WorldWideScience

Sample records for anti-icing

  1. Environmentally friendly anti-icing

    Science.gov (United States)

    Lockyer, Robert T. (Inventor); Zuk, John (Inventor); Haslim, Leonard A. (Inventor)

    1998-01-01

    The present invention describes an aqueous, non-electrolytic, non-toxic, biodegradable, continuous single phase liquid anti-icing or deicing composition for use on the surfaces of, for example, aircraft, airport pavements, roadways, walkways, bridges, entrances, structures, canals, locks, components, vessels, nautical components, railroad switches, and motor vehicles. The anti-icing or deicing composition comprises: (a) water; (b) a non-toxic freezing point depressant selected from the group consisting of monohydric alcohols having from 2 to 6 carbon atoms, polyhydric alcohols having from 3 to 12 carbon atoms, monomethyl or ethyl ethers of polyhydric alcohols having from 3 to 12 atoms or mixtures thereof, wherein the freezing point depressant present is between about 14 to 60 percent by weight; (c) a thickener which is present in between about 0.01 and 10 percent by weight; and (d) optionally a corrosion inhibitor which is present in between about 0.01 and 0.1 percent by weight of the total composition. In one embodiment, the deicing composition further includes (e) a monohydric primary aliphatic unbranched alcohol as a means of forming a thin layer of the composition on the surface of the structure to be given ice protection, and/or as means of forming a homogenized foam with xanthan thickener; which alcohol is selected from the group consisting of alcohols having between 8 to 24 carbon atoms, preferably, 1-dodecanol. Compositions of water, propylene glycol, and/or propanol and xanthan are preferred.

  2. Anti-icing performance of superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Farhadi, S.; Farzaneh, M. [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada); Kulinich, S.A., E-mail: skulinic@uqac.ca [CIGELE/INGIVRE, Department of Applied Sciences, Universite du Quebec a Chicoutimi, 555 University blvd., Saguenay, PQ, G7H 2B1 (Canada)

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size {approx}80 {mu}m) in a wind tunnel at subzero temperature (-10 deg. C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  3. Anti-icing performance of superhydrophobic surfaces

    International Nuclear Information System (INIS)

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size ∼80 μm) in a wind tunnel at subzero temperature (-10 deg. C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  4. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Järn, Mikael; Shimizu, Kyoko;

    2014-01-01

    This work demonstrates the feasibility of superhydrophilic polyelectrolyte brush coatings for anti-icing applications. Five different types of ionic and nonionic polymer brush coatings of 25-100 nm thickness were formed on glass substrates using silane chemistry for surface premodification follow......) that is enhanced in the presence of highly hydrated ions at the interface. It is suggested that the ability of ions to coordinate water is directly related to the efficiency of a given anti-icing coating based on the polyelectrolyte brush concept.......(-), SO4(2-), and C12SO3(-) ions. By consecutive measurements of the strength of ice adhesion toward ion-incorporated polymer brushes on glass it was found that Li(+) ions reduce ice adhesion by 40% at -18 °C and 70% at -10 °C. Ag(+) ions reduce ice adhesion by 80% at -10 °C relative to unmodified glass...

  5. On Modulating Interfacial Structure towards Improved Anti-Icing Performance

    Directory of Open Access Journals (Sweden)

    Kshitij C. Jha

    2016-01-01

    Full Text Available The design of anti-icing surfaces presents an interface with high causal density that has been challenging to quantify in terms of individual contributions of various interactions and environmental factors. In this commentary, we highlight the role of interfacial water structure as uniquely expressing the physico-chemical aspects of ice accretion. Recent work on the topic that focuses on control of interfacial structure is discussed along with results by our research group on wettability of chemically modified surfaces and the role of ions in modulating interfacial structure. Suggestions for systematic studies to understand the fundamental interactions at play in ice adhesion at interfaces are made especially in the under-explored areas of cooperative hydrogen bonding and the role of solvated counterions. Insights expected from such studies would contribute to design of robust anti-icing hierarchies.

  6. Design of anti-icing surfaces: smooth, textured or slippery?

    Science.gov (United States)

    Kreder, Michael J.; Alvarenga, Jack; Kim, Philseok; Aizenberg, Joanna

    2016-01-01

    Passive anti-icing surfaces, or icephobic surfaces, are an area of great interest because of their significant economic, energy and safety implications in the prevention and easy removal of ice in many facets of society. The complex nature of icephobicity, which requires performance in a broad range of icing scenarios, creates many challenges when designing ice-repellent surfaces. Although superhydrophobic surfaces incorporating micro- or nanoscale roughness have been shown to prevent ice accumulation under certain conditions, the same roughness can be detrimental in other environments. Surfaces that present a smooth liquid interface can eliminate some of the drawbacks of textured superhydrophobic surfaces, but additional study is needed to fully realize their potential. As attention begins to shift towards alternative anti-icing strategies, it is important to consider and to understand the nature of ice repellency in all environments to identify the limitations of current solutions and to design new materials with robust icephobicity.

  7. Bridge ice accretion and de- and anti-icing systems: A review

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    Blocks of ice or snow falling from bridge members can cause traffic accidents, direct damages to passing vehicles, and generally place human safety at risk. Consequently, the lack of successful de- or anti-icing measures may result in bridge closure, which leads to traffic hindrance that can...

  8. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    Science.gov (United States)

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  9. Dynamic Study of Liquid Drop Impact on Supercooled Cerium Dioxide: Anti-Icing Behavior.

    Science.gov (United States)

    Fu, Sin-Pui; Sahu, Rakesh P; Diaz, Estefan; Robles, Jaqueline Rojas; Chen, Chen; Rui, Xue; Klie, Robert F; Yarin, Alexander L; Abiade, Jeremiah T

    2016-06-21

    This work deals with the anti-icing behavior at subfreezing temperatures of CeO2/polyurethane nanocomposite coatings with and without a stearic acid treatment on aluminum alloy substrates. The samples ranged from superhydrophilic to superhydrophobic depending on surface morphology and surface functionalization. X-ray photoelectron spectroscopy was used to determine the surface composition. The anti-icing behavior was studied both by importing fog into a chamber with controlled atmosphere at subzero temperatures and by conducting experiments with drop impact velocities of 1.98, 2.8, 3.83, and 4.95 m/s. It was found that the ice-phobicity of the ceramic/polymer nanocomposite coating was dependent on the surface roughness and surface energy. Water drops were observed to completely rebound from the surface at subfreezing temperatures from superhydrophobic surfaces with small contact angle hysteresis regardless of the impact velocity, thus revealing the anti-icing capability of such surfaces. PMID:27166506

  10. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    Directory of Open Access Journals (Sweden)

    Tatar V.

    2015-01-01

    Full Text Available One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  11. The Effect of Break Edge Configuration on the Aerodynamics of Anti-Ice Jet Flow

    Science.gov (United States)

    Tatar, V.; Yildizay, H.; Aras, H.

    2015-05-01

    One of the components of a turboprop gas turbine engine is the Front Bearing Structure (FBS) which leads air into the compressor. FBS directly encounters with ambient air, as a consequence ice accretion may occur on its static vanes. There are several aerodynamic parameters which should be considered in the design of anti-icing system of FBS, such as diameter, position, exit angle of discharge holes, etc. This research focuses on the effects of break edge configuration over anti-ice jet flow. Break edge operation is a process which is applied to the hole in order to avoid sharp edges which cause high stress concentration. Numerical analyses and flow visualization test have been conducted. Four different break edge configurations were used for this investigation; without break edge, 0.35xD, 74xD, 0.87xD. Three mainstream flow conditions at the inlet of the channel are defined; 10m/s, 20 m/s and 40 m/s. Shear stresses are extracted from numerical analyses near the trailing edge of pressure surface where ice may occur under icing conditions. A specific flow visualization method was used for the experimental study. Vane surface near the trailing edge was dyed and thinner was injected into anti-ice jet flow in order to remove dye from the vane surface. Hence, film effect on the surface could be computed for each testing condition. Thickness of the dye removal area of each case was examined. The results show noticeable effects of break edge operation on jet flow, and the air film effectiveness decreases when mainstream inlet velocity decreases.

  12. Anti-icing properties of superhydrophobic ZnO/PDMS composite coating

    Science.gov (United States)

    Yang, Chao; Wang, Fajun; Li, Wen; Ou, Junfei; Li, Changquan; Amirfazli, Alidad

    2016-01-01

    We present the excellent anti-icing performance for a superhydrophobic coating surface based on ZnO/polydimethylsiloxane (ZnO/PDMS) composite. The superhydrophobic ZnO/PDMS coating surface was prepared by a facile solution mixing, drop coating, room-temperature curing and surface abrading procedure. The superhydrophobic ZnO/PDMS composite coating possesses a water contact angle of 159.5° and a water sliding angle of 8.3° at room temperature (5 °C). The anti-icing properties of the superhydrophobic coating were investigated by continuously dropping cold-water droplets (about 0 °C) onto the pre-cooled surface using a home-made apparatus. The sample was placed at different tilting angle (0° and 10°) and pre-cooled to various temperatures (-5, -10 and -15 °C) prior to measure. The pure Al surface was also studied for comparison. It was found that icing accretion on the surface could be reduced apparently because the water droplets merged together and slid away from the superhydrophobic surface at all of the measuring temperatures when the surface is horizontally placed. In addition, water droplet slid away completely from the superhydrophobic surface at -5 and -10 °C when the surface is tilted at 10°, which demonstrates its excellent anti-icing properties at these temperatures. When the temperature decreased to -15 °C, though ice accretion on the tilted superhydrophobic coating surface could not be avoided absolutely, the amount of ice formed on the surface is very small, which indicated that the coating surface with superhydrophobicity could significantly reduce ice accumulation on the surface at very low temperature (-15 °C). Importantly, the sample is also stable against repeated icing/deicing cycles. More meaningfully, once the superhydrophobic surface is damaged, it can be repaired easily and rapidly.

  13. Anti-icing potential of superhydrophobic Ti6Al4V surfaces: ice nucleation and growth.

    Science.gov (United States)

    Shen, Yizhou; Tao, Jie; Tao, Haijun; Chen, Shanlong; Pan, Lei; Wang, Tao

    2015-10-01

    On the basis of the icing-delay performance and ice adhesion strength, the anti-icing potential of the superhydrophobic surface has been well-investigated in the past few years. The present work mainly emphasized the investigations of ice nucleation and growth to fully explore the anti-icing potential of the superhydrophobic surface. We took the various surfaces ranging from hydrophilic to superhydrophobic as the research objects and, combining the classical nucleation theory, discussed the ice nucleation behaviors of the water droplets on these sample surfaces under the condition of supercooling. Meanwhile, the macroscopical growth processes of ice on these surfaces were analyzed on the basis of the growth mechanism of the ice nucleus. It was found that the superhydrophobic surface could greatly reduce the solid-liquid interface nucleation rate, owing to the extremely low actual solid-liquid contact area caused by the composite micro-nanoscale hierarchical structures trapping air pockets, leading to the bulk nucleation dominating the entire ice nucleation at the lower temperatures. Furthermore, ice on the superhydrophobic surface possessed a lower macroscopical growth velocity as a result of the less ice nucleation rate and the insulating action of the trapped air pockets. PMID:26367109

  14. Numerical Modeling of Anti-icing Systems and Comparison to Test Results on a NACA 0012 Airfoil

    Science.gov (United States)

    Al-Khalil, Kamel M.; Potapczuk, Mark G.

    1993-01-01

    A series of experimental tests were conducted in the NASA Lewis IRT on an electro-thermally heated NACA 0012 airfoil. Quantitative comparisons between the experimental results and those predicted by a computer simulation code were made to assess the validity of a recently developed anti-icing model. An infrared camera was utilized to scan the instantaneous temperature contours of the skin surface. Despite some experimental difficulties, good agreement between the numerical predictions and the experiment results were generally obtained for the surface temperature and the possibility for each runback to freeze. Some recommendations were given for an efficient operation of a thermal anti-icing system.

  15. Communication: anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators.

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-28

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation. PMID:25637961

  16. A facile method of fabricating mechanical durable anti-icing coatings based on CeO2 microparticles

    Science.gov (United States)

    Wang, Pengren; Peng, Chaoyi; Wu, Binrui; Yuan, Zhiqing; Yang, Fubiao; Zeng, Jingcheng

    2015-07-01

    Compromising between hydrophobicity and mechanical durability may be a feasible approach to fabricating usable anti-icing coatings. This work improves the contact angle of current commercial anti-icing coatings applied to wind turbine blades dramatically and keeps relatively high mechanical durability. CeO2 microparticles and diluent were mixed with fluorocarbon resin to fabricate high hydrophobic coatings on the glass fiber reinforced epoxy composite substrates. The proportion of CeO2 microparticles and diluent influences the contact angles significantly. The optimum mass ratio of fluorocarbon resin to CeO2 microparticles to diluent is 1:1.5:1, which leads to the highest contact angle close to 140°. The microscopy analysis shows that the CeO2 microparticles form nano/microscale hierarchical structure on the surface of the coatings.

  17. Deep supercooling xylem parenchyma cells of katsura tree (Cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity.

    Science.gov (United States)

    Kasuga, Jun; Hashidoko, Yasuyuki; Nishioka, Atsushi; Yoshiba, Megumi; Arakawa, Keita; Fujikawa, Seizo

    2008-09-01

    Xylem parenchyma cells (XPCs) of boreal hardwood species adapt to sub-freezing temperatures by deep supercooling to maintain a liquid state of intracellular water near -40 degrees C. Our previous study found that crude xylem extracts from such tree species exhibited anti-ice nucleation activity to promote supercooling of water. In the present study, thus, we attempted to identify the causative substances of supercooling. Crude xylem extracts from katsura tree (Cercidiphyllum japonicum), of which XPCs exhibited deep supercooling to -40 degrees C, were prepared by methanol extraction. The crude extracts were purified by liquid-liquid extraction and then by silica gel column chromatography. Although all the fractions obtained after each purification step exhibited some levels of anti-ice nucleation activity, only the most active fraction was retained to proceed to the subsequent level of purification. High-performance liquid chromatography (HPLC) analysis of a fraction with the highest level of activity revealed four peaks with high levels of anti-ice nucleation activity in the range of 2.8-9.0 degrees C. Ultraviolet (UV), mass and nuclear magnetic resonance (NMR) spectra revealed that these four peaks corresponded to quercetin-3-O-beta-glucoside (Q3G), kaempferol-7-O-beta-glucoside (K7G), 8-methoxykaempferol-3-O-beta-glucoside (8MK3G) and kaempferol-3-O-beta-glucoside (K3G). Microscopic observations confirmed the presence of flavonoids in cytoplasms of XPCs. These results suggest that diverse kinds of anti-ice nucleation substances, including flavonol glycosides, may have important roles in deep supercooling of XPCs. PMID:18518920

  18. Integrated Anti-Icing Property of Super-Repellency and Electrothermogenesis Exhibited by PEDOT:PSS/Cyanoacrylate Composite Nanoparticles.

