapy products have been approved in China and Europe. Bioengineering of new agents capitalizing on microRNA biology, nanoparticle technology, stem cell biology, and an increasing understanding of immunology predict a rich future for product development. [...

  7. Bifunctional chelating agent for the design and development of site specific radiopharmaceuticals and biomolecule conjugation strategy

    Science.gov (United States)

    Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.

    2003-10-21

    There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.

  8. Translating connexin biology into therapeutics.

    Science.gov (United States)

    Becker, David L; Phillips, Anthony R; Duft, Bradford J; Kim, Yeri; Green, Colin R

    2016-02-01

    It is 45 years since gap junctions were first described. Universities face increasing commercial pressures and declining federal funding, with governments and funding foundations showing greater interest in gaining return on their investments. This review outlines approaches taken to translate gap junction research to clinical application and the challenges faced. The need for commercialisation is discussed and key concepts behind research patenting briefly described. Connexin channel roles in disease and injury are also discussed, as is identification of the connexin hemichannel as a therapeutic target which appears to play a role in both the start and perpetuation of the inflammasome pathway. Furthermore connexin hemichannel opening results in vascular dieback in acute injury and chronic disease. Translation to human indications is illustrated from the perspective of one connexin biotechnology company, CoDa Therapeutics, Inc. PMID:26688335

  9. Sinigrin and Its Therapeutic Benefits

    Directory of Open Access Journals (Sweden)

    Anisha Mazumder

    2016-03-01

    Full Text Available Sinigrin (allyl-glucosinolate or 2-propenyl-glucosinolate is a natural aliphatic glucosinolate present in plants of the Brassicaceae family, such as broccoli and brussels sprouts, and the seeds of Brassica nigra (mustard seeds which contain high amounts of sinigrin. Since ancient times, mustard has been used by mankind for its culinary, as well as medicinal, properties. It has been systematically described and evaluated in the classical Ayurvedic texts. Studies conducted on the pharmacological activities of sinigrin have revealed anti-cancer, antibacterial, antifungal, antioxidant, anti-inflammatory, wound healing properties and biofumigation. This current review will bring concise information about the known therapeutic activities of sinigrin. However, the information on known biological activities is very limited and, hence, further studies still need to be conducted and its molecular mechanisms also need to be explored. This review on the therapeutic benefits of sinigrin can summarize current knowledge about this unique phytocompounds.

  10. The therapeutic value of glycolic acid peels in dermatology

    Directory of Open Access Journals (Sweden)

    Grover C

    2003-03-01

    Full Text Available Chemical peeling or chemexfoliation has become increasingly popular in recent years for treatment of a number of cosmetic skin problems. Topical glycolic acid in the concentration of 10-30% for 3-5 minutes at fortnightly intervals was investigated as a therapeutic peeling agent in 41 patients having acne (39%, melasma (36.5%, post inflammatory hyperpigmentation (12% and superficial scarring of varied etiology (12%. A final evaluation done at 16 weeks revealed that this modality is useful especially in superficial scarring and melasma, moderately successful in acne patients with no response in dermal pigmentation. No significant untoward effects were seen.

  11. Tumor angiogenesis--a new therapeutic target in gliomas

    DEFF Research Database (Denmark)

    Lund, E L; Spang-Thomsen, M; Skovgaard-Poulsen, H; Kristjansen, P E

    1998-01-01

    Tumor growth is critically dependent on angiogenesis, which is sprouting of new vessels from pre-existing vasculature. This process is regulated by inducers and inhibitors released from tumor cells, endothelial cells, and macrophages. Brain tumors, especially glioblastoma multiforme, have...... significant angiogenic activity primarily by the expression of the angiogenic factor VEGF Anti-angiogenic therapy represents a new promising therapeutic modality in solid tumors. Several agents are currently under evaluation in clinical trials. The present review describes the principal inducers and...... inhibitors of angiogenesis in tumors and summarizes what is known about their mechanisms of action in relation to CNS tumors. Potential areas for clinical use are also discussed....

  12. SAM : Semantic Agent Model for SWRL rule-based agents

    OpenAIRE

    Subercaze, Julien; Maret, Pierre

    2010-01-01

    International audience SemanticWeb technologies are part of multi-agent engineering, especially regarding knowledge base support. Recent advances in the field of logic for the semantic web enable a new range of applications. Among them, programming agents based on semantic rules is a promising field. In this paper we present a semantic agent model that allows SWRL programming of agents. Our approach, based on the extended finite state machine concept, results in a three layers architecture...

