WorldWideScience

Sample records for anti-icing

  1. Anti-icing performance of superhydrophobic surfaces

    Science.gov (United States)

    Farhadi, S.; Farzaneh, M.; Kulinich, S. A.

    2011-05-01

    This article studies the anti-ice performance of several micro/nano-rough hydrophobic coatings with different surface chemistry and topography. The coatings were prepared by spin-coating or dip coating and used organosilane, fluoropolymer or silicone rubber as a top layer. Artificially created glaze ice, similar to the naturally accreted one, was deposited on the nanostructured surfaces by spraying supercooled water microdroplets (average size ˜80 μm) in a wind tunnel at subzero temperature (-10 °C). The ice adhesion strength was evaluated by spinning the samples in a centrifuge at constantly increasing speed until ice delamination occurred. The results show that the anti-icing properties of the tested materials deteriorate, as their surface asperities seem to be gradually broken during icing/de-icing cycles. Therefore, the durability of anti-icing properties appears to be an important point for further research. It is also shown that the anti-icing efficiency of the tested superhydrophobic surfaces is significantly lower in a humid atmosphere, as water condensation both on top and between surface asperities takes place, leading to high values of ice adhesion strength. This implies that superhydrophobic surfaces may not always be ice-phobic in the presence of humidity, which can limit their wide use as anti-icing materials.

  2. Biocidal properties of anti-icing additives for aircraft fuels.

    Science.gov (United States)

    Neihof, R A; Bailey, C A

    1978-04-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol.

  3. Characterization of hydrophobic and hydrophilic coatings as deicing and anti-icing

    Science.gov (United States)

    Aoki, Akihito; Morita, Katsuaki; Konno, Akihisa; Sakaue, Hirotaka

    2010-11-01

    Anti-icing is necessary in various fields, such as aeronautics, roads, power lines, ships, and architectures. Deicing fluids, and sometimes hot water, work to prevent from icing. Due to environmental issue, deicing fluids are not always welcome to use. We study hydrophobic and hydrophilic coatings for anti-icing. By coating these to a target surface, it prevents icing without damaging the environment. We present a characterization method of hydrophobic and hydrophilic coatings for deicing and anti-icing. We provide a temperature-control room to create an icing condition, such as -10 to 0 degrees C. Under the controlled room, the contact angle measurement as well as the force measurement is employed. Total 15 coatings are characterized. Based on the tests of all coatings, we propose a combined coating from some characterized ones.

  4. Bridge ice accretion and de- and anti-icing systems: A review

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    in turn lead to severe financial losses. This paper presents a review of the different de- and anti-icing techniques, already developed or in development, which could be applied to bridge cables or pylons. Furthermore, the fundamentals of icing caused by freezing precipitation and in-cloud icing...

  5. Anti-ice nucleating activity of polyphenol compounds against silver iodide.

    Science.gov (United States)

    Koyama, Toshie; Inada, Takaaki; Kuwabara, Chikako; Arakawa, Keita; Fujikawa, Seizo

    2014-10-01

    Freeze-avoiding organisms survive sub-zero temperatures without freezing in several ways, such as removal of ice nucleating agents (INAs), production of polyols, and dehydration. Another way is production of anti-ice nucleating agents (anti-INAs), such as has been reported for several antifreeze proteins (AFPs) and polyphenols, that inhibit ice nucleation by inactivating INAs. In this study, the anti-ice nucleating activity of five polyphenol compounds, including flavonoid and tannin compounds of both biological and synthetic origin, against silver iodide (AgI) was examined by measuring the ice nucleation temperature in emulsified polyphenol solutions containing AgI particles. The emulsified solutions eliminated the influence of contamination by unidentified INAs, thus enabling examination of the anti-ice nucleating activity of the polyphenols against AgI alone. Results showed that all five polyphenol compounds used here have anti-ice nucleating activities that are unique compared with other known anti-INAs, such as fish AFPs (type I and III) and synthetic polymers (poly(vinyl alcohol), poly(vinylpyrrolidone) and poly(ethylene glycol)). All five polyphenols completely inactivated the ice nucleating activity of AgI even at relatively low temperatures, and the first ice nucleation event was observed at temperatures between -14.1 and -19.4°C, compared with between -8.6 and -11.8°C for the fish AFPs and three synthetic polymers. These anti-ice nucleating activities of the polyphenols at such low temperatures are promising properties for practical applications where freezing should be prevented. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Alternative aircraft anti-icing formulations with reduced aquatic toxicity and biochemical oxygen demand

    Science.gov (United States)

    Gold, Harris; Joback, Kevin; Geis, Steven; Bowman, George; Mericas, Dean; Corsi, Steven R.; Ferguson, Lee

    2010-01-01

    The current research was conducted to identify alternative aircraft and pavement deicer and anti-icer formulations with improved environmental characteristics compared to currently used commercial products (2007). The environmental characteristics of primary concern are the biochemical oxygen demand (BOD) and aquatic toxicity of the fully formulated products. Except when the distinction among products is necessary for clarity, “deicer” will refer to aircraft-deicing fluids (ADFs), aircraft anti-icing fluids (AAFs), and pavementdeicing materials (PDMs).

  7. Fabrication of Self-Cleaning and Anti-Icing Durable Surface on Glass.

    Science.gov (United States)

    Zuo, Zhiping; Liao, Ruijin; Guo, Chao; Zhao, Xuetong; Zhuang, Aoyun; Yuan, Yuan

    2017-01-01

    Ice accumulation on insulators affected the safety of power system and may inflict serious consequences such as insulator flashover accidents and power failure. This article reported a simple method to prepare anti-icing polydimethylsiloxane superhydrophobic surface on glass by utilizing nano-particle filling method. The effect of concentration of silica nanoparticles on superhydrophobicity of the samples was investigated. The wettability, surface morphology and anti-icing property of the as-prepared superhydrophobic surface were characterized by corresponding methods. Results show that the as-prepared surface with addition amount of 7 g silica nanoparticles exhibited self-cleaning property and excellent superhydrophobicity with a contact angle of 165.7 ± 2.4° and a sliding angle of 3.8°. It was found that the ice formation was delayed for 29 min at −5 °C. Moreover, the as-prepared superhydrophobic surface showed superhydrophobicity in the pH range of 1–13 and exhibited excellent drop impact stability. The as-prepared superhydrophobic surface may be suitable for applications in cold regions owing to its flexibility, durability and anti-icing property.

  8. Anti-icing/frosting and self-cleaning performance of superhydrophobic aluminum alloys

    Science.gov (United States)

    Feng, Libang; Yan, Zhongna; Shi, Xueting; Sultonzoda, Firdavs

    2018-02-01

    Ice formation and frost deposition on cryogenic equipment and systems can result in serious problems and huge economic loss. Hence, it is quite necessary to develop new materials to prevent icing and frosting on cold surfaces in engineering fields. Here, a superhydrophobic aluminum alloy with enhanced anti-frosting, anti-icing, and self-cleaning performance has been developed by a facile one-step method. The anti-frosting/icing performance of superhydrophobic aluminum alloys is confirmed by frosting/icing time delay, consolidating and freezing temperature reduction, and lower amount of frost/ice adhesion. Meanwhile, the excellent self-cleaning performance is authenticated by the fact that simulated pollution particles can be cleaned out by rolling water droplets completely. Finally, based on the classical nucleation theory, anti-icing and anti-frosting mechanisms of the superhydrophobic aluminum alloys are deduced. Results show that grounded on "air cushion" and "heat insulation" effect, a larger nucleation barrier and a lower crystal growth rate can be observed, which, hence, inhibit ice formation and frost deposition. It can be concluded that preparing superhydrophobic surfaces would be an effective strategy for improving anti-icing, anti-frosting, and self-cleaning performance of aluminum alloys.

  9. Durability of a lubricant-infused Electrospray Silicon Rubber surface as an anti-icing coating

    Science.gov (United States)

    Liu, Qi; Yang, Ying; Huang, Meng; Zhou, Yuanxiang; Liu, Yingyan; Liang, Xidong

    2015-08-01

    Slippery liquid-infused porous surfaces (SLIPS) are attracting great interest as anti-icing coatings. However, the most challenging point for SLIPS is their durability. A heptadecafluorodecyl trimethoxysilane-fluorinated hierarchically micro-structured silicone rubber surface was prepared by electrospray method coupled with phase separation which had a contact angle of the lubricant θls(a) = 0°. This study investigated the effects of the surface chemistry, length scale and hierarchy of the surface topography of the underlying substrates on their ability to retain the lubricant during repetitive icing/deicing, water washout and ice-shedding treatments. This study compares the lubricant retention rate, ice formation time and ice adhesion strength. The result demonstrated that SLIPS with a fluorinated hierarchical micro/nano scale substrate maintains the best anti-icing capability. Lubricant in the microscale pores can easily creep up to the surface with nano-scale pores providing stronger capillary forces to hold the lubricant in the pores only if θls(a) = 0° with a rolling hill pattern lubricant surface morphology formed during the loss of lubricant. Such fluorinated hierarchically nano/micro structured substrate will enable the lubricant to completely cover the surface which reduces heterogeneous nucleation and frost propagation velocity.

  10. Mechanically robust superhydrophobic steel surface with anti-icing, UV-durability, and corrosion resistance properties.

    Science.gov (United States)

    Wang, Nan; Xiong, Dangsheng; Deng, Yaling; Shi, Yan; Wang, Kun

    2015-03-25

    A superhydrophobic steel surface was prepared through a facile method: combining hydrogen peroxide and an acid (hydrochloric acid or nitric acid) to obtain hierarchical structures on steel, followed by a surface modification treatment. Empirical grid maps based on different volumes of H2O2/acid were presented, revealing a wettability gradient from "hydrophobic" to "rose effect" and finally to "lotus effect". Surface grafting has been demonstrated to be realized only on the oxidized area. As-prepared superhydrophobic surfaces exhibited excellent anti-icing properties according to the water-dripping test under overcooled conditions and the artificial "steam-freezing" (from 50 °C with 90% humidity to the -20 °C condition) test. In addition, the surfaces could withstand peeling with 3M adhesive tape at least 70 times with an applied pressure of 31.2 kPa, abrasion by 400 grid SiC sandpaper for 110 cm under 16 kPa, or water impacting for 3 h without losing superhydrophobicity, suggesting superior mechanical durability. Moreover, outstanding corrosion resistance and UV-durability were obtained on the prepared surface. This successful fabrication of a robust, anti-icing, UV-durable, and anticorrosion superhydrophobic surface could yield a prospective candidate for various practical applications.

  11. Research progress of anti-icing/deicing technologies for polar ships and offshore platforms

    Directory of Open Access Journals (Sweden)

    XIE Qiang

    2017-01-01

    Full Text Available The polar regions present adverse circumstances of high humidity and strong air-sea exchange. As such, the surfaces of ships and platforms (oil exploiting and drilling platforms serving in polar regions can easily be frozen by ice accretion, which not only affects the operation of the equipment but also threatens safety. This paper summarizes the status of the anti-icing/deicing technologies of both China and abroad for polar ships and offshore platforms, and introduces the various effects of ice accretion on polar ships and offshore platforms, and the resulting safety impacts. It then reviews existing anti-icing/deicing technologies and methods of both China and abroad, including such active deicing methods as electric heating, infrared heating and ultrasonic guided wave deicing, as well as such passive deicing methods as super hydrophobic coating, sacrificial coating, aqueous lubricating layer coating and low cross-link density (with interfacial slippage coating, summarizes their applicability to polar ships and offshore platforms, and finally discusses their advantages/disadvantages.

  12. Effects of morphology parameters on anti-icing performance in superhydrophobic surfaces

    Science.gov (United States)

    Nguyen, Thanh-Binh; Park, Seungchul; Lim, Hyuneui

    2018-03-01

    In this paper, we report the contributions of actual ice-substrate contact area and nanopillar height to passive anti-icing performance in terms of adhesion force and freezing time. Well-textured nanopillars with various parameters were fabricated via colloidal lithography and a dry etching process. The nanostructured quartz surface was coated with low-energy material to confer water-repellent properties. These superhydrophobic surfaces were investigated to determine the parameters essential for reducing adhesion strength and delaying freezing time. A well-textured surface with nanopillars of very small top diameter, regardless of height, could reduce adhesion force and delay freezing time in a subsequent de-icing process. Small top diameters of nanopillars also ensured the metastable Cassie-Baxter state based on energy barrier calculations. The results demonstrated the important role of areal fraction in anti-icing efficiency, and the negligible contribution of texture height. This insight into icing phenomena should lead to design of improved ice-phobic surfaces in the future.

  13. Reinforced Superhydrophobic Coating on Silicone Rubber for Longstanding Anti-Icing Performance in Severe Conditions.

    Science.gov (United States)

    Emelyanenko, Alexandre M; Boinovich, Ludmila B; Bezdomnikov, Alexey A; Chulkova, Elizaveta V; Emelyanenko, Kirill A

    2017-07-19

    We present a simple method for fabricating the superhydrophobic coatings on composite silicone rubber used for electrical outdoor applications. The coating is characterized by contact angles as high as 170° and is mechanically durable in contact with the aqueous phase. We discuss the impact of mechanical durability of the surface texture on the anti-icing performance of the coating on the basis of the experimental data on freezing delay of sessile aqueous droplets. A set of complementary data obtained in laboratory and outdoor experiments on freezing delay time, variation of wettability and practical work of adhesion for supercooled aqueous sessile droplets, impacting behavior of droplets at low negative temperatures, as well as the results of snow and ice accumulation in outdoor experiments indicate the very prospective icephobic properties of the developed coating.

  14. Biocidal properties of anti-icing additives for jet aircraft fuels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, C.A.; Neihof, R.A.

    1976-03-01

    As part of an effort to find an improved anti-icing additive for jet aircraft fuel the anti-microbial activity of five glycol ether compounds was examined and compared with the currently used additive, 2-methoxyethanol. Cladosporium resinae, Gliomastix sp., Candida sp., and Pseudo-monas aeruginosa were used as assay organisms. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, and triethylene glycol monoethyl ether had approximately the same biocidal and biostatic properties as 2-methoxyethanol and appear to be suitable jet-fuel additives as far as the antimicrobial function is concerned. A relatively higher biocidal potency was shown by 2-propoxyethanol and 2-butoxyethanol, possibly because of their greater surface activity; however, nonbiological considerations preclude their use as fuel additives. (GRA)

  15. Biocidal properties of anti-icing additives for aircraft fuels. [Glycol monoalkyl ether compounds

    Energy Technology Data Exchange (ETDEWEB)

    Neihof, R.A.; Bailey, C.A.

    1978-04-01

    The biocidal and biostatic activities of seven glycol monoalkyl ether compounds were evaluated as part of an effort to find an improved anti-icing additive for jet aircraft fuel. Typical fuel contaminants, Cladosporium resinae, Gliomastix sp., Candida sp., Pseudomonas aeruginosa, and a mixed culture containing sulfate-reducing bacteria were used as assay organisms. Studies were carried out over 3 to 4 months in two-phase systems containing jet fuel and aqueous media. Diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, and 2-methoxyethanol were generally biocidal in aqueous concentrations of 10 to 17% for all organisms except Gliomastix, which required 25% or more. 2-Ethoxyethanol, 2-propoxyethanol, and 2-butoxyethanol were biocidal at progressively lower concentrations down to 1 to 2% for 2-butoxyethanol. The enhanced antimicrobial activity of these three compounds was attributed to cytoplasmic membrane damage because of the correlation between surface tension measurements and lytic activity with P. aeruginosa cells. The mechanism of action of the less active compounds appeared to be due to osmotic (dehydrating) effects. When all requirements are taken into account, diethylene glycol monomethyl ether appears to be the most promising replacement for the currently used additive, 2-methoxyethanol.

  16. Screening of plant resources with anti-ice nucleation activity for frost damage prevention.

    Science.gov (United States)

    Suzuki, Shingo; Fukuda, Satoshi; Fukushi, Yukiharu; Arakawa, Keita

    2017-11-01

    Previous studies have shown that some polyphenols have anti-ice nucleation activity (anti-INA) against ice-nucleating bacteria that contribute to frost damage. In the present study, leaf disk freezing assay, a test of in vitro application to plant leaves, was performed for the screening of anti-INA, which inhibits the ice nucleation activity of an ice-nucleating bacterium Erwinia ananas in water droplets on the leaf surfaces. The application of polyphenols with anti-INA, kaempferol 7-O-β-glucoside and (-)-epigallocatechin gallate, to the leaf disk freezing assay by cooling at -4--6 °C for 3 h, revealed that both the compounds showed anti-INAs against E. ananas in water droplets on the leaf surfaces. Further, this assay also revealed that the extracts of five plant leaves showed high anti-INA against E. ananas in water droplets on leaf surfaces, indicating that they are the candidate resources to protect crops from frost damage.

  17. Communication: Anti-icing characteristics of superhydrophobic surfaces investigated by quartz crystal microresonators

    Science.gov (United States)

    Lee, Moonchan; Yim, Changyong; Jeon, Sangmin

    2015-01-01

    We investigated the anti-icing characteristics of superhydrophobic surfaces with various morphologies by using quartz crystal microresonators. Anodic aluminum oxide (AAO) or ZnO nanorods were synthesized directly on gold-coated quartz crystal substrates and their surfaces were rendered hydrophobic via chemical modifications with octyltrichlorosilane (OTS), octadecyltrichlorosilane (ODS), or octadecanethiol (ODT). Four different hydrophobic nanostructures were prepared on the quartz crystals: ODT-modified hydrophobic plain gold (C18-Au), an OTS-modified AAO nanostructure (C8-AAO), an ODS-modified AAO nanostructure (C18-AAO), and ODT-modified ZnO nanorods (C18-ZnO). The water contact angles on the C18-Au, C8-AAO, C18-AAO, and C18-ZnO surfaces were measured to be 91.4°, 147.2°, 156.3°, and 157.8°, respectively. A sessile water droplet was placed on each quartz crystal and its freezing temperature was determined by monitoring the drastic changes in the resonance frequency and Q-factor upon freezing. The freezing temperature of a water droplet was found to decrease with decreases in the water contact radius due to the decreases in the number of active sites available for ice nucleation.

  18. Robust Slippery Coating with Superior Corrosion Resistance and Anti-Icing Performance for AZ31B Mg Alloy Protection.

    Science.gov (United States)

    Zhang, Jialei; Gu, Changdong; Tu, Jiangping

    2017-03-29

    Biomimetic slippery liquid-infused porous surfaces (SLIPSs) are developed as a potential alternative to superhydrophobic surfaces (SHSs) to resolve the issues of poor durability in corrosion protection and susceptibility to frosting. Herein, we fabricated a double-layered SLIPS coating on the AZ31 Mg alloy for corrosion protection and anti-icing application. The porous top layer was infused by lubricant, and the compact underlayer was utilized as a corrosion barrier. The water-repellent SLIPS coating exhibits a small sliding angle and durable corrosion resistance compared with the SHS coating. Moreover, the SLIPS coating delivers durable anti-icing performance for the Mg alloy substrate, which is obviously superior to the SHS coating. Multiple barriers in the SLIPS coating, including the infused water-repellent lubricant, the self-assembled monolayers coated porous top layer, and the compact layered double hydroxide-carbonate composite underlayer, are suggested as being responsible for the enhanced corrosion resistance and anti-icing performance. The robust double-layered SLIPS coating should be of great importance to expanding the potential applications of light metals and their alloys.