    Science.gov (United States)

    Matsubayashi, Takeshi; Tenjimbayashi, Mizuki; Manabe, Kengo; Komine, Masatsugu; Navarrini, Walter; Shiratori, Seimei

    2016-09-14

    Ice formation causes numerous problems in many industrial fields as well as in our daily life. Various functional anti-ice coatings have been extensively studied during the past several decades; however, the development of feasible ice-repellent surfaces with long-term stability has been found to be extremely difficult. Here, we report the conductive superhydrophobic coatings with freezing rain repellency that simultaneously possess electrothermogenic ability to rapidly melt newly formed frosts due to the Joule heat. The obtained films have high mechanical flexibility and abrasion resistance produced by composite nanoparticles of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) embedded in ethyl cyanoacrylate. In addition, excellent water repellency (corresponding contact angle >160°) and efficient heating ability (with an estimated energy consumption as low as 260.8 °C cm(2)/W) generated by applying voltage through the conductive film surface have been demonstrated. The proposed concept of combining super-repellency with electrothermal heating may provide a new strategy of addressing problems related to ice formation. PMID:27540638

  19. Research on the Selection of the Most Adverse Condition of Windshield Anti-icing%风挡防冰严酷设计状态的选取

    Institute of Scientific and Technical Information of China (English)

    林丽

    2014-01-01

    According to windshield anti-icing heat load's relationship with the lfight conditions and the icing conditions, the severity evaluation index which is used to estimate the anti-icing adverse condition is presented. Compared to the traditional method, the method of the paper can reduce the calculation workload, improve the computational efifciency. Selection of the most adverse condition of windshield anti-icing has certain engineering application value.%根据飞行条件和结冰气象条件与风挡防冰需用热载荷的关系,提出评价防冰严酷设计状态的指数--严酷度评估指数,与传统确定严酷状态的方法相比,减少了系统的计算工作量,提高系统的计算效率,具有一定的应用价值。

  20. 水库闸门防冻方法研究%Study on anti-icing method for reservoir gate

    Institute of Scientific and Technical Information of China (English)

    张雷; 侯纪坤; 王环东; 罗兴锜

    2011-01-01

    Through the comparison on the five kinds of methods that are manually ice breaking, compressed air blowing ice, electric heating molting ice,water pump disturbing, heat pipe heat transfer, it was found that the water pump disturbing was the most reliable and reasonable method for preventing icing at the reservoir gate. The automatically lift/fall anti-icing device named “floating cylinder-cable” style device has been developed, the device could be operated and monitored in long distance away, the on-site running effect was well, it could be as reference for solving the icing problem for building and arc gates in severe cold areas in winter, and it has the value for development.%通过对人工破冰法、压缩空气吹冰法、电加热融冰法、水泵扰动破冰法、热管传热破冰法等5种方法的分析比较,得出水泵扰动破冰法是目前最可靠、最合理的水库闸门防冻的方法.研究开发了"浮筒-索道"式自动升降防冻装置.并实现了远方启停操作和运行状态监视,现场运行效果良好,为解决冬季高寒地区水工建筑物及弧门冰害问题提供了借鉴,具有良好的推广价值.

  1. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  2. Convective heat transfer analysis of anti-icing surface%防冰表面的对流换热计算分析

    Institute of Scientific and Technical Information of China (English)

    宋馨; 林贵平; 卜雪琴

    2011-01-01

    利用动量和热边界层积分分析的方法对采用电热防冰的二维机翼对流换热系数进行了数值计算,比较了等温突捩以及变温光滑两种不同的边界层模型.层流向湍流转捩的起始点位置和过渡区域的长度由经验公式判断,并通过内外热流耦合迭代求解得到了防冰表面的平衡温度,与文献试验值进行了比较.所得结果表明:加入过渡区模型可较好地预测对流换热系数及防冰表面温度.同时,结果还表明环境压力变化对换热系数的的影响较大.%An integral analysis of momentum and thermal boundary-layers was used to determine the con vective heat transfer coefficient on two-dimensional airfoils with thermal anti-ice system. The objective are to implement two different boundary-layer models: one assumed isothermal surface with prensence of a abrupt laminar-turbulent transition, while the other considered the boundary-layers over a non-isothermal surface with a smooth laminar-turbulent transition region. The onset and length of laminar-turbulent transition was estimated by classic empirical correlations. The surface equilibrium temperature distribution was predicted by an inte grated airoil leading-edge interior-exterior thermodynamic analysis, compared to the literature and experimental data. The results indicate a validity of using boundary-layer anaylysis with smooth laminar-turbulent transition in predicting anti-icing convective heat transfer and surface temperature, but the simulation shows that sur rounding static pressure has a large effect on the results accuracy.

  3. Influence of free stream velocity on runback water flow and heat transfer on anti-icing surface%来流速度对防冰表面溢流水流动换热的影响

    Institute of Scientific and Technical Information of China (English)

    郑梅; 董威; 朱剑鋆; 郭之强

    2016-01-01

    为研究来流速度对防冰表面溢流水流动形态及换热的影响,基于空气-水两层相互作用的质量、动量和能量守恒,建立防冰表面溢流水水膜流动换热及破裂的数学模型,分析了防冰表面溢流水在不同来流条件下的流动形态和表面换热情况.计算分析表明:来流速度增加时,防冰表面相同位置处的连续水膜厚度减小,水膜破裂位置随之延后;较高来流速度条件下,破裂处水膜厚度稍有增加,使得破裂后形成的溪流厚度和宽度增大;作为主要的表面散热项,连续水膜表面蒸发及对流换热热流均随来流速度的增加而增大.此外,由水膜破裂引起的表面溢流水流态变化对防冰表面蒸发热流有一定影响.%The purpose of this paper is to investigate the effect of free stream velocity on the runback water flow and heat transfer on the anti-icing surface.Based on the mass,momentum and energy conservations of the runback water flow and the air flow,a mathematical model of the runback water film flow and rivulet flow was developed to investigate the effect of the free stream velocity on the heat and mass transfer on the anti-icing surface. The computation analysis indicates that the water film thickness at the same position on the anti-icing surface decreases with the free stream velocity increasing,and the rivulet thickness and width at the breakup point increase due to larger water film thickness at higher free stream velocity.Meanwhile,as the main heat losses on the anti-icing surface,the evaporation heat flux and the convection heat flux on the water film surface increase with the free stream velocity increasing. In addition, the characteristics of the heat and mass transfer on the dry surface,the fully wet surface and the partially wet surface were also investigated.The results show that the patterns of the runback water have some influence on the heat and mass transfer on the anti-icing surface.

  4. Analysis on Critical Anti-icing Current of Conductor and Its Impacting Factors%导线临界防冰电流及其影响因素分析

    Institute of Scientific and Technical Information of China (English)

    蒋兴良; 兰强; 毕茂强

    2012-01-01

    Conductor icing is one of major factors which affect the safe operation of the transmission line, and the anti-icing method based on the Joule heating effect is feasible and effective. Taking the skin effect, the effect of geometric shapes, and water film covering conductors on heat transfer process into consideration, we established a mathematical model of critical anti-icing current on the basis of Joule heating effect and the heat transfer process of conductor under critical icing condition, and its calculations were consistent with the test results in artificial climate chamber. The proposed model is more accurate compared with other current models. We also studied the effects of the geometrical parameters of conductor, environment temperature, wind velocity, liquid water content (LWC), and median volume diameter(MVD) on critical anti-icing current of conductor. The simulation results show that the critical current increases rapidly with decreasing temperature, and increases rapidly with increasing wind velocity. The critical current slowly increases with increasing LWC, and increases slowly with increasing MVD when MVD is in the range of 0-100 μm.%导线覆冰是影响输电线路安全运行的主要问题之一,基于焦耳热效应的临界电流防冰方法可行且有效。为此,基于焦耳热效应和导线在临界覆冰状态下的传热过程,并考虑了集肤效应、导线几何外形及其表面水膜对传热过程的影响,建立了临界防冰电流模型,其计算结果与人工气候室试验结果符合。另外,还研究了在覆冰环境下,导线直径及几何外形、环境温度、风速、液态水含量(LWC)、中值体积直径(MVD)对输电线路临界防冰电流的影响。仿真结果表明,临界防冰电流随温度的降低或风速的增加而迅速增大,随LWC的增大或MVD在0~100μm区间增大而缓慢增大,而当MVD〉100μm时,临界防冰电流无明显变化。

  5. Conductor rail anti-icing sche me of monorail transit based on the Joule heat%基于焦耳热分析的单轨交通导电轨防覆冰方案

    Institute of Scientific and Technical Information of China (English)

    高晓杰; 郭蕾; 王旭光; 李群湛

    2014-01-01

    According to the characteristics of the urban monorail transit system,a melting ice plan of large current was proposed in this paper.Based on the joule heating effect,the heat balance equation of T-shaped special conductive rail in monorail transit system was established.Then the critical anti -icing current was calculated and the impact of environmental factors,such as temperature,wind speed,on the anti-icing current was inves-tigated.In order to validate its feasibility,T-shaped conductor rail model was generated in ANSYS and the thermal analysis was carried out.The results show that the critical melting current obtained in this study can meet the practical needs.%针对跨座式单轨交通系统的特点,提出一种大电流防融冰方案。基于焦耳热效应建立了单轨交通系统的T型专用导电轨的热平衡方程,计算其临界防冰电流,并分析温度、风速等环境因素对防冰电流的影响。为验证其可行性,在ANSYS中建立T型导电轨模型并对其进行热分析,结果显示计算得到的临界防冰电流满足实际所需。

  6. 新型人工岛护坡抗冰结构的系统设计与应用%The system design and implementation of new manmade island revetment and anti-ice structure

    Institute of Scientific and Technical Information of China (English)

    刘喜传

    2012-01-01

    In Bohai Bay, temperature is low and icing period is long in the winter, so that the large ice blocks impact slope of the man-made island due to environmental driving load and endanger oilfield engineering and personal safety, while the exist-ing revetment structure is so difficult to meet this demand under the extra environmental condition. Therefore, a new man-made island revetment and anti-ice structure, namely umbrella block, is put foreword and the technical parameters of the new kind of revetment block are determined for the different water depths. Model test installation and field application results have shown that the new type of anti-ice structure can resist the large ice impact effectively, give economic efficiency obviously and have very good promotion value, compared with the existing man-made island revetment structure.%渤海湾冬季温度低,海冰结冰期长,大型冰块在环境驱动力的驱动下冲击人工岛护坡,危及油田工程和人身的安全,而现有的护坡结构形式很难满足特殊海况的要求,因此提出了一种新型人工岛护坡抗冰结构——伞型块体,并确定了这种新型护坡块体在不同水深下的技术使用参数.模型试验安装与现场应用结果表明,与现有的人工岛护坡结构相比,这种新型抗冰结构形式能够很好地抵抗大型冰块的冲击,经济性显著,具有很好的推广价值.

  7. Experimental study of anti-icing coatings' use on wind turbine blades; Etudes experimentale de l'utilisation de revetements a caractere glaciophobe sur les pales d'eolienne

    Energy Technology Data Exchange (ETDEWEB)

    Adomou, M.; Fortin, G.; Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2010-07-01

    Ice accumulation on wind turbine blades can result in energy production losses, mechanical overloads, and ice shedding. The de-icing systems which are currently used are energy intensive. This poster reported on a study that investigated the use of ice-phobic coatings as a means of protecting wind turbines during cold weather. The study examined the behaviour of various coatings on wind turbine blades under icing conditions and investigated the feasibility of reducing the surface temperature of heated blades with the addition of ice-phobic or hydrophobic coatings. The performance of the thermal systems combined with the coatings was also investigated. The coatings included a polyurethane plastic film; a silicone-epoxy composite; a fluorinated resin; and a fluoroethane compound. The coatings were applied to a NACA airfoil placed in an icing wind tunnel. Various ice accumulation regimes, wind speeds, and temperatures were studied. The coatings proved to be effective against run-back effects during anti-icing operations, and may increase production. tabs., figs.

  8. Anti-Icing Formulas Prevent Train Delays

    Science.gov (United States)

    2013-01-01

    In the winter of 2009, Washington, DC, workers faced the prospect of a difficult commute due to record-setting snowfalls. But thousands of the city's Metrorail riders found the public transportation system fully functional, thanks in part to a NASA technology invented years before. Just like trains, an airplane must be snow- and ice-free to ensure safe travel. Traditionally, fluids containing a compound called ethylene glycol have been used to inhibit ice on planes. In 1992, however, the US Air Force banned its purchase of this ingredient due to toxicity concerns. According to the Centers for Disease Control, exposure to large amounts of ethylene glycol through air or water can damage the kidneys, nervous system, lungs, and heart. Urine samples from airport deicing workers have contained traces of the substance. At the time of the Air Force s ban, Robert Lockyer was working at NASA s Ames Research Center in the Advanced Composites Model Development Branch, where he says "we decided to pick up the gauntlet and began researching existing fluid compositions and the processes used in deicing aircraft." Along with Lockyer, in 1997 Ames researchers Leonard Haslim and John Zuk devised a nontoxic, biodegradable, and cost effective substitute for ethylene glycol. When applied to a dry surface before a snow or ice event, the solution prevented ice from forming a bond with the surface. This made it easy to wipe away any accumulation.

  9. Picosecond laser machined designed patterns with anti-ice effect

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2010-01-01

    Micromachining using ultra short laser pulses (USLP) has evolved over the past years as a versatile tool for introducing functional features in surfaces at a micrometric and even at a sub wavelength scale. Being able to control the surface topography at this level provides a method to change the wet

  10. Anti-Icing Superhydrophobic Surfaces: Controlling Entropic Molecular Interactions to Design Novel Icephobic Concrete

    Directory of Open Access Journals (Sweden)

    Rahul Ramachandran

    2016-04-01

    Full Text Available Tribology involves the study of friction, wear, lubrication, and adhesion, including biomimetic superhydrophobic and icephobic surfaces. The three aspects of icephobicity are the low ice adhesion, repulsion of incoming water droplets prior to freezing, and delayed frost formation. Although superhydrophobic surfaces are not always icephobic, the theoretical mechanisms behind icephobicity are similar to the entropically driven hydrophobic interactions. The growth of ice crystals in saturated vapor is partially governed by entropically driven diffusion of water molecules to definite locations similarly to hydrophobic interactions. The ice crystal formation can be compared to protein folding controlled by hydrophobic forces. Surface topography and surface energy can affect both the icephobicity and hydrophobicity. By controlling these properties, micro/nanostructured icephobic concrete was developed. The concrete showed ice adhesion strength one order of magnitude lower than regular concrete and could repel incoming water droplets at −5 °C. The icephobic performance of the concrete can be optimized by controlling the sand and polyvinyl alcohol fiber content.

  11. State of the art and practice of pavement anti-icing and de-icing techniques

    Institute of Scientific and Technical Information of China (English)

    WenBing Yu; Xin Yi; Ming Guo; Lin Chen

    2014-01-01

    Pavement snow and icing are worldwide problems, but effective countermeasures are just beginning to be developed in China. The two most common snow and ice removal methods are mechanical clearance and chemical melting, and the advantages and disadvantages of each approach are discussed here, including environmental and structural damage caused by corrosive snow melting agents. New developments in chemical melting agents and mechanical equipment are discussed, and an overview of alternative thermal melting systems is presented, including the use of geothermy and non-geothermal heating systems utilizing solar energy, electricity, conductive pavement materials, and infrared/microwave applications. Strategic recommendations are made for continued enhancement of public safety in snow and ice conditions.

  12. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation unde

  13. Investigation of Anti-Icing Chemicals and Their Interactions with Pavement Concretes

    OpenAIRE

    Olek, Jan; Janusz, Anna; Jain, Jitendra; Ashraf, Warda

    2013-01-01

    The interactions of concrete specimens (both plain and with fly ash addition) with six different deicers was investigated by exposing them to solutions of sodium chloride (NaCl), magnesium chloride (MgCl2), calcium chloride (CaCl2), and the combinations of: sodium chloride with magnesium chloride (NaCl + MgCl2), sodium chloride with calcium chloride (NaCl + CaCl2), sodium chloride with agricultural by product – Ice Ban® (NaCl + Ice Ban®). In addition, control group of specimens was exposed to...

  14. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure i

  15. Measures to reduce the impact of anti-icing agents on the environment and on the work of wastewater treatment facilities

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-09-01

    Full Text Available This article analyses the impact of the excess of chemical agents in the snow on the environment and on the working waste water treatment facilities. The article presents some suggestions for improvement of regulatory requirements concerning design engineering of snow melting facilities in the water disposal system. This suggestion was substantiated to assess snow as waste disposed from road surface, and to register snow mass delivered to snow melting facilities in equivalent units. It is assumed that snow melting stations are facilities designed for waste treatment, and this is why the project documentation for construction of these facilities has to undergo a state expertise for Environmental Impact Assessment. Completed studies provide estimates of the receipted snow, its pollution, etc. But at the same time these studies serve as the basis for approving the necessity of developing a unified system for monitoring the city's snow-melting plants to ensure the reliability.