  13. Therapeutic approach to sexual abuse.

    OpenAIRE

    Furniss, T; Bingley-Miller, L; Bentovim, A

    1984-01-01

    An account is given of the development of a treatment project for sexually abused children and their families. We review incidence data which indicate that sexual abuse of children is likely to be a far more frequent problem than has been recognised and cause an appreciable degree of psychological damage. Professional responses to this are confused and treatment facilities limited. Sexual abuse is seen as an expression of severe relationship problems in the family and therapeutic provision is...

  14. Therapeutic advances in muscular dystrophy

    OpenAIRE

    Leung, Doris G.; Wagner, Kathryn R.

    2013-01-01

    The muscular dystrophies comprise a heterogeneous group of genetic disorders that produce progressive skeletal muscle weakness and wasting. There has been rapid growth and change in our understanding of these disorders in recent years, and advances in basic science are being translated into increasing numbers of clinical trials. This review will discuss therapeutic developments in 3 of the most common forms of muscular dystrophy: Duchenne muscular dystrophy, facioscapulohumeral muscular dystr...

  15. Pathogenesis and new therapeutic targets

    OpenAIRE

    Mertens, Michael

    2010-01-01

    Acute lung injury and its pronounced form, acute respiratory distress syndrome, are life-threatening diseases with 190,000 patients and 74,500 deaths per year in the United States. Until now there have been no therapeutic approaches to lower morbidity and mortality, except for ventilation with small tidal volumes. This partially results from a lack of understanding of the underlying mechanism of ventilator induced acute lung injury on the alveolar and alveolar capillary level. In addition, ph...

  16. Therapeutics aspects of music education

    OpenAIRE

    Pesek, Albinca; Čagran, Branka

    2015-01-01

    Disintegration of moral value system in modern society demands changes of educational system. Education takes an important part with its effort to establish integral education. In this way, an individual develops all his potentials: physical, emotional, cognitive and mental. Music education in its therapeutic mission helps at forming harmonious personality and becomes a mediator at different activities where discrepancies do not allow a successful educational process. On the basis of the empi...

  17. Brain plasticity-based therapeutics

    OpenAIRE

    Merzenich, Michael M.; Van Vleet, Thomas M.; Nahum, Mor

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from (a) the more-behavioral, tra...

  18. Brain Plasticity-Based Therapeutics

    OpenAIRE

    Michael eMerzenich; Mor eNahum; Tom eVan Vleet

    2014-01-01

    The primary objective of this review article is to summarize how the neuroscience of brain plasticity, exploiting new findings in fundamental, integrative and cognitive neuroscience, is changing the therapeutic landscape for professional communities addressing brain-based disorders and disease. After considering the neurological bases of training-driven neuroplasticity, we shall describe how this neuroscience-guided perspective distinguishes this new approach from a) the more-behavioral, trad...

  19. DNA as Therapeutics; an Update

    OpenAIRE

    Saraswat P; Soni R; Bhandari A; Nagori B

    2009-01-01

    Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine′s arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, periphe...

  20. Therapeutic options for severe asthma

    OpenAIRE

    Mathew, Jilcy; Aronow, Wilbert S.; Chandy, Dipak

    2012-01-01

    As the overall prevalence of asthma has escalated in the past decades, so has the population of patients with severe asthma. This condition is often difficult to manage due to the relative limitation of effective therapeutic options for the physician and the social and economic burden of the disease on the patient. Management should include an evaluation and elimination of modifiable risk factors such as smoking, allergen exposure, obesity and non-adherence, as well as therapy for co-morbidit...

  1. Recent Progress in Therapeutic Angiogenesis

    OpenAIRE

    Nakagami, Hironori; Morishita, Ryuichi

    2007-01-01

    Coronary artery disease and peripheral arterial disease are devastating status of acute vessel occlusion in diseased vessels that are already narrowed enough by atherosclerotic process. People are now focused on therapeutic angiogenesis against the ischemic diseases, to supply and growth of new vessels into the ischemic tissue. Recently, we and others performed autologous transplantation of bone marrow mononuclear cell or endothelial progenitor cell and gene therapy using hepatocyte growth fa...

