WorldWideScience

Sample records for anti-de sitter spacetime

  1. On electric field in anti-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Lee Yen, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Yan, Chew Xiao, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)

    2014-10-24

    In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.

  2. Quantum corrections in thermal states of fermions on anti-de Sitter space-time

    Science.gov (United States)

    Ambruş, Victor E.; Winstanley, Elizabeth

    2017-12-01

    We study the energy density and pressure of a relativistic thermal gas of massless fermions on four-dimensional Minkowski and anti-de Sitter space-times using relativistic kinetic theory. The corresponding quantum field theory quantities are given by components of the renormalized expectation value of the stress-energy tensor operator acting on a thermal state. On Minkowski space-time, the renormalized vacuum expectation value of the stress-energy tensor is by definition zero, while on anti-de Sitter space-time the vacuum contribution to this expectation value is in general nonzero. We compare the properties of the vacuum and thermal expectation values of the energy density and pressure for massless fermions and discuss the circumstances in which the thermal contribution dominates over the vacuum one.

  3. Covariant fields on anti-de Sitter spacetimes

    Science.gov (United States)

    Cotăescu, Ion I.

    2018-02-01

    The covariant free fields of any spin on anti-de Sitter (AdS) spacetimes are studied, pointing out that these transform under isometries according to covariant representations (CRs) of the AdS isometry group, induced by those of the Lorentz group. Applying the method of ladder operators, it is shown that the CRs with unique spin are equivalent with discrete unitary irreducible representations (UIRs) of positive energy of the universal covering group of the isometry one. The action of the Casimir operators is studied finding how the weights of these representations (reps.) may depend on the mass and spin of the covariant field. The conclusion is that on AdS spacetime, one cannot formulate a universal mass condition as in special relativity.

  4. Asymptotically anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2009-01-01

    We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.

  5. Komar integrals in asymptotically anti-de Sitter space-times

    International Nuclear Information System (INIS)

    Magnon, A.

    1985-01-01

    Recently, boundary conditions governing the asymptotic behavior of the gravitational field in the presence of a negative cosmological constant have been introduced using Penrose's conformal techniques. The subsequent analysis has led to expressions of conserved quantities (associated with asymptotic symmetries) involving asymptotic Weyl curvature. On the other hand, if the underlying space-time is equipped with isometries, a generalization of the Komar integral which incorporates the cosmological constant is also available. Thus, in the presence of an isometry, one is faced with two apparently unrelated definitions. It is shown that these definitions agree. This coherence supports the choice of boundary conditions for asymptotically anti-de Sitter space-times and reinforces the definitions of conserved quantities

  6. Collision of domain walls in asymptotically anti-de Sitter spacetime

    International Nuclear Information System (INIS)

    Takamizu, Yu-ichi; Maeda, Kei-ichi

    2006-01-01

    We study collision of two domain walls in five-dimensional asymptotically anti-de Sitter spacetime. This may provide the reheating mechanism of an ekpyrotic (or cyclic) brane universe, in which two Bogomol'nyi-Prasad-Sommerfield branes collide and evolve into a hot big bang universe. We evaluate a change of scalar field making the domain wall and can investigate the effect of a negative cosmological term in the bulk to the collision process and the evolution of our universe

  7. Dynamics of quantum entanglement in de Sitter spacetime and thermal Minkowski spacetime

    Directory of Open Access Journals (Sweden)

    Zhiming Huang

    2017-10-01

    Full Text Available We investigate the dynamics of entanglement between two atoms in de Sitter spacetime and in thermal Minkowski spacetime. We treat the two-atom system as an open quantum system which is coupled to a conformally coupled massless scalar field in the de Sitter invariant vacuum or to a thermal bath in the Minkowski spacetime, and derive the master equation that governs its evolution. We compare the phenomena of entanglement creation, degradation, revival and enhancement for the de Sitter spacetime case with that for the thermal Minkowski spacetime case. We find that the entanglement dynamics of two atoms for these two spacetime cases behave quite differently. In particular, the two atoms interacting with the field in the thermal Minkowski spacetime (with the field in the de Sitter-invariant vacuum, under certain conditions, could be entangled, while they would not become entangled in the corresponding de Sitter case (in the corresponding thermal Minkowski case. Thus, although a single static atom in the de Sitter-invariant vacuum responds as if it were bathed in thermal radiation in a Minkowski universe, with the help of the different dynamic evolution behaviors of entanglement for two atoms one can in principle distinguish these two universes.

  8. Temperature and entropy of Schwarzschild-de Sitter space-time

    International Nuclear Information System (INIS)

    Shankaranarayanan, S.

    2003-01-01

    In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture

  9. Tunneling across dilaton coupled black holes in anti de Sitter spacetime

    International Nuclear Information System (INIS)

    Ghosh, Tanwi; SenGupta, Soumitra

    2011-01-01

    Considering generalised action for dilaton coupled Maxwell-Einstein theory in four dimensions, Gao and Zhang obtained black holes solutions for asymptotically anti de Sitter (Ads) and de Sitter (ds) spacetimes. We study the Hawking radiation in Parikh-Wilczek's tunneling formalism as well as using Bogoliubov transformations. We compare the expression of the Hawking temperature obtained from these two different approaches. Stability and the extremality conditions for such black holes are discussed. The exact dependences of the Hawking temperature and flux on the dilaton coupling parameter are determined. It is shown that the Hawking flux increases with the dilaton coupling parameter. Finally we show that the expression for the Hawking flux obtained using Bogoliubov transformation matches exactly with flux calculated via chiral gauge and gravitational anomalies. This establishes a correspondence among all these different approaches of estimating Hawking radiation from these classes of black holes.

  10. Dynamics in non-globally-hyperbolic static spacetimes: III. Anti-de Sitter spacetime

    International Nuclear Information System (INIS)

    Ishibashi, Akihiro; Wald, Robert M

    2004-01-01

    In recent years, there has been considerable interest in theories formulated in anti-de Sitter (AdS) spacetime. However, AdS spacetime fails to be globally hyperbolic, so a classical field satisfying a hyperbolic wave equation on AdS spacetime need not have a well-defined dynamics. Nevertheless, AdS spacetime is static, so the possible rules of dynamics for a field satisfying a linear wave equation are constrained by our previous general analysis-given in paper II-where it was shown that the possible choices of dynamics correspond to choices of positive, self-adjoint extensions of a certain differential operator, A. In the present paper, we reduce the analysis of electromagnetic and gravitational perturbations in AdS spacetime to scalar wave equations. We then apply our general results to analyse the possible dynamics of scalar, electromagnetic and gravitational perturbations in AdS spacetime. In AdS spacetime, the freedom (if any) in choosing self-adjoint extensions of A corresponds to the freedom (if any) in choosing suitable boundary conditions at infinity, so our analysis determines all the possible boundary conditions that can be imposed at infinity. In particular, we show that other boundary conditions besides the Dirichlet and Neumann conditions may be possible, depending on the value of the effective mass for scalar field perturbations, and depending on the number of spacetime dimensions and type of mode for electromagnetic and gravitational perturbations

  11. Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds

    International Nuclear Information System (INIS)

    Madhav, T. Arun; Goswami, Rituparno; Joshi, Pankaj S.

    2005-01-01

    We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term Λ. It is investigated how Λ modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of Λ on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter

  12. Ringing in de Sitter spacetime

    Directory of Open Access Journals (Sweden)

    Alex Buchel

    2018-03-01

    Full Text Available Hydrodynamics is a universal effective theory describing relaxation of quantum field theories towards equilibrium. Massive QFTs in de Sitter spacetime are never at equilibrium. We use holographic gauge theory/gravity correspondence to describe relaxation of a QFT to its Bunch–Davies vacuum — an attractor of its late-time dynamics. Specifically, we compute the analogue of the quasinormal modes describing the relaxation of a holographic toy model QFT in de Sitter.

  13. Spontaneously broken continuous symmetries in hyperbolic (or open) de Sitter spacetime

    International Nuclear Information System (INIS)

    Ratra, B.

    1994-01-01

    The functional Schroedinger approach is used to study scalar field theory in hyperbolic (or open) de Sitter spacetime. While on intermediate length scales (small compared to the spatial curvature length scale) the massless minimally coupled scalar field two-point correlation function does have a term that varies logarithmically with scale, as in flat and closed de Sitter spacetime, the spatial curvature tames the infrared behavior of this correlation function at larger scales in the open model. As a result, and contrary to what happens in flat and closed de Sitter spacetime, spontaneously broken continuous symmetries are not restored in open de Sitter spacetime (with more than one spatial dimension)

  14. Stability of black holes and solitons in Anti-de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Betti

    2014-06-15

    The stability of black holes and solitons in d-dimensional Anti-de Sitter (AdS{sub d}) space-time against scalar field condensation is discussed. The resulting solutions are “hairy” black holes and solitons, respectively. In particular, we will discuss static black hole solutions with hyperbolic, flat and spherical horizon topology and emphasize that two different type of instabilities exist depending on whether the scalar field is charged or uncharged, respectively. We will also discuss the influence of Gauss-Bonnet curvature terms. The results have applications within the AdS/CFT correspondence and describe e.g. holographic insulator/conductor/superconductor phase transitions.

  15. Penrose inequality in anti-de Sitter space

    Science.gov (United States)

    Husain, Viqar; Singh, Suprit

    2017-11-01

    For asymptotically flat spacetimes the Penrose inequality gives an initial data test for the weak cosmic censorship hypothesis. We give a formulation of this inequality for asymptotically anti-de Sitter (AAdS) spacetimes, and show that the inequality holds for time asymmetric data in spherical symmetry. Our analysis is motivated by the constant-negative-spatial-curvature form of the AdS black hole metric.

  16. How to use retarded Green's functions in de Sitter spacetime

    International Nuclear Information System (INIS)

    Higuchi, Atsushi; Cheong, Lee Yen

    2008-01-01

    We demonstrate in examples that the covariant retarded Green's functions in electromagnetism and linearized gravity work as expected in de Sitter spacetime. We first clarify how retarded Green's functions should be used in spacetimes with spacelike past infinity such as de Sitter spacetime. In particular, we remind the reader of a general formula which gives the field for given initial data on a Cauchy surface and a given source (a charge or stress-energy tensor distribution) in its future. We then apply this formula to three examples: (i) electromagnetism in the future of a Cauchy surface in Minkowski spacetime, (ii) electromagnetism in de Sitter spacetime, and (iii) linearized gravity in de Sitter spacetime. In each example the field is reproduced correctly as predicted by the general argument. In the third example we construct a linearized gravitational field from two equal point masses located at the 'North and South Poles' which is nonsingular on the cosmological horizon and satisfies a covariant gauge condition and show that this field is reproduced by the retarded Green's function with corresponding gauge parameters.

  17. Topology and isometries of the de Sitter space-time

    International Nuclear Information System (INIS)

    Mitskevich, N.V.; Senin, Yu.E.

    1982-01-01

    Spaces with a constant four-dimensional curvature, which are locally isometric to the de Sitter space-time but differing from it in topology are considered. The de Sitter spaces are considered in coordinates fitted at best for introduction of topology for three cross sections: S 3 , S 1 x S 2 , S 1 x S 2 x S 3 . It is shown that the de Sitter space-time covered by the family of layers, each of them is topologically identical, may be covered by another family of topologically identical layers. But layers in these families will have different topology

  18. Quasinormal modes in pure de Sitter spacetimes

    International Nuclear Information System (INIS)

    Du Daping; Wang Bin; Su Ruheng

    2004-01-01

    We have studied scalar perturbations as well as fermion perturbations in pure de Sitter spacetimes. For scalar perturbations we have shown that well-defined quasinormal modes in d-dimensions can exist provided that the mass of scalar field m>(d-1/2l). The quasinormal modes of fermion perturbations in three and four dimensional cases have also been investigated. We found that different from other dimensional cases, in the three dimensional pure de Sitter spacetime there is no quasinormal mode for the s-wave. This interesting difference caused by the spacial dimensions is true for both scalar and fermion perturbations

  19. Small Kerr-anti-de Sitter black holes are unstable

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.

    2004-01-01

    Superradiance in black hole spacetimes can trigger instabilities. Here we show that, due to superradiance, small Kerr-anti-de Sitter black holes are unstable. Our demonstration uses a matching procedure, in a long wavelength approximation

  20. Distortion of Schwarzschild-anti-de Sitter black holes to black strings

    International Nuclear Information System (INIS)

    Tomimatsu, Akira

    2005-01-01

    Motivated by the existence of black holes with various topologies in four-dimensional spacetimes with a negative cosmological constant, we study axisymmetric static solutions describing any large distortions of Schwarzschild-anti-de Sitter black holes parametrized by the mass m. Under the approximation such that m is much larger than the anti-de Sitter radius, it is found that a cylindrically symmetric black string is obtained as a special limit of distorted spherical black holes. Such a prolonged distortion of the event horizon connecting a Schwarzschild-anti-de Sitter black hole to a black string is allowed without violating both the usual black hole thermodynamics and the hoop conjecture for the horizon circumference

  1. Equatorial circular orbits in the Kerr-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Slany, Petr

    2004-01-01

    Equatorial motion of test particles in Kerr-de Sitter spacetimes is considered. Circular orbits are determined, their properties are discussed for both black-hole and naked-singularity spacetimes, and their relevance for thin accretion disks is established. The circular orbits constitute two families that coalesce at the so-called static radius. The orientation of the motion along the circular orbits is, in accordance with case of asymptotically flat Kerr spacetimes, defined by relating the motion to the locally nonrotating frames. The minus-family orbits are all counterrotating, while the plus-family orbits are usually corotating relative to these frames. However, the plus-family orbits become counterrotating in the vicinity of the static radius in all Kerr-de Sitter spacetimes, and they become counterrotating in the vicinity of the ring singularity in Kerr-de Sitter naked-singularity spacetimes with a low enough rotational parameter. In such spacetimes, the efficiency of the conversion of the rest energy into heat energy in the geometrically thin plus-family accretion disks can reach extremely high values exceeding the efficiency of the annihilation process. The transformation of a Kerr-de Sitter naked singularity into an extreme black hole due to accretion in the thin disks is briefly discussed for both the plus-family and minus-family disks. It is shown that such a conversion leads to an abrupt instability of the innermost parts of the plus-family accretion disks that can have strong observational consequences

  2. Mixed-symmetry fields in de Sitter space: a group theoretical glance

    Energy Technology Data Exchange (ETDEWEB)

    Basile, Thomas [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium); Bekaert, Xavier [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science,Daejeon (Korea, Republic of); Boulanger, Nicolas [Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium)

    2017-05-15

    We derive the characters of all unitary irreducible representations of the (d+1)-dimensional de Sitter spacetime isometry algebra so(1,d+1), and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We identify the equivalent of the scalar singleton for the de Sitter (dS) spacetime.

  3. The zero mass limit of Kerr and Kerr-(anti-)de-Sitter space-times: exact solutions and wormholes

    Science.gov (United States)

    Birkandan, T.; Hortaçsu, M.

    2018-03-01

    Heun-type exact solutions emerge for both the radial and the angular equations for the case of a scalar particle coupled to the zero mass limit of both the Kerr and Kerr-(anti)de-Sitter spacetime. Since any type D metric has Heun-type solutions, it is interesting that this property is retained in the zero mass case. This work further refutes the claims that M going to zero limit of the Kerr metric is both locally and globally the same as the Minkowski metric.

  4. On de Sitter-like and Minkowski-like spacetimes

    International Nuclear Information System (INIS)

    Luebbe, Christian; Kroon, Juan Antonio Valiente

    2009-01-01

    Friedrich's proofs for the global existence results of de Sitter-like spacetimes and of semi-global existence of Minkowski-like spacetimes (Friedrich 1986 Commun. Math. Phys. 107 587) are re-examined and discussed, making use of the extended conformal field equations and a gauge based on conformal geodesics. In this gauge, the location of the conformal boundary of the spacetimes is known a priori once the initial data have been prescribed. Thus, it provides an analysis which is conceptually and calculationally simpler.

  5. Covariant anomalies and Hawking radiation from charged rotating black strings in anti-de Sitter spacetimes

    International Nuclear Information System (INIS)

    Peng Junjin; Wu Shuangqing

    2008-01-01

    Motivated by the success of the recently proposed method of anomaly cancellation to derive Hawking fluxes from black hole horizons of spacetimes in various dimensions, we have further extended the covariant anomaly cancellation method shortly simplified by Banerjee and Kulkarni to explore the Hawking radiation of the (3+1)-dimensional charged rotating black strings and their higher dimensional extensions in anti-de Sitter spacetimes, whose horizons are not spherical but can be toroidal, cylindrical or planar, according to their global identifications. It should be emphasized that our analysis presented here is very general in the sense that the determinant of the reduced (1+1)-dimensional effective metric from these black strings need not be equal to one (√(-g)≠1). Our results indicate that the gauge and energy-momentum fluxes needed to cancel the (1+1)-dimensional covariant gauge and gravitational anomalies are compatible with the Hawking fluxes. Besides, thermodynamics of these black strings are studied in the case of a variable cosmological constant

  6. Poisson's equation in de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Pessa, E [Rome Univ. (Italy). Ist. di Matematica

    1980-11-01

    Based on a suitable generalization of Poisson's equation for de Sitter space-time the form of gravitation's law in 'projective relativity' is examined; it is found that, in the interior case, a small difference with the customary Newtonian law arises. This difference, of a repulsive character, can be very important in cosmological problems.

  7. Quasinormal modes and thermodynamics of linearly charged BTZ black holes in massive gravity in (anti) de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Prasia, P.; Kuriakose, V.C. [Cochin University of Science and Technology, Department of Physics, Kochi (India)

    2017-01-15

    In this work we study the Quasi-Normal Modes (QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter ((A)dS) space-time. It is found that the behavior of QNMs changes with the massive parameter of the graviton and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space-time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter of the graviton and also on the charge of the black hole. (orig.)

  8. Stress tensor fluctuations in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Nadal, Guillem; Verdaguer, Enric [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain); Roura, Albert, E-mail: guillem@ffn.ub.es, E-mail: albert.roura@aei.mpg.de, E-mail: enric.verdaguer@ub.edu [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, 14476 Golm (Germany)

    2010-05-01

    The two-point function of the stress tensor operator of a quantum field in de Sitter spacetime is calculated for an arbitrary number of dimensions. We assume the field to be in the Bunch-Davies vacuum, and formulate our calculation in terms of de Sitter-invariant bitensors. Explicit results for free minimally coupled scalar fields with arbitrary mass are provided. We find long-range stress tensor correlations for sufficiently light fields (with mass m much smaller than the Hubble scale H), namely, the two-point function decays at large separations like an inverse power of the physical distance with an exponent proportional to m{sup 2}/H{sup 2}. In contrast, we show that for the massless case it decays at large separations like the fourth power of the physical distance. There is thus a discontinuity in the massless limit. As a byproduct of our work, we present a novel and simple geometric interpretation of de Sitter-invariant bitensors for pairs of points which cannot be connected by geodesics.

  9. Finite upper bound for the Hawking decay time of an arbitrarily large black hole in anti-de Sitter spacetime

    Science.gov (United States)

    Page, Don N.

    2018-01-01

    In an asymptotically flat spacetime of dimension d >3 and with the Newtonian gravitational constant G , a spherical black hole of initial horizon radius rh and mass M ˜rhd -3/G has a total decay time to Hawking emission of td˜rhd -1/G ˜G2 /(d -3 )M(d -1 )/(d -3 ) which grows without bound as the radius rh and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale ℓ and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of ℓd-1/G .

  10. Kerr-de Sitter spacetime, Penrose process, and the generalized area theorem

    Science.gov (United States)

    Bhattacharya, Sourav

    2018-04-01

    We investigate various aspects of energy extraction via the Penrose process in the Kerr-de Sitter spacetime. We show that the increase in the value of a positive cosmological constant, Λ , always reduces the efficiency of this process. The Kerr-de Sitter spacetime has two ergospheres associated with the black hole and the cosmological event horizons. We prove by analyzing turning points of the trajectory that the Penrose process in the cosmological ergoregion is never possible. We next show that in this process both the black hole and cosmological event horizons' areas increase, and the latter becomes possible when the particle coming from the black hole ergoregion escapes through the cosmological event horizon. We identify a new, local mass function instead of the mass parameter, to prove this generalized area theorem. This mass function takes care of the local spacetime energy due to the cosmological constant as well, including that which arises due to the frame-dragging effect due to spacetime rotation. While the current observed value of Λ is quite small, its effect in this process could be considerable in the early Universe scenario where its value is much larger, where the two horizons could have comparable sizes. In particular, the various results we obtain here are also evaluated in a triply degenerate limit of the Kerr-de Sitter spacetime we find, in which radial values of the inner, the black hole and the cosmological event horizons are nearly coincident.

  11. Generic cosmic-censorship violation in anti-de Sitter space.

    Science.gov (United States)

    Hertog, Thomas; Horowitz, Gary T; Maeda, Kengo

    2004-04-02

    We consider (four-dimensional) gravity coupled to a scalar field with potential V(phi). The potential satisfies the positive energy theorem for solutions that asymptotically tend to a negative local minimum. We show that for a large class of such potentials, there is an open set of smooth initial data that evolve to naked singularities. Hence cosmic censorship does not hold for certain reasonable matter theories in asymptotically anti-de Sitter spacetimes. The asymptotically flat case is more subtle. We suspect that potentials with a local Minkowski minimum may similarly lead to violations of cosmic censorship in asymptotically flat spacetimes, but we do not have definite results.

  12. Critical phenomena of regular black holes in anti-de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Zhong-Ying [Peking University, Center for High Energy Physics, Beijing (China)

    2017-04-15

    In General Relativity, addressing coupling to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition, while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell equal area law in the P-V (or S-T) diagram is violated and consequently the critical point (T{sub *},P{sub *}) of the first order small-large black hole transition does not coincide with the inflection point (T{sub c},P{sub c}) of the isotherms; the Clapeyron equation describing the coexistence curve of the Van der Waals (vdW) fluid is no longer valid; the heat capacity at constant pressure is finite at the critical point; the various exponents near the critical point are also different from those of the vdW fluid. (orig.)

  13. Rest frames and relativistic effects on de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)

    2017-07-15

    It is shown that the Nachtmann boosting method of introducing coordinates on de Sitter manifolds can be completed with suitable gauge transformations able to keep under control the transformation under isometries of the conserved quantities. With this method, the rest local charts (or natural frames) are defined pointing out the role of the conserved quantities in investigating the relative geodesic motion. The advantages of this approach can be seen from the applications presented here. For the first time, the simple kinematic effects, the electromagnetic field of a free falling charge and the binary fission are solved in terms of conserved quantities on the expanding portion of the de Sitter spacetime. (orig.)

  14. Anti-de Sitter black holes in gauged supergravity. Supergravity flow, thermodynamics and phase transitions

    NARCIS (Netherlands)

    Toldo, C.

    2014-01-01

    This thesis is devoted to the analysis of asymptotically Anti-de Sitter (AdS) black holes arising as solutions of theories of gauged Supergravity in four spacetime dimensions. After a brief recap of the main features of gauged supergravity, the first part of the thesis deals with the explicit

  15. Twin paradox in de Sitter spacetime

    International Nuclear Information System (INIS)

    Boblest, Sebastian; Wunner, Guenter; Mueller, Thomas

    2011-01-01

    The 'twin paradox' of special relativity offers the possibility of making interstellar flights within a lifetime. For very long journeys with velocities close to the speed of light, however, we have to take into account the expansion of the universe. Inspired by the work of Rindler on hyperbolic motion in curved spacetime, we study the worldline of a uniformly accelerated observer in de Sitter spacetime and the communication between the travelling observer and an observer at rest. This paper is intended to give graduate students who are familiar with special relativity and have some basic experience of general relativity a deeper insight into accelerated motion in general relativity, into the relationship between the proper times of different observers and the propagation of light signals between them, and into the use of compactification to describe the global structure of a relativistic model.

  16. de Sitter special relativity

    International Nuclear Information System (INIS)

    Aldrovandi, R; Almeida, J P Beltran; Pereira, J G

    2007-01-01

    A special relativity based on the de Sitter group is introduced, which is a theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincare group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime-modified by the presence of the de Sitter horizon-are briefly discussed

  17. On the de Sitter and Nariai spacetimes in a generalized theory of gravitation

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1985-07-01

    A possibility of obtaining the de Sitter and Nariai spacetimes in a generalized theory of gravitation (which was in succession proposed by Utiyama-DeWitt, Parker-Fulling-Hu and Gurovich-Starobinski) is examined. It is shown that the generalized theory with a suitable fixation of three parameters admit both spacetimes, just like the general theory of relativity. (author)

  18. Can De Sitter spacetime be a final state of the contracting universe

    International Nuclear Information System (INIS)

    Berezin, V.A.

    1984-01-01

    This chapter attempts to phenomenologically describe the final stage of the Universe contraction. A model equation of state is used to demonstrate that during a cosmological contraction a de Sitter spacetime may be produced. It is shown that a equilibrium thermodynamic description of the matter in cosmological models leads to the absence of particle creation. It is proposed that these nonequilibrium processes be taken into account by introducing a new additional thermodynamic variable showing the explicit time dependence of all thermodynamic potentials into the thermodynamic relations. The spacetime is assumed to be homogeneous and isotropic, and the energy momentum tensor includes not only the energy density and pressure for the matter and radiation, but it also includes contributions due to vacuum polarization by correspondent fields. It is demonstrated that it is possible to reach in principle the de Sitter spacetime as the limit of the contraction

  19. Discrete symmetries and de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cotăescu, Ion I., E-mail: gpascu@physics.uvt.ro; Pascu, Gabriel, E-mail: gpascu@physics.uvt.ro [West University of Timişoara, V. Pârvan Ave. 4, RO-300223 Timişoara (Romania)

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  20. Three-dimensional black hole from a stringy anti endash de Sitter background

    International Nuclear Information System (INIS)

    Hjelmeland, S.E.

    1997-01-01

    A new black hole solution in 2+1 dimensions is found by taking cosmic strings as part of the vacuum structure of the anti endash de Sitter space-time. The solution has a structure that in many ways is similar to that of the Reissner-Nordstroem solution. With a vanishing cosmological constant, a space-time with a black hole of infinite extension appears with the inner horizon playing the role of a cosmological event horizon. The timelike and null geodesics are discussed. In particular it is shown that photons may follow conic sections. copyright 1997 The American Physical Society

  1. The de Sitter spacetime as an attractor solution in fourth-order gravity

    International Nuclear Information System (INIS)

    Schmidt, H.-J.

    1988-01-01

    We investigate the general vacuum solution of fourth-order gravity, and include the Bach tensor. For L 2 = 1.3μR 2 + 1/2αC 2 the expanding de Sitter spacetime is an attractor in the set of axially symmetric Bianchi type-I models if and only if αμ ≤ 0 or α > 4μ holds. It will be argued that this result holds true for a large class of inhomogeneous models. As a byproduct, a new closed-form cosmological solution, is obtained. It is also shown that the de Sitter spacetime is an attractor for the Bach-Einstein gravity with a minimally coupled scalar field φ. Specialised to Einstein gravity (i.e. α = 0 above) this conformal equivalence remains a non-trivial one. (author)

  2. Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space

    Science.gov (United States)

    Crisford, Toby; Santos, Jorge E.

    2017-05-01

    We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.

  3. Thermodynamics and stability of flat anti-de Sitter black strings

    International Nuclear Information System (INIS)

    Chen Si; Schleich, Kristin; Witt, Donald M.

    2008-01-01

    We examine the thermodynamics and stability of 5-dimensional flat anti-de Sitter (AdS) black strings, locally asymptotically anti-de Sitter spacetimes whose spatial sections are AdS black holes with Ricci flat horizons. We find that there is a phase transition for the flat AdS black string when the AdS soliton string is chosen as the thermal background. We find that this bulk phase transition corresponds to a 4-dimensional flat AdS black hole to AdS soliton phase transition on the boundary Karch-Randall branes. We compute the possibility of a phase transition from a flat AdS black string to a 5-dimensional AdS soliton and show that, though possible for certain thin black strings, the transition to the AdS soliton string is preferred. In contrast to the case of the Schwarzschild-AdS black string, we find that the specific heat of the flat AdS black string is always positive; hence it is thermodynamically stable. We show numerically that both the flat AdS black string and AdS soliton string are free of a Gregory-Laflamme instability for all values of the mass parameter. Therefore thermodynamic stability implies perturbative stability for this spacetime. This may indicate that a generalization of the Gubser-Mitra conjecture, in which the assumption of a translational killing vector is weakened to that of a conformal killing vector of translational form, holds under certain conditions.

  4. ADM Mass for Asymptotically de Sitter Space-Time

    International Nuclear Information System (INIS)

    Huang Shiming; Yue Ruihong; Jia Dongyan

    2010-01-01

    In this paper, an ADM mass formula for asymptotically de Sitter(dS) space-time is derived from the energy-momentum tensor. We take the vacuum dS space as the background and investigate the ADM mass of the (d + 3)-dimensional sphere-symmetric space with a positive cosmological constant, and find that the ADM mass of asymptotically dS space is based on the ADM mass of Schwarzschild field and the cosmological background brings some small mass contribution as well. (general)

  5. Entropy of Vaidya-deSitter Spacetime

    Institute of Scientific and Technical Information of China (English)

    LI Xiang; ZHAO Zheng

    2001-01-01

    As a statistical model of black hole entropy, the brick-wall method based on the thermal equilibrium in a large scale cannot be applied to the cases out of equilibrium, such as the non-static hole or the case with two horizons.However, the leading term of hole entropy called the Bekenstein-Hawking entropy comes from the contribution of the field near the horizon. According to this idea, the entropy of Vaidya-deSitter spacetime is calculated. A difference from the static case is that the result proportional to the area of horizon relies on a time-dependent cut-off. The condition of local equilibrium near the horizon is used as a working postulate.

  6. Asymptotic symmetries in de Sitter and inflationary spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Ricardo Z.; Sandora, McCullen; Sloth, Martin S., E-mail: ferreira@cp3.sdu.dk, E-mail: sandora@cp3.sdu.dk, E-mail: sloth@cp3.sdu.dk [CP3-Origins, Center for Cosmology and Particle Physics Phenomenology, University of Southern Denmark, Campusvej 55, 5230 Odense M (Denmark)

    2017-04-01

    Soft gravitons produced by the expansion of de Sitter can be viewed as the Nambu-Goldstone bosons of spontaneously broken asymptotic symmetries of the de Sitter spacetime. We explicitly construct the associated charges, and show that acting with the charges on the vacuum creates a new state equivalent to a change in the local coordinates induced by the soft graviton. While the effect remains unobservable within the domain of a single observer where the symmetry is unbroken, this change is physical when comparing different asymptotic observers, or between a transformed and un-transformed initial state, consistent with the scale-dependent statistical anisotropies previously derived using semiclassical relations. We then compute the overlap, (0| 0'), between the unperturbed de Sitter vacuum |0), and the state | 0') obtained by acting N times with the charge. We show that when N→ M {sub p} {sup 2}/ H {sup 2} this overlap receives order one corrections and 0(0| 0')→ , which corresponds to an infrared perturbative breakdown after a time t {sub dS} ∼ M {sub p} {sup 2}/ H {sup 3} has elapsed, consistent with earlier arguments in the literature arguing for a perturbative breakdown on this timescale. We also discuss the generalization to inflation, and rederive the 3-point and one-loop consistency relations.

  7. A Spacetime Foam Approach to the Schwarzschild-de Sitter Entropy

    Directory of Open Access Journals (Sweden)

    Remo Garattini

    2000-03-01

    Full Text Available The entropy for a black hole in a de Sitter space is approached within the framework of spacetime foam. A simple model made by N wormholes in a semiclassical approximation, is taken under examination to compute the entropy for such a case. An extension to the extreme case when the black hole and cosmological horizons are equal is discussed.

  8. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    Science.gov (United States)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  9. Photon motion in Kerr-de Sitter spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Charbulak, Daniel; Stuchlik, Zdenek [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic)

    2017-12-15

    We study the general motion of photons in the Kerr-de Sitter black-hole and naked singularity spacetimes. The motion is governed by the impact parameters X, related to the axial symmetry of the spacetime, and q, related to its hidden symmetry. Appropriate 'effective potentials' governing the latitudinal and radial motion are introduced and their behavior is examined by the 'Chinese boxes' technique giving regions allowed for the motion in terms of the impact parameters. Restrictions on the impact parameters X and q are established in dependence on the spacetime parameters M, Λ, a. The motion can be of orbital type (crossing the equatorial plane, q > 0) and vortical type (tied above or below the equatorial plane, q < 0). It is shown that for negative values of q, the reality conditions imposed on the latitudinal motion yield stronger constraints on the parameter X than that following from the reality condition of the radial motion, excluding the existence of vortical motion of constant radius. The properties of the spherical photon orbits of the orbital type are determined and used along with the properties of the effective potentials as criteria of classification of the KdS spacetimes according to the properties of the motion of the photon. (orig.)

  10. The Kerr-de Sitter universe

    International Nuclear Information System (INIS)

    Akcay, Sarp; Matzner, Richard A

    2011-01-01

    It is now widely accepted that the universe as we understand it is accelerating in expansion and fits the de Sitter model rather well. As such, a realistic assumption of black holes must place them on a de Sitter background and not Minkowski as is typically done in general relativity. The most astrophysically relevant black hole is the uncharged, rotating Kerr solution, a member of the more general Kerr-Newman metrics. A generalization of the rotating Kerr black hole to a solution of the Einstein's equation with a cosmological constant Λ was discovered by Carter (1973 Les Astres Occlus ed B DeWitt and C M DeWitt (New York: Gordon and Breach)). It is typically referred to as the Kerr-de Sitter spacetime. Here, we discuss the horizon structure of this spacetime and its dependence on Λ. We recall that in a Λ > 0 universe, the term 'extremal black hole' refers to a black hole with angular momentum J > M 2 . We obtain explicit numerical results for the black hole's maximal spin value and get a distribution of admissible Kerr holes in the (Λ, spin) parameter space. We look at the conformal structure of the extended spacetime and the embedding of the 3-geometry of the spatial hypersurfaces. In analogy with Reissner-Nordstroem-de Sitter spacetime, in particular by considering the Kerr-de Sitter causal structure as a distortion of the Reissner-Nordstroem-de Sitter one, we show that spatial sections of the extended spacetime are 3-spheres containing two-dimensional topologically spherical sections of the horizons of Kerr holes at the poles. Depending on how a t = constant 3-space is defined, these holes may be seen as black or white holes (four possible combinations).

  11. A detailed analytic study of the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes

    International Nuclear Information System (INIS)

    Daghigh, Ramin G; Green, Michael D

    2009-01-01

    We analyze analytically the asymptotic regions of the quasinormal mode frequency spectra with infinitely large overtone numbers for D-dimensional Schwarzschild black holes in anti de Sitter spacetimes. In this limit, we confirm the analytic results obtained previously in the literature using different methods. In addition, we show that in certain spacetime dimensions these techniques imply the existence of other regions of the asymptotic quasinormal mode frequency spectrum which have not previously appeared in the literature. For large black holes, some of these modes have a damping rate of 1.2T H , where T H is the Hawking temperature. This is less than the damping rate of the lowest overtone quasinormal mode calculated by other authors. It is not completely clear whether these modes actually exist or are an artifact of an unknown flaw in the analytic techniques being used. We discuss the possibility of the existence of these modes and explore some of the consequences. We also examine the possible connection between the asymptotic quasinormal modes of Schwarzschild-anti de Sitter black holes and the quantum level spacing of their horizon area spectrum.

  12. A line source in Minkowski for the de Sitter spacetime scalar Green's function: Massless minimally coupled case

    International Nuclear Information System (INIS)

    Chu, Yi-Zen

    2014-01-01

    Motivated by the desire to understand the causal structure of physical signals produced in curved spacetimes – particularly around black holes – we show how, for certain classes of geometries, one might obtain its retarded or advanced minimally coupled massless scalar Green's function by using the corresponding Green's functions in the higher dimensional Minkowski spacetime where it is embedded. Analogous statements hold for certain classes of curved Riemannian spaces, with positive definite metrics, which may be embedded in higher dimensional Euclidean spaces. The general formula is applied to (d ≥ 2)-dimensional de Sitter spacetime, and the scalar Green's function is demonstrated to be sourced by a line emanating infinitesimally close to the origin of the ambient (d + 1)-dimensional Minkowski spacetime and piercing orthogonally through the de Sitter hyperboloids of all finite sizes. This method does not require solving the de Sitter wave equation directly. Only the zero mode solution to an ordinary differential equation, the “wave equation” perpendicular to the hyperboloid – followed by a one-dimensional integral – needs to be evaluated. A topological obstruction to the general construction is also discussed by utilizing it to derive a generalized Green's function of the Laplacian on the (d ≥ 2)-dimensional sphere

  13. Backreaction from non-conformal quantum fields in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem; Verdaguer, Enric [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Universitat de Barcelona, Av Diagonal 647, 08028 Barcelona (Spain); Roura, Albert [Theoretical Division, T-8, Los Alamos National Laboratory, M.S. B285, Los Alamos, NM 87545 (United States)

    2008-08-07

    We study the backreaction on the mean field geometry due to a non-conformal quantum field in a Robertson-Walker background. In the regime of small mass and small deviation from conformal coupling, we compute perturbatively the expectation value of the stress tensor of the field for a variety of vacuum states, and use it to obtain explicitly the semiclassical gravity solutions for isotropic perturbations around de Sitter spacetime, which is found to be stable. Our results clearly show the crucial role of the non-local terms that appear in the effective action: they cancel the contribution from local terms proportional to the logarithm of the scale factor which would otherwise become dominant at late times and prevent the existence of a stable self-consistent de Sitter solution. Finally, the opposite regime of a strongly non-conformal field with a large mass is also considered.

  14. Gravitational radiation reaction in the NUT-de Sitter spacetime

    International Nuclear Information System (INIS)

    Ahmed, M.

    1988-07-01

    The equations for gravitational perturbation in the NUT-de Sitter spacetime are obtained. Using these equations, some preliminary calculations have been made with a view to constructing the retarded Green functions. Then with the help of the retarded Green functions, the radiative Green functions have been constructed. With the aid of these radiative Green functions, the reaction force on a particle is computed and this reaction force is then shown to account correctly for the energy and the angular momentum carried away by gravitational radiation to infinity and to the horizon. (author). 9 refs

  15. Density fluctuations in the de Sitter universe

    International Nuclear Information System (INIS)

    Banerjee, N.; Mallik, S.

    1991-01-01

    The de Sitter space-time appears to be the most widely chosen manifold to study quantum field theories on curved space-time. The reason is, of course, its high symmetry and the related fact that the mode functions can be obtained exactly in terms of known functions. Thus the different problems of quantization on curved space-time, like the non-uniqueness of the vacuum, regularization and renormalization of the stress tensor, have all been studied extensively in this model. The other reason of interest in the de Sitter geometry is related to the inflationary scenario of the early universe. For a brief period, the energy density of the false (symmetric) vacuum may dominate the total energy density, giving rise to de Sitter space-time. The resulting inflation may solve a number of outstanding problems of cosmology and particle physics. The properties of a Higgs-type scalar field theory is of central importance in the investigation of such a scenario. In this paper, a scalar Higgs field theory in de Sitter space-time has been investigated using the real time formulation of Semenoff and Weiss. The authors calculate the two-point function at late times and use it to obtain a general expression for the amplitude of fluctuation in energy density on scales which come out of the de Sitter horizon

  16. Sinh-Gordon, cosh-Gordon, and Liouville equations for strings and multistrings in constant curvature spacetimes

    International Nuclear Information System (INIS)

    Larsen, A.L.; Sanchez, N.

    1996-01-01

    We find that the fundamental quadratic form of classical string propagation in (2+1)-dimensional constant curvature spacetimes solves the sinh-Gordon equation, the cosh-Gordon equation, or the Liouville equation. We show that in both de Sitter and anti endash de Sitter spacetimes (as well as in the 2+1 black hole anti endash de Sitter spacetime), all three equations must be included to cover the generic string dynamics. The generic properties of the string dynamics are directly extracted from the properties of these three equations and their associated potentials (irrespective of any solution). These results complete and generalize earlier discussions on this topic (until now, only the sinh-Gordon sector in de Sitter spacetime was known). We also construct new classes of multistring solutions, in terms of elliptic functions, to all three equations in both de Sitter and anti endash de Sitter spacetimes. Our results can be straightforwardly generalized to constant curvature spacetimes of arbitrary dimension, by replacing the sinh-Gordon equation, the cosh-Gordon equation, and the Liouville equation by their higher dimensional generalizations. copyright 1996 The American Physical Society

  17. Null geodesics and embedding diagrams of the interior Schwarzschild--de Sitter spacetimes with uniform density

    International Nuclear Information System (INIS)

    Stuchlik, Zdenek; Hledik, Stanislav; Soltes, Jiri; Ostgaard, Erlend

    2001-01-01

    Null geodesics and embedding diagrams of central planes in the ordinary space geometry and the optical reference geometry of the interior Schwarzschild--de Sitter spacetimes with uniform density are studied. For completeness, both positive and negative values of the cosmological constant are considered. The null geodesics are restricted to the central planes of these spacetimes, and their properties can be reflected by an 'effective potential.' If the interior spacetime is extremely compact, the effective potential has a local maximum corresponding to a stable circular null geodesic around which bound null geodesics are concentrated. The upper limit on the size of the interior spacetimes containing bound null geodesics is R=3M, independently of the value of the cosmological constant. The embedding diagrams of the central planes of the ordinary geometry into three-dimensional Euclidean space are well defined for the complete interior of all spacetimes with a repulsive cosmological constant, but the planes cannot be embedded into the Euclidean space in the case of spacetimes with subcritical values of an attractive cosmological constant. On the other hand, the embedding diagrams of the optical geometry are well defined for all of the spacetimes, and the turning points of these diagrams correspond to the radii of the circular null geodesics. All the embedding diagrams, for both the ordinary and optical geometry, are smoothly matched to the corresponding embedding diagrams of the external vacuum Schwarzschild--de Sitter spacetimes

  18. Four-dimensional anti-de Sitter toroidal black holes from a three-dimensional perspective: Full complexity

    International Nuclear Information System (INIS)

    Zanchin, Vilson T.; Kleber, Antares; Lemos, Jose P.S.

    2002-01-01

    The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed

  19. Restoration of the covariant gauge α in the initial field of gravity in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Lee Yen; Yan, Chew Xiao [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)

    2014-03-05

    The gravitational field generated by a mass term and the initial surface through covariant retarded Green's function for linearized gravity in de Sitter spacetime was studied recently [4, 5] with the covariant gauges set to β = 2/3 and α = 5/3. In this paper we extend the work to restore the gauge parameter α in the field coming from the initial data using the method of shifting the parameter. The α terms in the initial field cancels exactly with the one coming from the source term. Consequently, the correct field configuration, with two equal mass points moving in its geodesic, one located at the North pole and another one located at the South pole, is reproduced in the whole manifold of de Sitter spacetime.

  20. Mode solutions for a Klein-Gordon field in anti-de Sitter spacetime with dynamical boundary conditions of Wentzell type

    Science.gov (United States)

    Dappiaggi, Claudio; Ferreira, Hugo R. C.; Juárez-Aubry, Benito A.

    2018-04-01

    We study a real, massive Klein-Gordon field in the Poincaré fundamental domain of the (d +1 )-dimensional anti-de Sitter (AdS) spacetime, subject to a particular choice of dynamical boundary conditions of generalized Wentzell type, whereby the boundary data solves a nonhomogeneous, boundary Klein-Gordon equation, with the source term fixed by the normal derivative of the scalar field at the boundary. This naturally defines a field in the conformal boundary of the Poincaré fundamental domain of AdS. We completely solve the equations for the bulk and boundary fields and investigate the existence of bound state solutions, motivated by the analogous problem with Robin boundary conditions, which are recovered as a limiting case. Finally, we argue that both Robin and generalized Wentzell boundary conditions are distinguished in the sense that they are invariant under the action of the isometry group of the AdS conformal boundary, a condition which ensures in addition that the total flux of energy across the boundary vanishes.

  1. Green's function for anti--de Sitter space gravity

    International Nuclear Information System (INIS)

    Kleppe, G.

    1994-01-01

    We solve for the retarded Green's function for linearized gravity in a background with a negative cosmological constant, anti--de Sitter space. In this background, it is possible for a signal to reach spatial infinity in a finite time. Therefore the form of the Green's function depends on a choice of boundary condition at spatial infinity. We take as our condition that a signal which reaches infinity should be lost, not reflected back. We calculate the Green's function associated with this condition, and show that it reproduces the correct classical solution for a point mass at the origin, the anti--de Sitter--Schwarzschild solution

  2. (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    OpenAIRE

    Bousso, Raphael; Hawking, Stephen

    1997-01-01

    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...

  3. Schwinger mechanism in electromagnetic field in de Sitter spacetime

    Directory of Open Access Journals (Sweden)

    Bavarsad Ehsan

    2018-01-01

    Full Text Available We investigate Schwinger scalar pair production in a constant electromagnetic field in de Sitter (dS spacetime. We obtain the pair production rate, which agrees with the Hawking radiation in the limit of zero electric field in dS. The result describes how a cosmic magnetic field affects the pair production rate. In addition, using a numerical method we study the effect of the magnetic field on the induced current. We find that in the strong electromagnetic field the current has a linear response to the electric and magnetic fields, while in the infrared regime, is inversely proportional to the electric field and leads to infrared hyperconductivity.

  4. Massless scalar field in de Sitter spacetime: unitary quantum time evolution

    International Nuclear Information System (INIS)

    Cortez, Jerónimo; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M

    2013-01-01

    We prove that, under the standard conformal scaling, a free scalar field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. Since this applies in particular to the massless case, this result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch–Davies vacuum. (paper)

  5. New instabilities of de Sitter spacetimes

    International Nuclear Information System (INIS)

    Copsey, Keith; Mann, Robert

    2010-01-01

    We construct an instanton describing the pair production of non-Kaluza-Klein bubbles of nothing in higher odd-dimensional de Sitter spaces. In addition to showing that higher-dimensional de Sitter spaces have a nonzero probability to become topologically nontrivial, this process provides direct evidence for the association of entropy with cosmological horizons as well as evidence that non-Kaluza-Klein bubbles of nothing are a necessary ingredient in string theory or any other consistent quantum theory of gravity in higher dimensions.

  6. Noncommutative de Sitter and FRW spaces

    International Nuclear Information System (INIS)

    Burić, Maja; Madore, John

    2015-01-01

    Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss

  7. Kerr–anti-de Sitter/de Sitter black hole in perfect fluid dark matter background

    Science.gov (United States)

    Xu, Zhaoyi; Hou, Xian; Wang, Jiancheng

    2018-06-01

    We obtain the Kerr–anti-de-sitter (Kerr–AdS) and Kerr–de-sitter (Kerr–dS) black hole (BH) solutions to the Einstein field equation in the perfect fluid dark matter background using the Newman–Janis method and Mathematica package. We discuss in detail the black hole properties and obtain the following main results: (i) From the horizon equation g rr   =  0, we derive the relation between the perfect fluid dark matter parameter α and the cosmological constant Λ when the cosmological horizon exists. For , we find that α is in the range for and for . For positive cosmological constant Λ (Kerr–AdS BH), decreases if , and increases if . For negative cosmological constant (Kerr–dS BH), increases if and decreases if ; (ii) An ergosphere exists between the event horizon and the outer static limit surface. The size of the ergosphere evolves oppositely for and , while decreasing with the increasing . When there is sufficient dark matter around the black hole, the black hole spacetime changes remarkably; (iii) The singularity of these black holes is the same as that of rotational black holes. In addition, we study the geodesic motion using the Hamilton–Jacobi formalism and find that when α is in the above ranges for , stable orbits exist. Furthermore, the rotational velocity of the black hole in the equatorial plane has different behaviour for different α and the black hole spin a. It is asymptotically flat and independent of α if while is asymptotically flat only when α is close to zero if . We anticipate that Kerr–Ads/dS black holes could exist in the universe and our future work will focus on the observational effects of the perfect fluid dark matter on these black holes.