  16. 横向风速影响下湿式冷却塔内温度场及防冻措施的数值研究%Numerical Study on the Temperature Field in Wet Cooling Tower and the Anti-icing Measures Under the Influence of Horizontal Wind Speed

    Institute of Scientific and Technical Information of China (English)

    李永华; 甄海军; 潘昌远; 李燕芳

    2013-01-01

    To solve the icing problems in wet cooling towers at areas such as the bottom surface of filler,air inlet and base torus caused by the low temperature in northern China and heat disparity in the cooling tower,windshield boards are generally installed at the air inlet.The study established a heat and mass transfer model of the wet cooling tower.By using the software of Fluent,this paper mainly simulated and analyzed the changing regularity of the air temperature field,the minimum water temperature,the minimum air temperature and the optimal layers of the windshield board under the different wind speed.The results indicate that:1) while the wind speed is lower than 4m/s,the air temperature in the leeward of cooling tower is higher,and the higher temperature zones move to the windward of the cooling tower with the increasing of wind speed.2) The minimum water temperature and the minimum air temperature of the characteristic plane increase at first and then reduce with the increase of horizontal wind speed.And these two temperatures reach the maximum when the horizontal wind speed is 4 m/s.3) When the environment temperature is 263.15 K and the wind speeds respectively are 2,6 and 8m/s,hanging 1 layer of windshield can effectively prevent the characteristics of plane from being frozen; When the environment temperature is 256.15 K and the wind speeds respectively are 2,4,6 and 8m/s,the optimal layers of windshield which prevent the characteristics of planes from being frozen are 1,1,2,4 layers; When the environment temperature is 250.15 K and the wind speeds respectively are 2,4,6 and 8 m/s,the optimal layers of windshield which prevent the characteristics of planes from being frozen are 4,1,3 and 5 layers.%针对我国北方冬季气温较低和冷却塔内换热不均引起的填料下表面、进风口、基环面等处易结冰问题,需在塔的进风口处加装一定数量挡风板.论文建立冷却塔传热传质模型,采用Fluent模拟软件,模拟并分析在不同的风速下塔内空气温度场、最低水滴温度和最低空气温度,以及加装挡风板的最佳层数的变化规律;结果表明:1)低风速(小于4 m/s)塔内的背风面区域空气温度较高,随着风速的增加,高温区逐渐向迎风侧转移;2)特征平面的最低水滴温度、最低空气温度随着风速的增加先升高再降低,在风速V=4 m/s达到最大值;3)当环境温度为263.15K、风速为2、6、8 m/s,挂1层挡风板可有效防止塔内结冰;当环境温度为256.15和250.15K时,风速分别为2、4、6、8m/s,分别挂1、1、2、4和4、1、3、5层挡风板可有效防止塔内特征面最低水滴结冰.

  17. HybridSil Icephobic Nanocomposites for Next Generation Aircraft In-Flight Icing Measurement and Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this Phase I SBIR program is to adapt NanoSonic's HybridSil™ nanocomposites that combine high levels of erosion resistance and anti-icing...

  18. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Bharathidasan, T. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Kumar, S. Vijay; Bobji, M.S. [Department of Mechanical Engineering, Indian Institute of Science, Bangalore 560003 (India); Chakradhar, R.P.S. [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India); Basu, Bharathibai J., E-mail: bharathijbasu@gmail.com [Surface Engineering Division, CSIR- National Aerospace Laboratories, Bangalore 560017 (India)

    2014-09-30

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness.

  19. Effect of wettability and surface roughness on ice-adhesion strength of hydrophilic, hydrophobic and superhydrophobic surfaces

    International Nuclear Information System (INIS)

    Highlights: • Anti-icing property is related to wettability and surface roughness. • Silicone based hydrophobic coating showed excellent ice-adhesion strength. • Superhydrophobic surfaces displayed poor anti-icing property. - Abstract: The anti-icing properties of hydrophilic, hydrophobic and superhydrophobic surfaces/coatings were evaluated using a custom-built apparatus based on zero-degree cone test method. The ice-adhesion reduction factor (ARF) of these coatings has been evaluated using bare aluminium alloy as a reference. The wettability of the surfaces was evaluated by measuring water contact angle (WCA) and sliding angle. It was found that the ice-adhesion strength (τ) on silicone based hydrophobic surfaces was ∼ 43 times lower than compared to bare polished aluminium alloy indicating excellent anti-icing property of these coatings. Superhydrophobic coatings displayed poor anti-icing property in spite of their high water repellence. Field Emission Scanning Electron Microscope reveal that Silicone based hydrophobic coatings exhibited smooth surface whereas the superhydrophobic coatings had a rough surface consisting of microscale bumps and protrusions superimposed with nanospheres. Both surface roughness and surface energy play a major role on the ice-adhesion strength of the coatings. The 3D surface roughness profiles of the coatings also indicated the same trend of roughness. An attempt is made to correlate the observed ice-adhesion strength of different surfaces with their wettability and surface roughness

  20. Silane decorated metallic nanorods for hydrophobic applications

    International Nuclear Information System (INIS)

    A novel technique to modify a metallic surface for anti-icing applications is presented. An oblique angle deposition (OAD) technique has been used to fabricate metallic nanorods of Aluminum and Tungsten on a glass substrate. A conformal coating of a silane has been applied using a molecular vapor deposition technique. The resulting surface has shown a static contact angle of 134 deg. with the water droplet. SEM, AFM and XPS have been used to study the surface modification. This is a highly promising approach for anti-icing applications due to its scalability at a very low cost.

  1. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities a

  2. The commercial development of water repellent coatings for high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott Robert [ORNL

    2013-10-01

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  3. The commercial development of water repellent coatings for high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S. R. [ORNL; Daniel, A. [Southwire Company

    2013-10-31

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  4. Wettability-independent bouncing on flat surfaces mediated by thin air films

    NARCIS (Netherlands)

    Ruiter, de J.; Lagraauw, R.; Ende, van den H.T.M.; Mugele, F.

    2015-01-01

    The impingement of drops onto solid surfaces1, 2 plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating3, 4, 5, 6. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic

  5. Aircraft and Pavement Deicer and Anti-Icer Forensics: Which Formulations Reach the Receiving Water and What are Their Potential Impacts

    Science.gov (United States)

    To characterize the effects from runoff of aircraft deicer and anti-icer fluid (ADAF) and pavement deicer formulations (PDF) on receiving water, multiple deicing and anti-icing formulations must be considered. ADAF formulations used on aircraft include Type I fluids (deicers) and Type IV fluids (an...

  6. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  7. Optimisation d'un systeme d'antigivrage a air chaud pour aile d'avion basee sur la methode du krigeage dual

    Science.gov (United States)

    Hannat, Ridha

    The aim of this thesis is to apply a new methodology of optimization based on the dual kriging method to a hot air anti-icing system for airplanes wings. The anti-icing system consists of a piccolo tube placed along the span of the wing, in the leading edge area. The hot air is injected through small nozzles and impact on the inner wall of the wing. The objective function targeted by the optimization is the effectiveness of the heat transfer of the anti-icing system. This heat transfer effectiveness is regarded as being the ratio of the wing inner wall heat flux and the sum of all the nozzles heat flows of the anti-icing system. The methodology adopted to optimize an anti-icing system consists of three steps. The first step is to build a database according to the Box-Behnken design of experiment. The objective function is then modeled by the dual kriging method and finally the SQP optimization method is applied. One of the advantages of the dual kriging is that the model passes exactly through all measurement points, but it can also take into account the numerical errors and deviates from these points. Moreover, the kriged model can be updated at each new numerical simulation. These features of the dual kriging seem to give a good tool to build the response surfaces necessary for the anti-icing system optimization. The first chapter presents a literature review and the optimization problem related to the antiicing system. Chapters two, three and four present the three articles submitted. Chapter two is devoted to the validation of CFD codes used to perform the numerical simulations of an anti-icing system and to compute the conjugate heat transfer (CHT). The CHT is calculated by taking into account the external flow around the airfoil, the internal flow in the anti-icing system, and the conduction in the wing. The heat transfer coefficient at the external skin of the airfoil is almost the same if the external flow is taken into account or no. Therefore, only the

  8. Etude experimentale de l'utilisation des revetements glaciophobes et/ou hydrophobes sur les pales d'eoliennes

    Science.gov (United States)

    Adomou, Maryelle C.

    2011-12-01

    Blade icing is a major problem of windmill use in northern climates. At present, the use of anti-icing protection on blades is little used because it is energy intensive and unsafe. An interesting current alternative is the use of ice-shedding coatings because they are proving to be less energy hungry, but their efficiency and durability have yet to be proven in windmills. Since windmills have a special dynamic structure and icing events can be of several types, an understanding of the accretion process on a variety of coatings is necessary to advance general knowledge in this field. To explore this problem, experiments were performed in the refrigerated wind tunnel at the Anti-icing Materials International Laboratory of the Universite du Quebec a Chicoutimi on a static-blade section covered with three commercial ice-shedding coatings chosen using well-defined criteria. Experimental conditions were based on several real extreme icing events. Scaling of the parameters of the icing events gave two air speeds for the wind tunnel (21 and 33m/s), two air temperatures (5 and -20°C) and one humidity level (0.4g/m 3). The experimental runs were carried out on blades covered with the coatings alone and also in combination with an electrothermal deicing system. The efficiency of the apparatus was evaluated by analysing the shape of the ice formed, the energy consumption of each anti-icing and de-icing combination and also by analysing the internal distribution of temperatures in the system. When used as a protective anti-icing system, none of the icephobic coatings was effective in reducing ice accumulation significantly on the blades. However, combined with an electrothermal anti-icing system, these types of coatings proved to be effective. Nevertheless, the power must be high enough to cause runoff. Hydrophobic coatings reduce energy consumption of electric anti-icing systems by about 7% whereas a super hydrophobic coating can reduce energy consumption by more than twice

  9. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties

    OpenAIRE

    Ramakrishna, S; Santhosh Kumar, K. S.; Dona Mathew; Reghunadhan Nair, C. P.

    2015-01-01

    Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile on...

  10. Potential toxic effects of aircraft de-icers and wastewater samples containing these compounds.

    Science.gov (United States)

    Mohiley, A; Franzaring, J; Calvo, O C; Fangmeier, A

    2015-09-01

    One of the major problems of airport operation is the impact of pollution caused by runoff waters. Runoff waters at an airport may contain high concentrations of different contaminants resulting from various activities of its operation. High quantities of aircraft de-icing/anti-icing fluids are used annually at airports worldwide. Aircraft de-icers and anti-icers may have negative environmental impacts, but their effects on aquatic organisms are virtually unknown. In order to address this issue, aircraft de-icers, pavement de-icers and wastewater samples were obtained from a regional airport. To evaluate the toxicity of wastewater samples and aircraft de-icing/anti-icing fluids (ADAFs), two bio-tests were performed: the Lemna growth inhibition test according to OECD guideline 221 and the luminescent bacteria test according to ISO guideline 11348-2. In the Lemna growth inhibition test, phytotoxicity was assessed using the endpoints frond number and frond area. The luminescent bacteria test involved the marine bacterium Vibrio fischeri. The estimates of effective concentrations (EC50) values were determined using the free software R and the "drc" library. Aquatic plants and marine bacteria showed a higher sensitivity towards ADAFs than to wastewater samples. Experiments showed that aircraft de-icing/anti-icing fluids and wastewater samples were relatively more toxic towards Lemna gibba L. in comparison to V. fischeri. PMID:25925142

  11. Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Polyzos, Georgios [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Clemons, Art [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bolton, Paul [Piedmont Propulsion Systems, LLC, Winston-Salem, NC (United States); Hollander, Aaron [First Aviation Services Inc., Westport, CT (United States)

    2016-05-04

    The purpose of this project was to develop surface treatments which will inhibit the formation of ice on turbine blades and propellers. ORNL worked with Piedmont Propulsion Systems, LLC and First Aviation Services Inc. to demonstrate a new surface treatment for two primary markets, aviation and wind turbines, as well as secondary markets such as power lines, bridges, boats, roofs and antennas among others. Exploring alternative surface treatments for wind turbines will provide anti-icing properties and erosion/abrasion prevention properties similar to those for aviation applications. A series of superhydrophobic coating materials was synthesized and successfully applied on anti-ice tape materials that could be used in a wide range of wind turbine and aviation applications to prevent ice accumulation. The coatings developed in this project were based on superhydrophobic particles of different geometries and sizes that were homogeneously dispersed in polymeric binders. The superhydrophobic features of the coatings are volumetric and their abrasion resistance was evaluated. Future research will involve the demonstration of anti-icing properties of the surface treatment developed in this project.

  12. Analysis on Airworthiness Certification of Anti/De-icing in Transport Category Airplanes%运输类飞机防冰除冰适航取证分析

    Institute of Scientific and Technical Information of China (English)

    王海涛; 常奔; 李成行

    2012-01-01

    The ability of anti-icing and de-icing of aircraft has a major impact on flight safety in adverse weather conditions,and it is a very important part of airworthiness certification.Based on the research on the airworthiness standards,related technical documentation,advisory circular and compliance verification method of the transport aircraft anti-icing and de-icing system,the CCAR25R4(draft) is introduced,which presents anti-icing and de-icing requirements in different parts and systems of the aircraft,and the requirements of atmospheric icing parameters in airworthiness validation.Finally,several kinds of conventional aircraft anti-icing systems test are reviewed,which are of certain significance to the work of airworthiness certification for large aircraft anti-icing and de-icing system.%飞机的防冰除冰能力对飞机在恶劣天气下的飞行安全有重要影响,是适航审定中十分重要的一环。通过对运输类飞机防冰除冰系统有关适航标准、相关技术性文件、咨询通报及运输类飞机防冰除冰系统适航符合性验证方法的研究,介绍了CCAR25R4(草案)中对飞机不同部件、系统的除冰防冰要求,适航性验证时对大气结冰环境参数的要求;并对几类常规的飞机防冰系统试验进行综述,对大飞机防冰除冰系统的适航取证工作提供一定的指导意义。

  13. Partnerships in winter maintenance that achieve environmental and cost saving benefits : nomination for the 2000 TAC Environmental Achievement Award

    Energy Technology Data Exchange (ETDEWEB)

    Gilfillan, G.B. [Insurance Corp. of British Columbia, North Vancouver, BC (Canada)

    2001-07-01

    Transportation agencies face the challenge of providing safe and efficient transportation systems while trying to maintain a balanced ecosystem. Long winters are an added challenge in Canada. The transportation industry has found an unlikely advocate in the field of auto insurance. The Insurance Corporation of British Columbia (ICBC) has taken the initiative to improve winter road maintenance practices that will have lasting positive effects on the environment and safety of the motoring public. Numerous agencies, associations, municipalities, businesses and individuals have expressed a commitment to initiatives such as the anti-icing/prewetting pilot project called the Winter Road Research project. The project includes the use of liquid magnesium chloride to prevent ice from forming a bond with the road surface. Pre-wetting was used with traditional solid winter maintenance materials. Salt or aggregate is pre-wet with the same anti-icing liquid just before they contact the roadway surface. The deicer enables the sand and salt granules to remain on the road surface for longer periods of time. Pre-wetting of salt with a liquid anti-icer reduces the amount of chemicals needed in winter maintenance operations while maintaining the same level of service. In addition, this program addresses the issue of heavy heavy metals which are an increasing environmental concern. The reduction in the amount of abrasives placed on the roads is beneficial to the environment in terms of reduced heavy metals to roadside vegetation, streams and city drains. The program was first launched in Kamloops, British Columbia but has now expanded throughout the province to include 43 municipalities. The ICBC has provided more than $3 million for the purchase of 125 anti-icing vehicles and 1100 prewet kits. The program has resulted in significant cost savings and a reduction in weather related accidents. 5 refs., 3 figs.

  14. New Fluid Prevents Railway Ice

    Science.gov (United States)

    2001-01-01

    Through a licensing agreement between NASA's Ames Research Center and Midwest Industrial Supply, Inc. (MIS), two MIS products have been enhanced with NASA's anti-icing fluid technology. MIS offers the new fluid in two commercial products, the Zero Gravity(TM) Third Rail Anti-Icer/Deicer and the Ice Free Switch(R). Using NASA's fluid technology, these products form a protective-coating barrier that prevents the buildup of ice and snow. Applying the fluid to the railway components prior to ice or snowstorm works as an anti-icing fluid, remaining in place to melt precipitation as it hits the surface. It also functions as a deicing fluid. If applied to an already frozen switch or rail, it will quickly melt the ice, free the frozen parts, and then remain in place to prevent refreezing. Additional benefits include the ability to cling to vertical rail surfaces and resist the effects of rain and wind. With the Ice Free Switch, it takes only five minutes to treat the switch by spraying, brushing, or pouring on the product. Ice Free Switch requires as little as one gallon per switch whereas other deicing fluids require five to ten gallons of liquid to effectively melt ice. Zero Gravity serves the same anti-icing/deicing purposes but applies fluid to the third rail through a system that is easily installed onto mass transit cars. A tank of fluid and a dispensing system are placed underneath the train car and the fluid is applied as the train runs its route.

  15. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    Science.gov (United States)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  16. CFD simulation of an offshore air intake and exhaust system

    OpenAIRE

    Sirevaag, Ola

    2015-01-01

    The main purpose is to investigate whether the exhaust gases from an offshore turbine can be rerouted to heat the air entering the turbine system, thus keeping air humidity concentration above acceptable levels. To ensure this, temperature of the incoming airflow must be above 4,5 degrees Celsius. Currently the exhaust is vented out to the atmosphere and an electrical anti-icing system is used to heat the air intake. The objective of this thesis is therefore to make a CFD model in OpenFOAM to...