  2. Bioengineering beige adipose tissue therapeutics

    Directory of Open Access Journals (Sweden)

    Kevin eTharp

    2015-10-01

    Full Text Available Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of UCP1-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable brown adipose tissues for human therapeutic purposes at this time.Recent developments in bioengineering, including novel hyaluronic acid based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit WAT derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of beige adipose tissue implants and their potential for the metabolic

  3. Bioengineering Beige Adipose Tissue Therapeutics.

    Science.gov (United States)

    Tharp, Kevin M; Stahl, Andreas

    2015-01-01

    Unlocking the therapeutic potential of brown/beige adipose tissue requires technological advancements that enable the controlled expansion of this uniquely thermogenic tissue. Transplantation of brown fat in small animal model systems has confirmed the expectation that brown fat expansion could possibly provide a novel therapeutic to combat obesity and related disorders. Expansion and/or stimulation of uncoupling protein-1 (UCP1)-positive adipose tissues have repeatedly demonstrated physiologically beneficial reductions in circulating glucose and lipids. The recent discovery that brown adipose tissue (BAT)-derived secreted factors positively alter whole body metabolism further expands potential benefits of brown or beige/brite adipose expansion. Unfortunately, there are no sources of transplantable BATs for human therapeutic purposes at this time. Recent developments in bioengineering, including novel hyaluronic acid-based hydrogels, have enabled non-immunogenic, functional tissue allografts that can be used to generate large quantities of UCP1-positive adipose tissue. These sophisticated tissue-engineering systems have provided the methodology to develop metabolically active brown or beige/brite adipose tissue implants with the potential to be used as a metabolic therapy. Unlike the pharmacological browning of white adipose depots, implantation of bioengineered UCP1-positive adipose tissues offers a spatially controlled therapeutic. Moving forward, new insights into the mechanisms by which extracellular cues govern stem-cell differentiation and progenitor cell recruitment may enable cell-free matrix implant approaches, which generate a niche sufficient to recruit white adipose tissue-derived stem cells and support their differentiation into functional beige/brite adipose tissues. This review summarizes clinically relevant discoveries in tissue-engineering and biology leading toward the recent development of biomaterial supported beige adipose tissue implants and

  4. Evaluation of therapeutic patient education

    OpenAIRE

    D'Ivernois, Jean-François; Gagnayre, Rémi; Assal, Jean-Philippe; Golay, Alain; Libion, France; Deccache, Alain

    2006-01-01

    Over the past thirty years, therapeutic patient education (TPE) has become an essential part of the treatment of long-term diseases. Evaluations of this new practice are expected, and are sometimes imposed according to protocols and criteria that do not always reflect the complexity of changes taking place within patients and healthcare providers. Sometimes, expected results are not achieved because evaluation methods are inappropriate. These guidelines, drawn up by three university centres h...

  5. Psychiatric aspects of therapeutic abortion *

    OpenAIRE

    Doane, Benjamin K.; Quigley, Beverly G.

    1981-01-01

    A search of the literature on the psychiatric aspects of abortion revealed poor study design, a lack of clear criteria for decisions for or against abortion, poor definition of psychologic symptoms experienced by patients, absence of control groups in clinical studies, and indecisiveness and uncritical attitudes in writers from various disciplines. A review of the sequelae of therapeutic abortion revealed that although the data are vague, symptoms of depression were reported most frequently, ...

  6. Conotoxins that Confer Therapeutic Possibilities

    Directory of Open Access Journals (Sweden)

    John A. C. Archer

    2012-06-01

    Full Text Available Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA approved pharmaceutical drug, Ziconotide (Prialt®; Elan Pharmaceuticals, Inc. that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD was also inferred.

  7. Conotoxins that confer therapeutic possibilities.

    Science.gov (United States)

    Essack, Magbubah; Bajic, Vladimir B; Archer, John A C

    2012-06-01

    Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt(®); Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ω-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred. PMID:22822370

  8. DNA as therapeutics; an update.

    Science.gov (United States)

    Saraswat, P; Soni, R R; Bhandari, A; Nagori, B P

    2009-09-01

    Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine's arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research. PMID:20502565

  9. DNA as therapeutics; an update

    Directory of Open Access Journals (Sweden)

    Saraswat P

    2009-01-01

    Full Text Available Human gene therapy is the introduction of new genetic material into the cells of an individual with the intention of producing a therapeutic benefit for the patient. Deoxyribonucleic acid and ribonucleic acid are used in gene therapy. Over time and with proper oversight, human gene therapy might become an effective weapon in modern medicine′s arsenal to help fight diseases such as cancer, acquired immunodeficiency syndrome, diabetes, high blood pressure, coronary heart disease, peripheral vascular disease, neurodegenerative diseases, cystic fibrosis, hemophilia and other genetic disorders. Gene therapy trials in humans are of two types, somatic and germ line gene therapy. There are many ethical, social, and commercial issues raised by the prospects of treating patients whose consent is impossible to obtain. This review summarizes deoxyribonucleic acid-based therapeutics and gene transfer technologies for the diseases that are known to be genetic in origin. Deoxyribonucleic acid-based therapeutics includes plasmids, oligonucleotides for antisense and antigene applications, deoxyribonucleic acid aptamers and deoxyribonucleic acidzymes. This review also includes current status of gene therapy and recent developments in gene therapy research.