  8. On the covariant gauge {alpha} of the linearized gravity in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Lee Yen [Department of Fundamental and Applied Science Universiti Teknologi Petronas, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2012-09-26

    In previous work, we studied the linearized gravity with covariant gauge {beta}= 2/3 and {alpha}= 5/3. It was found that the sum of the source and initial contributions reproduces the correct field configuration over the whole de Sitter spacetime. In this paper, we extend this work to generalizing the linearized gravitational field in an arbitrary value of the gauge parameter {alpha} but the gauge parameter {beta} remains the same.

  9. Mass, entropy, and holography in asymptotically de Sitter spaces

    International Nuclear Information System (INIS)

    Balasubramanian, Vijay; Boer, Jan de; Minic, Djordje

    2002-01-01

    We propose a novel prescription for computing the boundary stress tensor and charges of asymptotically de Sitter (dS) spacetimes from data at early or late time infinity. If there is a holographic dual to dS spaces, defined analogously to the AdS/conformal field theory correspondence, our methods compute the (Euclidean) stress tensor of the dual. We compute the masses of Schwarzschild-de Sitter black holes in four and five dimensions, and the masses and angular momenta of Kerr-de Sitter spaces in three dimensions. All these spaces are less massive than de Sitter space, a fact which we use to qualitatively and quantitatively relate de Sitter entropy to the degeneracy of possible dual field theories. Our results in general dimensions lead to a conjecture: Any asymptotically de Sitter spacetime with mass greater than de Sitter space has a cosmological singularity. Finally, if a dual to de Sitter space exists, the trace of our stress tensor computes the renormalized group (RG) equation of the dual field theory. Cosmological time evolution corresponds to RG evolution in the dual. The RG evolution of the c function is then related to changes in accessible degrees of freedom in an expanding universe

  10. Pair of accelerated black holes in an anti-de Sitter background: The AdS C metric

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    The anti-de Sitter C metric (AdS C metric) is characterized by a quite interesting new feature when compared with the C metric in flat or de Sitter backgrounds. Indeed, contrary to what happens in these two last exact solutions, the AdS C metric only describes a pair of accelerated black holes if the acceleration parameter satisfies A>1/l, where l is the cosmological length. The two black holes cannot interact gravitationally and their acceleration is totally provided by the pressure exerted by a strut that pushes the black holes apart. Our analysis is based on the study of the causal structure, on the description of the solution in the AdS 4-hyperboloid in a 5D Minkowski spacetime, and on the physics of the strut. We also analyze the cases A=1/l and A<1/l that represent a single accelerated black hole in the AdS background

  11. Linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes

    OpenAIRE

    Schlue, Volker

    2012-01-01

    I study linear waves on higher dimensional Schwarzschild black holes and Schwarzschild de Sitter spacetimes. In the first part of this thesis two decay results are proven for general finite energy solutions to the linear wave equation on higher dimensional Schwarzschild black holes. I establish uniform energy decay and improved interior first order energy decay in all dimensions with rates in accordance with the 3 + 1-dimensional case. The method of proof departs from earlier work on th...

  12. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

    Science.gov (United States)

    Ma, Hong; Li, Jin

    2018-04-01

    In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

  13. Heterotic non-linear sigma models with anti-de Sitter target spaces

    International Nuclear Information System (INIS)

    Michalogiorgakis, Georgios; Gubser, Steven S.

    2006-01-01

    We calculate the beta function of non-linear sigma models with S D+1 and AdS D+1 target spaces in a 1/D expansion up to order 1/D 2 and to all orders in α ' . This beta function encodes partial information about the spacetime effective action for the heterotic string to all orders in α ' . We argue that a zero of the beta function, corresponding to a worldsheet CFT with AdS D+1 target space, arises from competition between the one-loop and higher-loop terms, similarly to the bosonic and supersymmetric cases studied previously in [J.J. Friess, S.S. Gubser, Non-linear sigma models with anti-de Sitter target spaces, Nucl. Phys. B 750 (2006) 111-141]. Various critical exponents of the non-linear sigma model are calculated, and checks of the calculation are presented

  14. Some exact solutions for maximally symmetric topological defects in Anti de Sitter space

    Science.gov (United States)

    Alvarez, Orlando; Haddad, Matthew

    2018-03-01

    We obtain exact analytical solutions for a class of SO( l) Higgs field theories in a non-dynamic background n-dimensional anti de Sitter space. These finite transverse energy solutions are maximally symmetric p-dimensional topological defects where n = ( p + 1) + l. The radius of curvature of anti de Sitter space provides an extra length scale that allows us to study the equations of motion in a limit where the masses of the Higgs field and the massive vector bosons are both vanishing. We call this the double BPS limit. In anti de Sitter space, the equations of motion depend on both p and l. The exact analytical solutions are expressed in terms of standard special functions. The known exact analytical solutions are for kink-like defects ( p = 0 , 1 , 2 , . . . ; l = 1), vortex-like defects ( p = 1 , 2 , 3; l = 2), and the 't Hooft-Polyakov monopole ( p = 0; l = 3). A bonus is that the double BPS limit automatically gives a maximally symmetric classical glueball type solution. In certain cases where we did not find an analytic solution, we present numerical solutions to the equations of motion. The asymptotically exponentially increasing volume with distance of anti de Sitter space imposes different constraints than those found in the study of defects in Minkowski space.

  15. Surviving in a metastable de Sitter space-time

    International Nuclear Information System (INIS)

    Kashyap, Sitender Pratap; Mondal, Swapnamay; Sen, Ashoke; Verma, Mritunjay

    2015-01-01

    In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.

  16. Surviving in a metastable de Sitter space-time

    Energy Technology Data Exchange (ETDEWEB)

    Kashyap, Sitender Pratap; Mondal, Swapnamay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); School of Physics, Korea Institute for Advanced Study,Seoul 130-722 (Korea, Republic of); Verma, Mritunjay [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); International Centre for Theoretical Sciences,Malleshwaram, Bengaluru 560 012 (India)

    2015-09-21

    In a metastable de Sitter space any object has a finite life expectancy beyond which it undergoes vacuum decay. However, by spreading into different parts of the universe which will fall out of causal contact of each other in future, a civilization can increase its collective life expectancy, defined as the average time after which the last settlement disappears due to vacuum decay. We study in detail the collective life expectancy of two comoving objects in de Sitter space as a function of the initial separation, the horizon radius and the vacuum decay rate. We find that even with a modest initial separation, the collective life expectancy can reach a value close to the maximum possible value of 1.5 times that of the individual object if the decay rate is less than 1% of the expansion rate. Our analysis can be generalized to any number of objects, general trajectories not necessarily at rest in the comoving coordinates and general FRW space-time. As part of our analysis we find that in the current state of the universe dominated by matter and cosmological constant, the vacuum decay rate is increasing as a function of time due to accelerated expansion of the volume of the past light cone. Present decay rate is about 3.7 times larger than the average decay rate in the past and the final decay rate in the cosmological constant dominated epoch will be about 56 times larger than the average decay rate in the past. This considerably weakens the lower bound on the half-life of our universe based on its current age.

  17. Quasinormal modes and strong cosmic censorship in near-extremal Kerr-Newman-de Sitter black-hole spacetimes

    Science.gov (United States)

    Hod, Shahar

    2018-05-01

    The quasinormal resonant modes of massless neutral fields in near-extremal Kerr-Newman-de Sitter black-hole spacetimes are calculated in the eikonal regime. It is explicitly proved that, in the angular momentum regime a bar >√{1 - 2 Λ bar/4 + Λ bar / 3 }, the black-hole spacetimes are characterized by slowly decaying resonant modes which are described by the compact formula ℑ ω (n) =κ+ ṡ (n + 1/2 ) [here the physical parameters { a bar ,κ+ , Λ bar , n } are respectively the dimensionless angular momentum of the black hole, its characteristic surface gravity, the dimensionless cosmological constant of the spacetime, and the integer resonance parameter]. Our results support the validity of the Penrose strong cosmic censorship conjecture in these black-hole spacetimes.

  18. Kerr-Newman metric in deSitter background

    International Nuclear Information System (INIS)

    Patel, L.K.; Koppar, S.S.; Bhatt, P.V.

    1987-01-01

    In addition to the Kerr-Newman metric with cosmological constant several other metrics are presented giving Kerr-Newman type solutions of Einstein-Maxwell field equations in the background of deSitter universe. The electromagnetic field in all the solutions is assumed to be source-free. A new metric of what may be termed as an electrovac rotating deSitter space-time- a space-time devoid of matter but containing source-free electromagnetic field and a null fluid with twisting rays-has been presented. In the absence of the electromagnetic field, these solutions reduce to those discussed by Vaidya (1984). 8 refs. (author)

  19. Kerr metric in the deSitter background

    International Nuclear Information System (INIS)

    Vaidya, P.C.

    1984-01-01

    In addition to the Kerr metric with cosmological constant Λ several other metrics are presented giving a Kerr-like solution of Einstein's equations in the background of deSitter universe. A new metric of what may be termed as rotating deSitter space-time devoid of matter but containing null fluid with twisting null rays, has been presented. This metric reduces to the standard deSitter metric when the twist in the rays vanishes. Kerr metric in this background is the immediate generalization of Schwarzschild's exterior metric with cosmological constant. (author)

  20. Quasinormal frequencies of Schwarzschild black holes in anti-de Sitter spacetimes: A complete study of the overtone asymptotic behavior

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Konoplya, Roman; Lemos, Jose P. S.

    2003-01-01

    We present a thorough analysis of the quasinormal (QN) behavior associated with the decay of scalar, electromagnetic, and gravitational perturbations of Schwarzschild black holes in anti-de Sitter (AdS) spacetimes. As is known, the AdS QN spectrum crucially depends on the relative size of the black hole to the AdS radius. There are three different types of behavior depending on whether the black hole is large, intermediate, or small. The results of previous works, concerning lower overtones for large black holes, are completed here by obtaining higher overtones for all three black hole regimes. There are two major conclusions that one can draw from this work: First, asymptotically for high overtones, all the modes are evenly spaced, and this holds for all three types of regime, large, intermediate, and small black holes, independently of l, where l is the quantum number characterizing the angular distribution; second, the spacing between modes is apparently universal in that it does not depend on the field; i.e., scalar, electromagnetic, and gravitational QN modes all have the same spacing for high overtones. We are also able to prove why scalar and gravitational perturbations are isospectral, asymptotically for high overtones, by introducing appropriate superpartner potentials

  1. Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2007-01-01

    We examine anti-de Sitter gravity minimally coupled to a self-interacting scalar field in D>=4 dimensions when the mass of the scalar field is in the range m * 2 = 2 * 2 +l -2 . Here, l is the AdS radius, and m * 2 is the Breitenlohner-Freedman mass. We show that even though the scalar field generically has a slow fall-off at infinity which back reacts on the metric so as to modify its standard asymptotic behavior, one can still formulate asymptotic conditions (i) that are anti-de Sitter invariant; and (ii) that allows the construction of well-defined and finite Hamiltonian generators for all elements of the anti-de Sitter algebra. This requires imposing a functional relationship on the coefficients a, b that control the two independent terms in the asymptotic expansion of the scalar field. The anti-de Sitter charges are found to involve a scalar field contribution. Subtleties associated with the self-interactions of the scalar field as well as its gravitational back reaction, not discussed in previous treatments, are explicitly analyzed. In particular, it is shown that the fields develop extra logarithmic branches for specific values of the scalar field mass (in addition to the known logarithmic branch at the B-F bound)

  2. Newton-Hooke Limit of Beltrami-de Sitter Spacetime, Principles of Galilei-Hooke's Relativity and Postulate on Newton-Hooke Universal Time

    OpenAIRE

    Huang, Chao-Guang; Guo, Han-Ying; Tian, Yu; Xu, Zhan; Zhou, Bin

    2004-01-01

    Based on the Beltrami-de Sitter spacetime, we present the Newton-Hooke model under the Newton-Hooke contraction of the $BdS$ spacetime with respect to the transformation group, algebra and geometry. It is shown that in Newton-Hooke space-time, there are inertial-type coordinate systems and inertial-type observers, which move along straight lines with uniform velocity. And they are invariant under the Newton-Hooke group. In order to determine uniquely the Newton-Hooke limit, we propose the Gal...

  3. Gravitational collapse in anti de Sitter space

    International Nuclear Information System (INIS)

    Garfinkle, David

    2004-01-01

    A numerical and analytic treatment is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz and Maeda to lead to a violation of cosmic censorship. That initial data is essentially a thick domain wall connecting two regions of anti de Sitter space. The evolution results in no violation of cosmic censorship, but rather the formation of a small black hole

  4. Thermodynamic stability of asymptotically anti-de Sitter rotating black holes in higher dimensions

    International Nuclear Information System (INIS)

    Dolan, Brian P

    2014-01-01

    Conditions for thermodynamic stability of asymptotically anti-de Sitter (AdS) rotating black holes in D-dimensions are determined. Local thermodynamic stability requires not only positivity conditions on the specific heat and the moment of inertia tensor but it is also necessary that the adiabatic compressibility be positive. It is shown that, in the absence of a cosmological constant, neither rotation nor charge is sufficient to ensure full local thermodynamic stability of a black hole. Thermodynamic stability properties of AdS Myers–Perry black holes are investigated for both singly spinning and multi-spinning black holes. Simple expressions are obtained for the specific heat and moment of inertia tensor in any dimension. An analytic expression is obtained for the boundary of the region of parameter space in which such space-times are thermodynamically stable. (paper)

  5. Area and Entropy Spectrum of Gauss—Bonnet Gravity in de Sitter Space-Times for Black Hole Event Horizon

    International Nuclear Information System (INIS)

    Chen Qiang; Ren Ji-Rong

    2013-01-01

    In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss—Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein—Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for near-extremal Gauss—Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions. (general)

  6. Quantum field theory in curved space-times: with an application to the reduced model of deSitter universe

    International Nuclear Information System (INIS)

    Peter, I. J.

    1995-06-01

    The work deals with space-times with fixed background metric. The topics were arranged in a straight course, the first chapter collects basic facts on Lorentzian manifolds as time-orientability, causal structure, ... Further free neutral scalar fields and spinor fields described by the Klein-Gordon equation resp. the Dirac equation are dealt with. Having in mind the construction of the Weyl algebra and the Fermi algebra in the second chapter, it was put emphasis on the structure of the spaces of solutions of these equations: In the first case the space of solutions is a symplectic vector space in a canonical manner, in the second case a Hilbert space. It was made some effort to stay as general as possible. Most of the material in the second chapter already exists for several years, but it is largely scattered over various journal articles. In the third chapter the construction of a vacuum on the special example of deSitter universe is described. A close investigation of a recent work by J. Bros and U. Moschella made it possible to refine a result concerning temperature felt by an accelerated observer in deSitter space. The last part of this thesis is concerned with vacua for spinor fields on the two-dimensional deSitter universe. A procedure introduced by R. Haag, H. Narnhofer and U. Stein for four dimensional space-times does not seem to work in two dimensions. (author)

  7. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    Science.gov (United States)

    Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya

    2014-06-01

    We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  8. Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling

    International Nuclear Information System (INIS)

    Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya

    2014-01-01

    We obtain quantum geometries on a vacuum created pair of a (DD ¯ ) 3 -brane, at a Big Bang singularity, by a local two form on a D 4 -brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD ¯ )-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D 4 -brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole

  9. de Sitter relativity in static charts

    Energy Technology Data Exchange (ETDEWEB)

    Cotaescu, Ion I. [West University of Timisoara, Timisoara (Romania)

    2018-02-15

    The relative geodesic motion in static (and spherically symmetric) local charts on the (1 + 3)-dimensional de Sitter spacetimes is studied in terms of conserved quantities. The Lorentzian isometries are derived, relating the coordinates of the local chart of a fixed observer with the coordinates of a mobile chart considered as the rest frame of a massive particle freely moving on a timelike geodesic. The time dilation and Lorentz contraction are discussed pointing out some notable features of the de Sitter relativity in static charts. (orig.)

  10. Fermion tunneling from anti-de Sitter spaces

    International Nuclear Information System (INIS)

    Chen, Deyou; Yang, Haitang; Zu, Xiaotao

    2008-01-01

    Kerner and Mann's recent research on the Hawking radiation of the spherically symmetric uncharged black hole shows that the Hawking temperature can be obtained by the fermion tunneling method. In this paper, we extend this work to the general case and view the Hawking radiations of the Reissner-Nordstroem black hole, Kerr black hole and Kerr-Newman black hole in anti-de Sitter spaces. The Hawking temperatures are recovered and are exactly the same as that obtained by other methods. (orig.)

  11. Mass in anti-de Sitter spaces

    International Nuclear Information System (INIS)

    Liu, James T.; Sabra, W.A.

    2005-01-01

    The boundary stress tensor approach has proven extremely useful in defining mass and angular momentum in asymptotically anti-de Sitter spaces with CFT duals. An integral part of this method is the use of boundary counterterms to regulate the gravitational action and stress tensor. In the presence of matter, however, ambiguities may arise that are related to the addition of possible finite counterterms. We demonstrate this explicitly for R-charged black holes in AdS 5 , where introduction of a finite counterterm proportional to φ 2 is necessary to properly reproduce the expected mass/charge relation for the black holes

  12. Area spectrum of the D-dimensional de Sitter spacetime

    International Nuclear Information System (INIS)

    Lopez-Ortega, A.

    2009-01-01

    The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.

  13. Area spectrum of the D-dimensional de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Ortega, A., E-mail: alopezo@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria, Instituto Politecnico Nacional, Calzada Legaria 694 Colonia Irrigacion, Delegacion Miguel Hidalgo, Mexico, D.F., C.P. 11500 (Mexico)

    2009-11-23

    The determination of the quantum area spectrum of a black hole horizon by means of its asymptotic quasinormal frequencies has been explored recently. We believe that for D-dimensional de Sitter horizon we must study if the idea works. Thus taking into account the local description of the thermodynamics of horizons proposed by Padmanabhan and the results of Hod, Kunstatter, and Maggiore we study the area spectrum of the D-dimensional de Sitter horizon.

  14. Nonextreme and ultraextreme domain walls and their global space-times

    International Nuclear Information System (INIS)

    Cvetic, M.; Griffies, S.; Soleng, H.H.

    1993-01-01

    Nonextreme walls (bubbles with two insides) and ultraextreme walls (bubbles of false vacuum decay) are discussed. Their respective energy densities are higher and lower than that of the corresponding extreme (supersymmetric), planar domain wall. These singularity free space-times exhibit nontrivial causal structure analogous to certain nonextreme black holes. We focus on anti--de Sitter--Minkowski walls and comment on Minkowski-Minkowski walls with trivial extreme limit, as well as walls adjacent to de Sitter space-times with no extreme limit

  15. Superfield approach to anti de Sitter supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.A.

    1979-01-01

    A self-contained superfield approach to global supersymmetry in anti de Sitter space (OSp(1.4)) is developed. General transformation laws for OSp(1.4)-superfields are established, and all basic elements of the OSp(1.4)-covariant formalism in the real basis, such as covariant superfield derivatives, invariant integration measure over the superspace OSp(1.4)/O(1.3), etc., are explicitly given. The reducibility questions are analyzed and realizations of OSp(1.4) in the left- and right-handed chiral superspaces are found

  16. Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Berti, Emanuele; Cardoso, Vitor; Pani, Paolo

    2009-01-01

    We show that the theory of Breit-Wigner resonances can be used as an efficient numerical tool to compute black hole quasinormal modes. For illustration, we focus on the Schwarzschild anti-de Sitter (SAdS) spacetime. The resonance method is better suited to small SAdS black holes than the traditional series expansion method, allowing us to confirm that the damping time scale of small SAdS black holes for scalar and gravitational fields is proportional to r + -2l-2 , where r + is the horizon radius. The proportionality coefficients are in good agreement with analytic calculations. We also examine the eikonal limit of SAdS quasinormal modes, confirming quantitatively Festuccia and Liu's [arXiv:0811.1033] prediction of the existence of very long-lived modes. Our results are particularly relevant for the AdS/CFT correspondence, since long-lived modes presumably dominate the decay time scale of the perturbations.

  17. Holographic dual of de Sitter universe with AdS bubbles

    International Nuclear Information System (INIS)

    Kanno, Sugumi; Sasaki, Misao; Soda, Jiro

    2012-01-01

    We study the proposal that a de Sitter (dS) universe with an Anti-de Sitter (AdS) bubble can be replaced by a dS universe with a boundary CFT. To explore this duality, we consider incident gravitons coming from the dS universe through the bubble wall into the AdS bubble in the original picture. In the dual picture, this process has to be identified with the absorption of gravitons by CFT matter. We have obtained a general formula for the absorption probability in general d+1 spacetime dimensions. The result shows the different behavior depending on whether spacetime dimensions are even or odd. We find that the absorption process of gravitons from the dS universe by CFT matter is controlled by localized gravitons (massive bound state modes in the Kaluza-Klein decomposition) in the dS universe. The absorption probability is determined by the effective degrees of freedom of the CFT matter and the effective gravitational coupling constant which encodes information of localized gravitons. We speculate that the dual of (d+1)-dimensional dS universe with an AdS bubble is also dual to a d-dimensional dS universe with CFT matter.

  18. CFT description of three-dimensional Kerr-de Sitter spacetime

    International Nuclear Information System (INIS)

    Fjelstad, Jens; Hwang, Stephen; Maansson, Teresia

    2002-01-01

    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space

  19. CFT description of three-dimensional Kerr-de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Fjelstad, Jens E-mail: jens.fjelstad@kau.se; Hwang, Stephen E-mail: stephen.hwang@kau.se; Maansson, Teresia E-mail: teresia@physto.se

    2002-10-07

    We describe three-dimensional Kerr-de Sitter space using similar methods as recently applied to the BTZ black hole. A rigorous form of the classical connection between gravity in three dimensions and two-dimensional conformal field theory is employed, where the fundamental degrees of freedom are described in terms of two dependent SL(2,C) currents. In contrast to the BTZ case, however, quantization does not give the Bekenstein-Hawking entropy connected to the cosmological horizon of Kerr-de Sitter space.

  20. Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity

    Directory of Open Access Journals (Sweden)

    V. K. Oikonomou

    2016-05-01

    Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.

  1. Spectator electric fields, de Sitter spacetime, and the Schwinger effect

    Science.gov (United States)

    Giovannini, Massimo

    2018-03-01

    During a de Sitter stage of expansion, the spectator fields of different spin are constrained by the critical density bound and by further requirements determined by their specific physical nature. The evolution of spectator electric fields in conformally flat background geometries is occasionally concocted by postulating the existence of ad hoc currents, but this apparently innocuous trick violates the second law of thermodynamics. Such a problem occurs, in particular, for those configurations (customarily employed for the analysis of the Schwinger effect in four-dimensional de Sitter backgrounds) leading to an electric energy density which is practically unaffected by the expansion of the underlying geometry. The obtained results are compared with more mundane situations where Joule heating develops in the early stages of a quasi-de Sitter phase.

  2. Spherical and planar three-dimensional anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Zanchin, Vilson T; Miranda, Alex S

    2004-01-01

    The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein-Maxwell-dilaton theory was built from the usual four-dimensional (4D) Einstein-Maxwell-Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner-Nordstroem-AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail

  3. Stable black strings in anti-de sitter space

    International Nuclear Information System (INIS)

    Hirayama, Takayuki

    2002-01-01

    In my talk I show a black string which is a foliation of anti-de Sitter (AdS) Schwarzschild black hole becomes classically stable if the size of black hole horizon is larger than the AdS radius even if the black string extends infinitely. I will also give a comment on the relation with the Gubser-Mitra conjecture. This talk is based on our paper (Phys. Rev. D64: 064010, 2001) which is a collaboration with Gungwon Kang

  4. Hybridizing the Skyrmion with an Anti-de-Sitter bag

    International Nuclear Information System (INIS)

    Rosu, H.

    1992-02-01

    We discuss a phenomenological model of the nucleon in which a small Anti-de-Sitter bag is placed into the Skyrmion configuration. Such a bag has a timelike boundary and allows naturally the Cheshire Cat Principle. Very important in this model is the membrane of the bag, the 3-dimensional manifold S 1 xS 2 , in which topological techniques will come into play. (author). 63 refs

  5. Discrete Torsion, (Anti) de Sitter D{sub 4}-Brane and Tunneling

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya, E-mail: skkar@physics.du.ac.in

    2014-06-15

    We obtain quantum geometries on a vacuum created pair of a (DD{sup ¯}){sub 3}-brane, at a Big Bang singularity, by a local two form on a D{sub 4}-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD{sup ¯})-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D{sub 4}-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.

  6. A fond farewell to anti De Sitter space

    International Nuclear Information System (INIS)

    Freedman, D.Z.

    1986-01-01

    Recent results on supersymmetry in a fixed Anti de Sitter (AdS) background geometry are summarized. These results include i) required modification of the generators of the O(3,2) isometry group in the AdS Wess-Zumino model, ii) the one-loop renormalization structure of this model, showing that the special 'naturalness' properties of flat space supersymmetry do not extend to AdS, and iii) a non-perturbative Lehmann spectral representation. Open problems suggested by recent work are emphasized. (author)

  7. More on asymptotically anti-de Sitter spaces in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2010-01-01

    Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).

  8. Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.

    Science.gov (United States)

    Bosch, Pablo; Green, Stephen R; Lehner, Luis

    2016-04-08

    We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.

  9. A note on entropy of de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, Sourav [University of Crete, ITCP and Department of Physics, Heraklion (Greece); Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune (India)

    2016-03-15

    A de Sitter black hole or a black hole spacetime endowed with a positive cosmological constant has two Killing horizons - a black hole and a cosmological event horizon surrounding it. It is natural to expect that the total Bekenstein-Hawking entropy of such spacetimes should be the sum of the two horizons' areas. In this work we apply the recently developed formalism using the Gibbons-Hawking-York boundary term and the near horizon symmetries to derive the total entropy of such two horizon spacetimes. We construct a suitable general geometric set up for general stationary axisymmetric spacetimes with two or more than two commuting Killing vector fields in an arbitrary spacetime dimensions. This framework helps us to deal with both horizons on an equal footing. We show that in order to obtain the total entropy of such spacetimes, the near horizon mode functions for the diffeomorphism generating vector fields have to be restricted in a certain manner, compared to the single horizon spacetimes. We next discuss specific known exact solutions belonging to the Kerr-Newman or the Plebanski-Demianski-de Sitter families to show that they fall into the category of our general framework. We end with a sketch of further possible extensions of this work. (orig.)

  10. Instanton tunneling for de Sitter space with real projective spatial sections

    Energy Technology Data Exchange (ETDEWEB)

    Ong, Yen Chin [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Yeom, Dong-han, E-mail: ongyenchin@sjtu.edu.cn, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2017-04-01

    The physics of tunneling from one spacetime to another is often understood in terms of instantons. For some instantons, it was recently shown in the literature that there are two complementary ''interpretations'' for their analytic continuations. Dubbed ''something-to-something'' and ''nothing-to-something'' interpretations, respectively, the former involves situation in which the initial and final hypersurfaces are connected by a Euclidean manifold, whereas the initial and final hypersurfaces in the latter case are not connected in such a way. We consider a de Sitter space with real projective space RP{sup 3} spatial sections, as was originally understood by de Sitter himself. This original version of de Sitter space has several advantages over the usual de Sitter space with S{sup 3} spatial sections. In particular, the interpretation of the de Sitter entropy as entanglement entropy is much more natural. We discuss the subtleties involved in the tunneling of such a de Sitter space.

  11. Some Peculiarities of Newton-Hooke Space-Times

    OpenAIRE

    Tian, Yu

    2011-01-01

    Newton-Hooke space-times are the non-relativistic limit of (anti-)de Sitter space-times. We investigate some peculiar facts about the Newton-Hooke space-times, among which the "extraordinary Newton-Hooke quantum mechanics" and the "anomalous Newton-Hooke space-times" are discussed in detail. Analysis on the Lagrangian/action formalism is performed in the discussion of the Newton-Hooke quantum mechanics, where the path integral point of view plays an important role, and the physically measurab...

  12. Mass Formulae for Broken Supersymmetry in Curved Space-Time

    CERN Document Server

    Ferrara, Sergio

    2016-01-01

    We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.

  13. Real forms of complex quantum anti-de-Sitter algebra Uq(Sp(4;C)) and their contraction schemes

    International Nuclear Information System (INIS)

    Lukierski, J.; Nowicki, A.; Ruegg, H.

    1991-01-01

    We describe four types of inner involutions of the Cartan-Weyl basis providing (for vertical strokeqvertical stroke=1 and q real) three types of real quantum Lie algebras: U q (O(3, 2)) (quantum D=4 anti-de-Sitter), U q (O(4, 1)) (quantum D=4 de-Sitter) and U q (O(5)). We give also two types of inner involutions of the Cartan-Chevalley basis of U q (Sp(4; C)) which cannot be extended to inner involutions of the Cartan-Weyl basis. We outline twelve contraction schemes for quantum D=4 anti-de-Sitter algebra. All these contractions provide four commuting translation generators, but only two (one for vertical strokeqvertical stroke=1, the second for q real) lead to the quantum Poincare algebra with an undeformed space rotation O(3) subalgebra. (orig.)

  14. Instability of charged anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon; Ro, Daeho

    2016-01-01

    We have studied the instability of charged anti-de Sitter black holes in four- or higher-dimensions under fragmentation. The unstable black holes under fragmentation can be broken into two black holes. Instability depends not only on the mass and charge of the black hole but also on the ratio between the fragmented black hole and its predecessor. We have found that the near extremal black holes are unstable, and Schwarzschild-AdS black holes are stable. These are qualitatively similar to black holes in four dimensions and higher. The detailed instabilities are numerically investigated.

  15. Massless Interacting Scalar Fields in de Sitter space

    CERN Document Server

    López Nacir, Diana

    2016-10-28

    We present a method to compute the two-point functions for an $O(N)$ scalar field model in de Sitter spacetime, avoiding the well known infrared problems for massless fields. The method is based on an exact treatment of the Euclidean zero modes and a perturbative one of the nonzero modes, and involves a partial resummation of the leading secular terms. This resummation, crucial to obtain a decay of the correlation functions, is implemented along with a double expansion in an effective coupling constant $\\sqrt\\lambda$ and in $1/N$. The results reduce to those known in the leading infrared approximation and coincide with the ones obtained directly in Lorentzian de Sitter spacetime in the large $N$ limit. The new method allows for a systematic calculation of higher order corrections both in $\\sqrt\\lambda$ and in $1/N$.

  16. Wightman function and vacuum densities in de Sitter spacetime with toroidally compactified dimensions

    International Nuclear Information System (INIS)

    Bellucci, S.; Saharian, A. A.

    2008-01-01

    We investigate the Wightman function, the vacuum expectation values of the field squared, and the energy-momentum tensor for a scalar field with a general curvature coupling parameter in (D+1)-dimensional de Sitter (dS) spacetime with an arbitrary number of compactified spatial dimensions. Both cases of periodicity and antiperiodicity conditions along the compactified dimensions are considered. Recurrence formulas are derived which express the vacuum expectation values for the dS spacetime of topology R p x(S 1 ) q in the form of the sum of the vacuum expectation values in the topology R p+1 x(S 1 ) q-1 and the part induced by the compactness of the (p+1)th spatial dimension. The behavior of the topological parts is investigated in various asymptotic regions of the parameters. In the early stages of the cosmological evolution, the topological parts dominate the contribution in the expectation values due to the uncompactified dS part. In this limit the behavior of the topological parts does not depend on the curvature coupling parameter and coincides with that for a conformally coupled massless field. At late stages of the cosmological expansion, the expectation values are dominated by the part corresponding to uncompactified dS spacetime. The vanishing of the topological parts is monotonic or oscillatory in dependence of the mass and the curvature coupling parameter of the field

  17. Strong cosmic censorship in de Sitter space

    Science.gov (United States)

    Dias, Oscar J. C.; Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E.

    2018-05-01

    Recent work indicates that the strong cosmic censorship hypothesis is violated by nearly extremal Reissner-Nordström-de Sitter black holes. It was argued that perturbations of such a black hole decay sufficiently rapidly that the perturbed spacetime can be extended across the Cauchy horizon as a weak solution of the equations of motion. In this paper we consider the case of Kerr-de Sitter black holes. We find that, for any nonextremal value of the black hole parameters, there are quasinormal modes which decay sufficiently slowly to ensure that strong cosmic censorship is respected. Our analysis covers both scalar field and linearized gravitational perturbations.

  18. Gravity mediated Dark Matter models in the de Sitter space

    OpenAIRE

    Vancea, Ion V.

    2018-01-01

    In this paper, we generalize the simplified Dark Matter models with graviton mediator to the curved space-time, in particular to the de Sitter space. We obtain the generating functional of the Green's functions in the Euclidean de Sitter space for the covariant free gravitons. We determine the generating functional of the interacting theory between Dark Matter particles and the covariant gravitons. Also, we calculate explicitly the 2-point and 3-point interacting Green's functions for the sym...

  19. Thermal interpretation of infrared dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Rigopoulos, Gerasimos, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2016-07-01

    The infrared dynamics of a light, minimally coupled scalar field in de Sitter spacetime with Ricci curvature R = 12 H {sup 2}, averaged over horizon sized regions of physical volume V {sub H} = (4π/3)(1/ H ){sup 3}, can be interpreted as Brownian motion in a medium with de Sitter temperature T {sub DS} = h-bar H /2π. We demonstrate this by directly deriving the effective action of scalar field fluctuations with wavelengths larger than the de Sitter curvature radius and generalizing Starobinsky's seminal results on stochastic inflation. The effective action describes stochastic dynamics and the fluctuating force drives the field to an equilibrium characterized by a thermal Gibbs distribution at temperature T {sub DS} which corresponds to a de Sitter invariant state. Hence, approach towards this state can be interpreted as thermalization. We show that the stochastic kinetic energy of the coarse-grained description corresponds to the norm of ∂{sub μ}φ and takes a well defined value per horizon volume ½((∇φ){sup 2}) = − ½ T {sub DS}/ V {sub H} . This approach allows for the non-perturbative computation of the de Sitter invariant stress energy tensor ( T {sub μν}) for an arbitrary scalar potential.

  20. Schwarzschild-de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    Science.gov (United States)

    Pappas, Thomas; Kanti, Panagiota

    2017-12-01

    We consider a Schwarzschild-de Sitter (SdS) black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  1. Spacetime from unentanglement

    Science.gov (United States)

    Nomura, Yasunori; Rath, Pratik; Salzetta, Nico

    2018-05-01

    The past decade has seen a tremendous effort toward unraveling the relationship between entanglement and emergent spacetime. These investigations have revealed that entanglement between holographic degrees of freedom is crucial for the existence of bulk spacetime. We examine this connection from the other end of the entanglement spectrum and clarify the assertion that maximally entangled states have no reconstructable spacetime. To do so, we first define the conditions for bulk reconstructability. Under these terms, we scrutinize two cases of maximally entangled holographic states. One is the familiar example of AdS black holes; these are dual to thermal states of the boundary conformal field theory. Sending the temperature to the cutoff scale makes the state maximally entangled and the respective black hole consumes the spacetime. We then examine the de Sitter limit of Friedmann-Robertson-Walker (FRW) spacetimes. This limit is maximally entangled if one formulates the boundary theory on the holographic screen. Paralleling the anti-de Sitter (AdS) black hole, we find the resulting reconstructable region of spacetime vanishes. Motivated by these results, we prove a theorem showing that maximally entangled states have no reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermediate entanglement. By studying the manner in which intermediate entanglement is achieved, we uncover important properties about the boundary theory of FRW spacetimes. With this clarified understanding, our final discussion elucidates the natural way in which holographic Hilbert spaces may house states dual to different geometries. This paper provides a coherent picture clarifying the link between spacetime and entanglement and develops many promising avenues of further work.

  2. Mechanics and Newton-Cartan-like gravity on the Newton-Hooke space-time

    International Nuclear Information System (INIS)

    Tian Yu; Guo Hanying; Huang Chaoguang; Xu Zhan; Zhou Bin

    2005-01-01

    We focus on the dynamical aspects on Newton-Hooke space-time NH + mainly from the viewpoint of geometric contraction of the de Sitter spacetime with Beltrami metric. (The term spacetime is used to denote a space with non-degenerate metric, while the term space-time is used to denote a space with degenerate metric.) We first discuss the Newton-Hooke classical mechanics, especially the continuous medium mechanics, in this framework. Then, we establish a consistent theory of gravity on the Newton-Hooke space-time as a kind of Newton-Cartan-like theory, parallel to the Newton's gravity in the Galilei space-time. Finally, we give the Newton-Hooke invariant Schroedinger equation from the geometric contraction, where we can relate the conservative probability in some sense to the mass density in the Newton-Hooke continuous medium mechanics. Similar consideration may apply to the Newton-Hooke space-time NH - contracted from anti-de Sitter spacetime

  3. de Sitter symmetry of Neveu-Schwarz spinors

    International Nuclear Information System (INIS)

    Epstein, Henri; Moschella, Ugo

    2016-01-01

    We study the relations between Dirac fields living on the 2-dimensional Lorentzian cylinder and the ones living on the double-covering of the 2-dimensional de Sitter manifold, here identified as a certain coset space of the group SL(2,R). We show that there is an extended notion of de Sitter covariance only for Dirac fields having the Neveu-Schwarz anti-periodicity and construct the relevant cocycle. Finally, we show that the de Sitter symmetry is naturally inherited by the Neveu-Schwarz massless Dirac field on the cylinder.

  4. Phase Transitions for Flat Anti - de Sitter Black Holes

    International Nuclear Information System (INIS)

    Surya, Sumati; Schleich, Kristin; Witt, Donald M.

    2001-01-01

    We reexamine the thermodynamics of anti - de Sitter (adS) black holes with Ricci flat horizons using the adS soliton as the thermal background. We find that there is a phase transition which is dependent not only on the temperature but also on the black hole area, which is an independent parameter. As in the spherical adS black hole, this phase transition is related via the adS/conformal-field-theory correspondence to a confinement-deconfinement transition in the large-N gauge theory on the conformal boundary at infinity

  5. Cosmic censorship of rotating Anti-de Sitter black hole

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Bogeun; Lee, Bum-Hoon, E-mail: rasenis@sogang.ac.kr, E-mail: bhl@sogang.ac.kr [Center for Quantum Spacetime, Sogang University, Seoul 04107 (Korea, Republic of)

    2016-02-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.

  6. Cosmic censorship of rotating Anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Gwak, Bogeun; Lee, Bum-Hoon

    2016-01-01

    We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid

  7. Mass formulae for broken supersymmetry in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2016-11-15

    We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. Stability of black holes in de Sitter space

    International Nuclear Information System (INIS)

    Mellor, F.; Moss, I.

    1990-01-01

    The theory of black-hole perturbations is extended to charged black holes in de Sitter space. These spacetimes have wormholes connecting different asymptotic regions. It appears that, at least in some cases, these holes are stable even at the Cauchy horizon. It follows that they violate cosmic censorship and an observer could in principle travel through the black hole to another universe. The stability of these spacetimes also implies the existence of a cosmological ''no hair'' theorem

  9. The mechanical first law of black hole spacetimes with a cosmological constant and its application to the Schwarzschild-de Sitter spacetime

    International Nuclear Information System (INIS)

    Urano, Miho; Tomimatsu, Akira; Saida, Hiromi

    2009-01-01

    The mechanical first law (MFL) of black hole spacetimes is a geometrical relation which relates variations of the mass parameter and horizon area. While it is well known that the MFL of an asymptotic flat black hole is equivalent to its thermodynamical first law, however we do not know the detail of the MFL of black hole spacetimes with a cosmological constant which possess a black hole and cosmological event horizons. This paper aims to formulate an MFL of the two-horizon spacetimes. For this purpose, we try to include the effects of two horizons in the MFL. To do so, we make use of the Iyer-Wald formalism and extend it to regard the mass parameter and the cosmological constant as two independent variables which make it possible to treat the two horizons on the same footing. Our extended Iyer-Wald formalism preserves the existence of the conserved Noether current and its associated Noether charge, and gives an abstract form of the MFL of black hole spacetimes with a cosmological constant. Then, as a representative application of this formalism, we derive the MFL of the Schwarzschild-de Sitter (SdS) spacetime. Our MFL of the SdS spacetime relates the variations of three quantities: the mass parameter, the total area of the two horizons and the volume enclosed by the two horizons. If our MFL is regarded as a thermodynamical first law of the SdS spacetime, it offers a thermodynamically consistent description of the SdS black hole evaporation process: the mass decreases while the volume and the entropy increase. In our suggestion, a generalized second law is not needed to ensure the second law of SdS thermodynamics for its evaporation process.

  10. Dirac perturbations on Schwarzschild-anti-de Sitter spacetimes: Generic boundary conditions and new quasinormal modes

    Science.gov (United States)

    Wang, Mengjie; Herdeiro, Carlos; Jing, Jiliang

    2017-11-01

    We study Dirac quasinormal modes of Schwarzschild-anti-de Sitter (Schwarzschild-AdS) black holes, following the generic principle for allowed boundary conditions proposed in [M. Wang, C. Herdeiro, and M. O. P. Sampaio, Phys. Rev. D 92, 124006 (2015)., 10.1103/PhysRevD.92.124006]. After deriving the equations of motion for Dirac fields on the aforementioned background, we impose vanishing energy flux boundary conditions to solve these equations. We find a set of two Robin boundary conditions are allowed. These two boundary conditions are used to calculate Dirac normal modes on empty AdS and quasinormal modes on Schwarzschild-AdS black holes. In the former case, we recover the known normal modes of empty AdS; in the latter case, the two sets of Robin boundary conditions lead to two different branches of quasinormal modes. The impact on these modes of the black hole size, the angular momentum quantum number and the overtone number are discussed. Our results show that vanishing energy flux boundary conditions are a robust principle, applicable not only to bosonic fields but also to fermionic fields.

  11. On the de Sitter and Nariai solutions in general relativity and their extension in higher dimensional space-time

    International Nuclear Information System (INIS)

    Nariai, Hidekazu; Ishihara, Hideki.

    1983-01-01

    Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)

  12. Thermodynamics of the Maxwell-Gauss-Bonnet anti-de Sitter black hole with higher derivative gauge corrections

    International Nuclear Information System (INIS)

    Anninos, Dionysios; Pastras, Georgios

    2009-01-01

    The local and global thermal phase structure for asymptotically anti-de Sitter black holes charged under an abelian gauge group, with both Gauss-Bonnet and quartic field strength corrections, is mapped out for all parameter space. We work in the grand canonical ensemble where the external electric potential is held fixed. The analysis is performed in an arbitrary number of dimensions, for all three possible horizon topologies - spherical, flat or hyperbolic. For spherical horizons, new metastable configurations are exhibited both for the pure Gauss-Bonnet theory as well as the pure higher derivative gauge theory and combinations thereof. In the pure Gauss-Bonnet theory with negative coefficient and five or more spatial dimensions, two locally thermally stable black hole solutions are found for a given temperature. Either one or both of them may be thermally favored over the anti-de Sitter vacuum - corresponding to a single or a double decay channel for the metastable black hole. Similar metastable configurations are uncovered for the theory with pure quartic field strength corrections, as well combinations of the two types of corrections, in three or more spatial dimensions. Finally, a secondary Hawking-Page transition between the smaller thermally favored black hole and thermal anti-de Sitter space is observed when both corrections are turned on and their couplings are both positive.

  13. Super-Hubble de Sitter fluctuations and the dynamical RG

    Energy Technology Data Exchange (ETDEWEB)

    Burgess, C.P. [Department of Physics and Astronomy, McMaster University, Hamilton, Ontario (Canada); Leblond, L.; Shandera, S. [Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); Holman, R., E-mail: cburgess@perimeterinstitute.ca, E-mail: lleblond@perimeterinstitute.ca, E-mail: rha@andrew.cmu.edu, E-mail: sshandera@perimeterinstitute.ca [Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213 (United States)

    2010-03-01

    Perturbative corrections to correlation functions for interacting theories in de Sitter spacetime often grow secularly with time, due to the properties of fluctuations on super-Hubble scales. This growth can lead to a breakdown of perturbation theory at late times. We argue that Dynamical Renormalization Group (DRG) techniques provide a convenient framework for interpreting and resumming these secularly growing terms. In the case of a massless scalar field in de Sitter with quartic self-interaction, the resummed result is also less singular in the infrared, in precisely the manner expected if a dynamical mass is generated. We compare this improved infrared behavior with large-N expansions when applicable.

  14. Vacuum states for gravitons field in de Sitter space

    Science.gov (United States)

    Bamba, Kazuharu; Rahbardehghan, Surena; Pejhan, Hamed

    2017-11-01

    In this paper, considering the linearized Einstein equation with a two-parameter family of linear covariant gauges in de Sitter spacetime, we examine possible vacuum states for the gravitons field with respect to invariance under the de Sitter group S O0(1 ,4 ) . Our calculations explicitly reveal that there exists no natural de Sitter-invariant vacuum state (the Euclidean or Bunch-Davies state) for the gravitons field. Indeed, on the foundation of a rigorous group-theoretical reasoning, we prove that if one insists on full covariance as well as causality for the theory, one has to give up the positivity requirement of the inner product. However, one may still look for states with as much symmetry as possible, more precisely, a restrictive version of covariance by considering the gravitons field and the associated vacuum state which are, respectively, covariant and invariant with respect to some maximal subgroup of the full de Sitter group. In this regard, we treat the S O (4 ) case and find a family of S O (4 )-invariant states. The associated S O (4 )-covariant quantum field is given, as well.

  15. Toward de Sitter space from ten dimensions

    Science.gov (United States)

    Moritz, Jakob; Retolaza, Ander; Westphal, Alexander

    2018-02-01

    Using a 10D lift of nonperturbative volume stabilization in type IIB string theory, we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest Kachru, Kallosh, Linde, and Trivedi vacua with a single Kähler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are metastable and supersymmetry breaking, but that are always anti-de Sitter (AdS). However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  16. Gravitationally induced adiabatic particle production: from big bang to de Sitter

    Science.gov (United States)

    de Haro, Jaume; Pan, Supriya

    2016-08-01

    In the background of a flat homogeneous and isotropic space-time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology.

  17. An absence theorem for static wave maps in the Schwarzschild-AdS spacetime

    International Nuclear Information System (INIS)

    Xie Naqing

    2005-01-01

    In this Letter, we obtain an absence theorem for static wave maps defined from the Schwarzschild-anti de Sitter spacetime into any Riemannian manifold. This work extends the results in [Chinese Ann. Math. B 5 (1984) 737, Lett. Math. Phys. 14 (1987) 343

  18. Gravitational and electromagnetic fields near an anti-de Sitter-like infinity

    International Nuclear Information System (INIS)

    Krtous, Pavel; Podolsky, Jiri

    2004-01-01

    We analyze the asymptotic structure of general gravitational and electromagnetic fields near an anti-de Sitter-like conformal infinity. The dependence of the radiative component of the fields on a null direction along which the infinity is approached is obtained. The directional pattern of outgoing and ingoing radiation, which supplements standard peeling property, is determined by the algebraic (Petrov) type of the fields and also by the orientation of the principal null directions with respect to timelike infinity. The dependence on the orientation is a new feature if compared to spacelike infinity

  19. De Sitter structured connection and gauge translations

    International Nuclear Information System (INIS)

    Aldinger, R.R.

