Confinement in Anti-de Sitter Space
Aharony, Ofer; Tong, David; Yankielowicz, Shimon
2012-01-01
Four dimensional gauge theories in anti-de Sitter space, including pure Yang-Mills theory, exhibit a quantum phase transition between a deconfined phase and a confined phase as the gauge coupling is varied. We explore various mechanisms by which this may occur, both in a fixed background and in the presence of gravity. We also make a number of observations on the dynamics of four dimensional supersymmetric gauge theories in anti-de Sitter space.
Gravitational collapse in anti de Sitter space
International Nuclear Information System (INIS)
A numerical and analytic treatment is presented here of the evolution of initial data of the kind that was conjectured by Hertog, Horowitz and Maeda to lead to a violation of cosmic censorship. That initial data is essentially a thick domain wall connecting two regions of anti de Sitter space. The evolution results in no violation of cosmic censorship, but rather the formation of a small black hole
Chang, Zhe
1999-01-01
The quantum Anti-de Sitter (AdS) group and quantum AdS space is discussed. Ways of getting the quantum AdS group from real forms of quantum orthogonal group are presented. Differential calculus on the quantum AdS space are also introduced. In particular, reality of differential calculus are given. We set up explicit relationships between quantum group and quantum algebra, which can be refereed as the quantum counterpart of the classical exponential. By this way, quantum AdS algebra is deduced...
Localized Gravity on Branes in anti-de Sitter Spaces
Halyo, Edi
1999-01-01
We discuss the conditions under which 4D gravity is localized on domain walls in 5D anti-de Sitter spaces. Our approach is based on considering the limits in which the localized gravity decouples. We find that gravity is localized if the wall is located a finite distance from the boundary of the anti-de Sitter space and has a finite tension. In addition, it has to be a $\\delta$-function source of gravity.
Gravitational collapse in anti-de Sitter space-time
International Nuclear Information System (INIS)
We study the semiclassical evolution of a self-gravitating thick shell in anti-de Sitter space-time. We treat the matter on the shell as made of quantized bosons and evaluate the back-reaction of the loss of gravitational energy which is radiated away as a non-adiabatic effect. A peculiar feature of anti-de Sitter is that such an emission also occurs for large shell radius, contrary to the asymptotically flat case
Green's function for anti--de Sitter space gravity
International Nuclear Information System (INIS)
We solve for the retarded Green's function for linearized gravity in a background with a negative cosmological constant, anti--de Sitter space. In this background, it is possible for a signal to reach spatial infinity in a finite time. Therefore the form of the Green's function depends on a choice of boundary condition at spatial infinity. We take as our condition that a signal which reaches infinity should be lost, not reflected back. We calculate the Green's function associated with this condition, and show that it reproduces the correct classical solution for a point mass at the origin, the anti--de Sitter--Schwarzschild solution
Oscillating Shells in Anti-de Sitter Space
Mas, Javier
2015-01-01
We study the dynamics of a spherically symmetric thin shell of perfect fluid embedded in d-dimensional Anti-de Sitter space-time. In global coordinates, besides collapsing solutions, oscillating solutions are found where the shell bounces back and forth between two radii. The parameter space where these oscillating solutions exist is scanned in arbitrary number of dimensions. As expected AdS3 appears to be singled out.
Evanescent gravitons in Warped-Anti de Sitter space
Giribet, Gaston
2016-01-01
Besides black holes, the phase space of three-dimensional massive gravity about Warped-Anti de Sitter (WAdS) space contains solutions that decay exponentially in time. They describe evanescent graviton configurations that, while governed by a wave equation with non-vanishing effective mass, do not carry net gravitational energy. Explicit examples of such solutions have been found in the case of Topologically Massive Gravity; here, we generalize them to a much more general ghost-free massive deformation, with the difference being that the decay rate gets corrected due to the presence of higher-order terms.
Evanescent gravitons in warped anti-de Sitter space
Giribet, Gaston; Vásquez, Yerko
2016-01-01
Besides black holes, the phase space of three-dimensional massive gravity about warped anti-de Sitter space contains solutions that decay exponentially in time. They describe evanescent graviton configurations that, while governed by a wave equation with nonvanishing effective mass, do not carry net gravitational energy. Explicit examples of such solutions have been found in the case of topologically massive gravity; here, we generalize them to a much more general ghost-free massive deformation, with the difference being that the decay rate gets corrected due to the presence of higher-order terms.
The broken string in anti-de Sitter space
Vegh, David
2015-01-01
This paper describes an efficient method for solving the classical string equations of motion in (2+1)-dimensional anti-de Sitter spacetime. Exact string solutions are identified that are the analogs of piecewise linear strings in flat space. They can be used to approximate any smooth string motion to arbitrary accuracy. Cusps on the string move with the speed of light and their collisions are described by a Picard-Lefschetz-type formula. Explicit examples are shown with the string ending on two boundary quarks. The technique is ideally suited for numerical simulations. A Mathematica notebook that has been used to generate the relevant figures is also included.
On charged black holes in anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Brecher, Dominic [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); He, Jianyang [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada); Rozali, Moshe [Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1 (Canada)
2005-04-01
We study the region inside the event horizon of charged black holes in five dimensional asymptotically anti-de Sitter space, using as a probe two-sided correlators which are dominated by spacelike geodesics penetrating the horizon. The spacetimes we investigate include the Reissner-Nordstroem black hole and perturbations thereof. The perturbed spacetimes can be found exactly, enabling us to perform a local scan of the region between the inner and outer horizons. Surprisingly, the two-sided correlators we calculate seem to be geometrically protected from the instability of the inner horizon.
Generalized Gravitational Entropy for Warped Anti-de Sitter Space.
Song, Wei; Wen, Qiang; Xu, Jianfei
2016-07-01
For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS_{3}) in a consistent truncation of string theory, the so-called S-dual dipole theory. It turns out that the generalized gravitational entropy in WAdS_{3} is captured by the least action of a charged particle in WAdS_{3} space, or equivalently, by the geodesic length in an auxiliary AdS_{3}. Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS_{3}/CFT_{2} correspondence. PMID:27419559
Generalized Gravitational Entropy for Warped Anti-de Sitter Space
Song, Wei; Wen, Qiang; Xu, Jianfei
2016-07-01
For spacetimes that are not asymptotic to anti-de Sitter (non AAdS) space, we adapt the Lewkowycz-Maldacena procedure to find the holographic entanglement entropy. The key observation, which to our knowledge is not very well appreciated, is that asymptotic boundary conditions play an essential role on extending the replica trick to the bulk. For non AAdS, we expect the following three main modifications: (1) the expansion near the special surface has to be compatible with the asymptotic expansion; (2) periodic conditions are imposed to coordinates on the phase space with diagonalized symplectic structure, not to all fields appearing in the action; (3) evaluating the entanglement functional using the boundary term method amounts to evaluating the presymplectic structure at the special surface, where some additional exact form may contribute. An explicit calculation is carried out for three-dimensional warped anti-de Sitter spacetime (WAdS3 ) in a consistent truncation of string theory, the so-called S -dual dipole theory. It turns out that the generalized gravitational entropy in WAdS3 is captured by the least action of a charged particle in WAdS3 space, or equivalently, by the geodesic length in an auxiliary AdS3 . Consequently, the bulk calculation agrees with the CFT results, providing another piece of evidence for the WAdS3/CFT2 correspondence.
Hopfing and puffing warped anti-de Sitter space
International Nuclear Information System (INIS)
Three dimensional spacelike warped anti-de Sitter space is studied in the context of Einstein theories of gravity and string theory, where there is no gravitational Chern-Simons term in the action. We propose that it is holographically dual to a two-dimensional conformal field theory with equal left and right moving central charges. Various checks of the central charges are offered, based on the Bekenstein-Hawking entropy of the stretched warped black holes and warped self-dual solutions. The proposed central charges are applied to compute the Bekenstein-Hawking entropy of the Hopf T-dual of six-dimensional dyonic black strings which have a near horizon consisting of three dimensional warped anti-de Sitter space times a three-sphere. We find that the Hopf T-duality is a map between thermal states with equal entropy of the CFTs dual to the dyonic black string and the Hopf T-dualized black string.
Hopfing and Puffing Warped Anti-de Sitter Space
Anninos, Dionysios
2009-01-01
Three dimensional spacelike warped anti-de Sitter space is studied in the context of Einstein theories of gravity and string theory, where there is no gravitational Chern-Simons term in the action. We propose that it is holographically dual to a two-dimensional conformal field theory with equal left and right moving central charges. Various checks of the central charges are offered, based on the Bekenstein-Hawking entropy of the stretched warped black holes and warped self-dual solutions. The proposed central charges are applied to compute the Bekenstein-Hawking entropy of the Hopf T-dual of six-dimensional dyonic black strings which have a near horizon consisting of three dimensional warped anti-de Sitter space times a three-sphere. We find that the Hopf T-duality is a map between thermal states with equal entropy of the CFTs dual to the dyonic black string and the Hopf T-dualized black string.
Holographic entanglement entropy for noncommutative anti-de Sitter space
Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay
2016-04-01
A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu-Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet-infrared (UV-IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).
Black hole remnant in asymptotic Anti-de Sitter space
Wen, Wen-Yu
2015-01-01
It is known that a solution of remnant were suggested for black hole ground state after surface gravity is corrected by loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic Anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of three-dimensional BTZ black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored than the remnant solution at low temperature in three dimensions, while Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to be found in the overcooled phase if strings were present and its implication is discussed.
NUT Charge, Anti-de Sitter Space and Entropy
Hawking, Stephen William; Page, D N
1999-01-01
It has been proposed that spacetimes with a U(1) isometry group have contributions to the entropy from Misner strings as well as from the area of $d-2$ dimensional fixed point sets. In this paper we test this proposal by constructing Taub-Nut-AdS and Taub-Bolt-AdS solutions which are examples of a new class of asymptotically locally anti-de Sitter spaces. We find that with the additional contribution from the Misner strings, we exactly reproduce the entropy calculated from the action by the usual thermodynamic relations. This entropy has the right parameter dependence to agree with the entropy of a conformal field theory on the boundary, which is a squashed three-sphere, at least in the limit of large squashing. However the conformal field theory and the normalisation of the entropy remain to be determined.
NUT charge, anti-de Sitter space, and entropy
Hawking, S. W.; Hunter, C. J.; Page, Don N.
1999-02-01
It has been proposed that spacetimes with a U(1) isometry group have contributions to the entropy from Misner strings as well as from the area of d-2 dimensional fixed point sets. In this paper we test this proposal by constructing Taub-NUT-AdS and Taub-bolt-AdS solutions which are examples of a new class of asymptotically locally anti-de Sitter space. We find that with the additional contribution from the Misner strings, we exactly reproduce the entropy calculated from the action by the usual thermodynamic relations. This entropy has the right parameter dependence to agree with the entropy of a conformal field theory on the boundary, which is a squashed three-sphere, at least in the limit of large squashing. However, the conformal field theory and the normalization of the entropy remain to be determined.
Black hole remnant in asymptotic anti-de Sitter space
International Nuclear Information System (INIS)
The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed. (orig.)
Black hole remnant in asymptotic anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Wen, Wen-Yu [Chung Yuan Christian University, Department of Physics, Center for High Energy Physics, Chung Li City (China); National Taiwan University, Leung Center for Cosmology and Particle Astrophysics, Taipei (China); Wu, Shang-Yu [National Chiao Tung University, Department of Electrophysics, Hsinchu (China)
2015-12-15
The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking-Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados-Teitelboim-Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed. (orig.)
Black hole remnant in asymptotic anti-de Sitter space
International Nuclear Information System (INIS)
The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking–Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados–Teitelboim–Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed
Black hole remnant in asymptotic anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Wen, Wen-Yu, E-mail: steve.wen@gmail.com [Department of Physics, Center for High Energy Physics, Chung Yuan Christian University, Chung Li City, Taiwan (China); Leung Center for Cosmology and Particle Astrophysics, National Taiwan University, 106, Taipei, Taiwan (China); Wu, Shang-Yu, E-mail: loganwu@gmail.com [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China)
2015-12-21
The solution of a remnant was suggested for the black hole ground state after surface gravity is corrected for the loop quantum effect. On the other hand, a Schwarzschild black hole in asymptotic anti-de Sitter space would tunnel into the thermal soliton solution known as the Hawking–Page phase transition. In this letter, we investigate the low temperature phase of a three-dimensional Banados–Teitelboim–Zanelli (BTZ) black hole and four-dimensional AdS Schwarzschild black hole. We find that the thermal soliton is energetically favored rather than the remnant solution at low temperature in three dimensions, while a Planck-size remnant is still possible in four dimensions. Though the BTZ remnant seems energetically disfavored, we argue that it is still possible to find in the overcooled phase if strings were present, and its implication is discussed.
CPT groups of spinor fields in de Sitter and anti-de Sitter spaces
Varlamov, V V
2014-01-01
CPT groups for spinor fields in de Sitter and anti-de Sitter spaces are defined in the framework of automorphism groups of Clifford algebras. It is shown that de Sitter spaces with mutually opposite signatures correspond to Clifford algebras with different algebraic structure that induces an essential difference of CPT groups associated with these spaces. CPT groups for charged particles are considered with respect to phase factors on the various spinor spaces related with real subalgebras of the simple Clifford algebra over the complex field (Dirac algebra). It is shown that CPT groups for neutral particles which admit particle-antiparticle interchange and CPT groups for truly neutral particles are described within semisimple Clifford algebras with quaternionic and real division rings, respectively. A difference between bosonic and fermionic CPT groups is discussed.
Heavy-Ion Collisions and Black Holes in Anti-de-Sitter Space
Ellis, John
1999-01-01
Recent developments linking non-perturbative quantum gauge theories in Minkowski space to classical gravity theories in anti-de-Sitter space are reviewed at a simple level. It is suggested how these spectacular advances may be extended to discuss the quark-gluon phase transition in terms of black holes in anti-de-Sitter space, with possible relevance to heavy-ion collisions.
Deformation Quantization of Odd Dimensional anti-de Sitter Spaces as Contact Manifolds
Akant, Levent
2007-01-01
We quantize odd dimensional anti-de Sitter spaces by applying the method of deforming contact manifolds proposed by Rajeev. The construction in the present paper consists of the identification of the odd dimensional anti-de Sitter space as a hypersurface of contact type and the subsequent use of 'symplectization' principle. We also show that this construction generalizes to any odd dimensional hypersurface which can be represented as a nonzero level set of a homogenous function.
Quantum Gravity Inde Sitter Space And Anti-de Sitter Space
Lippert, M S
2004-01-01
In this thesis, we consider two aspects of quantum gravity—the nature of holography in anti-de Sitter space and string theory models of de Sitter space. Searching for a holographic resolution of the black hole information paradox, we pursue the identity of precursors in the context of AdS/CFT. We consider precursors that encode bulk information causally disconnected from the boundary and whose measurement involves nonlocal bulk processes. Previous arguments that these precursors are large, undecorated Wilson loops are found to be flawed. We construct a toy model of holography which encapsulates the expected properties of precursors and compare it with previous such discussions. The information contained in precursors is argued to be encoded in the high-energy sector of the theory and not observable by low-energy measurements. These considerations lead us to propose a locality bound, which indicates where locality breaks down due to black hole or stringy effects. We apply the locality bound to Hawkin...
Mesons from global Anti-de Sitter space
Erdmenger, Johanna
2010-01-01
In the context of gauge/gravity duality, we study both probe D7-- and probe D5--branes in global Anti-de Sitter space. The dual field theory is N=4 theory on R x S^3 with added flavour. The branes undergo a geometrical phase transition in this geometry as function of the bare quark mass m_q in units of 1/R with R the S^3 radius. The meson spectra are obtained from fluctuations of the brane probes. First, we study them numerically for finite quark mass through the phase transition. Moreover, at zero quark mass we calculate the meson spectra analytically both in supergravity and in free field theory on R x S^3 and find that the results match: For the chiral primaries, the lowest level is given by the zero point energy or by the scaling dimension of the operator corresponding to the fluctuations, respectively. The higher levels are equidistant. Similar results apply to the descendents. Our results confirm the physical interpretation that the mesons cannot pair-produce any further when their zero-point energy exc...
Remarks on quantum ﬁeld theory on de Sitter and anti-de Sitter space-times
Indian Academy of Sciences (India)
Henri Epstein
2012-06-01
This is a short review of work done in common with Jacques Bros, Michel Gaudin, Ugo Moschella, and Vincent Pasquier. Among results are explicit Källén–Lehmann representations for products of two free-ﬁeld two-point functions in the de Sitter and the anti-de Sitter spaces and applications to particle decay.
Renormalised fermion vacuum expectation values on anti-de Sitter space-time
Ambrus, Victor E
2015-01-01
The Schwinger-de Witt and Hadamard methods are used to obtain renormalised vacuum expectation values for the fermion condensate, charge current and stress-energy tensor of a quantum fermion field of arbitrary mass on four-dimensional anti-de Sitter space-time. The quantum field is in the global anti-de Sitter vacuum state. The results are compared with those obtained using the Pauli-Villars and zeta-function regularisation methods, respectively.