  10. Conotoxins that confer therapeutic possibilities

    KAUST Repository

    Essack, Magbubah

    2012-06-04

    Cone snails produce a distinctive repertoire of venom peptides that are used both as a defense mechanism and also to facilitate the immobilization and digestion of prey. These peptides target a wide variety of voltage- and ligand-gated ion channels, which make them an invaluable resource for studying the properties of these ion channels in normal and diseased states, as well as being a collection of compounds of potential pharmacological use in their own right. Examples include the United States Food and Drug Administration (FDA) approved pharmaceutical drug, Ziconotide (Prialt; Elan Pharmaceuticals, Inc.) that is the synthetic equivalent of the naturally occurring ?-conotoxin MVIIA, whilst several other conotoxins are currently being used as standard research tools and screened as potential therapeutic drugs in pre-clinical or clinical trials. These developments highlight the importance of driving conotoxin-related research. A PubMed query from 1 January 2007 to 31 August 2011 combined with hand-curation of the retrieved articles allowed for the collation of 98 recently identified conotoxins with therapeutic potential which are selectively discussed in this review. Protein sequence similarity analysis tentatively assigned uncharacterized conotoxins to predicted functional classes. Furthermore, conotoxin therapeutic potential for neurodegenerative disorders (NDD) was also inferred. 2012 by the authors; licensee MDPI.

  11. Macrocyclic bifunctional chelating agents

    Science.gov (United States)

    Meares, Claude F.; DeNardo, Sally J.; Cole, William C.; Mol, Min K.

    1987-01-01

    A copper chelate conjugate which is stable in human serum. The conjugate includes the copper chelate of a cyclic tetraaza di-, tri-, or tetra-acetic acid, a linker attached at one linker end to a ring carbon of the chelate, and a biomolecule joined at the other end of the linker. The conjugate, or the linker-copper chelate compound used in forming the conjugate, are designed for use in diagnostic and therapeutic applications which involve Cu(II) localization via the systemic route.

  12. EphB4 as a therapeutic target in mesothelioma

    International Nuclear Information System (INIS)

    Malignant pleural mesothelioma (MPM) often develops decades following exposure to asbestos. Current best therapy produces a response in only half of patients, and the median survival with this therapy remains under a year. A search for novel targets and therapeutics is underway, and recently identified targets include VEGF, Notch, and EphB4-Ephrin-B2. Each of these targets has dual activity, promoting tumor cell growth as well as tumor angiogenesis. We investigated EphB4 expression in 39 human mesothelioma tissues by immunohistochemistry. Xenograft tumors established with human mesothelioma cells were treated with an EphB4 inhibitor (monomeric soluble EphB4 fused to human serum albumin, or sEphB4-HSA). The combinatorial effect of sEphB4-HSA and biologic agent was also studied. EphB4 was overexpressed in 72% of mesothelioma tissues evaluated, with 85% of epithelioid and 38% of sarcomatoid subtypes demonstrating overexpression. The EphB4 inhibitor sEphB4-HSA was highly active as a single agent to inhibit tumor growth, accompanied by tumor cell apoptosis and inhibition of PI3K and Src signaling. Combination of sEphB4-HSA and the anti-VEGF antibody (Bevacizumab) was superior to each agent alone and led to complete tumor regression. EphB4 is a potential therapeutic target in mesothelioma. Clinical investigation of sEphB4-HSA as a single agent and in combination with VEGF inhibitors is warranted

  13. Protective and therapeutic effects of cannabis plant extract on liver cancer induced by dimethylnitrosamine in mice

    Directory of Open Access Journals (Sweden)

    Neveen Abd El Moneim Hussein

    2014-09-01

    Conclusion: The protective effect of cannabis extract is more pronounced in group taking cannabis before DMNA. Cannabinoids might exert their anti-tumor effects by the direct induction of apoptosis and can decrease telomerase activity by inhibiting the expression of the TERT gene. Coordination between inhibition of telomerase activity and induction of apoptosis might be a potential therapeutic agent for cancer treatment.