    1986-01-01

    A local gauge field description of space-time is discussed using fiber bundle techniques as a theoretical framework. The basic idea is to endow ordinary Minkowski space, M 4 , with a somewhat richer structure than that implied by relativity by attaching to each position x epsilon M 4 a copy of a four-dimensional micro-space of constant curvature characterized by an elementary subatomic length parameter R of the order of a Fermi, thus allowing for additional internal degrees-of-freedom. Therefore, two sets of variables are introduced: (i) the usual space-time variables x which determine an element of M 4 and (ii) a second set zeta which are elements of an internal space F (which is identified with the fiber of a bundle constructed over M 4 ). Consequently, they consider a fiber bundle E(B,F,G,P) constructed over a four-dimensional base manifold B (which is taken to be the usual Minkowski space, M 4 ), possessing a four-dimensional fiber F, and associated with the principal bundle P=P(B,G) (on which the connection is defined). The structural (gauge) group G of the bundle plays the role of an internal symmetry group and therefore determines the possible motions of the internal degrees-of-freedom belonging to the fibers. As fiber they choose a four-dimensional pseudo-Riemannian space of constant (negative) curvature R:F = SO(4,1)/SO(3,1) (i.e., a de Sitter space) which contains, at each point of contact with base manifold M 4 , a tangent space which is isomorphic to Minkowski space. The structural group of the bundle is a de Sitter SO(4,1) which contains a Lorentz subgroup and a four parameter family of transformations (the de Sitter boosts), which in the limit R → ∞ corresponding to translations. 10 references

  20. Supersymmetry of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed

  1. Refining the boundaries of the classical de Sitter landscape

    Energy Technology Data Exchange (ETDEWEB)

    Andriot, David [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,Am Mühlenberg 1, 14467 Potsdam-Golm (Germany); Institut für Mathematik, Humboldt-Universität zu Berlin, IRIS-Adlershof,Zum Großen Windkanal 6, 12489 Berlin (Germany); Blåbäck, Johan [Institut de Physique Théorique, Université Paris Saclay, CEA, CNRS,F-91191 Gif sur Yvette (France)

    2017-03-20

    We derive highly constraining no-go theorems for classical de Sitter backgrounds of string theory, with parallel sources; this should impact the embedding of cosmological models. We study ten-dimensional vacua of type II supergravities with parallel and backreacted orientifold O{sub p}-planes and D{sub p}-branes, on four-dimensional de Sitter space-time times a compact manifold. Vacua for p=3, 7 or 8 are completely excluded, and we obtain tight constraints for p=4, 5, 6. This is achieved through the derivation of an enlightening expression for the four-dimensional Ricci scalar. Further interesting expressions and no-go theorems are obtained. The paper is self-contained so technical aspects, including conventions, might be of more general interest.

  2. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  3. Free massless fermionic fields of arbitrary spin in d-dimensional anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-04-25

    Free massless fermionic fields of arbitrary spins, corresponding to fully symmetric tensor-spinor irreducible representations of the flat little group SO(d-2), are described in d-dimensional anti-de Sitter space in terms of differential forms. Appropriate linearized higher-spin curvature 2-forms are found. Explicitly gauge invariant higher-spin actions are constructed in terms of these linearized curvatures.

  4. Pair creation of anti-de Sitter black holes on a cosmic string background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.

    2004-01-01

    We analyze the quantum process in which a cosmic string breaks in an anti-de Sitter (AdS) background, and a pair of charged or neutral black holes is produced at the ends of the strings. The energy to materialize and accelerate the pair comes from the string tension. In an AdS background this is the only study done on the process of production of a pair of correlated black holes with spherical topology. The acceleration A of the produced black holes is necessarily greater than √(|Λ|/3), where Λ A bh /4 , where A bh is the black hole horizon area. We also conclude that the general behavior of the pair creation rate with the mass and acceleration of the black holes is similar in the AdS, flat and de Sitter cases, and our AdS results reduce to the ones of the flat case when Λ→0

  5. Flow equation, conformal symmetry, and anti-de Sitter geometry

    Science.gov (United States)

    Aoki, Sinya; Yokoyama, Shuichi

    2018-03-01

    We argue that the anti-de Sitter (AdS) geometry in d+1 dimensions naturally emerges from an arbitrary conformal field theory in d dimensions using the free flow equation. We first show that an induced metric defined from the flowed field generally corresponds to the quantum information metric, called the Bures or Helstrom metric, if the flowed field is normalized appropriately. We next verify that the induced metric computed explicitly with the free flow equation always becomes the AdS metric when the theory is conformal. We finally prove that the conformal symmetry in d dimensions converts to the AdS isometry in d+1 dimensions after d-dimensional quantum averaging. This guarantees the emergence of AdS geometry without explicit calculation.

  6. Hawking radiation from the dilaton—(anti) de Sitter black hole via covariant anomaly

    International Nuclear Information System (INIS)

    Yi-Wen, Han; Yun, Hong; Zhi-Qing, Bao

    2009-01-01

    Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton—(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential. (general)

  7. FLAT TIME-LIKE SUBMANIFOLDS IN ANTI-DE SITTER SPACE H12n-1(-1)

    Institute of Scientific and Technical Information of China (English)

    ZUO DAFENG; CHEN QING; CHENG YI

    2005-01-01

    By using dressing actions of the Gn-1 1,1,n-1-system, the authors study geometric transformations for flat time-like n-submanifolds with flat, non-degenerate normal bun dle in anti-de Sitter space H1 2n-1(-1), where G1,1 n-1,n-1= O(2n - 2, 2)/O(n - 1, 1) ×O(n - 1, 1).

  8. Schwarzschild–de Sitter spacetime: The role of temperature in the emission of Hawking radiation

    Directory of Open Access Journals (Sweden)

    Thomas Pappas

    2017-12-01

    Full Text Available We consider a Schwarzschild–de Sitter (SdS black hole, and focus on the emission of massless scalar fields either minimally or non-minimally coupled to gravity. We use six different temperatures, two black-hole and four effective ones for the SdS spacetime, as the question of the proper temperature for such a background is still debated in the literature. We study their profiles under the variation of the cosmological constant, and derive the corresponding Hawking radiation spectra. We demonstrate that only few of these temperatures may support significant emission of radiation. We finally compute the total emissivities for each temperature, and show that the non-minimal coupling constant of the scalar field to gravity also affects the relative magnitudes of the energy emission rates.

  9. Higher order corrections to asymptotic-de Sitter inflation

    Science.gov (United States)

    Mohsenzadeh, M.; Yusofi, E.

    2017-08-01

    Since trans-Planckian considerations can be associated with the re-definition of the initial vacuum, we investigate further the influence of trans-Planckian physics on the spectra produced by the initial quasi-de Sitter (dS) state during inflation. We use the asymptotic-dS mode to study the trans-Planckian correction of the power spectrum to the quasi-dS inflation. The obtained spectra consist of higher order corrections associated with the type of geometry and harmonic terms sensitive to the fluctuations of space-time (or gravitational waves) during inflation. As an important result, the amplitude of the power spectrum is dependent on the choice of c, i.e. the type of space-time in the period of inflation. Also, the results are always valid for any asymptotic dS space-time and particularly coincide with the conventional results for dS and flat space-time.

  10. De Sitter projective relativity

    CERN Document Server

    Licata, Ignazio; Benedetto, Elmo

    2017-01-01

    This book presents the Projective approach to de Sitter Relativity. It traces the development of renewed interest in models of the universe at constant positive curvature such as "vacuum" geometry. The De Sitter Theory of Relativity, formulated in 1917 with Willem De Sitter's solution of the Einstein equations, was used in different fields during the 1950s and 1960s, in the work of H. Bacry, J.M. LevyLeblond and F.Gursey, to name some important contributors. From the 1960s to 1980s, L. Fantappié and G. Arcidiacono provided an elegant group approach to the De Sitter universe putting the basis for special and general projective relativity. Today such suggestions flow into a unitary scenario, and this way the De Sitter Relativity is no more a "missing opportunity" (F. Dyson, 1972), but has a central role in theoretical physics. In this volume a systematic presentation is given of the De Sitter Projective relativity, with the recent developments in projective general relativity and quantum cosmology.

  11. Relativistic particles with rigidity and torsion in D = 3 spacetimes

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Javaloyes, Miguel Angel; Lucas, Pascual

    2005-01-01

    Models describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D = 3 Lorentzian spacetimes with constant curvature. The moduli spaces of trajectories are completely and explicitly determined. Trajectories are Lancret curves including ordinary helices. To get the geometric integration of the solutions, we design algorithms that essentially involve the Lancret program as well as the notions of scrolls and Hopf tubes. The most interesting and consistent models appear in anti-de Sitter spaces, where the Hopf mappings, both the standard and the Lorentzian ones, play an important role. The moduli subspaces of closed solitons in anti-de Sitter settings are also obtained. Our main tool is the isoperimetric inequality in the hyperbolic plane. The mass spectra of these models are also obtained. The main characteristic of the anti-de Sitter space comes from the presence of real gravity, which becomes essential to find some system with only massive states. This fact, on one hand, has no equivalent in flat spaces, where spectra necessarily present tachyonic sectors and, on the other hand, solves an early stated problem

  12. Entropy in Spacetime and Topological Hair

    Science.gov (United States)

    Hyun, Young-Hwan; Kim, Yoonbai

    2018-01-01

    Global topological soliton of the hedgehog ansatz is added to de Sitter spacetime in arbitrary dimensions larger than three, and then thermodynamic law is checked at the cosmological horizon. All geometric and thermodynamic quantities are varied in the presence of a long-range interacting matter distribution with negative pressure, however the entropy-area relation is satisfied in the exact form. Its geometry involves deficit solid angle but maintains a single horizon which allows unique temperature normalization, different from the case of Schwarzschild-de Sitter spacetime.

  13. Electromagnetic field in higher-dimensional black-hole spacetimes

    International Nuclear Information System (INIS)

    Krtous, Pavel

    2007-01-01

    A special test electromagnetic field in the spacetime of the higher-dimensional generally rotating NUT-(anti-)de Sitter black hole is found. It is adjusted to the hidden symmetries of the background represented by the principal Killing-Yano tensor. Such an electromagnetic field generalizes the field of charged black hole in four dimensions. In higher dimensions, however, the gravitational backreaction of such a field cannot be consistently solved

  14. De Sitter self-consistent cosmology for Weinberg-type fields

    International Nuclear Information System (INIS)

    Castagnino, M.A.

    1986-01-01

    Weinberg-type fields, which transform under the (s,0)+(0,s) representation of the Lorentz group, in the de Sitter spacetime are studied. The vacuum expectation value of the energy-momentum tensor trace is renormalized using the adiabatic regularisation scheme. The relation imposed by the semiclassical Einstein equations among the scalar curvature R and the mass of the fields is studied. Results are explicitly drawn for s = 0, 1/2 and 1. (author)

  15. Small black holes in global AdS spacetime

    Science.gov (United States)

    Jokela, Niko; Pönni, Arttu; Vuorinen, Aleksi

    2016-04-01

    We study the properties of two-point functions and quasinormal modes in a strongly coupled field theory holographically dual to a small black hole in global anti-de Sitter spacetime. Our results are seen to smoothly interpolate between known limits corresponding to large black holes and thermal AdS space, demonstrating that the Son-Starinets prescription works even when there is no black hole in the spacetime. Omitting issues related to the internal space, the results can be given a field theory interpretation in terms of the microcanonical ensemble, which provides access to energy densities forbidden in the canonical description.

  16. Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.

    Science.gov (United States)

    Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri

    2017-08-18

    Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.

  17. On classical de Sitter and Minkowski solutions with intersecting branes

    Science.gov (United States)

    Andriot, David

    2018-03-01

    Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D p -branes and orientifold O p -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D 3/ O 3 and D 7/ O 7, while we derive interesting constraints for intersecting D 5/ O 5 or D 6/ O 6, or combinations of D 4/ O 4 and D 8/ O 8. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D p / O p overlap each other, a point we focus on.

  18. Thermal particle production in two Taub-Nut type spacetimes

    International Nuclear Information System (INIS)

    Lapedes, A.S.

    1976-01-01

    The Hartle-Hawking method of deriving black hole radiance has been extended to non-asymptotically flat de Sitter spacetime by Gibbons and Hawking. We extend this work to Taub-Nut spacetime and a related and more physical spacetime constructed from it by Siklos. (orig./BJ) [de

  19. De Sitter space in gauge/gravity duality

    Directory of Open Access Journals (Sweden)

    Lilia Anguelova

    2015-10-01

    Full Text Available We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena–Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of the scalars along the fifth (radial direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (AdS4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.

  20. High energy physics signatures from inflation and conformal symmetry of de Sitter

    International Nuclear Information System (INIS)

    Kehagias, A.; Riotto, A.

    2015-01-01

    During inflation, the geometry of spacetime is described by a (quasi-)de Sitter phase. Inflationary observables are determined by the underlying (softly broken) de Sitter isometry group SO(1, 4) which acts like a conformal group on R 3 : when the fluctuations are on super-Hubble scales, the correlators of the scalar fields are constrained by conformal invariance. Heavy fields with mass m larger than the Hubble rate H correspond to operators with imaginary dimensions in the dual Euclidean three-dimensional conformal field theory. By making use of the dS/CFT correspondence we show that, besides the Boltzmann suppression expected from the thermal properties of de Sitter space, the generic effect of heavy fields in the inflationary correlators of the light fields is to introduce power-law suppressed corrections of the form O(H 2 / m 2 ). This can be seen, for instance, at the level of the four-point correlator for which we provide the correction due to a massive scalar field exchange. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Thermodynamics of DBI Black Holes in Anti-de Sitter Spacetime

    International Nuclear Information System (INIS)

    Jia Dongyan; Yue Ruihong; Huang Shiming

    2011-01-01

    Through the gauge field theory, we obtain the solution of the DBI-AdS black hole. In the meantime, according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole. The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function. With the thermodynamic relations, other thermodynamics are also obtained. The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes. (general)

  2. Notes on Conservation Laws, Equations of Motion of Matter, and Particle Fields in Lorentzian and Teleparallel de Sitter Space-Time Structures

    Directory of Open Access Journals (Sweden)

    Waldyr A. Rodrigues

    2016-01-01

    Full Text Available We discuss the physics of interacting fields and particles living in a de Sitter Lorentzian manifold (dSLM, a submanifold of a 5-dimensional pseudo-Euclidean (5dPE equipped with a metric tensor inherited from the metric of the 5dPE space. The dSLM is naturally oriented and time oriented and is the arena used to study the energy-momentum conservation law and equations of motion for physical systems living there. Two distinct de Sitter space-time structures MdSL and MdSTP are introduced given dSLM, the first equipped with the Levi-Civita connection of its metric field and the second with a metric compatible parallel connection. Both connections are used only as mathematical devices. Thus, for example, MdSL is not supposed to be the model of any gravitational field in the General Relativity Theory (GRT. Misconceptions appearing in the literature concerning the motion of free particles in dSLM are clarified. Komar currents are introduced within Clifford bundle formalism permitting the presentation of Einstein equation as a Maxwell like equation and proving that in GRT there are infinitely many conserved currents. We prove that in GRT even when the appropriate Killing vector fields exist it is not possible to define a conserved energy-momentum covector as in special relativistic theories.

  3. Quantum theory of spinor field in four-dimensional Riemannian space-time

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1996-01-01

    The review deals with the spinor field in the four-dimensional Riemannian space-time. The field beys the Dirac-Fock-Ivanenko equation. Principles of quantization of the spinor field in the Riemannian space-time are formulated which in a particular case of the plane space-time are equivalent to the canonical rules of quantization. The formulated principles are exemplified by the De Sitter space-time. The study of quantum field theory in the De Sitter space-time is interesting because it itself leads to a method of an invariant well for plane space-time. However, the study of the quantum spinor field theory in an arbitrary Riemannian space-time allows one to take into account the influence of the external gravitational field on the quantized spinor field. 60 refs

  4. Three-dimensional gravity and Drinfel'd doubles: Spacetimes and symmetries from quantum deformations

    International Nuclear Information System (INIS)

    Ballesteros, Angel; Herranz, Francisco J.; Meusburger, Catherine

    2010-01-01

    We show how the constant curvature spacetimes of 3d gravity and the associated symmetry algebras can be derived from a single quantum deformation of the 3d Lorentz algebra sl(2,R). We investigate the classical Drinfel'd double of a 'hybrid' deformation of sl(2,R) that depends on two parameters (η,z). With an appropriate choice of basis and real structure, this Drinfel'd double agrees with the 3d anti-de Sitter algebra. The deformation parameter η is related to the cosmological constant, while z is identified with the inverse of the speed of light and defines the signature of the metric. We generalise this result to de Sitter space, the three-sphere and 3d hyperbolic space through analytic continuation in η and z; we also investigate the limits of vanishing η and z, which yield the flat spacetimes (Minkowski and Euclidean spaces) and Newtonian models, respectively.

  5. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    International Nuclear Information System (INIS)

    Steinacker, H.

    1997-01-01

    Quantum groups in general and the quantum Anti-de Sitter group U q (so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, open-quotes naiveclose quotes representations are unitarizable only after factoring out a subspace of open-quotes pure gaugesclose quotes, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U q (g), which plays the role of a BRST operator in the case of U q (so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard open-quotes truncatedclose quotes tensor product as well as many-particle representations

  6. Quantum groups, roots of unity and particles on quantized Anti-de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-05-23

    Quantum groups in general and the quantum Anti-de Sitter group Uq(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin ≥ 1, "naive" representations are unitarizable only after factoring out a subspace of "pure gauges", as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of Uq(g), which plays the role of a BRST operator in the case of Uq(so(2,3)) at roots of unity, for any spin ≥ 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard "truncated" tensor product as well as many-particle representations.

  7. Bulk and brane decay of a (4+n)-dimensional Schwarzschild-de Sitter black hole: Scalar radiation

    International Nuclear Information System (INIS)

    Kanti, P.; Grain, J.; Barrau, A.

    2005-01-01

    In this paper, we extend the idea that the spectrum of Hawking radiation can reveal valuable information on a number of parameters that characterize a particular black hole background--such as the dimensionality of spacetime and the value of coupling constants--to gain information on another important aspect: the curvature of spacetime. We investigate the emission of Hawking radiation from a D-dimensional Schwarzschild-de Sitter black hole emitted in the form of scalar fields, and employ both analytical and numerical techniques to calculate greybody factors and differential energy emission rates on the brane and in the bulk. The energy emission rate of the black hole is significantly enhanced in the high-energy regime with the number of spacelike dimensions. On the other hand, in the low-energy part of the spectrum, it is the cosmological constant that leaves a clear footprint, through a characteristic, constant emission rate of ultrasoft quanta determined by the values of black hole and cosmological horizons. Our results are applicable to 'small' black holes arising in theories with an arbitrary number and size of extra dimensions, as well as to pure 4-dimensional primordial black holes, embedded in a de Sitter spacetime

  8. Integral-spin fields on (3+2)-de Sitter space

    International Nuclear Information System (INIS)

    Gazeau, J.; Hans, M.

    1988-01-01

    Nowadays, (3+2)-de Sitter (or anti-de Sitter space) appears as a very attractive possibility at several levels of theoretical physics. The Wigner definition of an elementary system as associated to a unitary irreducible representation of the Poincare group may be extended to the de Sitter group SO(3,2) [or ∼(SO(3,2))] without great difficulty. The constant curvature, as small as it can be, is a natural candidate to play the role of a regularization parameter with respect to the flat-space limit. Massless particles in (3+2)-de Sitter theory are composite (singletons). On the other hand, supergravity theories necessitate a (large) constant curvature. The content of this paper is group theoretical. It attempts to continue the ''a la Wigner'' program for SO(3,2), already largely broached by Fronsdal. Three recurrence formulas are presented. They permit one to build up the carrier states for representations with arbitrary integral spin. Two of them are valid for the ''massive'' representations whereas the third one is applicable to the indecomposable massless representations. In addition, other presumably indecomposable, though nonphysical, representations are studied, in relation to the existence of ''generalized'' gauge fields and divergences. The recurrence formulas also allow one to build up the invariant two-point functions or homogeneous propagators

  9. Gravitational charges of transverse asymptotically AdS spacetimes

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    Using Killing-Yano symmetries, we construct conserved charges of spacetimes that asymptotically approach to the flat or anti-de Sitter spaces only in certain directions. In D dimensions, this allows one to define gravitational charges (such as mass and angular momenta densities) of p-dimensional branes/solitons or any other extended objects that curve the transverse space into an asymptotically flat or AdS one. Our construction answers the question of what kind of charges the antisymmetric Killing-Yano tensors lead to

  10. Light escape cones in local reference frames of Kerr-de Sitter black hole spacetimes and related black hole shadows

    Science.gov (United States)

    Stuchlík, Zdeněk; Charbulák, Daniel; Schee, Jan

    2018-03-01

    We construct the light escape cones of isotropic spot sources of radiation residing in special classes of reference frames in the Kerr-de Sitter (KdS) black hole spacetimes, namely in the fundamental class of `non-geodesic' locally non-rotating reference frames (LNRFs), and two classes of `geodesic' frames, the radial geodesic frames (RGFs), both falling and escaping, and the frames related to the circular geodesic orbits (CGFs). We compare the cones constructed in a given position for the LNRFs, RGFs, and CGFs. We have shown that the photons locally counter-rotating relative to LNRFs with positive impact parameter and negative covariant energy are confined to the ergosphere region. Finally, we demonstrate that the light escaping cones govern the shadows of black holes located in front of a radiating screen, as seen by the observers in the considered frames. For shadows related to distant static observers the LNRFs are relevant.

  11. arXiv On classical de Sitter and Minkowski solutions with intersecting branes

    CERN Document Server

    Andriot, David

    2018-03-09

    Motivated by the connection of string theory to cosmology or particle physics, we study solutions of type II supergravities having a four-dimensional de Sitter or Minkowski space-time, with intersecting D$_{p}$ -branes and orientifold O$_{p}$ -planes. Only few such solutions are known, and we aim at a better characterisation. Modulo a few restrictions, we prove that there exists no classical de Sitter solution for any combination of D$_{3}$/O$_{3}$ and D$_{7}$/O$_{7}$, while we derive interesting constraints for intersecting D$_{5}$/O$_{5}$ or D$_{6}$/O$_{6}$, or combinations of D$_{4}$/O$_{4}$ and D$_{8}$/O$_{8}$. Concerning classical Minkowski solutions, we understand some typical features, and propose a solution ansatz. Overall, a central information appears to be the way intersecting D$_{p}$ /O$_{p}$ overlap each other, a point we focus on.

  12. Pair of accelerated black holes in a de Sitter background: The dS C metric

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    Following the work of Kinnersley and Walker for flat spacetimes, we analyzed the anti-de Sitter C metric in a previous paper. In this paper we study the de Sitter C metric (dS C metric). The C metric with a generic cosmological constant and other extra parameters was introduced by Plebanski and Demianski. When one then sets to zero some of the extra parameters, and works with a positive cosmological constant, one has the dS C metric which has been analyzed and physically interpreted by Podolsky and Griffiths. It describes a pair of accelerated black holes in the dS background with the acceleration being provided (in addition to the cosmological constant) by a strut that pushes away the two black holes or, alternatively, by a string that pulls them. We extend their analysis mainly in four directions. First, we draw the Carter-Penrose diagrams of the massless uncharged dS C metric, of the massive uncharged dS C metric and of the massive charged dS C metric. These diagrams allow us to clearly identify the presence of two dS black holes and to conclude that they cannot interact gravitationally. Second, we reexamine the embedding of the dS C metric in the 5D Minkowski spacetime and we represent the motion of the dS C metric origin in the dS 4-hyperboloid as well as the localization of the strut. Third, we comment on the physical properties of the strut that connects the two black holes. Finally, we find the range of parameters that correspond to nonextreme black holes, extreme black holes, and naked particles

  13. Geometrothermodynamics for black holes and de Sitter space

    Science.gov (United States)

    Kurihara, Yoshimasa

    2018-02-01

    A general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g., via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr-Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black holes.

  14. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    DEFF Research Database (Denmark)

    B. Giddings, Steven; Sloth, Martin Snoager

    2010-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to co...... with a sharp perturbative calculation of "missing information" in Hawking radiation....

  15. Quantum break-time of de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Dvali, Gia; Gómez, César; Zell, Sebastian, E-mail: georgi.dvali@physik.uni-muenchen.de, E-mail: cesar.gomez@uam.es, E-mail: sebastian.zell@campus.lmu.de [Arnold Sommerfeld Center, Ludwig-Maximilians-Universität, Theresienstraße 37, 80333 München (Germany)

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S -matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/ N -effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N . We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10{sup 100} years old in its entire classical history.

  16. Quantum break-time of de Sitter

    Science.gov (United States)

    Dvali, Gia; Gómez, César; Zell, Sebastian

    2017-06-01

    The quantum break-time of a system is the time-scale after which its true quantum evolution departs from the classical mean field evolution. For capturing it, a quantum resolution of the classical background—e.g., in terms of a coherent state—is required. In this paper, we first consider a simple scalar model with anharmonic oscillations and derive its quantum break-time. Next, following [1], we apply these ideas to de Sitter space. We formulate a simple model of a spin-2 field, which for some time reproduces the de Sitter metric and simultaneously allows for its well-defined representation as quantum coherent state of gravitons. The mean occupation number N of background gravitons turns out to be equal to the de Sitter horizon area in Planck units, while their frequency is given by the de Sitter Hubble parameter. In the semi-classical limit, we show that the model reproduces all the known properties of de Sitter, such as the redshift of probe particles and thermal Gibbons-Hawking radiation, all in the language of quantum S-matrix scatterings and decays of coherent state gravitons. Most importantly, this framework allows to capture the 1/N-effects to which the usual semi-classical treatment is blind. They violate the de Sitter symmetry and lead to a finite quantum break-time of the de Sitter state equal to the de Sitter radius times N. We also point out that the quantum-break time is inversely proportional to the number of particle species in the theory. Thus, the quantum break-time imposes the following consistency condition: older and species-richer universes must have smaller cosmological constants. For the maximal, phenomenologically acceptable number of species, the observed cosmological constant would saturate this bound if our Universe were 10100 years old in its entire classical history.

  17. Physical renormalization condition for de Sitter QED

    Science.gov (United States)

    Hayashinaka, Takahiro; Xue, She-Sheng

    2018-05-01

    We considered a new renormalization condition for the vacuum expectation values of the scalar and spinor currents induced by a homogeneous and constant electric field background in de Sitter spacetime. Following a semiclassical argument, the condition named maximal subtraction imposes the exponential suppression on the massive charged particle limit of the renormalized currents. The maximal subtraction changes the behaviors of the induced currents previously obtained by the conventional minimal subtraction scheme. The maximal subtraction is favored for a couple of physically decent predictions including the identical asymptotic behavior of the scalar and spinor currents, the removal of the IR hyperconductivity from the scalar current, and the finite current for the massless fermion.

  18. Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo

    2011-01-01

    Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.

  19. Black hole thermodynamics and negative entropy in de Sitter and anti-de Sitter Einstein-Gauss-Bonnet gravity

    International Nuclear Information System (INIS)

    Cvetic, Mirjam; Nojiri, Shin'ichi; Odintsov, S.D.

    2002-01-01

    We investigate the charged Schwarzschild-anti-de Sitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gravity maybe localized similarly to AdS/CFT. SdS BH thermodynamics in 5d Einstein and Einstein-Gauss-Bonnet gravity is considered. The corresponding (complicated) surface counterterms are found and used to get the conserved BH mass, free energy and entropy. The interesting feature of higher derivative gravity is the possibility for negative (or zero) SdS (or SAdS) BH entropy which depends on the parameters of higher derivative terms. We speculate that the appearance of negative entropy may indicate a new type instability where a transition between SdS (SAdS) BH with negative entropy to SAdS (SdS) BH with positive entropy would occur

  20. Thermodynamics of de Sitter universes

    International Nuclear Information System (INIS)

    Huang Chaoguang; Liu Liao; Wang Bobo

    2002-01-01

    It is shown that the first law of thermodynamics can be applied to the de Sitter universe to relate its vacuum energy, pressure, entropy of horizon, chemical potential, etc., when the cosmological constant changes due to the fluctuation of the vacuum or other reasons. The second law should be reformulated in the form that the spontaneous decay of the vacuum never makes the entropy of the de Sitter universe decrease. The third law of thermodynamics, applying to the de Sitter universe, implies that the cosmological constant cannot reach zero by finite physical processes. The relation to the holographic principle is also briefly discussed

  1. Dark Energy and Spacetime Symmetry

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2017-03-01

    Full Text Available The Petrov classification of stress-energy tensors provides a model-independent definition of a vacuum by the algebraic structure of its stress-energy tensor and implies the existence of vacua whose symmetry is reduced as compared with the maximally symmetric de Sitter vacuum associated with the Einstein cosmological term. This allows to describe a vacuum in general setting by dynamical vacuum dark fluid, presented by a variable cosmological term with the reduced symmetry which makes vacuum fluid essentially anisotropic and allows it to be evolving and clustering. The relevant solutions to the Einstein equations describe regular cosmological models with time-evolving and spatially inhomogeneous vacuum dark energy, and compact vacuum objects generically related to a dark energy: regular black holes, their remnants and self-gravitating vacuum solitons with de Sitter vacuum interiors—which can be responsible for observational effects typically related to a dark matter. The mass of objects with de Sitter interior is generically related to vacuum dark energy and to breaking of space-time symmetry. In the cosmological context spacetime symmetry provides a mechanism for relaxing cosmological constant to a needed non-zero value.

  2. Graviatoms with de Sitter Interior

    Directory of Open Access Journals (Sweden)

    Irina Dymnikova

    2013-01-01

    Full Text Available We present a graviatom with de Sitter interior as a new candidate to atomic dark matter generically related to a vacuum dark energy through its de Sitter vacuum interior. It is a gravitationally bound quantum system consisting of a nucleus represented by a regular primordial black hole (RPBH, its remnant or gravitational vacuum soliton G-lump, and a charged particle. We estimate probability of formation of RPBHs and G-lumps in the early Universe and evaluate energy spectrum and electromagnetic radiation of graviatom which can in principle bear information about a fundamental symmetry scale responsible for de Sitter interior and serve as its observational signatures.

  3. PURE STATE ENTANGLEMENT ENTROPY IN NONCOMMUTATIVE 2D DE SITTER SPACE TIME

    Directory of Open Access Journals (Sweden)

    M.F Ghiti

    2014-12-01

    Full Text Available Using the general modified field equation, a general noncommutative Klein-Gordon equation up to the second order of the noncommutativity parameter is derived in the context of noncommutative 2D De Sitter space-time. Using Bogoliubov coefficients and a special technics called conformal time; the boson-antiboson pair creation density is determined. The Von Neumann boson-antiboson pair creation quantum entanglement entropy is presented to compute the entanglement between the modes created presented.

  4. Spin Interaction under the Collision of Two Kerr-(Anti-de Sitter Black Holes

    Directory of Open Access Journals (Sweden)

    Bogeun Gwak

    2017-12-01

    Full Text Available We investigate herein the spin interaction during collisions between Kerr-(anti-de Sitter black holes. The spin interaction potential depends on the relative rotation directions of the black holes, and this potential can be released as gravitational radiation upon collision. The energy of the radiation depends on the cosmological constant and corresponds to the spin interaction potential in the limit that one of the black holes has negligibly small mass and angular momentum. We then determine the approximate overall behaviors of the upper bounds on the radiation using thermodynamics. The results indicate that the spin interaction can consistently contribute to the radiation. In addition, the radiation depends on the stability of the black hole produced by the collision.

  5. Quantum statistical entropy for Kerr-de Sitter black hole

    Institute of Scientific and Technical Information of China (English)

    Zhang Li-Chun; Wu Yue-Qin; Zhao Ren

    2004-01-01

    Improving the membrane model by which the entropy of the black hole is studied, we study the entropy of the black hole in the non-thermal equilibrium state. To give the problem stated here widespread meaning, we discuss the (n+2)-dimensional de Sitter spacetime. Through discussion, we obtain that the black hole's entropy which contains two horizons (a black hole's horizon and a cosmological horizon) in the non-thermal equilibrium state comprises the entropy corresponding to the black hole's horizon and the entropy corresponding to the cosmological horizon. Furthermore, the entropy of the black hole is a natural property of the black hole. The entropy is irrelevant to the radiation field out of the horizon. This deepens the understanding of the relationship between black hole's entropy and horizon's area. A way to study the bosonic and fermionic entropy of the black hole in high non-thermal equilibrium spacetime is given.

  6. Asymptotically spacelike warped anti-de Sitter spacetimes in generalized minimal massive gravity

    International Nuclear Information System (INIS)

    Setare, M R; Adami, H

    2017-01-01

    In this paper we show that warped AdS 3 black hole spacetime is a solution of the generalized minimal massive gravity (GMMG) and introduce suitable boundary conditions for asymptotically warped AdS 3 spacetimes. Then we find the Killing vector fields such that transformations generated by them preserve the considered boundary conditions. We calculate the conserved charges which correspond to the obtained Killing vector fields and show that the algebra of the asymptotic conserved charges is given as the semi direct product of the Virasoro algebra with U (1) current algebra. We use a particular Sugawara construction to reconstruct the conformal algebra. Thus, we are allowed to use the Cardy formula to calculate the entropy of the warped black hole. We demonstrate that the gravitational entropy of the warped black hole exactly coincides with what we obtain via Cardy’s formula. As we expect, the warped Cardy formula also gives us exactly the same result as we obtain from the usual Cardy’s formula. We calculate mass and angular momentum of the warped black hole and then check that obtained mass, angular momentum and entropy to satisfy the first law of the black hole mechanics. According to the results of this paper we believe that the dual theory of the warped AdS 3 black hole solution of GMMG is a warped CFT. (paper)

  7. The first law of thermodynamics for Kerr-anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Gibbons, G W; Perry, M J; Pope, C N

    2005-01-01

    We obtain expressions for the mass and angular momenta of rotating black holes in anti-de Sitter backgrounds in four, five and higher dimensions. We verify explicitly that our expressions satisfy the first law of thermodynamics, thus allowing an unambiguous identification of the entropy of these black holes with 1/4 of the area. We find that the associated thermodynamic potential equals the background-subtracted Euclidean action multiplied by the temperature. Our expressions differ from many given in the literature. We find that in more than four dimensions, only our expressions satisfy the first law of thermodynamics. Moreover, in all dimensions we show that our expression for the mass coincides with that given by the conformal conserved charge introduced by Ashtekar, Magnon and Das. We indicate the relevance of these results to the AdS/CFT correspondence

  8. Inside and outside stories of black-branes in anti de Sitter space

    International Nuclear Information System (INIS)

    Hansen, Jakob; Lee, Bum-Hoon; Park, Chanyong; Yeom, Dong-han

    2013-01-01

    In this paper, we investigate the dynamics inside and outside of black-branes in anti de Sitter space by numerical simulations using double-null formalism. We prepare a charged planar matter shell which, due to a negative cosmological constant, collapses and dynamically forms a black-brane with an apparent horizon, a singularity and a Cauchy horizon. The gravitational collapse cannot form a naked overcharged black-brane and hence weak cosmic censorship is safe. Although mass inflation occurs, the effect is much milder than in the case of charged black holes; hence, strong cosmic censorship seems not to be safe. We observed the scalar field dynamics outside the horizon. There should remain a non-trivial scalar field combination—‘charge cloud’—between the horizon and the boundary. This can give some meaning in terms of the AdS/CFT correspondence. (paper)

  9. Null polygonal Wilson loops and minimal surfaces in Anti-de-Sitter space

    International Nuclear Information System (INIS)

    Alday, Luis F.; Maldacena, Juan

    2009-01-01

    We consider minimal surfaces in three dimensional anti-de-Sitter space that end at the AdS boundary on a polygon given by a sequence of null segments. The problem can be reduced to a certain generalized Sinh-Gordon equation and to SU(2) Hitchin equations. We describe in detail the mathematical problem that needs to be solved. This problem is mathematically the same as the one studied by Gaiotto, Moore and Neitzke in the context of the moduli space of certain supersymmetric theories. Using their results we can find the explicit answer for the area of a surface that ends on an eight-sided polygon. Via the gauge/gravity duality this can also be interpreted as a certain eight-gluon scattering amplitude at strong coupling. In addition, we give fairly explicit solutions for regular polygons.

  10. Symmetric tensor spherical harmonics on the N-sphere and their application to the de Sitter group SO(N,1)

    International Nuclear Information System (INIS)

    Higuchi, A.

    1987-01-01

    The symmetric tensor spherical harmonics (STSH's) on the N-sphere (S/sup N/), which are defined as the totally symmetric, traceless, and divergence-free tensor eigenfunctions of the Laplace--Beltrami (LB) operator on S/sup N/, are studied. Specifically, their construction is shown recursively starting from the lower-dimensional ones. The symmetric traceless tensors induced by STSH's are introduced. These play a crucial role in the recursive construction of STSH's. The normalization factors for STSH's are determined by using their transformation properties under SO(N+1). Then the symmetric, traceless, and divergence-free tensor eigenfunctions of the LB operator in the N-dimensional de Sitter space-time which are obtained by the analytic continuation of the STSH's on S/sup N/ are studied. Specifically, the allowed eigenvalues of the LB operator under the restriction of unitarity are determined. Our analysis gives a group-theoretical explanation of the forbidden mass range observed earlier for the spin-2 field theory in de Sitter space-time

  11. Free massless fields of arbitrary spin in the de Sitter space and initial data for a higher spin superalgebra

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1987-11-01

    Linearized curvatures are constructed for massless higher spin fields on the (anti-) de Sitter background. The quite uniform description for free massless fields of all integer and half-integer spins s greater than or equal to 3/2 is presented, based on these curvatures. In particular, the actions and the equations of motion are given in a simple form. The proposed linearized curvatures provide 'initial data' for determination of a non-Abelian higher spin symmetry that may correspond to a hypothetical non-trivial theory of higher spins interacting with gravity and themselves. It is noted that the conjugation law for fermion fields should be modified drastically after transition from the anti-de-Sitter geometry to the de Sitter one.

  12. Time-dependent gravitating solitons in five dimensional warped space-times

    CERN Document Server

    Giovannini, Massimo

    2007-01-01

    Time-dependent soliton solutions are explicitly derived in a five-dimensional theory endowed with one (warped) extra-dimension. Some of the obtained geometries, everywhere well defined and technically regular, smoothly interpolate between two five-dimensional anti-de Sitter space-times for fixed value of the conformal time coordinate. Time dependent solutions containing both topological and non-topological sectors are also obtained. Supplementary degrees of freedom can be also included and, in this case, the resulting multi-soliton solutions may describe time-dependent kink-antikink systems.

  13. Inflation including collapse of the wave function: the quasi-de Sitter case

    International Nuclear Information System (INIS)

    Leon, Gabriel; Landau, Susana J.; Piccirilli, Maria Pia

    2015-01-01

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  14. Inflation including collapse of the wave function: the quasi-de Sitter case

    Energy Technology Data Exchange (ETDEWEB)

    Leon, Gabriel [Universidad de Buenos Aires, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Landau, Susana J. [Universidad de Buenos Aires y IFIBA, CONICET, Ciudad Universitaria-PabI, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Piccirilli, Maria Pia [Universidad Nacional de La Plata, Grupo de Astrofisica, Relatividad y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, Pcia de Buenos Aires (Argentina)

    2015-08-15

    The precise physical mechanism describing the emergence of the seeds of cosmic structure from a perfect isotropic and homogeneous universe has not been fully explained by the standard version of inflationary models. To handle this shortcoming, D. Sudarsky and collaborators have developed a proposal: the self-induced collapse hypothesis. In this scheme, the objective collapse of the inflaton wave function is responsible for the emergence of inhomogeneity and anisotropy at all scales. In previous papers, the proposal was developed with an almost exact de Sitter space-time approximation for the background that led to a perfect scale-invariant power spectrum. In the present article, we consider a full quasi-de Sitter expansion and calculate the primordial power spectrum for three different choices of the self-induced collapse. The consideration of a quasi-de Sitter background allows us to distinguish departures from an exact scale-invariant power spectrum that are due to the inclusion of the collapse hypothesis. These deviations are also different from the prediction of standard inflationary models with a running spectral index. A comparison with the primordial power spectrum and the CMB temperature fluctuation spectrum preferred by the latest observational data is also discussed. From the analysis performed in this work, it follows that most of the collapse schemes analyzed in this paper are viable candidates to explain the present observations of the CMB fluctuation spectrum. (orig.)

  15. $O(N)$ model in Euclidean de Sitter space: beyond the leading infrared approximation

    CERN Document Server

    Nacir, Diana López; Trombetta, Leonardo G

    2016-01-01

    We consider an $O(N)$ scalar field model with quartic interaction in $d$-dimensional Euclidean de Sitter space. In order to avoid the problems of the standard perturbative calculations for light and massless fields, we generalize to the $O(N)$ theory a systematic method introduced previously for a single field, which treats the zero modes exactly and the nonzero modes perturbatively. We compute the two-point functions taking into account not only the leading infrared contribution, coming from the self-interaction of the zero modes, but also corrections due to the interaction of the ultraviolet modes. For the model defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point functions by analytical continuation. We point out that a partial resummation of the leading secular terms (which necessarily involves nonzero modes) is required to obtain a decay at large distances for massless fields. We implement this resummation along with a systematic double expansion in an effective coupling c...

  16. Decay of the de Sitter vacuum

    Science.gov (United States)

    Anderson, Paul R.; Mottola, Emil; Sanders, Dillon H.

    2018-03-01

    The decay rate of the Bunch-Davies state of a massive scalar field in the expanding flat spatial sections of de Sitter space is determined by an analysis of the particle pair creation process in real time. The Feynman definition of particle and antiparticle Fourier mode solutions of the scalar wave equation and their adiabatic phase analytically continued to the complexified time domain show conclusively that the Bunch-Davies state is not the vacuum state at late times. The closely analogous creation of charged particle pairs in a uniform electric field is reviewed and Schwinger's result for the vacuum decay rate is recovered by this same real time analysis. The vacuum decay rate in each case is also calculated by switching the background field on adiabatically, allowing it to act for a very long time, and then adiabatically switching it off again. In both the uniform electric field and de Sitter cases, the particles created while the field is switched on are verified to be real, in the sense that they persist in the final asymptotic flat zero-field region. In the de Sitter case, there is an interesting residual dependence of the rate on how the de Sitter phase is ended, indicating a greater sensitivity to spatial boundary conditions. The electric current of the created particles in the E -field case and their energy density and pressure in the de Sitter case are also computed, and the magnitude of their backreaction effects on the background field estimated. Possible consequences of the Hubble scale instability of the de Sitter vacuum for cosmology, vacuum dark energy, and the cosmological "constant" problem are discussed.

  17. Fermion tunnels of higher-dimensional anti-de Sitter Schwarzschild black hole and its corrected entropy

    Energy Technology Data Exchange (ETDEWEB)

    Lin Kai, E-mail: lk314159@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China); Yang Shuzheng, E-mail: szyangcwnu@126.co [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)

    2009-10-12

    Applying the method beyond semiclassical approximation, fermion tunneling from higher-dimensional anti-de Sitter Schwarzschild black hole is researched. In our work, the 'tortoise' coordinate transformation is introduced to simplify Dirac equation, so that the equation proves that only the (r-t) sector is important to our research. Because we only need to study the (r-t) sector, the Dirac equation is decomposed into several pairs of equations spontaneously, and we then prove the components of wave functions are proportional to each other in every pair of equations. Therefore, the suitable action forms of the wave functions are obtained, and finally the correctional Hawking temperature and entropy can be determined via the method beyond semiclassical approximation.

  18. Thermodynamics of de Sitter black holes: Thermal cosmological constant

    International Nuclear Information System (INIS)

    Sekiwa, Y.

    2006-01-01

    We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if the cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes

  19. Integrability in conformally coupled gravity: Taub-NUT spacetimes and rotating black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bardoux, Yannis [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Caldarelli, Marco M. [Mathematical Sciences and STAG research centre, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Charmousis, Christos [Laboratoire de Physique Théorique (LPT), Université Paris-Sud, CNRS UMR 8627, F-91405 Orsay (France); Laboratoire de Mathématiques et Physique Théorique (LMPT), Université Tours, UFR Sciences et Techniques, Parc de Grandmont, F-37200 Tours (France)

    2014-05-09

    We consider four dimensional stationary and axially symmetric spacetimes for conformally coupled scalar-tensor theories. We show that, in analogy to the Lewis-Papapetrou problem in General Relativity (GR), the theory at hand can be recast in an analogous integrable form. We give the relevant rod formalism, introduced by Weyl for vacuum GR, explicitly giving the rod structure of the black hole of Bocharova et al. and Bekenstein (BBMB), in complete analogy to the Schwarzschild solution. The additional scalar field is shown to play the role of an extra Weyl potential. We then employ the Ernst method as a concrete solution generating example to obtain the Taub-NUT version of the BBMB hairy black hole. The solution is easily extended to include a cosmological constant. We show that the anti-de Sitter hyperbolic version of this solution is free of closed timelike curves that plague usual Taub-NUT metrics, and thus consists of a rotating, asymptotically locally anti-de Sitter black hole. This stationary solution has no curvature singularities whatsoever in the conformal frame, and the NUT charge is shown here to regularize the central curvature singularity of the corresponding static black hole. Given our findings we discuss the anti-de Sitter hyperbolic version of Taub-NUT in four dimensions, and show that the curvature singularity of the NUT-less solution is now replaced by a neighbouring chronological singularity screened by horizons. We argue that the properties of this rotating black hole are very similar to those of the rotating BTZ black hole in three dimensions.

  20. Eikonal Approximation in AdS/CFT From Shock Waves to Four-Point Functions

    CERN Document Server

    Cornalba, L; Costa, Miguel S; Penedones, Joao; Cornalba, Lorenzo; Costa, M S; Penedones, J; Schiappa, Ricardo

    2007-01-01

    We initiate a program to generalize the standard eikonal approximation to compute amplitudes in Anti-de Sitter spacetimes. Inspired by the shock wave derivation of the eikonal amplitude in flat space, we study the two-point function E ~ _{shock} in the presence of a shock wave in Anti-de Sitter, where O_1 is a scalar primary operator in the dual conformal field theory. At tree level in the gravitational coupling, we relate the shock two-point function E to the discontinuity across a kinematical branch cut of the conformal field theory four-point function A ~ , where O_2 creates the shock geometry in Anti-de Sitter. Finally, we extend the above results by computing E in the presence of shock waves along the horizon of Schwarzschild BTZ black holes. This work gives new tools for the study of Planckian physics in Anti-de Sitter spacetimes.

  1. Simple de Sitter solutions

    International Nuclear Information System (INIS)

    Silverstein, Eva

    2008-01-01

    We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential

  2. Inflation as de Sitter instability

    Energy Technology Data Exchange (ETDEWEB)

    Cadoni, Mariano; Franzin, Edgardo [Universita di Cagliari, Cittadella Universitaria, Dipartimento di Fisica, Monserrato (Italy); INFN, Sezione di Cagliari, Monserrato (Italy); Mignemi, Salvatore [INFN, Sezione di Cagliari, Monserrato (Italy); Universita di Cagliari, Dipartimento di Matematica e Informatica, Cagliari (Italy)

    2016-09-15

    We consider cosmological inflation generated by a scalar field slowly rolling off from a de Sitter maximum of its potential. The models belong to the class of hilltop models and represent the most general model of this kind in which the scalar potential can be written as the sum of two exponentials. The minimally coupled Einstein-scalar gravity theory obtained in this way is the cosmological version of a two-scale generalization of known holographic models, allowing for solitonic solutions interpolating between an AdS spacetime in the infrared and scaling solutions in the ultraviolet. We then investigate cosmological inflation in the slow-roll approximation. Our model reproduces correctly, for a wide range of its parameters, the most recent experimental data for the power spectrum of primordial perturbations. Moreover, it predicts inflation at energy scales of four to five orders of magnitude below the Planck scale. At the onset of inflation, the mass of the tachyonic excitation, i.e. of the inflaton, turns out to be seven to eight orders of magnitude smaller than the Planck mass. (orig.)