  17. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.

    Science.gov (United States)

    Bengaluru Subramanyam, Srinivas; Kondrashov, Vitaliy; Rühe, Jürgen; Varanasi, Kripa K

    2016-05-25

    Ice adhesion on superhydrophobic surfaces can significantly increase in humid environments because of frost nucleation within the textures. Here, we studied frost formation and ice adhesion on superhydrophobic surfaces with various surface morphologies using direct microscale imaging combined with macroscale adhesion tests. Whereas ice adhesion increases on microtextured surfaces, a 15-fold decrease is observed on nanotextured surfaces. This reduction is because of the inhibition of frost formation within the nanofeatures and the stabilization of vapor pockets. Such "Cassie ice"-promoting textures can be used in the design of anti-icing surfaces. PMID:27150450

  18. 低温高湿水痕恢复苯丙真石漆乳液的研制%Study on the Low Temperature High Humility Styrene Acrylic Emulsion with Water Mark Recovery

    Institute of Scientific and Technical Information of China (English)

    左天路; 唐兵

    2015-01-01

    分析了真石漆配方,考察了成膜助剂、防冻剂、砂子配比对真石漆水痕恢复的影响,发现成膜助剂和砂子配比对水痕恢复性能影响较大,即通过降低乳液的成膜温度可以改善水痕恢复性能,但是成膜温度过低会造成黏结强度不达标,以及冻融不太稳.通过核壳工艺、亲水单体、交联单体的配合使用制备出了水痕恢复性能好的苯丙真石漆乳液,能够达到轻痕的效果.%Sand textured coatings formula was analyzed. The influence of additives, anti-icing agent, sand ratio on the water mar recovery property was investigated. The results showed the additives ratio and sand ratio had great influences on water mar recovery. To reduce the film forming temperature could improve the water mar recovery property. However, low temperature might result in weak cohesion strength and poor anti-icing property. Through core-shell technology, by adding hydrophilic monomer and crosslink monomer, styrene acrylic emulsion with good water mark recovery was prepared.

  19. Optically Transparent, Mechanically Durable, Nanostructured Superhydrophobic Surfaces Enabled by Spinodally Phase-Separated Glass Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga [ORNL; Christen, David K [ORNL; Hillesheim, Daniel A [ORNL; Hunter, Scott Robert [ORNL; Ivanov, Ilia N [ORNL; Jellison Jr, Gerald Earle [ORNL; Lupini, Andrew R [ORNL; Pennycook, Stephen J [ORNL; Trejo, Rosa M [ORNL; Winters, Kyle O. [University of Tennessee, Knoxville (UTK); Haynes, James A [ORNL; Simpson, John T [ORNL

    2013-01-01

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  20. Review of the icing problem for aerogenerators

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, A.R.

    1980-01-01

    This paper reviews factors that create icing and methods of combatting the problem. Considerable research has been done in meeting the problems posed by the need to operate aircraft in all weathers, and much expertise in the subject is now available. The conditions under which aerogenerators work are similar in part to those of helicopters but not of the same magnitude. A detailed investigation is required to establish whether a problem exists in general and at selected locations, and if so to assess its magnitude. Since to shut down an aerogenerator during icing conditions is non-productive, it is necessary to consider carefully the problems and penalties associated with adopting an anti-icing system. Some areas of interest for the universities are listed.

  1. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...... the spread rate of pure sodium chloride (and thus the environmental impact) compared to neighbouring counties was less than fifty percent per square meter. Successful pre-salting is, of course, dependent on reliable weather forecasts and on staff well trained in the art of interpreting this information....... The improvements gained by the county of Funen were mainly due to the use of technologies (brine spreading with nozzles) giving a more precise spread pattern than the traditional gritting of pre-wetted salt. The spread pattern for every spreader, tested in The County of Funen, has been meassured 3 hours after...

  2. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing

    Directory of Open Access Journals (Sweden)

    Oscar Galao

    2016-04-01

    Full Text Available This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention and deicing (curing, which could turn into an environmentally friendly and cost-effective deicing method.

  3. The 'Guetsch' Alpine wind power test site; Alpine Test Site Guetsch. Handbuch und Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, R.

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of icing-up on the operation of wind turbines in mountainous areas. Within the Swiss research project 'Alpine Test Site Guetsch', extensive icing studies were carried out at the Guetsch site near Andermatt, Switzerland. This document deals with the following subjects: Information about ice formation on structures, in particular with respect to wind turbines, standards and international research activities, wind measurements under icing-up conditions, estimation of the frequency of icing-up conditions, effects of icing-up on wind turbines, ice detection, measures available for de-icing and anti-icing as well as ice throw. A list of factors to be taken into account by the planners and operators of wind turbines in alpine environments is presented.

  4. Pancake bouncing on superhydrophobic surfaces

    Science.gov (United States)

    Liu, Yahua; Moevius, Lisa; Xu, Xinpeng; Qian, Tiezheng; Yeomans, Julia M.; Wang, Zuankai

    2014-07-01

    Engineering surfaces that promote rapid drop detachment is of importance to a wide range of applications including anti-icing, dropwise condensation and self-cleaning. Here we show how superhydrophobic surfaces patterned with lattices of submillimetre-scale posts decorated with nanotextures can generate a counter-intuitive bouncing regime: drops spread on impact and then leave the surface in a flattened, pancake shape without retracting. This allows a fourfold reduction in contact time compared with conventional complete rebound . We demonstrate that the pancake bouncing results from the rectification of capillary energy stored in the penetrated liquid into upward motion adequate to lift the drop. Moreover, the timescales for lateral drop spreading over the surface and for vertical motion must be comparable. In particular, by designing surfaces with tapered micro/nanotextures that behave as harmonic springs, the timescales become independent of the impact velocity, allowing the occurrence of pancake bouncing and rapid drop detachment over a wide range of impact velocities.

  5. Wettability-independent bouncing on flat surfaces mediated by thin air films

    Science.gov (United States)

    de Ruiter, Jolet; Lagraauw, Rudy; van den Ende, Dirk; Mugele, Frieder

    2015-01-01

    The impingement of drops onto solid surfaces plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic surfaces with specific surface structures enabling drop bouncing with reduced contact time. Here, we report a different universal bouncing mechanism that occurs on both wetting and non-wetting flat surfaces for both high and low surface tension liquids. Using high-speed multiple-wavelength interferometry, we show that this bouncing mechanism is based on the continuous presence of an air film for moderate drop impact velocities. This submicrometre `air cushion' slows down the incoming drop and reverses its momentum. Viscous forces in the air film play a key role in this process: they provide transient stability of the air cushion against squeeze-out, mediate momentum transfer, and contribute a substantial part of the energy dissipation during bouncing.

  6. Superhydrophobic porous networks for enhanced droplet shedding

    Science.gov (United States)

    Liu, Yahua; Wang, Zuankai

    2016-09-01

    Recent research has shown that the use of submillimeter-scale tapered post arrays could generate the so-called pancake bouncing, which is characterized by the fast shedding of impinging drops from the surface in a pancake shape without undergoing the retraction stage as observed on conventional superhydrophobic surfaces. Despite this exciting discovery, the fabrication of this unique superhydrophobic surface with tapered post arrays involves complex processes, hindering its wide applications in practical sectors. Here, we report on the facile strategy to prepare a new hierarchical multilayered superhydrophobic surface directly from commercially available porous matrix that allows for efficient drop shedding. Further study shows that the enhanced drop mobility observed on such a surface is attributed to the synergistic cooperation of hierarchical structures endowing an adequate energy storage and effective energy release. The facile fabrication of superhydrophobic surface with enhanced drop mobility may find many practical applications including anti-icing, dropwise condensation and self-cleaning.

  7. Active surfaces: Ferrofluid-impregnated surfaces for active manipulation of droplets

    Science.gov (United States)

    Khalil, Karim; Mahmoudi, Seyed Reza; Abu-Dheir, Numan; Varanasi, Kripa

    2014-11-01

    Droplet manipulation and mobility on non-wetting surfaces is of practical importance for diverse applications ranging from micro-fluidic devices, anti-icing, dropwise condensation, and biomedical devices. The use of active external fields has been explored via electric, acoustic, and vibrational, yet moving highly conductive and viscous fluids remains a challenge. Magnetic fields have been used for droplet manipulation; however, usually, the fluid is functionalized to be magnetic, and requires enormous fields of superconducting magnets when transitioning to diamagnetic materials such as water. Here we present a class of active surfaces by stably impregnating active fluids such as ferrofluids into a textured surface. Droplets on such ferrofluid-impregnated surfaces have extremely low hysteresis and high mobility such that they can be propelled by applying relatively low magnetic fields. Our surface is able to manipulate a variety of materials including diamagnetic, conductive and highly viscous fluids, and additionally solid particles.

  8. Thermal mapping as a valuable tool for road weather forecast and winter road maintenance: an example from the Italian Alps

    Science.gov (United States)

    Todeschini, Ilaria; Di Napoli, Claudia; Pretto, Ilaria; Merler, Giacomo; Cavaliere, Roberto; Apolloni, Roberto; Antonacci, Gianluca; Piazza, Andrea; Benedetti, Guido

    2016-08-01

    During the winter period ice is likely to form on roads, making pavement surfaces slippery and increasing accident risk. Road surface temperature (RST) is one of the most important parameters in ice formation. The LIFE+ "CLEANROADS" project aims to forecast RSTs in advance in order to support road maintenance services in the timely and effective preparation of preventive anti-icing measures. This support is provided through a novel MDSS (Maintenance Decision Support System). The final goal of the project is to quantitatively demonstrate that the implemented MDSS is capable to minimize the consumption of chemical anti-icing reagents (e.g. sodium chloride) and the associated environmental (water and air) impact while maintaining the current high levels of road safety. In the CLEAN-ROADS system RSTs have been forecast by applying the numerical model METRo (Model of the Environment and Temperature of Roads) to a network of RWIS (Road Weather Information System) stations installed on a test route in the Adige Valley (Italy). This forecast is however local and does not take into account typical peculiarities along road network, such as the presence of road sections that are particularly prone to ice formation. Thermal mapping, i.e. the acquisition of mobile RST measurements through infrared thermometry, permits to (i) identify and map those sections, and (ii) extend the forecast from a RWIS station to adjacent areas. The processing of thermal mapping signals is however challenging because of random variations in the road surface emissivity. To overcome this we have acquired several thermal mapping traces along the test route during winter seasons 2014-2015 and 2015-2016. We have then defined a "characteristic" thermal fingerprint as a function of all its historical thermal mapping signals, and used it to spatialize local METRo forecasts. Preliminary results suggest the high potential of such a technique for winter road applications.

  9. Aircraft de-icer: Recycling can cut carbon emissions in half

    International Nuclear Information System (INIS)

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an ‘antifreeze’ solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40–50% — and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15–30% lower footprint than using ‘bio’ de-icer without recycling. - Highlights: ► Carbon footprint of aircraft de-icing can be measured. ► Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40–50%. ► Recycling ‘fossil’ de-icer is lower carbon than not recycling ‘bio’ de-icer.

  10. 高闪点喷气燃料润滑性能的研究%Study on the Lubricity of High-flashpoint Jet Fuel

    Institute of Scientific and Technical Information of China (English)

    王欣; 胡泽祥; 陶志平

    2013-01-01

    The high-flashpoint jet fuel was prepared by hydrocracking jet fuel through the cutting and fractional distillation method,and the lubricity was improved by T1602 antiwear additive of naphthenic acids. The effects of the dosage of T1602,as well as the anlistatig,metal deactivator anti-ice additive on the lubricity of high-flashpoint jet fuel were studied. The results show,when the dosage of T1602 is 10. 0 mg/L,the high-flashpoint jet fuel can meet the lubricity index of BOCLE method. The anlistatig,metal deactivator,anti-ice additive and T1602 have good compatibility in the high-flashpoint jet fuel,and the metal deactivator is conductive to improving the lubricity of the high-flashpoint jet fuel.%  通过切割、分馏等方式处理加氢裂化喷气燃料组分制备高闪点喷气燃料,并采用环烷酸类T1602抗磨添剂改善其润滑性能。分别采用BOCLE和HFRR法考察抗磨添加剂的加入量与润滑性的关系,以及抗静电剂、金属钝剂、防冰剂等其他添加剂的加入对高闪点喷气燃料润滑性能的影响。试验结果表明,添加10.0 mg/L的T1602抗磨添剂后,高闪点喷气燃料即可满足BOCLE评价的润滑性要求,抗静电剂、防冰剂与T1602抗磨添加剂有较好的配伍性金属钝化剂有助于提高喷气燃料在HFRR、BOCLE测试条件下的润滑性。

  11. Nanoscale deicing by molecular dynamics simulation

    Science.gov (United States)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-07-01

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice

  12. Wenzel Wetting on Slippery Rough Surfaces

    Science.gov (United States)

    Stogin, Birgitt; Dai, Xianming; Wong, Tak-Sing

    2015-11-01

    Liquid repellency is an important surface property used in a wide range of applications including self-cleaning, anti-icing, anti-biofouling, and condensation heat transfer, and is characterized by apparent contact angle (θ*) and contact angle hysteresis (Δθ*). The Wenzel equation (1936) predicts θ* of liquids in the Wenzel state, and is one of the most fundamental equations in the wetting field. However, droplets in the Wenzel state on conventional rough surfaces exhibit large Δθ* , making it difficult to experimentally verify the model with precision. As a result, precise verification of the Wenzel wetting model has remained an open scientific question for the past 79 years. Here we introduce a new class of liquid-infused surfaces called slippery rough surfaces -- surfaces with significantly reduced Δθ* compared to conventional rough surfaces--and use them to experimentally assess the Wenzel equation with the highest precision to date. We acknowledge the funding support by National Science Foundation (NSF) CAREER Award #: 1351462 and Office of Navy Research MURI Award #: N00014-12-1-0875. Stogin acknowledges the support from the NSF Graduate Research Fellowship (Grant No. DGE1255832).

  13. Keeping a surface ice/frost free with electro-conducting water-repellent coatings

    Science.gov (United States)

    Das, Arindam; Kapatral, Shreyas; Megaridis, Constantine M.

    2013-11-01

    Ice/frost formation on aircraft, wind turbines, power grids, marine vessels, telecommunication devices, etc. has propelled scientific research on surfaces that facilitate the removal of the water solid phase or retard its formation. Superhydrophobic, self-cleaning surfaces have been investigated recently (Jung et al., Langmuir 2011) for their passive anti-icing properties. Although superhydrophobic surfaces have been shown to delay the onset of frosting and icing, they cannot prevent it entirely. Hence active deicing/defrosting approaches are required to keep surfaces free of ice/frost. Defrosting experiments have been carried out on glass substrates coated with textured polymeric nanocomposite films of different surface wettability, porosity and roughness. A strong influence of these parameters on condensation, condensation frosting and defrosting was observed. The coatings are electro-conducting, thus allowing skin heating at the interface between ice and the substrate. Sustained ice- and frost-free operation is demonstrated at substrate temperatures well below the freezing point and in humid ambient atmospheres. Supported by NSF Grant CBET-1066426.

  14. Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Ran, Tong; Zhang, Deyuan

    2015-11-01

    Nepenthes pitcher inspired slippery lubricant-infused porous surfaces greatly impact the understanding of liquid-repellent surfaces construction and have attracted extensive attention in recent years due to their potential applications in self-cleaning, anti-fouling, anti-icing, etc. In this work, we have successfully fabricated transparent slippery lubricant-infused surfaces based on breath figure patterns (BFPs). Large-area BFPs with interconnected pores were initially formed on the glass substrate and then a suitable lubricant was added onto the surfaces. The interconnected pores in BFPs were able to hold the lubricant liquid in place and form a stable liquid/solid composite surface capable of repelling a variety of liquids. The liquid-repellent surfaces show extremely low critical sliding angles for various liquids, thus providing the surfaces with efficient self-cleaning property. It was also found that the liquid droplets' sliding behaviors on the surfaces were significantly influenced by the tilting angle of the substrate, liquid volume, liquid chemical properties, and pore sizes of the surfaces.