Non-Abelian cosmic strings in de Sitter and anti-de Sitter space
Santos, Antônio de Pádua
2015-01-01
In this paper we investigate the non-Abelian cosmic string in de Sitter and anti-de Sitter spacetimes. In order to do that we construct the complete set of equations of motion considering the presence of a cosmological constant. By using numerical analysis we provide the behavior of the Higgs and gauge fields and also for the metric tensor for specific values of the physical parameters of the theory. For de Sitter case, we find the appearance of horizons that although being consequence of the presence of the cosmological constant it strongly depends on the value of the gravitational coupling. In the anti-de Sitter case, we find that the system does not present horizons. In fact the new feature of this system is related with the behavior of the $(00)$ and $(zz)$ components of the metric tensor. They present a strongly increasing for large distance from the string.
Phase space localization for anti-de Sitter quantum mechanics and its zero curvature limit
Elgradechi, Amine M.
1993-01-01
Using techniques of geometric quantization and SO(sub 0)(3,2)-coherent states, a notion of optimal localization on phase space is defined for the quantum theory of a massive and spinning particle in anti-de Sitter space time. It is shown that this notion disappears in the zero curvature limit, providing one with a concrete example of the regularizing character of the constant (nonzero) curvature of the anti-de Sitter space time. As a byproduct a geometric characterization of masslessness is obtained.
p-q-superstrings in Anti-de-Sitter space-time
Hartmann, Betti; Minkov, Momchil
2008-01-01
We study a field theoretical model for p-q-superstrings in a fixed Anti-de-Sitter background. We find that the presence of the negative cosmological constant tends to decrease the core radius of the strings. Moreover, the binding energy decreases with the increase of the absolute value of the cosmological constant. Studying the effect of the p-q-strings on Anti-de-Sitter space, we observe that the presence of the negative cosmological constant tends to decrease the deficit angle as compared t...
Critical gravity as van Dam-Veltman-Zakharov discontinuity in anti de Sitter space
Myung, Yun Soo
2011-01-01
We consider critical gravity as van Dam-Vletman-Zakharov (vDVZ) discontinuity in anti de Sitter space. For this purpose, we introduce the higher curvature gravity. This discontinuity can be confirmed by calculating the residues of relevant poles explicitly. For the non-critical gravity of $0
Entanglement Entropy of Black Holes and Anti-de Sitter Space/Conformal-Field-Theory Correspondence
International Nuclear Information System (INIS)
A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L2lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted
Entanglement entropy of black holes and anti-de Sitter space/conformal-field-theory correspondence.
Solodukhin, Sergey N
2006-11-17
A recent proposal by Ryu and Takayanagi for a holographic interpretation of entanglement entropy in conformal field theories dual to supergravity on anti-de Sitter space is generalized to include entanglement entropy of black holes living on the boundary of anti-de Sitter space. The generalized proposal is verified in boundary dimensions d=2 and d=4 for both the uv-divergent and uv-finite terms. In dimension d=4 an expansion of entanglement entropy in terms of size L of the subsystem outside the black hole is considered. A new term in the entropy of dual strongly coupled conformal-field theory, which universally grows as L(2)lnL and is proportional to the value of the obstruction tensor at the black hole horizon, is predicted. PMID:17155672
Recursive Techniques for Computing Gluon Scattering in Anti-de-Sitter Space
Shyaka, Claude; Kharel, Savan
2016-03-01
The anti-de Sitter/conformal field theory correspondence is a relationship between two kinds of physical theories. On one side of the duality are special type of quantum (conformal) field theories known as the Yang-Mills theory. These quantum field theories are known to be equivalent to theories of gravity in Anti-de Sitter (AdS) space. The physical observables in the theory are the correlation functions that live in the boundary of AdS space. In general correlation functions are computed using configuration space and the expressions are extremely complicated. Using momentum basis and recursive techniques developed by Raju, we extend tree level correlation functions for four and five-point correlation functions in Yang-Mills theory in Anti-de Sitter space. In addition, we show that for certain external helicity, the correlation functions have simple analytic structure. Finally, we discuss how one can generalize these results to n-point functions. Hendrix college odyssey Grant.
Thermodynamics for radiating shells in anti-de Sitter space-time
International Nuclear Information System (INIS)
A thermodynamical description for the quasi-static collapse of radiating, self-gravitating spherical shells of matter in anti-de Sitter space-time is obtained. It is shown that the specific heat at constant area and other thermodynamical quantities may diverge before a black hole has eventually formed. This suggests the possibility of a phase transition occurring along the collapse process. The differences with respect to the asymptotically flat case are also highlighted
Spherical Waves of Spin-1 Particle in Anti de Sitter Space-Time
International Nuclear Information System (INIS)
Three possible techniques to deal with a vector particle in the anti de Sitter cosmological model are viewed: the Duffin-Kemmer-Petiau matrix formalism based on the general tetrad recipe, the group theory 5-dimensional approach based on the symmetry group SO(3,2), and the tetrad form of Maxwell equations in complex Riemann-Silberstein-Majorana- Oppenheimer representation. In the first part, a spin-1 massive field is considered in static coordinates of the anti de Sitter space-time in tetradbased approach. The complete set of spherical solutions with quantum numbers (ε, j, m, l) is constructed; angular dependence in wave functions is described in terms of Wigner D-functions. The energy quantization rule has been found. Transition to a massless case of electromagnetic field is specified, and electromagnetic solutions in Lorentz gauge have been constructed. In the second part, the problem of the particle with spin 1 is considered on the base of the 5-dimensional wave equation specified in the same static coordinates. In the third part, an approach, based on complex representation of the Maxwell field is applied in the anti de Sitter model. (authors)
Brane collisions in anti-de Sitter space
Neronov, Andrey
2001-01-01
From the requirement of continuous matching of bulk metric around the point of brane collision we derive a conservation law for collisions of p-branes in (p+2)-dimensional space-time. This conservation law relates energy densities on the branes before and after the collision. Using this conservation law we are able to calculate the amount of matter produced in the collision of orbifold-fixed brane with a bulk brane in the ``ekpyrotic/pyrotechnic type'' models of brane cosmologies.
Stability of black holes and solitons in Anti-de Sitter space-time
International Nuclear Information System (INIS)
The stability of black holes and solitons in d-dimensional Anti-de Sitter (AdSd) space-time against scalar field condensation is discussed. The resulting solutions are “hairy” black holes and solitons, respectively. In particular, we will discuss static black hole solutions with hyperbolic, flat and spherical horizon topology and emphasize that two different type of instabilities exist depending on whether the scalar field is charged or uncharged, respectively. We will also discuss the influence of Gauss-Bonnet curvature terms. The results have applications within the AdS/CFT correspondence and describe e.g. holographic insulator/conductor/superconductor phase transitions
Quantum Fields in anti-de Sitter space and the Maldacena conjecture
Braga, Nelson R. F.
2002-01-01
We review in this lecture the relation between the Maldacena Conjecture, also known as AdS/CFT correspondence, and the so called Holographic principle that seems to be an essential ingredient for a quantum gravity theory. We also illustrate the idea of Holography by showing that the curvature of the anti-de Sitter space reduces the number of degrees of freedom making it possible to find a mapping between a quantum theory defined on the bulk and another defined on the corresponding boundary.
Brane collisions in anti-de Sitter space
International Nuclear Information System (INIS)
From the requirement of continuous matching of bulk metric around the point of brane collision we derive a conservation law for collisions of p-branes in (p+2)-dimensional space-time. This conservation law relates energy densities on the branes before and after the collision. Using this conservation law we are able to calculate the amount of matter produced in the collision of orbifold-fixed brane with a bulk brane in the 'ekpyrotic/pyrotechnic type' models of brane cosmologies. (author)
Lightlike Braneworlds in Anti-de Sitter Bulk Space-times
Guendelman, Eduardo; Nissimov, Emil; Pacheva, Svetlana
2011-01-01
We consider five-dimensional Einstein-Maxwell-Kalb-Ramond system self-consistently coupled to a lightlike 3-brane, where the latter acts as material, charge and variable cosmological constant source. We find wormhole-like solutions whose total space-time manifold consists of either (a) two "universes", which are identical copies of the exterior space-time region (beyond the horizon) of 5-dimensional Schwarzschild-anti-de Sitter black hole, or (b) a "right" "universe" comprising the exterior space-time region of Reissner-Nordstroem-anti-de Sitter black hole and a "left" "universe" being the Rindler "wedge" of 5-dimensional flat Minkowski space. The wormhole "throat" connecting these "universes", which is located on their common horizons, is self-consistently occupied by the lightlike 3-brane as a direct result of its dynamics given by an explicit reparametrization-invariant world-volume Lagrangian action. The intrinsic world-volume metric on the 3-brane turns out to be flat, which allows its interpretation as ...
Massless and Massive Higher Spins from Anti-de Sitter Space Waveguide
Gwak, Seungho; Rey, Soo-Jong
2016-01-01
Higgs mechanism to massive higher-spin gauge fields is an outstanding open problem. We investigate this issue in the context of Kaluza-Klein compactification. Starting from a free massless higher-spin field in $(d+2)$-dimensional anti-de Sitter space and compactifying over a finite angular wedge, we obtain an infinite tower of heavy, light and massless higher-spin fields in $(d+1)$-dimensional anti-de Sitter space. All massive higher-spin fields are described gauge invariantly in terms of St\\"ueckelberg fields. The spectrum depends on the boundary conditions imposed at both ends of the wedges. We obseved that higher-derivative boundary condition is inevitable for spin greater than three. For some higher-derivative boundary conditions, equivalently, spectrum-dependent boundary conditions, we get a non-unitary representation of partially-massless higher-spin fields of varying depth. We present intuitive picture which higher-derivative boundary conditions yield non-unitary system in terms of boundary action. We ...
Spinning $\\sigma$-model solitons in $2+1$ Anti-de Sitter space
Harms, B
2016-01-01
We obtain spinning topological solitons solutions of the nonlinear $\\sigma$-model in $2+1 $ dimensional Anti-de Sitter space using numerical methods. Two types of solutions, which we denote by $i)$ and $ii)$, are found. The $\\sigma$-model fields are everywhere well defined for both types of solutions, but they differ in their space-time domains. The space-time domain for the type $ii)$ solutions is singularity free. On the other hand, any time slice of the space-time for the type $i)$ solution has a causal singularity, despite the fact that all scalars constructed from the curvature tensor are bounded functions. No evidence of a horizon is seen for any of the solutions, and therefore the type $i)$ solutions have naked singularities.
Quantum mechanics and field theory with momentum defined on an anti-de-Sitter space
Bander, Myron
2010-01-01
Relativistic dynamics with energy and momentum resricted to an anti-de-Sitter space is presented, specifically in the introduction of coordiate operators conjugate to such momenta. Definition of functions of these operators, their differentiation and integration, all necessary for the development of dynamics is presented. The resulting algebra differs from the standard Heisenberg one, notably in that the space-time coordinates do not commute among each other. The resulting time variable is discrete and the limit to continuous time presents difficulties. A parallel approach, in which an overlap function, between position and momentum states, is obtained from solutions of wave equations on this curved space are also investigated. This approach, likewise, has problems in the that high energy behavior of these overlap functions precludes a space-time definition of action functionals.
Higgs phenomenon for 4-D gravity in anti de Sitter space
International Nuclear Information System (INIS)
We show that standard Einstein gravity coupled to a free conformal field theory (CFT) in anti-de Sitter space can undergo a Higgs phenomenon whereby the graviton acquires a nonzero mass (and three extra polarizations). We show that the essential ingredients of this mechanism are the discreteness of the energy spectrum in AdS space, and unusual boundary conditions on the elementary fields of the CFT. These boundary conditions can be interpreted as implying the existence of a 3-d defect CFT living at the boundary of AdS4. Our free-field computation sheds light on the essential, model-independent features of AdS4 that give rise to massive gravity. (author)
Collapse of self-interacting scalar field in anti-de Sitter space
Cai, Rong-Gen; Yang, Run-Qiu
2015-01-01
The gravitational collapse of a massless scalar field with a self-interaction term $\\lambda\\phi^4$ in anti-de Sitter space is investigated. We numerically investigate the effect of the self-interaction term on the critical amplitudes, forming time of apparent horizon, stable island and energy transformation. The results show that a positive $\\lambda$ suppresses the formation of black hole, while a negative $\\lambda$ enhances the process. We define two susceptibilities to characterize the effect of the self-interaction on the black hole formation, and find that near the critical amplitude, there exists a universal scaling relation with the critical exponent $\\alpha \\approx 0.74$ for the time of black hole formation.
Inside and outside stories of black-branes in anti de Sitter space
International Nuclear Information System (INIS)
In this paper, we investigate the dynamics inside and outside of black-branes in anti de Sitter space by numerical simulations using double-null formalism. We prepare a charged planar matter shell which, due to a negative cosmological constant, collapses and dynamically forms a black-brane with an apparent horizon, a singularity and a Cauchy horizon. The gravitational collapse cannot form a naked overcharged black-brane and hence weak cosmic censorship is safe. Although mass inflation occurs, the effect is much milder than in the case of charged black holes; hence, strong cosmic censorship seems not to be safe. We observed the scalar field dynamics outside the horizon. There should remain a non-trivial scalar field combination—‘charge cloud’—between the horizon and the boundary. This can give some meaning in terms of the AdS/CFT correspondence. (paper)
The Emergence of Superconducting Systems in Anti-de Sitter Space
Wu, W M; Forrester, D M; Kusmartsev, F V
2016-01-01
In this article, we investigate the mathematical relationship between a (3+1) dimensional gravity model inside Anti-de Sitter space $\\rm AdS_4$, and a (2+1) dimensional superconducting system on the asymptotically flat boundary of $\\rm AdS_4$ (in the absence of gravity). We consider a simple case of the Type II superconducting model (in terms of Ginzburg-Landau theory) with an external perpendicular magnetic field ${\\bf H}$. An interaction potential $V(r,\\psi) = \\alpha(T)|\\psi|^2/r^2+\\chi|\\psi|^2/L^2+\\beta|\\psi|^4/(2 r^k )$ is introduced within the Lagrangian system. This provides more flexibility within the model, when the superconducting system is close to the transition temperature $T_c$. Overall, our result demonstrates that the two Ginzburg-Landau differential equations can be directly deduced from Einstein's theory of general relativity.
Abundant stable gauge field hair for black holes in anti-de Sitter space.
Baxter, J E; Helbling, Marc; Winstanley, Elizabeth
2008-01-11
We present new hairy black hole solutions of SU(N) Einstein-Yang-Mills (EYM) theory in asymptotically anti-de Sitter (AdS) space. These black holes are described by N+1 independent parameters and have N-1 independent gauge field degrees of freedom. Solutions in which all gauge field functions have no zeros exist for all N, and for a sufficiently large (and negative) cosmological constant. At least some of these solutions are shown to be stable under classical, linear, spherically symmetric perturbations. Therefore there is no upper bound on the amount of stable gauge field hair with which a black hole in AdS can be endowed. PMID:18232751
Holographic thermalization, stability of anti-de sitter space, and the Fermi-Pasta-Ulam paradox.
Balasubramanian, Venkat; Buchel, Alex; Green, Stephen R; Lehner, Luis; Liebling, Steven L
2014-08-15
For a real massless scalar field in general relativity with a negative cosmological constant, we uncover a large class of spherically symmetric initial conditions that are close to anti-de Sitter space (AdS) but whose numerical evolution does not result in black hole formation. According to the AdS/conformal field theory (CFT) dictionary, these bulk solutions are dual to states of a strongly interacting boundary CFT that fail to thermalize at late times. Furthermore, as these states are not stationary, they define dynamical CFT configurations that do not equilibrate. We develop a two-time-scale perturbative formalism that captures both direct and inverse cascades of energy and agrees with our fully nonlinear evolutions in the appropriate regime. We also show that this formalism admits a large class of quasiperiodic solutions. Finally, we demonstrate a striking parallel between the dynamics of AdS and the classic Fermi-Pasta-Ulam-Tsingou problem. PMID:25170699
Quantum groups, roots of unity and particles on quantized Anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Steinacker, H [Univ. of California, Berkeley, CA (United States). Dept. of Physics
1997-05-23
Quantum groups in general and the quantum Anti-de Sitter group U{sub q}(so(2,3)) in particular are studied from the point of view of quantum field theory. The author shows that if q is a suitable root of unity, there exist finite-dimensional, unitary representations corresponding to essentially all the classical one-particle representations with (half) integer spin, with the same structure at low energies as in the classical case. In the massless case for spin {ge} 1, {open_quotes}naive{close_quotes} representations are unitarizable only after factoring out a subspace of {open_quotes}pure gauges{close_quotes}, as classically. Unitary many-particle representations are defined, with the correct classical limit. Furthermore, the author identifies a remarkable element Q in the center of U{sub q}(g), which plays the role of a BRST operator in the case of U{sub q}(so(2,3)) at roots of unity, for any spin {ge} 1. The associated ghosts are an intrinsic part of the indecomposable representations. The author shows how to define an involution on algebras of creation and anihilation operators at roots of unity, in an example corresponding to non-identical particles. It is shown how nonabelian gauge fields appear naturally in this framework, without having to define connections on fiber bundles. Integration on Quantum Euclidean space and sphere and on Anti-de Sitter space is studied as well. The author gives a conjecture how Q can be used in general to analyze the structure of indecomposable representations, and to define a new, completely reducible associative (tensor) product of representations at roots of unity, which generalizes the standard {open_quotes}truncated{close_quotes} tensor product as well as many-particle representations.