  3. Relationship between five-dimensional black holes and de Sitter spaces

    International Nuclear Information System (INIS)

    Myung, Y S

    2004-01-01

    We study a close relationship between the topological anti-de Sitter (TAdS) black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing k by -k. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting m with -m. For this purpose we calculate thermal quantities of bulk (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further, we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that in the thermal relation between the TdS spaces and TAdS black holes, the cosmological horizon plays the same role as the horizon of TAdS black holes. Finally we note that the dS/ECFT correspondence is valid for the TdS spaces in conjunction with the AdS/CFT correspondence for the TAdS black holes

  4. Local thermal equilibrium and KMS states in curved spacetime

    International Nuclear Information System (INIS)

    Solveen, Christoph

    2012-01-01

    On the example of a free massless and conformally coupled scalar field, it is argued that in quantum field theory in curved spacetimes with the time-like Killing field, the corresponding KMS states (generalized Gibbs ensembles) at parameter β > 0 need not possess a definite temperature in the sense of the zeroth law. In fact, these states, although passive in the sense of the second law, are not always in local thermal equilibrium (LTE). A criterion characterizing LTE states with sharp local temperature is discussed. Moreover, a proposal is made for fixing the renormalization freedom of composite fields which serve as ‘thermal observables’ and a new definition of the thermal energy of LTE states is introduced. Based on these results, a general relation between the local temperature and the parameter β is established for KMS states in (anti) de Sitter spacetime. (paper)

  5. Hawking radiation from rotating black holes in anti-de Sitter spaces via gauge and gravitational anomalies

    International Nuclear Information System (INIS)

    Jiang Qingquan; Wu Shuangqing

    2007-01-01

    Robinson-Wilczek's recent work, which treats Hawking radiation as a compensating flux to cancel gravitational anomaly at the horizon of a Schwarzschild-type black hole, is extended to study Hawking radiation of rotating black holes in anti-de Sitter spaces, especially that in dragging coordinate system, via gauge and gravitational anomalies. The results show that in order to restore gauge invariance and general coordinate covariance at the quantum level in the effective field theory, the charge and energy flux by requiring to cancel gauge and gravitational anomalies at the horizon, must have a form equivalent to that of a (1+1)-dimensional blackbody radiation at Hawking temperature with an appropriate chemical potential

  6. Dispersion Relations for Isothermal Plasma around the Horizon of Reissner–Nordström–de Sitter Black Hole

    International Nuclear Information System (INIS)

    Hasan, M. Khayrul; Ali, M. Hossain

    2009-01-01

    We formulate the general relativistic magnetohydrodynamic equations for isothermal plasma in spatially flat Reissner–Nordström–de Sitter metric by using 3+1 split of spacetime. Respective perturbed equations are linearized for rotating magnetized surroundings. These are then Fourier analyzed and the corresponding dispersion relations are obtained. These relations are discussed both analytically and numerically in order to investigate the nature of waves with positive angular frequency around the horizon

  7. Extremal limits of the C metric: Nariai, Bertotti-Robinson, and anti-Nariai C metrics

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2003-01-01

    In two previous papers we have analyzed the C metric in a background with a cosmological constant Λ, namely, the de-Sitter (dS) C metric (Λ>0), and the anti-de Sitter (AdS) C metric (Λ 0, Λ=0, and Λ 2 xS-tilde 2 ) to each point in the deformed two-sphere S-tilde 2 corresponds a dS 2 spacetime, except for one point which corresponds to a dS 2 spacetime with an infinite straight strut or string. There are other important new features that appear. One expects that the solutions found in this paper are unstable and decay into a slightly nonextreme black hole pair accelerated by a strut or by strings. Moreover, the Euclidean version of these solutions mediate the quantum process of black hole pair creation that accompanies the decay of the dS and AdS spaces

  8. Compact space-like hypersurfaces in de Sitter space

    OpenAIRE

    Lv, Jinchi

    2005-01-01

    We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.

  9. Hawking Radiation Spectra for Scalar Fields by a Higher-Dimensional Schwarzschild-de-Sitter Black Hole

    OpenAIRE

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-01-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de-Sitter black hole as well as on the projected-on-the-brane 4-dimensional background. The scalar fields have also a non-minimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then pro...

  10. Thin-shell bubbles and information loss problem in anti de Sitter background

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Misao [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Tomsk State Pedagogical University,634050 Tomsk (Russian Federation); Yeom, Dong-han [Yukawa Institute for Theoretical Physics,Kyoto University, Kyoto 606-8502 (Japan); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University,Taipei 10617, Taiwan (China)

    2014-12-24

    We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.

  11. Thin-shell bubbles and information loss problem in anti de Sitter background

    International Nuclear Information System (INIS)

    Sasaki, Misao; Yeom, Dong-han

    2014-01-01

    We study the motion of thin-shell bubbles and their tunneling in anti de Sitter (AdS) background. We are interested in the case when the outside of a shell is a Schwarzschild-AdS space (false vacuum) and the inside of it is an AdS space with a lower vacuum energy (true vacuum). If a collapsing true vacuum bubble is created, classically it will form a Schwarzschild-AdS black hole. However, this collapsing bubble can tunnel to a bouncing bubble that moves out to spatial infinity. Then, although the classical causal structure of a collapsing true vacuum bubble has the singularity and the event horizon, quantum mechanically the wavefunction has support for a history without any singularity nor event horizon which is mediated by the non-perturbative, quantum tunneling effect. This may be regarded an explicit example that shows the unitarity of an asymptotic observer in AdS, while a classical observer who only follows the most probable history effectively lose information due to the formation of an event horizon.

  12. Negative norm states in de Sitter space and QFT without renormalization procedure

    International Nuclear Information System (INIS)

    Takook, M.V.

    2002-01-01

    In recent papers, 1,2 it has been shown that the presence of negative norm states or negative frequency solutions are indispensable for a fully covariant quantization of the minimally coupled scalar field in de Sitter space. Their presence, while leaving unchanged the physical content of the theory, offers the advantage of eliminating any ultraviolet divergence in the vacuum energy 2 and infrared divergence in the two point function. 3 We attempt here to extend this method to the interacting quantum field in Minkowski space-time. As an illustration of the procedure, we consider the λϕ 4 theory in Minkowski space-time. The mathematical consequences of this method is the disappearance of the ultraviolet divergence to the one-loop approximation. This means, the effect of these auxiliary negative norm states is to allow an automatic renormalization of the theory in this approximation. (author)

  13. Pair creation of higher dimensional black holes on a de Sitter background

    International Nuclear Information System (INIS)

    Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We study in detail the quantum process in which a pair of black holes is created in a higher D-dimensional de Sitter (dS) background. The energy to materialize and accelerate the pair comes from the positive cosmological constant. The instantons that describe the process are obtained from the Tangherlini black hole solutions. Our pair creation rates reduce to the pair creation rate for Reissner-Nordstroem-dS solutions when D=4. Pair creation of black holes in the dS background becomes less suppressed when the dimension of the spacetime increases. The dS space is the only background in which we can discuss analytically the pair creation process of higher dimensional black holes, since the C-metric and the Ernst solutions, which describe, respectively, a pair accelerated by a string and by an electromagnetic field, are not known yet in a higher dimensional spacetime

  14. Geodesic congruences in warped spacetimes

    International Nuclear Information System (INIS)

    Ghosh, Suman; Dasgupta, Anirvan; Kar, Sayan

    2011-01-01

    In this article, we explore the kinematics of timelike geodesic congruences in warped five-dimensional bulk spacetimes, with and without thick or thin branes. Beginning with geodesic flows in the Randall-Sundrum anti-de Sitter geometry without and with branes, we find analytical expressions for the expansion scalar and comment on the effects of including thin branes on its evolution. Later, we move on to congruences in more general warped bulk geometries with a cosmological thick brane and a time-dependent extra dimensional scale. Using analytical expressions for the velocity field, we interpret the expansion, shear and rotation (ESR) along the flows, as functions of the extra dimensional coordinate. The evolution of a cross-sectional area orthogonal to the congruence, as seen from a local observer's point of view, is also shown graphically. Finally, the Raychaudhuri and geodesic equations in backgrounds with a thick brane are solved numerically in order to figure out the role of initial conditions (prescribed on the ESR) and spacetime curvature on the evolution of the ESR.

  15. Spacetime coverings and the casual boundary

    Energy Technology Data Exchange (ETDEWEB)

    Aké, Luis Alberto [Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias, Universidad de Málaga,Campus Teatinos, Málaga (Spain); Herrera, Jónatan [Departamento de Matemática, Universidade Federal de Santa Catarina,Campus Universitario de Trindade, Florianopolis (Brazil)

    2017-04-10

    We consider the relation between the c-completion of a Lorentz manifold V and its quotient M=V/G, where G is an isometry group acting freely and properly discontinuously. First, we consider the future causal completion case, characterizing virtually when such a quotient is well behaved with the future chronological topology and improving the existing results on the literature. Secondly, we show that under some general assumptions, there exists a homeomorphism and chronological isomorphism between both, the c-completion of M and some adequate quotient of the c-completion of V defined by G. Our results are optimal, as we show in several examples. Finally, we give a practical application by considering isometric actions over Robertson-Walker spacetimes, including in particular the Anti-de Sitter model.

  16. Schwinger effect in de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Fröb, Markus B.; Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Kanno, Sugumi [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Sasaki, Misao; Tanaka, Takahiro [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan); Vilenkin, Alexander, E-mail: mfroeb@ffn.ub.edu, E-mail: jaume.garriga@ub.edu, E-mail: sugumi.kanno@uct.ac.za, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: jiro@phys.sci.kobe-u.ac.jp, E-mail: tanaka@yukawa.kyoto-u.ac.jp, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)

    2014-04-01

    We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field φ of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ''in'' vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ''upward'' and ''downward'' tunneling contribute to the build-up of the current. For heavy fields, with m{sup 2} >> eE,H{sup 2}, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m || H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mH∼de Sitter invariance. Finally, we comment on the role of initial conditions, and ''persistence of memory'' effects.

  17. Aspects of hairy black holes

    Energy Technology Data Exchange (ETDEWEB)

    Anabalón, Andrés, E-mail: andres.anabalon-at@uai.cl [Departamento de Ciencias, Facultad de Artes Liberales y Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar (Chile); Astefanesei, Dumitru [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile)

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  18. Phase transitions in de Sitter space

    Directory of Open Access Journals (Sweden)

    Alexander Vilenkin

    1983-10-01

    Full Text Available An effective potential in de Sitter space is calculated for a model of two interacting scalar fields in one-loop approximation and in a self-consistent approximation which takes into account an infinite set of diagrams. Various approaches to renormalization in de Sitter space are discussed. The results are applied to analyze the phase transition in the Hawking-Moss version of the inflationary universe scenario. Requiring that inflation is sufficiently large, we derive constraints on the parameters of the model.

  19. Indications of de Sitter spacetime from classical sequential growth dynamics of causal sets

    International Nuclear Information System (INIS)

    Ahmed, Maqbool; Rideout, David

    2010-01-01

    A large class of the dynamical laws for causal sets described by a classical process of sequential growth yields a cyclic universe, whose cycles of expansion and contraction are punctuated by single 'origin elements' of the causal set. We present evidence that the effective dynamics of the immediate future of one of these origin elements, within the context of the sequential growth dynamics, yields an initial period of de Sitter-like exponential expansion, and argue that the resulting picture has many attractive features as a model of the early universe, with the potential to solve some of the standard model puzzles without any fine-tuning.

  20. Towards de Sitter from 10D

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Jakob; Retaloza, Ander; Westphal, Alexander

    2017-07-15

    Using a 10D lift of non-perturbative volume stabilization in type IIB string theory we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest KKLT vacua with a single Kahler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are meta-stable and SUSY breaking, but that are always AdS. However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  1. Towards de Sitter from 10D

    International Nuclear Information System (INIS)

    Moritz, Jakob; Retaloza, Ander; Westphal, Alexander

    2017-07-01

    Using a 10D lift of non-perturbative volume stabilization in type IIB string theory we study the limitations for obtaining de Sitter vacua. Based on this we find that the simplest KKLT vacua with a single Kahler modulus stabilized by a gaugino condensate cannot be uplifted to de Sitter. Rather, the uplift flattens out due to stronger backreaction on the volume modulus than has previously been anticipated, resulting in vacua which are meta-stable and SUSY breaking, but that are always AdS. However, we also show that setups such as racetrack stabilization can avoid this issue. In these models it is possible to obtain supersymmetric AdS vacua with a cosmological constant that can be tuned to zero while retaining finite moduli stabilization. In this regime, it seems that de Sitter uplifts are possible with negligible backreaction on the internal volume. We exhibit this behavior also from the 10D perspective.

  2. Principle of space existence and De Sitter metric

    International Nuclear Information System (INIS)

    Mal'tsev, V.K.

    1990-01-01

    The selection principle for the solutions of the Einstein equations suggested in a series of papers implies the existence of space (g ik ≠ 0) only in the presence of matter (T ik ≠0). This selection principle (principle of space existence, in the Markov terminology) implies, in the general case, the absence of the cosmological solution with the De Sitter metric. On the other hand, the De Sitter metric is necessary for describing both inflation and deflation periods of the Universe. It is shown that the De Sitter metric is also allowed by the selection principle under discussion if the metric experiences the evolution into the Friedmann metric

  3. Quantum Cramer–Rao Bound for a Massless Scalar Field in de Sitter Space

    Directory of Open Access Journals (Sweden)

    Marcello Rotondo

    2017-10-01

    Full Text Available How precisely can we estimate cosmological parameters by performing a quantum measurement on a cosmological quantum state? In quantum estimation theory, the variance of an unbiased parameter estimator is bounded from below by the inverse of measurement-dependent Fisher information and ultimately by quantum Fisher information, which is the maximization of the former over all positive operator-valued measurements. Such bound is known as the quantum Cramer –Rao bound. We consider the evolution of a massless scalar field with Bunch–Davies vacuum in a spatially flat FLRW spacetime, which results in a two-mode squeezed vacuum out-state for each field wave number mode. We obtain the expressions of the quantum Fisher information as well as the Fisher informations associated to occupation number measurement and power spectrum measurement, and show the specific results of their evolution for pure de Sitter expansion and de Sitter expansion followed by a radiation-dominated phase as examples. We will discuss these results from the point of view of the quantum-to-classical transition of cosmological perturbations and show quantitatively how this transition and the residual quantum correlations affect the bound on the precision.

  4. Global spacetime symmetries in the functional Schroedinger picture

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1991-01-01

    In the conventional functional Schroedinger quantization of field theory, the background spacetime manifold is foliated into a set of three-surfaces and the quantum state of the field is represented by a wave functional of the field configurations on each three-surface. Although this procedure may be covariantly described, the wave functionals generally fail to carry a representation of the complete spacetime symmetry group of the background, such as the Poincare group in Minkowski spacetime, because spacetime symmetries generally involve distortions or motions of the three-surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries in the functional Schroedinger picture may be represented by parametrizing the field theory---raising to the status of dynamical variables the embedding variables describing the spacetime location of each three-surface. In particular, we show that the embedding variables provide a connection between the purely geometrical operation of an isometry group on the spacetime and the operation of the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave functionals of the theory. We study the path-integral representation of the wave functionals of the parametrized field theory. We show how to construct, from the path integral, wave functionals that are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime symmetry groups. The invariance of the class of histories summed over in the path integral is identified as the source of the invariance of the wave functionals. We apply this understanding to a study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the no-boundary proposal of Hartle and Hawking

  5. Hawking radiation from black holes in de Sitter spaces

    International Nuclear Information System (INIS)

    Jiang Qingquan

    2007-01-01

    Recently, Hawking radiation has been treated, by Robinson and Wilczek (2005 Phys. Rev. Lett. 95 011303), as a compensating flux of the energy-momentum tensor required to cancel a gravitational anomaly at the event horizon (EH) of a Schwarzschild-type black hole. In this paper, motivated by this work, Hawking radiation from the event horizon (EH) and the de Sitter cosmological horizon (CH) of black holes in de Sitter spaces, specifically including the purely de Sitter black hole and the static, spherically symmetric Schwarzschild-de Sitter black hole as well as the rotating Kerr-de Sitter black hole, have been studied by anomalies. The results show that the gauge-current and energy-momentum tensor fluxes, required to restore gauge invariance and general coordinate covariance at the EH and the CH, are precisely equal to those of Hawking radiation from the EH and the CH, respectively. It should be noted that gauge and gravitational anomalies taking place at the CH arise from the fact that the effective field theory is formulated inside the CH to integrate out the classically irrelevant outgoing modes at the CH, which are different from those at the black hole horizon

  6. Stability of generic thin shells in conformally flat spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Amirabi, Z. [Eastern Mediterranean Univ., Gazimagusa (Turkey). Dept. of Physics

    2017-07-15

    Some important spacetimes are conformally flat; examples are the Robertson-Walker cosmological metric, the Einstein-de Sitter spacetime, and the Levi-Civita-Bertotti-Robinson and Mannheim metrics. In this paper we construct generic thin shells in conformally flat spacetime supported by a perfect fluid with a linear equation of state, i.e., p = ωσ. It is shown that, for the physical domain of ω, i.e., 0 < ω ≤ 1, such thin shells are not dynamically stable. The stability of the timelike thin shells with the Mannheim spacetime as the outer region is also investigated. (orig.)

  7. Hawking radiation spectra for scalar fields by a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Pappas, T.; Kanti, P.; Pappas, N.

    2016-07-01

    In this work, we study the propagation of scalar fields in the gravitational background of a higher-dimensional Schwarzschild-de Sitter black hole as well as on the projected-on-the-brane four-dimensional background. The scalar fields have also a nonminimal coupling to the corresponding, bulk or brane, scalar curvature. We perform a comprehensive study by deriving exact numerical results for the greybody factors, and study their profile in terms of particle and spacetime properties. We then proceed to derive the Hawking radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole, and we study both bulk and brane channels. We demonstrate that the nonminimal field coupling, which creates an effective mass term for the fields, suppresses the energy emission rates while the cosmological constant assumes a dual role. By computing the relative energy rates and the total emissivity ratio for bulk and brane emission, we demonstrate that the combined effect of a large number of extra dimensions and value of the field coupling gives to the bulk channel the clear domination in the bulk-brane energy balance.

  8. Thermodynamics of (d+1)-dimensional NUT-charged AdS spacetimes

    International Nuclear Information System (INIS)

    Clarkson, R.; Fatibene, L.; Mann, R.B.

    2003-01-01

    We consider the thermodynamic properties of (d+1)-dimensional spacetimes with NUT charges. Such spacetimes are asymptotically locally anti-de Sitter (or flat), with non-trivial topology in their spatial sections, and can have fixed point sets of the Euclidean time symmetry that are either (d-1)-dimensional (called 'bolts') or of lower dimensionality (pure 'NUTs'). We compute the free energy, conserved mass, and entropy for 4, 6, 8 and 10 dimensions for each, using both Noether charge methods and the AdS/CFT-inspired counterterm approach. We then generalize these results to arbitrary dimensionality. We find in 4k+2 dimensions that there are no regions in parameter space in the pure NUT case for which the entropy and specific heat are both positive, and so all such spacetimes are thermodynamically unstable. For the pure NUT case in 4k dimensions a region of stability exists in parameter space that decreases in size with increasing dimensionality. All bolt cases have some region of parameter space for which thermodynamic stability can be realized

  9. Analytic extension of the Schwarzschild-de Sitter metric

    International Nuclear Information System (INIS)

    Bazanski, S.L.; Ferrari, V.

    1986-01-01

    In this paper, co-ordinates are derived that are regular, respectively, in the neighbourhood of the two horizons which exist in the so-called Schwarzschild-de Sitter solution known in general relativity, and it is constructed a manifold that is the analytic extension of the manifold being the domain of classical Schwarzschild-de Sitter co-ordinates

  10. Non-minimal Particle Creation from Asymptotic-de Sitter Inflation

    Science.gov (United States)

    Yusofi, E.; Mohsenzadeh, M.

    2018-06-01

    A general form of quasi-de Sitter(dS) modes is used to study the creation of particle during the inflation. Actually, by considering the general form of inflaton field equation as a function of the Hankel function index and by using the Planck 2015 constraint on spectral index, we obtain the possible new constraints for the values of coupling constant in the era with asymptotic-dS space-time. Then, we explicitly calculate the general form of expectation value of the created particles in terms of the Hankel function index and the conformal time. The correction terms in the number of created particles are very tiny in the early time but can have the significant effects in the later universe. Our result is general and at the early time limit confirm the conventional special results for the Minkowski and dS background.

  11. Holography in asymptotically flat spacetimes and the BMS group

    International Nuclear Information System (INIS)

    Arcioni, Giovanni; Dappiaggi, Claudio

    2004-01-01

    In a previous paper (Arcioni G and Dappiaggi C 2003 Preprint hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat spacetimes and analysed, in particular, different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat spacetime. We continue this investigation in this paper. Having in mind an S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyse the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the anti-de Sitter (AdS)/CFT set up. Finally, we construct a BMS phase space and a free Hamiltonian for fields transforming with respect to BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity

  12. Unstable Mode Solutions to the Klein-Gordon Equation in Kerr-anti-de Sitter Spacetimes

    Science.gov (United States)

    Dold, Dominic

    2017-03-01

    For any cosmological constant {Λ = -3/ℓ2 r+2 > |a|ℓ}. We obtain an analogous result for Neumann boundary conditions if {5/4 < α < 9/4}. Moreover, in the Dirichlet case, one can prove that, for any Kerr-AdS spacetime violating the Hawking-Reall bound, there exists an open family of masses {α} such that the corresponding Klein-Gordon equation permits exponentially growing mode solutions. Our result adopts methods of Shlapentokh-Rothman developed in (Commun. Math. Phys. 329:859-891, 2014) and provides the first rigorous construction of a superradiant instability for negative cosmological constant.

  13. Effective temperatures and radiation spectra for a higher-dimensional Schwarzschild-de Sitter black hole

    Science.gov (United States)

    Kanti, P.; Pappas, T.

    2017-07-01

    The absence of a true thermodynamical equilibrium for an observer located in the causal area of a Schwarzschild-de Sitter spacetime has repeatedly raised the question of the correct definition of its temperature. In this work, we consider five different temperatures for a higher-dimensional Schwarzschild-de Sitter black hole: the bare T0, the normalized TBH, and three effective ones given in terms of both the black-hole and cosmological horizon temperatures. We find that these five temperatures exhibit similarities but also significant differences in their behavior as the number of extra dimensions and the value of the cosmological constant are varied. We then investigate their effect on the energy emission spectra of Hawking radiation. We demonstrate that the radiation spectra for the normalized temperature TBH—proposed by Bousso and Hawking over twenty years ago—leads to the dominant emission curve, while the other temperatures either support a significant emission rate only in a specific Λ regime or have their emission rates globally suppressed. Finally, we compute the bulk-over-brane emissivity ratio and show that the use of different temperatures may lead to different conclusions regarding the brane or bulk dominance.

  14. Relativistic rotators: a quantum mechanical de Sitter bundle

    International Nuclear Information System (INIS)

    Boehm, A.

    1976-02-01

    If de Sitter fiber bundle over space time is the classical picture of hadrons then for a quantum mechanical description one has to generalize the concept of a principal fiber bundle to a bundle that contains the representation of the group of motion. This idea is related to the relativistic rotator model, and the radius of the de Sitter fiber is determined from the experimental hadron spectrum

  15. De Sitter stability and coarse graining

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, T. [Imperial College London, Department of Physics, London (United Kingdom); King' s College London, Department of Physics, London (United Kingdom)

    2018-02-15

    We present a 4-dimensional back reaction analysis of de Sitter space for a conformally coupled scalar field in the presence of vacuum energy initialized in the Bunch-Davies vacuum. In contrast to the usual semi-classical prescription, as the source term in the Friedmann equations we use expectation values where the unobservable information hidden by the cosmological event horizon has been neglected i.e. coarse grained over. It is shown that in this approach the energy-momentum is precisely thermal with constant temperature despite the dilution from the expansion of space due to a flux of energy radiated from the horizon. This leads to a self-consistent solution for the Hubble rate, which is gradually evolving and at late times deviates significantly from de Sitter. Our results hence imply de Sitter space to be unstable in this prescription. The solution also suggests dynamical vacuum energy: the continuous flux of energy is balanced by the generation of negative vacuum energy, which accumulatively decreases the overall contribution. Finally, we show that our results admit a thermodynamic interpretation which provides a simple alternate derivation of the mechanism. For very long times the solutions coincide with flat space. (orig.)

  16. De Sitter stability and coarse graining

    International Nuclear Information System (INIS)

    Markkanen, T.

    2018-01-01

    We present a 4-dimensional back reaction analysis of de Sitter space for a conformally coupled scalar field in the presence of vacuum energy initialized in the Bunch-Davies vacuum. In contrast to the usual semi-classical prescription, as the source term in the Friedmann equations we use expectation values where the unobservable information hidden by the cosmological event horizon has been neglected i.e. coarse grained over. It is shown that in this approach the energy-momentum is precisely thermal with constant temperature despite the dilution from the expansion of space due to a flux of energy radiated from the horizon. This leads to a self-consistent solution for the Hubble rate, which is gradually evolving and at late times deviates significantly from de Sitter. Our results hence imply de Sitter space to be unstable in this prescription. The solution also suggests dynamical vacuum energy: the continuous flux of energy is balanced by the generation of negative vacuum energy, which accumulatively decreases the overall contribution. Finally, we show that our results admit a thermodynamic interpretation which provides a simple alternate derivation of the mechanism. For very long times the solutions coincide with flat space. (orig.)

  17. Mass change and motion of a scalar charge in cosmological spacetimes

    International Nuclear Information System (INIS)

    Haas, Roland; Poisson, Eric

    2005-01-01

    Continuing previous work reported in an earlier paper (Burko, Harte and Poisson 2002 Phys. Rev. D 65 124006), we calculate the self-force acting on a point scalar charge in a wide class of cosmological spacetimes. The self-force produces two types of effect. The first is a time-changing inertial mass, and this is calculated exactly for a particle at rest relative to the cosmological fluid. We show that for certain cosmological models, the mass decreases and then increases back to its original value. For all other models except de Sitter spacetime, the mass is restored only to a fraction of its original value. For de Sitter spacetime the mass steadily decreases. The second effect is a deviation relative to geodesic motion, and we calculate this for a charge that moves slowly relative to the dust in a matter-dominated cosmology. We show that the net effect of the self-force is to push on the particle. We show that this is not an artefact of the scalar theory: the electromagnetic self-force acting on an electrically charged particle also pushes on the particle. The paper concludes with a demonstration that the pushing effect can also occur in the context of slow-motion electrodynamics in flat spacetime

  18. Relativistic thick discs in the Kerr-de Sitter backgrounds

    International Nuclear Information System (INIS)

    Slany, Petr; StuchlIk, Zdenek

    2005-01-01

    Perfect fluid tori with a uniform distribution of the specific angular momentum, l(r, θ) = const, orbiting the Kerr-de Sitter black holes or naked singularities are studied. It is well known that the structure of equipotential surfaces of such marginally stable tori reflects the basic properties of any tori with a general distribution of the specific angular momentum. Closed equipotential surfaces corresponding to stationary thick discs are allowed only in the spacetimes admitting stable circular geodesics. The last closed surface crosses itself in the cusp(s) enabling the outflow of matter from the torus due to the violation of hydrostatic equilibrium. The inner cusp enables an accretion onto the central object. The influence of the repulsive cosmological constant, Λ > 0, on the equipotential surfaces lies in the existence of the outer cusp (with a stabilizing effect on the thick discs) and in the strong collimation of open equipotential surfaces along the rotational axis. Both the effects take place near a so-called static radius where the gravitational attraction is just balanced by the cosmic repulsion. The outer cusp enables excretion, i.e., the outflow of matter from the torus into the outer space. The plus-family discs (which are always co-rotating in the black-hole backgrounds but can be counter-rotating, even with negative energy of the fluid elements, in some naked-singularity backgrounds) are thicker and more extended than the minus-family ones (which are always counter-rotating in all backgrounds). For co-rotating discs in the naked-singularity spacetimes, the potential well between the centre of the disc and its edges at the cusps is usually much higher than in the black-hole spacetimes. If the parameters of naked-singularity spacetimes are very close to the parameters of extreme black-hole spacetimes, the family of possible disc-like configurations includes members with two isolated discs where the inner one is always a counter-rotating accretion

  19. Poincare and de Sitter gauge theories of gravity with propagating torsion

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1982-01-01

    We consider a gauge approach to the gravitational theory based on the local Poincare P 10 de Sitter S 10 groups. The P 10 gauge rotations and translations take place in the tangent spaces to the space-time manifold. We interpret the independence of matter fields from the tangent vectors as the necessity to use a nonlinear realization of the P 10 or S 10 groups thus effectively breaking the full symmetry to the Lorentz group. The Lagrangian we choose is the S 10 Yang-Mills invariant with the space-time metric expressed in terms of the translational part of the S 10 nonlinear gauge field. Various consequences of the theory are discussed, including the correspondence with general relativity, the propagating spin-connection interactions, the analogy with the chiral Higgs mechanism, instantonlike solutions, a possibility of gravitational repulsion due to the noncompactness of the Lorentz group, etc. We also analyze the quantization of the theories with torsion with special emphasis on the presence of the nonlinear realization. We stress the possibility of obtaining a renormalizable theory if the metric is not quantized but is expressed in terms of a mean value of the quantized S 10 nonlinear gauge field

  20. HKT geometry and de Sitter supergravity

    International Nuclear Information System (INIS)

    Grover, Jai; Gutowski, Jan B.; Herdeiro, Carlos A.R.; Sabra, Wafic

    2009-01-01

    Solutions of five-dimensional minimal de Sitter supergravity admitting Killing spinors are considered. It is shown that the 'timelike' solutions are determined in terms of a four-dimensional hyper-Kaehler torsion (HKT) manifold. If the HKT manifold is conformally hyper-Kaehler the most general solution can be obtained from a sub-class of supersymmetric solutions of minimal N=2 ungauged supergravity, by means of a simple transformation. Examples include a multi-BMPV de Sitter solution, describing multiple rotating black holes co-moving with the expansion of the universe. If the HKT manifold is not conformally hyper-Kaehler, examples admitting a tri-holomorphic Killing vector field are constructed in terms of certain solutions of three-dimensional Einstein-Weyl geometry

  1. Cosmological term in general relativity theory and localization of de Sitter and Einstein groups

    International Nuclear Information System (INIS)

    Tunyak, V.N.

    1984-01-01

    The theory of gauge gravitational field with the de Sitter group localization is formulated. proceeding from the de Sitter Universe tetrad components the relationship between Riemann metrics and de Sitter gauge field is established. It is shown that General relativity theory (GRT) with a cosmological term is the simplest variant of the de Sitter gauge gravitation theory passing in the limit of infinite curvature radius of the de Sitter Universe into the Poincare - invariant GRT without cosmological term. Similarly the theory of gauge gravitational field at localization of the dynamical group of the Einstein homogeneous static Universe (Einstein group RxSO(4)) is formulated

  2. Quantum physics of an elementary system in de Sitter space

    International Nuclear Information System (INIS)

    Rabeie, A.

    2012-01-01

    We present the coherent states of a scalar massive particle on 1+3-de Sitter space. These states are vectors in Hilbert space, and they are labeled by points in the associated phase space. To do this, we use the fact that the phase space of a scalar massive particle on 1+3-de Sitter space is a cotangent bundle T * (S 3 ) which is isomorphic with the complex sphere S C 3 . Then by using the heat kernel on '' S C 3 '' that was presented by Hall-Mitchell, we construct our coherent states. At the end, by these states we quantize the classical kinetic energy on de Sitter space. (orig.)

  3. All possible de-Sitter superalgebras and the presence of ghosts

    International Nuclear Information System (INIS)

    Lukierski, J.; Nowicki, A.

    1984-09-01

    De-Sitter superalgebras which supersymmetrize SO(d;1) by introducing the spinorial supercharges, exist for d=2,3,4 and 5. It is shown however that it is possible only for d=2 to write a nontrivial representation of de-Sitter superalgebra in the Hilbert space, with positive-definite metric. (orig.)

  4. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    Science.gov (United States)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  5. Dirac equation for massive neutrinos in a Schwarzschild-de Sitter spacetime from a 5D vacuum

    International Nuclear Information System (INIS)

    Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio

    2011-01-01

    Starting from a Dirac equation for massless neutrino in a 5D Ricci-flat background metric, we obtain the effective 4D equation for massive neutrino in a Schwarzschild-de Sitter (SdS) background metric from an extended SdS 5D Ricci-flat metric. We use the fact that the spin connection is defined to an accuracy of a vector, so that the covariant derivative of the spinor field is strongly dependent of the background geometry. We show that the mass of the neutrino can be induced from the extra space-like dimension.

  6. De Sitter en Einstein. ‘Het lijkt mij dat Einstein hier een vergissing begaan heeft’

    Directory of Open Access Journals (Sweden)

    Jan Guichelaar

    2016-10-01

    Full Text Available De Sitter and EinsteinWillem de Sitter’s interest in gravity was based on his work on celestial mechanics, in particular on the four big moons of Jupiter. His work on cosmology was based on the general theory of relativity of Albert Einstein. De Sitter published in 1917, on request of Arthur Eddington to inform the English astronomers, a series of four articles in The Observatory and the Monthly Notices of the Royal Astronomical Society. Einstein developed his own cosmological models, containing mass. De Sitter found a different solution and described a universe without mass. Einstein could not accept De Sitter’s model and they ‘fought out’ two controversies in their correspondence. In theend Einstein had to confess De Sitter was mainly right in his criticisms. In 1932 Einstein and De Sitter published an article on a new model, the so-called Einstein-De Sitter Model of the universe. So, De Sitter was able to do fundamental work in classical celestial mechanics as well as in the new cosmological theories.

  7. Wave equations on a de Sitter fiber bundle. [Semiclassical wave function, bundle space, L-S coupling

    Energy Technology Data Exchange (ETDEWEB)

    Drechsler, W [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany)

    1975-01-01

    A gauge theory of strong interaction is developed based on fields defined on a fiber bundle. The structural group of the bundle is taken to be the Lsub(4,1) de Sitter group. An internal variable xi, varying in the fiber over a space-time point x, is introduced as a means to describe - with the help of a semiclassical wave function psi(x,xi) defined on the bundle space - the internal structure of extended hadrons in a framework using differential geometric techniques. Three basic nonlinear wave equations for psi(x,xi) are established which are of integro-differential type. The nonlinear coupling terms in these de Sitter gauge invariant equations represent physically a generalized spin orbit coupling or a generalized spin coupling for the motion taking place in the fiber. The motivation for using a bigger space for the definition of hadronic matter wave functions as well as the implications of this geometric approach to strong interaction physics is discussed in detail, in particular with respect to the problem of hadronic constituents. The proposed fiber bundle formalism allows a dynamical description of extended structures for hadrons without implying the necessity of introducing any constituents.

  8. Effective long wavelength scalar dynamics in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Moss, Ian; Rigopoulos, Gerasimos, E-mail: ian.moss@newcastle.ac.uk, E-mail: gerasimos.rigopoulos@ncl.ac.uk [School of Mathematics and Statistics, Newcastle University, Herschel Building, Newcastle upon Tyne, NE1 7RU U.K. (United Kingdom)

    2017-05-01

    We discuss the effective infrared theory governing a light scalar's long wavelength dynamics in de Sitter spacetime. We show how the separation of scales around the physical curvature radius k / a ∼ H can be performed consistently with a window function and how short wavelengths can be integrated out in the Schwinger-Keldysh path integral formalism. At leading order, and for time scales Δ t >> H {sup −1}, this results in the well-known Starobinsky stochastic evolution. However, our approach allows for the computation of quantum UV corrections, generating an effective potential on which the stochastic dynamics takes place. The long wavelength stochastic dynamical equations are now second order in time, incorporating temporal scales Δ t ∼ H {sup −1} and resulting in a Kramers equation for the probability distribution—more precisely the Wigner function—in contrast to the more usual Fokker-Planck equation. This feature allows us to non-perturbatively evaluate, within the stochastic formalism, not only expectation values of field correlators, but also the stress-energy tensor of φ.

  9. Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Xiong [Chongqing Jiaotong University, School of Material Science and Engineering, Chongqing (China); Chinese Academy of Sciences, Institute of Theoretical Physics, Beijing (China); Liu, Xian-Ming [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA (United States); Hubei University for Nationalities, Center for Theoretical Physics, School of Sciences, Enshi, Hubei (China); Li, Li-Fang [Chinese Academy of Sciences, State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Beijing (China)

    2016-11-15

    With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. For the case bQ > 0.5, where b is the Born-Infeld parameter and Q is the charge of the black hole, the phase structure is found to be similar to that of the Van der Waals phase transition, namely the black hole undergoes a first order phase transition and a second order phase transition before it reaches a stable phase. While for the case bQ < 0.5, a new phase branch emerges besides the Van der Waals phase transition. For the first order phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the heat capacity is obtained. All these results are found to be the same as that observed in the entropy-temperature plane. (orig.)

  10. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, Steven B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Sloth, Martin S., E-mail: giddings@physics.ucsb.edu, E-mail: sloth@cern.ch [CERN, Physics Department, Theory Unit, CH-1211 Geneva 23 (Switzerland)

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation.

  11. Semiclassical relations and IR effects in de Sitter and slow-roll space-times

    International Nuclear Information System (INIS)

    Giddings, Steven B.; Sloth, Martin S.

    2011-01-01

    We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation

  12. Entropy of Kerr-de Sitter black hole

    Science.gov (United States)

    Li, Huai-Fan; Ma, Meng-Sen; Zhang, Li-Chun; Zhao, Ren

    2017-07-01

    Based on the consideration that the black hole horizon and the cosmological horizon of Kerr-de Sitter black hole are not independent of each other, we conjecture the total entropy of the system should have an extra term contributed from the correlations between the two horizons, except for the sum of the two horizon entropies. By employing globally effective first law and effective thermodynamic quantities, we obtain the corrected total entropy and find that the region of stable state for Kerr-de Sitter is related to the angular velocity parameter a, i.e., the region of stable state becomes bigger as the rotating parameters a is increases.

  13. Di-Jet Conical Correlations Associated with Heavy Quark Jets in anti-de Sitter Space/Conformal Field Theory Correspondence

    International Nuclear Information System (INIS)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-01-01

    We show that far zone Mach and diffusion wake 'holograms' produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N c →∞ supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium 'neck' zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence

  14. Di-jet conical correlations associated with heavy quark jets in anti-de sitter space/conformal field theory correspondence.

    Science.gov (United States)

    Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio

    2009-03-13

    We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence.

  15. Perturbative S-matrix for massive scalar fields in global de Sitter space

    International Nuclear Information System (INIS)

    Marolf, Donald; Srednicki, Mark; Morrison, Ian A

    2013-01-01

    We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)

  16. Towards an improved duality between tensor network states and AdS spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Papadopoulos, Charalampos; Orus, Roman [Institute of Physics, Johannes Gutenberg University, 55099 Mainz (Germany)

    2016-07-01

    The conjectured AdS/CFT Correspondence, which states that a Conformal Field Theory (CFT) in Minkowski spacetime has a gravity dual in an asymptotically Anti-de Sitter space (AdS), is one of the best understood examples of the holographic principle, and has important applications in condensed matter physics. Tensor Networks (TNs) are a efficient way to calculate low-energy properties for strongly-correlated quantum many-body systems. The Multi-scale Entanglement Renormalization Ansatz (MERA) is a specific TN for a efficient description of critical quantum systems (CFTs). It was recently suggested that the MERA provides naturally a discretization of AdS spacetime on a lattice. It is however known that a conventional MERA can not reproduce the so-called ''Bousso Bound'', also called holographic entropy bound, which is a bound on the bulk entropy in spacetime. In this context, our aim is to generalize the proposed AdS/MERA correspondence to a more general AdS/TN duality, where the Bousso bound is satisfied. Progress in this direction as well as connections to strongly correlated systems will be discussed.

  17. ''Massless'' vector field in de Sitter universe

    International Nuclear Information System (INIS)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.

    2008-01-01

    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ''massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ''massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function

  18. De Sitter hunting in a classical landscape

    International Nuclear Information System (INIS)

    Danielsson, U.H.; Van Riet, T.; Haque, S.S.; Koerber, P.; Shiu, G.; Wrase, T.

    2011-01-01

    We elaborate on the construction of de Sitter solutions from IIA orientifolds of SU(3)-structure manifolds that solve the 10-dimensional equations of motion at tree-level in the approximation of smeared sources. First we classify geometries that are orbifolds of a group manifold covering space which, upon the proper inclusion of O6 planes, can be described within the framework of N = 1 supergravity in 4D. Then we scan systematically for de Sitter solutions, obtained as critical points of an effective 4D potential. Apart from finding many new solutions we emphasize the challenges in constructing explicit classical de Sitter vacua, which have sofar not been met. These challenges are interesting avenues for further research and include finding solutions that are perturbatively stable, satisfy charge and flux quantization, and have genuine localized (versus smeared) orientifold sources. This paper intends to be self-contained and pedagogical, and thus can serve as a guide to the necessary technical tools required for this line of research. In an appendix we explain how to study flux and charge quantization in the presence of a non-trivial H-field using twisted homology. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. ``Massless'' vector field in de Sitter universe

    Science.gov (United States)

    Garidi, T.; Gazeau, J.-P.; Rouhani, S.; Takook, M. V.

    2008-03-01

    We proceed to the quantization of the massless vector field in the de Sitter (dS) space. This work is the natural continuation of a previous article devoted to the quantization of the dS massive vector field [J. P. Gazeau and M. V. Takook, J. Math. Phys. 41, 5920 (2000); T. Garidi et al., ibid. 43, 6379 (2002).] The term ``massless'' is used by reference to conformal invariance and propagation on the dS lightcone whereas ``massive'' refers to those dS fields which unambiguously contract to Minkowskian massive fields at zero curvature. Due to the combined occurrences of gauge invariance and indefinite metric, the covariant quantization of the massless vector field requires an indecomposable representation of the de Sitter group. We work with the gauge fixing corresponding to the simplest Gupta-Bleuler structure. The field operator is defined with the help of coordinate-independent de Sitter waves (the modes). The latter are simple to manipulate and most adapted to group theoretical approaches. The physical states characterized by the divergencelessness condition are, for instance, easy to identify. The whole construction is based on analyticity requirements in the complexified pseudo-Riemannian manifold for the modes and the two-point function.

  20. Transforming to Lorentz gauge on de Sitter

    NARCIS (Netherlands)

    Miao, S. P.; Tsamis, N.C.; Woodard, R.P.

    2009-01-01

    We demonstrate that certain gauge fixing functionals cannot be added to the action on backgrounds such as de Sitter, in which a linearization instability is present. We also construct the field-dependent gauge transformation that carries the electromagnetic vector potential from a convenient, non-de

  1. Punctuated eternal inflation via AdS/CFT duality

    International Nuclear Information System (INIS)

    Lowe, David A.; Roy, Shubho

    2010-01-01

    The work is an attempt to model a scenario of inflation in the framework of anti-de Sitter/conformal field theory duality, a potentially complete nonperturbative description of quantum gravity. We study bubble geometries with de Sitter interiors within an ambient Schwarzschild anti-de Sitter black hole spacetime and the properties of the corresponding states in the dual conformal field theory. It is argued the viable bubble states can be identified with a subset of the black hole microstates. Consistency checks are performed and a number of implications regarding cosmology are discussed including how the key problems or paradoxes of conventional eternal inflation are overcome in this scenario.

  2. Cosmic curvature from de Sitter equilibrium cosmology.

    Science.gov (United States)

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.

  3. Building an explicit de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Louis, Jan [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik; Rummel, Markus; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Gruppe Theorie

    2012-11-15

    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP{sup 4}{sub 11169}, by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  4. Building an explicit de Sitter

    International Nuclear Information System (INIS)

    Louis, Jan; Hamburg Univ.; Rummel, Markus; Valandro, Roberto; Westphal, Alexander

    2012-11-01

    We construct an explicit example of a de Sitter vacuum in type IIB string theory that realizes the proposal of Kaehler uplifting. As the large volume limit in this method depends on the rank of the largest condensing gauge group we carry out a scan of gauge group ranks over the Kreuzer-Skarke set of toric Calabi-Yau threefolds. We find large numbers of models with the largest gauge group factor easily exceeding a rank of one hundred. We construct a global model with Kaehler uplifting on a two-parameter model on CP 4 11169 , by an explicit analysis from both the type IIB and F-theory point of view. The explicitness of the construction lies in the realization of a D7 brane configuration, gauge flux and RR and NS flux choices, such that all known consistency conditions are met and the geometric moduli are stabilized in a metastable de Sitter vacuum with spontaneous GUT scale supersymmetry breaking driven by an F-term of the Kaehler moduli.

  5. A sufficient condition for de Sitter vacua in type IIB string theory

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Markus [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Westphal, Alexander [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-07-15

    We derive a sufficient condition for realizing meta-stable de Sitter vacua with small positive cosmological constant within type IIB string theory flux compactifications with spontaneously broken supersymmetry. There are a number of 'lamp post' constructions of de Sitter vacua in type IIB string theory and supergravity. We show that one of them - the method of 'Kaehler uplifting' by F-terms from an interplay between non-perturbative effects and the leading {alpha}'-correction - allows for a more general parametric understanding of the existence of de Sitter vacua. The result is a condition on the values of the flux induced superpotential and the topological data of the Calabi-Yau compactification, which guarantees the existence of a meta-stable de Sitter vacuum if met. Our analysis explicitly includes the stabilization of all moduli, i.e. the Kaehler, dilaton and complex structure moduli, by the interplay of the leading perturbative and non-perturbative effects at parametrically large volume. (orig.)

  6. The inverse spatial Laplacian of spherically symmetric spacetimes

    International Nuclear Information System (INIS)

    Fernandes, Karan; Lahiri, Amitabha

    2017-01-01

    We derive the inverse spatial Laplacian for static, spherically symmetric backgrounds by solving Poisson’s equation for a point source. This is different from the electrostatic Green function, which is defined on the four dimensional static spacetime, while the equation we consider is defined on the spatial hypersurface of such spacetimes. This Green function is relevant in the Hamiltonian dynamics of theories defined on spherically symmetric backgrounds, and closed form expressions for the solutions we find are absent in the literature. We derive an expression in terms of elementary functions for the Schwarzschild spacetime, and comment on the relation of this solution with the known Green function of the spacetime Laplacian operator. We also find an expression for the Green function on the static pure de-Sitter space in terms of hypergeometric functions. We conclude with a discussion of the constraints of the electromagnetic field. (paper)

  7. Massive scalar field evolution in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)

    2017-01-30

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  8. One-loop effective action for non-local modified Gauss-Bonnet gravity in de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Cognola, Guido; Zerbini, Sergio [Universita di Trento (Italy); Istituto Nazionale di Fisica Nucleare Gruppo Collegato di Trento, Dipartimento di Fisica, Trento (Italy); Elizalde, Emilio [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); Nojiri, Shin' ichi [Nagoya University, Department of Physics, Nagoya (Japan); Odintsov, Sergei D. [Consejo Superior de Investigaciones Cientificas (ICE/CSIC) and Institut d' Estudis Espacials de Catalunya (IEEC), Facultat Ciencies, Bellaterra (Barcelona) (Spain); ICREA, Barcelona (Spain); TSPU, Center of Theor. Phys., Tomsk (Russian Federation)

    2009-12-15

    We discuss the classical and quantum properties of non-local modified Gauss-Bonnet gravity in de Sitter space, using its equivalent representation via string-inspired local scalar-Gauss-Bonnet gravity with a scalar potential. A classical, multiple de Sitter universe solution is found where one of the de Sitter phases corresponds to the primordial inflationary epoch, while the other de Sitter space solution - the one with the smallest Hubble rate - describes the late-time acceleration of our universe. A Chameleon scenario for the theory under investigation is developed, and it is successfully used to show that the theory complies with gravitational tests. An explicit expression for the one-loop effective action for this non-local modified Gauss-Bonnet gravity in the de Sitter space is obtained. It is argued that this effective action might be an important step towards the solution of the cosmological constant problem. (orig.)