  19. Anti-icing property of bio-inspired micro-structure superhydrophobic surfaces and heat transfer model

    Science.gov (United States)

    Liu, Yan; Li, Xinlin; Jin, Jingfu; Liu, Jiaan; Yan, Yuying; Han, Zhiwu; Ren, Luquan

    2017-04-01

    Ice accumulation is a thorny problem which may inflict serious damage even disasters in many areas, such as aircraft, power line maintenance, offshore oil platform and locators of ships. Recent researches have shed light on some promising bio-inspired anti-icing strategies to solve this problem. Inspired by typical plant surfaces with super-hydrophobic character such as lotus leaves and rose petals, structured superhydrophobic surface are prepared to discuss the anti-icing property. 7075 Al alloy, an extensively used materials in aircrafts and marine vessels, is employed as the substrates. As-prepared surfaces are acquired by laser processing after being modified by stearic acid for 1 h at room temperature. The surface morphology, chemical composition and wettability are characterized by means of SEM, XPS, Fourier transform infrared (FTIR) spectroscopy and contact angle measurements. The morphologies of structured as-prepared samples include round hump, square protuberance and mountain-range-like structure, and that the as-prepared structured surfaces shows an excellent superhydrophobic property with a WCA as high as 166 ± 2°. Furthermore, the anti-icing property of as-prepared surfaces was tested by a self-established apparatus, and the crystallization process of a cooling water on the sample was recorded. More importantly, we introduced a model to analyze heat transfer process between the droplet and the structured surfaces. This study offers an insight into understanding the heat transfer process of the superhydrophobic surface, so as to further research about its unique property against ice accumulation.

  20. Prediction of ice accretion and anti-icing heating power on wind turbine blades using standard commercial software

    International Nuclear Information System (INIS)

    Villalpando, Fernando; Reggio, Marcelo; Ilinca, Adrian

    2016-01-01

    An approach to numerically simulate ice accretion on 2D sections of a wind turbine blade is presented. The method uses standard commercial ANSYS-Fluent and Matlab tools. The Euler-Euler formulation is used to calculate the water impingement on the airfoil, and a UDF (Used Defined Function) has been devised to turn the airfoil's solid wall into a permeable boundary. Mayer's thermodynamic model is implemented in Matlab for computing ice thickness and for updating the airfoil contour. A journal file is executed to systematize the procedure: meshing, droplet trajectory calculation, thermodynamic model application for computing ice accretion, and the updating of airfoil contours. The proposed ice prediction strategy has been validated using iced airfoil contours obtained experimentally in the AMIL refrigerated wind tunnel (Anti-icing Materials International Laboratory). Finally, a numerical prediction method has been generated for anti-icing assessment, and its results compared with data obtained in this laboratory. - Highlights: • A methodology for ice accretion prediction using commercial software is proposed. • Euler model gives better prediction of airfoil water collection with detached flow. • A source term is used to change from a solid wall to a permeable wall in Fluent. • Energy needed for ice-accretion mitigation system is predicted.

  1. Genetic Enhancement of an Anti-Freeze Protein for use as a Substitute for Ethylene Glycol for Aircraft Anti-icing

    Science.gov (United States)

    2001-10-01

    freezing point depression is called a " colligative property", denoting "depending on the collection". 2 ...BACKGROUND: Traditional anti-icing agents are either propylene or ethylene glycol. Glycols are effective in lowering the freezing point of water...mixtures by the phenomenon of freezing point depression based solely on the molal concentration.

  2. SOLUTIONS FOR THE NEW TASKS IN AERODYNAMICS IN THE PROCESS OF CERTIFICATION OF AIRPLANCE OF TRASPORT CATEGORY – ANTI-ICE SYSTEM

    Directory of Open Access Journals (Sweden)

    V. I. Shevyakov

    2014-01-01

    Full Text Available There are considered new tasks in aerodynamics in the process of certification of airplanes of transport category. The procedure for optimal location of ice detector at the transonic airplane and means of compliance with certification requirements for automatic engagement of anti-ice protection.

  3. Achieving a slippery, liquid-infused porous surface with anti-icing properties by direct deposition of flame synthesized aerosol nanoparticles on a thermally fragile substrate

    Science.gov (United States)

    Juuti, Paxton; Haapanen, Janne; Stenroos, Christian; Niemelä-Anttonen, Henna; Harra, Juha; Koivuluoto, Heli; Teisala, Hannu; Lahti, Johanna; Tuominen, Mikko; Kuusipalo, Jurkka; Vuoristo, Petri; Mäkelä, Jyrki M.

    2017-04-01

    Slippery, liquid-infused porous surfaces offer a promising route for producing omniphobic and anti-icing surfaces. Typically, these surfaces are made as a coating with expensive and time consuming assembly methods or with fluorinated films and oils. We report on a route for producing liquid-infused surfaces, which utilizes a liquid precursor fed oxygen-hydrogen flame to produce titania nanoparticles deposited directly on a low-density polyethylene film. This porous nanocoating, with thickness of several hundreds of nanometers, is then filled with silicone oil. The produced surfaces are shown to exhibit excellent anti-icing properties, with an ice adhesion strength of ˜12 kPa, which is an order of magnitude improvement when compared to the plain polyethylene film. The surface was also capable of maintaining this property even after cyclic icing testing.

  4. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kunquan, E-mail: likunquan1987@gmail.com; Zeng, Xingrong, E-mail: psxrzeng@gmail.com; Li, Hongqiang, E-mail: hqli1979@gmail.com; Lai, Xuejun, E-mail: msxjlai@scut.edu.cn

    2015-08-15

    Graphical abstract: - Highlights: • Superhydrophobic iron surfaces were prepared by etching and replacement method. • The fabrication process was simple, time-saving and inexpensive. • Galvanic replacement method was more favorable to create roughness on iron surface. • The superhydrophobic iron surface showed excellent anti-icing properties. - Abstract: Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO{sub 3}) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO{sub 3} concentration had little effect on the wetting behavior, but a high AgNO{sub 3} concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for

  5. A study on the fabrication of superhydrophobic iron surfaces by chemical etching and galvanic replacement methods and their anti-icing properties

    Science.gov (United States)

    Li, Kunquan; Zeng, Xingrong; Li, Hongqiang; Lai, Xuejun

    2015-08-01

    Hierarchical structures on iron surfaces were constructed by means of chemical etching by hydrochloric acid (HCl) solution or the galvanic replacement by silver nitrate (AgNO3) solution. The superhydrophobic iron surfaces were successfully prepared by subsequent hydrophobic modification with stearic acid. The superhydrophobic iron surfaces were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and water contact angle (WCA). The effects of reactive concentration and time on the microstructure and the wetting behavior were investigated. In addition, the anti-icing properties of the superhydrophobic iron surfaces were also studied. The FTIR study showed that the stearic acid was chemically bonded onto the iron surface. With the HCl concentration increase from 4 mol/L to 8 mol/L, the iron surface became rougher with a WCA ranging from 127° to 152°. The AgNO3 concentration had little effect on the wetting behavior, but a high AgNO3 concentration caused Ag particle aggregates to transform from flower-like formations into dendritic crystals, owing to the preferential growth direction of the Ag particles. Compared with the etching method, the galvanic replacement method on the iron surface more favorably created roughness required for achieving superhydrophobicity. The superhydrophobic iron surface showed excellent anti-icing properties in comparison with the untreated iron. The icing time of water droplets on the superhydrophobic surface was delayed to 500 s, which was longer than that of 295 s for untreated iron. Meanwhile, the superhydrophobic iron surface maintained superhydrophobicity after 10 icing and de-icing cycles in cold conditions.

  6. Fast and low-cost method to fabricate large-area superhydrophobic surface on steel substrate with anticorrosion and anti-icing properties

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Wei; Liu, Hongtao, E-mail: liuht100@126.com; Sun, Qinghe; Zhu, Wei [College of Materials Science and Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China); Chen, Tianchi [College of Mechanical and Electrical Engineering, China University of Mining and Technology, Xuzhou, Jiangsu 221116 (China)

    2016-07-15

    A facile and quick fabrication method was proposed to prepare superhydrophobic surfaces on iron substrate by chemical immersion and subsequent stearic acid modification. The association between wettability and surface morphology was studied through altering the copper ion concentration and immersion time. Surface tension instrument, scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, and electrochemical workstation were used to characterize the wettability, physical morphology, chemical composition, and corrosion resistance ability of the prepared film. Results showed that both the rough micro/nanostructures and low surface energy material play critical roles in surface wettability. The superhydrophobic film achieved a better anticorrosion property compared to barrier iron by analysis of open circuit potential, potentiodynamic polarization curves, and Nyquist plots. In addition, the superhydrophobic surface showed excellent performance of acid and alkali resistance, anti-icing, and self-cleaning through a series of environmental tests. This study provides a valid method for quick-preparation of the stable superhydrophobic surfaces, which has a promising application in steel buildings and facilities.

  7. Anti-Icing Formulas Prevent Train Delays

    Science.gov (United States)

    2013-01-01

    In the winter of 2009, Washington, DC, workers faced the prospect of a difficult commute due to record-setting snowfalls. But thousands of the city's Metrorail riders found the public transportation system fully functional, thanks in part to a NASA technology invented years before. Just like trains, an airplane must be snow- and ice-free to ensure safe travel. Traditionally, fluids containing a compound called ethylene glycol have been used to inhibit ice on planes. In 1992, however, the US Air Force banned its purchase of this ingredient due to toxicity concerns. According to the Centers for Disease Control, exposure to large amounts of ethylene glycol through air or water can damage the kidneys, nervous system, lungs, and heart. Urine samples from airport deicing workers have contained traces of the substance. At the time of the Air Force s ban, Robert Lockyer was working at NASA s Ames Research Center in the Advanced Composites Model Development Branch, where he says "we decided to pick up the gauntlet and began researching existing fluid compositions and the processes used in deicing aircraft." Along with Lockyer, in 1997 Ames researchers Leonard Haslim and John Zuk devised a nontoxic, biodegradable, and cost effective substitute for ethylene glycol. When applied to a dry surface before a snow or ice event, the solution prevented ice from forming a bond with the surface. This made it easy to wipe away any accumulation.

  8. Total liquid routes and anti-icing liquids.

    Science.gov (United States)

    2013-10-01

    INDOT has successfully used salt brine in antiicing efforts as a way to deliver preventative treatment before an event (e.g. bridge deck : frost) occurs. In 2011 INDOT wanted to investigate the use of salt brine in deicing operations. This stud...

  9. Indirect heating system for turbine anti-icing

    Energy Technology Data Exchange (ETDEWEB)

    Wagar, S.N.

    1980-03-01

    Gas-transmission service in northern Minnesota has verified the effectiveness of American Air Filter Co.'s indirect-heating method of preventing gas-turbine icing at compressor stations. By routing hot exhaust gases through a heat exchanger rather than directly into the inlet-air system, the indirect-heating method avoids turbine fouling, raises the air temperature at a constant specific humidity, and provides a uniform cross section of heated intake air for good turbine efficiency.

  10. Picosecond laser machined designed patterns with anti-ice effect

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in 't Veld, A.J.

    2010-01-01

    Micromachining using ultra short laser pulses (USLP) has evolved over the past years as a versatile tool for introducing functional features in surfaces at a micrometric and even at a sub wavelength scale. Being able to control the surface topography at this level provides a method to change the

  11. Picosecond laser machined designed patterns with anti-ice effect

    OpenAIRE

    Arnaldo del Cerro, D.; Römer, Gerardus Richardus, Bernardus, Engelina; Huis in 't Veld, Bert

    2010-01-01

    Micromachining using ultra short laser pulses (USLP) has evolved over the past years as a versatile tool for introducing functional features in surfaces at a micrometric and even at a sub wavelength scale. Being able to control the surface topography at this level provides a method to change the wetting behavior of a great number of materials. In most cases, when a surface has a natural tendency to be wetted (high surface energy), increasing its roughness will increase the spreading of water ...

  12. Superhydrophilic Polyelectrolyte Brush Layers with Imparted Anti-Icing Properties

    DEFF Research Database (Denmark)

    Chernyy, Sergey; Järn, Mikael; Shimizu, Kyoko

    2014-01-01

    by polymerization via the SI-ATRP route. The cationic [2-(methacryloyloxy)ethyl]trimethylammonium chloride] and the anionic [poly(3-sulfopropyl methacrylate), poly(sodium methacrylate)] polyelectrolyte brushes were further exchanged with H(+), Li(+), Na(+), K(+), Ag(+), Ca(2+), La(3+), C16N(+), F(-), Cl(-), BF4...

  13. Effetively trapping air or lqiud water for anti-icing applications

    Science.gov (United States)

    Wang, Jianjun

    2014-03-01

    Icing on solid surfaces leads to operational difficulties and high maintenance efforts for power networks, aircrafts, ships, ground transportation vehicles and house-hold refrigerators, to name but a few. In extreme cases, icing on surfaces causes disastrous events such as crash of aircrafts and collapse of power networks, which result in severe economic impact and large loss of life. This talk is focused on the fundamentals of the ice formation and adhesion of ice with solid substrates aiming for fighting against icing on solid surfaces. When the supercooling is low, it would be possible to remove supercooled liquid water from the solid surfaces before freezing occurs. To achieve this, we design and constructed surfaces that can trap the air at the subfreezing temperature thus condensed water microdroplets could be spontaneously removed after the coalescence. When the supercooling is high, icing on surfaces occurs spontaniously. In this case, we constructed coatings on which aqueous lubricating layer could be trapped, thus the ice adhesion on the coating is so low that the ice formed atop could be removed by a wind action or its own gravity.

  14. Investigation of Anti-Icing Chemicals and Their Interactions with Pavement Concretes

    OpenAIRE

    Olek, Jan; Janusz, Anna; Jain, Jitendra; Ashraf, Warda

    2013-01-01

    The interactions of concrete specimens (both plain and with fly ash addition) with six different deicers was investigated by exposing them to solutions of sodium chloride (NaCl), magnesium chloride (MgCl2), calcium chloride (CaCl2), and the combinations of: sodium chloride with magnesium chloride (NaCl + MgCl2), sodium chloride with calcium chloride (NaCl + CaCl2), sodium chloride with agricultural by product – Ice Ban® (NaCl + Ice Ban®). In addition, control group of specimens was exposed to...

  15. Formulations for aircraft and airfield deicing and anti-icing: aquatic toxicity and biochemical oxygen demand

    Science.gov (United States)

    Ferguson, Lee; Corsi, Steven R.; Geis, Steven W.; Anderson, Graham; Joback, Kevin; Gold, Harris; Mericas, Dean; Cancilla, Devon A.

    2008-01-01

    The Airport Cooperative Research Program (ACRP) has sponsored research on environmental characteristics of aircraft and pavement deicers and anti-icers focusing primarily on biochemical oxygen demand (BOD) and aquatic toxicity of formulated products and individual chemical components of formulations. This report presents a background of issues leading to this research, objectives of this document, and a description of the efforts and findings of this research.

  16. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces.

    Science.gov (United States)

    Stamatopoulos, Christos; Hemrle, Jaroslav; Wang, Danhong; Poulikakos, Dimos

    2017-03-22

    A heat exchange interface at subzero temperature in a water vapor environment exhibits high probability of frost formation due to freezing condensation, a factor that markedly decreases the heat transfer efficacy due to the considerable thermal resistance of ice. Here we report a novel strategy to delay ice nucleation on these types of solid-water vapor interfaces. With a process-driven mechanism, a self-generated liquid intervening layer immiscible to water is deposited on a textured superhydrophobic surface and acts as a barrier between the water vapor and the solid substrate. This liquid layer imparts remarkable slippery conditions resulting in high mobility of condensing water droplets. A large increase of the ensuing ice coverage time is shown compared to the cases of standard smooth hydrophilic or textured superhydrophobic surfaces. During deicing of these self-impregnating surfaces we show an impressive tendency of ice fragments to skate expediting defrosting. Robustness of such surfaces is also demonstrated by operating them under subcooling for at least 490 h without a marked degradation. This is attributed to the presence of the liquid intervening layer, which protects the substrate from hydrolyzation, enhancing longevity and sustaining heat transfer efficiency.

  17. Ultra short pulse laser generated surface textures for anti-ice applications in aviation

    NARCIS (Netherlands)

    Römer, G.W.; Del Cerro, D.A.; Sipkema, R.C.J.; Groenendijk, M.N.W.; Huis in 't Veld, A.J.

    2009-01-01

    By laser ablation with ultra short laser pulses in the pico- and femto-second range, well controlled dual scaled micro- and nano-scaled surface textures can be obtained. The micro-scale of the texture is mainly determined by the dimensions of the laser spot, whereas the superimposed nano-structure

  18. Erosion resistant anti-ice surfaces generated by ultra short laser pulses

    NARCIS (Netherlands)

    Del Cerro, D.A.; Römer, G.R.B.E.; Huis in't Veld, A.J.

    2010-01-01

    Wetting properties of a wide range of materials can be modified by accurate laser micromachining with ultra short laser pulses. Controlling the surface topography in a micro and sub-micrometer scale allows the generation of water-repellent surfaces, which remain dry and prevent ice accumulation

  19. Performance Enhancement of Deicing Systems with the Use of an Anti-ice Nano-coating, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program addresses NASA's need for a new generation of icing mitigation technology for manned and unmanned vehicles, particularly related to icing on...

  20. Anti-icing and de-icing superhydrophobic concrete to improve the safety on critical elements on roadway pavements.

    Science.gov (United States)

    2013-09-01

    Icy roads lead to treacherous driving conditions in regions of the U.S. resulting in over 450 fatalities per year. Deicing chemicals, such as rock salt help to reduce ice formation on roadways to an extent, however also result in detrimental effects ...

  1. Environmentally Benign Aircraft Anti-icing and Deicing Fluids Based on Cost Effective, Bio-based Ingredients

    Science.gov (United States)

    2012-09-01

    basis. This calibration is carried out according to a calibration plan based upon approved International Organization for Standardization ( ISO ) 9001 ...MONITORING AGENCY REPORT NUMBER WP-1678 12. DISTRIBUTION AVAILABILITY STATEMENT Approved for public release and distribution unlimited, except for...ethoxylate APS APS Aviation Inc. ASC Air Force Aeronautical Systems Center BLDT Boundary Layer Displacement Thickness BOD Biological Oxygen

  2. Performance Enhancement of Deicing Systems with the Use of an Anti-Ice Nano-Coating, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed program addresses NASA's need for a new generation of icing mitigation technology for manned and unmanned vehicles. The state of the art active de-icing...