Vacuum for a massless quantum scalar field outside a collapsing shell in anti-de Sitter space-time
Abel, Paul G
2015-01-01
We consider a massless quantum scalar field on a two-dimensional space-time describing a thin shell of matter collapsing to form a Schwarzschild-anti-de Sitter black hole. At early times, before the shell starts to collapse, the quantum field is in the vacuum state, corresponding to the Boulware vacuum on an eternal black hole space-time. The scalar field satisfies reflecting boundary conditions on the anti-de Sitter boundary. Using the Davies-Fulling-Unruh prescription for computing the renormalized expectation value of the stress-energy tensor, we find that at late times the black hole is in thermal equilibrium with a heat bath at the Hawking temperature, so the quantum field is in a state analogous to the Hartle-Hawking vacuum on an eternal black hole space-time.
Critical phenomena of regular black holes in anti-de Sitter space-time
Fan, Zhong-Ying
2016-01-01
In General Relativity coupled to a non-linear electromagnetic field, together with a negative cosmological constant, we obtain the general static spherical symmetric black hole solution with magnetic charges, which is asymptotic to anti-de Sitter (AdS) space-times. In particular, for a degenerate case the solution becomes a Hayward-AdS black hole, which is regular everywhere in the full space-time. The existence of such a regular black hole solution preserves the weak energy condition while the strong energy condition is violated. We then derive the first law and the Smarr formula of the black hole solution. We further discuss its thermodynamic properties and study the critical phenomena in the extended phase space where the cosmological constant is treated as a thermodynamic variable as well as the parameter associated with the non-linear electrodynamics. We obtain many interesting results such as: the Maxwell's equal area law in the $P-V$ (or $S-T$) diagram is violated and consequently the critical point $(...
The Hawking-Page crossover in noncommutative anti-deSitter space
Nicolini, Piero
2011-01-01
We study the problem of a Schwarzschild-anti-deSitter black hole in a noncommutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.
Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.
Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor
2015-02-20
Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude. PMID:25763946
Graviton n-point functions for UV-complete theories in Anti-de Sitter space
Brustein, Ram; Medved, A. J. M.
2012-01-01
We calculate graviton n-point functions in an anti-de Sitter black brane background for effective gravity theories whose linearized equations of motion have at most two time derivatives. We compare the n-point functions in Einstein gravity to those in theories whose leading correction is quadratic in the Riemann tensor. The comparison is made for any number of gravitons and for all physical graviton modes in a kinematic region for which the leading correction can significantly modify the Eins...
Li, L X
2005-01-01
In this Letter we show that the vacuum polarization of quantum fields in an anti-de Sitter space naturally gives rise to a small but nonzero cosmological constant in a brane world living in it. To explain the extremely small ratio of mass density in the cosmological constant to the Planck mass density in our universe (\\approx 10^{-123}) as suggested by cosmological observations, all we need is a four-dimensional brane world (our universe) living in a five-dimensional anti-de Sitter space with a curvature radius r_0 \\sim 10^{-3}cm and a fundamental Planck energy M_P \\sim 10^9 GeV, and a scalar field with a mass m \\sim r_0^{-1}\\sim 10^{-2}eV. Probing gravity down to a scale \\sim 10^{-3}cm, which is attainable in the near future, will provide a test of the model.
Boundary Dynamics of Three-Dimensional Asymptotically Anti-de Sitter Space-Times
van Albada, Sacha Jennifer
2016-01-01
This thesis is organized as follows. In Chapter 2, some preliminaries are given on isometries and conformal symmetries, and we become familiar with the Virasoro algebra. Two examples of classical central charges are discussed. Chapter 3 contains an introduction to the Hamiltonian formulation of gauge theories in the context of Maxwell theory. The knowledge gained in Chapter 3 is applied to general relativity in Chapter 4. The Hamiltonian is shown to acquire a surface term due to the presence of the boundary. The geometrical properties of anti-de Sitter space and the BTZ black hole are the subject of Chapter 5. The main part of the discussion follows in Chapter 6, which contains the calculation of the central charge in the asymptotic symmetry algebra of asymptotically AdS3 space-times. After some preliminaries on the AdS/CFT correspondence and Chern-Simons theory, the derivation of the boundary conformal field theory is summarized in Chapter 7. Finally, Strominger's entropy calculation is presented in Chapter ...
Black hole formation from pointlike particles in three-dimensional anti-de Sitter space
Lindgren, E. J.
2016-07-01
We study collisions of many point-like particles in three-dimensional anti-de Sitter space, generalizing the known result with two particles. We show how to construct exact solutions corresponding to the formation of either a black hole or a conical singularity from the collision of an arbitrary number of massless particles falling in radially from the boundary. We find that when going away from the case of equal energies and discrete rotational symmetry, this is not a trivial generalization of the two-particle case, but requires that the excised wedges corresponding to the particles must be chosen in a very precise way for a consistent solution. We also explicitly take the limit when the number of particles goes to infinity and obtain thin shell solutions that in general break rotational invariance, corresponding to an instantaneous and inhomogeneous perturbation at the boundary. We also compute the stress–energy tensor of the shell using the junction formalism for null shells and obtain agreement with the point particle picture.
Induced vacuum currents in anti-de Sitter space with toral dimensions
Directory of Open Access Journals (Sweden)
E.R. Bezerra de Mello
2015-02-01
Full Text Available We investigate the Hadamard function and the vacuum expectation value of the current density for a charged massive scalar field on a slice of anti-de Sitter (AdS space described in Poincaré coordinates with toroidally compact dimensions. Along compact dimensions periodicity conditions are imposed on the field with general phases. Moreover, the presence of a constant gauge field is assumed. The latter gives rise to Aharonov–Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially.
Induced vacuum currents in anti-de Sitter space with toral dimensions
de Mello, E R Bezerra; Vardanyan, V
2015-01-01
We investigate the Hadamard function and the vacuum expectation value of the current density for a charged massive scalar field on a slice of anti-de Sitter (AdS) space described in Poincar\\'{e} coordinates with toroidally compact dimensions. Along compact dimensions periodicity conditions are imposed on the field with general phases. Moreover, the presence of a constant gauge field is assumed. The latter gives rise to Aharonov-Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from from the corresponding on...
Induced vacuum currents in anti-de Sitter space with toral dimensions
Energy Technology Data Exchange (ETDEWEB)
Bezerra de Mello, E.R., E-mail: emello@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, 58.059-970, Caixa Postal 5.008, João Pessoa, PB (Brazil); Saharian, A.A., E-mail: saharian@ysu.am [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Departamento de Física, Universidade Federal da Paraíba, 58.059-970, Caixa Postal 5.008, João Pessoa, PB (Brazil); Vardanyan, V. [Department of Physics, Yerevan State University, 1 Alex Manoogian Street, 0025 Yerevan (Armenia); Institut für Theoretische Physik, Ruprecht-Karls-Universität Heidelberg, Philosophenweg 16, 69120 Heidelberg (Germany)
2015-02-04
We investigate the Hadamard function and the vacuum expectation value of the current density for a charged massive scalar field on a slice of anti-de Sitter (AdS) space described in Poincaré coordinates with toroidally compact dimensions. Along compact dimensions periodicity conditions are imposed on the field with general phases. Moreover, the presence of a constant gauge field is assumed. The latter gives rise to Aharonov–Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially.
The Brown-York mass of black holes in Warped Anti-de Sitter space
Giribet, Gastón
2013-01-01
We give a direct computation of the mass of black holes in Warped Anti-de Sitter space (WAdS) in terms of the Brown-York stress-tensor at the boundary. This permits to explore to what extent the holographic renormalization techniques can be applied to such type of deformation of AdS. We show that, despite some components of the boundary stress-tensor diverge and resist to be regularized by the introduction of local counterterms, the precise combination that gives the quasilocal energy density yields a finite integral. The result turns out to be in agreement with previous computations of the black hole mass obtained with different approaches. This is seen to happen both in the case of Topologically Massive Gravity and of the so-called New Massive Gravity. Here, we focus our attention on the latter. We observe that, despite other conserved charges diverge in the near boundary limit, the finite part in the large radius expansion captures the physically relevant contribution. We compute the black hole angular mom...
Induced vacuum currents in anti-de Sitter space with toral dimensions
International Nuclear Information System (INIS)
We investigate the Hadamard function and the vacuum expectation value of the current density for a charged massive scalar field on a slice of anti-de Sitter (AdS) space described in Poincaré coordinates with toroidally compact dimensions. Along compact dimensions periodicity conditions are imposed on the field with general phases. Moreover, the presence of a constant gauge field is assumed. The latter gives rise to Aharonov–Bohm-like effects on the vacuum currents. The current density along compact dimensions is a periodic function of the gauge field flux with the period equal to the flux quantum. It vanishes on the AdS boundary and, near the horizon, to the leading order, it is conformally related to the corresponding quantity in Minkowski bulk for a massless field. For large values of the length of the compact dimension compared with the AdS curvature radius, the vacuum current decays as power-law for both massless and massive fields. This behavior is essentially different from the corresponding one in Minkowski background, where the currents for a massive field are suppressed exponentially
A large-D Weyl invariant string model in Anti-de Sitter space
International Nuclear Information System (INIS)
In this thesis we present a novel scheme for calculating the bosonic string partition function on certain curved backgrounds related to Anti-de Sitter (AdS) space. We take the concept of a large N expansion from nonlinear sigma models in particle physics and apply it to the bosonic string theory sigma model, where the analogous large dimensionless parameter is the dimension of the target space, D. We then perform a perturbative expansion in negative powers of D, rather than in positive powers of α'/l2 (the conventional expansion parameter). As a specific example of a curved geometry of interest, we focus on an example of the metric proposed by Polyakov [1] to describe the dynamics of the Wilson loop of pure SU(N) Yang-Mills theory, namely AdS space. Using heat kernel methods, we find that within the large-D scheme one can obtain different conditions for Weyl invariance than those found in [2]. This is because our scheme is valid for backgrounds where α'/l2 is no longer small. In particular, we find that it is possible to have a dilaton that depends on the holographic coordinate only, provided one allows mixing of the ghost and matter sectors of the worldsheet theory. This field preserves Poincare invariance in the gauge theory, unlike the conventional dilaton. We also compute a simple string amplitude by constructing certain vertex operators for a scalar field in AdS, and discuss the consequences for the string spectrum. (author)
Bjorken flow from an anti-de Sitter space Schwarzschild black hole.
Alsup, James; Siopsis, George
2008-07-18
We consider a large black hole in asymptotically anti-de Sitter spacetime of arbitrary dimension with a Minkowski boundary. By performing an appropriate slicing as we approach the boundary, we obtain via holographic renormalization a gauge theory fluid obeying Bjorken hydrodynamics in the limit of large longitudinal proper time. The metric we obtain reproduces to leading order the metric recently found as a direct solution of the Einstein equations in five dimensions. Our results are also in agreement with recent exact results in three dimensions. PMID:18764245
The Hawking-Page crossover in noncommutative anti-deSitter space
Nicolini, Piero; Torrieri, Giorgio
2011-08-01
We study the problem of a Schwarzschild-anti-deSitter black hole in a non-commutative geometry framework, thought to be an effective description of quantum-gravitational spacetime. As a first step we derive the noncommutative geometry inspired Schwarzschild-anti-deSitter solution. After studying the horizon structure, we find that the curvature singularity is smeared out by the noncommutative fluctuations. On the thermodynamics side, we show that the black hole temperature, instead of a divergent behavior at small scales, admits a maximum value. This fact implies an extension of the Hawking-Page transition into a van der Waals-like phase diagram, with a critical point at a critical cosmological constant size in Plank units and a smooth crossover thereafter. We speculate that, in the gauge-string dictionary, this corresponds to the confinement "critical point" in number of colors at finite number of flavors, a highly non-trivial parameter that can be determined through lattice simulations.
The second law of thermodynamics, TCP, and Einstein causality in anti-de Sitter space-time
Buchholz, Detlev; Florig, Martin; Summers, Stephen J.
1999-01-01
If the vacuum is passive for uniformly accelerated observers in anti-de Sitter space-time (i.e. cannot be used by them to operate a "perpetuum mobile"), they will (a) register a universal value of the Hawking-Unruh temperature, (b) discover a TCP symmetry, and (c) find that observables in complementary wedge-shaped regions are commensurable (local) in the vacuum state. These results are model independent and hold in any theory which is compatible with some weak notion of space-time localization.
Prasia, P
2016-01-01
In this work we study the Quasi Normal Modes(QNMs) under massless scalar perturbations and the thermodynamics of linearly charged BTZ black holes in massive gravity in the (Anti)de Sitter((A)dS) space time. It is found that the behavior of QNMs changes with the massive parameter and also with the charge of the black hole. The thermodynamics of such black holes in the (A)dS space time is also analyzed in detail. The behavior of specific heat with temperature for such black holes gives an indication of a phase transition that depends on the massive parameter and also on the charge of the black hole.
Solitons and hairy black holes in Einstein-non-Abelian-Proca theory in anti-de Sitter space-time
Ponglertsakul, Supakchai
2016-01-01
We present new soliton and hairy black hole solutions of Einstein-non-Abelian-Proca theory in asymptotically anti-de Sitter space-time with gauge group ${\\mathfrak {su}}(2)$. For static, spherically symmetric configurations, we show that the gauge field must be purely magnetic, and solve the resulting field equations numerically. The equilibrium gauge field is described by a single function $\\omega (r)$, which must have at least one zero. The solitons and hairy black holes share many properties with the corresponding solutions in asymptotically flat space-time. In particular, all the solutions we study are unstable under linear, spherically symmetric, perturbations of the metric and gauge field.
Radial dimensional reduction: (anti) de Sitter theories from flat
International Nuclear Information System (INIS)
We propose a new form of dimensional reduction that constrains dilatation instead of a component of momentum. It corresponds to replacing toroidal compactification in a cartesian coordinate with that in the logarithm of the radius. Massive theories in de Sitter or anti de Sitter space are thus produced from massless (scale invariant) theories in one higher space or time dimension. As an example, we derive free massive actions for arbitrary representations of the (anti) de Sitter group in arbitrary dimensions. (Previous general results were restricted to symmetric tensors.) We also discuss generalizations to interacting theories. (author)
More on asymptotically anti-de Sitter spaces in topologically massive gravity
International Nuclear Information System (INIS)
Recently, the asymptotic behavior of three-dimensional anti-de Sitter (AdS) gravity with a topological mass term was investigated. Boundary conditions were given that were asymptotically invariant under the two dimensional conformal group and that included a falloff of the metric sufficiently slow to consistently allow pp-wave type of solutions. Now, pp waves can have two different chiralities. Above the chiral point and at the chiral point, however, only one chirality can be considered, namely, the chirality that has the milder behavior at infinity. The other chirality blows up faster than AdS and does not define an asymptotically AdS spacetime. By contrast, both chiralities are subdominant with respect to the asymptotic behavior of AdS spacetime below the chiral point. Nevertheless, the boundary conditions given in the earlier treatment only included one of the two chiralities (which could be either one) at a time. We investigate in this paper whether one can generalize these boundary conditions in order to consider simultaneously both chiralities below the chiral point. We show that this is not possible if one wants to keep the two-dimensional conformal group as asymptotic symmetry group. Hence, the boundary conditions given in the earlier treatment appear to be the best possible ones compatible with conformal symmetry. In the course of our investigations, we provide general formulas controlling the asymptotic charges for all values of the topological mass (not just below the chiral point).
On supersymmetric Anti-de-Sitter, de-Sitter and Minkowski flux backgrounds
Gran, U; Papadopoulos, G
2016-01-01
We test the robustness of the conditions required for the existence of (supersymmetric) warped flux anti-de Sitter, de Sitter, and Minkowski backgrounds in supergravity theories using as examples suitable foliations of anti-de Sitter spaces. We find that there are supersymmetric de Sitter solutions in supergravity theories including maximally supersymmetric ones in 10- and 11-dimensional supergravities. Moreover, warped flux Minkowski backgrounds can admit Killing spinors which are not Killing on the Minkowski subspace and therefore cannot be put in a factorized form.
Quasinormal modes of black holes in anti-de Sitter space: a numerical and analytical study
International Nuclear Information System (INIS)
Full text. The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena's correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d- dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. The sound-wave (shear-mode) behavior of scalar(vector)-type low-frequency quasinormal mode is analytically and numerically confirmed. Using series solutions and time-domain evolutions, we obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. We probe the eikonal limit of the gravitational and scalar-field quasinormal modes of large black holes and black branes in anti-de Sitter backgrounds, and we confirm all the main qualitative features of these slowly-damped modes as predicted by Festuccia and Liu [G. Festuccia and H. Liu, arXiv: 0811.1033] for the scalar-field (tensor-type gravitational) fluctuations. (author)
International Nuclear Information System (INIS)
We propose a consistent setup for the holographic dual of the strongly coupled large-Nc N=4 super Yang-Mills theory plasma which undergoes the Bjorken flow relevant to the quark-gluon plasma at BNL Relativistic Heavy Ion Collider and CERN LHC. The dual geometry is constructed order by order in a well-defined late-time expansion. The transport coefficients are determined by the regularity of the geometry. We prove, for the first time, that the dual geometry has an apparent horizon, hence, an event horizon, which covers a singularity at the origin. Further we prove that the dual geometry is regular to all orders in the late-time expansion under an appropriate choice of the transport coefficients. This choice is also shown to be unique. Our model serves as a concrete well-defined example of a time-dependent anti-de Sitter-space/conformal-field-theory dual
Holographic Space-time Models of Anti-deSitter Space-times
Banks, Tom
2016-01-01
We study the constraints on HST models of AdS space-time. The causal diamonds of HST along time-like geodesics of AdS space-time, fit nicely into the FRW patch of AdS space. The coordinate singularity of the FRW patch is identified with the proper time at which the Hilbert space of the causal diamond becomes infinite dimensional. For diamonds much smaller than the AdS radius, RAdS, the time dependent Hamiltonians of HST are the same as those used to describe similar diamonds in Minkowski space. In particular, they are invariant under the fuzzy analog of volume preserving diffeomorphisms of the holographic screen, which leads to fast scrambling of perturbations on the horizon of a black hole of size smaller than RAdS. We argue that, in order to take a limit of this system which converges to a CFT, one must choose Hamiltonians, in a range of proper times of order RAdS, which break this invariance, and become local in a particular choice of basis for the variables. We show that, beginning with flat, sub-RAdS, pa...