  9. Critical gravity on AdS2 spacetimes

    International Nuclear Information System (INIS)

    Myung, Yun Soo; Kim, Yong-Wan; Park, Young-Jai

    2011-01-01

    We study the critical gravity in two-dimensional anti-de Sitter (AdS 2 ) spacetimes, which was obtained from the cosmological topologically massive gravity (TMG Λ ) in three dimensions by using the Kaluza-Klein dimensional reduction. We perform the perturbation analysis around AdS 2 , which may correspond to the near-horizon geometry of the extremal Banados, Teitelboim, and Zanelli (BTZ) black hole obtained from the TMG Λ with identification upon uplifting three dimensions. A massive propagating scalar mode δF satisfies the second-order differential equation away from the critical point of K=l, whose solution is given by the Bessel functions. On the other hand, δF satisfies the fourth-order equation at the critical point. We exactly solve the fourth-order equation, and compare it with the log gravity in two dimensions. Consequently, the critical gravity in two dimensions could not be described by a massless scalar δF ml and its logarithmic partner δF log 4th .

  10. Chiral phase transition at finite chemical potential in 2 +1 -flavor soft-wall anti-de Sitter space QCD

    Science.gov (United States)

    Bartz, Sean P.; Jacobson, Theodore

    2018-04-01

    The phase transition from hadronic matter to chirally symmetric quark-gluon plasma is expected to be a rapid crossover at zero quark chemical potential (μ ), becoming first order at some finite value of μ , indicating the presence of a critical point. Using a three-flavor soft-wall model of anti-de Sitter/QCD, we investigate the effect of varying the light and strange quark masses on the order of the chiral phase transition. At zero quark chemical potential, we reproduce the Columbia Plot, which summarizes the results of lattice QCD and other holographic models. We then extend this holographic model to examine the effects of finite quark chemical potential. We find that the the chemical potential does not affect the critical line that separates first-order from rapid crossover transitions. This excludes the possibility of a critical point in this model, suggesting that a different setup is necessary to reproduce all the features of the QCD phase diagram.

  11. Addendum to: Modelling duality between bound and resonant meson spectra by means of free quantum motions on the de Sitter space-time dS{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Kirchbach, M. [Instituto de Fisica, UASLP, San Luis Potosi (Mexico); Compean, C.B. [Instituto Tecnologico de San Luis Potosi, Soledad de Graciano Sanchez (Mexico)

    2017-04-15

    In the article under discussion the analysis of the spectra of the unflavored mesons lead us to some intriguing insights into the possible geometry of space-time outside the causal Minkowski light cone and into the nature of strong interactions. In applying the potential theory concept of geometrization of interactions, we showed that the meson masses are best described by a confining potential composed by the centrifugal barrier on the three-dimensional spherical space, S{sup 3}, and of a charge-dipole potential constructed from the Green function to the S{sup 3} Laplacian. The dipole potential emerged in view of the fact that S{sup 3} does not support single-charges without violation of the Gauss theorem and the superposition principle, thus providing a natural stage for the description of the general phenomenon of confined charge-neutral systems. However, in the original article we did not relate the charge-dipoles on S{sup 3} to the color neutral mesons, and did not express the magnitude of the confining dipole potential in terms of the strong coupling α{sub S} and the number of colors, N{sub c}, the subject of the addendum. To the amount S{sup 3} can be thought of as the unique closed space-like geodesic of a four-dimensional de Sitter space-time, dS{sub 4}, we hypothesized the space-like region outside the causal Einsteinian light cone (it describes virtual processes, among them interactions) as the (1+4)-dimensional subspace of the conformal (2+4) space-time, foliated with dS{sub 4} special relativity for strong interaction processes. The potential designed in this way predicted meson spectra of conformal degeneracy patterns, and in accord with the experimental observations. We now extract the α{sub s} values in the infrared from data on meson masses. The results obtained are compatible with the α{sub s} estimates provided by other approaches. (orig.)

  12. On the mass of static metrics with positive cosmological constant: I

    Science.gov (United States)

    Borghini, Stefano; Mazzieri, Lorenzo

    2018-06-01

    In this paper we prove a new uniqueness result for the de Sitter solution. Our theorem is based on a new notion of mass, whose well-posedness is discussed and established in the realm of static spacetimes with positive cosmological constant that are bounded by Killing horizons. This new definition is formulated in terms of the surface gravities of the Killing horizons and agrees with the usual notion when the Schwarzschild–de Sitter solutions are considered. A positive mass statement is also shown to hold in this context. The corresponding rigidity statement coincides with the above mentioned characterization of the de Sitter solution as the only static vacuum metric with zero mass. Finally, exploiting some particular features of our formalism, we show how the same analysis can be fruitfully employed to treat the case of negative cosmological constant, leading to a new uniqueness theorem for the anti-de Sitter spacetime, which holds under a very feeble assumption on the asymptotic behavior of the solution.

  13. Krein Spaces in de Sitter Quantum Theories

    Czech Academy of Sciences Publication Activity Database

    Gazeau, J.P.; Siegl, Petr; Youssef, A.

    2010-01-01

    Roč. 6, - (2010), 011/1-011/23 ISSN 1815-0659 Institutional research plan: CEZ:AV0Z10480505 Keywords : de Sitter group * undecomposable representations * Krein spaces Subject RIV: BE - Theoretical Physics Impact factor: 0.856, year: 2010

  14. Vacuum polarization in curved spacetime

    International Nuclear Information System (INIS)

    Guy, R.W.

    1979-01-01

    A necessary step in the process of understanding the quantum theory of gravity is the calculation of the stress-energy tensor of quantized fields in curved space-times. The determination of the stress tensor, a formally divergent object, is made possible in this dissertation by utilizing the zeta-function method of regularization and renormalization. By employing this scheme's representation of the renormalized effective action functional, an expression of the stress tensor for a massless, conformally invariant scalar field, first given by DeWitt, is derived. The form of the renormalized stress tensor is first tested in various examples of flat space-times. It is shown to vanish in Minkowski space and to yield the accepted value of the energy density in the Casimir effect. Next, the stress tensor is calculated in two space-times of constant curvature, the Einstein universe and the deSitter universe, and the results are shown to agree with those given by an expression of the stress tensor that is valid in conformally flat space-times. This work culminates in the determination of the stress tensor on the horizon of a Schwarzschild black hole. This is accomplished by approximating the radial part of the eigen-functions and the metric in the vicinity of the horizon. The stress tensor at this level approximation is found to be pure trace. The approximated forms of the Schwarzschild metric describes a conformally flat space-time that possesses horizons

  15. Quantum fields in a big-crunch-big-bang spacetime

    International Nuclear Information System (INIS)

    Tolley, Andrew J.; Turok, Neil

    2002-01-01

    We consider quantum field theory on a spacetime representing the big-crunch-big-bang transition postulated in ekpyrotic or cyclic cosmologies. We show via several independent methods that an essentially unique matching rule holds connecting the incoming state, in which a single extra dimension shrinks to zero, to the outgoing state in which it reexpands at the same rate. For free fields in our construction there is no particle production from the incoming adiabatic vacuum. When interactions are included the particle production for fixed external momentum is finite at the tree level. We discuss a formal correspondence between our construction and quantum field theory on de Sitter spacetime

  16. The entropy function for the black holes of Nariai class

    International Nuclear Information System (INIS)

    Cho, Jin-Ho; Nam, Soonkeon

    2008-01-01

    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the 'Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as minus 'Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes

  17. Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Melis ULU DOĞRU

    2018-02-01

    Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.

  18. Quintessence Reissner Nordström Anti de Sitter Black Holes and Joule Thomson Effect

    Science.gov (United States)

    Ghaffarnejad, H.; Yaraie, E.; Farsam, M.

    2018-06-01

    In this work we investigate corrections of the quintessence regime of the dark energy on the Joule-Thomson (JT) effect of the Reissner Nordström anti de Sitter (RNAdS) black hole. The quintessence dark energy has equation of state as p q = ω ρ q in which -1black hole mass, we calculate inversion temperature T i of the quintessence RNAdS black hole where its cooling phase is changed to heating phase at a particular (inverse) pressure P i . Position of the inverse point { T i , P i } is determined by crossing the inverse curves with the corresponding Gibbons-Hawking temperature on the T-P plan. We determine position of the inverse point versus different numerical values of the mass M and the charge Q of the quintessence AdS RN black hole. The cooling-heating phase transition (JT effect) is happened for M > Q in which the causal singularity is still covered by the horizon. Our calculations show sensitivity of the inverse point { T i , P i } position on the T-P plan to existence of the quintessence dark energy just for large numerical values of the AdS RN black holes charge Q. In other words the quintessence dark energy dose not affect on position of the inverse point when the AdS RN black hole takes on small charges.

  19. On inflation and de Sitter in non-geometric string backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Hassler, Falk; Massai, Stefano [Arnold-Sommerfeld-Center for Theoretical Physics, Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Luest, Dieter [Arnold-Sommerfeld-Center for Theoretical Physics, Fakultaet fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany); Max-Planck-Institut fuer Physik, Muenchen (Germany)

    2017-10-15

    We study the problem of obtaining de Sitter and inflationary vacua from dimensional reduction of double field theory (DFT) on nongeometric string backgrounds. In this context, we consider a new class of effective potentials that admit Minkowski and de Sitter minima. We then construct a simple model of chaotic inflation arising from T-fold backgrounds and we discuss the possibility of trans-Planckian field range from nongeometric monodromies as well as the conditions required to get slow roll. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. de Sitter space from dilatino condensates in massive IIA supergravity

    Science.gov (United States)

    Souères, Bertrand; Tsimpis, Dimitrios

    2018-02-01

    We use the superspace formulation of (massive) IIA supergravity to obtain the explicit form of the dilatino terms, and we find that the quartic-dilatino term is positive. The theory admits a ten-dimensional de Sitter solution, obtained by assuming a nonvanishing quartic-dilatino condensate which generates a positive cosmological constant. Moreover, in the presence of dilatino condensates, the theory admits formal four-dimensional de Sitter solutions of the form d S4×M6, where M6 is a six-dimensional Kähler-Einstein manifold of positive scalar curvature.

  1. Stable de Sitter vacua in four-dimensional supergravity originating from five dimensions

    International Nuclear Information System (INIS)

    Oegetbil, O.

    2008-01-01

    The five-dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular, a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R s of the R-symmetry group descend to four-dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semidirect product of SO(1,1) with R (1,1) together with a simultaneous R s is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with the SO(2,1)xR s gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R s =U(1) R , (ii) R s =SU(2) R , and (iii) N=2 Yang-Mills/Einstein supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.

  2. Nariai, Bertotti-Robinson, and anti-Nariai solutions in higher dimensions

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Dias, Oscar J.C.; Lemos, Jose P.S.

    2004-01-01

    We find all higher dimensional solutions of Einstein-Maxwell theory that are the topological product of two manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and anti-Nariai solutions and the anti-de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology (Plebanski-Hacyan solutions). We give explicit results for any dimension D≥4. These solutions are generated from the appropriate extremal limits of the higher dimensional near-extreme black holes in de Sitter and anti-de Sitter backgrounds. Thus, we also find the mass and charge parameters of higher dimensional extreme black holes as a function of the radius of the degenerate horizon

  3. On the solution of the Dirac equation in de Sitter space

    International Nuclear Information System (INIS)

    Klishevich, V V; Tyumentsev, V A

    2005-01-01

    It is shown that the maximal number of first-order symmetry operators for the Dirac equation (including spin symmetries), both in arbitrary signature flat space and in de Sitter space, is equal. The isomorphic representation of 11-dimensional nonlinear symmetry algebra (W-algebra) of first-order operators for the Dirac operator in flat space and de Sitter space is considered. The algebra is an extension of the Lie algebra of the group of pseudo-orthogonal rotations and this extension is unique. We have found all linear Lie subalgebras in the nonlinear algebra that satisfy the conditions of the noncommutative integration theorem. Using one subalgebra we have integrated the Dirac equation in the generalized spherical system of coordinates and have constructed the complete class of exact solutions. The solution is found by a method that differs from the variable separation method and is new in the literature. The massive particle spectrum, models of particle into antiparticle transmutation, the disappearance of particles and the quantization conditions of the motion are discussed. One can use the results of the paper to pose the boundary problem for the Dirac equation in de Sitter space if the interval is used in the boundary condition. As an example, we consider a model of asymptotically flat space that is glued from the de Sitter space and flat space. We interpret the model as a gravitational well or barrier

  4. Conformal use of retarded Green's functions for the Maxwell field in de Sitter space

    International Nuclear Information System (INIS)

    Faci, S.; Huguet, E.; Renaud, J.

    2011-01-01

    We propose a new propagation formula for the Maxwell field in de Sitter space which exploits the conformal invariance of this field together with a conformal gauge condition. This formula allows to determine the classical electromagnetic field in the de Sitter space from given currents and initial data. It only uses the Green's function of the massless Minkowskian scalar field. This leads to drastic simplifications in practical calculations. We apply this formula to the classical problem of the two charges of opposite signs at rest at the North and South Poles of the de Sitter space.

  5. Space-time of class one

    International Nuclear Information System (INIS)

    Villasenor, R.F.; Bonilla, J.L.L.; Zuniga, G.O.; Matos, T.

    1989-01-01

    The authors study space-times embedded in E 5 (that means, pseudo-euclidean five-dimensional spaces) in the intrinsic rigidity case, i.e., when the second fundamental form b if can be determined by the internal geometry of the four-dimensional Riemannian space R 4 . They write down the Gauss and Codazzi equations determining the local isometric embedding of R 4 in E 5 and give some consequences of it. They prove that when there exists intrinsic rigidity, then b if is a linear combination of the metric and Ricci tensor; it is given some applications for the de Sitter and Einstein models

  6. Quantum corrections for spinning particles in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Fröb, Markus B. [Department of Mathematics, University of York, Heslington, York, YO10 5DD (United Kingdom); Verdaguer, Enric, E-mail: mbf503@york.ac.uk, E-mail: enric.verdaguer@ub.edu [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (UB), C/ Martí i Franquès 1, 08028 Barcelona (Spain)

    2017-04-01

    We compute the one-loop quantum corrections to the gravitational potentials of a spinning point particle in a de Sitter background, due to the vacuum polarisation induced by conformal fields in an effective field theory approach. We consider arbitrary conformal field theories, assuming only that the theory contains a large number N of fields in order to separate their contribution from the one induced by virtual gravitons. The corrections are described in a gauge-invariant way, classifying the induced metric perturbations around the de Sitter background according to their behaviour under transformations on equal-time hypersurfaces. There are six gauge-invariant modes: two scalar Bardeen potentials, one transverse vector and one transverse traceless tensor, of which one scalar and the vector couple to the spinning particle. The quantum corrections consist of three different parts: a generalisation of the flat-space correction, which is only significant at distances of the order of the Planck length; a constant correction depending on the undetermined parameters of the renormalised effective action; and a term which grows logarithmically with the distance from the particle. This last term is the most interesting, and when resummed gives a modified power law, enhancing the gravitational force at large distances. As a check on the accuracy of our calculation, we recover the linearised Kerr-de Sitter metric in the classical limit and the flat-space quantum correction in the limit of vanishing Hubble constant.

  7. Gravastars with higher dimensional spacetimes

    Science.gov (United States)

    Ghosh, Shounak; Ray, Saibal; Rahaman, Farook; Guha, B. K.

    2018-07-01

    We present a new model of gravastar in the higher dimensional Einsteinian spacetime including Einstein's cosmological constant Λ. Following Mazur and Mottola (2001, 2004) we design the star with three specific regions, as follows: (I) Interior region, (II) Intermediate thin spherical shell and (III) Exterior region. The pressure within the interior region is equal to the negative matter density which provides a repulsive force over the shell. This thin shell is formed by ultra relativistic plasma, where the pressure is directly proportional to the matter-energy density which does counter balance the repulsive force from the interior whereas the exterior region is completely vacuum assumed to be de Sitter spacetime which can be described by the generalized Schwarzschild solution. With this specification we find out a set of exact non-singular and stable solutions of the gravastar which seems physically very interesting and reasonable.

  8. Generalized Uncertainty Principle and Black Hole Entropy of Higher-Dimensional de Sitter Spacetime

    International Nuclear Information System (INIS)

    Zhao Haixia; Hu Shuangqi; Zhao Ren; Li Huaifan

    2007-01-01

    Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein-Hawking black hole entropy. In particular, many researchers have expressed a vested interest in the coefficient of the logarithmic term of the black hole entropy correction term. In this paper, we calculate the correction value of the black hole entropy by utilizing the generalized uncertainty principle and obtain the correction term caused by the generalized uncertainty principle. Because in our calculation we think that the Bekenstein-Hawking area theorem is still valid after considering the generalized uncertainty principle, we derive that the coefficient of the logarithmic term of the black hole entropy correction term is positive. This result is different from the known result at present. Our method is valid not only for four-dimensional spacetimes but also for higher-dimensional spacetimes. In the whole process, the physics idea is clear and calculation is simple. It offers a new way for studying the entropy correction of the complicated spacetime.

  9. Dynamics of Robertson–Walker spacetimes with diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Alho, A., E-mail: aalho@math.ist.utl.pt [Centro de Análise Matemática, Geometria e Sistemas Dinâmicos, Instituto Superior Técnico, Lisboa (Portugal); Calogero, S., E-mail: calogero@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg (Sweden); Machado Ramos, M.P., E-mail: mpr@mct.uminho.pt [Departamento de Matemática e Aplicações, Universidade do Minho, Guimarães (Portugal); Soares, A.J., E-mail: ajsoares@math.uminho.pt [Centro de Matemática, Universidade do Minho, Braga (Portugal)

    2015-03-15

    We study the dynamics of spatially homogeneous and isotropic spacetimes containing a fluid undergoing microscopic velocity diffusion in a cosmological scalar field. After deriving a few exact solutions of the equations, we continue by analyzing the qualitative behavior of general solutions. To this purpose we recast the equations in the form of a two dimensional dynamical system and perform a global analysis of the flow. Among the admissible behaviors, we find solutions that are asymptotically de-Sitter both in the past and future time directions and which undergo accelerated expansion at all times.

  10. Snyder-de Sitter model from two-time physics

    International Nuclear Information System (INIS)

    Carrisi, M. C.; Mignemi, S.

    2010-01-01

    We show that the symplectic structure of the Snyder model on a de Sitter background can be derived from two-time physics in seven dimensions and propose a Hamiltonian for a free particle consistent with the symmetries of the model.

  11. Quantum field theory in curved graphene spacetimes, Lobachevsky geometry, Weyl symmetry, Hawking effect, and all that

    Science.gov (United States)

    Iorio, Alfredo; Lambiase, Gaetano

    2014-07-01

    The solutions of many issues, of the ongoing efforts to make deformed graphene a tabletop quantum field theory in curved spacetimes, are presented. A detailed explanation of the special features of curved spacetimes, originating from embedding portions of the Lobachevsky plane into R3, is given, and the special role of coordinates for the physical realizations in graphene is explicitly shown, in general, and for various examples. The Rindler spacetime is reobtained, with new important differences with respect to earlier results. The de Sitter spacetime naturally emerges, for the first time, paving the way to future applications in cosmology. The role of the Bañados, Teitelboim, and Zanelli (BTZ) black hole is also briefly addressed. The singular boundary of the pseudospheres, "Hilbert horizon," is seen to be closely related to the event horizon of the Rindler, de Sitter, and BTZ kind. This gives new, and stronger, arguments for the Hawking phenomenon to take place. An important geometric parameter, c, overlooked in earlier work, takes here its place for physical applications, and it is shown to be related to graphene's lattice spacing, ℓ. It is shown that all surfaces of constant negative curvature, K =-r-2, are unified, in the limit c/r→0, where they are locally applicable to the Beltrami pseudosphere. This, and c=ℓ, allow us (a) to have a phenomenological control on the reaching of the horizon; (b) to use spacetimes different from the Rindler spacetime for the Hawking phenomenon; and (c) to approach the generic surface of the family. An improved expression for the thermal LDOS is obtained. A nonthermal term for the total LDOS is found. It takes into account (i) the peculiarities of the graphene-based Rindler spacetime; (ii) the finiteness of a laboratory surface; and (iii) the optimal use of the Minkowski quantum vacuum, through the choice of this Minkowski-static boundary.

  12. Properties of states of low energy on cosmological spacetimes

    International Nuclear Information System (INIS)

    Degner, Andreas

    2013-01-01

    The present thesis investigates properties of a class of physical states of the quantised scalar field in FRW spacetimes, namely the states of low energy (SLE's). These states are characterised by minimising the time-smeared energy density measured by an isotropic observer, where the smearing is performed with respect to a test function f of compact support. Furthermore, they share all spatial symmetries of the spacetime. Since SLE's are Hadamard states, expectations values of observables like the energy density can be rigorously defined via the so called point-splitting method. In a first step, this procedure is applied to the explicit calculation of the energy density in SLE's for the case of de Sitter space with flat spatial sections. In particular, the e ect of the choice of the mass m and the test function f is discussed. The obtained results motivate the question whether SLE's converge to a distinguished state (namely the Bunch Davies state) when the support of f is shifted to the infinite past. It is shown that this is indeed the case, even in the more general class of asymptotic de Sitter spacetimes, where an analogon of the Bunch Davies state can be defined. This result enables the interpretation of such distinguished states to be SLE's in the infinite past, independently of the form of the smearing function f. Finally, the role of SLE's for the semiclassical backreaction problem is discussed. We derive the semiclassical Friedmann equation in a perturbative approach over Minkowski space. This equation allows for a stability analysis of Minkowski space by the investigation of asymptotic properties of solutions. We also treat this problem using a numerical method.

  13. De Sitter vacua from heterotic M-theory

    International Nuclear Information System (INIS)

    Becker, Melanie; Curio, Gottfried; Krause, Axel

    2004-01-01

    It is shown how metastable de Sitter vacua might arise from heterotic M-theory. The balancing of its two non-perturbative effects, open membrane instantons against gaugino condensation on the hidden boundary, which act with opposing forces on the interval length, is used to stabilize the orbifold modulus (dilaton) and other moduli. The non-perturbative effects break supersymmetry spontaneously through F-terms which leads to a positive vacuum energy density. In contrast to the situation for the weakly coupled heterotic string, the charged scalar matter fields receive non-vanishing vacuum expectation values and therefore masses in a phenomenologically relevant regime. It is important that in order to obtain these de Sitter vacua we are not relying on exotic effects or fine-tuning of parameters. Vacua with more realistic supersymmetry breaking scales and gravitino masses are obtained by breaking the hidden E 8 gauge group down to groups of smaller rank. Also small values for the open membrane instanton Pfaffian are favored in this respect. Finally we outline how the incorporation of additional flux superpotentials can be used to stabilize the remaining moduli

  14. Large-Scale Corrections to the CMB Anisotropy from Asymptotic de Sitter Mode

    Science.gov (United States)

    Sojasi, A.

    2018-01-01

    In this study, large-scale effects from asymptotic de Sitter mode on the CMB anisotropy are investigated. Besides the slow variation of the Hubble parameter onset of the last stage of inflation, the recent observational constraints from Planck and WMAP on spectral index confirm that the geometry of the universe can not be pure de Sitter in this era. Motivated by these evidences, we use this mode to calculate the power spectrum of the CMB anisotropy on the large scale. It is found that the CMB spectrum is dependent on the index of Hankel function ν which in the de Sitter limit ν → 3/2, the power spectrum reduces to the scale invariant result. Also, the result shows that the spectrum of anisotropy is dependent on angular scale and slow-roll parameter and these additional corrections are swept away by a cutoff scale parameter H ≪ M ∗ < M P .

  15. One-loop partition functions of 3D gravity

    International Nuclear Information System (INIS)

    Giombi, Simone; Yin Xi; Maloney, Alexander

    2008-01-01

    We consider the one-loop partition function of free quantum field theory in locally Anti-de Sitter space-times. In three dimensions, the one loop determinants for scalar, gauge and graviton excitations are computed explicitly using heat kernel techniques. We obtain precisely the result anticipated by Brown and Henneaux: the partition function includes a sum over 'boundary excitations' of AdS 3 , which are the Virasoro descendants of empty Anti-de Sitter space. This result also allows us to compute the one-loop corrections to the Euclidean action of the BTZ black hole as well its higher genus generalizations.

  16. Revisiting the conformal invariance of the scalar field: From Minkowski space to de Sitter space

    International Nuclear Information System (INIS)

    Huguet, E.; Queva, J.; Renaud, J.

    2008-01-01

    In this article, we clarify the link between the conformal (i.e. Weyl) correspondence from the Minkowski space to the de Sitter space and the conformal [i.e. SO(2,d)] invariance of the conformal scalar field on both spaces. We exhibit the realization on de Sitter space of the massless scalar representation of SO(2,d). It is obtained from the corresponding representation in Minkowski space through an intertwining operator inherited from the Weyl relation between the two spaces. The de Sitter representation is written in a form which allows one to take the point of view of a Minkowskian observer who sees the effect of curvature through additional terms

  17. Gravitationally induced adiabatic particle production: from big bang to de Sitter

    International Nuclear Information System (INIS)

    Haro, Jaume de; Pan, Supriya

    2016-01-01

    In the background of a flat homogeneous and isotropic space–time, we consider a scenario of the Universe driven by the gravitationally induced ‘adiabatic’ particle production with constant creation rate. We have shown that this Universe attains a big bang singularity in the past and at late-time it asymptotically becomes de Sitter. To clarify this model Universe, we performed a dynamical analysis and found that the Universe attains a thermodynamic equilibrium in this late de Sitter phase. Finally, for the first time, we have discussed the possible effects of ‘adiabatic’ particle creations in the context of loop quantum cosmology. (paper)

  18. Creation of vector bosons by an electric field in curved spacetime

    International Nuclear Information System (INIS)

    Kangal, E. Ersin; Yanar, Hilmi; Havare, Ali; Sogut, Kenan

    2014-01-01

    We investigate the creation rate of massive spin-1 bosons in the de Sitter universe by a time-dependent electric field via the Duffin–Kemmer–Petiau (DKP) equation. Complete solutions are given by the Whittaker functions and particle creation rate is computed by using the Bogoliubov transformation technique. We analyze the influence of the electric field on the particle creation rate for the strong and vanishing electric fields. We show that the electric field amplifies the creation rate of charged, massive spin-1 particles. This effect is analyzed by considering similar calculations performed for scalar and spin-1/2 particles. -- Highlights: •Duffin–Kemmer–Petiau equation is solved exactly in the presence of an electrical field. •Solutions were made in (1+1)-dimensional curved spacetime. •Particle creation rate for the de Sitter model is calculated. •Pure gravitational or pure electrical field effect on the creation rate is analyzed

  19. Cybernetically sound organizational structures II: Relating de Sitter's design theory to Beer's viable system model

    NARCIS (Netherlands)

    Achterbergh, J.M.I.M.; Vriens, D.J.

    2011-01-01

    - Purpose – The purpose of this paper is to show how the viable system model (VSM) and de Sitter's design theory can complement each other in the context of the diagnosis and design of viable organizations. - Design/methodology/approach – Key concepts from Beer's model and de Sitter's design theory

  20. Kaluza–Klein-type models of de Sitter and Poincaré gauge theories of gravity

    International Nuclear Information System (INIS)

    Lu Jiaan; Huang Chaoguang

    2013-01-01

    We construct Kaluza–Klein-type models with a de Sitter or Minkowski bundle in the de Sitter or Poincaré gauge theory of gravity, respectively. A manifestly gauge-invariant formalism has been given. The gravitational dynamics is constructed by the geometry of the de Sitter or Minkowski bundle and a global section which plays an important role in the gauge-invariant formalism. Unlike the old Kaluza–Klein-type models of gauge theory of gravity, a suitable cosmological term can be obtained in the Lagrangian of our models and the models in the spin-current-free and torsion-free limit will come back to general relativity with a corresponding cosmological term. We also generalize the results to the case with a variable cosmological term. (paper)

  1. Quasinormal modes of Kerr-de Sitter black holes

    International Nuclear Information System (INIS)

    Yoshida, Shijun; Uchikata, Nami; Futamase, Toshifumi

    2010-01-01

    We calculate the fundamental quasinormal modes of the Kerr-de Sitter black hole for the first time. In order to calculate the quasinormal modes, we employ the master equations derived by Suzuki, Takasugi, and Umetsu, who transform the Teukolsky equations for the Kerr-de Sitter black hole into the standard form of the Heun's equation. The transformed functions are expanded around the outer horizon of the black hole or the symmetric axis in the Froebenius series whose coefficients satisfy a three-term recurrence relation. These three-term recurrence relations allow us to use Leaver's continued fraction method to calculate the angular separation constant and the quasinormal mode frequency. Any unstable fundamental quasinormal mode is not found in this paper. It is also observed that for some black holes characterized by a large mass parameter, some retrograde modes in the slow rotation limit become prograde as the black hole spin increases. This phenomenon does not occur for the fundamental modes of the Kerr black hole.

  2. Time evolutions of scalar field perturbations in D-dimensional Reissner–Nordström Anti-de Sitter black holes

    Directory of Open Access Journals (Sweden)

    Ran Li

    2016-07-01

    Full Text Available Reissner–Nordström Anti-de Sitter (RNAdS black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growing modes in the RNAdS case, which makes the RNAdS black hole a good test ground to investigate the nonlinear evolution of superradiant instability.

  3. The BTZ black hole as a Lorentz-flat geometry

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rodríguez, Eduardo, E-mail: eduarodriguezsal@unal.edu.co [Departamento de Matemática y Física Aplicadas, Universidad Católica de la Santísima Concepción, Concepción (Chile); Salgado-Rebolledo, Patricio, E-mail: pasalgado@udec.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)

    2014-11-10

    It is shown that 2+1 dimensional anti-de Sitter spacetimes are Lorentz-flat. This means, in particular, that any simply-connected patch of the BTZ black hole solution can be endowed with a Lorentz connection that is locally pure gauge. The result can be naturally extended to a wider class of black hole geometries and point particles in three-dimensional spacetime.

  4. Properties of states of low energy on cosmological spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Degner, Andreas

    2013-01-15

    The present thesis investigates properties of a class of physical states of the quantised scalar field in FRW spacetimes, namely the states of low energy (SLE's). These states are characterised by minimising the time-smeared energy density measured by an isotropic observer, where the smearing is performed with respect to a test function f of compact support. Furthermore, they share all spatial symmetries of the spacetime. Since SLE's are Hadamard states, expectations values of observables like the energy density can be rigorously defined via the so called point-splitting method. In a first step, this procedure is applied to the explicit calculation of the energy density in SLE's for the case of de Sitter space with flat spatial sections. In particular, the e ect of the choice of the mass m and the test function f is discussed. The obtained results motivate the question whether SLE's converge to a distinguished state (namely the Bunch Davies state) when the support of f is shifted to the infinite past. It is shown that this is indeed the case, even in the more general class of asymptotic de Sitter spacetimes, where an analogon of the Bunch Davies state can be defined. This result enables the interpretation of such distinguished states to be SLE's in the infinite past, independently of the form of the smearing function f. Finally, the role of SLE's for the semiclassical backreaction problem is discussed. We derive the semiclassical Friedmann equation in a perturbative approach over Minkowski space. This equation allows for a stability analysis of Minkowski space by the investigation of asymptotic properties of solutions. We also treat this problem using a numerical method.

  5. Hydrogen-like spectrum of spontaneously created brane universes with de-Sitter ground state

    Science.gov (United States)

    Davidson, Aharon

    2018-05-01

    Unification of Randall-Sundrum and Regge-Teitelboim brane cosmologies gives birth to a serendipitous Higgs-deSitter interplay. A localized Dvali-Gabadadze-Porrati scalar field, governed by a particular (analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe universes dominated by a residual dark energy combined with damped matter oscillations, an infinite tower of excited levels undergo a Big Crunch.

  6. Newton gauge cosmological perturbations for static spherically symmetric modifications of the de Sitter metric

    Science.gov (United States)

    Santa Vélez, Camilo; Enea Romano, Antonio

    2018-05-01

    Static coordinates can be convenient to solve the vacuum Einstein's equations in presence of spherical symmetry, but for cosmological applications comoving coordinates are more suitable to describe an expanding Universe, especially in the framework of cosmological perturbation theory (CPT). Using CPT we develop a method to transform static spherically symmetric (SSS) modifications of the de Sitter solution from static coordinates to the Newton gauge. We test the method with the Schwarzschild de Sitter (SDS) metric and then derive general expressions for the Bardeen's potentials for a class of SSS metrics obtained by adding to the de Sitter metric a term linear in the mass and proportional to a general function of the radius. Using the gauge invariance of the Bardeen's potentials we then obtain a gauge invariant definition of the turn around radius. We apply the method to an SSS solution of the Brans-Dicke theory, confirming the results obtained independently by solving the perturbation equations in the Newton gauge. The Bardeen's potentials are then derived for new SSS metrics involving logarithmic, power law and exponential modifications of the de Sitter metric. We also apply the method to SSS metrics which give flat rotation curves, computing the radial energy density profile in comoving coordinates in presence of a cosmological constant.

  7. The 1-loop effective potential for the Standard Model in curved spacetime

    Science.gov (United States)

    Markkanen, Tommi; Nurmi, Sami; Rajantie, Arttu; Stopyra, Stephen

    2018-06-01

    The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of β-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which is demonstrated with the example of vacuum stability in de Sitter space.

  8. Spherically symmetric static spacetimes in vacuum f(T) gravity

    International Nuclear Information System (INIS)

    Ferraro, Rafael; Fiorini, Franco

    2011-01-01

    We show that Schwarzschild geometry remains as a vacuum solution for those four-dimensional f(T) gravitational theories behaving as ultraviolet deformations of general relativity. In the gentler context of three-dimensional gravity, we also find that the infrared-deformed f(T) gravities, like the ones used to describe the late cosmic speed up of the Universe, have as the circularly symmetric vacuum solution a Deser-de Sitter or a Banados, Teitelboim and Zanelli-like spacetime with an effective cosmological constant depending on the infrared scale present in the function f(T).

  9. Gyromagnetic ratio of charged Kerr-anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Aliev, Alikram N

    2007-01-01

    We examine the gyromagnetic ratios of rotating and charged AdS black holes in four and higher spacetime dimensions. We compute the gyromagnetic ratio for Kerr-AdS black holes with an arbitrary electric charge in four dimensions and show that it corresponds to g = 2 irrespective of the AdS nature of the spacetime. We also compute the gyromagnetic ratio for Kerr-AdS black holes with a single angular momentum and with a test electric charge in all higher dimensions. The gyromagnetic ratio crucially depends on the dimensionless ratio of the rotation parameter to the curvature radius of the AdS background. At the critical limit, when the boundary Einstein universe is rotating at the speed of light, it exhibits a striking feature leading to g 2 regardless of the spacetime dimension. Next, we extend our consideration to include the exact metric for five-dimensional rotating charged black holes in minimal gauged supergravity. We show that the value of the gyromagnetic ratio found in the 'test-charge' approach remains unchanged for these black holes

  10. Three-dimensional gravity and instability of $\\text{AdS}_{3}$

    OpenAIRE

    Jałmużna, Joanna

    2013-01-01

    This is an extended version of my lecture at the LIII Cracow School of Theoretical Physics in Zakopane in which I presented the results of joint work with Piotr Bizo\\'n concerning (in)stability of the three-dimensional anti-de Sitter spacetime.

  11. Linearized curvatures for auxiliary fields in the de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-09-19

    New consistent linearized curvatures in the de Sitter space are constructed. The sequence of actions, describing bosonic and fermionic gauge auxiliary fields, is found based on these curvatures. The proposed actions are parametrized by two integer parameters, n greater than or equal to 0 and m greater than or equal to 0. The simplest case n=m=0 corresponds in the flat limit to the auxiliary fields of 'new minimal' supergravity. The hamiltonian formulation is developed for the auxiliary fields suggested; hamiltonians and first- and second-class constraints are constructed. Using these results, it is shown that the systems of fields proposed possess no dynamical degrees of freedom in de Sitter and flat spaces. In addition the hamiltonian formalism is analysed for some free dynamical systems based on linearized higher-spin curvatures introduced previously.

  12. Grand Canonical Ensembles in General Relativity

    International Nuclear Information System (INIS)

    Klein, David; Yang, Wei-Shih

    2012-01-01

    We develop a formalism for general relativistic, grand canonical ensembles in space-times with timelike Killing fields. Using that, we derive ideal gas laws, and show how they depend on the geometry of the particular space-times. A systematic method for calculating Newtonian limits is given for a class of these space-times, which is illustrated for Kerr space-time. In addition, we prove uniqueness of the infinite volume Gibbs measure, and absence of phase transitions for a class of interaction potentials in anti-de Sitter space.

  13. A photon propagator on de Sitter in covariant gauges

    NARCIS (Netherlands)

    Domazet, S.; Prokopec, T.

    2014-01-01

    We construct a de Sitter invariant photon propagator in general covariant gauges. Our result is a natural generalization of the Allen-Jacobson photon propagator in Feynman gauge. Our propagator reproduces the correct response to a point static charge and the one-loop electromagnetic stress-energy

  14. de Sitter limit of inflation and nonlinear perturbation theory

    DEFF Research Database (Denmark)

    R. Jarnhus, Philip; Sloth, Martin Snoager

    2007-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...

  15. The Cardy-Verlinde formula and entropy of topological Kerr-Newman black holes in de Sitter spaces

    International Nuclear Information System (INIS)

    Setare, M.R.; Altaie, M.B.

    2003-01-01

    In this paper we show that the entropy of a cosmological horizon in 4-dimensional topological Kerr-Newman-de Sitter spaces can be described by the Cardy-Verlinde formula, which is supposed to be an entropy formula of conformal field theory in any number of dimensions. Furthermore, we find that the entropy of a black hole horizon can also be rewritten in terms of the Cardy-Verlinde formula for these black holes in de Sitter spaces, if we use the definition due to Abbott and Deser for conserved charges in asymptotically de Sitter spaces. Such results presume a well-defined dS/CFT correspondence, which has not yet attained the credibility of its AdS analogue. (orig.)

  16. AdS/QCD and Applications of Light-Front Holography

    DEFF Research Database (Denmark)

    Brodsky, S. J.; Cao, F. G.; de Teramond, G. F.

    2012-01-01

    Light-front holography leads to a rigorous connection between hadronic amplitudes in a higher dimensional anti-de Sitter (AdS) space and frame-independent light-front wavefunctions of hadrons in (3+1)-dimensional physical space-time, thus providing a compelling physical interpretation of the Ad...

  17. The dS/dS Correspondence

    International Nuclear Information System (INIS)

    Alishahiha, Mohsen; Karch, Andreas; Silverstein, Eva; Tong, David

    2004-01-01

    We present a holographic duality for the de Sitter static patch which consolidates basic features of its geometry and the behavior of gravity and brane probes, valid on timescales short compared to the decay or Poincare recurrence times. Namely de Sitter spacetime dSd(R) in d dimensions with curvature radius R is holographically dual to two conformal field theories on dSd-1(R), cut off at an energy scale 1/R where they couple to each other and to d - 1 dimensional gravity. As part of our analysis, we study brane probes in de Sitter and thermal Anti de Sitter spaces, and interpret the terms in the corresponding DBI action via strongly coupled thermal field theory. This provides a dual field theoretic interpretation of the fact that probes take forever to reach a horizon in general relativity

  18. The dS/dS correspondence

    International Nuclear Information System (INIS)

    Alishahiha, M.; Karch, A.; Silverstein, E.; Tong, D.

    2004-07-01

    We present a holographic duality for the de Sitter static patch which consolidates basic features of its geometry and the behavior of gravity and brane probes, valid on timescales short compared to the decay or Poincare recurrence times. Namely de Sitter spacetime dS d (R) in d dimensions with curvature radius R is holographically dual to two conformal field theories on dS d-l (R), cut off at an energy scale 1/R where they couple to each other and to d-1 dimensional gravity. As part of our analysis, we study brane probes in de Sitter and thermal Anti de Sitter spaces, and interpret the terms in the corresponding DBI action via strongly coupled thermal field theory. This provides a dual field theoretic interpretation of the fact that probes take forever to reach a horizon in general relativity. (author)

  19. Quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter black hole

    International Nuclear Information System (INIS)

    Uchikata, Nami; Yoshida, Shijun

    2011-01-01

    We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r + + /L→0, where r + and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r + /L→0 is given by Q>(3/eL)Q c , where Q, Q c , and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r + + =0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Q c , 0.78Q c , and 0.76Q c , respectively.

  20. Classical boundary-value problem in Riemannian quantum gravity and self-dual Taub-NUT-(anti)de Sitter geometries

    International Nuclear Information System (INIS)

    Akbar, M.M.; D'Eath, P.D.

    2003-01-01

    The classical boundary-value problem of the Einstein field equations is studied with an arbitrary cosmological constant, in the case of a compact (S 3 ) boundary given a biaxial Bianchi-IX positive-definite three-metric, specified by two radii (a,b). For the simplest, four-ball, topology of the manifold with this boundary, the regular classical solutions are found within the family of Taub-NUT-(anti)de Sitter metrics with self-dual Weyl curvature. For arbitrary choice of positive radii (a,b), we find that there are three solutions for the infilling geometry of this type. We obtain exact solutions for them and for their Euclidean actions. The case of negative cosmological constant is investigated further. For reasonable squashing of the three-sphere, all three infilling solutions have real-valued actions which possess a 'cusp catastrophe' structure with a non-self-intersecting 'catastrophe manifold' implying that the dominant contribution comes from the unique real positive-definite solution on the ball. The positive-definite solution exists even for larger deformations of the three-sphere, as long as a certain inequality between a and b holds. The action of this solution is proportional to -a 3 for large a (∼b) and hence larger radii are favoured. The same boundary-value problem with more complicated interior topology containing a 'bolt' is investigated in a forthcoming paper

  1. Evidence for a bound on the lifetime of de Sitter space

    International Nuclear Information System (INIS)

    Freivogel, Ben; Lippert, Matthew

    2008-01-01

    Recent work has suggested a surprising new upper bound on the lifetime of de Sitter vacua in string theory. The bound is parametrically longer than the Hubble time but parametrically shorter than the recurrence time. We investigate whether the bound is satisfied in a particular class of de Sitter solutions, the KKLT vacua. Despite the freedom to make the supersymmetry breaking scale exponentially small, which naively would lead to extremely stable vacua, we find that the lifetime is always less than about exp(10 22 ) Hubble times, in agreement with the proposed bound. This result, however, is contingent on several estimates and assumptions; in particular, we rely on a conjectural upper bound on the Euler number of the Calabi-Yau fourfolds used in KKLT compactifications.

  2. Charged scalar perturbations around Garfinkle–Horowitz–Strominger black holes

    Directory of Open Access Journals (Sweden)

    Cheng-Yong Zhang

    2015-10-01

    Full Text Available We examine the stability of the Garfinkle–Horowitz–Strominger (GHS black hole under charged scalar perturbations. Employing the appropriate numerical methods, we show that the GHS black hole is always stable against charged scalar perturbations. This is different from the results obtained in the de Sitter and anti-de Sitter black holes. Furthermore, we argue that in the GHS black hole background there is no amplification of the incident charged scalar wave to cause the superradiance, so that the superradiant instability cannot exist in this spacetime.

  3. Open string fluctuations in AdS space with and without torsion

    DEFF Research Database (Denmark)

    Larsen, A.L.; Lomholt, Michael Andersen

    2003-01-01

    The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated...

  4. Thermodynamics of de Sitter black holes with a conformally coupled scalar field

    International Nuclear Information System (INIS)

    Barlow, Anne-Marie; Doherty, Daniel; Winstanley, Elizabeth

    2005-01-01

    We study the thermodynamics of de Sitter black holes with a conformally coupled scalar field. The geometry is that of the lukewarm Reissner-Nordstroem-de Sitter black holes, with the event and cosmological horizons at the same temperature. This means that the region between the event and cosmological horizons can form a regular Euclidean instanton. The entropy is modified by the nonminimal coupling of the scalar field to the geometry, but can still be derived from the Euclidean action, provided suitable modifications are made to deal with the electrically charged case. We use the first law as derived from the isolated horizons formalism to compute the local horizon energies for the event and cosmological horizons

  5. Late-time structure of the Bunch-Davies de Sitter wavefunction

    Energy Technology Data Exchange (ETDEWEB)

    Anninos, Dionysios [Stanford Institute of Theoretical Physics, Stanford University, Stanford (United States); Anous, Tarek [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge (United States); Freedman, Daniel Z. [Stanford Institute of Theoretical Physics, Stanford University, Stanford (United States); Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge (United States); Department of Mathematics, Massachusetts Institute of Technology, Cambridge (United States); Konstantinidis, George [Stanford Institute of Theoretical Physics, Stanford University, Stanford (United States)

    2015-11-30

    We examine the late time behavior of the Bunch-Davies wavefunction for interacting light fields in a de Sitter background. We use perturbative techniques developed in the framework of AdS/CFT, and analytically continue to compute tree and loop level contributions to the Bunch-Davies wavefunction. We consider self-interacting scalars of general mass, but focus especially on the massless and conformally coupled cases. We show that certain contributions grow logarithmically in conformal time both at tree and loop level. We also consider gauge fields and gravitons. The four-dimensional Fefferman-Graham expansion of classical asymptotically de Sitter solutions is used to show that the wavefunction contains no logarithmic growth in the pure graviton sector at tree level. Finally, assuming a holographic relation between the wavefunction and the partition function of a conformal field theory, we interpret the logarithmic growths in the language of conformal field theory.

  6. Instanton transition in thermal and moduli deformed de Sitter cosmology

    International Nuclear Information System (INIS)

    Kounnas, Costas; Partouche, Herve

    2008-01-01

    We consider the de Sitter cosmology deformed by the presence of a thermal bath of radiation and/or time-dependent moduli fields. Depending on the parameters, either a first or second-order phase transition can occur. In the first case, an instanton allows a double analytic continuation. It induces a probability to enter the inflationary evolution by tunnel effect from another cosmological solution. The latter starts with a big bang and, in the case the transition does not occur, ends with a big crunch. A temperature duality exchanges the two cosmological branches. In the limit where the pure de Sitter universe is recovered, the tunnel effect reduces to a 'creation from nothing', due to the vanishing of the big bang branch. However, the latter may be viable in some range of the deformation parameter. In the second case, there is a smooth evolution from a big bang to the inflationary phase

  7. Electromagnetic vacuum fluctuations around a cosmic string in de Sitter spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Saharian, A.A.; Saharyan, N.A. [Yerevan State University, Department of Physics, Yerevan (Armenia); Manukyan, V.F. [Gyumri State Pedagogical Institute, Department of Physics and Mathematics, Gyumri (Armenia)

    2017-07-15

    The electromagnetic field correlators are evaluated around a cosmic string in background of (D + 1)-dimensional dS spacetime assuming that the field is prepared in the Bunch-Davies vacuum state. The correlators are presented in the decomposed form where the string-induced topological parts are explicitly extracted. With this decomposition, the renormalization of the local vacuum expectation values (VEVs) in the coincidence limit is reduced to the one for dS spacetime in the absence of the cosmic string. The VEVs of the squared electric and magnetic fields, and of the vacuum energy density are investigated. Near the string they are dominated by the topological contributions and the effects induced by the background gravitational field are small. In this region, the leading terms in the topological contributions are obtained from the corresponding VEVs for a string on the Minkowski bulk multiplying by the conformal factor. At distances from the string larger than the curvature radius of the background geometry, the pure dS parts in the VEVs dominate. In this region, for spatial dimensions D > 3, the influence of the gravitational field on the topological contributions is crucial and the corresponding behavior is essentially different from that for a cosmic string on the Minkowski bulk. There are well-motivated inflationary models which produce cosmic strings. We argue that, as a consequence of the quantum-to-classical transition of super-Hubble electromagnetic fluctuations during inflation, in the post-inflationary era these strings will be surrounded by large-scale stochastic magnetic fields. These fields could be among the distinctive features of the cosmic strings produced during the inflation and also of the corresponding inflationary models. (orig.)

  8. Representation of SO(4,1) group and Hawking effect in the de-Sitter space

    International Nuclear Information System (INIS)

    Bogush, A.A.; Otchik, V.S.