  3. Measures to reduce the impact of anti-icing agents on the environment and on the work of wastewater treatment facilities

    Directory of Open Access Journals (Sweden)

    Voronov Yuriy Viktorovich

    2014-09-01

    Full Text Available This article analyses the impact of the excess of chemical agents in the snow on the environment and on the working waste water treatment facilities. The article presents some suggestions for improvement of regulatory requirements concerning design engineering of snow melting facilities in the water disposal system. This suggestion was substantiated to assess snow as waste disposed from road surface, and to register snow mass delivered to snow melting facilities in equivalent units. It is assumed that snow melting stations are facilities designed for waste treatment, and this is why the project documentation for construction of these facilities has to undergo a state expertise for Environmental Impact Assessment. Completed studies provide estimates of the receipted snow, its pollution, etc. But at the same time these studies serve as the basis for approving the necessity of developing a unified system for monitoring the city's snow-melting plants to ensure the reliability.

  4. 76 FR 18024 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440...

    Science.gov (United States)

    2011-04-01

    ... states: At present, the Wing Anti-Ice System (WAIS) sufficient heat switches/sensors on CL-600-2B19... check of the wing anti-ice standby overheat switches and overheat/sufficient heat sensors and associated..., ``Functional check of the wing anti-ice overheat sensors (duplicate Certification Maintenance Requirements (CMR...

  5. 75 FR 25788 - Airworthiness Directives; Bombardier, Inc. Model CL-600-2B19 (Regional Jet Series 100 & 440...

    Science.gov (United States)

    2010-05-10

    ... present, the Wing Anti-Ice System (WAIS) sufficient heat switches/sensors on CL-600-2B19 aircraft are... consequence of unannunciated asymmetric ice build-up on the wing. * * * Such a condition, in combination with... unsafe condition for the specified products. The MCAI states: At present, the Wing Anti-Ice System (WAIS...

  6. Guidelines to Facilitate the Evaluation of Brines for Winter Roadway Maintenance Operations.

    Science.gov (United States)

    2017-09-19

    This document presents guidelines to facilitate the evaluation of brines for winter weather roadway maintenance applications in Texas. Brines are used in anti-icing applications which typically consist of placing liquid snow and ice control chemicals...

  7. Prediction of thermal behavior of pervious concrete pavements in winter.

    Science.gov (United States)

    2017-05-15

    Because application of pervious concrete pavement (PCPs) has extended to cold-climate regions of the United States, the safety and : mobility of PCP installations during the winter season need to be maintained. Timely application of salt, anti-icing,...

  8. HybridSil Icephobic Nanocomposites for Next Generation Aircraft In-Flight Icing Measurement and Mitigation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this Phase I SBIR program is to adapt NanoSonic's HybridSil™ nanocomposites that combine high levels of erosion resistance and anti-icing...

  9. Potential use of reverse osmosis in managing saltwater waste collected at road-salt storage facilites [sic].

    Science.gov (United States)

    2006-01-01

    The implementation of its anti-icing program comprises a large part of the Virginia Department of Transportation's (VDOT) maintenance effort. Earlier research confirmed that VDOT captures a large volume of salt-laden stormwater runoff at its 300+ sal...

  10. HybridSil Icephobic Nanocomposites for Next Generation Aircraft In-Flight Icing Measurement and Mitigation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this SBIR program is to adapt NanoSonic's HybridSil® nanocomposites and combine high erosion resistance, low ice adhesion, and passive anti-icing...

  11. HybridSil Icephobic Nanocomposites for Next Generation Aircraft In-Flight Icing Measurement and Mitigation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this SBIR program is to adapt NanoSonic's HybridSil® nanocomposites and combine high erosion resistance, low ice adhesion, and passive anti-icing...

  12. Technical evaluation report, AGARD Fluid Dynamics Panel Symposium on Effects of Adverse Weather on Aerodynamics

    Science.gov (United States)

    Reinmann, J. J.

    1991-01-01

    The purpose of the meeting on Effects of Adverse Weather on Aerodynamics was to provide an update of the stae-of-the-art with respect to the prediction, simulation, and measurement of the effects of icing, anti-icing fluids, and various precipitation on the aerodynamic characteristics of flight vehicles. Sessions were devoted to introductory and survey papers and icing certification issues, to analytical and experimental simulation of ice frost contamination and its effects of aerodynamics, and to the effects of heavy rain and deicing/anti-icing fluids.

  13. Silane decorated metallic nanorods for hydrophobic applications

    International Nuclear Information System (INIS)

    Kannarpady, Ganesh K.; Sharma, Rajesh; Liu Bo; Trigwell, Steve; Ryerson, Charles; Biris, Alexandru S.

    2010-01-01

    A novel technique to modify a metallic surface for anti-icing applications is presented. An oblique angle deposition (OAD) technique has been used to fabricate metallic nanorods of Aluminum and Tungsten on a glass substrate. A conformal coating of a silane has been applied using a molecular vapor deposition technique. The resulting surface has shown a static contact angle of 134 deg. with the water droplet. SEM, AFM and XPS have been used to study the surface modification. This is a highly promising approach for anti-icing applications due to its scalability at a very low cost.

  14. Experimental and analytical investigation of a freezing point depressant fluid ice protection system. M.S. Thesis. Final Report

    Science.gov (United States)

    Albright, A. E.

    1984-01-01

    A glycol-exuding porous leading edge ice protection system was tested in the NASA Icing Research Tunnel. Stainless steel mesh, laser drilled titanium, and composite panels were tested on two general aviation wing sections. Two different glycol-water solutions were evaluated. Minimum glycol flow rates required for anti-icing were obtained as a function of angle of attack, liquid water content, volume median drop diameter, temperature, and velocity. Ice accretions formed after five minutes of icing were shed in three minutes or less using a glycol fluid flow equal to the anti-ice flow rate. Two methods of predicting anti-ice flow rates are presented and compared with a large experimental data base of anti-ice flow rates over a wide range of icing conditions. The first method presented in the ADS-4 document typically predicts flow rates lower than the experimental flow rates. The second method, originally published in 1983, typically predicts flow rates up to 25 percent higher than the experimental flow rates. This method proved to be more consistent between wing-panel configurations. Significant correlation coefficients between the predicted flow rates and the experimental flow rates ranged from .867 to .947.

  15. Wettability-independent bouncing on flat surfaces mediated by thin air films

    NARCIS (Netherlands)

    de Ruiter, J.; Lagraauw, R.; van den Ende, Henricus T.M.; Mugele, Friedrich Gunther

    2015-01-01

    The impingement of drops onto solid surfaces1, 2 plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating3, 4, 5, 6. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic

  16. 78 FR 21578 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-04-11

    ... Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part... reports of cracks in the BAI air duct. This proposed AD would require initial and repetitive visual inspections of the BAI air duct, removal from service of the BAI air duct if it fails inspection and, as a...

  17. 78 FR 50320 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-08-19

    ... Electric Company (GE) model GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part number... cracks in the BAI air duct. This AD requires initial and repetitive visual inspections of the BAI air duct, removal from service of the BAI air duct if it fails inspection and, as a mandatory terminating...

  18. Cycling fiber metal laminates : Considerations, test setup and results

    NARCIS (Netherlands)

    Müller, B.; Teixeira De Freitas, S.; Sinke, J.

    2015-01-01

    The development of fiber metal laminates to multi-functional materials by embedding heater elements in the laminate extends their field of application. Fiber metal laminates with embedded heater elements are likely to be used for the de- and anti-icing of leading edges in aircraft as they combine

  19. Thermal cycling fiber metal laminates : Considerations, test setup and results

    NARCIS (Netherlands)

    Müller, B.; Teixeira de Freitas, S.; Sinke, J.

    2015-01-01

    The development of fiber metal laminates to multi-functional materials by embedding heater elements in the laminate extends their field of application. Fiber metal laminates with embedded heater elements are likely to be used for the de- and anti-icing of leading edges in aircraft as they combine

  20. 77 FR 73282 - Airworthiness Directives; The Boeing Company Airplanes

    Science.gov (United States)

    2012-12-10

    ... issuing this AD to prevent ice from forming on air data system sensors and consequent loss of or... data probe heat. This AD requires modifying the anti-icing system for the angle of attack sensor, the total air temperature, and the pitot probes. We are issuing this AD to prevent ice from forming on air...

  1. Performance of thin bonded epoxy overlays on asphalt and concrete bridge deck surfaces.

    Science.gov (United States)

    2014-06-01

    This study is the evaluation of two thin bonded epoxy overlays: SafeLane (marketed by Cargill), and Flexogrid : (developed by PolyCarb). SafeLane is advertised as an anti-skid/anti-icing overlay that stores deicing chemicals for : release during wint...

  2. Glaze Icing on Superhydrophobic Coating Prepared by Nanoparticles Filling Combined with Etching Method for Insulators

    Directory of Open Access Journals (Sweden)

    Chao Guo

    2015-01-01

    Full Text Available Icing on insulators may cause flashover or even blackout accidents in the power transmission system. However, there are few anti-icing techniques for insulators which consume energy or manpower. Considering the water repelling property, the superhydrophobic surface is introduced for anti-icing of insulators. Among the icing forms, the glaze icing owns the highest density, strongest adhesion, and greatest risk to the power transmission system but lacks researches on superhydrophobic surface. In this paper, superhydrophobic surfaces with contact angle of 166.4°, contact angle hysteresis of 0.9°, and sliding angle of less than 1° are prepared by nanoparticle filling combined with etching method. The coated glass slide and glass insulator showed excellent anti-icing performance in the glaze icing test at −5°C. The superhydrophobicity and anti-icing property of the coatings benefit from the low surface energy and hierarchical rough structure containing micron scale pits and nanoscale coralloid bulges supported by scanning electron microscopy (SEM, atomic force microscopy (AFM, and X-ray photoelectron spectroscopy (XPS characterization.

  3. Nanoparticle and gelation stabilized functional composites of an ionic salt in a hydrophobic polymer matrix.

    Directory of Open Access Journals (Sweden)

    Selin Kanyas

    Full Text Available Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite.

  4. The commercial development of water repellent coatings for high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, S. R. [ORNL; Daniel, A. [Southwire Company

    2013-10-31

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy?s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  5. The commercial development of water repellent coatings for high voltage transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, Scott Robert [ORNL

    2013-10-01

    The purpose of the Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and Southwire Company was to jointly develop a low cost, commercially viable, water-repellant anti-icing coating system for high voltage transmission lines. Icing of power lines and other structures caused by freezing rain events occurs annually in the United States, and leads to severe and prolonged power outages. These outages cause untold economic and personal distress for many American families and businesses. Researchers at the Department of Energy s Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee have previously developed a set of superhydrophobic coatings with remarkable anti-icing properties that could potentially be sprayed or painted onto high-tension power lines and pylons. These coatings drastically reduce ice accumulation on these structures during freezing rain events. The project involved obtaining technical input, supplies and test high voltage cables from Southwire, along with the joint development of anti-icing coating techniques, which would result in a commercial license agreement between Southwire and ORNL, and potentially other companies requiring water repellent anti-icing coatings.

  6. Nanoparticle and Gelation Stabilized Functional Composites of an Ionic Salt in a Hydrophobic Polymer Matrix

    Science.gov (United States)

    Kanyas, Selin; Aydın, Derya; Kizilel, Riza; Demirel, A. Levent; Kizilel, Seda

    2014-01-01

    Polymer composites consisted of small hydrophilic pockets homogeneously dispersed in a hydrophobic polymer matrix are important in many applications where controlled release of the functional agent from the hydrophilic phase is needed. As an example, a release of biomolecules or drugs from therapeutic formulations or release of salt in anti-icing application can be mentioned. Here, we report a method for preparation of such a composite material consisted of small KCOOH salt pockets distributed in the styrene-butadiene-styrene (SBS) polymer matrix and demonstrate its effectiveness in anti-icing coatings. The mixtures of the aqueous KCOOH and SBS-cyclohexane solutions were firstly stabilized by adding silica nanoparticles to the emulsions and, even more, by gelation of the aqueous phase by agarose. The emulsions were observed in optical microscope to check its stability in time and characterized by rheological measurements. The dry composite materials were obtained via casting the emulsions onto the glass substrates and evaporations of the organic solvent. Composite polymer films were characterized by water contact angle (WCA) measurements. The release of KCOOH salt into water and the freezing delay experiments of water droplets on dry composite films demonstrated their anti-icing properties. It has been concluded that hydrophobic and thermoplastic SBS polymer allows incorporation of the hydrophilic pockets/phases through our technique that opens the possibility for controlled delivering of anti-icing agents from the composite. PMID:24516593

  7. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities

  8. 77 FR 20360 - Application(s) for Duty-Free Entry of Scientific Instruments

    Science.gov (United States)

    2012-04-04

    ... for which the instruments shown below are intended to be used, are being manufactured in the United... Technology, Castle Point on Hudson, Hoboken, NJ 07030. Instrument: Electron Microscope. Manufacturer: FEI... phenomena and develop robust superhydrophobic surfaces for anti-corrosion and anti-icing surfaces. The...

  9. 14 CFR 125.226 - Digital flight data recorders.

    Science.gov (United States)

    2010-01-01

    ... designed in appendix E of this part); (44) Traffic alert and collision avoidance system; (45) DME 1 and 2... position (when an information source is installed); (72) De-icing or anti-icing system selection (when an... check is considered to be any time an airplane is scheduled to be out of service for 4 or more days and...

  10. 14 CFR 121.344 - Digital flight data recorders for transport category airplanes.

    Science.gov (United States)

    2010-01-01

    ... information source is installed); (72) De-icing or anti-icing system selection (when an information source is... check is considered to be any time an airplane is scheduled to be out of service for 4 or more days and... type design with respect to the installation of those sensors associated with the flight data recorder...

  11. Agent-based scheduling for aircraft deicing

    NARCIS (Netherlands)

    Mao, X.; Ter Mors, A.W.; Roos, N.; Witteveen, C.

    2006-01-01

    The planning and scheduling of the deicing and anti-icing activities is an important and challenging part of airport departure planning. Deicing planning has to be done in a highly dynamic environment involving several autonomous and self-interested parties. Traditional centralized scheduling

  12. Optimisation d'un systeme d'antigivrage a air chaud pour aile d'avion basee sur la methode du krigeage dual

    Science.gov (United States)

    Hannat, Ridha

    The aim of this thesis is to apply a new methodology of optimization based on the dual kriging method to a hot air anti-icing system for airplanes wings. The anti-icing system consists of a piccolo tube placed along the span of the wing, in the leading edge area. The hot air is injected through small nozzles and impact on the inner wall of the wing. The objective function targeted by the optimization is the effectiveness of the heat transfer of the anti-icing system. This heat transfer effectiveness is regarded as being the ratio of the wing inner wall heat flux and the sum of all the nozzles heat flows of the anti-icing system. The methodology adopted to optimize an anti-icing system consists of three steps. The first step is to build a database according to the Box-Behnken design of experiment. The objective function is then modeled by the dual kriging method and finally the SQP optimization method is applied. One of the advantages of the dual kriging is that the model passes exactly through all measurement points, but it can also take into account the numerical errors and deviates from these points. Moreover, the kriged model can be updated at each new numerical simulation. These features of the dual kriging seem to give a good tool to build the response surfaces necessary for the anti-icing system optimization. The first chapter presents a literature review and the optimization problem related to the antiicing system. Chapters two, three and four present the three articles submitted. Chapter two is devoted to the validation of CFD codes used to perform the numerical simulations of an anti-icing system and to compute the conjugate heat transfer (CHT). The CHT is calculated by taking into account the external flow around the airfoil, the internal flow in the anti-icing system, and the conduction in the wing. The heat transfer coefficient at the external skin of the airfoil is almost the same if the external flow is taken into account or no. Therefore, only the

  13. Measurements for winter road maintenance

    OpenAIRE

    Riehm, Mats

    2012-01-01

    Winter road maintenance activities are crucial for maintaining the accessibility and traffic safety of the road network at northerly latitudes during winter. Common winter road maintenance activities include snow ploughing and the use of anti-icing agents (e.g. road salt, NaCl). Since the local weather is decisive in creating an increased risk of slippery conditions, understanding the link between local weather and conditions at the road surface is critically important. Sensors are commonly i...

  14. Assessment of the Performance of Several Roadway Mixes under Rain, Snow, and Winter Maintenance Activities

    OpenAIRE

    Flintsch, Gerardo W.

    2004-01-01

    The purpose of this study was to assess the relative functional performance, including skid resistance and splash and spray, of five hot-mix-asphalt (HMA) surfaces and a tinned portland cement concrete highway surface during controlled wet and wintry weather events. The study compared the way that these surfaces respond to various deicing and anti-icing snow removal and ice control techniques under artificial wintry conditions. In addition, the splash and spray characteristics of the surfaces...

  15. Protection against wing icing for Airbus A300 and A310

    Science.gov (United States)

    Woelfer, G.

    1981-01-01

    To improve economy of operation, it is now planned to modify the anti-icing system used on the A300 Airbus wing. Thus, for the A310 Airbus, the deicing system will be applied to only half the wing length. Other essential modifications are a substantial simplification of the warm-air system and discontinuation of the use of a double wall in slats.

  16. Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces.

    Science.gov (United States)

    Yang, Qin; Luo, Zhuangzhu; Jiang, Faming; Luo, Yimin; Tan, Sheng; Lu, Zhibin; Zhang, Zhaozhu; Liu, Weimin

    2016-10-26

    Anti-icing surfaces/interfaces are of considerable importance in various engineering fields under natural freezing environment. Although superhydrophobic self-cleaning surfaces show good anti-icing potentials, promotion of these surfaces in engineering applications seems to enter a "bottleneck" stage. One of the key issues is the intrinsic relationship between superhydrophobicity and icephobicity is unclear, and the dynamic action mechanism of "air cushion" (a key internal factor for superhydrophobicity) on icing suppression was largely ignored. Here we report that icing inhibition (i.e., icing-delay) of self-cleaning surfaces is mainly ascribed to air cushion and its convection. We experimentally found air cushion on the porous self-cleaning coating under vacuum environments and on the water/ice-coating interface at low temperatures. The icing-delay performances of porous self-cleaning surfaces compared with bare substrate, up to 10-40 min under 0 to ∼-4 °C environments close to freezing rain, have been accurately real-time recorded by a novel synergy method including high-speed photography and strain sensing voltage. Based on the experimental results, we innovatively propose a physical model of "air cushion convection inhibiting icing", which envisages both the static action of trapped air pocket without air flow and dynamic action of air cushion convection. Gibbs free energy of water droplets increased with the entropy of air derived from heat and mass transfer between warmer air underneath water droplets and colder surrounding air, resulting in remarkable ice nucleation delay. Only when air cushion convection disappears can ice nucleation be triggered on suitable Gibbs free energy conditions. The fundamental understanding of air cushion on anti-icing is an important step toward designing optimal anti-icing surfaces for practical engineering application.