International Nuclear Information System (INIS)
We reformulate the Bekenstein bound as the requirement of positivity of the Helmholtz free energy at the minimum value of the function L=E-S/(2πR), where R is some measure of the size of the system. The minimum of L occurs at the temperature T=1/(2πR). In the case of n-dimensional anti-de Sitter spacetime, the rather poorly defined size R acquires a precise definition in terms of the AdS radius l, with R=l/(n-2). We previously found that the Bekenstein bound holds for all known black holes in AdS. However, in this paper we show that the Bekenstein bound is not generally valid for free quantum fields in AdS, even if one includes the Casimir energy. Some other aspects of thermodynamics in anti-de Sitter spacetime are briefly touched upon
Asymptotically anti-de Sitter Proca Stars
Duarte, Miguel
2016-01-01
We show that complex, massive spin-1 fields minimally coupled to Einstein's gravity with a negative cosmological constant, admit asymptotically anti-de Sitter self-gravitating solutions. Focusing on 4-dimensional spacetimes, we start by obtaining analytical solutions in the test-field limit, where the Proca field equations can be solved in a fixed anti-de Sitter background, and then find fully non-linear solutions numerically. These solutions are a natural extension of the recently found asymptotically flat Proca stars and share similar properties with scalar boson stars. In particular, we show that they are stable against spherically symmetric linear perturbations for a range of fundamental frequencies limited by their point of maximum mass. We finish with an overview of the behavior of Proca stars in $5$ dimensions.
Who Ordered the Anti-de Sitter Tangent Group?
Chamseddine, Ali H.; Mukhanov, Viatcheslav(Theoretical Physics, Ludwig Maxmillians University, Theresienstr. 37, 80333, Munich, Germany)
2013-01-01
General relativity can be unambiguously formulated with Lorentz, de Sitter and anti-de Sitter tangent groups, which determine the fermionic representations. We show that besides of the Lorentz group only anti-de Sitter tangent group is consistent with all physical requirements.
On the stability of anti-de Sitter spacetime
Deppe, Nils
2016-01-01
We present results from a detailed study of spherically symmetric Einstein-massless-scalar field dynamics with a negative cosmological constant in four to nine spacetime dimensions. This study is the first to examine dynamics in AdS beyond five dimensions and the gauge dependence of recently proposed perturbative methods. Using these perturbative methods, we provide evidence that the oscillatory divergence used to argue for instability of anti-de Sitter space by Bizon et al. is a gauge-dependent effect in five spacetime dimensions. Interestingly, we find that this behavior appears to be gauge-independent in higher dimensions; however, understanding how this divergence depends on the initial data is more difficult. The results we present show that while much progress has been made in understanding the rich dynamics and stability of anti-de Sitter space, a clear route to the answer of whether or not it is stable still eludes us.
A Static Solution of Yang-Mills Equation on Anti-de Sitter Space
Institute of Scientific and Technical Information of China (English)
CHEN Li; REN Xin-An
2009-01-01
Since product metric on AdS space has played a very important role in Lorentz version of AdS/CFT correspondence, the Yang-Mills equation on AdS space with this metric is considered and a static solution is obtained in this paper, which helps to understand the AdS/CFT correspondence of Yang-Mills fields.
Institute of Scientific and Technical Information of China (English)
YANG Shu-Zheng; JIANG Qing-Quan; LI Hui-Ling
2006-01-01
Applying Parikh-Wilzcek's semi-classical quantum tunneling model, we study the Hawking radiation of charged particles as tunneling from the event horizon of a cylindrically symmetric black hole in anti-de Sitter space-time.The derived result shows that the tunneling rate of charged particles is related to the change of Bekenstein-Hawking entropy and that the radiation spectrum is not strictly pure thermal after taking the black hole background dynamical and self-gravitation interaction into account, but is consistent with the underlying unitary theory.
Dilaton Black Holes in de Sitter or Anti-de Sitter Universe
Gao, Chang Jun; Zhang, Shuang Nan
2004-01-01
Poletti and Wiltshire have shown that, with the exception of a pure cosmological constant, the solution of a dilaton black hole in the background of de Sitter or anti-de Sitter universe, does not exist in the presence of one Liouville-type dilaton potential. Here with the combination of three Liouville-type dilaton potentials, we obtain the dilaton black hole solutions in the background of de Sitter or anti-de Sitter universe.
International Nuclear Information System (INIS)
We show that far zone Mach and diffusion wake 'holograms' produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict Nc→∞ supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium 'neck' zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence
Banerjee, Ayan; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur
2014-01-01
Gravitational analyzes in lower dimensions has become a field of active research interest ever since Banados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69, 1849, 1992) proved the existence of a black hole solution in (2 + 1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2 + 1)-dimensional anisotropic star in anti-de Sitter background space-time which have been obtained by assuming that the equation of state (EOS) describing the material composition of the star could either be linear or non-linear in nature. By matching the interior solution to the BTZ exterior metric with zero spin, we have demonstrated that the solutions provided here are regular and well-behaved at the stellar interior.
Noronha, Jorge; Gyulassy, Miklos; Torrieri, Giorgio
2009-03-13
We show that far zone Mach and diffusion wake "holograms" produced by supersonic strings in anti-de Sitter space/conformal field theory (AdS/CFT) correspondence do not lead to observable conical angular correlations in the strict N_{c}-->infinity supergravity limit if Cooper-Frye hadronization is assumed. However, a special nonequilibrium "neck" zone near the jet is shown to produce an apparent sonic boom azimuthal angle distribution that is roughly independent of the heavy quark's velocity. Our results indicate that a measurement of the dependence of the away-side correlations on the velocity of associated identified heavy quark jets at the BNL Relativistic Heavy Ion Collider and CERN LHC will provide a direct test of the nonperturbative dynamics involved in the coupling between jets and the strongly coupled quark-gluon plasma implied by AdS/CFT correspondence. PMID:19392107
Do supersymmetric anti-de Sitter black rings exist?
International Nuclear Information System (INIS)
We determine the most general near-horizon geometry of a supersymmetric, asymptotically anti-de Sitter, black hole solution of five-dimensional minimal gauged supergravity that admits two rotational symmetries. The near-horizon geometry is that of the supersymmetric, topologically spherical, black hole solution of Chong et al. This proves that regular supersymmetric anti-de Sitter black rings with two rotational symmetries do not exist in minimal supergravity. However, we do find a solution corresponding to the near-horizon geometry of a supersymmetric black ring held in equilibrium by a conical singularity, which suggests that nonsupersymmetric anti-de Sitter black rings may exist but cannot be 'balanced' in the supersymmetric limit
No absorption in de Sitter space
Myung, Y S
2003-01-01
We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate its cosmological horizon in the southern diamond. By analogy of the quantum mechanics, it is found that there is no absorption in de Sitter space. This means that de Sitter space is usually in thermal equilibrium, like the black hole in anti de Sitter space. It confirms that the cosmological horizon not only emits radiation but also absorbs that previously emitted by itself at the same rate, keeping the curvature radius of de Sitter space fixed.
(Anti-)de Sitter Black Hole Entropy and Generalized Uncertainty Principle
Institute of Scientific and Technical Information of China (English)
ZHAO Ren; ZHANG Li-Chun; HU Shuang-Qi
2006-01-01
We generalize the method that is used to study corrections to Cardy-Verlinde formula due to generalized uncertainty principle and discuss corrections to Cardy-Verlinde formula due to generalized uncertainty principle in (anti)-de Sitter space. Because in de Sitter black hole spacetime the radiation temperature of the black hole horizon is different from the one of the cosmological horizon, this spacetime is a thermodynamical non-equilibrium spacetime.
Superradiant instabilities of asymptotically anti-de Sitter black holes
Green, Stephen R.; Hollands, Stefan; Ishibashi, Akihiro; Wald, Robert M.
2016-06-01
We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension d≥slant 4. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, { E }. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ergoregions, initial data can be constructed such that { E }\\lt 0, so all such black holes are unstable. To obtain such initial data, we first construct an approximate solution to the constraint equations using the WKB method, and then we use the Corvino–Schoen technique to obtain an exact solution. We also discuss the case of charged asymptotically anti-de Sitter black holes with generalized ergoregions.
Dynamically broken Anti-de Sitter action for gravity
Tresguerres, Romualdo
2008-01-01
Due to a suitable Higgs mechanism, a standard Anti-de Sitter gauge theory becomes spontaneously broken. The resulting Lorentz invariant gravitational action includes the Hilbert-Einstein term of ordinary Einstein-Cartan gravity with cosmological constant, plus contributions quadratic in curvature and torsion, and a scalar Higgs sector.
Fermions in (Anti) de Sitter Gravity in Four Dimensions
Ikeda, Noriaki; Fukuyama, Takeshi
2009-01-01
Fermions in (anti) de Sitter gravity theory in four dimensions are considered. Especially we propose new fermion actions to derive a Weyl or Majorana fermion action if we break the AdS (dS) group to the Lorentz group in curved spacetime.
On electric field in anti-de Sitter spacetime
International Nuclear Information System (INIS)
In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge
Kazempour, Sobhan; Soroushfar, Saheb
2016-01-01
In this paper we add a compact dimension to Schwarzschild-(anti-) de sitter and Kerr-(anti-) de sitter spacetimes, which describes (rotating) black string-(anti-) de sitter spacetime. We study the geodesic motion of test particles and light rays in this spacetime. We present the analytical solutions of the geodesic equations in terms of Weierstrass elliptic and Kleinian sigma hyperelliptical functions. We also discuss the possible orbits and classify them according to particle's energy and angular momentum. Moreover, the obtained results, are compared to Schwarzschild-(anti-) de sitter and Kerr-(anti-) de sitter spacetimes.
Gravitational theories with stable (anti-)de Sitter backgrounds
Biswas, Tirthabir; Mazumdar, Anupam
2016-01-01
In this article we will construct the most general torsion-free parity-invariant covariant theory of gravity that is free from ghost-like and tachyonic nstabilities around constant curvature space-times in four dimensions. Specifically, this includes the Minkowski, de Sitter and anti-de Sitter backgrounds. We will first argue in details how starting from a general covariant action for the metric one arrives at an "equivalent" action that at most contains terms that are quadratic in curvatures but nevertheless is sufficient for the purpose of studying stability of the original action. We will then briefly discuss how such a "quadratic curvature action" can be decomposed in a covariant formalism into separate sectors involving the tensor, vector and scalar modes of the metric tensor; most of the details of the analysis however, will be presented in an accompanying paper. We will find that only the transverse and trace-less spin-2 graviton with its two helicity states and possibly a spin-0 Brans-Dicke type scala...
Quantization of a scalar field in two Poincaré patches of anti-de Sitter space and AdS/CFT
Directory of Open Access Journals (Sweden)
Ippei Fujisawa
2014-09-01
Full Text Available Two sets of modes of a massive free scalar field are quantized in a pair of Poincaré patches of Lorentzian anti-de Sitter (AdS space, AdSd+1 (d≥2. It is shown that in Poincaré coordinates (r,t,x→, the two boundaries at r=±∞ are connected. When the scalar mass m satisfies a condition 0<ν=(d2/4+(mℓ2<1, there exist two sets of mode solutions to Klein–Gordon equation, with distinct fall-off behaviors at the boundary. By using the fact that the boundaries at r=±∞ are connected, a conserved Klein–Gordon norm can be defined for these two sets of scalar modes, and these modes are canonically quantized. Energy is also conserved. A prescription within the approximation of semi-classical gravity is presented for computing two- and three-point functions of the operators in the boundary CFT, which correspond to the two fall-off behaviours of scalar field solutions.
Bessa, C H G
2004-01-01
We investigate the motion of a test particle in a d-dimensional, spherically symmetric and static space-time supported by a mass $M$ plus a $\\Lambda$-term. The motion is strongly dependent on the sign of $\\Lambda$. In Schwarzschild-de Sitter (SdS) space-time ($\\Lambda > 0$), besides the physical singularity at $r=0$ there are cases with two horizons and two turning points, one horizon and one turning point and the complete absence of horizon and turning points. For Schwarzschild-Anti de Sitter (SAdS) space-time ($\\Lambda < 0$) the horizon coordinate is associated to a unique turning point.
On the existence of conformally coupled scalar field hair for black holes in (anti-)de Sitter space
Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
2002-01-01
The Einstein-conformally coupled scalar field system is studied in the presence of a cosmological constant. We consider a massless or massive scalar field with no additional self-interaction, and spherically symmetric black hole geometries. When the cosmological constant is positive, no scalar hair can exist and the only solution is the Schwarzschild-de Sitter black hole. When the cosmological constant is negative, stable scalar field hair exists provided the mass of the scalar field is not t...
(Anti-)de Sitter Black Hole Thermodynamics and the Generalized Uncertainty Principle
Bolen, Brett; Cavaglia, Marco
2004-01-01
We extend the derivation of the Hawking temperature of a Schwarzschild black hole via the Heisenberg uncertainty principle to the de Sitter and anti-de Sitter spacetimes. The thermodynamics of the Schwarzschild-(anti-)de Sitter black holes is obtained from the generalized uncertainty principle of string theory and non-commutative geometry. This may explain why the thermodynamics of (anti-)de Sitter-like black holes admits a holographic description in terms of a dual quantum conformal field th...
No absorption in de Sitter space
Myung, Y. S.; H. W. Lee
2003-01-01
We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate its cosmological horizon in the southern diamond. By analogy of the quantum mechanics, it is found that there is no absorption in de Sitter space. This means that de Sitter space is usually in thermal equilibrium, like the black hole in anti de Sitter space. It confirms that the cosmological horizon not only emits radiation but also absorbs...
Asymptotically anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
We consider asymptotically anti-de Sitter spacetimes in three-dimensional topologically massive gravity with a negative cosmological constant, for all values of the mass parameter μ (μ≠0). We provide consistent boundary conditions that accommodate the recent solutions considered in the literature, which may have a slower falloff than the one relevant for general relativity. These conditions are such that the asymptotic symmetry is in all cases the conformal group, in the sense that they are invariant under asymptotic conformal transformations and that the corresponding Virasoro generators are finite. It is found that, at the chiral point |μl|=1 (where l is the anti-de Sitter radius), allowing for logarithmic terms (absent for general relativity) in the asymptotic behavior of the metric makes both sets of Virasoro generators nonzero even though one of the central charges vanishes.
Anti-de Sitter 3-dimensional Gravity with Torsion
Blagojevic, M; Vasilic, M.
2004-01-01
Using the canonical formalism, we study the asymptotic symmetries of the topological 3-dimensional gravity with torsion. In the anti-de Sitter sector, the symmetries are realized by two independent Virasoro algebras with classical central charges. In the simple case of the teleparallel vacuum geometry, the central charges are equal to each other and have the same value as in general relativity, while in the general Riemann-Cartan geometry, they become different.
Singularities in asymptotically anti-de Sitter spacetimes
Ishibashi, Akihiro; Maeda, Kengo
2012-01-01
We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surfac...
On electric field in anti-de Sitter spacetime
Energy Technology Data Exchange (ETDEWEB)
Cheong, Lee Yen, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Yan, Chew Xiao, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my; Ching, Dennis Ling Chuan, E-mail: lee-yencheong@petronas.com.my, E-mail: chewxy01813@gmail.com, E-mail: dennis.ling@petronas.com.my [Department of Fundamental and Applied Sciences, Universiti Teknologi Petronas, Bandar Seri Iskandar, Tronoh 31750, Perak (Malaysia)
2014-10-24
In this paper we calculate the electromagnetic field produced using retarded Green's function in Anti-de Sitter spacetime (AdS). Since this spacetime is non-globally hyperbolic and has no Cauchy surface, we only consider the field originated from a charge moving along its geodesic in the region consists of points covered by future null geodesic of the charge.
Superradiant instabilities of asymptotically anti-de Sitter black holes
Green, Stephen R; Ishibashi, Akihiro; Wald, Robert M
2015-01-01
We study the linear stability of asymptotically anti-de Sitter black holes in general relativity in spacetime dimension $d\\ge4$. Our approach is an adaptation of the general framework of Hollands and Wald, which gives a stability criterion in terms of the sign of the canonical energy, $\\mathcal{E}$. The general framework was originally formulated for static or stationary and axisymmetric black holes in the asymptotically flat case, and the stability analysis for that case applies only to axisymmetric perturbations. However, in the asymptotically anti-de Sitter case, the stability analysis requires only that the black hole have a single Killing field normal to the horizon and there are no restrictions on the perturbations (apart from smoothness and appropriate behavior at infinity). For an asymptotically anti-de Sitter black hole, we define an ergoregion to be a region where the horizon Killing field is spacelike; such a region, if present, would normally occur near infinity. We show that for black holes with ...