    1983-01-01

    Expression relating the solution of the equation for particles with spin 1/2 to matrix elements of group SO(4, 1), is obtained. When using the relation of the Dirac equation solutions in the de Sitter space with matrix elements of representations of group SO(4, 1) the presence of the Hawking effect in the space is established. The de Sitter space is considered as 4-dimensional hyperboloid, inserted into 5-dimensional pseudo-Euclidean space. It is established, that the average number of emitted spinor particles obeys the Fermi-Dirac distribution

  9. Applications of gauge/gravity dualities with charged Anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Grass, Viviane Theresa

    2010-05-17

    In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of

  10. Applications of gauge/gravity dualities with charged Anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Grass, Viviane Theresa

    2010-01-01

    In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of

  11. Bi-conformal symmetry and static Green functions in the Schwarzschild-Tangherlini spacetimes

    International Nuclear Information System (INIS)

    Frolov, Valeri P.; Zelnikov, Andrei

    2015-01-01

    We study a static massless minimally coupled scalar field created by a source in a static D-dimensional spacetime. We demonstrate that the corresponding equation for this field is invariant under a special transformation of the background metric. This transformation consists of the static conformal transformation of the spatial part of the metric accompanied by a properly chosen transformation of the red-shift factor. Both transformations are determined by one function Ω of the spatial coordinates. We show that in a case of higher dimensional spherically symmetric black holes one can find such a bi-conformal transformation that the symmetry of the D-dimensional metric is enhanced after its application. Namely, the metric becomes a direct sum of the metric on a unit sphere and the metric of 2D anti-de Sitter space. The method of the heat kernels is used to find the Green function in this new space, which allows one, after dimensional reduction, to obtain a static Green function in the original space of the static black hole. The general useful representation of static Green functions is obtained in the Schwarzschild-Tangherlini spacetimes of arbitrary dimension. The exact explicit expressions for the static Green functions are obtained in such metrics for D<6. It is shown that in the four dimensional case the corresponding Green function coincides with the Copson solution.

  12. Discrete symmetries for spinor field in de Sitter space

    International Nuclear Information System (INIS)

    Moradi, S.; Rouhani, S.; Takook, M.V.

    2005-01-01

    Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e., in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed

  13. Infinitesimal conformal closed transformations of de Sitter and Robertson-Walker cosmological spaces

    International Nuclear Information System (INIS)

    Sakoto, Moussa

    1976-01-01

    The infinitesimal conformal closed transfromations of de Sitter and Robertson-Walker cosmological spaces are determined and an interesting property of the current lines for Robertson-Walker spaces is given [fr

  14. Spontaneously broken spacetime symmetries and the role of inessential Goldstones

    Science.gov (United States)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2017-10-01

    In contrast to internal symmetries, there is no general proof that the coset construction for spontaneously broken spacetime symmetries leads to universal dynamics. One key difference lies in the role of Goldstone bosons, which for spacetime symmetries includes a subset which are inessential for the non-linear realisation and hence can be eliminated. In this paper we address two important issues that arise when eliminating inessential Goldstones. The first concerns the elimination itself, which is often performed by imposing so-called inverse Higgs constraints. Contrary to claims in the literature, there are a series of conditions on the structure constants which must be satisfied to employ the inverse Higgs phenomenon, and we discuss which parametrisation of the coset element is the most effective in this regard. We also consider generalisations of the standard inverse Higgs constraints, which can include integrating out inessential Goldstones at low energies, and prove that under certain assumptions these give rise to identical effective field theories for the essential Goldstones. Secondly, we consider mappings between non-linear realisations that differ both in the coset element and the algebra basis. While these can always be related to each other by a point transformation, remarkably, the inverse Higgs constraints are not necessarily mapped onto each other under this transformation. We discuss the physical implications of this non-mapping, with a particular emphasis on the coset space corresponding to the spontaneous breaking of the Anti-De Sitter isometries by a Minkowski probe brane.

  15. Geodesic flows in a charged black hole spacetime with quintessence

    Energy Technology Data Exchange (ETDEWEB)

    Nandan, Hemwati [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Uniyal, Rashmi [Gurukul Kangri Vishwavidyalaya, Department of Physics, Haridwar, Uttarakhand (India); Government Degree College, Department of Physics, Tehri Garhwal, Uttarakhand (India)

    2017-08-15

    We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)

  16. Geodesic flows in a charged black hole spacetime with quintessence

    International Nuclear Information System (INIS)

    Nandan, Hemwati; Uniyal, Rashmi

    2017-01-01

    We investigate the evolution of timelike geodesic congruences, in the background of a charged black hole spacetime surrounded by quintessence. The Raychaudhuri equations for three kinematical quantities namely the expansion scalar, shear and rotation along the geodesic flows in such spacetime are obtained and solved numerically. We have also analysed both the weak and the strong energy conditions for the focussing of timelike geodesic congruences. The effect of the normalisation constant (α) and the equation of state parameter (ε) on the evolution of the expansion scalar is discussed, for the congruences with and without an initial shear and rotation. It is observed that there always exists a critical value of the initial expansion below which we have focussing with smaller values of the normalisation constant and the equation of state parameter. As the corresponding values of both of these parameters are increased, no geodesic focussing is observed. The results obtained are then compared with those of the Reissner Nordstroem and Schwarzschild black hole spacetimes as well as their de Sitter black hole analogues accordingly. (orig.)

  17. Geodesic Motion of Particles and Quantum Tunneling from Reissner-Nordström Black Holes in Anti-de Sitter Spacetime

    Science.gov (United States)

    Deng, Gao-Ming; Huang, Yong-Chang

    2018-03-01

    The geodesics of tunneling particles were derived unnaturally and awkwardly in previous works. For one thing, the previous derivation was inconsistent with the variational principle of action. Moreover, the definition of geodesic equations for massive particles was quite different from that of massless case. Even worse, the relativistic and nonrelativistic foundations were mixed with each other during the past derivation of geodesics. As a highlight, remedying the urgent shortcomings, we improve treatment to derive the geodesic equations of massive and massless particles in a unified and self-consistent way. Besides, we extend to investigate the Hawking radiation via tunneling from Reissner-Nordström black holes in the context of AdS spacetime. Of special interest, the trick of utilizing the first law of black hole thermodynamics manifestly simplifies the calculation of tunneling integration.

  18. Holographic space-time from the Big Bang to the de Sitter era

    Science.gov (United States)

    Banks, Tom

    2009-07-01

    I review the holographic theory of space-time and its applications to cosmology. Much of this has appeared before, but this discussion is more unified and concise. I also include some material on work in progress, whose aim is to understand compactification in terms of finite-dimensional super-algebras. This is an expanded version of a lecture I gave at the conference on Liouville Quantum Gravity and Statistical Systems, in memory of Alexei Zamolodchikov, at the Poncelet Institute in Moscow, 21-24 June 2008.

  19. Holographic space-time from the Big Bang to the de Sitter era

    Energy Technology Data Exchange (ETDEWEB)

    Banks, Tom [Deptartment of Physics/SCIPP, University of California, Santa Cruz, CA 95064 (United States); Deptartment of Physics and Astronomy/NHETC, Rutgers University, Piscataway, NJ 08854 (United States)

    2009-07-31

    I review the holographic theory of space-time and its applications to cosmology. Much of this has appeared before, but this discussion is more unified and concise. I also include some material on work in progress, whose aim is to understand compactification in terms of finite-dimensional super-algebras. This is an expanded version of a lecture I gave at the conference on Liouville Quantum Gravity and Statistical Systems, in memory of Alexei Zamolodchikov, at the Poncelet Institute in Moscow, 21-24 June 2008.

  20. de Sitter Space in Non-Critical String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Silverstein, Eva M

    2002-08-13

    Supercritical string theories in D > 10 dimensions with no moduli are described, generalizing the asymmetric orientifold construction of one of the authors [1]. By taking the number of dimensions to be large and turning on fluxes, dilaton potentials are generated with nontrivial minima at arbitrarily small cosmological constant and D-dimensional string coupling, separated by a barrier from a flat-space linear dilaton region, but possibly suffering from strong coupling problems. The general issue of the decay of a de Sitter vacuum to flat space is discussed. For relatively small barriers, such decays are described by gravitational instantons. It is shown that for a sufficiently large potential barrier, the bubble wall crosses the horizon. At the same time the instanton decay time exceeds the Poincare recurrence time. It is argued that the inclusion of such instantons is neither physically meaningful nor consistent with basic principles such as causality. This raises the possibility that such de Sitter vacua are effectively stable. In the case of the supercritical flux models, decays to the linear dilaton region can be forbidden by such large barriers, but decays to lower flux vacua including AdS minima nevertheless proceed consistently with this criterion. These models provide concrete examples in which cosmological constant reduction by flux relaxation can be explored.

  1. Analogies between Kruskal space and de Sitter space

    International Nuclear Information System (INIS)

    Rindler, W.

    1986-01-01

    Kruskal space is the analytical completion of Schwarzschild space and it consists of two outside and two inside Schwarzchild regions. Under suppression of the two angular coordinates, this space is usually diagrammed in terms of the Kruskal coordinates, μ,upsilon, much like Minkowski space is in terms of x, y. In particular, radial light paths correspond to +- 45 0 lines, the hyperbolas of μ/sup 2/ - upsilon/sup 2/ = a/sup 2/ represent uniformly accelerated particles (these being at rest in outer Schwarzschild space), and Lorentz transformations in μ, upsilon map the space into itself. Hermann Weyl first gave the analytic completion of de Sitter space as a hyper-hyperboloid μ/sub 1//sup 2/ + μ/sub 2//sup 2/ + μ/sub 3//sup 2/ + μ/sub 4//sup 2/ - upsilon/sup 2/ = a/sup 2/ in five-dimensional Minkowski space, which also contains two outside inside de Sitter regions. In a Weyl diagram, μ/sub 3/ and μ/sub 4/ are suppressed. There are many analogies: Lorentz transformations in μ/sub i/, upsilon map Weyl space into itself, the +- 45 0 generators are light paths, timelike plane hyperbolic sections are uniformly accelerated particles, and the horizon structure relative to each free worldline is analogous to the absolute horizon structure in Kruskal space

  2. Linearized stability analysis of thin-shell wormholes with a cosmological constant

    International Nuclear Information System (INIS)

    Lobo, Francisco S N; Crawford, Paulo

    2004-01-01

    Spherically symmetric thin-shell wormholes in the presence of a cosmological constant are constructed applying the cut-and-paste technique implemented by Visser. Using the Darmois-Israel formalism the surface stresses, which are concentrated at the wormhole throat, are determined. This construction allows us to apply a dynamical analysis to the throat, considering linearized radial perturbations around static solutions. For a large positive cosmological constant, i.e., for the Schwarzschild-de Sitter solution, the region of stability is significantly increased, relatively to the null cosmological constant case, analysed by Poisson and Visser. With a negative cosmological constant, i.e., the Schwarzschild-anti de Sitter solution, the region of stability is decreased. In particular, considering static solutions with a generic cosmological constant, the weak and dominant energy conditions are violated, while for a 0 ≤ 3M the null and strong energy conditions are satisfied. The surface pressure of the static solution is strictly positive for the Schwarzschild and Schwarzschild-anti de Sitter spacetimes, but takes negative values, assuming a surface tension in the Schwarzschild-de Sitter solution, for high values of the cosmological constant and the wormhole throat radius

  3. Black holes in a box

    International Nuclear Information System (INIS)

    Witek, Helvi; Cardoso, Vitor; Nerozzi, Andrea; Gualtieri, Leonardo; Herdeiro, Carlos; Zilhao, Miguel; Sperhake, Ulrich

    2010-01-01

    The evolution of BHs in 'confining boxes' is interesting for a number of reasons, particularly because it mimics some aspects of anti-de Sitter spacetimes. These admit no Cauchy surface and are a simple example of a non-globally hyperbolic spacetime. We are here interested in the potential role that boundary conditions play in the evolution of a BH system. For that, we imprison a binary BH in a box, at which boundary we set mirror-like boundary conditions.

  4. Hawking temperature and scalar field fluctuations in the de-Sitter space

    International Nuclear Information System (INIS)

    Rozhanskij, L.V.

    1988-01-01

    It is shown that diffusion equation for scalar field fluctuations in the de-Sitter space corresponds to Hawking temperature. The relationship between stationary solution of the equation and Hartle-Hawking instanton at random space dimensionality and any type of gravitational effect has been established

  5. Asympotics with positive cosmological constant

    Science.gov (United States)

    Bonga, Beatrice; Ashtekar, Abhay; Kesavan, Aruna

    2014-03-01

    Since observations to date imply that our universe has a positive cosmological constant, one needs an extension of the theory of isolated systems and gravitational radiation in full general relativity from the asymptotically flat to asymptotically de Sitter space-times. In current definitions, one mimics the boundary conditions used in asymptotically AdS context to conclude that the asymptotic symmetry group is the de Sitter group. However, these conditions severely restricts radiation and in fact rules out non-zero flux of energy, momentum and angular momentum carried by gravitational waves. Therefore, these formulations of asymptotically de Sitter space-times are uninteresting beyond non-radiative spacetimes. The situation is compared and contrasted with conserved charges and fluxes at null infinity in asymptotically flat space-times.

  6. De Sitter universes and the emerging landscape in string theory

    Indian Academy of Sciences (India)

    We discuss a recent proposal to construct de Sitter vacua in string theory. It is based on flux compactifications in string theory where all the moduli are stabilised and supersymmetry is broken with control. The resulting picture is that of a complicated landscape with many vacua of widely varying values for the cosmological ...

  7. AdS-like spectrum of the asymptotically Goedel space-times

    International Nuclear Information System (INIS)

    Konoplya, R. A.; Zhidenko, A.

    2011-01-01

    A black hole immersed in a rotating universe, described by the Gimon-Hashimoto solution, is tested on stability against scalar field perturbations. Unlike the previous studies on perturbations of this solution, which dealt only with the limit of slow universe rotation j, we managed to separate variables in the perturbation equation for the general case of arbitrary rotation. This leads to qualitatively different dynamics of perturbations, because the exact effective potential does not allow for Schwarzschild-like asymptotic of the wave function in the form of purely outgoing waves. The Dirichlet boundary conditions are allowed instead, which result in a totally different spectrum of asymptotically Goedel black holes: the spectrum of quasinormal frequencies is similar to the one of asymptotically anti-de Sitter black holes. At large and intermediate overtones N, the spectrum is equidistant in N. In the limit of small black holes, quasinormal modes (QNMs) approach the normal modes of the empty Goedel space-time. There is no evidence of instability in the found frequencies, which supports the idea that the existence of closed timelike curves (CTCs) and the onset of instability correlate (if at all) not in a straightforward way.

  8. New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter

    International Nuclear Information System (INIS)

    Cvetic, M.; Lue, H.; Pope, C.N.; Page, Don N.

    2009-01-01

    In this paper, which is an elaboration of our results in Phys. Rev. Lett. 95:071101, 2005 (hep-th/0504225), we construct new Einstein-Sasaki spaces L p,q,r 1 ,...,r n-1 in all odd dimensions D = 2n+1 ≥ 5. They arise by taking certain BPS limits of the Euclideanised Kerr-de Sitter metrics. This yields local Einstein-Sasaki metrics of cohomogeneity n, with toric U(1) n+1 principal orbits, and n real non-trivial parameters. By studying the structure of the degenerate orbits we show that for appropriate choices of the parameters, characterised by the (n+1) coprime integers (p,q,r 1 ,...,r n-1 ), the local metrics extend smoothly onto complete and non-singular compact Einstein-Sasaki manifolds L p,q,r 1 ,...,r n-1 . We also construct new complete and non-singular compact Einstein spaces Λ p,q,r 1 ,...,r n in D = 2n+1 that are not Sasakian, by choosing parameters appropriately in the Euclideanised Kerr-de Sitter metrics when no BPS limit is taken.

  9. Dirac equation in a de Sitter expansion for massive neutrinos from modern Kaluza-Klein theory

    International Nuclear Information System (INIS)

    Sánchez, Pablo Alejandro; Anabitarte, Mariano; Bellini, Mauricio

    2012-01-01

    Using the modern Kaluza-Klein theory of gravity (or the Induced Matter theory), we study the Dirac equation for massive neutrinos on a de Sitter background metric from a 5D Riemann-flat (and hence Ricci-flat) extended de Sitter metric, on which is defined the vacuum for test massless 1/2-spin neutral fields minimally coupled to gravity and free of any other interactions. We obtain that the effective 4D masses of the neutrinos can only take three possible values, which are related to the (static) foliation of the fifth and noncompact extra dimension.

  10. Warped products and black holes

    International Nuclear Information System (INIS)

    Hong, Soon-Tae

    2005-01-01

    We apply the warped product space-time scheme to the Banados-Teitelboim-Zanelli black holes and the Reissner-Nordstroem-anti-de Sitter black hole to investigate their interior solutions in terms of warped products. It is shown that there exist no discontinuities of the Ricci and Einstein curvatures across event horizons of these black holes

  11. Stability analysis of lower dimensional gravastars in noncommutative geometry

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Ayan [Jadavpur University, Department of Mathematics, Kolkata (India); Hansraj, Sudan [University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2016-11-15

    The Banados et al. (Phys. Rev. Lett 69:1849, 1992), black hole solution is revamped from the Einstein field equations in (2 + 1)-dimensional anti-de Sitter spacetime, in a context of noncommutative geometry (Phys. Rev. D 87:084014, 2013). In this article, we explore the exact gravastar solutions in three-dimensional anti-de Sitter space given in the same geometry. As a first step we derive BTZ solution assuming the source of energy density as point-like structures in favor of smeared objects, where the particle mass M, is diffused throughout a region of linear size √(α) and is described by a Gaussian function of finite width rather than a Dirac delta function. We matched our interior solution to an exterior BTZ spacetime at a junction interface situated outside the event horizon. Furthermore, a stability analysis is carried out for the specific case when χ < 0.214 under radial perturbations about the static equilibrium solutions. To give theoretical support we are also trying to explore their physical properties and characteristics. (orig.)

  12. A de Sitter tachyon thick braneworld

    Energy Technology Data Exchange (ETDEWEB)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251, Cuernavaca, Morelos (Mexico); Mora-Luna, Refugio Rigel [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, C.P. 58040, Morelia, Michoacán (Mexico); Rocha, Roldão da, E-mail: gabriel@fis.unam.mx, E-mail: aha@fis.unam.mx, E-mail: malagon@ifm.umich.mx, E-mail: rigel@ifm.umich.mx, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Rua Santa Adélia, 166 09210-170, Santo André, SP (Brazil)

    2013-02-01

    Among the multiple 5D thick braneworld models that have been proposed in the last years, in order to address several open problems in modern physics, there is a specific one involving a tachyonic bulk scalar field. Delving into this framework, a thick braneworld with a cosmological background induced on the brane is here investigated. The respective field equations — derived from the model with a warped 5D geometry — are highly non-linear equations, admitting a non-trivial solution for the warp factor and the tachyon scalar field as well, in a de Sitter 4D cosmological background. Moreover, the non-linear tachyonic scalar field, that generates the brane in complicity with warped gravity, has the form of a kink-like configuration. Notwithstanding, the non-linear field equations restricting character does not allow one to easily find thick brane solutions with a decaying warp factor which leads to the localization of 4D gravity and other matter fields. We derive such a thick brane configuration altogether in this tachyon-gravity setup. When analyzing the spectrum of gravity fluctuations in the transverse traceless sector, the 4D gravity is shown to be localized due to the presence of a single zero mode bound state, separated by a continuum of massive Kaluza-Klein (KK) modes by a mass gap. It contrasts with previous results, where there is a KK massive bound excitation providing no clear physical interpretation. The mass gap is determined by the scale of the metric parameter H. Finally, the corrections to Newton's law in this model are computed and shown to decay exponentially. It is in full compliance to corrections reported in previous results (up to a constant factor) within similar braneworlds with induced 4D de Sitter metric, despite the fact that the warp factor and the massive modes have a different form.

  13. Quantum Scalar Corrections to the Gravitational Potentials on de Sitter Background

    NARCIS (Netherlands)

    Park, Sohyun; Prokopec, Tomislav; Woodard, R. P.

    We employ the graviton self-energy induced by a massless, minimally coupled (MMC) scalar on de Sitter background to compute the quantum corrections to the gravitational potentials of a static point particle with a mass $M$. The Schwinger-Keldysh formalism is used to derive real and causal effective

  14. dS/CFT correspondence from a holographic description of massless scalar fields in Minkowski space-time

    International Nuclear Information System (INIS)

    Loran, Farhang

    2004-01-01

    We solve Klein-Gordon equation for massless scalars on (d+1)-dimensional Minkowski (Euclidean) space in terms of the Cauchy data on the hypersurface t=0. By inserting the solution into the action of massless scalars in Minkowski (Euclidean) space we obtain the action of dual theory on the boundary t=0 which is exactly the holographic dual of conformally coupled scalars on (d+1)-dimensional (Euclidean anti) de Sitter space obtained in (A)dS/CFT correspondence. The observed equivalence of dual theories is explained using the one-to-one map between conformally coupled scalar fields on Minkowski (Euclidean) space and (Euclidean anti) de Sitter space which is an isomorphism between the hypersurface t=0 of Minkowski (Euclidean) space and the boundary of (A)dS space

  15. Distance between Quantum States and Gauge-Gravity Duality.

    Science.gov (United States)

    Miyaji, Masamichi; Numasawa, Tokiro; Shiba, Noburo; Takayanagi, Tadashi; Watanabe, Kento

    2015-12-31

    We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a primary operator. We argue that its gravity dual is approximately given by a volume of maximal time slice in an anti-de Sitter spacetime when the perturbation is exactly marginal. We confirm our claim in several examples.

  16. Greybody factors for d-dimensional black holes

    DEFF Research Database (Denmark)

    Harmark, Troels; Natário, José; Schiappa, Ricardo

    2010-01-01

    Gravitational greybody factors are analytically computed for static, spherically symmetric black holes in d-dimensions, including black holes with charge and in the presence of a cosmological constant (where a proper definition of greybody factors for both asymptotically de Sitter and anti...... of the details of the black hole. For asymptotically de Sitter black holes the greybody factor is different for even or odd spacetime dimension, and proportional to the ratio of the areas of the event and cosmological horizons. For asymptotically Ads black holes the greybody factor has a rich structure in which...... universality is hidden in the transmission and reflection coefficients. For either charged or asymptotically de Sitter black holes the greybody factors are given by non-trivial functions, while for asymptotically Ads black holes the greybody factor precisely equals one (corresponding to pure blackbody emission)....

  17. Scalar field Green functions on causal sets

    International Nuclear Information System (INIS)

    Nomaan Ahmed, S; Surya, Sumati; Dowker, Fay

    2017-01-01

    We examine the validity and scope of Johnston’s models for scalar field retarded Green functions on causal sets in 2 and 4 dimensions. As in the continuum, the massive Green function can be obtained from the massless one, and hence the key task in causal set theory is to first identify the massless Green function. We propose that the 2d model provides a Green function for the massive scalar field on causal sets approximated by any topologically trivial 2-dimensional spacetime. We explicitly demonstrate that this is indeed the case in a Riemann normal neighbourhood. In 4d the model can again be used to provide a Green function for the massive scalar field in a Riemann normal neighbourhood which we compare to Bunch and Parker’s continuum Green function. We find that the same prescription can also be used for de Sitter spacetime and the conformally flat patch of anti-de Sitter spacetime. Our analysis then allows us to suggest a generalisation of Johnston’s model for the Green function for a causal set approximated by 3-dimensional flat spacetime. (paper)

  18. No hair theorem in quasi-dilaton massive gravity

    International Nuclear Information System (INIS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-01-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  19. No hair theorem in quasi-dilaton massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, De-Jun, E-mail: wudejun10@mails.ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Shuang-Yong, E-mail: sxz353@case.edu [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-10

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  20. Null geodesics in black hole metrics with non-zero cosmological constant

    International Nuclear Information System (INIS)

    Stuchlik, Z.; Calvani, M.

    1990-02-01

    We study the radial motion along null geodesics in the Reissner-Nordstroem-de Sitter and Kerr-de Sitter space-times. We analyze the properties of the effective potential and we discuss circular orbits. We find that the radii of circular geodesics in the Reissner-Nordstroem-de Sitter space-time do not depend on the cosmological constant, and we explain this property using the optical reference geometry. In addition, we describe the unusual consequences of the interplay between rotation of the source and cosmological repulsion. (author). 16 refs, 8 figs

  1. Logarithmic corrections to the Bekenstein-Hawking entropy for five-dimensional black holes and de Sitter spaces

    International Nuclear Information System (INIS)

    Myung, Y.S.

    2003-01-01

    We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing k by -k. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences

  2. Linearization instability for generic gravity in AdS spacetime

    Science.gov (United States)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  3. Quantum Dynamics of Test Particle in Curved Space-Time

    International Nuclear Information System (INIS)

    Piechocki, W.

    2002-01-01

    To reveal the nature of space-time singularities of removable type we examine classical and quantum dynamics of a free particle in the Sitter type spacetimes. Consider space-times have different topologies otherwise are isometric. Our systems are integrable and we present analytic solutions of the classical dynamics. We quantize the systems by making use of the group theoretical method: we find an essentially self-adjoint representation of the algebra of observables integrable to the irreducible unitarity representation of the symmetry group of each consider gravitational system. The massless particle dynamics is obtained in the zero-mass limit of the massive case. Global properties of considered gravitational systems are of primary importance for the quantization procedure. Systems of a particle in space-times with removable singularities appear to be quantizable. We give specific proposal for extension of our analysis to space-times with essential type singularities. (author)

  4. M-theory and stringy corrections to anti-de Sitter black holes and conformal field theories

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We consider black holes in anti-de Sitter space AdS p+2 (p = 2, 3, 5), which have hyperbolic, flat or spherical event horizons. The O(α' 3 ) corrections (or the leading corrections in powers of the eleven-dimensional Planck length, in the case of M-theory compactifications) to the black hole metrics are computed for the various topologies and dimensions. We investigate the consequences of the stringy or M-theory corrections for the black hole thermodynamics. In particular, we show the emergence of a stable branch of small spherical black holes. Surprisingly, for any of the considered dimension and topologies, the corrected thermodynamical quantities turn out to coincide with those calculated within a simplified approach, which uses only the unperturbed metric. We obtain the corrected Hawking-Page transition temperature for black holes with spherical horizons, and show that for p = 3 this phase transition disappears at a value of α' considerably smaller than that estimated previously by Gao and Li. Using the AdS/CFT correspondence, we determine the S 1 x S 3 N = 4 SYM phase diagram for sufficiently large 't Hooft coupling, and show that the critical point at which the Hawking-Page transition disappears (the correspondence point of Horowitz-Polchinski), occurs at g 2 YM N ∼ 20.5. The d = 4 and d = 7 black hole phase diagrams are also determined, and connection is made with the corresponding boundary CFTs. Finally, for flat and hyperbolic horizons, we show that the leading stringy or M-theory corrections do not give rise to any phase transition. However, if the horizon is compactified to a torus T p or to a quotient of hyperbolic space, H p /Γ, the appearance of light winding modes around non-contractible cycles signal new phase transitions, which in the toroidal case have previously been discussed by Barbon et al. We comment on these phase transitions for SYM on H p /Γ and on T p , when the moduli of the torus are taken into account

  5. A model of the two-dimensional quantum harmonic oscillator in an AdS{sub 3} background

    Energy Technology Data Exchange (ETDEWEB)

    Frick, R. [Universitaet zu Koeln, Institut fuer Theoretische Physik, Cologne (Germany)

    2016-10-15

    In this paper we study a model of the two-dimensional quantum harmonic oscillator in a three-dimensional anti-de Sitter background. We use a generalized Schroedinger picture in which the analogs of the Schroedinger operators of the particle are independent of both the time and the space coordinates in different representations. The spacetime independent operators of the particle induce the Lie algebra of Killing vector fields of the AdS{sub 3} spacetime. In this picture, we have a metamorphosis of the Heisenberg uncertainty relations. (orig.)

  6. Zero modes in de Sitter background

    Energy Technology Data Exchange (ETDEWEB)

    Einhorn, Martin B. [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Jones, D.R. Timothy [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106-4030 (United States); Dept. of Mathematical Sciences, University of Liverpool,Liverpool L69 3BX (United Kingdom)

    2017-03-28

    There are five well-known zero modes among the fluctuations of the metric of de Sitter (dS) spacetime. For Euclidean signature, they can be associated with certain spherical harmonics on the S{sup 4} sphere, viz., the vector representation 5 of the global SO(5) isometry. They appear, for example, in the perturbative calculation of the on-shell effective action of dS space, as well as in models containing matter fields. These modes are shown to be associated with collective modes of S{sup 4} corresponding to certain coherent fluctuations. When dS space is embedded in flat five dimensions E{sup 5}, they may be seen as a legacy of translation of the center of the S{sup 4} sphere. Rigid translations of the S{sup 4}-sphere on E{sup 5} leave the classical action invariant but are unobservable displacements from the point of view of gravitational dynamics on S{sup 4}. Thus, unlike similar moduli, the center of the sphere is not promoted to a dynamical degree of freedom. As a result, these zero modes do not signify the possibility of physically realizable fluctuations or flat directions for the metric of dS space. They are not associated with Killing vectors on S{sup 4} but can be identified with certain non-isometric, conformal Killing forms that locally correspond to a rescaling of the volume element dV{sub 4}. We frame much of our discussion in the context of renormalizable gravity, but, to the extent that they only depend upon the global symmetry of the background, the conclusions should apply equally to the corresponding zero modes found in Einstein gravity. Although their existence has only been demonstrated at one-loop, we expect that these zero modes will be present to all orders in perturbation theory. They will occur for Lorentzian signature as well, so long as the hyperboloid H{sup 4} is locally stable, but there remain certain infrared issues that need to be clarified. We conjecture that they will appear in any gravitational theory having dS background as a

  7. Numerical study of cosmic censorship in string theory

    International Nuclear Information System (INIS)

    Gutperle, Michael; Kraus, Per

    2004-01-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  8. Numerical study of cosmic censorship in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Gutperle, Michael E-mail: gutperle@physics.ucla.edu; Kraus, Per

    2004-04-01

    Recently Hertog, Horowitz, and Maeda have argued that cosmic censorship can be generically violated in string theory in anti-de Sitter spacetime by considering a collapsing bubble of a scalar field whose mass saturates the Breitenlohner-Freedman bound. We study this system numerically, and find that black holes form rather than naked singularities, implying that cosmic censorship is upheld. (author)

  9. Topology and incompleteness for 2+1-dimensional cosmological spacetimes

    Science.gov (United States)

    Fajman, David

    2017-06-01

    We study the long-time behavior of the Einstein flow coupled to matter on 2-dimensional surfaces. We consider massless matter models such as collisionless matter composed of massless particles, massless scalar fields and radiation fluids and show that the maximal globally hyperbolic development of homogeneous and isotropic initial data on the 2-sphere is geodesically incomplete in both time directions, i.e. the spacetime recollapses. This behavior also holds for open sets of initial data. In particular, we construct classes of recollapsing 2+1-dimensional spacetimes with spherical spatial topology which provide evidence for a closed universe recollapse conjecture for massless matter models in 2+1 dimensions. Furthermore, we construct solutions with toroidal and higher genus topology for the massless matter fields, which in both cases are future complete. The spacetimes with toroidal topology are 2+1-dimensional analogies of the Einstein-de Sitter model. In addition, we point out a general relation between the energy-momentum tensor and the Kretschmann scalar in 2+1 dimensions and use it to infer strong cosmic censorship for all these models. In view of this relation, we also recall corresponding models containing massive particles, constructed in a previous work and determine the nature of their initial singularities. We conclude that the global structure of non-vacuum cosmological spacetimes in 2+1 dimensions is determined by the mass of particles and—in the homogeneous and isotropic setting studied here—verifies strong cosmic censorship.

  10. Reconstructing 1/2 BPS space-time metrics from matrix models and spin chains

    International Nuclear Information System (INIS)

    Vazquez, Samuel E.

    2007-01-01

    Using the anti-de Sitter/conformal field theories (AdS/CFT) correspondence, we address the question of how to measure complicated space-time metrics using gauge theory probes. In particular, we consider the case of the 1/2 Bogomol'nyi-Prasad-Sommerfield geometries of type IIB supergravity. These geometries are classified by certain droplets in a two-dimensional spacelike hypersurface. We show how to reconstruct the full metric inside these droplets using the one-loop N=4 super Yang-Mills theory dilatation operator. This is done by considering long operators in the SU(2) sector, which are dual to fast rotating strings on the droplets. We develop new powerful techniques for large N complex matrix models that allow us to construct the Hamiltonian for these strings. We find that the Hamiltonian can be mapped to a dynamical spin chain. That is, the length of the chain is not fixed. Moreover, all of these spin chains can be explicitly constructed using an interesting algebra which is derived from the matrix model. Our techniques work for general droplet configurations. As an example, we study a single elliptical droplet and the hypotrochoid

  11. Lie-Hamilton systems on curved spaces: a geometrical approach

    Science.gov (United States)

    Herranz, Francisco J.; de Lucas, Javier; Tobolski, Mariusz

    2017-12-01

    A Lie-Hamilton system is a nonautonomous system of first-order ordinary differential equations describing the integral curves of a t-dependent vector field taking values in a finite-dimensional Lie algebra, a Vessiot-Guldberg Lie algebra, of Hamiltonian vector fields relative to a Poisson structure. Its general solution can be written as an autonomous function, the superposition rule, of a generic finite family of particular solutions and a set of constants. We pioneer the study of Lie-Hamilton systems on Riemannian spaces (sphere, Euclidean and hyperbolic plane), pseudo-Riemannian spaces (anti-de Sitter, de Sitter, and Minkowski spacetimes) as well as on semi-Riemannian spaces (Newtonian spacetimes). Their corresponding constants of motion and superposition rules are obtained explicitly in a geometric way. This work extends the (graded) contraction of Lie algebras to a contraction procedure for Lie algebras of vector fields, Hamiltonian functions, and related symplectic structures, invariants, and superposition rules.

  12. Asymptotically simple spacetimes and mass loss due to gravitational waves

    Science.gov (United States)

    Saw, Vee-Liem

    The cosmological constant Λ used to be a freedom in Einstein’s theory of general relativity (GR), where one had a proclivity to set it to zero purely for convenience. The signs of Λ or Λ being zero would describe universes with different properties. For instance, the conformal structure of spacetime directly depends on Λ: null infinity ℐ is a spacelike, null, or timelike hypersurface, if Λ > 0, Λ = 0, or Λ 0 in Einstein’s theory of GR. A quantity that depends on the conformal structure of spacetime, especially on the nature of ℐ, is the Bondi mass which in turn dictates the mass loss of an isolated gravitating system due to energy carried away by gravitational waves. This problem of extending the Bondi mass to a universe with Λ > 0 has spawned intense research activity over the past several years. Some aspects include a closer inspection on the conformal properties, working with linearization, attempts using a Hamiltonian formulation based on “linearized” asymptotic symmetries, as well as obtaining the general asymptotic solutions of de Sitter-like spacetimes. We consolidate on the progress thus far from the various approaches that have been undertaken, as well as discuss the current open problems and possible directions in this area.

  13. Singleton strings

    International Nuclear Information System (INIS)

    Engquist, J.; Sundell, P.; Tamassia, L.

    2007-01-01

    The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)

  14. The large N limit of superconformal field theories and supergravity

    International Nuclear Information System (INIS)

    Maldacena, J.

    1999-01-01

    We show that the large N limit of certain conformal field theories in various dimensions include in their Hilbert space a sector describing supergravity on the product of Anti-deSitter spacetimes, spheres and other compact manifolds. This is shown by taking some branes in the full M/string theory and then taking a low energy limit where the field theory on the brane decouples from the bulk. We observe that, in this limit, we can still trust the near horizon geometry for large N. The enhanced supersymmetries of the near horizon geometry correspond to the extra supersymmetry generators present in the superconformal group (as opposed to just the super-Poincare group). The close-quote t Hooft limit of 3+1N=4 super-Yang-Mills at the conformal point is shown to contain strings: they are IIB strings. We conjecture that compactifications of M/string theory on various Anti-deSitter spacetimes is dual to various conformal field theories. This leads to a new proposal for a definition of M-theory which could be extended to include five non-compact dimensions. copyright 1999 American Institute of Physics

  15. Probing extra dimension through gravitational wave observations of compact binaries and their electromagnetic counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hao; Gu, Bao-Min; Wang, Yong-Qiang; Liu, Yu-Xiao [Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000 (China); Huang, Fa Peng [Theoretical Physics Division, Institute of High Energy Physics, Chinese Academy of Sciences, P.O. Box 918-4, Beijing 100049 (China); Meng, Xin-He, E-mail: yuh13@lzu.edu.cn, E-mail: gubm15@lzu.edu.cn, E-mail: huangfp@ihep.ac.cn, E-mail: yqwang@lzu.edu.cn, E-mail: xhm@nankai.edu.cn, E-mail: liuyx@lzu.edu.cn [School of Physics, Nankai University, Tianjin 300071 (China)

    2017-02-01

    The future gravitational wave (GW) observations of compact binaries and their possible electromagnetic counterparts may be used to probe the nature of the extra dimension. It is widely accepted that gravitons and photons are the only two completely confirmed objects that can travel along null geodesics in our four-dimensional space-time. However, if there exist extra dimensions and only GWs can propagate freely in the bulk, the causal propagations of GWs and electromagnetic waves (EMWs) are in general different. In this paper, we study null geodesics of GWs and EMWs in a five-dimensional anti-de Sitter space-time in the presence of the curvature of the universe. We show that for general cases the horizon radius of GW is longer than EMW within equal time. Taking the GW150914 event detected by the Advanced Laser Interferometer Gravitational-Wave Observatory and the X-ray event detected by the Fermi Gamma-ray Burst Monitor as an example, we study how the curvature k and the constant curvature radius l affect the horizon radii of GW and EMW in the de Sitter and Einstein-de Sitter models of the universe. This provides an alternative method for probing extra dimension through future GW observations of compact binaries and their electromagnetic counterparts.

  16. Gauge-invariant metric fluctuations from NKK theory of gravity: de Sitter expansion

    International Nuclear Information System (INIS)

    Aguilar, Jose Edgar Madriz; Anabitarte, Mariano; Bellini, Mauricio

    2006-01-01

    In this Letter we study gauge-invariant metric fluctuations from a noncompact Kaluza-Klein (NKK) theory of gravity in de Sitter expansion. We recover the well-known result δρ/ρ∼2Φ, obtained from the standard 4D semiclassical approach to inflation. The spectrum for these fluctuations should be dependent of the fifth (spatial-like) coordinate

  17. Is the Einstein de Sitter model actually ruled out?

    International Nuclear Information System (INIS)

    Blanchard, A.

    2003-01-01

    The standard model for cosmology which is now strongly favored is a flat model, dominated by a vacuum density term. However, the actual direct evidences for such term are limited, essentially based on the supernova probe, i.e. based on a standard candle hypothesis. Here I would like to point out that contrary to the general belief there is room for an Einstein de Sitter universe. Actually several independent measurements, not based on stellar reference, pointed towards a high matter density Universe, weakening the need for a cosmological constant

  18. Configurational entropy of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Braga, Nelson R.F.; Rocha, Roldão da

    2017-01-01

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  19. Expanding plasmas from anti de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Camilo, Giancarlo [Instituto de Fisica, Universidade de Sao Paulo, Departamento de Fisica Matematica, Sao Paulo (Brazil)

    2016-12-15

    We introduce a new foliation of AdS{sub 5} black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a(t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordstroem. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a(t) being inversely related to the quench profile μ(t). (orig.)

  20. Expanding plasmas from anti de Sitter black holes

    International Nuclear Information System (INIS)

    Camilo, Giancarlo

    2016-01-01

    We introduce a new foliation of AdS_5 black holes such that the conformal boundary takes the form of a 4-dimensional FLRW spacetime with scale factor a(t). The foliation employs Eddington-Finkelstein-like coordinates and is applicable to a large class of AdS black holes, supported by matter fields or not, considerably extending previous efforts in the literature. We argue that the holographic dual picture of a CFT plasma on a FLRW background provides an interesting prototype to study the nonequilibrium dynamics of expanding plasmas and use holographic renormalization to extract the renormalized energy-momentum tensor of the dual plasma. We illustrate the procedure for three black holes of interest, namely AdS-Schwarzschild, AdS-Gauss-Bonnet, and AdS-Reissner-Nordstroem. For the latter, as a by-product, we show that the nonequilibrium dynamics of a CFT plasma subject to a quench in the chemical potential (i.e., a time-dependent chemical potential) resembles a cosmological evolution with the scale factor a(t) being inversely related to the quench profile μ(t). (orig.)

  1. Configurational entropy of anti-de Sitter black holes

    Energy Technology Data Exchange (ETDEWEB)

    Braga, Nelson R.F., E-mail: braga@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC – UFABC, 09210-580, Santo André (Brazil)

    2017-04-10

    Recent studies indicate that the configurational entropy is an useful tool to investigate the stability and (or) the relative dominance of states for diverse physical systems. Recent examples comprise the connection between the variation of this quantity and the relative fraction of light mesons and glueballs observed in hadronic processes. Here we develop a technique for defining a configurational entropy for an AdS-Schwarzschild black hole. The achieved result corroborates consistency with the Hawking–Page phase transition. Namely, the dominance of the black hole configurational entropy will be shown to increase with the temperature. In order to verify the consistency of the new procedure developed here, we also consider the case of black holes in flat space-time. For such a black hole, it is known that evaporation leads to instability. The configurational entropy obtained for the flat space case is thoroughly consistent with the physical expectation. In fact, we show that the smaller the black holes, the more unstable they are. So, the configurational entropy furnishes a reliable measure for stability of black holes.

  2. On Geometric Probability, Holography, Shilov Boundaries and the Four Physical Coupling Constants of Nature

    Directory of Open Access Journals (Sweden)

    Castro C.

    2005-07-01

    Full Text Available By recurring to Geometric Probability methods, it is shown that the coupling constants, αEM; αW; αC associated with Electromagnetism, Weak and the Strong (color force are given by the ratios of the ratios of the measures of the Shilov boundaries Q2=S1×RP1; Q3=S2×RP1; S5, respectively, with respect to the ratios of the measures μ[Q5]/μN[Q5] associated with the 5D conformally compactified real Minkowski spacetime ˉ M5 that has the same topology as the Shilov boundary Q5 of the 5 complex-dimensional poly-disc D5. The homogeneous symmetric complex domain D5=SO(5,2/SO(5×SO(2 corresponds to the conformal relativistic curved 10 real-dimensional phase space H10 associated with a particle moving in the 5D Anti de Sitter space AdS5. The geometric coupling constant associated to the gravitational force can also be obtained from the ratios of the measures involving Shilov boundaries. We also review our derivation of the observed vacuum energy density based on the geometry of de Sitter (Anti de Sitter spaces.

  3. Gravitational Quasinormal Modes of Regular Phantom Black Hole

    Directory of Open Access Journals (Sweden)

    Jin Li

    2017-01-01

    Full Text Available We investigate the gravitational quasinormal modes (QNMs for a type of regular black hole (BH known as phantom BH, which is a static self-gravitating solution of a minimally coupled phantom scalar field with a potential. The studies are carried out for three different spacetimes: asymptotically flat, de Sitter (dS, and anti-de Sitter (AdS. In order to consider the standard odd parity and even parity of gravitational perturbations, the corresponding master equations are derived. The QNMs are discussed by evaluating the temporal evolution of the perturbation field which, in turn, provides direct information on the stability of BH spacetime. It is found that in asymptotically flat, dS, and AdS spacetimes the gravitational perturbations have similar characteristics for both odd and even parities. The decay rate of perturbation is strongly dependent on the scale parameter b, which measures the coupling strength between phantom scalar field and the gravity. Furthermore, through the analysis of Hawking radiation, it is shown that the thermodynamics of such regular phantom BH is also influenced by b. The obtained results might shed some light on the quantum interpretation of QNM perturbation.

  4. Static, self-dual, finite action SU(3) gauge fields in the de Sitter space

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Comtet, A.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1980-01-01

    Static, self-dual, finite action SU(3) gauge fields are constructed on the euclidean section of the positive curvature de Sitter metric with periodic time. Their relation to known time dependent flat space solutions is pointed out. Their significances and possible applications are indicated. (orig.)

  5. Complexified de Sitter space: Analytic causal kernels and Kaellen-Lehmann-type representation

    International Nuclear Information System (INIS)

    Bros, J.

    1991-01-01

    Global analyticity properties of functions associated with causal kernels on de Sitter space are considered. These properties extend in a reasonable way those implied by the general framework of quantum field theory in complex Minkowski space. Mathematical results of J. Faraut, G.A. Viano and J. Bros (motivated in particular by complex angular momentum analysis in field theory) find here new applications. (orig.)

  6. Thermal properties of Green's functions in Rindler, de Sitter, and Schwarzschild spaces

    International Nuclear Information System (INIS)

    Dowker, J.S.

    1978-01-01

    The conventional massless scalar Green's functions in the Minkowski, de Sitter, and two-dimensional Schwarzschild spaces are reinterpreted as finite-temperature Green's functions and the corresponding averages of the stress-energy operator are calculated. The renormalization adopted consists of subtracting the zero-temperature quantities. In all cases the averages give the stress tensor of a purely Planck-type perfect gas

  7. Massive gravity in de Sitter space via the gravitational Higgs mechanism

    International Nuclear Information System (INIS)

    Iglesias, Alberto; Kakushadze, Zurab

    2010-01-01

    In this paper we discuss massive gravity in de Sitter space via the gravitational Higgs mechanism, which provides a nonlinear definition thereof. The Higgs scalars are described by a nonlinear sigma model, which includes higher derivative terms required to obtain the Fierz-Pauli mass term. Using the aforesaid nonperturbative definition, we address the appearance of an enhanced local symmetry and a null norm state in the linearized massive gravity in de Sitter space at the special value of the graviton mass to the Hubble parameter ratio. By studying full nonperturbative equations of motion, we argue that there is no enhanced symmetry in the full nonlinear theory. We then argue that in the full nonlinear theory no null norm state is expected to arise at the aforesaid special value. This suggests that no ghost might be present for lower graviton mass values and the full nonlinear theory might be unitary for all values of the graviton mass and the Hubble parameter with no van Dam-Veltman-Zakharov discontinuity. We argue that this is indeed the case by studying the full nonlinear Hamiltonian for the relevant conformal and helicity-0 longitudinal modes. In particular, we argue that no negative norm state is present in the full nonlinear theory.

  8. Thermodynamics of rotating black branes in gravity with first order string corrections

    Directory of Open Access Journals (Sweden)

    M. H. Dehghani

    2005-09-01

    Full Text Available   In this paper, the rotating black brane solutions with zero curvature horizon of classical gravity with first order string corrections are introduced. Although these solutions are not asymptotically anti de Sitter, one can use the counterterm method in order to compute the conserved quantities of these solutions. Here, by reviewing the counterterm method for asymptotically anti de Sitter spacetimes, the conserved quantities of these rotating solutions are computed. Also a Smarr-type formula for the mass as a function of the entropy and the angular momenta is obtained, and it is shown that the conserved and thermodynamic quantities satisfy the first law of thermodynamics. Finally, a stability analysis in the canonical ensemble is performed, and it is shown that the system is thermally stable. This is in commensurable with the fact that there is no Hawking-Page phase transition for black object with zero curvature horizon.

  9. Cosmology at the boundary of de Sitter space using the dS/QFT correspondence

    International Nuclear Information System (INIS)

    Dias, Mafalda

    2011-01-01

    Using the de Sitter/quantum field theory correspondence in the context of inflation allows for the study of interesting, otherwise inaccessible physics. In particular, by studying inflation via its dual field theory at the boundary of the de Sitter space, it may be possible to study a regime of strongly coupled gravity at early times. The purpose of this work is to completely express cosmological observables in terms of the free parameters of a dual field theory and to compare them with cosmic microwave background data. In this way, constraints on the observational parameters constrains the validity of the strongly coupled inflation picture by imposing limits on the parameters of the field theory. The fit with data defines a limit for the consistency and validity of the approach taken and shows that, within this limit, the model is almost unconstrained, but quite predictive, producing power spectra of density perturbations extremely near scale invariance.