  17. Materials and Additive Manufacturing for Energy Efficiency in Wind Turbine and Aircraft Industries

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, Panos G [ORNL; Polyzos, Georgios [ORNL; Clemons, Art [ORNL; Bolton, Paul [Piedmont Propulsion Systems, LLC; Hollander, Aaron [First Aviation Services Inc., Westport, CT

    2016-05-04

    The purpose of this project was to develop surface treatments which will inhibit the formation of ice on turbine blades and propellers. ORNL worked with Piedmont Propulsion Systems, LLC and First Aviation Services Inc. to demonstrate a new surface treatment for two primary markets, aviation and wind turbines, as well as secondary markets such as power lines, bridges, boats, roofs and antennas among others. Exploring alternative surface treatments for wind turbines will provide anti-icing properties and erosion/abrasion prevention properties similar to those for aviation applications. A series of superhydrophobic coating materials was synthesized and successfully applied on anti-ice tape materials that could be used in a wide range of wind turbine and aviation applications to prevent ice accumulation. The coatings developed in this project were based on superhydrophobic particles of different geometries and sizes that were homogeneously dispersed in polymeric binders. The superhydrophobic features of the coatings are volumetric and their abrasion resistance was evaluated. Future research will involve the demonstration of anti-icing properties of the surface treatment developed in this project.

  18. Energy-Efficient Systems Eliminate Icing Danger for UAVs

    Science.gov (United States)

    2010-01-01

    Ames Research Center engineer Leonard Haslim invented an anti-icing t echnology called an electroexpulsive separation system, which uses m echanical force to shatter potentially dangerous ice buildup on an ai rcraft surface. Temecula, California-based Ice Management Systems (no w known as IMS-ESS) licensed the technology from Ames and has discov ered a niche market for the lightweight, energy-efficient technology: unmanned aerial vehicles (UAVs). IMS-ESS systems now prevent damagi ng ice accumulation on military UAVs, allowing the vehicles to carry out crucial missions year round.

  19. Coatings to prevent frost

    DEFF Research Database (Denmark)

    Lusada, Ricardo; Holberg, Stefan; Bennedsen, Jeanette Marianne Dalgaard

    2016-01-01

    at temperatures just below 0°C, for example at −4°C, is low. Freezing of a single drop on aluminum leads, however, to instant freezing of the complete surface. On hydrophobic coatings, such a freezing drop is isolated; the frozen area grows slowly. At −4°C surface temperature in a +12°C/90% relative humidity...... direction. Although the airflow compromised the anti-ice properties to some extent, the application of the hydrophobic coating in a heat recovery ventilation experiment extended the time interval between defrosting cycles by a factor of 2.3....

  20. Melting Frozen Droplets Using Photo-Thermal Traps

    Science.gov (United States)

    Dash, Susmita; de Ruiter, Jolet; Varanasi, Kripa

    2017-11-01

    Ice buildup is an operational and safety hazard in wind turbines, power lines, and airplanes. While traditional de-icing methods are energy-intensive or environmentally unfriendly, passive anti-icing approach using superhydrophobic surfaces fails under humid conditions, which necessitates development of passive deicing methods. Here, we investigate a passive technique for deicing using a multi-layer surface design that can efficiently absorb and convert the incident solar radiation to heat. The corresponding increase in substrate temperature allows for easy removal of frozen droplets from the surface. We demonstrate the deicing performance of the designed surface both at very low temperatures, and under frost and snow coverage.

  1. Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions.

    Science.gov (United States)

    Bengaluru Subramanyam, Srinivas; Kondrashov, Vitaliy; Rühe, Jürgen; Varanasi, Kripa K

    2016-05-25

    Ice adhesion on superhydrophobic surfaces can significantly increase in humid environments because of frost nucleation within the textures. Here, we studied frost formation and ice adhesion on superhydrophobic surfaces with various surface morphologies using direct microscale imaging combined with macroscale adhesion tests. Whereas ice adhesion increases on microtextured surfaces, a 15-fold decrease is observed on nanotextured surfaces. This reduction is because of the inhibition of frost formation within the nanofeatures and the stabilization of vapor pockets. Such "Cassie ice"-promoting textures can be used in the design of anti-icing surfaces.

  2. Enhancing the Mechanical Durability of Icephobic Surfaces by Introducing Autonomous Self-Healing Function.

    Science.gov (United States)

    Zhuo, Yizhi; Håkonsen, Verner; He, Zhiwei; Xiao, Senbo; He, Jianying; Zhang, Zhiliang

    2018-03-27

    Ice accretion presents a severe risk for human safety. Although great efforts have been made for developing icephobic surfaces (the surface with an ice adhesion strength below 100 kPa), expanding the lifetime of state-of-the-art icephobic surfaces still remains a critical unsolved issue. Herein, a novel icephobic material is designed by integrating an interpenetrating polymer network (IPN) into an autonomous self-healing elastomer, which is applied in anti-icing for enhancing the mechanical durability. The molecular structure, surface morphology, mechanical properties, and durable icephobicity of the material were studied. The creep behaviors of the new icephobic material, which were absent in most relevant studies on self-healing materials, were also investigated in this work. Significantly, the material showed great potentials for anti-icing applications with an ultralow ice adhesion strength of 6.0 ± 0.9 kPa, outperforming many other icephobic surfaces. The material also exhibited an extraordinary durability, showing a very low long-term ice adhesion strength of ∼12.2 kPa after 50 icing/deicing cycles. Most importantly, the material was able to exhibit a self-healing property from mechanical damages in a sufficiently short time, which shed light on the longevity of icephobic surfaces in practical applications.

  3. Facile fabrication of iron-based superhydrophobic surfaces via electric corrosion without bath

    International Nuclear Information System (INIS)

    Sun, Qinghe; Liu, Hongtao; Chen, Tianchi; Wei, Yan; Wei, Zhu

    2016-01-01

    Graphical abstract: - Highlights: • This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion without a bath. • It has a vital significance to the industrialization of the fabrication of superhydrophobic surface on hard metal due to the advantages such as low cost, high efficiency, can be prepared in a large area, easy to construct in the field. • The preparation approach is so facile and time-saving that it delivers an opportunity to construct a superhydrophobic surface on carbon steel substrate and provides the feasibility for industrial application of superhydrophobic surface. • The as-prepared surface has many excellent properties, like low adhesive property, anti-corrosion ability, mechanical durability and anti-icing performance. - Abstract: Superhydrophobic surface is of wide application in the field of catalysis, lubrication, waterproof, biomedical materials, etc. The superhydrophobic surface based on hard metal is worth further study due to its advantages of high strength and wear resistance. This paper investigates the fabrication techniques towards superhydrophobic surface on carbon steel substrate via electric corrosion and studies the properties of as-prepared superhydrophobic surface. The hydrophobic properties were characterized by a water sliding angle (SA) and a water contact angle (CA) measured by the Surface tension instrument. A Scanning electron microscope was used to analyze the structure of the corrosion surface. The surface compositions were characterized by an Energy Dispersive Spectrum. The Electrochemical workstation was used to measure its anti-corrosion property. The anti-icing performance was characterized by a steam-freezing test in Environmental testing chamber. The SiC sandpaper and 500 g weight were used to test the friction property. The research result shows that the superhydrophobic surface can be successfully fabricated by electrocorrosion on

  4. Optically transparent, mechanically durable, nanostructured superhydrophobic surfaces enabled by spinodally phase-separated glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Aytug, Tolga; Simpson, John T.; Lupini, Andrew R.; Trejo, Rosa M.; Jellison, Gerald E.; Ivanov, Ilia N.; Pennycook, Stephen J.; Hillesheim, Daniel A.; Winter, Kyle O.; Christen, David K.; Hunter, Scott R.; Allen Haynes, J.

    2013-07-15

    Inspired by highly non-wetting natural biological surfaces (e.g., lotus leaves and water strider legs), artificial superhydrophobic surfaces that exhibit water droplet contact angles exceeding 150o have previously been constructed by utilizing various synthesis strategies.[ , , ] Such bio-inspired, water-repellent surfaces offer significant potential for numerous uses ranging from marine applications (e.g., anti-biofouling, anti-corrosion), anti-condensation (e.g., anti-icing, anti-fogging), membranes for selective separation (e.g., oil-water, gas-liquid), microfluidic systems, surfaces requiring reduced maintenance and cleaning, to applications involving glasses and optical materials.[ ] In addition to superhydrophobic attributes, for integration into device systems that have extended operational limits and overall improved performance, surfaces that also possess multifunctional characteristics are desired, where the functionality should match to the application-specific requirements.

  5. Effect of Graphene Coating on the Heat Transfer Performance of a Composite Anti-/Deicing Component

    Directory of Open Access Journals (Sweden)

    Long Chen

    2017-09-01

    Full Text Available The thermal conductivity of a graphene coating for anti-/deicing is rarely studied. This paper presents an improved anti-/deicing efficiency method for composite material anti-/deicing by using the heat-transfer characteristic of a graphene coating. An anti-/deicing experiment was conducted using the centrifugal force generated by a helicopter rotor. Results showed that the graphene coating can accelerate the internal heat transfer of the composite material, thereby improving the anti-icing and deicing efficiency of the helicopter rotor. The spraying process parameters, such as coating thickness and spraying pressure, were also studied. Results showed that reducing coating thickness and increasing spraying pressure are beneficial in preparing a graphene coating with high thermal conductivity. This study provides an experimental reference for the application of a graphene coating in anti-/deicing.

  6. Wettability-independent bouncing on flat surfaces mediated by thin air films

    Science.gov (United States)

    de Ruiter, Jolet; Lagraauw, Rudy; van den Ende, Dirk; Mugele, Frieder

    2015-01-01

    The impingement of drops onto solid surfaces plays a crucial role in a variety of processes, including inkjet printing, fog harvesting, anti-icing, dropwise condensation and spray coating. Recent efforts in understanding and controlling drop impact behaviour focused on superhydrophobic surfaces with specific surface structures enabling drop bouncing with reduced contact time. Here, we report a different universal bouncing mechanism that occurs on both wetting and non-wetting flat surfaces for both high and low surface tension liquids. Using high-speed multiple-wavelength interferometry, we show that this bouncing mechanism is based on the continuous presence of an air film for moderate drop impact velocities. This submicrometre `air cushion' slows down the incoming drop and reverses its momentum. Viscous forces in the air film play a key role in this process: they provide transient stability of the air cushion against squeeze-out, mediate momentum transfer, and contribute a substantial part of the energy dissipation during bouncing.

  7. Non-wetting droplets on hot superhydrophilic surfaces

    Science.gov (United States)

    Adera, Solomon; Raj, Rishi; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    Controlling wettability by varying surface chemistry and roughness or by applying external stimuli is of interest for a wide range of applications including microfluidics, drag reduction, self-cleaning, water harvesting, anti-corrosion, anti-fogging, anti-icing and thermal management. It has been well known that droplets on textured hydrophilic, that is superhydrophilic, surfaces form thin films with near-zero contact angles. Here we report an unexpected behaviour where non-wetting droplets are formed by slightly heating superhydrophilic microstructured surfaces beyond the saturation temperature (>5 °C). Although such behaviour is generally not expected on superhydrophilic surfaces, an evaporation-induced pressure in the structured region prevents wetting. In particular, the increased thermal conductivity and decreased vapour permeability of the structured region allows this behaviour to be observed at such low temperatures. This phenomenon is distinct from the widely researched Leidenfrost and offers an expanded parametric space for fabricating surfaces with desired temperature-dependent wettability.

  8. In-flight detection and identification and accommodation of aircraft icing

    Science.gov (United States)

    Caliskan, Fikret; Hajiyev, Chingiz

    2012-11-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this paper, aircraft icing identification based on neural networks is investigated. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  9. Ice Control with Brine Spread with Nozzles on Highways

    DEFF Research Database (Denmark)

    Bolet, Lars; Fonnesbech, Jens Kristian

    2010-01-01

    During the years 1996-2006, the former county of Funen, Denmark, gradually replaced pre-wetted salt with brine spread with nozzles as anti-icing agent in all her ice control activities. The replacement related to 1000 kilometres of highways. Jeopardizing neither road safety nor traffic flow...... spreading on a highway with traffic. A total of 800 spots were measured for residual salt for every spreader. The measurements and the spread pattern for brine spreading with nozzles were so precisely, that we learned: “When there is moisture, water or ice on the road, we need to take into account...... that the salt will run from the high level of the road to the lower level”. In the test the salt moved 1 meter in 3 hours. The knowledge gained from the measurements in the county of Funen - brine spread with nozzles, spreading salt to high level of the road and using GPS controlled spreading – was implemented...

  10. Oil cooling system for a gas turbine engine

    Science.gov (United States)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  11. The 'Guetsch' Alpine wind power test site; Alpine Test Site Guetsch. Handbuch und Fachtagung

    Energy Technology Data Exchange (ETDEWEB)

    Cattin, R.

    2008-12-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the influence of icing-up on the operation of wind turbines in mountainous areas. Within the Swiss research project 'Alpine Test Site Guetsch', extensive icing studies were carried out at the Guetsch site near Andermatt, Switzerland. This document deals with the following subjects: Information about ice formation on structures, in particular with respect to wind turbines, standards and international research activities, wind measurements under icing-up conditions, estimation of the frequency of icing-up conditions, effects of icing-up on wind turbines, ice detection, measures available for de-icing and anti-icing as well as ice throw. A list of factors to be taken into account by the planners and operators of wind turbines in alpine environments is presented.

  12. Highly Conductive Carbon Fiber Reinforced Concrete for Icing Prevention and Curing

    Directory of Open Access Journals (Sweden)

    Oscar Galao

    2016-04-01

    Full Text Available This paper aims to study the feasibility of highly conductive carbon fiber reinforced concrete (CFRC as a self-heating material for ice formation prevention and curing in pavements. Tests were carried out in lab ambient conditions at different fixed voltages and then introduced in a freezer at −15 °C. The specimens inside the freezer were exposed to different fixed voltages when reaching +5 °C for prevention of icing and when reaching the temperature inside the freezer, i.e., −15 °C, for curing of icing. Results show that this concrete could act as a heating element in pavements with risk of ice formation, consuming a reasonable amount of energy for both anti-icing (prevention and deicing (curing, which could turn into an environmentally friendly and cost-effective deicing method.

  13. Antifogging and icing-delay properties of composite micro- and nanostructured surfaces.

    Science.gov (United States)

    Wen, Mengxi; Wang, Lei; Zhang, Mingqian; Jiang, Lei; Zheng, Yongmei

    2014-03-26

    A composite micro/nanostrucutred (MN) surface was designed using poly(vinylidene difluoride) (PVDF) polymer in combination with ZnO materials via heat-pattern-transfer and crystal-growth techniques. The surface, composed of ZnO nanohairs over PVDF microratchets (i.e., ZP-MN), displays excellent antifogging and icing-delay properties. Condensed water droplets can be easily shed from the ZP-MN surface at -5 °C for ∼1600 s via a slight wind or tilting. The droplets do not completely freeze on the ZP-MN surface at -10 °C until ∼7360 s. This investigation offers a way to design a structured surface that possesses anti-icing ability, which is significant because it can be extended to fields such as microdevices, engineering systems, and engines that operate in a cold or humid environment.

  14. Icing Forecasting of High Voltage Transmission Line Using Weighted Least Square Support Vector Machine with Fireworks Algorithm for Feature Selection

    Directory of Open Access Journals (Sweden)

    Tiannan Ma

    2016-12-01

    Full Text Available Accurate forecasting of icing thickness has great significance for ensuring the security and stability of the power grid. In order to improve the forecasting accuracy, this paper proposes an icing forecasting system based on the fireworks algorithm and weighted least square support vector machine (W-LSSVM. The method of the fireworks algorithm is employed to select the proper input features with the purpose of eliminating redundant influence. In addition, the aim of the W-LSSVM model is to train and test the historical data-set with the selected features. The capability of this proposed icing forecasting model and framework is tested through simulation experiments using real-world icing data from the monitoring center of the key laboratory of anti-ice disaster, Hunan, South China. The results show that the proposed W-LSSVM-FA method has a higher prediction accuracy and it may be a promising alternative for icing thickness forecasting.

  15. Mechanism of dissolved water in jet fuel

    Science.gov (United States)

    Wu, Nan; Zong, Zhimin; Hu, Jianqiang; Ma, Jun

    2017-03-01

    Dissolved water content is an important performance index of jet fuel quality. The excess water content in jet fuel directly affects the quality of fuel and the normal operation of the flight equipment, even severely endangering the flight safety. Many factors would affect the water content in jet fuel. In this paper, considering the effects of internal and external factors on the dissolved water content in No. 3 jet fuel, such as toluene content, environmental temperature, humidity, and anti-icing agent concentration, by Karl Fischer electrometric titration using a trace moisture analyzer. A model was developed to evaluate the dissolved water content under different conditions. The model provides an effective reference for the accurate and efficient determination of jet fuel moisture content.

  16. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    Science.gov (United States)

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  17. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography

    Science.gov (United States)

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-01

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  18. De-icers derived from corn steep water.

    Science.gov (United States)

    Yang, Byung Yun; Montgomery, Rex

    2003-12-01

    Corn steep water (CSW) and other byproducts derived from fermentations and sugar productions are presently forming the base of compositions for de-icing and anti-icing materials. Since the de-icing and anti-icing values are in part a colligative property, increase in the molar concentration of ionic species has been frequently necessary to decrease further the freezing point of this byproducts stream. In the present study this has been achieved by the generation of biodegradable organic acid salts in situ, without the use of chloride or other inorganic salts, by the alkaline degradation of reducing sugars added to corn steep water, which alone is not an efficient de-icer. Reducing sugars, such as glucose, react with alkali metal hydroxides to produce principally hydroxy carboxylic acids that react with the alkali metal hydroxide to form a mixture of organic acid salts. The ionic strength of the resulting solution is increased since each sugar molecule produces nearly two acid molecules upon degradation. The ionic strength necessary to achieve the desired freezing point depression is determined by the amount and concentration of the alkali metal hydroxide used, with the necessary counter anions being derived from the degradation of the reducing sugar. The amount of the sugar used is that required to result in a near to neutral final solution. The well-known anti-corrosive property of CSW is used in the de-icer preparations, either by conducting the alkaline degradation of the sugar in this medium, or by using water for the degradation of the sugar followed by dilution of the resulting solution with CSW to adjust the viscosity of the final solution to meet the requirements for spraying. The monovalent metal hydroxides are more efficient in producing de-icer solutions than the divalent metal hydroxides.

  19. Aircraft de-icer: Recycling can cut carbon emissions in half

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2012-01-01

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an ‘antifreeze’ solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40–50% — and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15–30% lower footprint than using ‘bio’ de-icer without recycling. - Highlights: ► Carbon footprint of aircraft de-icing can be measured. ► Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40–50%. ► Recycling ‘fossil’ de-icer is lower carbon than not recycling ‘bio’ de-icer.