  15. Ice Formation Delay on Penguin Feathers

    Science.gov (United States)

    Alizadehbirjandi, Elaheh; Tavakoli-Dastjerdi, Faryar; St. Leger, Judy; Davis, Stephen H.; Rothstein, Jonathan P.; Kavehpour, H. Pirouz

    2015-11-01

    Antarctic penguins reside in a harsh environment where air temperature may reach -40 °C with wind speed of 40 m/s and water temperature remains around -2.2 °C. Penguins are constantly in and out of the water and splashed by waves, yet even in sub-freezing conditions, the formation of macroscopic ice is not observed on their feathers. Bird feathers are naturally hydrophobic; however, penguins have an additional hydrophobic coating on their feathers to reinforce their non-wetting properties. This coating consists of preen oil which is applied to the feathers from the gland near the base of the tail. The combination of the feather's hydrophobicity and surface texture is known to increase the contact angle of water drops on penguin feathers to over 140 ° and classify them as superhydrophobic. We here develop an in-depth analysis of ice formation mechanism on superhydrophobic surfaces through careful experimentations and development of a theory to address how ice formation is delayed on these surfaces. Furthermore, we investigate the anti-icing properties of warm and cold weather penguins with and without preen oil to further design a surface minimizing the frost formation which is of practical interest especially in aircraft industry.

  16. Dynamics of high Weber number drops impacting on hydrophobic surfaces with closed micro-cells.

    Science.gov (United States)

    Zhang, Rui; Hao, Pengfei; Zhang, Xiwen; He, Feng

    2016-06-29

    The impact dynamics and bouncing performance of high Weber number drops on hydrophobic surfaces with open and closed micro-cells are investigated. Central wetted rings are observed on both closed-cell and open-cell surfaces under high Weber number collisions, which are proposed to constitute the key element affecting the bouncing behaviour. It is found that the drops rebound on closed-cell surfaces where the central area is in the "hybrid wetting state" at high Weber numbers, while the drops adhere to the open-cell surfaces where the central region is in the Wenzel state. A theoretical model is developed to explain this interesting phenomenon, in which the liquid cannot reach the bottom of the closed-cell hydrophobic surfaces since the air stored in micro-cavities prevents the sliding motion of the liquid film and functions as a "gas spring" lifting the liquid lamella. This indicates that the hydrophobic surface with simple micro cavities can maintain the water-repellent characteristics under drop impacts at high Weber numbers. These findings are expected to be crucial to a fundamental understanding of the rapid collisions between drops and micro-structured surfaces, as well as a valuable strategy to guide the fabrication of novel super water-repellant and anti-icing surfaces. PMID:27306824

  17. Controlled hydrophilic/hydrophobic property of silica films by manipulating the hydrolysis and condensation of tetraethoxysilane

    Science.gov (United States)

    Yang, Xin; Zhu, Liqun; Chen, Yichi; Bao, Baiqing; Xu, Jinlong; Zhou, Weiwei

    2016-07-01

    Controlling surface wettability is an important road to afford the materials with anticipated functional properties, such as anti-fogging, anti-icing and self-cleaning. Manipulating the surface topography and chemical composition is a promising strategy to achieve the expected functional properties. Herein, we concurrently realized the control of surface topography and chemical composition of the film materials via exploiting a simply one step method through the hydrolysis and condensation of tetraethoxysilane (TEOS) to form silica sol-gel films. By adjusting the amount of water, TEOS and basic catalyst, the hydrophilic or hydrophobic chemical groups on the silica particles surface were well controlled. As a result, the sol-gel silica films exhibiting a controllable and wide range contact angles from 7.7 ± 1.5° to 121.6 ± 1.8° were obtained by this simple one-step method. The inorganic nonmetallic, metallic and polymer materials surface could maintain different wettability by the modification of controlled wettability silica films. Furthermore the wettability of silica film could be easily changed from hydrophobicity to superhydrophilicity through a heat-treatment due to the decrease of hydrophobic chemical groups conforming to the time-temperature equivalence principle. Raising temperature and extending holding time were equivalent to chemical bond breaking which result in the wettability change of silica films.

  18. Investigation and Analysis of Ice and Snow Disaster Suffered by Hunan Power Grid in 2008

    Institute of Scientific and Technical Information of China (English)

    Zhang Wenliang; Zhao Donglai; Zuo Songlin; Fu Zhiyang; Qu Qiang; Yu Yongqing; Su Zhiyi; Fan Jianbin; Li Peng; Yuan Dalu; Wu Shouyuan; Song Gao; Deng Zhanfeng

    2008-01-01

    @@ In January 2008,a sudden disaster caused by icing and snowing happened in large areas of Central China and South China.The equipments of Hunan power grid were seriously damaged during the icing and snowing disaster.An expert group from China Electric Power Research Institute (CEPRI) was organized and went to Hunan province for field investigation.As a summary of this investigation,this paper introduces power equipment damages,such as flashover caused by icing,collapse of towers,conductor breakage and damage of substation equipments.The countermeasures adopted for this icing and snowing disaster are also summarized.The analysis shows that the rare meteorological condition is the main reason for large-area damage of Hunan power grid.In the icing disaster of Hunan power grid,the ice thickness greatly exceeds the permissible limit of design,thus it is necessary to improve the design parameters reasonably to against icing of transmission lines,and the design of external insulation and the anti-icing technology for substations are also need to be enhanced.

  19. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects. PMID:27265834

  20. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis

    Science.gov (United States)

    Hansman, R. J., Jr.

    1982-01-01

    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  1. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-09-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles coatings display water contact angles >160° with tilt angles coating combines both oleophobic and hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised.

  2. Highly durable superhydrophobic coatings with gradient density by movable spray method

    Science.gov (United States)

    Tenjimbayashi, Mizuki; Shiratori, Seimei

    2014-09-01

    Superhydrophobic surface is expected to be applied in anti-fouling, anti-icing, and anti-bacterial. However, practical use is interrupted by low mechanical strength, time-consuming process, and limited coating substrate. Here highly durable superhydrophobic coatings were prepared by simple and novel spraying method, which sprays with changing the "spray distance between substrate and spray" (SD), named "movable spray method." We prepared the solution that changes wettability and durability with spraying distance by mixing SiO2 nanoparticles and ethyl alpha cyanoacrylate polymer (EAC). Then, we evaluated the chemical components and surface morphologies of each spraying distance coatings (0 ˜ 50 cm) by XPS, SEM, and laser scanning microscope. It revealed that surface roughness and SiO2/EAC ratio increased as the SD increases. Thus, durable superhydrophobic coatings were designed by spraying with increasing SD gradually. Glow discharge-optical emission spectrometry analysis revealed that designed coatings showed the gradual increase of SiO2/EAC ratio. As a result, coatings prepared on glass, wood, or aluminum substrates maintained their superhydrophobicity up to the abrasion at 40 kPa. This movable spray method is simple coating by the wet process and prepares robust hydrophobic coating on complex shape and large area substrates. The gradient functional surface was found to have mechanical durability and superhydrophobicity, and wide area applications will be expected.

  3. Polymer Thin Films and Surface Modification by Chemical Vapor Deposition: Recent Progress.

    Science.gov (United States)

    Chen, Nan; Kim, Do Han; Kovacik, Peter; Sojoudi, Hossein; Wang, Minghui; Gleason, Karen K

    2016-06-01

    Chemical vapor deposition (CVD) polymerization uses vapor phase monomeric reactants to synthesize organic thin films directly on substrates. These thin films are desirable as conformal surface engineering materials and functional layers. The facile tunability of the films and their surface properties allow successful integration of CVD thin films into prototypes for applications in surface modification, device fabrication, and protective films. CVD polymers also bridge microfabrication technology with chemical and biological systems. Robust coatings can be achieved via CVD methods as antifouling, anti-icing, and antihydrate surfaces, as well as stimuli-responsive or biocompatible polymers and novel nanostructures. Use of low-energy input, modest vacuum, and room-temperature substrates renders CVD polymerization compatible with thermally sensitive substrates and devices. Compared with solution-based methods, CVD is particularly useful for insoluble materials, such as electrically conductive polymers and controllably crosslinked networks, and has the potential to reduce environmental, health, and safety impacts associated with solvents. This review discusses the relevant background and selected applications of recent advances by two methods that display and use the high retention of the organic functional groups from their respective monomers, initiated CVD (iCVD) and oxidative CVD (oCVD) polymerization. PMID:27276550

  4. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    International Nuclear Information System (INIS)

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ∼3 and a water contact angle of ∼15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (∼2.2) and becomes hydrophobic (contact angle of ∼104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs

  5. Role of surface oxygen-to-metal ratio on the wettability of rare-earth oxides

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Sami; Varanasi, Kripa K., E-mail: varanasi@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Azimi, Gisele [Department of Chemical Engineering and Applied Chemistry and Materials Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E5 (Canada); Yildiz, Bilge [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2015-02-09

    Hydrophobic surfaces that are robust can have widespread applications in drop-wise condensation, anti-corrosion, and anti-icing. Recently, it was shown that the class of ceramics comprising the lanthanide series rare-earth oxides (REOs) is intrinsically hydrophobic. The unique electronic structure of the rare-earth metal atom inhibits hydrogen bonding with interfacial water molecules resulting in a hydrophobic hydration structure where the surface oxygen atoms are the only hydrogen bonding sites. Hence, the presence of excess surface oxygen can lead to increased hydrogen bonding and thereby reduce hydrophobicity of REOs. Herein, we demonstrate how surface stoichiometry and surface relaxations can impact wetting properties of REOs. Using X-ray Photoelectron Spectroscopy and wetting measurements, we show that freshly sputtered ceria is hydrophilic due to excess surface oxygen (shown to have an O/Ce ratio of ∼3 and a water contact angle of ∼15°), which when relaxed in a clean, ultra-high vacuum environment isolated from airborne contaminants reaches close to stoichiometric O/Ce ratio (∼2.2) and becomes hydrophobic (contact angle of ∼104°). Further, we show that airborne hydrocarbon contaminants do not exclusively impact the wetting properties of REOs, and that relaxed REOs are intrinsically hydrophobic. This study provides insight into the role of surface relaxation on the wettability of REOs.

  6. Factors affecting the spontaneous motion of condensate drops on superhydrophobic copper surfaces.

    Science.gov (United States)

    Feng, Jie; Qin, Zhaoqian; Yao, Shuhuai

    2012-04-10

    The coalescence-induced condensate drop motion on some superhydrophobic surfaces (SHSs) has attracted increasing attention because of its potential applications in sustained dropwise condensation, water collection, anti-icing, and anticorrosion. However, an investigation of the mechanism of such self-propelled motion including the factors for designing such SHSs is still limited. In this article, we fabricated a series of superhydrophobic copper surfaces with nanoribbon structures using wet chemical oxidation followed by fluorization treatment. We then systematically studied the influence of surface roughness and the chemical properties of as-prepared surfaces on the spontaneous motion of condensate drops. We quantified the "frequency" of the condensate drop motion based on microscopic sequential images and showed that the trend of this frequency varied with the nanoribbon structure and extent of fluorination. More obvious spontaneous condensate drop motion was observed on surfaces with a higher extent of fluorization and nanostructures possessing sufficiently narrow spacing and higher perpendicularity. We attribute this enhanced drop mobility to the stable Cassie state of condensate drops in the dynamic dropwise condensation process that is determined by the nanoscale morphology and local surface energy.

  7. Superhydrophobic nanocoatings: from materials to fabrications and to applications

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang

    2015-03-01

    Superhydrophobic nanocoatings, a combination of nanotechnology and superhydrophobic surfaces, have received extraordinary attention recently, focusing both on novel preparation strategies and on investigations of their unique properties. In the past few decades, inspired by the lotus leaf, the discovery of nano- and micro-hierarchical structures has brought about great change in the superhydrophobic nanocoatings field. In this paper we review the contributions to this field reported in recent literature, mainly including materials, fabrication and applications. In order to facilitate comparison, materials are divided into 3 categories as follows: inorganic materials, organic materials, and inorganic-organic materials. Each kind of materials has itself merits and demerits, as well as fabrication techniques. The process of each technique is illustrated simply through a few classical examples. There is, to some extent, an association between various fabrication techniques, but many are different. So, it is important to choose appropriate preparation strategies, according to conditions and purposes. The peculiar properties of superhydrophobic nanocoatings, such as self-cleaning, anti-bacteria, anti-icing, corrosion resistance and so on, are the most dramatic. Not only do we introduce application examples, but also try to briefly discuss the principle behind the phenomenon. Finally, some challenges and potential promising breakthroughs in this field are also succinctly highlighted.

  8. Heat and mass transfer during ice accretion on aircraft wings with an improved roughness model

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, Guy; Ilinca, Adrian [Groupe eolien, Universite du Quebec a Rimouski, 300 allee des Ursulines, Rimouski, PQ (Canada); Laforte, Jean-Louis [Laboratoire international des materiaux Anti-givre, Universite du Quebec a Chicoutimi, 555 Boulevard Universite, Chicoutimi, PQ (Canada)

    2006-06-15

    This paper presents the thermodynamic model used in the numerical simulation of ice accreted on an airfoil surface in wet and dry regimes developed at AMIL (Anti-Icing Materials International Laboratory), in a joint project with CIRA (Italian Aerospace Research Center). The thermodynamic model combines mass and heat balance equations to an analytical representation of water states over the airfoil to calculate the surface roughness and masses of remaining, run-back, and shedding liquid water. The water state on the surface is represented in the form of beads, film or rivulets, each situation corresponding to a particular roughness height which has a major impact on the heat transfer coefficients necessary for the heat and mass balances. The model has been tested for severe icing conditions at six different temperatures corresponding to dry, mixed and wet accretion. Water mass, roughness and heat transfer convection coefficients over the airfoil surface are presented. The thermodynamic model combined with an air flow, water trajectory, and geometric model provides accurate results. It generates the complex ice shapes observed on the wing profile, and the numerical ice shapes profiles agree well with those obtained in wind tunnel experiments. (author)

  9. Proceedings of the 11. International Workshop on Atmospheric Icing of Structures (IWAIS 2005)

    Energy Technology Data Exchange (ETDEWEB)

    Farzaneh, M. (ed.) [Quebec Univ., Chicoutimi, PQ (Canada). Icing Research Building; Goel, A.P. (ed.) [Hydro One, Toronto, ON (Canada)

    2005-07-01

    The widespread impacts and related costs of atmospheric icing were demonstrated in the ice storm that struck Quebec and eastern Ontario in January 1998. The storm incurred losses in the billions of dollars, caused extended power failures, and affected approximately 5.5 million people. The aim of this conference was to regroup as many icing experts and specialists as possible to facilitate interaction conducive to finding practical, safe and economical solutions to atmospheric icing. Recent developments in icing models were reviewed, as well as new approaches to data collection. New technologies in de-icing were presented, and issues concerning the behaviour of electrical equipment during icing events were discussed. The importance of finding adequate practical solutions to help to protect strategic infrastructures exposed to icing was emphasized. The conference was divided into the following 7 sections: (1) ice and snow climate; (2) modelling and simulation of icing; (3) field observations, data gathering and information; (4) impact of ice and snow on insulator performance; (5) design for icing; (6) behaviour of ice or snow-covered power equipment; (7) de-icing and anti-icing techniques. Sixty-eight papers were presented at this conference, all of which were catalogued for inclusion in this database. refs., tabs., figs.

  10. Wind tunnel simulation of icing conditions on a NACA 63-415 blade profile found at Murdochville during the 2004-2005 measuring study of a Vesta V80 1.8 MW wind turbine; Simulation en soufflerie sur un profil NACA 63-415 des conditions de givrage relevees a Murchochville durant la campagne de mesure 2004-2005 selon une eolienne Vestas V80 de 1.8 MW

    Energy Technology Data Exchange (ETDEWEB)

    Hochart, C.; Fortin, G.; Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory; Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Wind Energy Group

    2005-12-15

    Frost accumulation was measured on the NACA 63 415 blade profile of a Vesta V80, 1.8 MW wind turbine during refrigerated wind tunnel tests conducted at the Anti-Icing Materials International Laboratory (AMIL) in Chicoutimi, Quebec in late 2005. The purpose of the study was to reproduce frost conditions measured in Murdochville, Quebec during the period of December 2004 to May 2005. The loss of mass was measured and the form of frost deposited was examined along with the lift and augmentation of drag. Thirteen tests were conducted with various frost precipitation. The meteorological data that was collected included wind velocity, wind direction, air temperature, relative humidity, barometric pressure and solar radiation. The icing events resulting from freezing fog or wet snow were characterized by measuring the growth rate of ice, duration of the icing event and the ice accretion regime. Simulations of frost precipitation and moisture, as well as technical problems encountered during the tests were described. The experiment made it possible to evaluate the impact of ice and frost on wind turbine blade. The model was able to demonstrate the initial angle timing when the strength induced by the frost was too big compared to the strength of lift, and when the drag became negative, causing the wind turbine to stop turning. 38 refs., 27 tabs.