Intersecting hypersurfaces in anti-de Sitter and Lovelock gravity
International Nuclear Information System (INIS)
Colliding and intersecting hypersurfaces filled with matter (membranes) are studied in the Lovelock higher order curvature theory of gravity. Lovelock terms couple hypersurfaces of different dimensionalities, extending the range of possible intersection configurations. We restrict the study to constant curvature membranes in constant curvature anti-de Sitter (AdS) and dS background and consider their general intersections. This illustrates some key features which make the theory different from the Einstein gravity. Higher co-dimension membranes may lie at the intersection of co-dimension one hypersurfaces in Lovelock gravity; the hypersurfaces are located at the discontinuities of the first derivative of the metric, and they need not carry matter. The example of colliding membranes shows that general solutions can only be supported by (spacelike) matter at the collision surface, thus naturally conflicting with the dominant energy condition (DEC). The imposition of the DEC gives selection rules on the types of collision allowed. When the hypersurfaces do not carry matter, one gets a solitonlike configuration. Then, at the intersection one has a co-dimension two or higher membrane standing alone in AdS-vacuum space-time without conical singularities. Another result is that if the number of intersecting hypersurfaces goes to infinity the limiting space-time is free of curvature singularities if the intersection is put at the boundary of each AdS bulk
Fermionic Casimir densities in anti-de Sitter spacetime
Elizalde, E; Saharian, A A
2013-01-01
The fermionic condensate and vacuum expectation value of the energy-momentum tensor, for a massive fermionic field on the background of anti-de Sitter spacetime, in the geometry of two parallel boundaries with bag boundary conditions, are investigated. Vacuum expectation values, expressed as series involving the eigenvalues of the radial quantum number, are neatly decomposed into boundary-free, single-boundary-induced, and second-boundary-induced parts, with the help of the generalized Abel-Plana summation formula. In this way, the renormalization procedure is very conveniently reduced to the one corresponding to boundary-free AdS spacetime. The boundary-induced contributions to the fermionic condensate and to the vacuum expectation value of the energy density are proven to be everywhere negative. The vacuum expectation values are exponentially suppressed at distances from the boundaries much larger than the curvature radius of the AdS space. Near the boundaries, effects related with the curvature of the back...
(Anti-) de Sitter Electrically Charged Black Hole Solutions in Higher-Derivative Gravity
Lin, Kai; Qian, Wei-Liang; Pavan, A. B.; Abdalla, E.
2016-01-01
In this paper, static electrically charged black hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black hol...
Stability of relativistic Bondi accretion in Schwarzschild-(anti-)de Sitter spacetimes
Mach, Patryk
2013-01-01
In a recent paper we investigated stationary, relativistic Bondi-type accretion in Schwarzschild-(anti-)de Sitter spacetimes. Here we study their stability, using the method developed by Moncrief. The analysis applies to perturbations satisfying the potential flow condition. We prove that global isothermal flows in Schwarzschild-anti-de Sitter spacetimes are stable, assuming the test-fluid approximation. Isothermal flows in Schwarzschild-de Sitter geometries and polytropic flows in Schwarzschild-de Sitter and Schwarzschild-anti-de Sitter spacetimes can be stable, under suitable boundary conditions.
Rahaman, Farook; Sharma, Ranjan; Tiwari, Rishi Kumar
2014-01-01
We report a 3D charged black hole solution in an anti desetter space inspired by noncommutative geometry.In this construction,the black hole exhibits two horizon which turn into a single horizon in the extreme case.We investigate the impacts of the electromagnetic field on the location of the event horizon,mass and thermodynamic properties such as Hawking temperature,entropy and heat capacity of the black hole.The geodesics of the charged black hole are also analyzed.
The asymptotic dynamics of two-dimensional (anti-)de Sitter gravity
International Nuclear Information System (INIS)
We show that the asymptotic dynamics of two-dimensional de Sitter or anti-de Sitter Jackiw-Teitelboim (JT) gravity is described by a generalized two-particle Calogero-Sutherland model. This correspondence is established by formulating the JT model of (A)dS gravity in two dimensions as a topological gauge theory, which reduces to a nonlinear 0+1-dimensional sigma model on the boundary of (A)dS space. The appearance of cyclic coordinates allows then a further reduction to the Calogero-Sutherland quantum mechanical model. (author)
The Asymptotic Dynamics of two-dimensional (anti-)de Sitter Gravity
Brigante, Mauro; Cacciatori, Sergio; Klemm, Dietmar; Zanon, Daniela
2002-01-01
We show that the asymptotic dynamics of two-dimensional de Sitter or anti-de Sitter Jackiw-Teitelboim (JT) gravity is described by a generalized two-particle Calogero-Sutherland model. This correspondence is established by formulating the JT model of (A)dS gravity in two dimensions as a topological gauge theory, which reduces to a nonlinear 0+1-dimensional sigma model on the boundary of (A)dS space. The appearance of cyclic coordinates allows then a further reduction to the Calogero-Sutherlan...
Rahaman, Farook; Bhar, Piyali; Sharma, Ranjan; Tiwari, Rishi Kumar
2015-03-01
We report a -D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed.
Massive Higher Derivative Gravity in D-dimensional Anti-de Sitter Spacetimes
Gullu, Ibrahim; Tekin, Bayram(Department of Physics, Middle East Technical University, 06800 Ankara, Turkey)
2009-01-01
We find the propagator and calculate the tree level scattering amplitude between two covariantly conserved sources in an Anti-de Sitter background for the most general D-dimensional quadratic, four-derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of the theory in flat space. We show how the recently introduced three dimensional New Massive Gravity is uniquely singled out among higher derivative models as a (tree level) unitary model and...
Spinning scalar solitons in anti-de Sitter spacetime
International Nuclear Information System (INIS)
We present spinning Q-balls and boson stars in four-dimensional anti-de Sitter spacetime. These are smooth, horizonless solutions for gravity coupled to a massive complex scalar field with a harmonic dependence on time and the azimuthal angle. Similar to the flat spacetime configurations, the angular momentum is quantized. We find that a class of solutions with a self-interaction potential has a limit corresponding to static solitons with axial symmetry only. An exact solution describing spherically symmetric Q-balls in a fixed AdS background is also discussed.
Cosmic censorship of rotating Anti-de Sitter black hole
Gwak, Bogeun; Lee, Bum-Hoon
2016-02-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole. For this purpose, we investigate whether the extremal black hole can be overspun by the particle absorption. The particle absorption will change the mass and angular momentum of the black hole, which is analyzed using the Hamilton-Jacobi equations consistent with the laws of thermodynamics. We have found that the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
A new dynamical instability in Anti-de-Sitter spacetime
Gürsoy, Umut; van der Schee, Wilke
2016-01-01
We present fully dynamical solutions to Einstein-scalar theory in asymptotically Anti-de-Sitter spacetime with a scalar potential containing particularly rich physics. Depending on one parameter in the potential we find an especially interesting regime, which exhibits a thermodynamically stable, but dynamically unstable black brane, even at zero momentum. We show this using the non-linear dynamics, and give a clear interpretation in terms of the spectrum of linearized perturbations. Our results translate directly to their dual strongly coupled non-conformal field theories.
Particle Acceleration in Kerr-(anti-) de Sitter Black Hole Backgrounds
Li, Yang; Li, Yun-Liang; Wei, Shao-Wen; Liu, Yu-Xiao
2010-01-01
Recently, Ban\\~{a}dos, Silk and West (BSW) found that the center-of-mass energy of two colliding test particles in the neighborhood of an extreme Kerr black hole could be arbitrarily high when one particle has the critical angular momentum. In their paper, they considered the black holes living in a Minkowski space-time with a zero cosmological constant. In this work, we study this process of particles in the backgrounds of the Kerr black holes living in a space-time with a nonzero cosmological constant. We find that for kerr black holes living in a space-time with a negative cosmological constant (Kerr-anti-de Sitter black holes), this process of particles could happen only if the Kerr-anti-de Sitter black hole is extreme and an additional fine tuning is satisfied; while for kerr black holes living in a space-time with a positive cosmological constant (Kerr-de Sitter black holes), this process of particles could happen no matter the Kerr-de Sitter black hole is extreme or not. We also study the particle coll...
Self-interacting boson stars with a single Killing vector field in Anti-de Sitter
Brihaye, Yves; Riedel, Jürgen
2014-01-01
We construct rotating boson stars in (4+1)-dimensional asymptotically Anti-de Sitter space-time (aAdS) with two equal angular momenta that are composed out of a massive and self-interacting scalar field. These solutions possess a single Killing vector field. Next to the fundamental solutions radially excited rotating boson stars exist. We find that the behaviour of the solutions for small angular momenta is very well described by the corresponding oscillons. We also discuss the classical stability and find that self-interacting rotating boson stars in aAdS are classically unstable for a large range of the gravitational coupling and the Anti-de Sitter radius, respectively, can -however- be classically stable for sufficiently large angular momenta. Furthermore, very compact boson stars suffer from a superradiant instability. Our results indicate that this superradiant instability appears only for classically unstable solutions.
(Anti-) de Sitter Electrically Charged Black Hole Solutions in Higher-Derivative Gravity
Lin, Kai; Pavan, A B; Abdalla, E
2016-01-01
In this paper, static electrically charged black hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black holes. In particular, it was found that for uncharged black holes the first group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and the cosmological constant become zero.
(Anti-) de Sitter electrically charged black-hole solutions in higher-derivative gravity
Lin, Kai; Qian, Wei-Liang; Pavan, A. B.; Abdalla, E.
2016-06-01
In this paper, static electrically charged black-hole solutions with cosmological constant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-) de Sitter solutions are also obtained numerically by employing the shooting method. The results show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged and uncharged black holes. In particular, it was found that for uncharged black holes the first group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and the cosmological constant become zero.
Gravitational collapse in asymptotically anti-de Sitter or de Sitter backgrounds
International Nuclear Information System (INIS)
We study here the gravitational collapse of a matter cloud with a nonvanishing tangential pressure in the presence of a nonzero cosmological term Λ. It is investigated how Λ modifies the dynamics of the collapsing cloud and whether it affects the cosmic censorship. Conditions for bounce and singularity formation are derived. It is seen that when the tangential pressure vanishes, the bounce and singularity conditions reduce to the dust case studied earlier. The collapsing interior is matched to an exterior which is asymptotically de Sitter or anti-de Sitter, depending on the sign of the cosmological constant. The junction conditions for matching the cloud to the exterior are specified. The effect of Λ on apparent horizons is studied in some detail and the nature of central singularity is analyzed. The visibility of singularity and implications for the cosmic censorship conjecture are discussed. It is shown that for a nonvanishing cosmological constant, both black hole and naked singularities do form as collapse end states in spacetimes which are asymptotically de Sitter or anti-de Sitter
Surface tensions in horizon thermodynamics of Anti-de Sitter and de Sitter spacetimes
Chen, Deyou; Tao, Jun
2016-01-01
Adopting the surface tensions, we review the horizon thermodynamics of a Reissner-Nordstrom Anti-de Sitter black hole and a pure de Sitter spacetime. The modified first laws of thermodynamics, which obeys the corresponding Smarr relations, are gotten. For the black hole, the law is written as $\\delta E = T \\delta S - \\sigma\\delta A$ when the cosmological constant is fixed, where $E$ and $\\sigma$ are the Misner-Sharp mass and the surface tension, respectively. Treating the cosmological constant as an variable associated to the pressure, we rewrite the law as $\\delta E_0 = T \\delta S - \\sigma_{eff}\\delta A +V\\delta P$. The effective surface tension and pressure are obtained. The form of the modified first law of the de Sitter spacetime is different from that of the black hole.
Cvetic, M.; Nojiri, S.; Odintsov, S.D.(Institut de Ciencies de lEspai (IEEC-CSIC), Campus UAB, Carrer de Can Magrans, s/n, Cerdanyola del Valles, Barcelona, 08193, Spain)
2001-01-01
We investigate the charged Schwarzschild-Anti-deSitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gra...
Geodesics in the (anti-)de Sitter spacetime
Tho, Nguyen Phuc Ky
2016-01-01
A class of exact solutions of the geodesic equations in (anti-)de Sitter spacetimes is presented. The geodesics for test particles in $AdS_4$ and $dS_4$ spacetimes are respectively sinusoidal and hyperbolic sine world lines. The world line for light rays is straight lines as known. The world lines of test particles are not dependent on their energy as noted. Spontaneous symmetry breaking of $AdS_4$ spacetime provides a physical explanation for arising of the virtual particle and antiparticle pairs in the vacuum. Interestingly, the energy of a pair and the time its particles moving along their geodesics can be related by a relation similar to Heisenberg uncertainty one pertaining quantum vacuum fluctuations. The sinusoidal geodesics of $AdS_4$ spacetime can describe the world lines of the virtual particles and antiparticles. The hyperbolic sine geodesics of $dS_4$ spacetime can explain why galaxies move apart with positive accelerations.
International Nuclear Information System (INIS)
By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss—Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation. (general)
International Nuclear Information System (INIS)
By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation. (authors)
The question of mass in (anti-) de Sitter spacetimes
Energy Technology Data Exchange (ETDEWEB)
Gazeau, J P [Laboratoire Astroparticules et Cosmologie (APC, UMR 7164), Boite 7020 Universite Paris Diderot Paris 7, P10, rue Alice Domon et Lonie Duquet 75205, Paris Cedex 13 (France); Novello, M [ICRA, Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Sigaud 150, CEP 22290-180, Rio de Janeiro (Brazil)], E-mail: gazeau@apc.univ-paris7.fr, E-mail: novello@cbpf.br
2008-08-01
The possible existence of a non-zero cosmological constant {lambda} gives rise to controversial interpretations. By {lambda} we here understand some sort of bare cosmological constant, and not the observed one that should contain modifications coming from the classical or the quantum fluctuations of matter fields. Is {lambda} a universal constant fixing the geometry of an empty universe, as fundamental as the Planck constant or the speed of light in the vacuum? Is it instead something emerging from a perturbative calculus performed on the metric solution of the Einstein equation and to which it might be given a material status of (dark or bright) 'energy'? Since a physical quantity like mass originates in a Minkowskian conservation law, we proceed to a group theoretical interpretation of this relation in terms of the two possible {lambda}-deformations of the Poincare group, namely the de Sitter and anti de Sitter groups. We use the so-called Garidi mass in order to make clear the asymptotic relations between Minkowskian masses m and their possible dS/AdS counterparts.
The question of mass in (anti-) de Sitter spacetimes
International Nuclear Information System (INIS)
The possible existence of a non-zero cosmological constant Λ gives rise to controversial interpretations. By Λ we here understand some sort of bare cosmological constant, and not the observed one that should contain modifications coming from the classical or the quantum fluctuations of matter fields. Is Λ a universal constant fixing the geometry of an empty universe, as fundamental as the Planck constant or the speed of light in the vacuum? Is it instead something emerging from a perturbative calculus performed on the metric solution of the Einstein equation and to which it might be given a material status of (dark or bright) 'energy'? Since a physical quantity like mass originates in a Minkowskian conservation law, we proceed to a group theoretical interpretation of this relation in terms of the two possible Λ-deformations of the Poincare group, namely the de Sitter and anti de Sitter groups. We use the so-called Garidi mass in order to make clear the asymptotic relations between Minkowskian masses m and their possible dS/AdS counterparts
Massive higher derivative gravity in D-dimensional anti-de Sitter spacetimes
International Nuclear Information System (INIS)
We find the propagator and calculate the tree level scattering amplitude between two covariantly conserved sources in an anti-de Sitter background for the most general D-dimensional quadratic, four-derivative, gravity with a Pauli-Fierz mass. We also calculate the Newtonian potential for various limits of the theory in flat space. We show how the recently introduced three-dimensional New Massive Gravity is uniquely singled out among higher derivative models as a (tree level) unitary model and that its Newtonian limit is equivalent to that of the usual massive gravity in flat space.
The de Sitter/Anti- de Sitter Black Holes phase transition?
Nojiri, Shin'ichi; Odintsov, Sergei D.
2001-01-01
We investigate the Schwarzschild-Anti-deSitter (SAdS) and SdS BH thermodynamics in 5d higher derivative gravity. The interesting feature of higher derivative gravity is the possibility for negative (or zero) SdS (or SAdS) BH entropy which depends on the parameters of higher derivative terms. The appearence of negative entropy may indicate a new type instability where a transition between SdS (SAdS) BH with negative entropy to SAdS (SdS) BH with positive entropy would occur or where definition...
Biswas, Tirthabir; Mazumdar, Anupam
2016-01-01
In this paper we provide the criteria for any generally covariant, parity preserving, and torsion free theory of gravity to possess a stable de Sitter (dS) or anti-de Sitter (AdS) background. By stability we mean the absence of tachyonic or ghost-like states in the perturbative spectrum that can lead to classical instabilities and violation of quantum unitarity. While we find that the usual suspects, the F(R) and F(G) theories, can indeed possess consistent (A)dS backgrounds, G being the Gauss-Bonnet term, another interesting class of theories, string-inspired infinite derivative gravity, can also be consistent around such curved vacuum solutions. Our study should not only be relevant for quantum gravity and early universe cosmology involving ultraviolet physics, but also for modifications of gravity in the infra-red sector vying to replace dark energy .