  20. Transparent self-cleaning lubricant-infused surfaces made with large-area breath figure patterns

    Science.gov (United States)

    Zhang, Pengfei; Chen, Huawei; Zhang, Liwen; Ran, Tong; Zhang, Deyuan

    2015-11-01

    Nepenthes pitcher inspired slippery lubricant-infused porous surfaces greatly impact the understanding of liquid-repellent surfaces construction and have attracted extensive attention in recent years due to their potential applications in self-cleaning, anti-fouling, anti-icing, etc. In this work, we have successfully fabricated transparent slippery lubricant-infused surfaces based on breath figure patterns (BFPs). Large-area BFPs with interconnected pores were initially formed on the glass substrate and then a suitable lubricant was added onto the surfaces. The interconnected pores in BFPs were able to hold the lubricant liquid in place and form a stable liquid/solid composite surface capable of repelling a variety of liquids. The liquid-repellent surfaces show extremely low critical sliding angles for various liquids, thus providing the surfaces with efficient self-cleaning property. It was also found that the liquid droplets' sliding behaviors on the surfaces were significantly influenced by the tilting angle of the substrate, liquid volume, liquid chemical properties, and pore sizes of the surfaces.

  1. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.

    Science.gov (United States)

    Wu, Yang; Zhao, Meiyun; Guo, Zhiguang

    2017-11-15

    Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO 3 ) nanoparticles (MoO 3 /CMF) via a two-step preparation method. Taking advantage of high-adhesion epoxy resin and the modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES), the modified MoO 3 /CMF (PDES-MoO 3 /CMF) coating on various substrates shows great waterproof ability, excellent chemical stability, good mechanical durability, and self-cleaning property. More significantly, the prepared PDES-MoO 3 /CMF powder with high thermal stability (250°C) can be used for oil/water separation due to its special flower-like structure and superhydrophobicity/superoleophilicity. All of these advantages endow the superhydrophobic powders with huge potential in the practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Antifreeze Proteins from Diverse Organisms and their Applications: An Overview.

    Science.gov (United States)

    Cheung, Randy Chi Fai; Ng, Tzi Bun; Wong, Jack Ho

    2017-01-01

    Antifreeze proteins are ice-binding or ice-structuring proteins that prevent water from freezing by adsorbing to the ice surface and stopping the growth of minute ice crystals to large crystals in a non-colligative manner. The antifreeze proteins are found in species like fish, arthropods, plants, algae, fungi, yeasts and bacteria. The diversity, distribution and classification of antifreeze proteins were highlighted in this review. Antifreeze proteins help the organisms adapt to and survive in subzero temperature environments. The distribution of antifreeze proteins in different species appears to be the outcome of a combination of independent evolutionary events, probably the convergent evolution or horizontal gene transfer. Benefits can be derived from the frost resistance of these organisms. Their potential applications have been recognized in food processing, cryopreservation, cryosurgery, fishery and agricultural industries and anti-icing materials development. This review includes information on the current understanding of antifreeze proteins. A discussion on interactions and mechanisms involving ice recognition and adsorption was also included. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  3. Superhydrophobic nanocoatings: from materials to fabrications and to applications

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang

    2015-03-01

    Superhydrophobic nanocoatings, a combination of nanotechnology and superhydrophobic surfaces, have received extraordinary attention recently, focusing both on novel preparation strategies and on investigations of their unique properties. In the past few decades, inspired by the lotus leaf, the discovery of nano- and micro-hierarchical structures has brought about great change in the superhydrophobic nanocoatings field. In this paper we review the contributions to this field reported in recent literature, mainly including materials, fabrication and applications. In order to facilitate comparison, materials are divided into 3 categories as follows: inorganic materials, organic materials, and inorganic-organic materials. Each kind of materials has itself merits and demerits, as well as fabrication techniques. The process of each technique is illustrated simply through a few classical examples. There is, to some extent, an association between various fabrication techniques, but many are different. So, it is important to choose appropriate preparation strategies, according to conditions and purposes. The peculiar properties of superhydrophobic nanocoatings, such as self-cleaning, anti-bacteria, anti-icing, corrosion resistance and so on, are the most dramatic. Not only do we introduce application examples, but also try to briefly discuss the principle behind the phenomenon. Finally, some challenges and potential promising breakthroughs in this field are also succinctly highlighted.

  4. A review of in-flight detection and identification of aircraft icing and reconfigurable control

    Science.gov (United States)

    Caliskan, Fikret; Hajiyev, Chingiz

    2013-07-01

    The recent improvements and research on aviation have focused on the subject of aircraft safe flight even in the severe weather conditions. As one type of such weather conditions, aircraft icing considerably has negative effects on the aircraft flight performance. The risks of the iced aerodynamic surfaces of the flying aircraft have been known since the beginning of the first flights. Until recent years, as a solution for this event, the icing conditions ahead flight route are estimated from radars or other environmental sensors, hence flight paths are changed, or, if it exists, anti-icing/de-icing systems are used. This work aims at the detection and identification of airframe icing based on statistical properties of aircraft dynamics and reconfigurable control protecting aircraft from hazardous icing conditions. In this review paper, aircraft icing identification based on neural network (NN), batch least-squares algorithm, Kalman filtering (KF), combined NN/KF, and H∞ parameter identification techniques are investigated, and compared with each other. Following icing identification, reconfigurable control is applied for protecting the aircraft from hazardous icing conditions.

  5. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.

    Science.gov (United States)

    Chu, Fuqiang; Wu, Xiaomin; Wang, Lingli

    2017-03-08

    Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.

  6. Drop friction on liquid-infused surfaces

    Science.gov (United States)

    Gas, Armelle; Keiser, Ludovic; Clanet, Christophe; Quere, David

    2017-11-01

    Trapping a thin liquid film in the roughness of a textured material creates a surface that is partially solid and partially liquid, referred to as a lubricant-impregnated surface. Those surfaces have recently raised a great interest for their promising industrial applications. Indeed, they proved to drastically reduce adhesion of a broad range of liquids, leading to enhanced mobility, and strong anti-biofouling, anti-icing and anti-fogging properties. In our talk we discuss the nature of the friction generated as a drop glides on a textured material infused by another liquid. Different regimes are observed, depending on the viscosities of both liquids. While a viscous drop is simply opposed by a Stokes-type friction, the force opposing a drop moving on a viscous substrate becomes non-linear in velocity. A liquid on an infused material is surrounded by a meniscus, and this specific feature is proposed to be responsible for the special observed frictions, on both adhesive and nonadhesive substrates.

  7. Delayed frost formation on hybrid nanostructured surfaces with patterned high wetting contrast

    Science.gov (United States)

    Hou, Youmin; Zhou, Peng; Yao, Shuhuai

    2014-11-01

    Engineering icephobic surfaces that can retard the frost formation and accumulation are important to vehicles, wind turbines, power lines, and HVAC systems. For condensation frosting, superhydrophobic surfaces promote self-removal of condensed droplets before freezing and consequently delay the frost growth. However, a small thermal fluctuation may lead to a Cassie-to-Wenzel transition, and thus dramatically enhance the frost formation and adhesion. In this work, we investigated the heterogeneous ice nucleation on hybrid nanostructured surfaces with patterned high wetting contrast. By judiciously introducing hydrophilic micro-patches into superhydrophobic nanostructured surface, we demonstrated that such a novel hybrid structure can efficiently defer the ice nucleation as compared to a superhydrophobic surface with nanostructures only. We observed efficient droplet jumping and higher coverage of droplets with diameter smaller than 10 μm, both of which suppress frost formation. The hybrid surface avoids the formation of liquid-bridges for Cassie-to-Wenzel transition, therefore eliminating the `bottom-up' droplet freezing from the cold substrate. These findings provide new insights to improve anti-frosting and anti-icing by using heterogeneous wettability in multiscale structures.

  8. Experimental study of curvature effects on jet impingement heat transfer on concave surfaces

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    2017-04-01

    Full Text Available Experimental study of the local and average heat transfer characteristics of a single round jet impinging on the concave surfaces was conducted in this work to gain in-depth knowledge of the curvature effects. The experiments were conducted by employing a piccolo tube with one single jet hole over a wide range of parameters: jet Reynolds number from 27000 to 130000, relative nozzle to surface distance from 3.3 to 30, and relative surface curvature from 0.005 to 0.030. Experimental results indicate that the surface curvature has opposite effects on heat transfer characteristics. On one hand, an increase of relative nozzle to surface distance (increasing jet diameter in fact enhances the average heat transfer around the surface for the same curved surface. On the other hand, the average Nusselt number decreases as relative nozzle to surface distance increases for a fixed jet diameter. Finally, experimental data-based correlations of the average Nusselt number over the curved surface were obtained with consideration of surface curvature effect. This work contributes to a better understanding of the curvature effects on heat transfer of a round jet impingement on concave surfaces, which is of high importance to the design of the aircraft anti-icing system.

  9. Numerical study of droplet impact and rebound on superhydrophobic surface

    Science.gov (United States)

    Cai, Xuan; Wu, Yanchen; Woerner, Martin; Frohnapfel, Bettina

    2017-11-01

    Droplet impact and rebound on superhydrophobic surface is an important process in many applications; among them are developing self-cleaning or anti-icing materials and limiting liquid film formation of Diesel Exhaust Fluid (DEF) in exhaust gas pipe. In the latter field, rebound of DEF droplet from wall is desired as an effective mean for avoiding or reducing unwanted solid deposition. Our goal is to numerically study influence of surface wettability on DEF droplet impact and rebound behavior. A phase-field method is chosen, which was implemented in OpenFOAM by us and validated for wetting-related interfacial flow problems. In the present contribution we first numerically reproduce relevant experimental studies in literature, to validate the code for droplet impact and rebound problem. There we study droplet-surface contact time, maximum/instantaneous spreading factor and droplet shape evolution. Our numerical results show good agreement with experimental data. Next we investigate for DEF droplets the effects of diameter, impact velocity and surface wettability on rebound behavior and jumping height. Based on Weber number and equilibrium contact angle, two regimes are identified. We show that surface wettability is a deciding factor for achieving rebound event. This work is supported by Foundation ``Friedrich-und-Elisabeth Boysen Stiftung fuer Forschung und Innovation'' (BOY-127-TP1).

  10. Evaluation of icephobic coatings—Screening of different coatings and influence of roughness

    Science.gov (United States)

    Susoff, Markus; Siegmann, Konstantin; Pfaffenroth, Cornelia; Hirayama, Martina

    2013-10-01

    Icing of wind turbines affects energy production, causes mechanical failures and increases safety hazards in general; hence there is an enormous demand for powerful anti-icing methods. To investigate the icephobic properties of different coatings, ice adhesion measurements were performed with a 0° cone test to determine ice adhesion strengths between coating and ice. Various coatings with different icephobic properties were investigated, e.g., hydrophilic and hydrophobic coatings, sol-gel based coatings containing fluorinated compounds and viscoelastic rubbers, as well as commercially available icephobic products. The coatings currently used on wind turbines showed an adhesion to ice that is comparable to that of bare aluminium; meaning a quite high adhesion to ice. Very low adhesion values were obtained in the case of coatings consisting of viscoelastic elastomers. Additionally, the influence of surface roughness on ice adhesion has been examined. Aluminium pins were chemically and mechanically roughened and their ice adhesion was determined. These pins were further coated with a fluorine-containing coating in order to study the influence of minimized surface energies. Shear stress of those coated pins was considerably reduced, however, rough surfaces showed higher ice adhesion than smooth ones.

  11. Substrate Dependence of the Freezing Dynamics of Supercooled Water Films: A High-Speed Optical Microscope Study.

    Science.gov (United States)

    Pach, E; Rodriguez, L; Verdaguer, A

    2018-01-18

    The freezing of supercooled water films on different substrates was investigated using a high-speed camera coupled to an optical microscope, obtaining details of the freezing process not described in the literature before. We observed the two well known freezing stages (fast dendritic growth and slow freezing of the water liquid left after the dendritic growth), but we separated the process into different phenomena that were studied separately: two-dimensional dendrite growth on the substrate interface, vertical dendrite growth, formation and evolution of ice domains, trapping of air bubbles and freezing of the water film surface. We found all of these processes to be dependent on both the supercooling temperature and the substrate used. Ice dendrite (or ice front) growth during the first stage was found to be dependent on thermal properties of the substrate but could not be unequivocally related to them. Finally, for low supercooling, a direct relationship was observed between the morphology of the dendrites formed in the first stage, which depends on the substrate, and the roughness and the shape of the surface of the ice, when freezing of the film was completed. This opens the possibility of using surfaces and coatings to control ice morphology beyond anti-icing properties.

  12. Fabrication of bioinspired, self-cleaning superliquiphilic/phobic stainless steel using different pathways.

    Science.gov (United States)

    Cremaldi, Joseph; Bhushan, Bharat

    2018-02-13

    The mechanical properties, corrosion-resistance, and aesthetics of stainless steel make it one of the most important and widely used materials worldwide in the construction, food, and transportation industries just to name a few. In this paper we demonstrate how these properties can be further enhanced by changing the hydrophilic stainless steel surface to be superhydrophilic, superhydrophobic, or superliquiphobic. Creation of these functional surfaces requires hierarchical roughness and chemistry. Roughness is created using various pathways including sandblasting, chemical etching, and nanocomposite coatings. Surface chemistry is controlled using methylchlorosilane, nanoparticles in methylphenyl silicone, and fluorosilane treatment. The broad approach allows for direct comparisons of these pathways. Resulting treatments can create stainless steel surfaces with a hexadecane contact angle of 155° and tilt angle of 7-10°. Discussions of rust-avoidance and coating through condensation reactions are included. Enhanced properties of self-cleaning behavior, anti-icing behavior, wear resistance, and bending resistance are demonstrated on stainless steel 304 L. Stainless steel 430, which is more corrosion prone than stainless steel 304 L, is then used to demonstrate transferability of the treatments and corrosion resistance imparted through superliquiphobicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  14. The interaction of radio frequency electromagnetic fields with atmospheric water droplets and applications to aircraft ice prevention. Thesis

    Science.gov (United States)

    Hansman, R. J., Jr.

    1982-01-01

    The feasibility of computerized simulation of the physics of advanced microwave anti-icing systems, which preheat impinging supercooled water droplets prior to impact, was investigated. Theoretical and experimental work performed to create a physically realistic simulation is described. The behavior of the absorption cross section for melting ice particles was measured by a resonant cavity technique and found to agree with theoretical predictions. Values of the dielectric parameters of supercooled water were measured by a similar technique at lambda = 2.82 cm down to -17 C. The hydrodynamic behavior of accelerated water droplets was studied photograhically in a wind tunnel. Droplets were found to initially deform as oblate spheroids and to eventually become unstable and break up in Bessel function modes for large values of acceleration or droplet size. This confirms the theory as to the maximum stable droplet size in the atmosphere. A computer code which predicts droplet trajectories in an arbitrary flow field was written and confirmed experimentally. The results were consolidated into a simulation to study the heating by electromagnetic fields of droplets impinging onto an object such as an airfoil. It was determined that there is sufficient time to heat droplets prior to impact for typical parameter values. Design curves for such a system are presented.

  15. Recent advances in superhydrophobic nanomaterials and nanoscale systems.

    Science.gov (United States)

    Nagappan, Saravanan; Park, Sung Soo; Ha, Chang-Sik

    2014-02-01

    This review describes the recent advances in the field of superhydrophobic nanomaterials and nanoscale systems. The term superhydrophobic is defined from the surface properties when the surface shows the contact angle (CA) higher than 150 degrees. This could be well known from the lotus effect due to the non-stick and self-cleaning properties of the lotus leaf (LL). We briefly introduced the methods of preparing superhydrophobic surfaces using top-down approaches, bottom-up approaches and a combination of top-down and bottom-up approaches and various ways to prepare superhydrophobic nanomaterials and nanoscale systems using the bio-inspired materials, polymer nanocomposites, metal nanoparticles graphene oxide (GO) and carbon nanotubes (CNTs). We also pointed out the recent applications of the superhydrophobic nanomaterials and nanoscale systems in oil-spill capture and separations, self-cleaning and self-healing systems, bio-medicals, anti-icing and anti-corrosive, electronics, catalysis, textile fabrics and papers etc. The review also highlights the visionary outlook for the future development and use of the superhydrophobic nanomaterials and nanoscale systems for a wide variety of applications.

  16. Control of laser-ablated aluminum surface wettability to superhydrophobic or superhydrophilic through simple heat treatment or water boiling post-processing

    Science.gov (United States)

    Ngo, Chi-Vinh; Chun, Doo-Man

    2018-03-01

    Recently, controlling the wettability of a metallic surface so that it is either superhydrophobic or superhydrophilic has become important for many applications. However, conventional techniques require long fabrication times or involve toxic chemicals. Herein, through a combination of pulse laser ablation and simple post-processing, the surface of aluminum was controlled to either superhydrophobic or superhydrophilic in a short time of only a few hours. In this study, grid patterns were first fabricated on aluminum using a nanosecond pulsed laser, and then additional post-processing without any chemicals was used. Under heat treatment, the surface became superhydrophobic with a contact angle (CA) greater than 150° and a sliding angle (SA) lower than 10°. Conversely, when immersed in boiling water, the surface became superhydrophilic with a low contact angle. The mechanism for wettability change was also explained. The surfaces, obtained in a short time with environmentally friendly fabrication and without the use of toxic chemicals, could potentially be applied in various industry and manufacturing applications such as self-cleaning, anti-icing, and biomedical devices.

  17. Comparison and evaluation of analysis procedures for the quantification of (2-methoxyethoxy)acetic acid in urine.

    Science.gov (United States)

    B'Hymer, Clayton; Butler, Mary Ann; Cheever, Kenneth L

    2005-09-01

    Several extraction and derivatization procedures were evaluated for the quantification of (2-methoxyethoxy)acetic acid (MEAA) in urine. MEAA is a metabolite and a biomarker for exposure to 2-(2-methoxyethoxy)ethanol, a glycol ether with widespread use in various industrial applications and the specific use as an anti-icing additive in the military jet fuel formulation JP-8. Quantification of glycol ether biomarkers is an active area of analytical research. Various sample preparation procedures were evaluated: liquid-liquid extraction (LLE) using ethyl acetate yielded the highest recovery, and solid-phase extraction (SPE) gave low recovery of MEAA. Two derivatization procedures were thoroughly investigated and validated, namely, silylation of MEAA with N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide (MTBSTFA), and esterification of MEAA using ethanol. Quantification was performed by gas chromatography (GC) with a mass spectrometer as detector and using a polydimethylsiloxane (HP-1) capillary column. Deuterated 2-butoxyacetic acid (d-BAA) was used as an internal standard. Recovery studies of spiked human urine demonstrated the accuracy and precision of both procedures. The limit of detection (LOD) and other figures of merit for both derivatization procedures will be discussed in detail. Applications of these analysis procedures are also discussed.