  11. Characterization of meteorological and ice conditions at Noranda's abandoned mine site in Murdochville during the 2004-2005 measuring campaign; Characterisation des conditions meteorologiques et du givre sur le site de l'ancienne mine de Noranda a Murdochville durant la campagne de mesure 2004-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fortin, G.; Hochart, C.; Perron, J. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory; Ilinca, A. [Quebec Univ., Rimouski, PQ (Canada). Wind Energy Group

    2005-08-15

    A centre of integrated research and technology regarding wind energy in nordic climates has been established based on meteorological data collected from November 30, 2004 to May 24, 2005 at an abandoned Noranda mine in the town of Murdochville, Quebec. Results were compared with frost accumulation measured on the NACA 63 415 turbine blade profile during refrigerated wind tunnel tests conducted at the Anti-Icing Materials International Laboratory (AMIL) in Chicoutimi, Quebec in late 2005. Loss of lift and increased drag during frost periods were measured during the laboratory tests. Two dome anemometers were used to measure the wind intensity, wind direction, air temperature, relative humidity, barometric pressure, and sunlight. The parameters used to measure frost were the liquid content, diameter of water droplets, the density of the ice, the dew point, and the ice accumulation rate. The degree of potential danger to wind turbines was also calculated from the measured data. During the measuring campaign, there were 13 events of fog during frost periods, and 5 events of sleet that were registered. The month of March was shown to be the most vulnerable to frost followed by April, February, January. It was recommended that the model be modified to estimate the turning speed of wind turbines by adding a factor that keeps track of the increasing air velocity produced by the acceleration of the wind. 100 figs., 28 tabs.

  12. Experimental study of the use of icephobic coatings on wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Adomou, M.; Perron, J.; Fortin, G. [Quebec Univ., Chicoutimi, PQ (Canada). Anti-Icing Materials International Laboratory

    2010-07-01

    Accreted ice on wind turbine blades can lead to energy production losses, mechanical overloads, and ice shedding. Current de-icing systems have a high energy consumption rate and can lead to potential run-back water effects. This presentation discussed a study conducted to investigate the use of ice-phobic coatings as a means of protecting wind turbines during cold weather. The study examined the behaviour of various coatings on wind turbine blades under icing conditions and investigated the possibility of reducing the surface temperature of heated blades with the addition of ice-phobic or hydrophobic coatings. The performance of the thermal systems coupled with the coatings was also investigated. The coatings included: (1) a polyurethane plastic film, (2) a silicone-epoxy composite, (3) a fluorinated resin, and (4) a fluoroethane compound. The coatings were applied to a NACA airfoil placed in an icing wind tunnel. Various accretion regimes, wind speeds, and temperatures were studied. Results of the study showed that the coatings are effective against run-back effects during anti-icing operations, and may increase production gains from 4 to 6 per cent. tabs., figs.

  13. Ice shedding from overhead electrical lines by mechanical breaking : a ductile model for viscoplastic behaviour of atmospheric ice

    Energy Technology Data Exchange (ETDEWEB)

    Eskandarian, M.

    2005-07-01

    The mechanical characteristics of power line components need improvement in order to avoid power failures during severe ice storms. Atmospheric icing of overhead power lines creates electrical and mechanical problems in the transmission network. The successful development of anti-icing and de-icing techniques requires good knowledge of the adherence and bulk strength characteristics of atmospheric ice. This study presented a model for viscoplastic behaviour of porous atmospheric ice in the ductile region. The model was then modified to consider the effects of cracking activities to predict the material behaviour in transition and brittle regions. The following general methodologies were followed in this research for describing the ductile behaviour of porous atmospheric ice: instantaneous elastic strain; delayed viscoelastic strain; and, permanent plastic strain. The scientific contributions of this study include a classification of atmospheric ice structure on power lines on the basis of its grain shape and c-axis orientation. This thesis also presented 3 computer codes in Maple Mathematical Program for determining the elastic moduli of various types of freshwater ice; a poroelastic model for modifying the elastic moduli of porous atmospheric ice; a cap-model plasticity for various types of porous atmospheric ice; new freshwater ice yield envelopes in ductile regions that take porosity into account by means of an elliptical moving cap; and a newly developed user-defined material subroutine for viscoplastic behaviour of atmospheric ice in ductile region including the poroelastic, viscoelastic, and cap-model plasticity.

  14. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces

    International Nuclear Information System (INIS)

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting–dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C4F8 plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation. (paper)

  15. Nanomechanical and nanotribological properties of plasma nanotextured superhydrophilic and superhydrophobic polymeric surfaces

    Science.gov (United States)

    Skarmoutsou, A.; Charitidis, C. A.; Gnanappa, A. K.; Tserepi, A.; Gogolides, E.

    2012-12-01

    Oxygen plasma-induced surface modification of polymethylmethacrylate (PMMA), under plasma conditions favouring (maximizing) roughness formation, has been shown to create textured surfaces of roughness size and morphology dependent on the plasma-treatment time and subsequent morphology stabilization procedure. Superhydrophobic or superhydrophilic surfaces can thus be obtained, with potential applications in antireflective self-cleaning surfaces, microfluidics, wetting-dewetting control, anti-icing etc, necessitating determination of their mechanical properties. In this study, nanoindentation is used to determine the reduced modulus and hardness of the surface, while nanoscratch tests are performed to measure the coefficient of friction. The data are combined to assess the wear behaviour of such surfaces as a first guide for their practical applications. Short-time plasma treatment slightly changes mechanical, tribological and wear properties compared to untreated PMMA. However, a significant decrease in the reduced modulus and hardness and an increase in the coefficient of friction are observed after long plasma-treatment times. The C4F8 plasma deposited thin hydrophobic layer on the polymeric surfaces (untreated and treated) reveals good adhesion, while its mechanical properties are greatly influenced by the substrate; it is also found that it effectively protects the polymeric surfaces, reducing plastic deformation.

  16. A robust, melting class bulk superhydrophobic material with heat-healing and self-cleaning properties

    Science.gov (United States)

    Ramakrishna, S.; Santhosh Kumar, K. S.; Mathew, Dona; Reghunadhan Nair, C. P.

    2015-12-01

    Superhydrophobic (SH) materials are essential for a myriad of applications such as anti-icing and self-cleaning due to their extreme water repellency. A single, robust material simultaneously possessing melt-coatability, bulk water repellency, self-cleanability, self-healability, self-refreshability, and adhesiveness has been remaining an elusive goal. We demonstrate a unique class of melt-processable, bulk SH coating by grafting long alkyl chains on silica nanoparticle surface by a facile one-step method. The well-defined nanomaterial shows SH property in the bulk and is found to heal macro-cracks on gentle heating. It retains wettability characteristics even after abrading with a sand paper. The surface regenerates SH features (due to reversible self-assembly of nano structures) quickly at ambient temperature even after cyclic water impalement, boiling water treatment and multiple finger rubbing tests. It exhibits self-cleaning properties on both fresh and cut surfaces. This kind of coating, hitherto undisclosed, is expected to be a breakthrough in the field of melt-processable SH coatings.

  17. Well-ordered polymer nano-fibers with self-cleaning property by disturbing crystallization process

    Science.gov (United States)

    Yang, Qin; Luo, Zhuangzhu; Tan, Sheng; Luo, Yimin; Wang, Yunjiao; Zhang, Zhaozhu; Liu, Weimin

    2014-07-01

    Bionic self-cleaning surfaces with well-ordered polymer nano-fibers are firstly fabricated by disturbing crystallization during one-step coating-curing process. Orderly thin (100 nm) and long (5-10 μm) polymer nano-fibers with a certain direction are fabricated by external macroscopic force ( F blow) interference introduced by H2 gas flow, leading to superior superhydrophobicity with a water contact angle (WCA) of 170° and a water sliding angle (WSA) of 0-1°. In contrast, nano-wires and nano-bridges (1-8 μm in length/10-80 nm in width) are generated by "spinning/stretching" under internal microscopic force ( F T) interference due to significant temperature difference in the non-uniform cooling medium. The findings provide a novel theoretical basis for controllable polymer "bionic lotus" surface and will further promote practical application in many engineering fields such as drag-reduction and anti-icing.

  18. 碳纤维-玻纤格栅抗凝冰沥青路面对策研究%Ice-melting Countermeasure Research of Carbon Fiber-glass Fiber Grille Asphalt Pavement

    Institute of Scientific and Technical Information of China (English)

    李红; 张谢东

    2013-01-01

    针对贵州地区凝冰危害等级,为了制订与凝冰危害等级相对应的抗凝冰路面响应对策,采取了将凝冰危害等级转换为凝冰厚度指标后再进一步研究抗凝冰路面响应对策的策略.在进行指标转换后,进一步研究了碳纤维-玻纤格栅抗凝冰沥青路面的融凝冰功率-升温时间关系、融凝冰能力,最后提出了具体的响应贵州地区凝冰危害的对策.%For the Guizhou province ice warning level,to make the anti-ice asphalt pavement response measures adapt for the ice warning level,the paper converted the warning level to ice thickness indicators before studying the ice-melting countermeasures.Then the paper further studied the relationship of ice-melting power-heating-up-time and ice-melting-ability of the pavement,and finally put forward specific response countermeasures to the ice warning.

  19. New-type DC Ice-melting Disconnector and Its Application%新型直流融冰隔离开关及其应用

    Institute of Scientific and Technical Information of China (English)

    吴家林; 王亚莉; 何立新

    2013-01-01

    常规直流融冰电流跨接方案存在投资大、占地面积大、施工时间长、工作效率低、作业风险高、操作复杂、运行维护不便等缺点,通过对直流融冰跨接方案分析比较,针对直流融冰技术特点发明了一种新型直流融冰隔离开关并在实际工程中应用,为电网防冰减灾提供了新的技术手段,具有较高的推广和使用价值.%The conventional DC ice-melting current jumper scheme exists large investment, large occupied area, long construction time, low working efficiency, high operation risk, complex operation, operation and maintenance inconvenience shortcomings, through analyzing and comparing the DC ice-melting jumper scheme, aiming at the characteristics of DC ice-melting technology invented a new type of DC ice-melting disconnector and application in practical engineering, provides a new means for the anti icing disaster technology in power grid. It has higher popularization and use value.

  20. An Experimental Investigation on the Impingement of Water Droplets onto Superhydrophobic Surfaces Pertinent to Aircraft Icing Phenomena

    Science.gov (United States)

    Li, Haixing; Waldman, Rye; Hu, Hui

    2015-11-01

    Superhydrophobic surfaces have self-cleaning properties that make them promising candidates as anti-icing solutions for various engineering applications, including aircraft anti-/de-icing. However, under sufficient external pressure, the liquid water on the surface can transition to a wetted state, defeating the self-cleaning properties of superhydrpphobic surfaces. In the present study, an experimental investigation was conducted to quantify the transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties under different environmental icing conditions. The experiments were performed in the Icing Research Tunnel of Iowa State University (IRT-ISU) with a NACA0012 airfoil. In addition to using a high-speed imaging system to reveal transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties, an IR thermometry was also used to quantify the unsteady heat transfer and dynamic phase changing process within the water droplets after impingement onto the test plates with different frozen cold temperatures. The high-speed imaging results were correlated with the quantitatively temperature measurements to elucidate underlying physics in order to gain further insight into the underlying physics pertinent to aircraft icing phenomena. The research work is partially supported by NASA with grant number NNX12AC21A and National Science Foundation under award numbers of CBET-1064196 and CBET-1435590.

  1. Self-propelled droplet behavior during condensation on superhydrophobic surfaces

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Zhu, Bei; Zhang, Xuan

    2016-05-01

    Self-propelled droplet motion has applications in various engineering fields such as self-cleaning surfaces, heat transfer enhancement, and anti-icing methods. A superhydrophobic surface was fabricated using two simultaneous chemical reactions with droplet condensation experiments performed on the horizontal superhydrophobic surface to characterize the droplet behavior. The droplet behavior is classified into three types based on their motion features and leftover marks as immobile droplet coalescence, self-propelled droplet jumping, and self-propelled droplet sweeping. This study focuses on the droplet sweeping that occurs due to the ultra-small rolling angle of the superhydrophobic surface, where the resulting droplet sweeps along the surface, merging with all the droplets it meets and leaving a long, narrow, clear track with a large droplet at the end of the track. An easy method is developed to predict the droplet sweeping direction based on the relative positions of the droplets just before coalescence. The droplet sweeping always absorbs dozens of droplets and is not limited by the surface structures; thus, this sweeping has many useful applications. In addition, the relationships between the droplet behavior and the number of participating droplets are also analyzed statistically.

  2. Controllable wettability and morphology of electrodeposited surfaces on zinc substrates

    Science.gov (United States)

    Zhang, Binyan; Lu, Shixiang; Xu, Wenguo; Cheng, Yuanyuan

    2016-01-01

    Superhydrophobic surfaces combining hierarchical micro/nanostructures were fabricated on zinc substrates by etching in hydrochloric acid solution, electrodeposition of ZnO coatings and subsequent thermal annealing. The optimal coatings were electrodeposited at -1.25 V for 900 s on the etched zinc substrates and then annealed at 200 °C for 60 min, which could achieve a maximum water contact angle of 170 ± 2° and an ultra-low sliding angle of approximately 0°. By conducting SEM and water CA analysis, we found that the morphology and wettability of prepared samples were controllable by the fabrication process. Interestingly, even without any additional modification, the samples prepared under different electrodeposition conditions (including Zn(CH3COO)2 concentration from 5 mM to 40 mM and deposition time from 300 s to 1500 s) exhibited superhydrophobic character. The influences of the Zn(CH3COO)2 concentration, deposition time, annealing temperature and annealing time on the wetting behaviors were also discussed in detail. Such superhydrophobic surfaces possess long-term stability, and good corrosion resistance as well as self-cleaning ability. In addition, the anti-icing properties of the ZnO films were investigated. These surfaces could be rapidly and reversibly switched between superhydrophobicity and superhydrophilicity by alternating UV illumination and dark storage or thermal annealing. The intelligent switchable surfaces with controllable wettability and morphology offer possibilities for chemical, biological, electronic and microfluidic applications.

  3. Unconventional Approach for Demineralization of Deproteinized Crustacean Shells for Chitin Production

    Directory of Open Access Journals (Sweden)

    N. S. Mahmoud

    2007-01-01

    Full Text Available Chitin is a versatile environmentally friendly modern material. It has a wide range of applications in areas such as water treatment, pulp and paper, biomedical devices and therapies, cosmetics, membrane technology and biotechnology and food applications. Crustacean waste is the most important chitin source for commercial use. Demineralization is an important step in the chitin purification process from crustacean waste. The conventional method of demineralization includes the use of strong acid (commonly HCl that harms the physiochemical properties of chitin, results in a harmful effluent wastewater and increases the cost of chitin purification process. The current study proposes the use of organic acids (lactic and acetic produced by cheese whey fermentation to demineralize microbially deproteinized shrimp shells. The effects of acid type, demineralization condition, retention time and shells to acid ratio were investigated. The study showed that the effectiveness of using lactic and/or acetic acids for demineralization of shrimp shells was comparable to that of using hydrochloric acid. Using organic acids for demineralization is a promising concept, since organic acids are less harmful to the environment, can preserve the characteristics of the purified chitin and can be produced from low cost biomass such as cheese whey. In addition, the resulted organic salts from the demineralization process can be used as a food preservative and/or an environmentally friendly de-icing/anti-icing agents.