Schwarzschild-de Sitter and Anti-de Sitter Thin-Shell Wormholes and Their Stability
International Nuclear Information System (INIS)
This paper is devoted to construct Schwarzschild-de Sitter and anti-de Sitter thin-shell wormholes by employing Visser’s cut and paste technique. The Darmois-Israel formalism is adopted to formulate the surface stresses of the shell. We analyze null and weak energy conditions as well as attractive and repulsive characteristics of thin-shell wormholes. We also explore stable and unstable solutions against linear perturbations by taking two different Chaplygin gas models for exotic matter. It is concluded that the stress-energy tensor components violate the null and weak energy conditions indicating the existence of exotic matter at the wormhole throat. Finally, we find unstable and stable configurations for the constructed thin-shell wormholes
Quasi-local energy with respect to de Sitter/anti-de Sitter reference
Chen, Po-Ning; Yau, Shing-Tung
2016-01-01
This article considers the quasi-local conserved quantities with respect to a reference spacetime with a cosmological constant. We follow the approach developed by the authors in [25,26,7] and define the quasi-local energy as differences of surface Hamiltonians. The ground state for the gravitational energy is taken to be a reference configuration in the de Sitter (dS) or Anti-de Sitter (AdS) spacetime. This defines the quasi-local energy with respect to the reference spacetime and generalizes our previous definition with respect to the Minkowski spacetime. Through an optimal isometric embedding into the reference spacetime, the Killing fields of the reference spacetime are transplanted back to the surface in the physical spacetime to complete the definitions of quasi-local conserved quantities. We also compute how the corresponding total conserved quantities evolve under the Einstein equation with a cosmological constant.
Self-interacting boson stars with a single Killing vector field in Anti-de Sitter
Brihaye, Yves; Hartmann, Betti; Riedel, Jürgen
2014-01-01
We construct rotating boson stars in (4+1)-dimensional asymptotically Anti-de Sitter space-time (aAdS) with two equal angular momenta that are composed out of a massive and self-interacting scalar field. These solutions possess a single Killing vector field. We construct explicit solutions of the equations in the case of a fixed AdS background and vanishing self-coupling of the scalar field. These are the generalizations of the oscillons discussed in the literature previously now taking the m...
Mechanics of higher dimensional black holes in asymptotically anti-de Sitter spacetimes
International Nuclear Information System (INIS)
We construct a covariant phase space for the Einstein gravity in dimensions d ≥ 4 with a negative cosmological constant, describing black holes in local equilibrium. Thus, spacetimes under consideration are asymptotically anti-de Sitter and admit an inner boundary representing an isolated horizon. This allows us to derive a first law of black hole mechanics that involves only quantities defined quasi-locally at the horizon, without having to assume that the bulk spacetime is stationary. The first law proposed by Gibbons et al for the Kerr-AdS family follows from a special case of this much more general first law
(Anti-) de Sitter Black Holes in higher derivative gravity and dual Conformal Field Theories
Nojiri, Shin'ichi; Odintsov, Sergei D.
2002-01-01
Thermodynamics of five-dimensional Schwarzschild Anti-de Sitter (SAdS) and SdS black holes in the particular model of higher derivative gravity is considered. The free energy, mass (thermodynamical energy) and entropy are evaluated. There exists the parameters region where BH entropy is zero or negative. The arguments are given that corresponding BH solutions are not stable. We also present the FRW-equations of motion of time (space)-like branes in SAdS or SdS BH background. The properties of...
Hamiltonian thermodynamics of the Reissner-Nordstr\\"om-anti-de Sitter black hole
Louko, Jorma; Winters-Hilt, Stephen N.
1996-01-01
We consider the Hamiltonian dynamics and thermodynamics of spherically symmetric Einstein-Maxwell spacetimes with a negative cosmological constant. We impose boundary conditions that enforce every classical solution to be an exterior region of a Reissner-Nordstr\\"om-anti-de Sitter black hole with a nondegenerate Killing horizon, with the spacelike hypersurfaces extending from the horizon bifurcation two-sphere to the asymptotically anti-de Sitter infinity. The constraints are simplified by a ...
Renormalised fermion vacuum expectation values on anti-de Sitter space–time
Directory of Open Access Journals (Sweden)
Victor E. Ambruș
2015-10-01
Full Text Available The Schwinger–de Witt and Hadamard methods are used to obtain renormalised vacuum expectation values for the fermion condensate, charge current and stress-energy tensor of a quantum fermion field of arbitrary mass on four-dimensional anti-de Sitter space–time. The quantum field is in the global anti-de Sitter vacuum state. The results are compared with those obtained using the Pauli–Villars and zeta-function regularisation methods, respectively.
Anti-de Sitter gauge theory for gravity
Verwimp, Theo
2010-01-01
First a review is given of Riemann-Cartan space-time and Einstein-Cartan gravity. This gives us the necessary tools to handle the SO(2,3) Yang-Mills gauge theory for gravity. New here is the derivation of the conservation laws. Finally possible solutions of the field equations are discussed. They depend on the scale of the de Sitter length.
Einstein-Maxwell-Anti-de-Sitter spinning solitons
Herdeiro, Carlos; Radu, Eugen
2016-06-01
Electrostatics on global Anti-de-Sitter (AdS) spacetime is sharply different from that on global Minkowski spacetime. It admits a multipolar expansion with everywhere regular, finite energy solutions, for every multipole moment except the monopole [1]. A similar statement holds for global AdS magnetostatics. We show that everywhere regular, finite energy, electric plus magnetic fields exist on AdS in three distinct classes: (I) with non-vanishing total angular momentum J; (II) with vanishing J but non-zero angular momentum density, Tφt ; (III) with vanishing J and Tφt . Considering backreaction, these configurations remain everywhere smooth and finite energy, and we find, for example, Einstein-Maxwell-AdS solitons that are globally - Type I - or locally (but not globally) - Type II - spinning. This backreaction is considered first perturbatively, using analytical methods and then non-perturbatively, by constructing numerical solutions of the fully non-linear Einstein-Maxwell-AdS system. The variation of the energy and total angular momentum with the boundary data is explicitly exhibited for one example of a spinning soliton.
Einstein-Maxwell-Anti-de-Sitter spinning solitons
Herdeiro, Carlos
2016-01-01
Electrostatics on global Anti-de-Sitter (AdS) spacetime is sharply different from that on global Minkowski spacetime. It admits a multipolar expansion with everywhere regular, finite energy solutions, for every multipole moment except the monopole (arXiv:1507.04370). A similar statement holds for global AdS magnetostatics. We show that everywhere regular, finite energy, electric plus magnetic fields exist on AdS in three distinct classes: $(I)$ with non-vanishing total angular momentum $J$; $(II)$ with vanishing $J$ but non-zero angular momentum density, $T^t_\\varphi$; $(III)$ with vanishing $J$ and $T^t_\\varphi$. Considering backreaction, these configurations remain everywhere smooth and finite energy, and we find, for example, Einstein-Maxwell-AdS solitons that are globally - Type I - or locally (but not globally) - Type II - spinning. This backreaction is considered first perturbatively, using analytical methods and then non-perturbatively, by constructing numerical solutions of the fully non-linear Einste...
Singularities in asymptotically anti-de Sitter spacetimes
Ishibashi, Akihiro
2012-01-01
We consider singularity theorems in asymptotically anti-de Sitter (AdS) spacetimes. In the first part, we discuss the global methods used to show geodesic incompleteness and see that when the conditions imposed in Hawking and Penrose's singularity theorem are satisfied, a singularity must appear in asymptotically AdS spacetime. The recent observations of turbulent instability of asymptotically AdS spacetimes indicate that AdS spacetimes are generically singular even if a closed trapped surface, which is one of the main conditions of the Hawking and Penrose theorem, does not exist in the initial hypersurface. This may lead one to expect to obtain a singularity theorem without imposing the existence of a trapped set in asymptotically AdS spacetimes. This, however, does not appear to be the case. We consider, within the use of global methods, two such attempts and discuss difficulties in eliminating conditions concerning a trapped set from singularity theorems in asymptotically AdS spacetimes. Then in the second...
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
Singh, Abhishek K.; Pandey, P. K.; Singh, Sunita; Kar, Supriya
2014-06-01
We obtain quantum geometries on a vacuum created pair of a (DDbar)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DDbar)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Discrete Torsion, (Anti) de Sitter D4-Brane and Tunneling
International Nuclear Information System (INIS)
We obtain quantum geometries on a vacuum created pair of a (DD¯)3-brane, at a Big Bang singularity, by a local two form on a D4-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD¯)-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D4-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole
Equivalence of Emergent de Sitter Spaces from Conformal Field Theory
Asplund, Curtis T.; Callebaut, Nele; Zukowski, Claire
2016-01-01
Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a spacelike slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS$_2$), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first l...
Hawking Radiation of Warped Anti de Sitter and Rotating Hairy Black Holes with Scalar Hair
Gursel, H
2015-01-01
This thesis mainly focuses on the Hawking radiation (HR) evacuating from the surface of the objects that have earned a reputation as the most extraordinary objects existing so far; the black holes (BHs). Throughout this study, quantum tunneling (QT) process serves as the model for the HR of scalar, vector and Dirac particles. The scalar and Dirac particles are anticipated to be tunneling through the horizon of rotating scalar hairy black holes (RHSBHs); whilst the vector particles are associated with a rotating warped anti de-Sitter black hole (WAdS3BH) embedded in a (2+1) dimensional fabric. It is no coincidence that for all three cases; the standard HT expression is derived. Additionally, the engagement of conformal field theory (CFT) with anti de-Sitter (AdS) space presents itself to the reader and the methodologies of Klein-Gordon equation (KGE), Dirac equation and Proca equations (PEs) are introduced. For all three cases, Hamilton-Jacobi (HJ) approach is used, together with Wentzel-Kramers-Brillouin (WKB...
Notes on de Sitter space and holography
International Nuclear Information System (INIS)
We explore aspects of the physics of de Sitter (dS) space that are relevant to holography with a positive cosmological constant. First, we display a non-local map that commutes with the de Sitter isometries, transforms the bulk-boundary propagator and solutions of free wave equations in de Sitter onto the same quantities in Euclidean anti-de Sitter (EAdS) space, and takes the two boundaries of dS to the single EAdS boundary via an antipodal identification. Second, we compute the action of scalar fields on dS as a functional of boundary data. Third, we display a family of solutions to three-dimensional gravity with a positive cosmological constant in which the equal time sections are arbitrary genus Riemann surfaces, and compute the action of these spaces as a functional of boundary data. These studies suggest that if de Sitter space is dual to a Euclidean conformal field theory (CFT), this theory should involve two disjoint, but possibly entangled factors. We argue that these CFTs would be of a novel form, with unusual hermiticity conditions relating left movers and right movers. After exploring these conditions in a toy model, we combine our observations to propose that a holographic dual description of de Sitter space would involve a pure entangled state in a product of two of our unconventional CFTs associated with the de Sitter boundaries. This state can be constructed to preserve the de Sitter symmetries and its decomposition in a basis appropriate to antipodal inertial observers would lead to the thermal properties of a static patch. To conclude, we discuss the one-parameter family of de Sitter-invariant vacua for a massive free scalar field, and their thermodynamic properties. At the free field level, we find no obvious thermodynamic reason to favour one vacuum over the other
International Nuclear Information System (INIS)
We report a 3-D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Farook; Bhar, Piyali [Jadavpur University, Department of Mathematics, Kolkata, West Bengal (India); Sharma, Ranjan [P. D. Women' s College, Department of Physics, Jalpaiguri (India); Tiwari, Rishi Kumar [Govt. Model Science College, Department of Mathematics, Rewa, MP (India)
2015-03-01
We report a 3-D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed. (orig.)
Rahaman, Farook; Bhar, Piyali; Sharma, Ranjan; Tiwari, Rishi Kumar
2015-01-01
We report a 3 -D charged black hole solution in an anti-de Sitter space inspired by noncommutative geometry. In this construction, the black hole exhibits two horizons, which turn into a single horizon in the extreme case. We investigate the impacts of electromagnetic field on the location of the event horizon, mass and thermodynamic properties such as Hawking temperature, entropy, and heat capacity of the black hole. The geodesics of the charged black hole are also analyzed.
Classes of Stable Initial Data for Massless and Massive Scalars in Anti-de Sitter Spacetime
Deppe, Nils
2015-01-01
Since horizon formation in global anti-de Sitter spacetime is dual to thermalization of a conformal field theory on a compact space, whether generic initial data is stable or unstable against gravitational collapse is of great interest. We argue that all the known stable initial data for massless scalars are dominated by single scalar eigenmodes, specifically providing strong numerical evidence consistent with the interpretation that initial data with equal energies in two modes collapse on time scales of order the inverse square of the amplitude. We further scan the parameter space for massive scalar field initial data and present evidence for a novel class of stable or quasi-stable solutions for massive scalars with energy spread through several eigenmodes.
Simulation of black hole collisions in asymptotically Anti-de Sitter spacetimes.
Bantilan, Hans; Romatschke, Paul
2015-02-27
We present results from the evolution of spacetimes that describe the merger of asymptotically global anti-de Sitter black holes in 5D with an SO(3) symmetry. Prompt scalar field collapse provides us with a mechanism for producing distinct trapped regions on the initial slice, associated with black holes initially at rest. We evolve these black holes towards a merger, and follow the subsequent ring down. The boundary stress tensor of the dual conformal field theory is conformally related to a stress tensor in Minkowski space that inherits an axial symmetry from the bulk SO(3). We compare this boundary stress tensor to its hydrodynamic counterpart with viscous corrections of up to second order, and compare the conformally related stress tensor to ideal hydrodynamic simulations in Minkowski space, initialized at various time slices of the boundary data. Our findings reveal far-from-hydrodynamic behavior at early times, with a transition to ideal hydrodynamics at late times. PMID:25768753
What do CFTs tell us about anti-de Sitter spacetimes?
International Nuclear Information System (INIS)
The AdS/CFT conjecture relates quantum gravity on Anti-de Sitter (AdS) space to a conformal field theory (CFT) defined on the spacetime boundary. We interpret the CFT in terms of natural analogues of the bulk S-matrix. Our first approach finds the bulk S-matrix as a limit of scattering from an AdS bubble immersed in a space admitting asymptotic states. Next, we show how the periodicity of geodesics obstructs a standard LSZ prescription for scattering within global AdS. To avoid this subtlety we partition global AdS into patches within which CFT correlators reconstruct transition amplitudes of AdS states. Finally, we use the AdS/CFT duality to propose a large N collective field theory that describes local, perturbative supergravity. Failure of locality in quantum gravity should be related to the difference between the collective 1/N expansion and genuine finite N dynamics. (author)
Exploring de Sitter space and holography
International Nuclear Information System (INIS)
We explore aspects of the physics of de Sitter (dS) space that are relevant to holography with a positive cosmological constant. First we display a non-local map that commutes with the de Sitter isometries, transforms the bulk-boundary propagator and solutions of free wave equations in de Sitter onto the same quantities in Euclidean anti-de Sitter (EAdS), and takes the two boundaries of dS to the single EAdS boundary via an anti-podal identification. Second we compute the action of scalar fields on dS as a functional of boundary data. Third, we display a family of solutions to 3d gravity with a positive cosmological constant in which the equal time sections are arbitrary genus Riemann surfaces, and compute the action of these spaces as a functional of boundary data from the Einstein gravity and Chern-Simons gravity points of view. These studies suggest that if de Sitter space is dual to a Euclidean conformal field theory (CFT), this theory should involve two disjoint, but possibly entangled factors. We argue that these CFTs would be of a novel form, with unusual hermiticity conditions relating left movers and right movers. After exploring these conditions in a toy model, we combine our observations to propose that a holographic dual description of de Sitter space would involve a pure entangled state in a product of two of our unconventional CFTs associated with the de Sitter boundaries. This state can be constructed to preserve the de Sitter symmetries and and its decomposition in a basis appropriate to anti-podal inertial observers would lead to the thermal properties of static patch
Gannot, Oran
2015-01-01
This paper considers boundary value problems for a class of singular elliptic operators which appear naturally in the study of anti-de Sitter spacetimes. These problems involve a singular Bessel operator acting in the normal direction. After formulating a Lopatinskii condition, elliptic estimates are established for functions supported near the boundary. A global Fredholm property follows from additional hypotheses in the interior. The results of this paper provide a rigorous framework for the study of quasinormal modes on anti-de Sitter black holes for the full range of boundary conditions considered in the physics literature.
Banerjee, Ayan; Rahaman, Farook; Jotania, Kanti; Sharma, Ranjan; Rahaman, Mosiur
2014-01-01
Gravitational analyzes in lower dimensions has become a field of active research interest ever since Banados, Teitelboim and Zanelli (BTZ) (Phys. Rev. Lett. 69, 1849, 1992) proved the existence of a black hole solution in (2 + 1) dimensions. The BTZ metric has inspired many investigators to develop and analyze circularly symmetric stellar models which can be matched to the exterior BTZ metric. We have obtained two new classes of solutions for a (2 + 1)-dimensional anisotropic star in anti-de ...