  18. Friction of Droplets Sliding on Microstructured Superhydrophobic Surfaces.

    Science.gov (United States)

    Qiao, Shasha; Li, Shen; Li, Qunyang; Li, Bo; Liu, Kesong; Feng, Xi-Qiao

    2017-11-28

    Liquid transport is a fundamental process relevant to a wide range of applications, for example, heat transfer, anti-icing, self-cleaning, drag reduction, and microfluidic systems. For these applications, a deeper understanding of the sliding behavior of water droplets on solid surfaces is of particular importance. In this study, the frictional behavior of water droplets sliding on superhydrophobic surfaces decorated with micropillar arrays was studied using a nanotribometer. Our experiments show that surfaces with a higher solid area fraction generally exhibited larger friction, although friction might drop when the solid area fraction was close to unity. More interestingly, we found that the sliding friction of droplets was enhanced when the dimension of the microstructures increased, showing a distinct size effect. The nonmonotonic dependence of friction force on solid area fraction and the apparent size effect can be qualitatively explained by the evolution of two governing factors, that is, the true length of the contact line and the coordination degree of the depinning events. The mechanisms are expected to be generally applicable for other liquid transport processes involving the dynamic motion of a three-phase contact line, which may provide a new means of tuning liquid-transfer behavior through surface microstructures.

  19. Hierarchical Superhydrophobic Surfaces with Micropatterned Nanowire Arrays for High-Efficiency Jumping Droplet Condensation.

    Science.gov (United States)

    Wen, Rongfu; Xu, Shanshan; Zhao, Dongliang; Lee, Yung-Cheng; Ma, Xuehu; Yang, Ronggui

    2017-12-27

    Self-propelled droplet jumping on nanostructured superhydrophobic surfaces is of interest for a variety of industrial applications including self-cleaning, water harvesting, power generation, and thermal management systems. However, the uncontrolled nucleation-induced Wenzel state of condensed droplets at large surface subcooling (high heat flux) leads to the formation of unwanted large pinned droplets, which results in the flooding phenomenon and greatly degrades the heat transfer performance. In this work, we present a novel strategy to manipulate droplet behaviors during the process from the droplet nucleation to growth and departure through a combination of spatially controlling initial nucleation for mobile droplets by closely spaced nanowires and promoting the spontaneous outward movement of droplets for rapid removal using micropatterned nanowire arrays. Through the optical visualization experiments and heat transfer tests, we demonstrate greatly improved condensation heat transfer characteristics on the hierarchical superhydrophobic surface including the higher density of microdroplets, smaller droplet departure radius, 133% wider range of surface subcooling for droplet jumping, and 37% enhancement in critical heat flux for jumping droplet condensation, compared to the-state-of-art jumping droplet condensation on nanostructured superhydrophobic surfaces. The excellent water repellency of such hierarchical superhydrophobic surfaces can be promising for many potential applications, such as anti-icing, antifogging, water desalination, and phase-change heat transfer.

  20. An Experimental Investigation on the Impingement of Water Droplets onto Superhydrophobic Surfaces Pertinent to Aircraft Icing Phenomena

    Science.gov (United States)

    Li, Haixing; Waldman, Rye; Hu, Hui

    2015-11-01

    Superhydrophobic surfaces have self-cleaning properties that make them promising candidates as anti-icing solutions for various engineering applications, including aircraft anti-/de-icing. However, under sufficient external pressure, the liquid water on the surface can transition to a wetted state, defeating the self-cleaning properties of superhydrpphobic surfaces. In the present study, an experimental investigation was conducted to quantify the transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties under different environmental icing conditions. The experiments were performed in the Icing Research Tunnel of Iowa State University (IRT-ISU) with a NACA0012 airfoil. In addition to using a high-speed imaging system to reveal transient behavior of water droplets impinging onto test surfaces with different hydrophobicity properties, an IR thermometry was also used to quantify the unsteady heat transfer and dynamic phase changing process within the water droplets after impingement onto the test plates with different frozen cold temperatures. The high-speed imaging results were correlated with the quantitatively temperature measurements to elucidate underlying physics in order to gain further insight into the underlying physics pertinent to aircraft icing phenomena. The research work is partially supported by NASA with grant number NNX12AC21A and National Science Foundation under award numbers of CBET-1064196 and CBET-1435590.

  1. Coalescence-induced nanodroplet jumping

    Science.gov (United States)

    Cha, Hyeongyun; Xu, Chenyu; Sotelo, Jesus; Chun, Jae Min; Yokoyama, Yukihiro; Enright, Ryan; Miljkovic, Nenad

    2016-10-01

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years due to the ability of such surfaces to shed microscale water droplets via coalescence-induced droplet jumping, resulting in heat transfer, anti-icing, and self-cleaning performance enhancement. Here we report the coalescence-induced removal of water nanodroplets (R ≈500 nm ) from superhydrophobic carbon nanotube (CNT) surfaces. The two-droplet coalescence time is measured for varying droplet Ohnesorge numbers, confirming that coalescence prior to jumping is governed by capillary-inertial dynamics. By varying the conformal hydrophobic coating thickness on the CNT surface, the minimum jumping droplet radius is shown to increase with increasing solid fraction and decreasing apparent advancing contact angle, allowing us to explore both hydrodynamic limitations stemming from viscous dissipation and surface adhesion limitations. We find that, even for the smallest nanostructure length scale (≤100 nm) and lowest surface adhesions, nonideal surface interactions and the evolved droplet morphology play defining roles in limiting the minimum size for jumping on real surfaces. The outcomes of this work demonstrate the ability to passively shed nanometric water droplets, which has the potential to further increase the efficiency of systems that can harness jumping droplets for a wide range of energy and water applications.

  2. Nanoscale-Agglomerate-Mediated Heterogeneous Nucleation.

    Science.gov (United States)

    Cha, Hyeongyun; Wu, Alex; Kim, Moon-Kyung; Saigusa, Kosuke; Liu, Aihua; Miljkovic, Nenad

    2017-12-13

    Water vapor condensation on hydrophobic surfaces has received much attention due to its ability to rapidly shed water droplets and enhance heat transfer, anti-icing, water harvesting, energy harvesting, and self-cleaning performance. However, the mechanism of heterogeneous nucleation on hydrophobic surfaces remains poorly understood and is attributed to defects in the hydrophobic coating exposing the high surface energy substrate. Here, we observe the formation of high surface energy nanoscale agglomerates on hydrophobic coatings after condensation/evaporation cycles in ambient conditions. To investigate the deposition dynamics, we studied the nanoscale agglomerates as a function of condensation/evaporation cycles via optical and field emission scanning electron microscopy (FESEM), microgoniometric contact angle measurements, nucleation statistics, and energy dispersive X-ray spectroscopy (EDS). The FESEM and EDS results indicated that the nanoscale agglomerates stem from absorption of sulfuric acid based aerosol particles inside the droplet and adsorption of volatile organic compounds such as methanethiol (CH 3 SH), dimethyl disulfide (CH 3 SSCH), and dimethyl trisulfide (CH 3 SSSCH 3 ) on the liquid-vapor interface during water vapor condensation, which act as preferential sites for heterogeneous nucleation after evaporation. The insights gained from this study elucidate fundamental aspects governing the behavior of both short- and long-term heterogeneous nucleation on hydrophobic surfaces, suggest previously unexplored microfabrication and air purification techniques, and present insights into the challenges facing the development of durable dropwise condensing surfaces.

  3. The Effect of Different Coupling Agents on Nano-ZnO Materials Obtained via the Sol-Gel Process.

    Science.gov (United States)

    Purcar, Violeta; Şomoghi, Raluca; Niţu, Sabina Georgiana; Nicolae, Cristian-Andi; Alexandrescu, Elvira; Gîfu, Ioana Cătălina; Gabor, Augusta Raluca; Stroescu, Hermine; Ianchiş, Raluca; Căprărescu, Simona; Cinteză, Ludmila Otilia

    2017-12-12

    Hybrid nanomaterials based on zinc oxide were synthesized via the sol-gel method, using different silane coupling agents: (3-glycidyloxypropyl)trimethoxysilane (GPTMS), phenyltriethoxysilane (PhTES), octyltriethoxysilane (OTES), and octadecyltriethoxysilane (ODTES). Morphological properties and the silane precursor type effect on the particle size were investigated using dynamic light scattering (DLS), environmental scanning electron microscopy (ESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The bonding characteristics of modified ZnO materials were investigated using Fourier transform infrared spectroscopy (FTIR). The final solutions were deposited on metallic substrate (aluminum) in order to realize coatings with various wettability and roughness. The morphological studies, obtained by ESEM and TEM analysis, showed that the sizes of the ZnO nanoparticles are changed as function of silane precursor used in synthesis. The thermal stability of modified ZnO materials showed that the degradation of the alkyl groups takes place in the 300-500 °C range. Water wettability study revealed a contact angle of 142 ± 5° for the surface covered with ZnO material modified with ODTES and showed that the water contact angle increases as the alkyl chain from the silica precursor increases. These modified ZnO materials, therefore, can be easily incorporated in coatings for various applications such as anti-corrosion and anti-icing.

  4. Bioinspired, roughness-induced, water and oil super-philic and super-phobic coatings prepared by adaptable layer-by-layer technique

    Science.gov (United States)

    Brown, Philip S.; Bhushan, Bharat

    2015-01-01

    Coatings with specific surface wetting properties are of interest for anti-fouling, anti-fogging, anti-icing, self-cleaning, anti-smudge, and oil-water separation applications. Many previous bioinspired surfaces are of limited use due to a lack of mechanical durability. Here, a layer-by-layer technique is utilized to create coatings with four combinations of water and oil repellency and affinity. An adapted layer-by-layer approach is tailored to yield specific surface properties, resulting in a durable, functional coating. This technique provides necessary flexibility to improve substrate adhesion combined with desirable surface chemistry. Polyelectrolyte binder, SiO2 nanoparticles, and silane or fluorosurfactant layers are deposited, combining surface roughness and necessary chemistry to result in four different coatings: superhydrophilic/superoleophilic, superhydrophobic/superoleophilic, superhydrophobic/superoleophobic, and superhydrophilic/superoleophobic. The superoleophobic coatings display hexadecane contact angles >150° with tilt angles superhydrophobic coatings display water contact angles >160° with tilt angles hydrophobic properties, whilst others mix and match oil and water repellency and affinity. Coating durability was examined through the use of micro/macrowear experiments. These coatings display transparency acceptable for some applications. Fabrication via this novel combination of techniques results in durable, functional coatings displaying improved performance compared to existing work where either durability or functionality is compromised. PMID:26353971

  5. Superhydrophobic nanocoatings: from materials to fabrications and to applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang

    2015-04-14

    Superhydrophobic nanocoatings, a combination of nanotechnology and superhydrophobic surfaces, have received extraordinary attention recently, focusing both on novel preparation strategies and on investigations of their unique properties. In the past few decades, inspired by the lotus leaf, the discovery of nano- and micro-hierarchical structures has brought about great change in the superhydrophobic nanocoatings field. In this paper we review the contributions to this field reported in recent literature, mainly including materials, fabrication and applications. In order to facilitate comparison, materials are divided into 3 categories as follows: inorganic materials, organic materials, and inorganic-organic materials. Each kind of materials has itself merits and demerits, as well as fabrication techniques. The process of each technique is illustrated simply through a few classical examples. There is, to some extent, an association between various fabrication techniques, but many are different. So, it is important to choose appropriate preparation strategies, according to conditions and purposes. The peculiar properties of superhydrophobic nanocoatings, such as self-cleaning, anti-bacteria, anti-icing, corrosion resistance and so on, are the most dramatic. Not only do we introduce application examples, but also try to briefly discuss the principle behind the phenomenon. Finally, some challenges and potential promising breakthroughs in this field are also succinctly highlighted.

  6. Test of prototype liquid-water-content meter for aircraft use

    Science.gov (United States)

    Gerber, Hermann E.

    1993-01-01

    This report describes the effort undertaken to meet the objectives of National Science Foundation Grant ATM-9207345 titled 'Test of Prototype Liquid-Water-Content Meter for Aircraft Use.' Three activities were proposed for testing the new aircraft instrument, PVM-100A: (1) Calibrate the PVM-100A in a facility where the liquid-water-content (LWC) channel, and the integrated surface area channel (PSA) could be compared to standard means for LWC and PSA measurements. Scaling constant for the channels were to be determined in this facility. The fog/wind tunnel at ECN, Petten, The Netherlands was judged the most suitable facility for this effort. (2) Expose the PVM-100A to high wind speeds similar to those expected on research aircraft, and test the anti-icing heaters on the PVM-100A under typical icing conditions expected in atmospheric clouds. The high-speed icing tunnel at NRC, Ottawa, Canada was to be utilized. (3) Operate the PVM-100A on an aircraft during cloud penetrations to determine its stability and practicality for such measurements. The C-131A aircraft of the University of Washington was the aircraft of opportunity for these-tests, which were to be conducted during the 4-week Atlantic Stratocumulus Transition Experiment (ASTEX) in June of 1992.

  7. Perfluoropolyether-Impregnated Mesoporous Alumina Composites Overcome the Dewetting-Tribological Properties Trade-Off.

    Science.gov (United States)

    Rowthu, Sriharitha; Hoffmann, Patrik

    2018-03-28

    Conventional omniphobic surfaces suffer from wear-sensitivity due to soft apolar coatings or substrates and protruding surface features that are eroded even for mild abrasion treatments, leading to the loss of dewetting properties after wear. Evidently, there was a trade-off between dewetting and tribological properties. Here, we show the establishment of self-healing slippery properties post severe abrasion by utilizing perfluoropolyether-impregnated mesoporous Al 2 O 3 (MPA) composites. The hard polar alumina matrix provides the optimal tribological properties, and the liquid lubricant in the porous network contributes to both tribological and self-healing dewetting properties. These composites sustained normal pressures up to 350 MPa during reciprocating sliding contacts. The severely abraded surfaces are capable of self-replenishing in ambient environment, driven by capillarity and surface diffusion processes, and regained their slippery properties toward water and hexadecane after 15 h of self-healing. Eventually, a dewetting-tribology diagram has been introduced to show different regimes, namely-optimal slippery properties, optimal tribological properties, and a mixed regime). We found out that the microstructural expression [Formula: see text] is a robust guiding tool to predict the regime of interest. This dewetting-tribological diagram may be marked as an inception to designing abrasion-resistant slippery liquid impregnated composites for overcoming the dewetting tribological properties trade-off. Such surfaces may potentially find applications in paint industries and as anti-icing surfaces.

  8. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    Science.gov (United States)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  9. The freezing process of continuously sprayed water droplets on the superhydrophobic silicone acrylate resin coating surface

    Science.gov (United States)

    Hu, Jianlin; Xu, Ke; Wu, Yao; Lan, Binhuan; Jiang, Xingliang; Shu, Lichun

    2014-10-01

    This study conducted experiments on freezing process of water droplets on glass slides covered with superhydrophobic coatings under the continuous water spray condition in the artificial climatic chamber which could simulate low temperature and high humidity environments. The freezing mechanism and freezing time of water droplets under the condition of continuous spray were observed by the microscope and were compared with those of the single static droplet. Then, differences of freezing process between continuously sprayed droplets and single static droplet were analyzed. Furthermore, the effects of static contact angle (CA), contact angle hysteresis (CAH) and roughness of the superhydrophobic coating surface on the freezing time of continuously sprayed droplets were explored. Results show that the freezing process of the continuously sprayed droplets on the superhydrophobic coating started with the homogeneous nucleation at gas-liquid interfaces. In addition, the temperature difference between the location near the solid-liquid interface and the location near the gas-liquid interface was the key factor that influenced the ice crystallization mechanism of water droplets. Moreover, with the larger CA, the smaller CAH and the greater roughness of the surface, droplets were more likely to roll down the surface and the freezing duration on the surface was delayed. Based on the findings, continuous water spray is suggested in the anti-icing superhydrophobic coatings research.

  10. A subchronic dermal exposure study of diethylene glycol monomethyl ether and ethylene glycol monomethyl ether in the male guinea pig.

    Science.gov (United States)

    Hobson, D W; D'Addario, A P; Bruner, R H; Uddin, D E

    1986-02-01

    Diethylene glycol monomethyl ether (DEGME) has been selected as a replacement anti-icing additive for ethylene glycol monomethyl ether (EGME) in Navy jet aircraft fuel. This experiment was performed to determine whether DEGME produced similar toxicity to EGME following dermal exposure. Male guinea pigs were dermally exposed to 1.00, 0.20, 0.04, or 0 (control) g/kg/day DEGME for 13 weeks, 5 days/week, 6 hr/day. Another group of animals was similarly exposed to 1.00 g/kg/day EGME. Body weights as well as testicular and splenic weights were reduced as a result of exposure to EGME, DEGME-exposed animals exhibited decreased splenic weight in the high- and medium-dose (1.00 and 0.20 g/kg/day) exposure groups only. Hematologic changes in EGME-exposed animals included mild anemia with increased erythrocytic mean corpuscular volumes and a lymphopenia with increased neutrophils. Similar hematological changes were not observed in any animals exposed to DEGME. Serum creatine kinase activity was increased in animals exposed to EGME, and serum lactate dehydrogenase activity was increased in EGME and 1.00 g/kg/day DEGME-exposed animals. In general, DEGME produced minimal toxicological changes following dermal exposure, whereas the toxicological changes observed following similar exposure to EGME were much more profound.

  11. A Robust Epoxy Resins @ Stearic Acid-Mg(OH)2 Micronanosheet Superhydrophobic Omnipotent Protective Coating for Real-Life Applications.

    Science.gov (United States)

    Si, Yifan; Guo, Zhiguang; Liu, Weimin

    2016-06-29

    Superhydrophobic coating has extremely high application value and practicability. However, some difficult problems such as weak mechanical strength, the need for expensive toxic reagents, and a complex preparation process are all hard to avoid, and these problems have impeded the superhydrophobic coating's real-life application for a long time. Here, we demonstrate one kind of omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating via a simple antideposition route and one-step superhydrophobization process. The whole preparation process is facile, and expensive toxic reagents needed. This omnipotent coating can be applied on any solid substrate with great waterproof ability, excellent mechanical stability, and chemical durability, which can be stored in a realistic environment for more than 1 month. More significantly, this superhydrophobic coating also has four protective abilities, antifouling, anticorrosion, anti-icing, and flame-retardancy, to cope with a variety of possible extreme natural environments. Therefore, this omnipotent epoxy resins @ stearic acid-Mg(OH)2 superhydrophobic coating not only satisfies real-life need but also has great application potential in many respects.

  12. Research on the icephobic properties of fluoropolymer-based materials

    Science.gov (United States)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  13. Aero-thermal optimization of in-flight electro-thermal ice protection systems in transient de-icing mode

    International Nuclear Information System (INIS)

    Pourbagian, Mahdi; Habashi, Wagdi G.