  4. Spontaneous droplet trampolining on rigid superhydrophobic surfaces.

    Science.gov (United States)

    Schutzius, Thomas M; Jung, Stefan; Maitra, Tanmoy; Graeber, Gustav; Köhme, Moritz; Poulikakos, Dimos

    2015-11-01

    Spontaneous removal of condensed matter from surfaces is exploited in nature and in a broad range of technologies to achieve self-cleaning, anti-icing and condensation control. But despite much progress, our understanding of the phenomena leading to such behaviour remains incomplete, which makes it challenging to rationally design surfaces that benefit from its manifestation. Here we show that water droplets resting on superhydrophobic textured surfaces in a low-pressure environment can self-remove through sudden spontaneous levitation and subsequent trampoline-like bouncing behaviour, in which sequential collisions with the surface accelerate the droplets. These collisions have restitution coefficients (ratios of relative speeds after and before collision) greater than unity despite complete rigidity of the surface, and thus seemingly violate the second law of thermodynamics. However, these restitution coefficients result from an overpressure beneath the droplet produced by fast droplet vaporization while substrate adhesion and surface texture restrict vapour flow. We also show that the high vaporization rates experienced by the droplets and the associated cooling can result in freezing from a supercooled state that triggers a sudden increase in vaporization, which in turn boosts the levitation process. This effect can spontaneously remove surface icing by lifting away icy drops the moment they freeze. Although these observations are relevant only to systems in a low-pressure environment, they show how surface texturing can produce droplet-surface interactions that prohibit liquid and freezing water-droplet retention on surfaces. PMID:26536959

  5. Controlled growth of standing Ag nanorod arrays on bare Si substrate using glancing angle deposition for self-cleaning applications

    Science.gov (United States)

    Singh, Dhruv P.; Singh, J. P.

    2014-03-01

    A facile approach to manipulate the hydrophobicity of surface by controlled growth of standing Ag nanorod arrays is presented. Instead of following the complicated conventional method of the template-assisted growth, the morphology or particularly average diameter and number density (nanorods cm-2) of nanorods were controlled on bare Si substrate by simply varying the deposition rate during glancing angle deposition. The contact angle measurements showed that the evolution of Ag nanorods reduces the surface energy and makes an increment in the apparent water contact angle compared to the plain Ag thin film. The contact angle was found to increase for the Ag nanorod samples grown at lower deposition rates. Interestingly, the morphology of the nanorod arrays grown at very low deposition rate (1.2 Å sec-1) results in a self-cleaning superhydrophobic surface of contact angle about 157° and a small roll-off angle about 5°. The observed improvement in hydrophobicity with change in the morphology of nanorod arrays is explained as the effect of reduction in solid fraction within the framework of Cassie-Baxter model. These self-cleaning Ag nanorod arrays could have a significant impact in wide range of applications such as anti-icing coatings, sensors and solar panels.

  6. Effect of Surface Energy on Freezing Temperature of Water.

    Science.gov (United States)

    Zhang, Yu; Anim-Danso, Emmanuel; Bekele, Selemon; Dhinojwala, Ali

    2016-07-13

    Previous studies have found that superhydrophobic surfaces are effective in delaying freezing of water droplets. However, the freezing process of water droplets on superhydrophobic surfaces depends on factors such as droplet size, surface area, roughness, and cooling rate. The role of surface energy, independent of any other parameters, in delaying freezing of water is not understood. Here, we have used infrared-visible sum frequency generation spectroscopy (SFG) to study the freezing of water next to solid substrates with water contact angles varying from 5° to 110°. We find that the freezing temperature of water decreases with increasing surface hydrophobicity only when the sample volume is small (∼10 μL). For a larger volume of water (∼300 μL), the freezing temperature is independent of surface energy. For water next to the surfaces with contact angle ≥54°, we observe a strong SFG peak associated with highly coordinated water. This research sheds new light on understanding the key factors in designing new anti-icing coatings. PMID:27314147

  7. Atmospheric icing on large wind turbine blades

    Directory of Open Access Journals (Sweden)

    Muhammad S. Virk, Matthew C. Homola, Per J. Nicklasson

    2012-01-01

    Full Text Available A numerical study of atmospheric ice accretion on a large horizontal axis ‘NREL 5 MW’ wind turbine blade has been carried out using the computational fluid dynamics based technique. Numerical analyses were carried out at five different sections along the wind turbine blade for both rime and glaze ice conditions. Based upon the flow field calculation and the droplet collision efficiency, the rate and shape of accreted ice was simulated at different atmospheric temperatures. Results indicate that the icing is less severe near the blade root sections, where the blade profiles are larger and thicker, both in terms of local ice mass and accreted ice thickness. Change in accreted ice growth with the atmospheric temperature is significant along the blade sections from centre to tip. The research work also highlighted that the ice accretion on wind turbine blades can also be controlled by optimizing its geometric design features instead of only using the energy consuming anti icing and de-icing systems.

  8. Nanoscale deicing by molecular dynamics simulation.

    Science.gov (United States)

    Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2016-08-14

    Deicing is important to human activities in low-temperature circumstances, and is critical for combating the damage caused by excessive accumulation of ice. The aim of creating anti-icing materials, surfaces and applications relies on the understanding of fundamental nanoscale ice adhesion mechanics. Here in this study, we employ all-atom modeling and molecular dynamics simulation to investigate ice adhesion. We apply force to detach and shear nano-sized ice cubes for probing the determinants of atomistic adhesion mechanics, and at the same time investigate the mechanical effect of a sandwiched aqueous water layer between ice and substrates. We observe that high interfacial energy restricts ice mobility and increases both ice detaching and shearing stresses. We quantify up to a 60% decrease in ice adhesion strength by an aqueous water layer, and provide atomistic details that support previous experimental studies. Our results contribute quantitative comparison of nanoscale adhesion strength of ice on hydrophobic and hydrophilic surfaces, and supply for the first time theoretical references for understanding the mechanics at the atomistic origins of macroscale ice adhesion.

  9. High-Speed Imaging of a Water Droplet Impacting a Super Cold Surface

    KAUST Repository

    Khaled, Narimane

    2016-08-01

    Frost formation is of a major research interest as it can affect many industrial processes. Frost appears as a thin deposit of ice crystals when the temperature of the surface is below the freezing point of the liquid. The objective of this research is to study icing with hope to propose new anti-icing and deicing methods. In the beginning of the research, cracking of the ice layer was observed when a deionized water droplet impacts a ?50 oC cooled sphere surface that is in contact with dry ice. To further investigate the cracks occurrence, multiple experiments were conducted. It was observed that the sphere surface temperature and droplet temperature (ranges from 10-80 oC) have no effect on the crack formation. On the other hand, it was observed that formation of a thin layer of frost on the sphere before the drop impact leads the lateral cracking of the ice. Thus, attempts to reproduce the cracks on clean super cold sphere surfaces were made using scratched and sandblasted spheres as well as superhydrophobized and polymer particle coated spheres. Furthermore, innovative methods were tried to initiate the cracks by placing epoxy glue bumps and ice-islands coatings on the surface of the spheres. All of these attempts to reproduce the crack formation without the presence of frost, failed. Nonetheless, the adding of isolated frost on the sphere surfaces always leads to the crack formation. Generally, frost forms on the small spheres faster than it does on the bigger ones. Additionally, the cold water droplet produces thicker water and ice layer compared to a hot water droplet; and the smaller the sphere the larger its water and ice layer thicknesses.

  10. Spinoff 2012

    Science.gov (United States)

    2013-01-01

    Topics covered include: Water Treatment Technologies Inspire Healthy Beverages; Dietary Formulas Fortify Antioxidant Supplements; Rovers Pave the Way for Hospital Robots; Dry Electrodes Facilitate Remote Health Monitoring; Telescope Innovations Improve Speed, Accuracy of Eye Surgery; Superconductors Enable Lower Cost MRI Systems; Anti-Icing Formulas Prevent Train Delays; Shuttle Repair Tools Automate Vehicle Maintenance; Pressure-Sensitive Paints Advance Rotorcraft Design Testing; Speech Recognition Interfaces Improve Flight Safety; Polymers Advance Heat Management Materials for Vehicles; Wireless Sensors Pinpoint Rotorcraft Troubles; Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks; Detectors Ensure Function, Safety of Aircraft Wiring; Emergency Systems Save Tens of Thousands of Lives; Oxygen Assessments Ensure Safer Medical Devices; Collaborative Platforms Aid Emergency Decision Making; Space-Inspired Trailers Encourage Exploration on Earth; Ultra-Thin Coatings Beautify Art; Spacesuit Materials Add Comfort to Undergarments; Gigapixel Images Connect Sports Teams with Fans; Satellite Maps Deliver More Realistic Gaming; Elemental Scanning Devices Authenticate Works of Art; Microradiometers Reveal Ocean Health, Climate Change; Sensors Enable Plants to Text Message Farmers; Efficient Cells Cut the Cost of Solar Power; Shuttle Topography Data Inform Solar Power Analysis; Photocatalytic Solutions Create Self-Cleaning Surfaces; Concentrators Enhance Solar Power Systems; Innovative Coatings Potentially Lower Facility Maintenance Costs; Simulation Packages Expand Aircraft Design Options; Web Solutions Inspire Cloud Computing Software; Behavior Prediction Tools Strengthen Nanoelectronics; Power Converters Secure Electronics in Harsh Environments; Diagnostics Tools Identify Faults Prior to Failure; Archiving Innovations Preserve Essential Historical Records; Meter Designs Reduce Operation Costs for Industry; Commercial Platforms Allow Affordable Space Research

  11. Sustainable Systems for exploration, stays with increased duration in LEO and Earth application -an overview about life support activities

    Science.gov (United States)

    Slenzka, Klaus; Duenne, Matthias

    Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and

  12. Electric-field-enhanced condensation on superhydrophobic nanostructured surfaces.

    Science.gov (United States)

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-12-23

    When condensed droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump due to the conversion of excess surface energy into kinetic energy. This phenomenon has been shown to enhance condensation heat transfer by up to 30% compared to state-of-the-art dropwise condensing surfaces. However, after the droplets jump away from the surface, the existence of the vapor flow toward the condensing surface increases the drag on the jumping droplets, which can lead to complete droplet reversal and return to the surface. This effect limits the possible heat transfer enhancement because larger droplets form upon droplet return to the surface, which impedes heat transfer until they can be either removed by jumping again or finally shedding via gravity. By characterizing individual droplet trajectories during condensation on superhydrophobic nanostructured copper oxide (CuO) surfaces, we show that this vapor flow entrainment dominates droplet motion for droplets smaller than R ≈ 30 μm at moderate heat fluxes (q″ > 2 W/cm(2)). Subsequently, we demonstrate electric-field-enhanced condensation, whereby an externally applied electric field prevents jumping droplet return. This concept leverages our recent insight that these droplets gain a net positive charge due to charge separation of the electric double layer at the hydrophobic coating. As a result, with scalable superhydrophobic CuO surfaces, we experimentally demonstrated a 50% higher overall condensation heat transfer coefficient compared to that on a jumping-droplet surface with no applied field for low supersaturations (condensation heat transfer enhancement but also offers avenues for improving the performance of self-cleaning and anti-icing surfaces as well as thermal diodes.

  13. Preparation and characterization of silica/fluorinated acrylate copolymers hybrid films and the investigation of their icephobicity

    Energy Technology Data Exchange (ETDEWEB)

    Huang Yanfen; Hu Mingjie [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (China); Yi Shengping [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (China); Engineering Research Center of Organosilicon Compound and Material, Ministry of Education of China, Wuhan, 430072 (China); Liu Xinghai, E-mail: liuxh@whu.edu.cn [School of Printing and Packaging, Wuhan University, Wuhan, 430079 (China); Li Houbin [School of Printing and Packaging, Wuhan University, Wuhan, 430079 (China); Huang Chi, E-mail: chihuang@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (China); Engineering Research Center of Organosilicon Compound and Material, Ministry of Education of China, Wuhan, 430072 (China); Luo Yunbai [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072 (China); Li Yan [China Southern Power Grid Co., Ltd. Guangzhou, 510623 (China)

    2012-06-30

    Inexpensive hydrophobic and icephobic coatings and films were obtained by a simple method. These coatings were prepared by mixing silica sol and fluorinated acrylate copolymers. There was a phase separation process in the film-forming which can provide the excellent performance. Small amount (about 2 wt.%) of fluorinated (methyl) acrylate was used in all of these coatings. The coatings were eco-friendly by using ethanol as the solvent system. Scanning electron microscopy, atomic force microscope, energy dispersive X-ray fluorescence spectrometer, water contact angle, thermal gravimetric analysis and tests of adhesion and hardness had been performed to characterize the morphological feature, chemical composition, hydrophobicity and icephobicity of the surface, thermal stability and mechanical properties of the coatings. The results showed that the films had good hydrophobicity, high thermal stability and excellent mechanical properties of adhesion strength and pencil hardness. Furthermore, by testing their properties of delaying water droplet from icing, it was found that ice formation was delayed for 90 min compared with the glass surface at - 5.6 Degree-Sign C. The hybrid coatings may be suitable for large-scale and practical application owing to its flexibility and simplicity. - Highlights: Black-Right-Pointing-Pointer Coatings were prepared by mixing fluorinated acrylate copolymer and silica. Black-Right-Pointing-Pointer Mechanical properties and anti-icing performance of the coatings were examined. Black-Right-Pointing-Pointer Water contact angle increased with raising SiO{sub 2} (sol)/monomers weight ratio. Black-Right-Pointing-Pointer Ice formation was delayed for 90 min at - 5.6 Degree-Sign C.

  14. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    Science.gov (United States)

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  15. 船-冰碰撞载荷下球鼻艏结构动态响应研究%Research on structure dynamic response of bulbous bow in ship-ice collision load

    Institute of Scientific and Technical Information of China (English)

    张健; 万正权; 陈聪

    2014-01-01

    A ship-ice collision numerical simulation is performed by using nonlinear finite element method. Structural dynamic response is carried out by researching the collisions between bulbous bow and ice with the same weight but different shapes, the same shape but different weights and different collision veloci-ties. The regularity of the damage deformation of the ship, the collision force and the energy absorption un-der different working conditions are revealed. The impact mechanism of the shape of ice, the weight of ice and the collision velocity on ship-ice collision is obtained, which provides reference for anti-ice load struc-tural design of ships.%文章利用非线性有限元法对船-冰碰撞进行了数值仿真,分别研究了船舶球鼻艏与同质量不同形状、同形状不同质量冰体发生碰撞以及不同碰撞速度下的动态结构响应特性,揭示了不同工况下船舶的损伤变形、碰撞力和能量吸收的规律,得到了冰体形状、冰体质量、碰撞速度等因素对船-冰碰撞的影响机理,为提高船舶抗冰载荷设计提供参考。

  16. Problems in creation of modern air inlet filters of power gas turbine plants in Russia and methods of their solving

    Science.gov (United States)

    Mikhaylov, V. E.; Khomenok, L. A.; Sherapov, V. V.

    2016-08-01

    The main problems in creation and operation of modern air inlet paths of gas turbine plants installed as part of combined-cycle plants in Russia are presented. It is noted that design features of air inlet filters shall be formed at the stage of the technical assignment not only considering the requirements of gas turbine plant manufacturer but also climatic conditions, local atmospheric air dustiness, and a number of other factors. The recommendations on completing of filtration system for air inlet filter of power gas turbine plants depending on the facility location are given, specific defects in design and experience in operation of imported air inlet paths are analyzed, and influence of cycle air preparation quality for gas turbine plant on value of operating expenses and cost of repair works is noted. Air treatment equipment of various manufacturers, influence of aerodynamic characteristics on operation of air inlet filters, features of filtration system operation, anti-icing system, weather canopies, and other elements of air inlet paths are considered. It is shown that nonuniformity of air flow velocity fields in clean air chamber has a negative effect on capacity and aerodynamic resistance of air inlet filter. Besides, the necessity in installation of a sufficient number of differential pressure transmitters allowing controlling state of each treatment stage not being limited to one measurement of total differential pressure in the filtration system is noted in the article. According to the results of the analysis trends and methods for modernization of available equipment for air inlet path, the importance of creation and implementation of new technologies for manufacturing of filtering elements on sites of Russia within the limits of import substitution are given, and measures on reliability improvement and energy efficiency for air inlet filter are considered.

  17. 飞行结冰后复杂系统动力学仿真与风险评估%Dynamic Simulation Study of Stalling in Wing Icing Conditions and Risk Evaluation

    Institute of Scientific and Technical Information of China (English)

    刘东亮; 徐浩军; 李嘉林; 薛源

    2011-01-01

    综合考虑结冰后气动参数的变化和驾驶员动态特性,建立了结冰后人-机-环复杂系统非线性动力学仿真模型,仿真出结冰后迎角、俯仰角和俯仰角速度的变化趋势。提出了结冰恶化速率因子的概念,以迎角为临界参数,提出了通过冰型、结冰强度来判断失速的方法,提出了综合评估飞机在某一航段结冰后飞行风险的思路和对防冰系统最大允许故障率进行计算的方法,最后给出算例验证了该方法的实用性。%Considering the change of aerodynamic parameters after icing and dynamic characters of pilot,the model of iced pilot-aircraft-environment nonlinear dynamical complex simulation system was built up,and then the simulation of the change of angle of attack,pitch angle,pitch rate along with time was completed.The concept of icing deterioration velocity factor was proposed.Using angle of attack as critical parameter,a method for judging stalling based on the type and velocity of incrassation of icing was brought forward.A thought for evaluating the flighting risk caused by icing in a given route and a calculating method of the highest permitted failure rate of anti-icing system were proposed.Finally,an example was given to validate the method's practicability.