Noncommutative brane-world (Anti) de Sitter vacua and extra dimensions
International Nuclear Information System (INIS)
We investigate a curved brane-world, inspired by a noncommutative D3-brane, in a type IIB string theory. We obtain, an axially symmetric and a spherically symmetric (anti) de Sitter black holes in 4D. The event horizons of these black holes possess a constant curvature and may be seen to be governed by different topologies. The extremal geometries are explored, using the noncommutative scaling in the theory, to reassure the attractor behavior at the black hole event horizon. The emerging two dimensional, semi-classical, black hole is analyzed to provide evidence for the extra dimensions in a curved brane-world. It is argued that the gauge nonlinearity in the theory may be redefined by a potential in a moduli space. As a result, D = 11 and D = 12 dimensional geometries may be obtained at the stable extrema of the potential
Thermodynamics of Third Order Lovelock Anti-de Sitter Black Holes Revisited
Institute of Scientific and Technical Information of China (English)
ZOU De-Cheng; YUE Rui-Hong; YANG Zhan-Ying
2011-01-01
We compute the mass and temperature of third order Lovelock black holes with negative Gauss-Bonnet coefficient α2 ＜ 0 in anti-de Sitter space and perform the stability analysis of topological black holes. When k = -1,the third order Lovelock black holes are thermodynamically stable for the whole range r+. When k = 1, we found that the black hole has an intermediate unstable phase for D = 7. In eight dimensional spacetimes, however, a new phase of thermodynamically unstable small black holes appears if the coefficient (α) is under a critical value. For D ＞ 9, black holes have similar the distributions of thermodynamically stable regions to the case where the coefficient α is under a critical value for D = 8. It is worth to mention that all the thermodynamic and conserved quantities of the black holes with flat horizon do not depend on the Lovelock coefficients and are the same as those of black holes in general gravity.
Braneworld cosmology in (anti)-de Sitter Einstein-Gauss-Bonnet-Maxwell gravity
International Nuclear Information System (INIS)
Braneworld cosmology for a domain wall embedded in the charged (anti)-de Sitter-Schwarzschild black hole of the five-dimensional Einstein-Gauss-Bonnet-Maxwell theory is considered. The effective Friedmann equation for the brane is derived by introducing the necessary surface counterterms required for a well-defined variational principle in the Gauss-Bonnet theory and for the finiteness of the bulk space. The asymptotic dynamics of the brane cosmology is determined and it is found that solutions with vanishingly small spatial volume are unphysical. The finiteness of the bulk action is related to the vanishing of the effective cosmological constant on the brane. An analogy between the Friedmann equation and a generalized Cardy-Verlinde formula is drawn. (author)
Thermodynamics of a higher dimensional noncommutative anti-de Sitter-Einstein-Born-infeld black hole
González, Angélica; Linares, Román; Maceda, Marco; Sánchez-Santos, Oscar
2015-01-01
We analyze noncommutative deformations of a higher dimensional anti-de Sitter-Einstein-Born-Infeld black hole. Two models based on noncommutative inspired distributions of mass and charge are discussed and their thermodynamical properties are calculated. In the (3+1)-dimensional case, the equation of state and the Gibbs energy function of each model are found.
Exact solutions of dilaton gravity with (anti)-de Sitter asymptotics
Mignemi, S.
2009-01-01
We present a technique for obtaining spherically symmetric, asymptotically (anti)-de Sitter, black hole solutions of dilaton gravity with generic coupling to a Maxwell field, starting from exact asymptotically flat solutions and adding a suitable dilaton potential to the action.
Tunneling between de Sitter and anti-de Sitter black holes in a noncommutative D3-brane formalism
International Nuclear Information System (INIS)
We obtain de Sitter (dS) and anti-de Sitter (AdS) generalized Reissner-Nordstrom-like black hole geometries in a curved D3-brane framework, underlying a noncommutative gauge theory on the brane world. The noncommutative scaling limit is explored to investigate a possible tunneling of an AdS vacuum in string theory to dS vacuum in its low energy gravity theory. The Hagedorn transition is invoked into its self-dual gauge theory to decouple the gauge nonlinearity from the dS geometry, which in turn is shown to describe a pure dS vacuum
Cvetic, M; Odintsov, S D
2002-01-01
We investigate the charged Schwarzschild-Anti-deSitter (SAdS) BH thermodynamics in 5d Einstein-Gauss-Bonnet gravity with electromagnetic field. The Hawking-Page phase transitions between SAdS BH and pure AdS space are studied. The corresponding phase diagrams (with critical line defined by GB term coefficient and electric charge) are drawn. The possibility to account for higher derivative Maxwell terms is mentioned. In frames of proposed dS/CFT correspondence it is demonstrated that brane gravity maybe localized similarly to AdS/CFT. SdS BH thermodynamics in 5d Einstein and Einstein-Gauss-Bonnet gravity is considered. The corresponding (complicated) surface counterterms are found and used to get the conserved BH mass, free energy and entropy. The interesting feature of of higher derivative gravity is the possibility for negative (or zero) SdS (or SAdS) BH entropy which depends on the parameters of higher derivative terms. We speculate that negative entropy is indication for some new type instability where tra...
Bousso, Raphael
2002-01-01
This is my contribution to the Festschrift honoring Stephen Hawking on his 60th birthday. Twenty-five years ago, Gibbons and Hawking laid out the semi-classical properties of de Sitter space. After a summary of their main results, I discuss some further quantum aspects that have since been understood. The largest de Sitter black hole displays an intriguing pattern of instabilities, which can render the boundary structure arbitrarily complicated. I review entropy bounds specific to de Sitter s...
Institute of Scientific and Technical Information of China (English)
ZOU De-Cheng; YANG Zhan-Ying; YUE Rui-Hong
2011-01-01
@@ By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensional anti-de Sitter spaces.Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.%By using a new approach, we demonstrate the analytic expressions for slowly rotating Gauss-Bonnet charged black hole solutions with one non-vanishing angular momentum in higher-dimensionalanti-de Sitter spaces. Up to linear order of the rotating parameter a, the mass, Hawking temperature and entropy of the charged black holes get no corrections from rotation.
Area Spectra of Schwarzschild-Anti de Sitter Black Holes from Highly Real Quasinormal Modes
Institute of Scientific and Technical Information of China (English)
GUO Guang-Hai; DING Xia
2011-01-01
Motivated by the new physical interpretation of quasinormal modes proposed by Maggiore [Phys. Rev. Lett.] 100 (2008) 141301, we investigate the quantization of large Schwarzschild-Anti de Sitter black holes in even-dimensional spacetimes, from the interesting highly real quasinormal modes found recently. Following Maggiore's treatment and Kunstatter's method, we derive the area and entropy spectra of the black holes. It is found that the results from both approaches are in full consistency. This implies that one can quantize a black hole via different asymptotic quasinormal modes besides the high damping ones that are usually adopted in the literature. Furthermore, we find that the area and entropy spectra are equidistant and independent of the cosmological constant. However, the spacings depend on the black hole dimension.%Motivated by the new physical interpretation of quasinormal modes proposed by Maggiore [Phys.Rev.Lett.]100(2008) 141301,we investigate the quantization of large Schwarzschild-Anti de Sitter black holes in evendimensional spacetimes,from the interesting highly real quasinormal modes found recently.Following Maggiore's treatment and Kunstatter's method,we derive the area and entropy spectra of the black holes.It is found that the results from both approaches are in full consistency.This implies that one can quantize a black hole via different asymptotic quasinormal modes besides the high damping ones that are usually adopted in the literature.Furthermore,we find that the area and entropy spectra are equidistant and independent of the cosmological constant.However,the spacings depend on the black hole dimension.Since Bekenstein[1] firstly conjectured the equidistant area spectrum An =γnh (n =1,2,3,… ) by regarding the horizon area of a nonextremal black hole as a classical adiabatic invariant,many attempts have been made to derive the area and entropy spectra directly from the dynamical modes of the classical theory.[2-8] An important step in
Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Rey, Soo-Jong
2010-01-01
We investigate the asymptotic symmetry algebra of (2+1)-dimensional higher spin, anti-de Sitter gravity. We use the formulation of the theory as a Chern-Simons gauge theory based on the higher spin algebra hs(1,1). Expanding the gauge connection around asymptotically anti-de Sitter spacetime, we specify consistent boundary conditions on the higher spin gauge fields. We then study residual gauge transformation, the corresponding surface terms and their Poisson bracket algebra. We find that the...
Thermodynamic phase structure of charged anti-de Sitter scalar-tensor black holes
International Nuclear Information System (INIS)
When electromagnetic field with nonlinear lagrangian acts as a source of gravity the no-scalar-hair theorems can be eluded and black holes with non-trivial scalar field can be found in scalar tensor theories. Black holes with secondary scalar hair exist also when a cosmological constant is added in the theory. The thermodynamics of black holes in anti-de Sitter (AdS) space-time has attracted considerable interest due to the AdS/CFT conjecture. A natural question that arises is whether the non-trivial scalar field would alter the black-hole thermodynamical phase structure. In the current work we present the phase structure of charged hairy black holes coupled to nonlinear Born-Infeld electrodynamics in canonical ensemble which is naturally related to AdS space-time. In certain regions of the parameter space we find the existence of a first-order phase transition between small and very large black holes. An unexpected result is that for a small subinterval of charge values two phase transitions are observed – one of zeroth and one of first order
Perturbation of Large Anti-deSitter Black Holes and AdS/CFT Correspondence
Ahmadzadegan, Aida
As the main goal of this thesis, the canonical form of the perturbation metric of anti-de Sitter black holes in four dimensions is derived by choosing the Regge-Wheeler gauge in the standard Schwarzschild coordinates (t, r, theta, ϕ). By assuming the perturbations to be small, the differential equations governing the perturbations are obtained from the equations deltaRmunu(h ) = 0. Then, by taking the limit of m > > R where R is the radius of AdS space, the perturbation metric and field equations of large AdS black holes are found. Finally, under the shadow of AdS/CFT correspondence, these perturbations can be compared to their corresponding three-dimensional theory of fluid dynamics on the dual space, R x S2. Furthermore, by using the definitions of stress-energy tensor and its perturbation, we can find energy density, pressure and shear viscosity which are the quantities we need to describe the behavior of the fluid on the boundary of the AdS space.
Phase transitions of regular Schwarzschild-Anti-deSitter black holes
Frassino, Antonia Micol
2015-01-01
We study a solution of the Einstein's equations generated by a self-gravitating, anisotropic, static, non-singular matter fluid. The resulting Schwarzschild like solution is regular and accounts for smearing effects of noncommutative fluctuations of the geometry. We call this solution regular Schwarzschild spacetime. In the presence of an Anti-deSitter cosmological term, the regularized metric offers an extension of the Hawking-Page transition into a van der Waals-like phase diagram. Specifically the regular Schwarzschild-Anti-deSitter geometry undergoes a first order small/large black hole transition similar to the liquid/gas transition of a real fluid. In the present analysis we have considered the cosmological constant as a dynamical quantity and its variation is included in the first law of black hole thermodynamics.
The global rotating scalar field vacuum on anti-de Sitter space–time
Directory of Open Access Journals (Sweden)
Carl Kent
2015-01-01
Full Text Available We consider the definition of the global vacuum state of a quantum scalar field on n-dimensional anti-de Sitter space–time as seen by an observer rotating about the polar axis. Since positive (or negative frequency scalar field modes must have positive (or negative Klein–Gordon norm respectively, we find that the only sensible choice of positive frequency corresponds to positive frequency as seen by a static observer. This means that the global rotating vacuum is identical to the global nonrotating vacuum. For n≥4, if the angular velocity of the rotating observer is smaller than the inverse of the anti-de Sitter radius of curvature, then modes with positive Klein–Gordon norm also have positive frequency as seen by the rotating observer. We comment on the implications of this result for the construction of global rotating thermal states.
The global rotating scalar field vacuum on anti-de Sitter space–time
Energy Technology Data Exchange (ETDEWEB)
Kent, Carl, E-mail: c.kent@sheffield.ac.uk; Winstanley, Elizabeth, E-mail: e.winstanley@sheffield.ac.uk
2015-01-05
We consider the definition of the global vacuum state of a quantum scalar field on n-dimensional anti-de Sitter space–time as seen by an observer rotating about the polar axis. Since positive (or negative) frequency scalar field modes must have positive (or negative) Klein–Gordon norm respectively, we find that the only sensible choice of positive frequency corresponds to positive frequency as seen by a static observer. This means that the global rotating vacuum is identical to the global nonrotating vacuum. For n≥4, if the angular velocity of the rotating observer is smaller than the inverse of the anti-de Sitter radius of curvature, then modes with positive Klein–Gordon norm also have positive frequency as seen by the rotating observer. We comment on the implications of this result for the construction of global rotating thermal states.
Topological regularization and self-duality in four-dimensional anti-de Sitter gravity
International Nuclear Information System (INIS)
It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter gravity action in four dimensions recovers the standard regularization given by the holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows one to find the dual point of the theory where the holographic stress tensor is related to the boundary Cotton tensor as Tji=±(l2/8πG)Cji, which has been observed in recent literature in solitonic solutions and hydrodynamic models. A general procedure to generate the counterterm series for anti-de Sitter gravity in any even dimension from the corresponding Euler term is also briefly discussed.
Wang, Mengjie; Herdeiro, Carlos
2015-01-01
Scalar and gravitational perturbations on Kerr-anti-de Sitter (Kerr-AdS) black holes have been addressed in the literature and have been shown to exhibit a rich phenomenology. In this paper we complete the analysis of bosonic fields on this background by studying Maxwell perturbations, focusing on superradiant instabilities and vector clouds. For this purpose, we solve the Teukolsky equations numerically, imposing the boundary conditions we have proposed in\\cite{Wang:2015goa} for the radial T...
THERMODYNAMICS OF GLOBAL MONOPOLE ANTI-DE-SITTER BLACK HOLE IN GRAND CANONICAL ENSEMBLE
Institute of Scientific and Technical Information of China (English)
陈菊华; 荆继良; 王永久
2001-01-01
In this paper, we investigate the thermodynamics of the global monopole anti-de-Sitter black hole in the grand canonical ensemble following the York's formalism. The black hole is enclosed in a cavity with a finite radius where the temperature and potential are fixed. We have studied some thermodynamical properties, i.e. the reduced action,thermal energy and entropy. By investigating the stability of the solutions, we find stable solutions and instantons.
Cosmic Censorship of Rotating Anti-de Sitter Black Hole with a Probe
Gwak, Bogeun
2015-01-01
We test the validity of cosmic censorship in the rotating anti-de Sitter black hole through a particle absorption. For this purpose, we investigate whether the extremal black hole can be overspun by a particle. We construct the particle equations of motions to satisfy the laws of thermodynamics. With the particle absorption, the mass of the extremal black hole increases more than the angular momentum. Therefore, the outer horizon of the black hole still exists, and cosmic censorship is valid.
Precise relativistic orbits in Kerr and Kerr-(anti) de Sitter spacetimes
Kraniotis, G. V.
2004-01-01
The timelike geodesic equations resulting from the Kerr gravitational metric element are derived and solved exactly including the contribution from the cosmological constant. The geodesic equations are derived, by solving the Hamilton-Jacobi partial differential equation by separation of variables. The solutions can be applied in the investigation of the motion of a test particle in the Kerr and Kerr-(anti) de Sitter gravitational fields. In particular, we apply the exact solutions of the tim...
Non-uniform Black Strings with Schwarzschild-(Anti-)de Sitter Foliation
Zhao, Liu; Niu, Kai; Xia, Bing-Shu; Dou, Yi-Ling; Ren, Jie
2007-01-01
We present some exact non-uniform black string solutions of 5-dimensional pure Einstein gravity as well as Einstein-Maxwell-dilaton theory at arbitrary dilaton coupling. The solutions share the common property that their 4-dimensional slices are Schwarzchild-(anti-)de Sitter spacetimes. The pure gravity solution is also generalized to spacetimes of dimensions higher than 5 to get non-uniform black branes.
Hawking radiation from the dilaton-(anti) de Sitter black hole via covariant anomaly
Institute of Scientific and Technical Information of China (English)
Han Yi-Wen; Bao Zhi-Qing; Hong Yun
2009-01-01
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton-(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential.
Warped anti-de Sitter in 3d (2,0) Supergravity
Moutsopoulos, George
2016-01-01
We comment on the ubiquity of the so-called warped anti-de Sitter spacetimes in three-dimensional (2,0) supergravity theory. By using isometry-invariant tensors and simple counting, we prove their existence for arbitrary $(2,0)$ supergravity models suitably defined close to a minimal model. We also analyze their offshell supersymmetry and the supersymmetry of two geometric orbifolds.
Topological regularization and self-duality in four-dimensional anti-de Sitter gravity
Miskovic, Olivera; Olea, Rodrigo
2009-01-01
It is shown that the addition of a topological invariant (Gauss-Bonnet term) to the anti-de Sitter (AdS) gravity action in four dimensions recovers the standard regularization given by holographic renormalization procedure. This crucial step makes possible the inclusion of an odd parity invariant (Pontryagin term) whose coupling is fixed by demanding an asymptotic (anti) self-dual condition on the Weyl tensor. This argument allows to find the dual point of the theory where the holographic str...