  10. Hamiltonian thermodynamics of d-dimensional (d≥4) Reissner-Nordstroem-anti-de Sitter black holes with spherical, planar, and hyperbolic topology

    International Nuclear Information System (INIS)

    Dias, Goncalo A. S.; Lemos, Jose P. S.

    2009-01-01

    The Hamiltonian thermodynamics formalism is applied to the general d-dimensional Reissner-Nordstroem-anti-de Sitter black hole with spherical, planar, and hyperbolic horizon topology. After writing its action and performing a Legendre transformation, surface terms are added in order to guarantee a well-defined variational principle with which to obtain sensible equations of motion, and also to allow later on the thermodynamical analysis. Then a Kuchar canonical transformation is done, which changes from the metric canonical coordinates to the physical parameters coordinates. Again, a well-defined variational principle is guaranteed through boundary terms. These terms influence the falloff conditions of the variables and at the same time the form of the new Lagrange multipliers. Reduction to the true degrees of freedom is performed, which are the conserved mass and charge of the black hole. Upon quantization a Lorentzian partition function Z is written for the grand canonical ensemble, where the temperature T and the electric potential φ are fixed at infinity. After imposing Euclidean boundary conditions on the partition function, the respective effective action I * , and thus the thermodynamical partition function, is determined for any dimension d and topology k. This is a quite general action. Several previous results can be then condensed in our single general formula for the effective action I * . Phase transitions are studied for the spherical case, and it is shown that all the other topologies have no phase transitions. A parallel with the Bose-Einstein condensation can be established. Finally, the expected values of energy, charge, and entropy are determined for the black hole solution.

  11. Quasinormal modes of the near extremal Schwarzschild-de Sitter black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.

    2003-01-01

    We present an exact expression for the quasinormal modes of scalar, electromagnetic, and gravitational perturbations of a near extremal Schwarzschild-de Sitter black hole and we show that is why a previous approximation holds exactly in this near extremal regime. In particular, our results give the asymptotic behavior of the quasinormal frequencies for highly damped modes, which has recently attracted much attention due to the proposed identification of its real part with the Barbero-Immirzi parameter

  12. Kinematics of a relativistic particle with de Sitter momentum space

    International Nuclear Information System (INIS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2011-01-01

    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.

  13. Entropy of Reissner–Nordström–de Sitter black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li-Chun [Department of Physics, Shanxi Datong University, Datong 037009 (China); Institute of Theoretical Physics, Shanxi Datong University, Datong 037009 (China); Zhao, Ren [Institute of Theoretical Physics, Shanxi Datong University, Datong 037009 (China); Ma, Meng-Sen, E-mail: mengsenma@gmail.com [Department of Physics, Shanxi Datong University, Datong 037009 (China); Institute of Theoretical Physics, Shanxi Datong University, Datong 037009 (China)

    2016-10-10

    Based on the consideration that the black hole horizon and the cosmological horizon of Reissner–Nordström black hole in de Sitter space are not independent each other, we conjecture the total entropy of the system should have an extra term contributed from the entanglement between the two horizons, except for the sum of the two horizon entropies. Making use of the globally effective first law and the effective thermodynamic quantities, we derive the total entropy and find that it will diverge as the two horizons tend to coincide.

  14. All gaugings and stable de Sitter in D=7 half-maximal supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Dibitetto, Giuseppe [Institutionen för fysik och astronomi, University of Uppsala, Box 803, SE-751 08 Uppsala (Sweden); Fernández-Melgarejo, Jose J. [Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138 (United States); Marqués, Diego [Instituto de Astronomía y Física del Espacio (CONICET-UBA) C.C. 67 - Suc. 28, 1428 Buenos Aires (Argentina)

    2015-11-05

    We study the general formulation of gauged supergravity in seven dimensions with sixteen supercharges keeping duality covariance by means of the embedding tensor formalism. We first classify all inequivalent duality orbits of consistent deformations. Secondly, we analyse the complete set of critical points in a systematic way. Interestingly, we find the first examples of stable de Sitter solutions within a theory with such a large amount of supersymmetry.

  15. Quadratic curvature terms and deformed Schwarzschild–de Sitter black hole analogues in the laboratory

    Directory of Open Access Journals (Sweden)

    R. da Rocha

    2017-12-01

    Full Text Available Sound waves on a fluid stream, in a de Laval nozzle, are shown to correspond to quasinormal modes emitted by black holes that are physical solutions in a quadratic curvature gravity with cosmological constant. Sound waves patterns in transsonic regimes at a laboratory are employed here to provide experimental data regarding generalized theories of gravity, comprised by the exact de Sitter-like solution and a perturbative solution around the Schwarzschild–de Sitter standard solution as well. Using the classical tests of General Relativity to bound free parameters in these solutions, acoustic perturbations on fluid flows in nozzles are then regarded, to study quasinormal modes of these black holes solutions, providing deviations of the de Laval nozzle cross-sectional area, when compared to the Schwarzschild solution. The fluid sonic point in the nozzle, for sound waves in the fluid, is shown to implement the acoustic event horizon corresponding to quasinormal modes. Keywords: Black holes, Fluid branes, Fluid dynamics, Quadratic curvature gravity, de Laval nozzle

  16. Blackfolds, plane waves and minimal surfaces

    Science.gov (United States)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  17. Blackfolds, plane waves and minimal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Armas, Jay [Physique Théorique et Mathématique, Université Libre de Bruxelles and International Solvay Institutes, ULB-Campus Plaine CP231, B-1050 Brussels (Belgium); Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland); Blau, Matthias [Albert Einstein Center for Fundamental Physics, University of Bern,Sidlerstrasse 5, 3012 Bern (Switzerland)

    2015-07-29

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  18. Brane induced supersymmetry breaking and de Sitter supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-02-12

    We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.

  19. Black holes in a box: Toward the numerical evolution of black holes in AdS space-times

    International Nuclear Information System (INIS)

    Witek, Helvi; Nerozzi, Andrea; Cardoso, Vitor; Herdeiro, Carlos; Sperhake, Ulrich; Zilhao, Miguel

    2010-01-01

    The evolution of black holes in ''confining boxes'' is interesting for a number of reasons, particularly because it mimics the global structure of anti-de Sitter geometries. These are nonglobally hyperbolic space-times and the Cauchy problem may only be well defined if the initial data are supplemented by boundary conditions at the timelike conformal boundary. Here, we explore the active role that boundary conditions play in the evolution of a bulk black hole system, by imprisoning a black hole binary in a box with mirrorlike boundary conditions. We are able to follow the post-merger dynamics for up to two reflections off the boundary of the gravitational radiation produced in the merger. We estimate that about 15% of the radiation energy is absorbed by the black hole per interaction, whereas transfer of angular momentum from the radiation to the black hole is observed only in the first interaction. We discuss the possible role of superradiant scattering for this result. Unlike the studies with outgoing boundary conditions, both of the Newman-Penrose scalars Ψ 4 and Ψ 0 are nontrivial in our setup, and we show that the numerical data verifies the expected relations between them.

  20. Exact solutions of Einstein and Einstein-Maxwell equations in higher-dimensional spacetime

    International Nuclear Information System (INIS)

    Xu Dianyan; Beijing Univ., BJ

    1988-01-01

    The D-dimensional Schwarzschild-de Sitter metric and Reissner-Nordstrom-de-Sitter metric are derived directly by solving the Einstein and Einstein-Maxwell equations. The D-dimensional Kerr metric is rederived by using the complex coordinate transformation method and the D-dimensional Kerr-de Sitter metric is also given. The conjecture about the D-dimensional metric of a rotating charged mass is given at the end of this paper. (author)

  1. De Sitter vacua and inflation in no-scale string models

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Christian

    2009-09-15

    This thesis studies the question of how de Sitter vacua and slow-roll inflation may be realized in string-motivated models. More specifically, we consider 4d N = 1 supergravity theories (without vector multiplets) with Kaehler potentials which are 'no-scale' at leading order. Such theories frequently arise in the moduli sector of string compactifications. We discuss a condition on the scalar geometry (defined by the Kaehler potential) and on the direction of supersymmetry breaking in the scalar manifold, which has to be met in order for the average of the masses of the sGoldstinos to be positive, and hence for metastable vacua to be possible. This condition also turns out to be necessary for the existence of trajectories admitting slow-roll inflation. Its implications for certain scalar manifolds which arise from Calabi-Yau string compactifications are discussed. In particular, for two-moduli models arising from compactifications of heterotic- and type IIB string theory, a simple criterion on the intersection numbers needs to be satisfied for possible de Sitter phases to exist. In addition, we show that subleading corrections breaking the no-scale property may allow the condition on the scalar geometry to be fulfilled, even when it is violated at leading order. Finally, we develop a procedure to construct superpotentials for a given viable Kaehler potential, such that the scalar potential has a realistic local minimum. We propose two-moduli models, with superpotentials which could arise from flux backgrounds and non-perturbative effects, which have a viable vacuum without employing subleading corrections or an uplifting sector. (orig.)

  2. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    Energy Technology Data Exchange (ETDEWEB)

    Ciufolini, Ignazio [Universita del Salento, Dipt. Ingegneria dell' Innovazione, Lecce (Italy); Centro Fermi, Rome (Italy); Matzner, Richard [University of Texas, Theory Group, Austin (United States); Gurzadyan, Vahe [Alikhanian National Laboratory and Yerevan State University, Center for Cosmology and Astrophysics, Yerevan (Armenia); Penrose, Roger [University of Oxford, Mathematical Institute, Oxford (United Kingdom)

    2017-12-15

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  3. A new laser-ranged satellite for General Relativity and space geodesy. III. De Sitter effect and the LARES 2 space experiment

    International Nuclear Information System (INIS)

    Ciufolini, Ignazio; Matzner, Richard; Gurzadyan, Vahe; Penrose, Roger

    2017-01-01

    In two previous papers we presented the LARES 2 space experiment aimed at a very accurate test of frame-dragging and at other tests of fundamental physics and measurements of space geodesy and geodynamics. We presented the error sources of the LARES 2 experiment, its error budget and Monte Carlo simulations and covariance analyses confirming an accuracy of a few parts in one thousand in the test of frame-dragging. Here we discuss the impact of the orbital perturbation known as the de Sitter effect, or geodetic precession, in the error budget of the LARES 2 frame-dragging experiment. We show that the uncertainty in the de Sitter effect has a negligible impact in the final error budget because of the very accurate results now available for the test of the de Sitter precession and because of its very nature. The total error budget in the LARES 2 test of frame-dragging remains at a level of the order of 0.2%, as determined in the first two papers of this series. (orig.)

  4. Charged de Sitter-like black holes: quintessence-dependent enthalpy and new extreme solutions

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Faculty of Engineering, Ankara (Turkey)

    2015-01-01

    We consider Reissner-Nordstroem black holes surrounded by quintessence where both a non-extremal event horizon and a cosmological horizon exist besides an inner horizon (-1 ≤ ω < -1/3). We determine new extreme black hole solutions that generalize the Nariai horizon to asymptotically de Sitter-like solutions for any order relation between the squares of the charge q{sup 2} and the mass parameter M{sup 2} provided q{sup 2} remains smaller than some limit, which is larger than M{sup 2}. In the limit case q{sup 2} = 9ω{sup 2}M{sup 2}/(9ω{sup 2}-1), we derive the general expression of the extreme cosmo-blackhole, where the three horizons merge, and we discuss some of its properties.We also show that the endpoint of the evaporation process is independent of any order relation between q{sup 2} and M{sup 2}. The Teitelboim energy and the Padmanabhan energy are related by a nonlinear expression and are shown to correspond to different ensembles. We also determine the enthalpy H of the event horizon, as well as the effective thermodynamic volume which is the conjugate variable of the negative quintessential pressure, and show that in general the mass parameter and the Teitelboim energy are different from the enthalpy and internal energy; only in the cosmological case, that is, for Reissner-Nordstroem-de Sitter black hole we have H = M. Generalized Smarr formulas are also derived. It is concluded that the internal energy has a universal expression for all static charged black holes, with possibly a variable mass parameter, but it is not a suitable thermodynamic potential for static-black-hole thermodynamics if M is constant. It is also shown that the reverse isoperimetric inequality holds. We generalize the results to the case of the Reissner-Nordstroem-de Sitter black hole surrounded by quintessence with two physical constants yielding two thermodynamic volumes. (orig.)

  5. The flux-scaling scenario. De Sitter uplift and axion inflation

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Damian, Cesar; Herschmann, Daniela; Sun, Rui; Font, Anamaria

    2016-01-01

    Non-geometric flux-scaling vacua provide promising starting points to realize axion monodromy inflation via the F-term scalar potential. We show that these vacua can be uplifted to Minkowski and de Sitter by adding an D3-brane or a D-term containing geometric and non-geometric fluxes. These uplifted non-supersymmetric models are analyzed with respect to their potential to realize axion monodromy inflation self-consistently. Admitting rational values of the fluxes, we construct examples with the required hierarchy of mass scales. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. The flux-scaling scenario. De Sitter uplift and axion inflation

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; Damian, Cesar; Herschmann, Daniela; Sun, Rui [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Font, Anamaria [Departamento de Fisica, Centro de Fisica Teorica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of)

    2016-06-15

    Non-geometric flux-scaling vacua provide promising starting points to realize axion monodromy inflation via the F-term scalar potential. We show that these vacua can be uplifted to Minkowski and de Sitter by adding an D3-brane or a D-term containing geometric and non-geometric fluxes. These uplifted non-supersymmetric models are analyzed with respect to their potential to realize axion monodromy inflation self-consistently. Admitting rational values of the fluxes, we construct examples with the required hierarchy of mass scales. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Fuzzy Euclidean wormholes in de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Pisin; Hu, Yao-Chieh; Yeom, Dong-han, E-mail: pisinchen@phys.ntu.edu.tw, E-mail: r04244003@ntu.edu.tw, E-mail: innocent.yeom@gmail.com [Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China)

    2017-07-01

    We investigate Euclidean wormholes in Einstein gravity with a massless scalar field in de Sitter space. Euclidean wormholes are possible due to the analytic continuation of the time as well as complexification of fields, where we need to impose the classicality after the Wick-rotation to the Lorentzian signatures. For some parameters, wormholes are preferred than Hawking-Moss instantons, and hence wormholes can be more fundamental than Hawking-Moss type instantons. Euclidean wormholes can be interpreted in three ways: (1) classical big bounce, (2) either tunneling from a small to a large universe or a creation of a collapsing and an expanding universe from nothing, and (3) either a transition from a contracting to a bouncing phase or a creation of two expanding universes from nothing. These various interpretations shed some light on challenges of singularities. In addition, these will help to understand tensions between various kinds of quantum gravity theories.

  8. Holography for a non-inflationary early universe

    Energy Technology Data Exchange (ETDEWEB)

    Hinterbichler, Kurt [Perimeter Institute for Theoretical Physics,31 Caroline St. N, Waterloo, Ontario, N2L 2Y5 (Canada); Stokes, James; Trodden, Mark [Center for Particle Cosmology, Department of Physics and Astronomy,University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104 (United States)

    2015-01-19

    We construct a gravitational dual of the pseudo-conformal universe, a proposed alternative to inflation in which a conformal field theory in nearly flat space develops a time dependent vacuum expectation value. Constructing this dual amounts to finding five-dimensional domain-wall spacetimes with anti-de Sitter asymptotics, for which the wall has the symmetries of four-dimensional de Sitter space. This holographically realizes the characteristic symmetry breaking pattern so(2,4)→so(1,4) of the pseudo-conformal universe. We present an explicit example with a massless scalar field, using holographic renormalization to obtain general expressions for the renormalized scalar and stress-tensor one-point functions. We discuss the relationship between these solutions and those of four-dimensional holographic defect conformal field theories which break so(2,4)→so(2,3).

  9. Holography for a non-inflationary early universe

    International Nuclear Information System (INIS)

    Hinterbichler, Kurt; Stokes, James; Trodden, Mark

    2015-01-01

    We construct a gravitational dual of the pseudo-conformal universe, a proposed alternative to inflation in which a conformal field theory in nearly flat space develops a time dependent vacuum expectation value. Constructing this dual amounts to finding five-dimensional domain-wall spacetimes with anti-de Sitter asymptotics, for which the wall has the symmetries of four-dimensional de Sitter space. This holographically realizes the characteristic symmetry breaking pattern so(2,4)→so(1,4) of the pseudo-conformal universe. We present an explicit example with a massless scalar field, using holographic renormalization to obtain general expressions for the renormalized scalar and stress-tensor one-point functions. We discuss the relationship between these solutions and those of four-dimensional holographic defect conformal field theories which break so(2,4)→so(2,3).

  10. One-Loop Test of Quantum Black Holes in anti-de Sitter Space

    Science.gov (United States)

    Liu, James T.; Pando Zayas, Leopoldo A.; Rathee, Vimal; Zhao, Wenli

    2018-06-01

    Within 11-dimensional supergravity we compute the logarithmic correction to the entropy of magnetically charged asymptotically AdS4 black holes with arbitrary horizon topology. We find perfect agreement with the expected microscopic result arising from the dual field theory computation of the topologically twisted index. Our result relies crucially on a particular limit to the extremal black hole case and clarifies some aspects of quantum corrections in asymptotically AdS spacetimes.

  11. On a quantized scalar field in the de Sitter and Nariai universes

    International Nuclear Information System (INIS)

    Nariai, Hidekazu.

    1984-08-01

    After canonical quantization of a massive or massless scalar field in the de Sitter and Nariai universes (both of which satisfy the same Einstein equations with a non-vanishing cosmological constant, Rsub(μν)=Agsub(μν), but their topological structures differ from each other), the uniquely obtained 4-dimensional commutation functions in both universes are comparatively studied with due emphasis on their topological structures, as well as the difference of couplings to the background universe. (author)

  12. Dynamic wormhole solutions in Einstein-Cartan gravity

    Science.gov (United States)

    Mehdizadeh, Mohammad Reza; Ziaie, Amir Hadi

    2017-12-01

    In the present work, we investigate evolving wormhole configurations described by a constant redshift function in Einstein-Cartan theory. The matter content consists of a Weyssenhoff fluid along with an anisotropic matter which together generalize the anisotropic energy momentum tensor in general relativity in order to include the effects of intrinsic angular momentum (spin) of particles. Using a generalized Friedmann-Robertson-Walker spacetime, we derive analytical evolving wormhole geometries by assuming a particular equation of state for energy density and pressure profiles. We introduce exact asymptotically flat and anti-de Sitter spacetimes that admit traversable wormholes and respect energy conditions throughout the spacetime. The rate of expansion of these evolving wormholes is determined only by the Friedmann equation in the presence of spin effects.

  13. Gravitationally induced zero modes of the Faddeev-Popov operator in the Coulomb gauge for Abelian gauge theories

    Science.gov (United States)

    Canfora, Fabrizio; Giacomini, Alex; Oliva, Julio

    2010-08-01

    It is shown that on curved backgrounds, the Coulomb gauge Faddeev-Popov operator can have zero modes even in the Abelian case. These zero modes cannot be eliminated by restricting the path integral over a certain region in the space of gauge potentials. The conditions for the existence of these zero modes are studied for static spherically symmetric spacetimes in arbitrary dimensions. For this class of metrics, the general analytic expression of the metric components in terms of the zero modes is constructed. Such expression allows one to find the asymptotic behavior of background metrics, which induce zero modes in the Coulomb gauge, an interesting example being the three-dimensional anti-de Sitter spacetime. Some of the implications for quantum field theory on curved spacetimes are discussed.

  14. Anti-D3 branes and moduli in non-linear supergravity

    Science.gov (United States)

    Garcia del Moral, Maria P.; Parameswaran, Susha; Quiroz, Norma; Zavala, Ivonne

    2017-10-01

    Anti-D3 branes and non-perturbative effects in flux compactifications spontaneously break supersymmetry and stabilise moduli in a metastable de Sitter vacua. The low energy 4D effective field theory description for such models would be a supergravity theory with non-linearly realised supersymmetry. Guided by string theory modular symmetry, we compute this non-linear supergravity theory, including dependence on all bulk moduli. Using either a constrained chiral superfield or a constrained vector field, the uplifting contribution to the scalar potential from the anti-D3 brane can be parameterised either as an F-term or Fayet-Iliopoulos D-term. Using again the modular symmetry, we show that 4D non-linear supergravities that descend from string theory have an enhanced protection from quantum corrections by non-renormalisation theorems. The superpotential giving rise to metastable de Sitter vacua is robust against perturbative string-loop and α' corrections.

  15. Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch

    International Nuclear Information System (INIS)

    Henneaux, Marc; Martinez, Cristian; Troncoso, Ricardo; Zanelli, Jorge

    2004-01-01

    We consider a self-interacting scalar field whose mass saturates the Breitenlohner-Freedman bound, minimally coupled to Einstein gravity with a negative cosmological constant in D≥3 dimensions. It is shown that the asymptotic behavior of the metric has a slower fall-off than that of pure gravity with a localized distribution of matter, due to the back-reaction of the scalar field, which has a logarithmic branch decreasing as r -(D-1)/2 ln r for large radius r. We find the asymptotic conditions on the fields which are invariant under the same symmetry group as pure gravity with negative cosmological constant (conformal group in D-1 dimensions). The generators of the asymptotic symmetries are finite even when the logarithmic branch is considered but acquire, however, a contribution from the scalar field

  16. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    International Nuclear Information System (INIS)

    Zou, De-Cheng; Yue, Ruihong; Zhang, Ming

    2017-01-01

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c_im"2 of massive potential satisfy some certain conditions. (orig.)

  17. Calibrated geometries and non perturbative superpotentials in M-theory

    International Nuclear Information System (INIS)

    Hernandez, R.

    1999-12-01

    We consider non perturbative effects in M-theory compactifications on a seven-manifold of G 2 holonomy arising from membranes wrapped on supersymmetric three-cycles. When membranes are wrapped on associative submanifolds they induce a superpotential that can be calculated using calibrated geometry. This superpotential is also derived from compactification on a seven-manifold, to four dimensional Anti-de Sitter spacetime, of eleven dimensional supergravity with non vanishing expectation value of the four-form field strength. (author)

  18. The deflationary universe: An instability of the de Sitter universe

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1986-01-01

    The relevance is discussed of the initial value structure of the cosmological problem for inflationary explanations of its present structure. Existing proofs of the cosmic ''no hair'' conjecture are found to make use of an unrealistic strong energy condition on the stress tensor of the matter fields not driving the inflation. It is shown by explicit example that the no hair conjecture fails even in isotropic cosmological models if the strong energy condition is relaxed. A class of exact cosmological models are given which begin in a de Sitter state but subsequently deflate towards the flat Friedman model. Various implications of these examples are discussed. (orig.)

  19. On the ghost-induced instability on de Sitter background

    Science.gov (United States)

    Peter, Patrick; Salles, Filipe de O.; Shapiro, Ilya L.

    2018-03-01

    It is known that the perturbative instability of tensor excitations in higher derivative gravity may not take place if the initial frequency of the gravitational waves is below the Planck threshold. One can assume that this is a natural requirement if the cosmological background is sufficiently mild, since in this case the situation is qualitatively close to the free gravitational wave in flat space. Here, we explore the opposite situation and consider the effect of a very far from Minkowski radiation-dominated or de Sitter cosmological background with a large Hubble rate, e.g., typical of an inflationary period. It turns out that, then, for initial Planckian or even trans-Planckian frequencies, the instability is rapidly suppressed by the very fast expansion of the Universe.

  20. κ-Minkowski spacetime as the result of Jordanian twist deformation

    International Nuclear Information System (INIS)

    Borowiec, A.; Pachol, A.

    2009-01-01

    Two one-parameter families of twists providing κ-Minkowski * product deformed spacetime are considered: Abelian and Jordanian. We compare the derivation of quantum Minkowski space from two perspectives. The first one is the Hopf module algebra point of view, which is strictly related with Drinfeld's twisting tensor technique. The other one relies on an appropriate extension of ''deformed realizations'' of nondeformed Lorentz algebra by the quantum Minkowski algebra. This extension turns out to be de Sitter Lie algebra. We show the way both approaches are related. The second path allows us to calculate deformed dispersion relations for toy models ensuing from different twist parameters. In the Abelian case, one recovers κ-Poincare dispersion relations having numerous applications in doubly special relativity. Jordanian twists provide a new type of dispersion relations which in the minimal case (related to Weyl-Poincare algebra) takes an energy-dependent linear mass deformation form.

  1. Acceleration-enlarged symmetries in nonrelativistic space-time with a cosmological constant TH1"-->

    Science.gov (United States)

    Lukierski, J.; Stichel, P. C.; Zakrzewski, W. J.

    2008-05-01

    By considering the nonrelativistic limit of de Sitter geometry one obtains the nonrelativistic space-time with a cosmological constant and Newton Hooke (NH) symmetries. We show that the NH symmetry algebra can be enlarged by the addition of the constant acceleration generators and endowed with central extensions (one in any dimension (D) and three in D=(2+1)). We present a classical Lagrangian and Hamiltonian framework for constructing models quasi-invariant under enlarged NH symmetries that depend on three parameters described by three nonvanishing central charges. The Hamiltonian dynamics then splits into external and internal sectors with new noncommutative structures of external and internal phase spaces. We show that in the limit of vanishing cosmological constant the system reduces to the one, which possesses acceleration-enlarged Galilean symmetries.

  2. A Review on the Cosmology of the de Sitter Horndeski Models

    Directory of Open Access Journals (Sweden)

    Nelson J. Nunes

    2017-03-01

    Full Text Available We review the most general scalar-tensor cosmological models with up to second-order derivatives in the field equations that have a fixed spatially flat de Sitter critical point independent of the material content or vacuum energy. This subclass of the Horndeski Lagrangian is capable of dynamically adjusting any value of the vacuum energy of the matter fields at the critical point. We present the cosmological evolution of the linear models and the non-linear models with shift symmetry. We come to the conclusion that the shift symmetric non-linear models can deliver a viable background compatible with current observations.

  3. No-bang quantum state of the cosmos

    International Nuclear Information System (INIS)

    Page, Don N

    2008-01-01

    A quantum state of the entire cosmos (universe or multiverse) is proposed which is the equal mixture of the Giddings-Marolf states that are asymptotically single de Sitter spacetimes in both past and future and are regular on the throat or neck of minimal 3-volume. That is, states are excluded that have a big bang or big crunch or which split into multiple asymptotic de Sitter spacetimes. (For simplicity, transitions between different values of the cosmological constant are assumed not to occur, though different positive values are allowed.) The entropy of this mixed state appears to be of the order of the three-fourth power of the Bekenstein-Hawking A/4 entropy of de Sitter spacetime. Most of the component pure states do not have rapid inflation, but when an inflaton is present and the states are weighted by the volume at the end of inflation, a much smaller number of states may dominate and give a large amount of inflation and hence may agree with observations

  4. No-bang quantum state of the cosmos

    Energy Technology Data Exchange (ETDEWEB)

    Page, Don N [Institute for Theoretical Physics, Department of Physics, University of Alberta, Room 238 CEB, 11322-89 Avenue Edmonton, Alberta, T6G 2G7 (Canada)], E-mail: don@phys.ualberta.ca

    2008-08-07

    A quantum state of the entire cosmos (universe or multiverse) is proposed which is the equal mixture of the Giddings-Marolf states that are asymptotically single de Sitter spacetimes in both past and future and are regular on the throat or neck of minimal 3-volume. That is, states are excluded that have a big bang or big crunch or which split into multiple asymptotic de Sitter spacetimes. (For simplicity, transitions between different values of the cosmological constant are assumed not to occur, though different positive values are allowed.) The entropy of this mixed state appears to be of the order of the three-fourth power of the Bekenstein-Hawking A/4 entropy of de Sitter spacetime. Most of the component pure states do not have rapid inflation, but when an inflaton is present and the states are weighted by the volume at the end of inflation, a much smaller number of states may dominate and give a large amount of inflation and hence may agree with observations.

  5. The DSR-deformed relativistic symmetries and the relative locality of 3D quantum gravity

    International Nuclear Information System (INIS)

    Amelino-Camelia, Giovanni; Arzano, Michele; Bianco, Stefano; Buonocore, Riccardo J

    2013-01-01

    Over the last decade there were significant advances in the understanding of quantum gravity coupled to point particles in 3D ((2+1)-dimensional) spacetime. Most notably it is emerging that the theory can be effectively described as a theory of free particles on a momentum space with anti-deSitter geometry and with noncommutative spacetime coordinates of the type [x μ , x ν ] = iℏℓε μν ρ x ρ . We here show that the recently proposed relative-locality curved-momentum-space framework is ideally suited for accommodating these structures' characteristics of 3D quantum gravity. Through this we obtain an intuitive characterization of the DSR-deformed Poincaré symmetries of 3D quantum gravity, and find that the associated relative spacetime locality is of the type producing dual-gravity lensing. (paper)

  6. Past incompleteness of a bouncing multiverse

    International Nuclear Information System (INIS)

    Vilenkin, Alexander; Zhang, Jun

    2014-01-01

    According to classical GR, Anti-de Sitter (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by nonsingular bounces. This may have important implications for the beginning of the multiverse. Geodesics in cosmological spacetimes are known to be past-incomplete, as long as the average expansion rate along the geodesic is positive, but it is not clear that the latter condition is satisfied if the geodesic repeatedly passes through crunching AdS bubbles. We investigate this issue in a simple multiverse model, where the spacetime consists of a patchwork of FRW regions. The conclusion is that the spacetime is still past-incomplete, even in the presence of AdS bounces

  7. Past incompleteness of a bouncing multiverse

    Energy Technology Data Exchange (ETDEWEB)

    Vilenkin, Alexander; Zhang, Jun, E-mail: vilenkin@cosmos.phy.tufts.edu, E-mail: jun.zhang@tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States)

    2014-06-01

    According to classical GR, Anti-de Sitter (AdS) bubbles in the multiverse terminate in big crunch singularities. It has been conjectured, however, that the fundamental theory may resolve these singularities and replace them by nonsingular bounces. This may have important implications for the beginning of the multiverse. Geodesics in cosmological spacetimes are known to be past-incomplete, as long as the average expansion rate along the geodesic is positive, but it is not clear that the latter condition is satisfied if the geodesic repeatedly passes through crunching AdS bubbles. We investigate this issue in a simple multiverse model, where the spacetime consists of a patchwork of FRW regions. The conclusion is that the spacetime is still past-incomplete, even in the presence of AdS bounces.

  8. Morris-Thorne wormholes with a cosmological constant

    International Nuclear Information System (INIS)

    Lemos, Jose P.S.; Lobo, Francisco S.N.; Oliveira, Sergio Quinet de

    2003-01-01

    First, the ideas introduced in the wormhole research field since the work of Morris and Thorne are reviewed, namely, the issues of energy conditions, wormhole construction, stability, time machines and astrophysical signatures. Then, spherically symmetric and static traversable Morris-Thorne wormholes in the presence of a generic cosmological constant Λ are analyzed. A matching of an interior solution to the unique exterior vacuum solution is done using directly the Einstein equations. The structure as well as several physical properties and characteristics of traversable wormholes due to the effects of the cosmological term are studied. Interesting equations appear in the process of matching. For instance, one finds that for asymptotically flat and anti-de Sitter spacetimes the surface tangential pressure P of the thin shell, at the boundary of the interior and exterior solutions, is always strictly positive, whereas for de Sitter spacetime it can take either sign as one would expect, being negative (tension) for relatively high Λ and high wormhole radius, positive for relatively high mass and small wormhole radius, and zero in between. Finally, some specific solutions with Λ, based on the Morris-Thorne solutions, are provided

  9. Quantum loop corrections of a charged de Sitter black hole

    Science.gov (United States)

    Naji, J.

    2018-03-01

    A charged black hole in de Sitter (dS) space is considered and logarithmic corrected entropy used to study its thermodynamics. Logarithmic corrections of entropy come from thermal fluctuations, which play a role of quantum loop correction. In that case we are able to study the effect of quantum loop on black hole thermodynamics and statistics. As a black hole is a gravitational object, it helps to obtain some information about the quantum gravity. The first and second laws of thermodynamics are investigated for the logarithmic corrected case and we find that it is only valid for the charged dS black hole. We show that the black hole phase transition disappears in the presence of logarithmic correction.

  10. Isotropic extensions of the vacuum solutions in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C. [Universidade de Sao Paulo (USP), SP (Brazil); Martin-Moruno, Prado [Victoria University of Wellington (New Zealand); Gonzalez-Diaz, Pedro F. [Consejo Superior de Investigaciones Cientificas, Madrid (Spain)

    2012-07-01

    Full text: Spacetimes described by spherically symmetric solutions of Einstein's equations are of paramount importance both in astrophysical applications and theoretical considerations. And among those, black holes are highlighted. In vacuum, Birkhoff's theorem and its generalizations to non-asymptotically flat cases uniquely fix the metric as the Schwarzschild, Schwarzschild-de Sitter or Schwarzschild-anti-de Sitter geometries, the vacuum solutions of the usual general relativity with zero, positive or negative values for the cosmological constant, respectively. In this work we are mainly interested in black holes in a cosmological environment. Of the two main assumptions of the cosmological principle, homogeneity is lost when compact objects are considered. Nevertheless isotropy is still possible, and we enforce this condition. Within this context, we investigate spatially isotropic solutions close - continuously deformable - to the usual vacuum solutions. We obtain isotropic extensions of the usual spherically symmetric vacuum geometries in general relativity. Exact and perturbative solutions are derived. Maximal extensions are constructed and their causal structures are discussed. The classes of geometries obtained include black holes in compact and non-compact universes, wormholes in the interior region of cosmological horizons, and anti-de Sitter geometries with excess/deficit solid angle. The tools developed here are applicable in more general contexts, with extensions subjected to other constraints. (author)

  11. Entangled de Sitter from stringy axionic Bell pair I. An analysis using Bunch-Davies vacuum

    International Nuclear Information System (INIS)

    Choudhury, Sayantan; Panda, Sudhakar

    2018-01-01

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY 3 ) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S 2 , which divides the spatial slice of de Sitter (dS 4 ) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Renyi entropy in 3 + 1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion. (orig.)

  12. Entangled de Sitter from stringy axionic Bell pair I. An analysis using Bunch-Davies vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Choudhury, Sayantan [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Tata Institute of Fundamental Research, Department of Theoretical Physics, Mumbai (India); Panda, Sudhakar [Institute of Physics, Bhubaneswar, Odisha (India); National Institute of Science Education and Research, Bhubaneswar, Odisha (India); Homi Bhabha National Institute, Mumbai (India)

    2018-01-15

    In this work, we study the quantum entanglement and compute entanglement entropy in de Sitter space for a bipartite quantum field theory driven by an axion originating from Type IIB string compactification on a Calabi-Yau three fold (CY{sup 3}) and in the presence of an NS5 brane. For this computation, we consider a spherical surface S{sup 2}, which divides the spatial slice of de Sitter (dS{sub 4}) into exterior and interior sub-regions. We also consider the initial choice of vacuum to be Bunch-Davies state. First we derive the solution of the wave function of the axion in a hyperbolic open chart by constructing a suitable basis for Bunch-Davies vacuum state using Bogoliubov transformation. We then derive the expression for density matrix by tracing over the exterior region. This allows us to compute the entanglement entropy and Renyi entropy in 3 + 1 dimension. Furthermore, we quantify the UV-finite contribution of the entanglement entropy which contain the physics of long range quantum correlations of our expanding universe. Finally, our analysis complements the necessary condition for generating non-vanishing entanglement entropy in primordial cosmology due to the axion. (orig.)

  13. How the charge affects the gravastar formation in a dark energy universe

    International Nuclear Information System (INIS)

    Brandt, Carlos Frederico Charret; Silva, Maria de Fatima Alves da; Rocha, Pedro Senna; Chan, Roberto

    2011-01-01

    Full text: Since the gravastar's model was proposed by Mazur and Motolla, it has received considerable attention, partially due to the tight connection between the cosmological constant and a currently accelerating universe, and partially due to the possibility of construction of an alternative to the black holes. It was shown by our group that, in fact, although it does exist a region for the space of the initial parameters where it is always formed stable gravastars, it still exists a large region of this space where we can find black hole formation. Then, it was concluded that gravastar does not represent an alternative model to black hole as it was originally proposed. Here we generalized a previous gravastar model in a de Sitter universe, which consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with the equation of state p = (1 - γ)ρ and a de Sitter exterior spacetime, by introducing now the electric charge in the shell via the de Sitter-Schwarzschild-Reissner Nordstroem exterior spacetime. Then, we analyze the influence of the presence of the charge. We obtained as final structures black holes, stable and bounded excursion gravastar. The presence of the charge in a stable gravastar leads to dispersion of the shell or its collapse into a black hole. In addition, it contributed to the stability of the gravastar. (author)

  14. How the charge affects the gravastar formation in a dark energy universe

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Carlos Frederico Charret; Silva, Maria de Fatima Alves da; Rocha, Pedro Senna [Universidade Estadual do Rio de Janeiro (UERJ), RJ (Brazil); Chan, Roberto [Observatorio Nacional (ON), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: Since the gravastar's model was proposed by Mazur and Motolla, it has received considerable attention, partially due to the tight connection between the cosmological constant and a currently accelerating universe, and partially due to the possibility of construction of an alternative to the black holes. It was shown by our group that, in fact, although it does exist a region for the space of the initial parameters where it is always formed stable gravastars, it still exists a large region of this space where we can find black hole formation. Then, it was concluded that gravastar does not represent an alternative model to black hole as it was originally proposed. Here we generalized a previous gravastar model in a de Sitter universe, which consisted of an internal de Sitter spacetime, a dynamical infinitely thin shell with the equation of state p = (1 - {gamma}){rho} and a de Sitter exterior spacetime, by introducing now the electric charge in the shell via the de Sitter-Schwarzschild-Reissner Nordstroem exterior spacetime. Then, we analyze the influence of the presence of the charge. We obtained as final structures black holes, stable and bounded excursion gravastar. The presence of the charge in a stable gravastar leads to dispersion of the shell or its collapse into a black hole. In addition, it contributed to the stability of the gravastar. (author)

  15. Geodesic stability, Lyapunov exponents, and quasinormal modes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Miranda, Alex S.; Berti, Emanuele; Witek, Helvi; Zanchin, Vilson T.

    2009-01-01

    Geodesic motion determines important features of spacetimes. Null unstable geodesics are closely related to the appearance of compact objects to external observers and have been associated with the characteristic modes of black holes. By computing the Lyapunov exponent, which is the inverse of the instability time scale associated with this geodesic motion, we show that, in the eikonal limit, quasinormal modes of black holes in any dimensions are determined by the parameters of the circular null geodesics. This result is independent of the field equations and only assumes a stationary, spherically symmetric and asymptotically flat line element, but it does not seem to be easily extendable to anti-de Sitter spacetimes. We further show that (i) in spacetime dimensions greater than four, equatorial circular timelike geodesics in a Myers-Perry black-hole background are unstable, and (ii) the instability time scale of equatorial null geodesics in Myers-Perry spacetimes has a local minimum for spacetimes of dimension d≥6.

  16. Hawking radiation as tunneling from the event horizon of NUT-Kerr-Newman de Sitter black hole

    International Nuclear Information System (INIS)

    Hui-Ling, Li; Shu-Shenh, Yang; Qing-Quan, Jiang; De-Jiang, Qi

    2005-01-01

    Adopting the method of quantum radiation as tunneling, Hawking radiation as tunneling from the event horizon of NUT-Kerr-Newman de Sitter black hole is studied. The result indicates that the tunneling rate of the particle on the event horizon is related to the change of Bekenstein-Hawking entropy and the real spectrum is not strictly thermal at all

  17. New Perspectives for QCD from AdS/CFT

    International Nuclear Information System (INIS)

    Brodsky, S

    2006-01-01

    The AdS/CFT correspondence between conformal field theory and string states in an extended space-time has provided new insights into not only hadron spectra, but also their light-front wavefunctions. We show that there is an exact correspondence between the fifth-dimensional coordinate of anti-de Sitter space z and a specific impact variable ζ which measures the separation of the constituents within the hadron in ordinary space-time. This connection allows one to predict the form of the light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and scattering amplitudes. A new relativistic Schroedinger light-cone equation is found which reproduces the results obtained using the fifth-dimensional theory

  18. Black holes with su(N) gauge field hair and superconducting horizons

    Energy Technology Data Exchange (ETDEWEB)

    Shepherd, Ben L.; Winstanley, Elizabeth [Consortium for Fundamental Physics, School of Mathematics and Statistics,The University of Sheffield,Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2017-01-16

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  19. Black holes with su(N) gauge field hair and superconducting horizons

    International Nuclear Information System (INIS)

    Shepherd, Ben L.; Winstanley, Elizabeth

    2017-01-01

    We present new planar dyonic black hole solutions of the su(N) Einstein-Yang-Mills equations in asymptotically anti-de Sitter space-time, focussing on su(2) and su(3) gauge groups. The magnetic part of the gauge field forms a condensate close to the planar event horizon. We compare the free energy of a non-Abelian hairy black hole with that of an embedded Reissner-Nordström-anti-de Sitter (RN-AdS) black hole having the same Hawking temperature and electric charge. We find that the hairy black holes have lower free energy. We present evidence that there is a phase transition at a critical temperature, above which the only solutions are embedded RN-AdS black holes. At the critical temperature, an RN-AdS black hole can decay into a hairy black hole, and it is thermodynamically favourable to do so. Working in the probe limit, we compute the frequency-dependent conductivity, and find that enlarging the gauge group from su(2) to su(3) eliminates a divergence in the conductivity at nonzero frequency.

  20. Reentrant phase transitions of higher-dimensional AdS black holes in dRGT massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Zou, De-Cheng; Yue, Ruihong [Yangzhou University, College of Physical Science and Technology, Yangzhou (China); Zhang, Ming [Xi' an Aeronautical University, Faculty of Science, Xi' an (China)

    2017-04-15

    We study the P-V criticality and phase transition in the extended phase space of anti-de Sitter (AdS) black holes in higher-dimensional de Rham, Gabadadze and Tolley (dRGT) massive gravity, treating the cosmological constant as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Besides the usual small/large black hole phase transitions, the interesting thermodynamic phenomena of reentrant phase transitions (RPTs) are observed for black holes in all d ≥ 6-dimensional spacetime when the coupling coefficients c{sub i}m{sup 2} of massive potential satisfy some certain conditions. (orig.)

  1. Light deflection and Gauss-Bonnet theorem: definition of total deflection angle and its applications

    Science.gov (United States)

    Arakida, Hideyoshi

    2018-05-01

    In this paper, we re-examine the light deflection in the Schwarzschild and the Schwarzschild-de Sitter spacetime. First, supposing a static and spherically symmetric spacetime, we propose the definition of the total deflection angle α of the light ray by constructing a quadrilateral Σ^4 on the optical reference geometry M^opt determined by the optical metric \\bar{g}_{ij}. On the basis of the definition of the total deflection angle α and the Gauss-Bonnet theorem, we derive two formulas to calculate the total deflection angle α ; (1) the angular formula that uses four angles determined on the optical reference geometry M^opt or the curved (r, φ ) subspace M^sub being a slice of constant time t and (2) the integral formula on the optical reference geometry M^opt which is the areal integral of the Gaussian curvature K in the area of a quadrilateral Σ ^4 and the line integral of the geodesic curvature κ _g along the curve C_{Γ}. As the curve C_{Γ}, we introduce the unperturbed reference line that is the null geodesic Γ on the background spacetime such as the Minkowski or the de Sitter spacetime, and is obtained by projecting Γ vertically onto the curved (r, φ ) subspace M^sub. We demonstrate that the two formulas give the same total deflection angle α for the Schwarzschild and the Schwarzschild-de Sitter spacetime. In particular, in the Schwarzschild case, the result coincides with Epstein-Shapiro's formula when the source S and the receiver R of the light ray are located at infinity. In addition, in the Schwarzschild-de Sitter case, there appear order O(Lambda;m) terms in addition to the Schwarzschild-like part, while order O(Λ) terms disappear.

  2. High overtones of Schwarzschild-de-Sitter quasinormal spectrum

    International Nuclear Information System (INIS)

    Konoplya, R.A.; Zhidenko, A.

    2004-01-01

    We find the high overtones of gravitational and electromagnetic quasinormal spectrum of the Schwarzschild-de Sitter black hole. The calculations show that the real parts of the electromagnetic modes asymptotically approach zero. The gravitational modes show more peculiar behavior at large n: the real part oscillates as a function of imaginary even for very high overtones and these oscillations settles to some 'profile' which just repeats itself with further increasing of the overtone number n. This lets us judge that Reω is not a constant as n →∞ but rather some oscillating function. The spacing for imaginary part Imω n+1 -Imω n for electromagnetic perturbations at high n slowly approach k e as n→∞, where k e is the surface gravity. In addition we find the lower QN modes for which the values obtained with numerical methods are in a very good agreement with those obtained through the 6th order WKB technique. (author)

  3. Thermodynamics of extremal rotating thin shells in an extremal BTZ spacetime and the extremal black hole entropy

    Science.gov (United States)

    Lemos, José P. S.; Minamitsuji, Masato; Zaslavskii, Oleg B.

    2017-02-01

    In a (2 +1 )-dimensional spacetime with a negative cosmological constant, the thermodynamics and the entropy of an extremal rotating thin shell, i.e., an extremal rotating ring, are investigated. The outer and inner regions with respect to the shell are taken to be the Bañados-Teitelbom-Zanelli (BTZ) spacetime and the vacuum ground state anti-de Sitter spacetime, respectively. By applying the first law of thermodynamics to the extremal thin shell, one shows that the entropy of the shell is an arbitrary well-behaved function of the gravitational area A+ alone, S =S (A+). When the thin shell approaches its own gravitational radius r+ and turns into an extremal rotating BTZ black hole, it is found that the entropy of the spacetime remains such a function of A+, both when the local temperature of the shell at the gravitational radius is zero and nonzero. It is thus vindicated by this analysis that extremal black holes, here extremal BTZ black holes, have different properties from the corresponding nonextremal black holes, which have a definite entropy, the Bekenstein-Hawking entropy S (A+)=A/+4G , where G is the gravitational constant. It is argued that for extremal black holes, in particular for extremal BTZ black holes, one should set 0 ≤S (A+)≤A/+4G;i.e., the extremal black hole entropy has values in between zero and the maximum Bekenstein-Hawking entropy A/+4 G . Thus, rather than having just two entropies for extremal black holes, as previous results have debated, namely, 0 and A/+4 G , it is shown here that extremal black holes, in particular extremal BTZ black holes, may have a continuous range of entropies, limited by precisely those two entropies. Surely, the entropy that a particular extremal black hole picks must depend on past processes, notably on how it was formed. A remarkable relation between the third law of thermodynamics and the impossibility for a massive body to reach the velocity of light is also found. In addition, in the procedure, it

  4. Thermodynamics of the Schwarzschild-de Sitter black hole: Thermal stability of the Nariai black hole

    International Nuclear Information System (INIS)

    Myung, Yun Soo

    2008-01-01

    We study the thermodynamics of the Schwarzschild-de Sitter black hole in five dimensions by introducing two temperatures based on the standard and Bousso-Hawking normalizations. We use the first-law of thermodynamics to derive thermodynamic quantities. The two temperatures indicate that the Nariai black hole is thermodynamically unstable. However, it seems that black hole thermodynamics favors the standard normalization and does not favor the Bousso-Hawking normalization

  5. Negative mass solitons in gravity

    International Nuclear Information System (INIS)

    Cebeci, Hakan; Sarioglu, Oezguer; Tekin, Bayram

    2006-01-01

    We first reconstruct the conserved (Abbott-Deser) charges in the spin-connection formalism of gravity for asymptotically (Anti)-de Sitter spaces, and then compute the masses of the AdS soliton and the recently found Eguchi-Hanson solitons in generic odd dimensions, unlike the previous result obtained for only five dimensions. These solutions have negative masses compared to the global AdS or AdS/Z p spacetimes. As a separate note, we also compute the masses of the recent even dimensional Taub-NUT-Reissner-Nordstroem metrics

  6. Generalized Painleve-Gullstrand metrics

    Energy Technology Data Exchange (ETDEWEB)

    Lin Chunyu [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: l2891112@mail.ncku.edu.tw; Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)], E-mail: cpsoo@mail.ncku.edu.tw

    2009-02-02

    An obstruction to the implementation of spatially flat Painleve-Gullstrand (PG) slicings is demonstrated, and explicitly discussed for Reissner-Nordstroem and Schwarzschild-anti-deSitter spacetimes. Generalizations of PG slicings which are not spatially flat but which remain regular at the horizons are introduced. These metrics can be obtained from standard spherically symmetric metrics by physical Lorentz boosts. With these generalized PG metrics, problematic contributions to the imaginary part of the action in the Parikh-Wilczek derivation of Hawking radiation due to the obstruction can be avoided.