  14. Peripheral Neuropathy and Agent Orange

    Science.gov (United States)

    ... Enter ZIP code here Peripheral Neuropathy and Agent Orange VA presumes Veterans' early-onset peripheral neuropathy is related to their exposure to Agent Orange or other herbicides during service when the disease ...

  15. Agents Play Mix-game

    CERN Document Server

    Gou, C

    2005-01-01

    In mix-game which is an extension of minority game, there are two groups of agents; group1 plays the majority game, but the group2 plays the minority game. This paper studies the change of the average winnings of agents and volatilities vs. the change of mixture of agents in mix-game model. It finds that the correlations between the average winnings of agents and the mean of local volatilities are different with different combinations of agent memory length when the proportion of agents in group 1 increases. This study result suggests that memory length of agents in group1 be smaller than that of agent in group2 when mix-game model is used to simulate the financial markets.

  16. The Power Trading Agent Competition

    OpenAIRE

    Ketter, W.; Collins, J.; REDDY, P; Flath, C.

    2011-01-01

    This is the specification for the Power Trading Agent Competition for 2011 (Power TAC 2011). Agents are simulations of electrical power brokers, who must compete with each other for both power production and consumption, and manage their portfolios.

  17. Mediating Performance Through Virtual Agents

    OpenAIRE

    Giannachi, Gabriella; Gillies, Marco; Kaye, Nick; Swapp, David

    2009-01-01

    This paper presents the process of creation of virtual agents used in a virtual reality performance. The performance aimed to investigate how drama and performance could inform the creation of virtual agents and also how virtual reality could raise questions for drama and performance. The virtual agents were based on the performance of 2 actors. This paper describes the process of preparing the actors, capturing their performances and transferring them to the virtual agents. A second set of a...

  18. Erythropoietic Agents and the Elderly

    OpenAIRE

    Agarwal, Neeraj; Prchal, Josef T.

    2008-01-01

    Erythropoietin is a peptide hormone that stimulates erythropoiesis. There are several agents in clinical use and in development, which either act as ligands for the cell surface receptors of erythropoietin or promote erythropoietin production that stimulates erythropoiesis. These are known as erythropoietic agents. The agents already in use include epoetin alfa, epoetin beta, and darbepoetin alfa. Newer agents stimulating erythropoiesis (such as continuous erythropoietin receptor activator (C...

  19. Cysteamine-related agents could be potential antidepressants through increasing central BDNF levels.

    Science.gov (United States)

    Tsai, Shih-Jen

    2006-01-01

    Major depressive disorder (MDD) is a common mental disease, but with an unknown etiology. Antidepressants are the main biological treatment for MDD. However, current antidepressive agents have a slow onset of effect and a substantial proportion of MDD patients do not clinically improve, despite maximal medication. Thus, the exploration for new antidepressants with novel strategies may help to develop faster and more effective antidepressant agents. Studies in the recent decades have demonstrated that antidepressants increase central brain-derived neurotrophic factor (BDNF) levels and activating the BDNF-signaling pathway may play an important role in their therapeutic mechanism. Cysteamine is a natural product of cells and constitutes the terminal region of the CoA molecule. Recent work has found that cysteamine and a related agent, cystamine, have neuroprotective effects in Huntington's disease (HD) mice, through enhancing central BDNF levels. Furthermore, cystamine or cysteamine injection could increase serum BDNF levels in wild-type mice as well as HD mice. Since activation of the BDNF-dependent pathway plays an important role in the mechanism of antidepressant therapeutic action, cystamine or its derivatives could have potential antidepressant therapeutic effects. Among these agents, pantethine may be one of the most promising agents. It is a naturally occurring compound which can be administered orally with negligible side effects, and is metabolized to cysteamine. Further evaluation of the therapeutic and toxic effects of these cysteamine-related antidepressant agents in MDD animal models is needed before any clinical application. PMID:16797865

  20. Huntington's disease: effect of cysteamine, a somatostatin-depleting agent.

    Science.gov (United States)

    Shults, C; Steardo, L; Barone, P; Mohr, E; Juncos, J; Serrati, C; Fedio, P; Tamminga, C A; Chase, T N

    1986-08-01

    Somatostatin levels in the basal ganglia are elevated in Huntington's disease. A controlled therapeutic trial of the somatostatin-depleting agent, cysteamine, was therefore conducted in five patients, including one with the rigid-akinetic form. Maximum tolerated dosage for 2 weeks produced no consistent change in extrapyramidal or dementia scores. Somatostatin concentrations were not significantly altered in plasma or CSF. Growth hormone levels, on the other hand, more than doubled, suggesting a functionally significant decrease in central somatostatin levels. PMID:2874527