    2015-01-01

    Highlights: • We introduce an efficient methodology for the optimization of a de-icing system. • We can replace the expensive CHT simulation by ROM without loosing much accuracy. • We propose different criteria affecting the energy usage and aerodynamic performance. • These criteria can significantly improve the performance of the de-icing system. - Abstract: Even if electro-thermal ice protection systems (IPS) consume less energy when operating in de-icing mode than in anti-icing mode, they still need to be optimized for energy usage. The optimization, however, should also take into account the effect of the de-icing system on the aerodynamic performance. The present work offers an optimization framework in which both thermal and aerodynamic viewpoints are taken into account in formulating various objective and constraint functions by considering the energy consumption, the thickness, the volume, the shape and the location of the accreted ice on the surface as the key parameters affecting the energy usage and the aerodynamic performance. The design variables include the power density and the activation time of the electric heating blankets. A derivative-free technique, called the mesh adaptive direct search (MADS) method, is used to carry out the optimization process, which would normally need a large number of unsteady conjugate heat transfer (CHT) calculations for the IPS simulation. To avoid such prohibitive computations, reduced-order modeling (ROM) is used to construct simplified low-dimensional CHT models. The approach is illustrated through several test cases, in which different combinations of objective and constraint functions, design variables and cycling sequence patterns are examined. In these test cases, the energy consumption is significantly reduced compared to the experiments by improving the spatial and temporal distribution of the thermal energy usage. The results show the benefits of the approach in bringing energy, safety and

  14. Sustainable Systems for exploration, stays with increased duration in LEO and Earth application -an overview about life support activities

    Science.gov (United States)

    Slenzka, Klaus; Duenne, Matthias

    Solar system exploration with extended stays in totally closed habitats far away from Earth as well as longer stays in LEO requires intensive preparatory activities. Activities supporting life in a more or less close meaning are essential in this context -on a scientific as well as on a technical level. These needed activities are supporting life by e.g.: i) increasing knowledge about the impact of single and combined effects of different exploration related environmental conditions (e. g. microgravity, radiation, reduced pressure and temperature, lunar soil etc.) on biological systems. This is needed to enable safe life of humans itself as well as safe operating of required bioregenerative life support systems. Thus, different human cell types as well as representatives of bioregenerative life support system protagonists (algae, bacteria as well as higher organisms) needs to be addressed. ii) provision of required consumables (oxygen, food, energy equivalents etc.) on site, mainly via bioregenerative life support systems, Bio-ISRU-units etc. Preparation is needed on a scientific as well as technological level. iii) ensuring reduced negative effects on humans (and partially also equipment), which could be caused by living in a closed habitat in general (and thus being not space related per se): E. g. detection systems for the quality of water and air, antimicrobial and selfhealing as well as anti-icing materials without dangerous hazard substances, psychological health enhancing components etc. Referring payloads for above mentioned investigations (scientific evaluation and technology demonstration) must be developed. Extended stays and extended closure in habitats without the possibility of material transport into and out of the system are leading to the necessity of more autonomous technologies and sustainable processes. Latter one will rely mainly on biological processes and structures, which increases additionally the necessity of an intensive scientific and

  15. Pre-feasibility analysis of wind energy for Inuvialuit region in Northwest Territories

    International Nuclear Information System (INIS)

    Chauhan, B.; Weis, T.; Pinard, J.P.

    2003-03-01

    A study examining opportunities and barriers for wind energy development in 4 communities in the Northwest Territories was presented. A review of previous studies examining the feasibility of wind energy in this region was also provided, as well as technical and socio-economic analyses on the displacement of diesel fuels by wind energy. Details of site visits and public meetings to discuss energy concerns were included. Four key locations for installing wind monitoring stations were determined. Interconnection issues and opportunities for wind energy into the local power grids were discussed. Geographic features of the various communities, as well as energy consumption details and wind climates were described. It was noted that there are special considerations for wind turbines in the North, and issues concerning icing and anti-icing technologies were examined. It was suggested that medium-scale wind turbines were the most appropriate size for the Inuvialuit region, due to low costs and ease of installation and redundancy. RETScreen software was used to develop an economic overview of the opportunities for wind energy systems in the 4 communities. Historical wind speed data collected at airports by Environment Canada was used in this analysis. Low and high penetration systems were evaluated. Results of the analysis indicated that wind generated electricity does not appear to be economically viable when compared solely to the displaced cost of diesel fuel. However, environmental factors make it a viable technology. It was concluded that there is potential for wind energy developments in the region, provided that sites are carefully selected. Cost estimates for the proposed wind-monitoring program were also included. 13 tabs., 15 figs

  16. Inhibition of Condensation Frosting by Arrays of Hygroscopic Antifreeze Drops.

    Science.gov (United States)

    Sun, Xiaoda; Damle, Viraj G; Uppal, Aastha; Linder, Rubin; Chandrashekar, Sriram; Mohan, Ajay R; Rykaczewski, Konrad

    2015-12-29

    The formation of frost and ice can have negative impacts on travel and a variety of industrial processes and is typically addressed by dispensing antifreeze substances such as salts and glycols. Despite the popularity of this anti-icing approach, some of the intricate underlying physical mechanisms are just being unraveled. For example, recent studies have shown that in addition to suppressing ice formation within its own volume, an individual salt saturated water microdroplet forms a region of inhibited condensation and condensation frosting (RIC) in its surrounding area. This occurs because salt saturated water, like most antifreeze substances, is hygroscopic and has water vapor pressure at its surface lower than water saturation pressure at the substrate. Here, we demonstrate that for macroscopic drops of propylene glycol and salt saturated water, the absolute RIC size can remain essentially unchanged for several hours. Utilizing this observation, we demonstrate that frost formation can be completely inhibited in-between microscopic and macroscopic arrays of propylene glycol and salt saturated water drops with spacing (S) smaller than twice the radius of the RIC (δ). Furthermore, by characterizing condensation frosting dynamics around various hygroscopic drop arrays, we demonstrate that they can delay complete frosting over of the samples 1.6 to 10 times longer than films of the liquids with equivalent volume. The significant delay in onset of ice nucleation achieved by dispensing propylene glycol in drops rather than in films is likely due to uniform dilution of the drops driven by thermocapillary flow. This transport mode is absent in the films, leading to faster dilution, and with that facilitated homogeneous nucleation, near the liquid-air interface.

  17. Roughness-Based Superhydrophobic Surfaces: Fundamentals and Future Directions

    Science.gov (United States)

    Patankar, Neelesh

    2011-11-01

    Superhydrophobicity of rough surfaces has attracted global interest through the past decade. There are naturally occurring instances of such surfaces, e.g., lotus leaves, which led to the popular term ``lotus effect.'' Numerous applications in wide ranging areas such as drag reduction, self-cleaning, heat exchangers, energy conversion, condensation, anti-icing, textile, desalination, etc., are being explored by researchers worldwide. The signature configuration for superhydrophobicity has been ``bead-like'' drops on rough surfaces that roll-off easily. This becomes possible if the liquid does not impale the roughness grooves, and if the contact angle hysteresis is low. Finding appropriate surface roughness is therefore necessary. A thermodynamic framework to enable analysis of this problem will be presented. It will be noted that the success of rough superhydrophobic substrates relies on the presence of gas pockets in the roughness grooves underneath the liquid. These gas pockets could be those of air from the surrounding environment. Current design strategies rely on the availability of air. However, if the rough substrates are fully submerged in the liquid then the trapped air in the roughness grooves may not be sustained. A design approach based on sustaining a vapor phase of the liquid itself in the roughness grooves, instead of relying on the presence of air, will be presented. The resulting surfaces, referred to as vapor stabilizing substrates, are deemed to be robust against wetting transition even if no air is present. Applications of this approach include low drag surfaces, nucleate boiling at dramatically low superheats, among others. The concept can be generalized to other transitions on the phase diagram, thus enabling the design of rough surfaces for phase manipulation in general.

  18. High-Speed Imaging of a Water Droplet Impacting a Super Cold Surface

    KAUST Repository

    Khaled, Narimane

    2016-08-01

    Frost formation is of a major research interest as it can affect many industrial processes. Frost appears as a thin deposit of ice crystals when the temperature of the surface is below the freezing point of the liquid. The objective of this research is to study icing with hope to propose new anti-icing and deicing methods. In the beginning of the research, cracking of the ice layer was observed when a deionized water droplet impacts a ?50 oC cooled sphere surface that is in contact with dry ice. To further investigate the cracks occurrence, multiple experiments were conducted. It was observed that the sphere surface temperature and droplet temperature (ranges from 10-80 oC) have no effect on the crack formation. On the other hand, it was observed that formation of a thin layer of frost on the sphere before the drop impact leads the lateral cracking of the ice. Thus, attempts to reproduce the cracks on clean super cold sphere surfaces were made using scratched and sandblasted spheres as well as superhydrophobized and polymer particle coated spheres. Furthermore, innovative methods were tried to initiate the cracks by placing epoxy glue bumps and ice-islands coatings on the surface of the spheres. All of these attempts to reproduce the crack formation without the presence of frost, failed. Nonetheless, the adding of isolated frost on the sphere surfaces always leads to the crack formation. Generally, frost forms on the small spheres faster than it does on the bigger ones. Additionally, the cold water droplet produces thicker water and ice layer compared to a hot water droplet; and the smaller the sphere the larger its water and ice layer thicknesses.

  19. Spinoff 2012

    Science.gov (United States)

    2013-01-01

    Topics covered include: Water Treatment Technologies Inspire Healthy Beverages; Dietary Formulas Fortify Antioxidant Supplements; Rovers Pave the Way for Hospital Robots; Dry Electrodes Facilitate Remote Health Monitoring; Telescope Innovations Improve Speed, Accuracy of Eye Surgery; Superconductors Enable Lower Cost MRI Systems; Anti-Icing Formulas Prevent Train Delays; Shuttle Repair Tools Automate Vehicle Maintenance; Pressure-Sensitive Paints Advance Rotorcraft Design Testing; Speech Recognition Interfaces Improve Flight Safety; Polymers Advance Heat Management Materials for Vehicles; Wireless Sensors Pinpoint Rotorcraft Troubles; Ultrasonic Detectors Safely Identify Dangerous, Costly Leaks; Detectors Ensure Function, Safety of Aircraft Wiring; Emergency Systems Save Tens of Thousands of Lives; Oxygen Assessments Ensure Safer Medical Devices; Collaborative Platforms Aid Emergency Decision Making; Space-Inspired Trailers Encourage Exploration on Earth; Ultra-Thin Coatings Beautify Art; Spacesuit Materials Add Comfort to Undergarments; Gigapixel Images Connect Sports Teams with Fans; Satellite Maps Deliver More Realistic Gaming; Elemental Scanning Devices Authenticate Works of Art; Microradiometers Reveal Ocean Health, Climate Change; Sensors Enable Plants to Text Message Farmers; Efficient Cells Cut the Cost of Solar Power; Shuttle Topography Data Inform Solar Power Analysis; Photocatalytic Solutions Create Self-Cleaning Surfaces; Concentrators Enhance Solar Power Systems; Innovative Coatings Potentially Lower Facility Maintenance Costs; Simulation Packages Expand Aircraft Design Options; Web Solutions Inspire Cloud Computing Software; Behavior Prediction Tools Strengthen Nanoelectronics; Power Converters Secure Electronics in Harsh Environments; Diagnostics Tools Identify Faults Prior to Failure; Archiving Innovations Preserve Essential Historical Records; Meter Designs Reduce Operation Costs for Industry; Commercial Platforms Allow Affordable Space Research

  20. Focal Plane Shift Imaging for the Analysis of Dynamic Wetting Processes.

    Science.gov (United States)

    Cha, Hyeongyun; Chun, Jae Min; Sotelo, Jesus; Miljkovic, Nenad

    2016-09-27

    Droplet-surface interactions are common to a plethora of natural and industrial processes due to their ability to rapidly exchange energy, mass, and momentum. Droplets are particularly of interest due to their large surface-to-volume ratios and hence enhanced transport properties. For example, coalescence-induced droplet jumping on superhydrophobic surfaces has recently received much attention for its potential to enhance heat transfer, anti-icing, and self-cleaning performance by passively shedding microscale water droplets. To study droplet jumping, researchers typically use a two-camera setup to observe the out-of-plane droplet motion, with limited success due to the inability to resolve the depth dimension using two orthogonal cameras. Here we develop a single-camera technique capable of providing three-dimensional (3D) information through the use of focal plane manipulation, termed "focal plane shift imaging" (FPSI). We used FPSI to study the jumping process on superhydrophobic surfaces having a wide range of structure length scales (10 nm droplet radii (3 μm droplet mismatch, multidroplet coalescence, and multihop coalescence on droplet jumping speed. Furthermore, we were able to resolve the full 3D trajectory of multiple jumping events, to show that, unlike previously theorized, the departure angle during droplet jumping is not a function of droplet mismatch or number of droplets coalescing prior to jumping. Rather, angular deviation arises due to in-plane motion postcoalescence governed by droplet pinning. The outcomes of this work both elucidate key fundamental aspects governing droplet jumping and provide a powerful imaging platform for the study of dynamic droplet processes that result in out-of-plane motion such as sliding, coalescence, or impact.

  1. Enhanced Jumping-Droplet Departure.

    Science.gov (United States)

    Kim, Moon-Kyung; Cha, Hyeongyun; Birbarah, Patrick; Chavan, Shreyas; Zhong, Chen; Xu, Yuehan; Miljkovic, Nenad

    2015-12-15

    Water vapor condensation on superhydrophobic surfaces has received much attention in recent years because of its ability to shed water droplets at length scales 3 decades smaller than the capillary length (∼1 mm) via coalescence-induced droplet jumping. Jumping-droplet condensation has been demonstrated to enhance heat transfer, anti-icing, and self-cleaning efficiency and is governed by the theoretical inertial-capillary scaled jumping speed (U). When two droplets coalesce, the experimentally measured jumping speed (Uexp) is fundamentally limited by the internal fluid dynamics during the coalescence process (Uexp 2) coalescence as an avenue to break the two-droplet speed limit. Using side-view and top-view high-speed imaging to study more than 1000 jumping events on a copper oxide nanostructured superhydrophobic surface, we verify that droplet jumping occurs as a result of three fundamentally different mechanisms: (1) coalescence between two droplets, (2) coalescence among more than two droplets (multidroplet), and (3) coalescence between one or more droplets on the surface and a returning droplet that has already departed (multihop). We measured droplet-jumping speeds for a wide range of droplet radii (5-50 μm) and demonstrated that while the two-droplet capillary-to-inertial energy conversion mechanism is not identical to that of multidroplet jumping, speeds above the theoretical two-droplet limit (>0.23U) can be achieved. However, we discovered that multihop coalescence resulted in drastically reduced jumping speeds (≪0.23U) due to adverse momentum contributions from returning droplets. To quantify the impact of enhanced jumping speed on heat-transfer performance, we developed a condensation critical heat flux model to show that modest jumping speed enhancements of 50% using multidroplet jumping can enhance performance by up to 40%. Our results provide a starting point for the design of enhanced-performance jumping-droplet surfaces for industrial

  2. TEMPORARY TENSILE STRENGTH OF WELDED STRUCTURES MADE FROM DOMESTIC AND FOREIGN MATERIALS

    Directory of Open Access Journals (Sweden)

    M. A. Vasechkin

    2015-01-01

    Full Text Available When welding domestic and imported alloys with argonarc welding, unexplored material properties are formed in the weld, there is no information about the mechanical properties of welded joints, their continuity and uniformity. One of the most important criteria for working capacity of any construction is a strength of the whole structure and its individual elements. As a comparative characteristics that evaluates the strength of the materials we use tensile strength, that is, the tension corresponding to the greatest efforts preceding the rupture of the sample under static mechanical tests. Tests to identify the ultimate tensile strength of sheet welded joints were carried out on a universal testing machine Inspekt-50. In the course of studies there was defined tensile strength of welded constructions, obtained by fusing domestic and imported sheet hire materials. Tensile strength of the welded structure is determined by the characteristics of the least durable material in a pair of connected, which corresponds to conclusions made in the analytical review. When testing it was observed that the destruction of all samples made of combination of dissimilar materials occurred at the base of the weakest metal in the combination. The destruction of the weld was not fixed. The results obtained can be used in the design of welded constructions composed of parts made of domestic and imported materials. However, it is impossible to judge the working capacity of welded pipes of integrated air conditioning and anti-icing aircraft systems by tensile strength only. Subsequently, it is necessary to carry out tests on low-cycle fatigue and assess the strength of the welded ring joints under the action of static and pulsating internal pressure.

  3. Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review.

    Science.gov (United States)

    Dimitrakellis, Panagiotis; Gogolides, Evangelos

    2018-03-29

    Hydrophobic surfaces are often used to reduce wetting of surfaces by water. In particular, superhydrophobic surfaces are highly desired for several applications due to their exceptional properties such as self-cleaning, anti-icing, anti-friction and others. Such surfaces can be prepared via numerous methods including plasma technology, a dry technique with low environmental impact. Atmospheric pressure plasma (APP) has recently attracted significant attention as lower-cost alternative to low-pressure plasmas, and as a candidate for continuous rather than batch processing. Although there are many reviews on water-repellent surfaces, and a few reviews on APP technology, there are hardly any review works on APP processing for hydrophobic and superhydrohobic surface fabrication, a topic of high importance in nanotechnology and interface science. Herein, we critically review the advances on hydrophobic and superhydrophobic surface fabrication using APP technology, trying also to give some perspectives in the field. After a short introduction to superhydrophobicity of nanostructured surfaces and to APPs we focus this review on three different aspects: (1) The atmospheric plasma reactor technology used for fabrication of (super)hydrophobic surfaces. (2) The APP process for hydrophobic surface preparation. The hydrophobic surface preparation processes are categorized methodologically as: a) activation, b) grafting, c) polymerization, d) roughening and hydrophobization. Each category includes subcategories related to different precursors used. (3) One of the most important sections of this review concerns superhydrophobic surfaces fabricated using APP. These are methodologically characterized as follows: a) single step processes where micro-nano textured topography and low surface energy coating are created at the same time, or b) multiple step processes, where these steps occur sequentially in or out of the plasma. We end the review with some perspectives in the field. We

  4. Dual-Functional Superhydrophobic Textiles with Asymmetric Roll-Down/Pinned States for Water Droplet Transportation and Oil-Water Separation.

    Science.gov (United States)

    Su, Xiaojing; Li, Hongqiang; Lai, Xuejun; Zhang, Lin; Liao, Xiaofeng; Wang, Jing; Chen, Zhonghua; He, Jie; Zeng, Xingrong

    2018-01-31

    Superhydrophobic surfaces with tunable adhesion from lotus-leaf to rose-petal states have generated much attention for their potential applications in self-cleaning, anti-icing, oil-water separation, microdroplet transportation, and microfluidic devices. Herein we report a facile magnetic-field-manipulation strategy to fabricate dual-functional superhydrophobic textiles with asymmetric roll-down/pinned states on the two surfaces of the textile simultaneously. Upon exposure to a static magnetic field, fluoroalkylsilane-modified iron oxide (F-Fe 3 O 4 ) nanoparticles in polydimethylsiloxane (PDMS) moved along the magnetic field to construct discrepant hierarchical structures and roughnesses on the two sides of the textile. The positive surface (closer to the magnet, or P-surface) showed a water contact angle up to 165°, and the opposite surface (or O-surface) had a water contact angle of 152.5°. The P-surface where water droplets easily slid off with a sliding angle of 7.5° appeared in the "roll-down" state as Cassie mode, while the O-surface was in the "pinned" state as Wenzel mode, where water droplets firmly adhered even at vertical (90°) and inverted (180°) angles. The surface morphology and wetting mode were adjustable by varying the ratios of F-Fe 3 O 4 nanoparticles and PDMS. By taking advantage of the asymmetric adhesion behaviors, the as-fabricated superhydrophobic textile was successfully applied in no-loss microdroplet transportation and oil-water separation. Our method is simple and cost-effective. The fabricated textile has the characteristics of superhydrophobicity, magnetic responsiveness, excellent chemical stability, adjustable surface morphology, and controllable adhesion. Our findings conceivably stand out as a new tool to fabricate functional superhydrophobic materials with asymmetric surface properties for various potential applications.