  7. Mach's holographic principle

    International Nuclear Information System (INIS)

    Khoury, Justin; Parikh, Maulik

    2009-01-01

    Mach's principle is the proposition that inertial frames are determined by matter. We put forth and implement a precise correspondence between matter and geometry that realizes Mach's principle. Einstein's equations are not modified and no selection principle is applied to their solutions; Mach's principle is realized wholly within Einstein's general theory of relativity. The key insight is the observation that, in addition to bulk matter, one can also add boundary matter. Given a space-time, and thus the inertial frames, we can read off both boundary and bulk stress tensors, thereby relating matter and geometry. We consider some global conditions that are necessary for the space-time to be reconstructible, in principle, from bulk and boundary matter. Our framework is similar to that of the black hole membrane paradigm and, in asymptotically anti-de Sitter space-times, is consistent with holographic duality.

  8. Phase transitions and critical behaviour for charged black holes

    International Nuclear Information System (INIS)

    Carlip, S; Vaidya, S

    2003-01-01

    We investigate the thermodynamics of a four-dimensional charged black hole in a finite cavity in asymptotically flat and asymptotically de Sitter spaces. In each case, we find a Hawking-Page-like phase transition between a black hole and a thermal gas very much like the known transition in asymptotically anti-de Sitter space. For a 'supercooled' black hole - a thermodynamically unstable black hole below the critical temperature for the Hawking-Page phase transition - the phase diagram has a line of first-order phase transitions that terminates in a second-order point. For the asymptotically flat case, we calculate the critical exponents at the second-order phase transition and find that they exactly match the known results for a charged black hole in anti-de Sitter space. We find strong evidence for similar phase transitions for the de Sitter black hole as well. Thus many of the thermodynamic features of charged anti-de Sitter black holes do not really depend on asymptotically anti-de Sitter boundary conditions; the thermodynamics of charged black holes is surprisingly universal

  9. Gauss-Bonnet black holes in dS spaces

    International Nuclear Information System (INIS)

    Cai Ronggen; Guo Qi

    2004-01-01

    We study the thermodynamic properties associated with the black hole horizon and cosmological horizon for the Gauss-Bonnet solution in de Sitter space. When the Gauss-Bonnet coefficient is positive, a locally stable small black hole appears in the case of spacetime dimension d=5, the stable small black hole disappears, and the Gauss-Bonnet black hole is always unstable quantum mechanically when d≥6. On the other hand, the cosmological horizon is found to be always locally stable independent of the spacetime dimension. But the solution is not globally preferred; instead, the pure de Sitter space is globally preferred. When the Gauss-Bonnet coefficient is negative, there is a constraint on the value of the coefficient, beyond which the gravity theory is not well defined. As a result, there is not only an upper bound on the size of black hole horizon radius at which the black hole horizon and cosmological horizon coincide with each other, but also a lower bound depending on the Gauss-Bonnet coefficient and spacetime dimension. Within the physical phase space, the black hole horizon is always thermodynamically unstable and the cosmological horizon is always stable; furthermore, as in the case of the positive coefficient, the pure de Sitter space is still globally preferred. This result is consistent with the argument that the pure de Sitter space corresponds to an UV fixed point of dual field theory

  10. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    International Nuclear Information System (INIS)

    Moutsopoulos, George

    2013-01-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre–Petrov types and discuss the warped de Sitter spacetime. (paper)

  11. Homogeneous anisotropic solutions of topologically massive gravity with a cosmological constant and their homogeneous deformations

    Science.gov (United States)

    Moutsopoulos, George

    2013-06-01

    We solve the equations of topologically massive gravity (TMG) with a potentially non-vanishing cosmological constant for homogeneous metrics without isotropy. We only reproduce known solutions. We also discuss their homogeneous deformations, possibly with isotropy. We show that de Sitter space and hyperbolic space cannot be infinitesimally homogeneously deformed in TMG. We clarify some of their Segre-Petrov types and discuss the warped de Sitter spacetime.

  12. de Sitter group as a symmetry for optical decoherence

    International Nuclear Information System (INIS)

    Baskal, S; Kim, Y S

    2006-01-01

    Stokes parameters form a Minkowskian 4-vector under various optical transformations. As a consequence, the resulting two-by-two density matrix constitutes a representation of the Lorentz group. The associated Poincare sphere is a geometric representation of the Lorentz group. Since the Lorentz group preserves the determinant of the density matrix, it cannot accommodate the decoherence process through the decaying off-diagonal elements of the density matrix, which yields to an increase in the value of the determinant. It is noted that the O(3, 2) de Sitter group contains two Lorentz subgroups. The change in the determinant in one Lorentz group can be compensated by the other. It is thus possible to describe the decoherence process as a symmetry transformation in the O(3, 2) space. It is shown also that these two coupled Lorentz groups can serve as a concrete example of Feynman's rest of the universe

  13. Cosmological horizons and reconstruction of quantum field theories

    International Nuclear Information System (INIS)

    Dappiaggi, C.; Pinamonti, N.

    2007-12-01

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J - common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J - ) constructed on the cosmological horizon. There is exactly one pure quasifree state λ on W(J - ) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore λ induces a preferred physically meaningful quantum state λ M for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J - , then the associated self-adjoint generator in the GNS representation of λ M has positive spectrum (i.e. energy). Moreover λ M turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, λ M coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for λ M in more general spacetimes are presented. (orig.)

  14. Note on self-gravitating radiation in AdS spacetime

    International Nuclear Information System (INIS)

    Li Zhonghua; Hu Bin; Cai Ronggen

    2008-01-01

    Recently Vaganov and Hammersley investigated independently the equilibrium self-gravitating radiation in higher (d≥4)-dimensional, spherically symmetric anti-de Sitter space. It was found that in 4≤d≤10, there exist locally stable radiation configurations all the way up to a maximum red-shifted temperature, above which there are no solutions; there is also a maximum mass and maximum entropy configuration occurring at a higher central density than the maximal temperature configuration. Beyond their peaks the temperature, mass, and entropy undergo an infinite series of damped oscillations, which indicates the configurations in this range are unstable. In d≥11, the temperature, mass, and entropy of the self-gravitating configuration are monotonic functions of the central energy density, asymptoting to their maxima as the central density goes to infinity. In this paper we investigate the equilibrium self-gravitating radiation in higher-dimensional, plane-symmetric anti-de Sitter space. We find that there exist essential differences from the spherically symmetric case: In each dimension (d≥4), there are maximal mass (density), maximal entropy (density), and maximal temperature configurations; they do not appear at the same central energy density; the oscillation behavior appearing in the spherically symmetric case does not happen in this case; and the mass (density), as a function of the central energy density, increases first and reaches its maximum at a certain central energy density and then decreases monotonically in 4≤d≤7, while in d≥8, besides the maximum, the mass (density) of the equilibrium configuration has a minimum: the mass (density) first increases and reaches its maximum, then decreases to its minimum, and then increases to its asymptotic value monotonically. The reason causing the difference is discussed

  15. Phases of global AdS black holes

    International Nuclear Information System (INIS)

    Basu, Pallab; Krishnan, Chethan; Subramanian, P.N. Bala

    2016-01-01

    We study the phases of gravity coupled to a charged scalar and gauge field in an asymptotically Anti-de Sitter spacetime (AdS_4) in the grand canonical ensemble. For the conformally coupled scalar, an intricate phase diagram is charted out between the four relevant solutions: global AdS, boson star, Reissner-Nordstrom black hole and the hairy black hole. The nature of the phase diagram undergoes qualitative changes as the charge of the scalar is changed, which we discuss. We also discuss the new features that arise in the extremal limit.

  16. Mass-independent area (or entropy) and thermodynamic volume products in conformal gravity

    Science.gov (United States)

    Pradhan, Parthapratim

    2017-06-01

    In this work, we investigate the thermodynamic properties of conformal gravity in four dimensions. We compute the area (or entropy) functional relation for this black hole (BH). We consider both de Sitter (dS) and anti-de Sitter (AdS) cases. We derive the Cosmic-Censorship-Inequality which is an important relation in general relativity that relates the total mass of a spacetime to the area of all the BH horizons. Local thermodynamic stability is studied by computing the specific heat. The second-order phase transition occurs at a certain condition. Various types of second-order phase structure have been given for various values of a and the cosmological constant Λ in the Appendix. When a = 0, one obtains the result of Schwarzschild-dS and Schwarzschild-AdS cases. In the limit aM ≪ 1, one obtains the result of Grumiller spacetime, where a is nontrivial Rindler parameter or Rindler acceleration and M is the mass parameter. The thermodynamic volume functional relation is derived in the extended phase space, where the cosmological constant is treated as a thermodynamic pressure and its conjugate variable as a thermodynamic volume. The mass-independent area (or entropy) functional relation and thermodynamic volume functional relation that we have derived could turn out to be a universal quantity.

  17. Classification of non-Riemannian doubled-yet-gauged spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Morand, Kevin [Universidad Andres Bello, Departamento de Ciencias Fisicas, Santiago de Chile (Chile); Universidad Tecnica Federico Santa Maria, Centro Cientifico-Tecnologico de Valparaiso, Departamento de Fisica, Valparaiso (Chile); Park, Jeong-Hyuck [Sogang University, Department of Physics, Seoul (Korea, Republic of); Institute for Basic Science (IBS), Center for Theoretical Physics of the Universe, Seoul (Korea, Republic of)

    2017-10-15

    Assuming O(D,D) covariant fields as the 'fundamental' variables, double field theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n, anti n), 0 ≤ n + anti n ≤ D. Upon these backgrounds, strings become chiral and anti-chiral over n and anti n directions, respectively, while particles and strings are frozen over the n + anti n directions. In particular, we identify (0, 0) as Riemannian manifolds, (1, 0) as non-relativistic spacetime, (1, 1) as Gomis-Ooguri non-relativistic string, (D-1, 0) as ultra-relativistic Carroll geometry, and (D, 0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0, 1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D = 10, (3, 3) may open a new scheme for the dimensional reduction from ten to four. (orig.)

  18. Vacuum state of the Dirac field in de Sitter space and entanglement entropy

    Energy Technology Data Exchange (ETDEWEB)

    Kanno, Sugumi [Department of Theoretical Physics and History of Science,University of the Basque Country,48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science,Maria Diaz de Haro 3, 48013, Bilbao (Spain); Sasaki, Misao [Center for Gravitational Physics,Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Tanaka, Takahiro [Department of Physics, Kyoto University,Kyoto 606-8502 (Japan); Center for Gravitational Physics,Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan)

    2017-03-13

    We compute the entanglement entropy of a free massive Dirac field between two causally disconnected open charts in de Sitter space. We first derive the Bunch-Davies vacuum mode functions of the Dirac field. We find there exists no supercurvature mode for the Dirac field. We then give the Bogoliubov transformation between the Bunch-Davies vacuum and the open chart vacua that makes the reduced density matrix diagonal. We find that the Dirac field becomes more entangled than a scalar field as m{sup 2}/H{sup 2} becomes small, and the difference is maximal in the massless limit.

  19. Scheme dependence of quantum gravity on de Sitter background

    Energy Technology Data Exchange (ETDEWEB)

    Kitamoto, Hiroyuki, E-mail: kitamoto@post.kek.jp [KEK Theory Center, Tsukuba, Ibaraki 305-0801 (Japan); Kitazawa, Yoshihisa, E-mail: kitazawa@post.kek.jp [KEK Theory Center, Tsukuba, Ibaraki 305-0801 (Japan); The Graduate University for Advanced Studies (Sokendai), Department of Particle and Nuclear Physics, Tsukuba, Ibaraki 305-0801 (Japan)

    2013-08-11

    We extend our investigation of the IR effects on the local dynamics of matter fields in quantum gravity. Specifically we clarify how the IR effects depend on the change of the quantization scheme: different parametrization of the metric and the matter field redefinition. Conformal invariance implies effective Lorentz invariance of the matter system in de Sitter space. An arbitrary choice of the parametrization of the metric and the matter field redefinition does not preserve the effective Lorentz invariance of the local dynamics. As for the effect of different parametrization of the metric alone, the effective Lorentz symmetry breaking term can be eliminated by shifting the background metric. In contrast, we cannot compensate the matter field redefinition dependence by such a way. The effective Lorentz invariance can be retained only when we adopt the specific matter field redefinitions where all dimensionless couplings become scale invariant at the classical level. This scheme is also singled out by unitarity as the kinetic terms are canonically normalized.

  20. Gravitational Collapse of Charged Matter in Einstein-DeSitter Universe

    Science.gov (United States)

    Avinash, K.; Krishnan, V.

    1997-11-01

    Gravitational collapse of charged matter in expanding universe is studied. We consider a quasi neutral electron-ion-massive grain plasma in which all the three species are expanding at the same rate i.e., ni ∝ 1/R^3 [ ni is the number density of the i^ th species and R is the scale factor ]. In Einstein-DeSitter universe the scale factor R goes as ~ t^2/3. The electrons and ions follow Boltzmann's relation. The stability of this equilibrium is studied on Jeans times scale. Depending on the ratio a = fracq d^2Gmd^2 the growth of gravitational collapse is further moderated from t^2/3 growth. For a=1, the instability is completely quenched. In curvature and radiation dominated universe, there is no additional effect due to finite charge of the matter.

  1. Effective Chern–Simons actions of particles coupled to 3D gravity

    Directory of Open Access Journals (Sweden)

    Tomasz Trześniewski

    2018-03-01

    Full Text Available Point particles in 3D gravity are known to behave as topological defects, while gravitational field can be expressed as the Chern–Simons theory of the appropriate local isometry group of spacetime. In the case of the Poincaré group, integrating out the gravitational degrees of freedom it is possible to obtain the effective action for particle dynamics. We review the known results, both for single and multiple particles, and attempt to extend this approach to the (anti-de Sitter group, using the factorizations of isometry groups into the double product of the Lorentz group and AN(2 group. On the other hand, for the de Sitter group one can also perform a contraction to the semidirect product of AN(2 and the translation group. The corresponding effective action curiously describes a Carrollian particle with the AN(2 momentum space. We derive this contraction in a more rigorous manner and further explore its properties, including a generalization to the multiparticle case.

  2. Effective Chern-Simons actions of particles coupled to 3D gravity

    Science.gov (United States)

    Trześniewski, Tomasz

    2018-03-01

    Point particles in 3D gravity are known to behave as topological defects, while gravitational field can be expressed as the Chern-Simons theory of the appropriate local isometry group of spacetime. In the case of the Poincaré group, integrating out the gravitational degrees of freedom it is possible to obtain the effective action for particle dynamics. We review the known results, both for single and multiple particles, and attempt to extend this approach to the (anti-)de Sitter group, using the factorizations of isometry groups into the double product of the Lorentz group and AN (2) group. On the other hand, for the de Sitter group one can also perform a contraction to the semidirect product of AN (2) and the translation group. The corresponding effective action curiously describes a Carrollian particle with the AN (2) momentum space. We derive this contraction in a more rigorous manner and further explore its properties, including a generalization to the multiparticle case.

  3. Emergent Gravity and the Dark Universe

    Directory of Open Access Journals (Sweden)

    Erik P. Verlinde

    2017-05-01

    Full Text Available Recent theoretical progress indicates that spacetime and gravity emerge together from the entanglement structure of an underlying microscopic theory. These ideas are best understood in Anti-de Sitter space, where they rely on the area law for entanglement entropy. The extension to de Sitter space requires taking into account the entropy and temperature associated with the cosmological horizon. Using insights from string theory, black hole physics and quantum information theory we argue that the positive dark energy leads to a thermal volume law contribution to the entropy that overtakes the area law precisely at the cosmological horizon. Due to the competition between area and volume law entanglement the microscopic de Sitter states do not thermalise at sub-Hubble scales: they exhibit memory effects in the form of an entropy displacement caused by matter. The emergent laws of gravity contain an additional 'dark' gravitational force describing the 'elastic' response due to the entropy displacement. We derive an estimate of the strength of this extra force in terms of the baryonic mass, Newton's constant and the Hubble acceleration scale a_0 =cH_0, and provide evidence for the fact that this additional `dark gravity~force' explains the observed phenomena in galaxies and clusters currently attributed to dark matter.

  4. Cosmological horizons and reconstruction of quantum field theories

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Trento Univ., Povo (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Moretti, V. [Trento Univ. (Italy). Dipt. di Matematica]|[Istituto Nazionale di Fisica Nucleare - Gruppo Collegato di Trento, Povo (Italy)

    2007-12-15

    As a starting point for this manuscript, we remark how the cosmological horizon of a certain class of Friedmann-Robertson-Walker backgrounds shares some non trivial geometric properties with null infinity in an asymptotically flat spacetime. Such a feature is generalized to a larger class of expanding spacetimes M admitting a geodesically complete cosmological horizon J{sup -} common to all co-moving observers. This property is later exploited in order to recast, in a cosmological background, some recent results for a linear scalar quantum field theory in spacetimes asymptotically flat at null infinity. Under suitable hypotheses on M - valid for de Sitter spacetime and some other FRW spacetimes obtained by perturbing deSitter space - the algebra of observables for a Klein-Gordon field is mapped into a subalgebra of the algebra of observables W(J{sup -}) constructed on the cosmological horizon. There is exactly one pure quasifree state {lambda} on W(J{sup -}) which fulfills a suitable energy positivity condition with respect to a generator related with the cosmological time displacements. Furthermore {lambda} induces a preferred physically meaningful quantum state {lambda}{sub M} for the quantum theory in the bulk. If M admits a timelike Killing generator preserving J{sup -}, then the associated self-adjoint generator in the GNS representation of {lambda}{sub M} has positive spectrum (i.e. energy). Moreover {lambda}{sub M} turns out to be invariant under every symmetry of the bulk metric which preserves the cosmological horizon. In the case of an expanding de Sitter spacetime, {lambda}{sub M} coincides with the Euclidean (Bunch-Davies) vacuum state, hence being Hadamard in this case. Remarks on the validity of the Hadamard property for {lambda}{sub M} in more general spacetimes are presented. (orig.)

  5. Prototype for dS/CFT correspondence

    International Nuclear Information System (INIS)

    Gueijosa, Alberto; Lowe, David A.; Murugan, Jeff

    2005-01-01

    We consider dS 2 /CFT 1 where the asymptotic symmetry group of the de Sitter spacetime contains the Virasoro algebra. We construct representations of the Virasoro algebra realized in the Fock space of a massive scalar field in de Sitter space, built as excitations of the Euclidean vacuum state. These representations are unitary, without highest weight, and have vanishing central charge. They provide a prototype for a new class of conformal field theories dual to de Sitter backgrounds in string theory. The mapping of operators in the CFT to bulk quantities is described in detail. We comment on the extension to dS 3 /CFT 2

  6. Gauge formulation of gravitation theories. I. The Poincare, de Sitter, and conformal cases

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Niederle, J.

    1982-01-01

    The gauge formulations of various gravitation theories are discussed. They are based on the approach in which we have the group Diff R 4 acting on x/sup μ/ and in which we attach to every x/sup μ/ a tangent space with the group of action H. Group H does not act on x/sup μ/ and plays the role of an internal (global) symmetry group in the standard Yang-Mills theory. The matter fields in the theory transform according to representations of H and are assumed to be scalars of Diff R 4 . The full invariance group of the Lagrangian is then of the form H/sup loc/xDiff R 4 . Here H/sup loc/ is a local gauge group obtained from H exactly as in the Yang-Mills theory. The approach has two characteristic features: (i) The group H/sup loc/ must be spontaneously broken in order to exclude redundant gauge fields (the Lorentz connections) from the theory in a way covariant with respect to the gauge transformations. (ii) To different H there correspond different gravitational theories, all invariant under Diff R 4 but differing in backgrounds. Thus if H is isomorphic to the Poincare group the corresponding gauge theory turns out to be equivalent to the usual Einstein or Einstein-Cartan theory of gravity in the Minkowski space as a background. The other choices for H considered in the paper are the de Sitter groups and the conformal group. They yield the Einstein theory with a negative (or positive) cosmological term in the corresponding de Sitter space and the Weyl or Cartan-Weyl theory (depending on realization of the conformal group), respectively

  7. On moduli stabilisation and de Sitter vacua in MSSM heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Parameswaran, Susha L. [Uppsala Univ. (Sweden). Dept. of Physics and Astronomy; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zavala, Ivonne [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Inst.

    2010-09-15

    We study the problem of moduli stabilisation in explicit heterotic orbifold compactifications, whose spectra contain the MSSM plus some vector-like exotics that can be decoupled. Considering all the bulk moduli, we obtain the 4D low energy effective action for the compactification, which has contributions from various, computable, perturbative and non-perturbative effects. Hidden sector gaugino condensation and string worldsheet instantons result in a combination of racetrack, KKLT and cusp-form contributions to the superpotential, which lift all the bulk moduli directions. We point out the properties observed in our concrete models, which tend to be missed when only ''generic'' features of a model are assumed. We search for interesting vacua and find several de Sitter solutions, but so far, they all turn out to be unstable. (orig.)

  8. Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra

    Science.gov (United States)

    Merad, M.; Hadj Moussa, M.

    2018-01-01

    In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.

  9. U(N) instantons on N=(1/2) superspace: Exact solution and geometry of moduli space

    International Nuclear Information System (INIS)

    Britto, Ruth; Feng Bo; Lunin, Oleg; Rey, Soo-Jong

    2004-01-01

    We construct the exact solution of one (anti-)instanton in N=(1/2) super Yang-Mills theory defined on non(anti-)commutative superspace. We first identify N=(1/2) superconformal invariance as maximal spacetime symmetry. For the gauge group U(2), the SU(2) part of the solution is given by the standard (anti-)instanton, but the U(1) field strength also turns out to be nonzero. The solution is SO(4) rotationally symmetric. For the gauge group U(N), in contrast with the U(2) case, we show that the entire U(N) part of the solution is deformed by non(anti-)commutativity and fermion zero modes. The solution is no longer rotationally symmetric; it is polarized into an axially symmetric configuration because of the underlying non(anti-)commutativity. We compute the 'information metric' of one (anti-)instanton. We find that the moduli space geometry is deformed from the hyperbolic space H 5 (Euclidean anti-de Sitter space) in a way anticipated from reduced spacetime symmetry. Remarkably, the volume measure of the moduli space turns out to be independent of the non(anti-)commutativity. Implications for D branes in the Ramond-Ramond flux background and the gauge-gravity correspondence are discussed

  10. Radiatively induced symmetry breaking and the conformally coupled magnetic monopole in AdS space

    Science.gov (United States)

    Edery, Ariel; Graham, Noah

    2013-11-01

    We implement quantum corrections for a magnetic monopole in a classically conformally invariant theory containing gravity. This yields the trace (conformal) anomaly and introduces a length scale in a natural fashion via the process of renormalization. We evaluate the one-loop effective potential and extract the vacuum expectation value (VEV) from it; spontaneous symmetry breaking is radiatively induced. The VEV is set at the renormalization scale M and we exchange the dimensionless scalar coupling constant for the dimensionful VEV via dimensional transmutation. The asymptotic (background) spacetime is anti-de Sitter (AdS) and its Ricci scalar is determined entirely by the VEV. We obtain analytical asymptotic solutions to the coupled set of equations governing gravitational, gauge and scalar fields that yield the magnetic monopole in an AdS spacetime.

  11. De Sitter and scaling solutions in a higher-order modified teleparallel theory

    Energy Technology Data Exchange (ETDEWEB)

    Paliathanasis, Andronikos, E-mail: anpaliat@phys.uoa.gr [Instituto de Ciencias Físicas y Matemáticas, Universidad Austral de Chile, Valdivia (Chile)

    2017-08-01

    The existence and the stability conditions for some exact relativistic solutions of special interest are studied in a higher-order modified teleparallel gravitational theory. The theory with the use of a Lagrange multiplier is equivalent with that of General Relativity with a minimally coupled noncanonical field. The conditions for the existence of de Sitter solutions and ideal gas solutions in the case of vacuum are studied as also the stability criteria. Furthermore, in the presence of matter the behaviour of scaling solutions is given. Finally, we discuss the degrees of freedom of the field equations and we reduce the field equations in an algebraic equation, where in order to demonstrate our result we show how this noncanonical scalar field can reproduce the Hubble function of Λ-cosmology.

  12. Classical and quantum solutions of (2+1)-dimensional gravity under the de Broglie-Bohm interpretation

    International Nuclear Information System (INIS)

    Kenmoku, M; Matsuyama, T; Sato, R; Uchida, S

    2002-01-01

    We have studied classical and quantum solutions of (2+1)-dimensional Einstein gravity theory. Quantum theory is defined through the local conserved angular momentum and mass operators in the case of spherically symmetric spacetime. The de Broglie-Bohm interpretation is applied to the wavefunction and we derive the differential equations for the metric. By solving these equations, we obtain the quantum effect for the metric and compare them with the classical metric. In particular, the quantum effect on the metric for the closed de Sitter universe is estimated quantitatively

  13. Electromagnetic fields with vanishing quantum corrections

    Science.gov (United States)

    Ortaggio, Marcello; Pravda, Vojtěch

    2018-04-01

    We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.

  14. The structure of perturbative quantum gravity on a de Sitter background

    International Nuclear Information System (INIS)

    Tsamis, N.C.; Woodward, R.P.

    1992-05-01

    Classical gravitation on de Sitter space suffers from a linearization instability. One consequence is that the response to a spatially localized distribution of positive energy cannot be globally regular. We use this fact to show that no causal Green's function can give the correct linearized response to certain bilocalized distributions, even though these distributions obey the constraints of linearization stability. We avoid the problem by working on the open submanifold spanned by conformal coordinates. The retarded Green's function is first computed in a simple gauge, then the rest of the propagator is inferred by analyticity -- up to the usual ambiguity about real, analytic and homogeneous terms. We show that the latter can be chosen so as to give a propagator which does not grow in any direction. The ghost propagator is also given and the interaction vertices are worked out

  15. Reissner--Nordstroem--de Sitter metric, the third law, and cosmic censorship

    International Nuclear Information System (INIS)

    Lake, K.

    1979-01-01

    The essential features of the Reissner--Nordstroem--de Sitter metric are examined in relation to the third law of black-hole mechanics and the cosmic censorship hypothesis for a nonasymptotically flat situation. The evolution of thin charged dust shells in this metric shows that the thermodynamic character of cosmological event horizons differs from that of black-hole horizons in that a degenerate horizon can be produced in a finite time. Nonetheless the spirit of the third law is preserved since the resultant degenerate configurations do not represent physically attainable limits in our Universe. It is shown that the nakedly singular character of the analytic extensions to these solutions represents an unplysical idealization due to the inherent instability of Killing horizons to the past of their bifurcation. This adds support to the spirit of strong cosmic censorship

  16. Energy, momentum and angular momentum conservations in de Sitter gravity

    International Nuclear Information System (INIS)

    Lu, Jia-An

    2016-01-01

    In de Sitter (dS) gravity, where gravity is a gauge field introduced to realize the local dS invariance of the matter field, two kinds of conservation laws are derived. The first kind is a differential equation for a dS-covariant current, which unites the canonical energy-momentum (EM) and angular momentum (AM) tensors. The second kind presents a dS-invariant current which is conserved in the sense that its torsion-free divergence vanishes. The dS-invariant current unites the total (matter plus gravity) EM and AM currents. It is well known that the AM current contains an inherent part, called the spin current. Here it is shown that the EM tensor also contains an inherent part, which might be observed by its contribution to the deviation of the dust particle’s world line from a geodesic. All the results are compared to the ordinary Lorentz gravity. (paper)

  17. A de Sitter tachyonic braneworld revisited

    Science.gov (United States)

    Barbosa-Cendejas, Nandinii; Cartas-Fuentevilla, Roberto; Herrera-Aguilar, Alfredo; Rigel Mora-Luna, Refugio; da Rocha, Roldão

    2018-01-01

    Within the framework of braneworlds, several interesting physical effects can be described in a wide range of energy scales, starting from high-energy physics to cosmology and low-energy physics. An usual way to generate a thick braneworld model relies in coupling a bulk scalar field to higher dimensional warped gravity. Quite recently, a novel braneworld was generated with the aid of a tachyonic bulk scalar field, having several remarkable properties. It comprises a regular and stable solution that contains a relevant 3-brane with de Sitter induced metric, arising as an exact solution to the 5D field equations, describing the inflationary eras of our Universe. Besides, it is asymptotically flat, despite of the presence of a negative 5D cosmological constant, which is an interesting feature that contrasts with most of the known, asymptotically either dS or AdS models. Moreover, it encompasses a graviton spectrum with a single massless bound state, accounting for 4D gravity localized on the brane, separated from the continuum of Kaluza-Klein massive graviton modes by a mass gap that makes the 5D corrections to Newton's law to decay exponentially. Finally, gauge, scalar and fermion fields are also shown to be localized on this braneworld. In this work, we show that this tachyonic braneworld allows for a nontrivial solution with a vanishing 5D cosmological constant that preserves all the above mentioned remarkable properties with a less amount of parameters, constituting an important contribution to the construction of a realistic cosmological braneworld model.

  18. All partial breakings in ${\\cal N}=2$ supergravity with a single hypermultiplet arXiv

    CERN Document Server

    Antoniadis, Ignatios; Petropoulos, P. Marios; Siampos, Konstantinos

    We consider partial supersymmetry breaking in ${\\cal N}=2$ supergravity coupled to a single vector and a single hypermultiplet. This breaking pattern is in principle possible if the quaternion-K\\"ahler space of the hypermultiplet admits (at least) one pair of commuting isometries. For this class of manifolds, explicit metrics exist and we analyse a generic electro-magnetic (dyonic) gauging of the isometries. An example of partial breaking in Minkowski spacetime has been found long ago by Ferrara, Girardello and Porrati, using the gauging of two translation isometries on $SO(4,1)/SO(4)$. We demonstrate that no other example of partial breaking of ${\\cal N}=2$ supergravity in Minkowski spacetime exists. We also examine partial-breaking vacua in anti-de Sitter spacetime that are much less constrained and exist generically even for electric gaugings. On $SO(4,1)/SO(4)$, we construct the partially-broken solution and its global limit which is the Antoniadis-Partouche-Taylor model.

  19. Dynamical system analysis of interacting models

    Science.gov (United States)

    Carneiro, S.; Borges, H. A.

    2018-01-01

    We perform a dynamical system analysis of a cosmological model with linear dependence between the vacuum density and the Hubble parameter, with constant-rate creation of dark matter. We show that the de Sitter spacetime is an asymptotically stable critical point, future limit of any expanding solution. Our analysis also shows that the Minkowski spacetime is an unstable critical point, which eventually collapses to a singularity. In this way, such a prescription for the vacuum decay not only predicts the correct future de Sitter limit, but also forbids the existence of a stable Minkowski universe. We also study the effect of matter creation on the growth of structures and their peculiar velocities, showing that it is inside the current errors of redshift space distortions observations.

  20. Euclidean action for vacuum decay in a de Sitter universe

    International Nuclear Information System (INIS)

    Balek, V.; Demetrian, M.

    2005-01-01

    The behavior of the action of the instantons describing vacuum decay in a de Sitter is investigated. For a near-to-limit instanton (a Coleman-de Luccia instanton close to some Hawking-Moss instanton) we find approximate formulas for the Euclidean action by expanding the scalar field and the metric of the instanton in the powers of the scalar field amplitude. The order of the magnitude of the correction to the Hawking-Moss action depends on the order of the instanton (the number of crossings of the barrier by the scalar field): for instantons of odd and even orders the correction is of the fourth and third order in the scalar field amplitude, respectively. If a near-to-limit instanton of the first order exists in a potential with the curvature at the top of the barrier greater than 4x(Hubble constant) 2 , which is the case if the fourth derivative of the potential at the top of the barrier is greater than some negative limit value, the action of the instanton is less than the Hawking-Moss action and, consequently, the instanton determines the outcome of the vacuum decay if no other Coleman-de Luccia instanton is admitted by the potential. A numerical study shows that for the quartic potential the physical mode of the vacuum decay is given by the Coleman-de Luccia instanton of the first order also in the region of parameters in which the potential admits two instantons of the second order

  1. Entanglement interpretation of black hole entropy in string theory

    International Nuclear Information System (INIS)

    Brustein, Ram; Einhorn, Martin B.; Yarom, Amos

    2006-01-01

    We show that the entropy resulting from the counting of microstates of non extremal black holes using field theory duals of string theories can be interpreted as arising from entanglement. The conditions for making such an interpretation consistent are discussed. First, we interpret the entropy (and thermodynamics) of spacetimes with non degenerate, bifurcating Killing horizons as arising from entanglement. We use a path integral method to define the Hartle-Hawking vacuum state in such spacetimes and discuss explicitly its entangled nature and its relation to the geometry. If string theory on such spacetimes has a field theory dual, then, in the low-energy, weak coupling limit, the field theory state that is dual to the Hartle-Hawking state is a thermofield double state. This allows the comparison of the entanglement entropy with the entropy of the field theory dual, and thus, with the Bekenstein-Hawking entropy of the black hole. As an example, we discuss in detail the case of the five dimensional anti-de Sitter, black hole spacetime

  2. Positive Cosmological Constant and Quantum Theory

    Directory of Open Access Journals (Sweden)

    Felix M. Lev

    2010-11-01

    Full Text Available We argue that quantum theory should proceed not from a spacetime background but from a Lie algebra, which is treated as a symmetry algebra. Then the fact that the cosmological constant is positive means not that the spacetime background is curved but that the de Sitter (dS algebra as the symmetry algebra is more relevant than the Poincare or anti de Sitter ones. The physical interpretation of irreducible representations (IRs of the dS algebra is considerably different from that for the other two algebras. One IR of the dS algebra splits into independent IRs for a particle and its antiparticle only when Poincare approximation works with a high accuracy. Only in this case additive quantum numbers such as electric, baryon and lepton charges are conserved, while at early stages of the Universe they could not be conserved. Another property of IRs of the dS algebra is that only fermions can be elementary and there can be no neutral elementary particles. The cosmological repulsion is a simple kinematical consequence of dS symmetry on quantum level when quasiclassical approximation is valid. Therefore the cosmological constant problem does not exist and there is no need to involve dark energy or other fields for explaining this phenomenon (in agreement with a similar conclusion by Bianchi and Rovelli.

  3. Simulating quantum effects of cosmological expansion using a static ion trap

    Science.gov (United States)

    Menicucci, Nicolas C.; Olson, S. Jay; Milburn, Gerard J.

    2010-09-01

    We propose a new experimental test bed that uses ions in the collective ground state of a static trap to study the analogue of quantum-field effects in cosmological spacetimes, including the Gibbons-Hawking effect for a single detector in de Sitter spacetime, as well as the possibility of modeling inflationary structure formation and the entanglement signature of de Sitter spacetime. To date, proposals for using trapped ions in analogue gravity experiments have simulated the effect of gravity on the field modes by directly manipulating the ions' motion. In contrast, by associating laboratory time with conformal time in the simulated universe, we can encode the full effect of curvature in the modulation of the laser used to couple the ions' vibrational motion and electronic states. This model simplifies the experimental requirements for modeling the analogue of an expanding universe using trapped ions, and it enlarges the validity of the ion-trap analogy to a wide range of interesting cases.

  4. Lifshitz effects on holographic p-wave superfluid

    Directory of Open Access Journals (Sweden)

    Ya-Bo Wu

    2015-02-01

    Full Text Available In the probe limit, we numerically build a holographic p-wave superfluid model in the four-dimensional Lifshitz black hole coupled to a Maxwell-complex vector field. We observe the rich phase structure and find that the Lifshitz dynamical exponent z contributes evidently to the effective mass of the matter field and dimension of the gravitational background. Concretely, we obtain that the Cave of Winds appeared only in the five-dimensional anti-de Sitter (AdS spacetime, and the increasing z hinders not only the condensate but also the appearance of the first-order phase transition. Furthermore, our results agree with the Ginzburg–Landau results near the critical temperature. In addition, the previous AdS superfluid model is generalized to the Lifshitz spacetime. Keywords: Gauge/gravity duality, Holographic superconductor, Lifshitz black hole, Maxwell-complex vector field

  5. Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case

    Science.gov (United States)

    Fernández Tío, Julián M.; Dotti, Gustavo

    2017-06-01

    Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

  6. Holography and quantum states in elliptic de Sitter space

    Energy Technology Data Exchange (ETDEWEB)

    Halpern, Illan F. [Department of Physics, University of California,Berkeley, CA, 94720 (United States); Neiman, Yasha [Perimeter Institute for Theoretical Physics,31 Caroline Street N, Waterloo, ON, N2L 2Y5 (Canada)

    2015-12-10

    We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in “elliptic” de Sitter space dS{sub 4}/ℤ{sub 2}, obtained by identifying antipodal points in dS{sub 4}. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable dS{sub 4}/ℤ{sub 2}. We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in dS{sub 4}/ℤ{sub 2}, in the limit of free bulk fields. We succeed in deriving an observer’s operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.

  7. Inflación Eterna y el Multiverso. Un estudio desde los problemas de la teoría del Big Bang hasta el Multiverso inflacionario.

    OpenAIRE

    Calvo Aurrekoetxea, Josu

    2017-01-01

    En este Trabajo Fin de Grado se hace un estudio de la Teoría de la Inflación Cósmica como solución de los problemas de la teoría del Big Bang a partir del acoplo gravitatorio de un campo escalar. Además, se analizan potenciales con mínimos con constante cosmológica positiva de Sitter (dS), negativa Anti-de Sitter (AdS) y las transiciones cosmológicas entre ellos. Por último, se presenta un modelo dS-dS para el cual el escenario final es una región con multiples universos inflacionarios; pudie...

  8. Hawking Radiation from Horizons of Reissner-Nordstroem de Sitter Black Hole with a Global Monopole via Anomalies

    International Nuclear Information System (INIS)

    Chen Shiwu; Liu Xiongwei; Lin Kai; Zeng Xiaoxiong; Yang Shuzheng

    2008-01-01

    Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstroem de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively

  9. Conformal hyperbolicity of Lorentzian warped products

    International Nuclear Information System (INIS)

    Markowitz, M.J.

    1982-01-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model. (author)

  10. Conformal hyperbolicity of Lorentzian warped products

    Energy Technology Data Exchange (ETDEWEB)

    Markowitz, M.J. (Chicago Univ., IL (USA). Dept. of Mathematics)

    1982-12-01

    A space-time M is said to be conformally hyperbolic if the intrinsic conformal Lorentz pseudodistance dsub(M) is a true distance. In this paper criteria are derived which insure the conformal hyperbolicity of certain space-times which are generalizations of the Robertson-Walker spaces. Then dsub(M) is determined explicitly for Einstein-de Sitter space, and important cosmological model.

  11. Asymptotic structure of space-time with a positive cosmological constant

    Science.gov (United States)

    Kesavan, Aruna

    In general relativity a satisfactory framework for describing isolated systems exists when the cosmological constant Lambda is zero. The detailed analysis of the asymptotic structure of the gravitational field, which constitutes the framework of asymptotic flatness, lays the foundation for research in diverse areas in gravitational science. However, the framework is incomplete in two respects. First, asymptotic flatness provides well-defined expressions for physical observables such as energy and momentum as 'charges' of asymptotic symmetries at null infinity, [special character omitted] +. But the asymptotic symmetry group, called the Bondi-Metzner-Sachs group is infinite-dimensional and a tensorial expression for the 'charge' integral of an arbitrary BMS element is missing. We address this issue by providing a charge formula which is a 2-sphere integral over fields local to the 2-sphere and refers to no extraneous structure. The second, and more significant shortcoming is that observations have established that Lambda is not zero but positive in our universe. Can the framework describing isolated systems and their gravitational radiation be extended to incorporate this fact? In this dissertation we show that, unfortunately, the standard framework does not extend from the Lambda = 0 case to the Lambda > 0 case in a physically useful manner. In particular, we do not have an invariant notion of gravitational waves in the non-linear regime, nor an analog of the Bondi 'news tensor', nor positive energy theorems. In addition, we argue that the stronger boundary condition of conformal flatness of intrinsic metric on [special character omitted]+, which reduces the asymptotic symmetry group from Diff([special character omitted]) to the de Sitter group, is insufficient to characterize gravitational fluxes and is physically unreasonable. To obtain guidance for the full non-linear theory with Lambda > 0, linearized gravitational waves in de Sitter space-time are analyzed in

  12. Heat engines for dilatonic Born-Infeld black holes

    Energy Technology Data Exchange (ETDEWEB)

    Bhamidipati, Chandrasekhar; Yerra, Pavan Kumar [Indian Institute of Technology Bhubaneswar, School of Basic Sciences, Bhubaneswar (India)

    2017-08-15

    In the context of dilaton coupled Einstein gravity with a negative cosmological constant and a Born-Infeld field, we study heat engines where a charged black hole is the working substance. Using the existence of a notion of thermodynamic mass and volume (which depend on the dilaton coupling), the mechanical work takes place via the pdV terms present in the first law of extended gravitational thermodynamics. The efficiency is analyzed as a function of dilaton and Born-Infeld couplings, and the results are compared with analogous computations in the related conformal solutions in the Brans-Dicke-Born-Infeld theory and black holes in anti-de Sitter space-time. (orig.)

  13. Gravitational collapse, chaos in CFT correlators and the information paradox

    Energy Technology Data Exchange (ETDEWEB)

    Farahi, Arya, E-mail: aryaf@umich.edu; Pando Zayas, Leopoldo A., E-mail: lpandoz@umich.edu

    2014-06-27

    We consider gravitational collapse of a massless scalar field in asymptotically anti-de Sitter spacetime. Following the AdS/CFT dictionary we further study correlations in the field theory side by way of the Klein–Gordon equation of a probe scalar field in the collapsing background. We present evidence that in a certain regime the probe scalar field behaves chaotically, thus supporting Hawking's argument in the black hole information paradox proposing that although the information can be retrieved in principle, deterministic chaos impairs, in practice, the process of unitary extraction of information from a black hole. We emphasize that quantum chaos will change this picture.

  14. Fermions in compactified d=11 supergravity

    International Nuclear Information System (INIS)

    Kogan, Ya.; Morozov, A.

    1984-01-01

    Miraculous simplifications are observed in the gravitino equations of motion in the Englert background. Though the problem of getting rid of anti-de-Sitter geometry has not been solved yet, it is clear that the anti-de-Sitter geometry is absent in the correct solution and the four-dimensional world has flat metric

  15. Behavior of asymptotically electro-Λ spacetimes

    Science.gov (United States)

    Saw, Vee-Liem

    2017-04-01

    We present the asymptotic solutions for spacetimes with nonzero cosmological constant Λ coupled to Maxwell fields, using the Newman-Penrose formalism. This extends a recent work that dealt with the vacuum Einstein (Newman-Penrose) equations with Λ ≠0 . The results are given in two different null tetrads: the Newman-Unti and Szabados-Tod null tetrads, where the peeling property is exhibited in the former but not the latter. Using these asymptotic solutions, we discuss the mass loss of an isolated electrogravitating system with cosmological constant. In a universe with Λ >0 , the physics of electromagnetic (EM) radiation is relatively straightforward compared to those of gravitational radiation: (1) It is clear that outgoing EM radiation results in a decrease to the Bondi mass of the isolated system. (2) It is also perspicuous that if any incoming EM radiation from elsewhere is present, those beyond the isolated system's cosmological horizon would eventually arrive at the spacelike I and increase the Bondi mass of the isolated system. Hence, the (outgoing and incoming) EM radiation fields do not couple with Λ in the Bondi mass-loss formula in an unusual manner, unlike the gravitational counterpart where outgoing gravitational radiation induces nonconformal flatness of I . These asymptotic solutions to the Einstein-Maxwell-de Sitter equations presented here may be used to extend a raft of existing results based on Newman-Unti's asymptotic solutions to the Einstein-Maxwell equations where Λ =0 , to now incorporate the cosmological constant Λ .

  16. Gauge field configurations in curved spacetimes (II)

    International Nuclear Information System (INIS)

    Boutaleb-Joutei, H.; Chakrabarti, A.; Comtet, A.

    1979-05-01

    One continues the study of gauge field configurations in curved spaces, using the formalism and results of a previous paper. A class of static, finite action, selfdual solutions of SU(2) gauge fields on a Euclidean section of de Sitter space is presented. The action depends on a continuous parameter. The spin connection solution is obtained as a particular case and a certain passage to the limiting case of a flat space is shown to reproduce the Euclidean Prasad-Sommerfield solution. The significance and possible interest of such solutions are discussed. The results are then generalized to a non-Einstein but conformally flat space, including de Sitter space as an Einstein limit. Next Baecklund type transformations are constructed starting from selfduality constraints for such curved spaces. These transformations are applied to the above mentioned solutions. The last two sections contain remarks on solutions with a background Robinson-Bertotti metric and on static, axially symmetric solutions respectively

  17. Higher Curvature Gravity from Entanglement in Conformal Field Theories

    Science.gov (United States)

    Haehl, Felix M.; Hijano, Eliot; Parrikar, Onkar; Rabideau, Charles

    2018-05-01

    By generalizing different recent works to the context of higher curvature gravity, we provide a unifying framework for three related results: (i) If an asymptotically anti-de Sitter (AdS) spacetime computes the entanglement entropies of ball-shaped regions in a conformal field theory using a generalized Ryu-Takayanagi formula up to second order in state deformations around the vacuum, then the spacetime satisfies the correct gravitational equations of motion up to second order around the AdS background. (ii) The holographic dual of entanglement entropy in higher curvature theories of gravity is given by the Wald entropy plus a particular correction term involving extrinsic curvatures. (iii) Conformal field theory relative entropy is dual to gravitational canonical energy (also in higher curvature theories of gravity). Especially for the second point, our novel derivation of this previously known statement does not involve the Euclidean replica trick.

  18. Symmetry breaking patterns for inflation

    Science.gov (United States)

    Klein, Remko; Roest, Diederik; Stefanyszyn, David

    2018-06-01

    We study inflationary models where the kinetic sector of the theory has a non-linearly realised symmetry which is broken by the inflationary potential. We distinguish between kinetic symmetries which non-linearly realise an internal or space-time group, and which yield a flat or curved scalar manifold. This classification leads to well-known inflationary models such as monomial inflation and α-attractors, as well as a new model based on fixed couplings between a dilaton and many axions which non-linearly realises higher-dimensional conformal symmetries. In this model, inflation can be realised along the dilatonic direction, leading to a tensor-to-scalar ratio r ˜ 0 .01 and a spectral index n s ˜ 0 .975. We refer to the new model as ambient inflation since inflation proceeds along an isometry of an anti-de Sitter ambient space-time, which fully determines the kinetic sector.

  19. Scalar potential from de Sitter brane in 5D and effective cosmological constant

    International Nuclear Information System (INIS)

    Ito, Masato

    2004-01-01

    We derive the scalar potential in zero mode effective action arising from a de Sitter brane embedded in five dimensions with bulk cosmological constant Λ. The scalar potential for a scalar field canonically normalized is given by the sum of exponential potentials. In the case of Λ = 0 and Λ > 0, we point out that the scalar potential has an unstable maximum at the origin and exponentially vanishes for large positive scalar field. In the case of Λ < 0, the scalar potential has an unstable maximum at the origin and a local minimum. It is shown that the positive cosmological constant in dS brane is reduced by negative potential energy of scalar at minimum and that effective cosmological constant depends on a dimensionless quantity. Furthermore, we discuss the fate of our universe including the potential energy of the scalar. (author)

  20. Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation

    CERN Document Server

    Krippendorf, Sven

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...