  18. EXPERIMENTAL STUDIES ON DEVELOPMENT OF SUSTAINABLE AGRICULTURAL-BASED ROAD TRANSPORT DEICING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Peter C. Taylor

    2014-06-01

    Full Text Available Snow and ice removal on highways and public streets is critical for safe operation of the road transportation infrastructure. The issues to be addressed in selecting suitable deicing and anti-icing materials include cost, effectiveness, and damage to the pavement, vehicles and the environment. Considerable research has been carried out in recent years to develop alternative deicers with better performance and cost effectiveness. Among the developed deicer materials are agricultural based deicers that are considered to be sustainable and environmentally-beneficial materials. Iowa is one of the States that is rich in agricultural renewable resources, some of which are being processed for applications such as fuel. Any industrial process, including that of converting corn to ethanol or soy to bio-diesel, is likely to have a number of by-products generated. Rather than face disposal issues for these by-products, it would be desirable to find those that, with a minimum of additional processing, can be used as a deicing compound, either alone, or in combination with products currently in use. Currently, a number of agricultural based deicer materials have been developed or are still under development. However, little information is known about the actual manufacturing/refining process since most of the developed materials are all proprietary products (patented or commercial. Furthermore, no standard test specifying agricultural-based deicer is available. The study described in this paper focuses on the development of an improved agricultural based deicing product. The objective of this study was to evaluate deicer materials including traditional and alternative deicer materials on road skid resistance which is critical for safe operation of the road transportation infrastructure.

  19. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    Science.gov (United States)

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  20. Inhibition of Condensation Frosting by Arrays of Hygroscopic Antifreeze Drops.

    Science.gov (United States)

    Sun, Xiaoda; Damle, Viraj G; Uppal, Aastha; Linder, Rubin; Chandrashekar, Sriram; Mohan, Ajay R; Rykaczewski, Konrad

    2015-12-29

    The formation of frost and ice can have negative impacts on travel and a variety of industrial processes and is typically addressed by dispensing antifreeze substances such as salts and glycols. Despite the popularity of this anti-icing approach, some of the intricate underlying physical mechanisms are just being unraveled. For example, recent studies have shown that in addition to suppressing ice formation within its own volume, an individual salt saturated water microdroplet forms a region of inhibited condensation and condensation frosting (RIC) in its surrounding area. This occurs because salt saturated water, like most antifreeze substances, is hygroscopic and has water vapor pressure at its surface lower than water saturation pressure at the substrate. Here, we demonstrate that for macroscopic drops of propylene glycol and salt saturated water, the absolute RIC size can remain essentially unchanged for several hours. Utilizing this observation, we demonstrate that frost formation can be completely inhibited in-between microscopic and macroscopic arrays of propylene glycol and salt saturated water drops with spacing (S) smaller than twice the radius of the RIC (δ). Furthermore, by characterizing condensation frosting dynamics around various hygroscopic drop arrays, we demonstrate that they can delay complete frosting over of the samples 1.6 to 10 times longer than films of the liquids with equivalent volume. The significant delay in onset of ice nucleation achieved by dispensing propylene glycol in drops rather than in films is likely due to uniform dilution of the drops driven by thermocapillary flow. This transport mode is absent in the films, leading to faster dilution, and with that facilitated homogeneous nucleation, near the liquid-air interface. PMID:26651017

  1. Freezing b ehavior of droplet impacting on cold surfaces%低温光滑壁面上水滴撞击结冰行为∗

    Institute of Scientific and Technical Information of China (English)

    胡海豹; 何强; 余思潇; 张招柱; 宋东

    2016-01-01

    Exploring the freezing process and its potential mechanism of the droplets impacting on a solid surface is desperately desired, owing to its anti-icing applications in aircraft, cable, radar, etc. On the controllable low temperature test equipment, the freezing dynamic behaviors of droplets impacting on three cold plates, made of copper, aluminum and silicon, are recorded by a high-speed camera in this paper, and characterized by the droplet spreading diameter, oscillation and freezing time. Here, the freezing behavior of droplets is predicated by observing the color change of the droplet. Through the experimental exploration and theoretical analysis, we reveal the effects of the impacting speed, surface temperature and thermal conductivity of material on the freezing dynamics of the droplet. We demonstrate that a cold surface shrinks the maximum spreading diameter of droplet compared with the surface at ambient temperature; the lower the surface temperature, the shorter the freezing time would be and the smaller the maximum spreading diameter would be;the maximum spreading diameter increases with increasing Weber number, whereas the oscillation and freezing time decrease. Meanwhile, the higher the material thermal conductivity, the shorter the freezing time would be, and the bigger the rising slope of the maximum spreading diameter with increasing Weber number will be. A function to predict the freezing time is derived from thermodynamic condition. The calculated values are in good agreement with the experimental data, with the maximum relative error of less than 5.3%.%采用高速摄像技术测试低温光滑壁面上水滴撞击结冰过程,分析了撞击速度、壁面温度和材料热导率对水滴撞击铺展、振荡及结冰行为的影响规律.结果表明,低温壁面造成水滴最大铺展直径缩小,且结冰时间随温度降低而缩短;当撞击We数提高时,水滴最大铺展直径增大,而振荡和结冰时间减小;同时

  2. 有机无机杂化丙烯酸乳液的制备及涂膜性质研究%Preparation of Organic and Inorganic Hybrid Acrylic Emulsion and Properties of Its Films

    Institute of Scientific and Technical Information of China (English)

    刘芳; 黄伟

    2011-01-01

    为了制备一种疏水抗覆冰涂料,采用种子半连续乳液聚合法,通过添加乙烯基三乙氧基硅烷(A-151)和纳米二氧化硅粉末,分别合成了纯丙乳液、硅丙乳液和纳米二氧化硅/硅丙复合乳液,并将乳液涂覆在铝片表面,室温干燥成膜.利用红外光谱、粒度分析、扫描电镜等测试手段对3种乳液及其涂膜性能进行表征.结果表明:添加A-151可以使涂膜交联度提高到95%,吸水率降低到5%;添加纳米二氧化硅,可提高乳液涂膜的热分解温度,使乳液粒径大小分布均匀.此方法中,A-151和纳米二氧化硅改性的乳液涂膜疏水作用有限,仅使接触角增加到约30°.%A hydrophobic anti -icing coating was prepared with pure acrylic emulsion, silicon -acrylate emulsion and nano - silica/silicone - acrylate composite emulsion respectively, which were prepared by the semi - continuous emulsion polymerization process, with addition of vinyl triethoxye silane (A - 151) and nauosilica powder. Films were prepared these emulsion applied on the surface of aluminum sheet separately and dried at room temperature. The structure of these three kind of emulsions and films were charactered by FT-IR, particle size analysis and SEM. The results showed that addition of A - 151 can increase the crosslinking degree of film to 95% , while the water absorbability reduced to 5%. The thermal decomposition temperatures of these films went higher by using nano - silica. Nano - silica was also helpful for the uniform distribution of diameter of emulsions' particles. The contact angle of the films of silicone - acrylate emulsion and nano - silica/silicone - acrylate composite emulsion was increased slightly to 30°.

  3. Douglas flight deck design philosophy

    Science.gov (United States)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system

  4. 基于云微物理参数的飞机积冰多因子预测方法%An Aircraft Icing Forecasting Method Based on Bloud Microphysical Parameters

    Institute of Scientific and Technical Information of China (English)

    何新党; 刘永寿; 苟文选; 张峰

    2012-01-01

    基于气象探测信息,准确进行飞机积冰预测并及时开启防/除冰系统是保障飞机飞行安全的重要方法.提出了一种多因子积冰预测方法,当已知飞机所在飞行云层类型、飞行高度、速度、气温、气压和露点温度时,使用提出的方法可计算得到飞行高度上的相对湿度、比湿、0℃高度上的气压、液态含水量等气象参数,用所建立的多因子积冰强度判别式可对飞机积冰的可能性及积冰强度进行预测.将方法应用于飞机积冰案例中,与美国国家大气科学中心提出的RAOB积冰预报方法进行了对比.分析结果表明,提出的方法准确有效,可为飞机积冰预测提供技术支持.%Introducing weather detect information to aircraft icing forecast and turning on Anti - icing/dei-cing system in time an important safeguard of ensuring airplane flight safety. This paper presents a multi-factor prediction method of ice forecasting. When the information of aircraft flying cloud type, altitude, speed,temperature,pressure and dew point temperature is known,the relative humidity,specific humidity , pressure of 0℃ high degree, liquid water content, and other weather parameters can be calculated as well as the icing probability and icing accretion rate during aircraft fly is predicted using the presented method. Using the proposed method into an aircraft icing cases,and compared with RAOB icing forecast methods of the NCAR. The analysis results show that the proposed method is accurate and valid. It can provide technical support for aircraft icing forecasting.

  5. Development of nanostructured coatings for protecting the surface of aluminum alloys against corrosion and ice accretion

    Science.gov (United States)

    Farhadi, Shahram

    Ice and wet snow accretion on outdoor structures is a severe challenge for cold climate countries. A variety of de-icing and anti-icing techniques have been developed so far to counter this problem. Passive approaches such as anti-icing or icephobic coatings that inhibit or retard ice accumulation on the surfaces are gaining in popularity. Metal corrosion should also be taken into account as metallic substrates are subject to corrosion problems when placed in humid or aggressive environments. Development of any ice-releasing coatings on aluminum structures, as they must be durable enough, is therefore closely related to anti-corrosive protection of that metal. Accordingly, series of experiments have been carried out to combine reduced ice adhesion and improved corrosion resistance on flat AA2024 substrates via thin films of single and double layer alkyl-terminated SAMs coatings. More precisely, alkyl-terminated aluminum substrates were prepared by depositing layer(s) of 18C-SAMs on BTSE-grafted AA2024 or mirror-polished AA2024 surfaces. This alloy is among the most widely used aluminum alloys in transportation systems (including aircraft), the military, etc. The stability of the coatings in an aggressive environment, their overall ice-repellent performance as well as their corrosion resistance was systematically studied. The stability of one-layer and two-layer coatings in different media was tested by means of CA measurements, demonstrating gradual loss of the hydrophobic property after ~1100-h-long immersion in water, associated by decrease in water CA. Surface corrosion was observed in all cases, except that the double-layer coating system provided improved anti-corrosive protection. All single layer coatings showed initial shear stress of ice detachment values of ~1.68 to 2 times lower than as-received aluminum surfaces and about ~1.22 to 1.5 times lower than those observed on mirror-polished surfaces. These values gradually increased after as many as 5 to 9

  6. Contribution a l'etude et a la conception d'une machine synchrone a flux transverse destinee au degivrage d'aeronefs en cours de vol

    Science.gov (United States)

    Boussetoua, Mohammed

    During winter, the climate in the northern region is known for its icing and freezing conditions. However, emergency services often use helicopters to reach isolated locations. The difficult situations, generally experiences in the North particularly in Quebec, may prevent rescuers to intervene. The main reason preventing such operations is the lack of a de-icing system in the small helicopter blades. The overall objective of the project is research, development, design and manufacture of a system composed of an on-board rotating low speed generator and heating elements. It consumes a part of the power supplied by the turbine through the axis of the main rotor of the small aircraft and converts it to electrical power to be used by the heating elements. This innovation will allow to fly safely everywhere throughout the year protect the lives of the users even in the worst weather conditions. Firstly, the research focuses on the identification of problems related to the use of protection systems against the hoarfrost on main rotor blades of different aircrafts during flight. In this phase, we specifically focused on the difficulties encountered by the aircraft companies using the existing and operational systems for protection against hoarfrost. Main rotor blades are difficult to protect on helicopters. Several systems were considered by the helicopter manufacturers, such as electrothermal systems, pneumatic systems or using anti-icing fluids. In the current state of technological knowledge, all helicopters that have been certified to fly in icing conditions use electrothermal systems for protection against hoarfrost on their main rotor Small helicopters addressed by this work, are forbidden to fly in icing conditions due to lack of energy source to operate these systems. The electrothermal system has been considered for this thesis work to protect the main rotor blades of small aircraft in-flight. The second part of this thesis is based on the source of power

  7. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    Science.gov (United States)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to

  8. Ice crystal ingestion by turbofans

    Science.gov (United States)

    Rios Pabon, Manuel A.

    proposed and built in this Thesis, called DBDAIS, with a complete description of the anti-ice cycle. Contrary to existing ice protection systems, which either heat the aircraft surfaces, or mechanically remove the accreted ice, the DBDAIS employs non-thermal plasma discharges to prevent ice accretion. A new apparatus that mimics inflight icing based on combining the liquid sprays of liquid nitrogen and water was designed and fabricated, named LNITA. The apparatus produces ice similar to glaze ice and rime ice, the two characteristic types of ice from inflight icing, at the cost of 1% of similar tests in icing wind tunnels. Nineteen experiments of the DBDAIS were performed in the LNITA. The results from the experiments point to 32 kV and 4 kHz being adequate to prevent ice accretion, with a power consumption of 1 W/cm2. This compares favorably to existing ice protection systems, which typically run at 10 W/cm2, and to the power consumption of a typical electric stove burner at maximum power, which is 5 W/cm2. To complete this Thesis, a design and development project is proposed to implement the DBDAIS in Unmanned Aircraft Systems (UAS), with the selection of standard FAA inflight icing conditions, the run of 240 LEWICE simulations, and an analysis of the run results. The computational results lead to the design of a wing boot covering the airfoil from 20% of the lower pressure surface to 4% of the upper suction surface as the optimal protection for a UAS.

  9. Validation Ice Crystal Icing Engine Test in the Propulsion Systems Laboratory at NASA Glenn Research Center

    Science.gov (United States)

    Oliver, Michael J.

    2014-01-01

    The Propulsion Systems Laboratory (PSL) is an existing altitude simulation jet engine test facility located at NASA Glenn Research Center in Cleveland, OH. It was modified in 2012 with the integration of an ice crystal cloud generation system. This paper documents the inaugural ice crystal cloud test in PSL--the first ever full scale, high altitude ice crystal cloud turbofan engine test to be conducted in a ground based facility. The test article was a Lycoming ALF502-R5 high bypass turbofan engine, serial number LF01. The objectives of the test were to validate the PSL ice crystal cloud calibration and engine testing methodologies by demonstrating the capability to calibrate and duplicate known flight test events that occurred on the same LF01 engine and to generate engine data to support fundamental and computational research to investigate and better understand the physics of ice crystal icing in a turbofan engine environment while duplicating known revenue service events and conducting test points while varying facility and engine parameters. During PSL calibration testing it was discovered than heated probes installed through tunnel sidewalls experienced ice buildup aft of their location due to ice crystals impinging upon them, melting and running back. Filtered city water was used in the cloud generation nozzle system to provide ice crystal nucleation sites. This resulted in mineralization forming on flow path hardware that led to a chronic degradation of performance during the month long test. Lacking internal flow path cameras, the response of thermocouples along the flow path was interpreted as ice building up. Using this interpretation, a strong correlation between total water content (TWC) and a weaker correlation between median volumetric diameter (MVD) of the ice crystal cloud and the rate of ice buildup along the instrumented flow path was identified. For this test article the engine anti-ice system was required to be turned on before ice crystal

  10. Experimental Investigation on Ice-Coating and Ice-Melting of Large-Section Current Carrying Conductors for UHVDC Transmission Project%特高压直流输电大截面导线带电覆冰与融冰特性试验研究

    Institute of Scientific and Technical Information of China (English)

    陆佳政; 胡建平; 方针

    2013-01-01

    flowing through the conductor; wind speed increase and rainfall increase can make the collision coefficient and the collection coefficient enlarged;fall of temperature can make the freezing coefficient enlarged and then the increase of ice-coating thickness is speeded up; in addition, the type of conductor ice-coating depends on ambient temperature. The time for ice-melting of large-sectional conductor mainly depends on the ice thickness to be melted and shortens with the increase of ice-melting current;the lower the ambient temperature and the higher the wind speed, the longer the time for ice-melting will be;the time for ice-melting linearly increases with the increase of ice-coating thickness. Results of this research are available for reference to the anti-icing and ice-melting of UHVDC transmission lines.