  5. Biomimetic polymeric superhydrophobic surfaces and nanostructures: from fabrication to applications.

    Science.gov (United States)

    Wen, Gang; Guo, ZhiGuang; Liu, Weimin

    2017-03-09

    Numerous research studies have contributed to the development of mature superhydrophobic systems. The fabrication and applications of polymeric superhydrophobic surfaces have been discussed and these have attracted tremendous attention over the past few years due to their excellent properties. In general, roughness and chemical composition, the two most crucial factors with respect to surface wetting, provide the basic criteria for yielding polymeric superhydrophobic materials. Furthermore, with their unique properties and flexible configurations, polymers have been one of the most efficient materials for fabricating superhydrophobic materials. This review aims to summarize the most recent progress in polymeric superhydrophobic surfaces. Significantly, the fundamental theories for designing these materials will be presented, and the original methods will be introduced, followed by a summary of multifunctional superhydrophobic polymers and their applications. The principles of these methods can be divided into two categories: the first involves adding nanoparticles to a low surface energy polymer, and the other involves combining a low surface energy material with a textured surface, followed by chemical modification. Notably, surface-initiated radical polymerization is a versatile method for a variety of vinyl monomers, resulting in controlled molecular weights and low polydispersities. The surfaces produced by these methods not only possess superhydrophobicity but also have many applications, such as self-cleaning, self-healing, anti-icing, anti-bioadhesion, oil-water separation, and even superamphiphobic surfaces. Interestingly, the combination of responsive materials and roughness enhances the responsiveness, which allows the achievement of intelligent transformation between superhydrophobicity and superhydrophilicity. Nevertheless, surfaces with poor physical and chemical properties are generally unable to withstand the severe conditions of the outside world

  6. Robust Fluorine-Free Superhydrophobic Amino-Silicone Oil/SiO2 Modification of Electrospun Polyacrylonitrile Membranes for Waterproof-Breathable Application.

    Science.gov (United States)

    Sheng, Junlu; Xu, Yue; Yu, Jianyong; Ding, Bin

    2017-05-03

    Superhydrophobic waterproof-breathable membranes have attracted considerable interest owing to their multifunctional applications in self-cleaning, anti-icing, anticorrosion, outdoor tents, and protective clothing. Despite the researches pertaning to the construction of superhydrophobic functional membranes by nanoparticle finishing have increased drastically, the disconnected particle component is easy to fall off from the membranes under deformation and wear conditions, which has restricted their wide use in practice. Here, robust superhydrophobic microporous membranes were prepared via a facile and environmentally friendly strategy by dip-coating amino-silicone oil (ASO) onto the electrospun polyacrylonitrile (PAN) membranes, followed by SiO 2 nanoparticles (SiO 2 NPs) blade coating. Compared with hydrophilic PAN membranes, the modified membranes exhibited superhydrophobic surface with an advancing water contact angle up to 156°, after introducing ASO as low surface energy substance and SiO 2 NPs as filler to reduce the pore size and construct the multihierarchical rough structure. Varying the concentrations of ASO and SiO 2 NPs systematically, the PAN electrospun membranes modified with 1 wt % ASO and 0.1 wt % SiO 2 NPs were endowed with good water-resistance (74.3 kPa), relative low thermal conductivity (0.0028 W m -1 K -1 ), modest vapor permeability (11.4 kg m -2 d -1 ), and air permeability (20.5 mm s -1 ). Besides, the inorganic-organic hybrid coating of ASO/SiO 2 NPs could maintain its superhydrophobicity even after 40 abrasion cycles. The resulting membranes were found to resist variations on the pH scale from 0 to 12, and retained their water repellent properties when exposed to harsh acidic and alkali conditions. This facile fabrication of durable fluorine-free superhydrophobic membranes simultaneous with good waterproof-breathable performance provides the advantages for potential applications in self-cleaning materials and versatile protective

  7. Robust Superhydrophobic Carbon Nanotube Film with Lotus Leaf Mimetic Multiscale Hierarchical Structures.

    Science.gov (United States)

    Wang, Pengwei; Zhao, Tianyi; Bian, Ruixin; Wang, Guangyan; Liu, Huan

    2017-12-26

    Superhydrophobic carbon nanotube (CNT) films have demonstrated many fascinating performances in versatile applications, especially for those involving solid/liquid interfacial processes, because of their ability to affect the material/energy transfer at interfaces. Thus, developing superhydrophobic CNTs has attracted extensive research interests in the past decades, and it could be achieved either by surface coating of low-free energy materials or by constructing micro/nanohierarchical structures via various complicated processes. So far, developing a simple approach to fabricate stable superhydrophobic CNTs remains a challenge because the capillary force induced coalescence frequently happens when interacting with liquid. Herein, drawing inspirations from the lotus leaf, we proposed a simple one-step chemical vapor deposition approach with programmable controlled gas flow to directly fabricate a CNT film with rather stable superhydrophobicity, which can effectively prevent even small water droplets from permeating into the film. The robust superhydrophobicity was attributable to typical lotus-leaf-like micro/nanoscale hierarchical surface structures of the CNT film, where many microscale clusters composed of entangled nanotubes randomly protrude out of the under-layer aligned nanotubes. Consequently, dual-scale air pockets were trapped within each microscale CNT cluster and between, which could largely reduce the liquid/solid interface, leading to a Cassie state. Moreover, the superhydrophobicity of the CNT film showed excellent durability after long time exposure to air and even to corrosive liquids with a wide range of pH values. We envision that the approach developed is advantageous for versatile physicochemical interfacial processes, such as drag reduction, electrochemical catalysis, anti-icing, and biosensors.

  8. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect.

    Science.gov (United States)

    Sun, Xiaoda; Rykaczewski, Konrad

    2017-01-24

    coatings can be designed to combine optimal antifrosting functionality with a superhydrophobic water repelling exterior to provide coatings that can robustly prevent frost, rime, and glaze accumulation. By minimizing the required amount of antifreeze, this anti-icing method can have minimal operational cost and environmental impact.

  9. Douglas flight deck design philosophy

    Science.gov (United States)

    Oldale, Paul

    1990-01-01

    The systems experience gained from 17 years of DC-10 operation was used during the design of the MD-11 to automate system operation and reduce crew workload. All functions, from preflight to shutdown at the termination of flight, require little input from the crew. The MD-11 aircraft systems are monitored for proper operation by the Aircraft Systems Controllers (ASC). In most cases, system reconfiguration as a result of a malfunction is automated. Manual input is required for irreversible actions such as engine shutdown, fuel dump, fire agent discharge, or Integrated Drive Generator (IDG) disconnect. During normal operations, when the cockpit is configured for flight, all annunciators on the overhead panel will be extinguished. This Dark Cockpit immediately confirms to the crew that the panels are correctly configured and that no abnormalities are present. Primary systems annunciations are shown in text on the Alert Area of the Engine and Alert Display (EAD). This eliminates the need to scan the overhead. The MD-11 aircraft systems can be manually controlled from the overhead area of the cockpit. The center portion of the overhead panel is composed of the primary aircraft systems panels, which include FUEL, AIR, Electrical (ELEC) and Hydraulic (HYD) systems, which are easily accessible from both flight crew positions. Each Aircraft Systems Controller (ASC) has two automatic channels and a manual mode. All rectangular lights are annunciators. All square lights are combined switches and annunciators called switch/lights. Red switch/lights on the overhead (Level 3 alerts) are for conditions requiring immediate crew action. Amber (Level 2 or Level 1 alerts) indicates a fault or switch out of position requiring awareness or crew interaction. Overhead switches used in normal operating conditions will illuminate blue when in use (Level 0 alerts) such as WING ANTI-ICE - ON. An overhead switch/light with BLACK LETTERING on an amber or red background indicates a system

  10. (2-methoxyethoxy)acetic acid: a urinary biomarker of exposure for jet fuel JP-8.

    Science.gov (United States)

    B'hymer, Clayton; Mathias, Patricia; Krieg, Edward; Cheever, Kenneth L; Toennis, Christine A; Clark, John C; Kesner, James S; Gibson, Roger L; Butler, Mary Ann

    2012-05-01

    To demonstrate the utility of the urinary metabolite (2-methoxyethoxy)acetic acid (MEAA) as a biomarker of exposure. 2-(2-methoxyethoxy)ethanol [diethylene glycol monomethyl ether] is an anti-icing agent used in the formulation of JP-8, and it is added at a known uniform 0.1% (v/v) concentration to each batch lot. JP-8 is a kerosene-based fuel containing different compounds that vary in the content of every batch/lot of fuel; thus, MEAA has the potential to be a more specific and a consistent quantitative biomarker for JP-8 exposure. MEAA was used to measure exposure of jet propulsion fuel 8 (JP-8) in United States Air Force (USAF) personnel working at six airbases within the United States. Post-shift urine specimens from various personnel including high (n = 98), moderate (n = 38), and low (n = 61) exposure workgroup categories were collected and analyzed by a gas chromatographic-mass spectrometric test method. The three exposure groups were evaluated for the number per group positive for MEAA, and a statistical analysis consisted of pair-wise t-tests for unequal variances was used to test for the differences in mean MEAA concentrations between the exposure groups. The number of samples detected as positive for MEAA exposure, that is, those above the test method's limit of detection (LOD = 0.1 μg/ml), were 92 (93.9%), 13 (34.2%), and 2 (3.3%) for the high, moderate, and low exposure workgroup categories, respectively. The mean urinary MEAA level was significantly greater in the high exposure category (6.8 μg/ml), compared to the moderate (0.42 μg/ml) and the low (0.07 μg/ml) exposure categories. The maximum concentration of urinary MEAA was 110 μg/ml for the high exposure category, while 4.8 μg/ml and 0.2 μg/ml maximum levels were found in the moderate and low exposure categories, respectively. This study demonstrated that urinary MEAA can be used as an accurate biomarker of exposure for JP-8 workers and clearly distinguished the differences in JP-8

  11. An easy and environmentally-friendly approach to superamphiphobicity of aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Deng, R. [School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China); Hu, Y.M., E-mail: yongmaohu@163.com [College of Engineering, Dali University, Dali 671003 (China); Wang, L.; Li, Zh.H.; Shen, T. [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Zhu, Y., E-mail: zhuyan@kmust.edu.cn [Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093 (China); Xiang, J.Zh., E-mail: jzhxiang@ynu.edu.cn [School of Materials Science and Engineering, Yunnan University, Kunming 650091 (China)

    2017-04-30

    Highlights: • Superamphiphobic Al surfaces were achieved via an approach of chemical etching and low surface energy material modification. • The process of chemical etching and hot water bathing were optimized to obtain desirable hierarchical micro/nanoscale structures. • The surface morphology, chemistry and wetting properties of the as-prepared aluminum surfaces were characterized and discussed. • The mechanical robustness and chemical stability of the as-prepared superamphiphobic Al surfaces were tested and evaluated. - Abstract: Superamphiphobic Al surfaces were achieved via an easy and environmentally-friendly approach. Aqueous mixed solution of 0.7 M CuSO{sub 4} and 1 M NaCl was used to etch polished Al surfaces to fabricate a rough morphology distributed with microscale step-like pits. The uniformly distributed nanoscale petals covered on the microscale pits were obtained by subsequent 96 °C hot deionized water bathing for 13 min. Thus, the hierarchical micro/nanometer scale roughness was formed which provided the structural basic of superamphiphobic Al surfaces. By 1H, 1H, 2H, 2H-Perfluorodecyl-triethoxysilane (PFDTS) derivatization, desirable superamphiphobic Al surfaces were achieved with the highest static contact angles of 162° for water, 156° for peanut oil, respectively. Meanwhile, the sliding angles were lower than 10° for both water and peanut oil droplets. The as-prepared Al surfaces were investigated by field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), and optical contact angle measurements. The FE-SEM images of as-prepared Al surfaces showed a hierarchical micro/nanometer scale morphology. XPS analyses demonstrated the PFDTS derivitization on Al surfaces. The superamphiphobic Al surfaces presented good mechanical durability and chemical stability which have a wide range of applications in fields such as self-cleaning, anti-icing, anti

  12. Geochemistry of groundwater in the Beaver and Camas Creek drainage basins, eastern Idaho

    Science.gov (United States)

    Rattray, Gordon W.; Ginsbach, Michael L.

    2014-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy, is studying the fate and transport of waste solutes in the eastern Snake River Plain (ESRP) aquifer at the Idaho National Laboratory (INL) in eastern Idaho. This effort requires an understanding of the natural and anthropogenic geochemistry of groundwater at the INL and of the important physical and chemical processes controlling the geochemistry. In this study, the USGS applied geochemical modeling to investigate the geochemistry of groundwater in the Beaver and Camas Creek drainage basins, which provide groundwater recharge to the ESRP aquifer underlying the northeastern part of the INL. Data used in this study include petrology and mineralogy from 2 sediment and 3 rock samples, and water-quality analyses from 4 surface-water and 18 groundwater samples. The mineralogy of the sediment and rock samples was analyzed with X-ray diffraction, and the mineralogy and petrology of the rock samples were examined in thin sections. The water samples were analyzed for field parameters, major ions, silica, nutrients, dissolved organic carbon, trace elements, tritium, and the stable isotope ratios of hydrogen, oxygen, carbon, sulfur, and nitrogen. Groundwater geochemistry was influenced by reactions with rocks of the geologic terranes—carbonate rocks, rhyolite, basalt, evaporite deposits, and sediment comprised of all of these rocks. Agricultural practices near and south of Dubois and application of road anti-icing liquids on U.S. Interstate Highway 15 were likely sources of nitrate, chloride, calcium, and magnesium to groundwater. Groundwater geochemistry was successfully modeled in the alluvial aquifer in Camas Meadows and the ESRP fractured basalt aquifer using the geochemical modeling code PHREEQC. The primary geochemical processes appear to be precipitation or dissolution of calcite and dissolution of silicate minerals. Dissolution of evaporite minerals, associated with Pleistocene Lake

  13. The use of wind energy in a northern environment : scientific and technological issues; L'extraction de l'energie eolienne en milieu nordique : enjeux scientifiques et technologiques

    Energy Technology Data Exchange (ETDEWEB)

    Megateli, R. [TechnoCentre eolien Gaspesie-les Iles, Gaspe, PQ (Canada). Centre CORUS; Quebec Univ., Rimouski, PQ (Canada). Wind Energy Group

    2007-09-15

    laboratory where climatic conditions are being simulated. Blade anti-icing projects are currently underway. 14 refs., 5 figs.

  14. A combined road weather forecast system to prevent road ice formation in the Adige Valley (Italy)

    Science.gov (United States)

    Di Napoli, Claudia; Piazza, Andrea; Antonacci, Gianluca; Todeschini, Ilaria; Apolloni, Roberto; Pretto, Ilaria

    2016-04-01

    Road ice is a dangerous meteorological hazard to a nation's transportation system and economy. By reducing the pavement friction with vehicle tyres, ice formation on pavements increases accident risk and delays travelling times thus posing a serious threat to road users' safety and the running of economic activities. Keeping roads clear and open is therefore essential, especially in mountainous areas where ice is likely to form during the winter period. Winter road maintenance helps to restore road efficiency and security, and its benefits are up to 8 times the costs sustained for anti-icing strategies [1]. However, the optimization of maintenance costs and the reduction of the environmental damage from over-salting demand further improvements. These can be achieved by reliable road weather forecasts, and in particular by the prediction of road surface temperatures (RSTs). RST is one of the most important parameters in determining road surface conditions. It is well known from literature that ice forms on pavements in high-humidity conditions when RSTs are below 0°C. We have therefore implemented an automatic forecast system to predict critical RSTs on a test route along the Adige Valley complex terrain, in the Italian Alps. The system considers two physical models, each computing heat and energy fluxes between the road and the atmosphere. One is Reuter's radiative cooling model, which predicts RSTs at sunrise as a function of surface temperatures at sunset and the time passed since then [2]. One is METRo (Model of the Environment and Temperature of Roads), a road weather forecast software which also considers heat conduction through road material [3]. We have applied the forecast system to a network of road weather stations (road weather information system, RWIS) installed on the test route [4]. Road and atmospheric observations from RWIS have been used as initial conditions for both METRo and Reuter's model. In METRo observations have also been coupled to

  15. Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany).

    Science.gov (United States)

    Kiss, Aliz; Fries, Elke

    2009-09-01

    Benzotriazoles (BT) as 1H-benzotriazole (1H-BT), 5-methyl-1H-benzotriazole (5Me-BT), and 4-methyl-1H-benzotriazole (4Me-BT) are frequently used as corrosion inhibitors in dish washer detergents, aircraft de-icing/anti-icing fluids (ADAF), automotive antifreeze formulations, brake fluids, fluids for industrial cooling systems, metal-cutting fluids, and in solid cooling lubricants. Discharge of treated municipal waste water and controlled over-runs of combined waste water sewers are potential point sources for BT in rivers. The aim of this monitoring study was to yield an overview on exposure concentrations and loads of BT in the German rivers Main, Hengstbach, and Hegbach. Concentrations of 1H-BT, 5Me-BT, and 4Me-BT were determined in grab samples collected from different sampling points in the rivers Main, Hengstbach, and Hegbach at four different sampling times. Main and Hengstbach rivers were sampled close to Frankfurt International Airport. Both rivers receive domestic waste water effluents. BT were extracted from 2.5 L of river water by solid phase extraction using Bond Elut ppl cartridges (200 mg/3 mL). The extracts were analyzed by gas chromatography/mass spectrometry in full scan mode. Mass flows of BT were calculated by concentrations multiplied by mean daily river flow rates. Median concentrations and mass flows were compared for different rivers. Mass flows were also compared for selected sampling points at different sampling times. 1H-BT, 5Me-BT, and 4Me-BT were detected in Main and Hengstbach rivers. 1H-BT and 5Me-BT were also detected in Hegbach River. Concentrations ranged from 38 to 1,474 ng/L for 1H-BT, from 25 to 281 ng/L for 5Me-BT, and from 25 to 952 ng/L for 4Me-BT. Median concentrations of 1H-BT, 5Me-BT, and 4Me-BT were lower in Main than in Hengstbach River. Much higher median mass flows of all BT were calculated for Main than for Hengstbach River. At sampling points P9 (Main) and P5 (Hengstbach) concentrations of 4Me-BT and 5Me-BT increased