Anti-de Sitter holography for gravity and higher spin theories in two dimensions
Grumiller, Daniel(Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10/136, A-1040, Vienna, Austria); Leston, Mauricio; Vassilevich, Dmitri(CMCC, Universidade Federal do ABC, Santo André, S.P., Brazil)
2013-01-01
We provide a holographic description of two-dimensional dilaton gravity with Anti-de Sitter boundary conditions. We find that the asymptotic symmetry algebra consists of a single copy of the Virasoro algebra with non-vanishing central charge and point out difficulties with the standard canonical treatment. We generalize our results to higher spin theories and thus provide the first examples of two-dimensional higher spin gravity with holographic description. For spin-3 gravity we find that th...
Chemical potentials in three-dimensional higher spin anti-de Sitter gravity
Henneaux, Marc(Université Libre de Bruxelles, ULB-Campus Plaine CP231, 1050, Brussels, Belgium); Pérez, Alfredo; Tempo, David; Troncoso, Ricardo(Centro de Estudios Científicos (CECs), Av. Arturo Prat 514, Valdivia, Chile)
2013-01-01
We indicate how to introduce chemical potentials for higher spin charges in higher spin anti-de Sitter gravity in a manner that manifestly preserves the original asymptotic W-symmetry. This is done by switching on a non-vanishing component of the connection along the temporal (thermal) circles. We first recall the procedure in the pure gravity case (no higher spin) where the only "chemical potentials" are the temperature and the chemical potential associated with the angular momentum. We then...
Hawking radiation from the dilaton—(anti) de Sitter black hole via covariant anomaly
International Nuclear Information System (INIS)
Adopting the anomaly cancellation method, initiated by Robinson and Wilczek recently, this paper discusses Hawking radiation from the dilaton—(anti) de Sitter black hole. To save the underlying gauge and general covariance, it introduces covariant fluxes of gauge and energy-momentum tensor to cancel the gauge and gravitational anomalies. The result shows that the introduced compensating fluxes are equivalent to those of a 2-dimensional blackbody radiation at Hawking temperature with appropriate chemical potential. (general)
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; YANG Shu-Zheng
2005-01-01
@@ We extend Parikh's recent work to Schwarzchild-anti-de Sitter black hole with topological defect whose ArnowittDeser-Misner (ADM) mass is no longer identical to its mass parameter. We view the Hawking radiation as a tunnelling process across the event horizon and the cosmological horizon. From the tunnelling probability, we find a leading correction to the semi-classical emission rate. The result employs an underlying unitary theory.
Anti-de Sitter-wave solutions of higher derivative theories.
Gürses, Metin; Hervik, Sigbjørn; Şişman, Tahsin Çağrı; Tekin, Bayram
2013-09-01
We show that the recently found anti-de Sitter (AdS)-plane and AdS-spherical wave solutions of quadratic curvature gravity also solve the most general higher derivative theory in D dimensions. More generally, we show that the field equations of such theories reduce to an equation linear in the Ricci tensor for Kerr-Schild spacetimes having type-N Weyl and type-N traceless Ricci tensors. PMID:25166648
Institute of Scientific and Technical Information of China (English)
HAN Yi-Wen; YANG Shu-Zheng
2007-01-01
We extend Zhang and Zhao's recent work to the Schwarzschild-anti-de Sitter black hole with topological defect, whose Arnowitt-Deser-Misner (ADM) mass is no longer identical to its mass parameter. The behavior of the tunneling massive particle is investigated and the emission rate is calculated. The result satisfies an underlying unitary theory and takes the same functional form as that of the mass-less particle.
Twistor variables for Anti-de Sitter (super)particles
Arvanitakis, Alex S; Townsend, Paul K
2016-01-01
Starting from the classical action for a spin-zero particle in a (D + 1)-dimensional anti-Sitter spacetime, we recover the Breitenlohner-Freedman bound by quantization. We then find a twistor form of the action for D = 3, 4, 6 for which the SO(2, D) isometry group is a linearly realized symmetry. The supertwistor generalization yields superparticle actions that are manifestly invariant under the isometry supergroup of the near-horizon geometries of the M2, D3 and M5 brane solutions of string/M-theory; in each case quantization yields a supermultiplet with 128 + 128 states.
On quantum deformations of (anti-)de Sitter algebras in (2+1) dimensions
International Nuclear Information System (INIS)
Quantum deformations of (anti-)de Sitter (A)dS algebras in (2+1) dimensions are revisited, and several features of these quantum structures are reviewed. In particular, the classification problem of (2+1) (A)dS Lie bialgebras is presented and the associated noncommutative quantum (A)dS spaces are also analysed. Moreover, the flat limit (or vanishing cosmological constant) of all these structures leading to (2+1) quantum Poincare algebras and groups is simultaneously given by considering the cosmological constant as an explicit Lie algebra parameter in the (A)dS algebras. By making use of this classification, a three-parameter generalization of the K-deformation for the (2+1) (A)dS algebras and quantum spacetimes is given. Finally, the same problem is studied in (3+1) dimensions, where a two-parameter generalization of the κ-(A)dS deformation that preserves the space isotropy is found.
Huang, Yang; Li, Xin-Zhou
2016-01-01
Gaining insight into the behavior of a perturbed black hole surrounded by a reflecting mirror in asymptotically anti-de Sitter space-time is of great interest for current fundamental and practical research. In this work, a detailed analysis for superradiant stability of the system composed by a $D$-dimensional Reissner-Nordstr\\"{o}m-anti-de Sitter (RN-AdS) black hole and a reflecting mirror under charged scalar perturbations are presented in the linear regime. It is found that the stability of the system is heavily affected by the mirror radius as well as the mass of the scalar perturbation, AdS radius and the dimension of space-time. In a higher dimensional space-time, the degree of instability of the superradiant modes will be severely weakened. Nevertheless, the degree of instability can be magnified significantly by choosing a suitable value of the mirror radius. Remarkably, when the mirror radius is smaller than a threshold value the system becomes stable. We also find that massive charged scalar fields ...
Wang, Mengjie
2015-01-01
Scalar and gravitational perturbations on Kerr-anti-de Sitter (Kerr-AdS) black holes have been addressed in the literature and have been shown to exhibit a rich phenomenology. In this paper we complete the analysis of bosonic fields on this background by studying Maxwell perturbations, focusing on superradiant instabilities and vector clouds. For this purpose, we solve the Teukolsky equations numerically, imposing the boundary conditions we have proposed in\\cite{Wang:2015goa} for the radial Teukolsky equation. As found therein, two Robin boundary conditions can be imposed for Maxwell fields on Kerr-AdS black holes, one of which produces a new set of quasinormal modes even for Schwarzschild-AdS black holes. Here, we show these different boundary conditions produce two different sets of superradiant modes. Interestingly the "new modes" may be unstable in a larger parameter space. We then study stationary Maxwell clouds, that exist at the threshold of the superradiant instability, with the two Robin boundary con...
Conserved quantities and dual turbulent cascades in Anti-de Sitter spacetime
Green, Stephen; Buchel, Alex; Lehner, Luis; Liebling, Steven
2015-04-01
We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity in Anti-de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two new conserved quantities in addition to the known total energy E of the modes: The particle number N and Hamiltonian H of our TTF system. H represents the next-order contribution after E to the total ADM mass M. Simultaneous conservation of E and N implies that weak turbulent processes undergo dual cascades (direct cascade of E and inverse cascade of N or vice versa). This partially explains the observed dynamics of 2-mode initial data. In addition, conservation of E and N limits the region of phase space that can be explored within the TTF approximation and in particular rules out equipartion of energy among the modes for general initial data. Finally, we discuss possible effects of conservation of N and E on late time dynamics.
Conserved quantities and dual turbulent cascades in Anti-de Sitter spacetime
Buchel, Alex; Lehner, Luis; Liebling, Steve L
2014-01-01
We consider the dynamics of a spherically symmetric massless scalar field coupled to general relativity in Anti--de Sitter spacetime in the small-amplitude limit. Within the context of our previously developed two time framework (TTF) to study the leading self-gravitating effects, we demonstrate the existence of two new conserved quantities in addition to the known total energy $E$ of the modes: The particle number $N$ and Hamiltonian $H$ of our TTF system. $H$ represents the next-order contribution after $E$ to the total ADM mass $M$. Simultaneous conservation of $E$ and $N$ implies that weak turbulent processes undergo dual cascades (direct cascade of $E$ and inverse cascade of $N$ or vice versa). This partially explains the observed dynamics of 2-mode initial data. In addition, conservation of $E$ and $N$ limits the region of phase space that can be explored within the TTF approximation and in particular rules out equipartion of energy among the modes for general initial data. Finally, we discuss possible ...
Vacuum decay into Anti de Sitter space
Maldacena, Juan
2010-01-01
We propose an interpretation of decays of a false vacuum into an $AdS$ region. The $AdS$ region is interpreted in terms of a dual field theory living on an end of the world brane which expands into the false vacuum.
Conformally covariant quantization of the Maxwell field in de Sitter space
International Nuclear Information System (INIS)
In this article, we quantize the Maxwell ('massless spin one') de Sitter field in a conformally invariant gauge. This quantization is invariant under the SO0(2,4) group and consequently under the de Sitter group. We obtain a new de Sitter-invariant two-point function which is very simple. Our method relies on the one hand on a geometrical point of view which uses the realization of Minkowski, de Sitter and anti-de Sitter spaces as intersections of the null cone in R6 and a moving plane, and on the other hand on a canonical quantization scheme of the Gupta-Bleuler type.
Hawking Evaporation Time Scale of Topological Black Holes in Anti-de Sitter Spacetime
Yen Chin Ong
2015-01-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size ...
From the Schwarzschild Anti de Sitter Black Hole to the Conformal Field Theory
Sefiedgar, Akram Sadat
2015-01-01
The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of Black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti de Sitter (SAdS) black holes due to rainbow gravity model. Using the correspondence between a $(d+1)-$dimensional SAdS black hole and a conformal filed theory in $d$-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.
A note on asymptotically anti-de Sitter quantum spacetimes in loop quantum gravity
Bodendorfer, Norbert
2015-01-01
A framework conceptually based on the conformal techniques employed to study the structure of the gravitational field at infinity is set up in the context of loop quantum gravity to describe asymptotically anti-de Sitter quantum spacetimes. A conformal compactification of the spatial slice is performed, which, in terms of the rescaled metric, has now finite volume, and can thus be conveniently described by spin networks states. The conformal factor used is a physical scalar field, which has the necessary asymptotics for many asymptotically AdS black hole solutions.
Noncommutative brane-world, (Anti) de Sitter vacua and extra dimensions
Kar, Supriya
2006-01-01
We investigate a curved brane-world, inspired by a noncommutative D3-brane, in a type IIB string theory. We obtain, an axially symmetric and a spherically symmetric, (anti) de Sitter black holes in 4D. The event horizons of these black holes possess a constant curvature and may be seen to be governed by different topologies. The extremal geometries are explored, using the noncommutative scaling in the theory, to reassure the attractor behavior at the black hole event horizon. The emerging two...
Holzegel, Gustav
2016-01-01
We generalize our unique continuation results recently established for a class of linear and nonlinear wave equations $\\Box_g \\phi + \\sigma \\phi = \\mathcal{G} ( \\phi, \\partial \\phi )$ on asymptotically anti-de Sitter (aAdS) spacetimes to aAdS spacetimes admitting non-static boundary metrics. The new Carleman estimates established in this setting constitute an essential ingredient in proving unique continuation results for the full nonlinear Einstein equations, which will be addressed in forthcoming papers. Key to the proof is a new geometrically adapted construction of foliations of pseudoconvex hypersurfaces near the conformal boundary.
Asymptotically Anti-de Sitter spacetimes and their stress energy tensor
Skenderis, K
2001-01-01
We consider asymtotically anti-de Sitter spacetimes in general dimensions. We review the origin of infrared divergences in the on-shell gravitational action, and the construction of the renormalized on-shell action by the addition of boundary counterterms. In odd dimensions, the renormalized on-shell action is not invariant under bulk diffeomorphisms that yield conformal transformations in the boundary (holographic Weyl anomaly). We obtain formulae for the gravitational stress energy tensor, defined as the metric variation of the renormalized on-shell action, in terms of coefficients in the asymptotic expansion of the metric near infinity. The stress energy tensor transforms anomalously under bulk diffeomorphisms broken by infrared divergences.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R Gravity
Directory of Open Access Journals (Sweden)
V. K. Oikonomou
2016-05-01
Full Text Available In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R gravity case is a trivial extension of the standard F ( R approach, and in effect, the metric perturbations in the mimetic F ( R gravity case, for the Reissner–Nordström anti-de Sitter black hole metric, at the first order of the perturbed variables are the same at the leading order.
Extended anti-de Sitter Hypergravity in $2+1$ Dimensions and Hypersymmetry Bounds
Henneaux, Marc; Tempo, David; Troncoso, Ricardo
2015-01-01
In a recent paper (JHEP {\\bf 1508} (2015) 021), we have investigated hypersymmetry bounds in the context of simple anti-de Sitter hypergravity in $2+1$ dimensions. We showed that these bounds involved non linearly the spin-$2$ and spin-$4$ charges, and were saturated by a class of extremal black holes, which are $\\frac14$-hypersymmetric. We continue the analysis here by considering $(M,N)$-extended anti-de Sitter hypergravity models, based on the superalgebra $osp(M \\vert 4) \\oplus osp(N \\vert 4)$. The asymptotic symmetry superalgebra is then the direct sum of two-copies of a $W$-superalgebra that contains $so(M)$ (or $so(N)$) Kac-Moody currents of conformal weight $1$, fermionic generators of conformal weight $5/2$ and bosonic generators of conformal weight $4$ in addition to the Virasoro generators. The nonlinear hypersymmetry bounds on the conserved charges are derived and shown to be saturated by a class of extreme hypersymmetric black holes which we explicitly construct.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
Oikonomou, V. K.
2016-05-01
In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mimetic $F(R)$ gravity case, for the Reissner-Nordstr\\"om-anti de Sitter black hole metric, at first order of the perturbed variables. Interestingly enough, the resulting equations are identical to the ones corresponding to the ordinary $F(R)$ gravity Reissner-Nordstr\\"om-anti de Sitter black hole, at least at first order. We attribute this feature to the particular form of the Reissner-Nordstr\\"om-anti de Sitter metric, and we speculate for which cases there could be differences between the mimetic and non-mimetic case. Since the perturbation equations are the same for the two cases, it is possible to have black hole instabilities in the mimetic $F(R)$ gravity case too, which can be interpreted as anti-evaporation of the black hole.
Institute of Scientific and Technical Information of China (English)
LIU Wei-Wei; LUO Zhi-Quan; YANG Juan; BIAN Gang
2011-01-01
Based on the theory of Klein-Gordon scalar field particles,the Hawking radiation of a higher-dimensional Kerr-anti-de Sitter black hole with one rotational parameter is investigated using the beyond semi-classical approximation method.The corrections of quantum tunnelling probability,Hawking temperature and Bekenstein-Hawking entropy are also included.
Institute of Scientific and Technical Information of China (English)
刘伟伟; 罗志全; 杨娟; 边刚
2011-01-01
Based on the theory of Klein-Gordon scalar field particles, the Hawking radiation of a higher- dimensional Kerr-anti-de Sitter black hole with one rotational parameter is investigated using the beyond semi-classical approximation method. The corrections o
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Ong, Yen Chin
2016-02-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Hawking evaporation time scale of topological black holes in anti-de Sitter spacetime
Directory of Open Access Journals (Sweden)
Yen Chin Ong
2016-02-01
Full Text Available It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size of order L, the AdS length scale. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Homoclinic accretion solutions in the Schwarzschild-anti-de Sitter spacetime
Mach, Patryk
2015-01-01
The aim of this paper is to clarify the distinction between homoclinic and standard (global) Bondi-type accretion solutions in the Schwarzschild-anti-de Sitter spacetime. The homoclinic solutions have recently been discovered numerically for polytropic equations of state. Here I show that they exist also for certain isothermal (linear) equations of state, and an analytic solution of this type is obtained. It is argued that the existence of such solutions is generic, although for sufficiently relativistic matter models (photon gas, ultra-hard equation of state) there exist global solutions that can be continued to infinity, similarly to standard Michel's solutions in the Schwarzschild spacetime. In contrast to that global solutions should not exist for matter models with a non-vanishing rest-mass component, and this is demonstrated for polytropes. For homoclinic isothermal solutions I derive an upper bound on the mass of the black hole for which stationary transonic accretion is allowed.
Anti-de-Sitter regular electric multipoles: towards Einstein-Maxwell-AdS solitons
Herdeiro, Carlos
2015-01-01
We discuss electrostatics in Anti-de-Sitter ($AdS$) spacetime, in global coordinates. We observe that the multipolar expansion has two crucial differences to that in Minkowski spacetime. First, there are everywhere regular solutions, with finite energy, for every multipole moment except for the monopole. Second, all multipole moments decay with the same inverse power of the areal radius, $1/r$, as spatial infinity is approached. The first observation suggests there may be regular, self-gravitating, Einstein-Maxwell solitons in $AdS$ spacetime. The second observation, renders a Lichnerowicz-type no-soliton theorem inapplicable. Consequently, we suggest Einstein-Maxwell solitons exist in $AdS$, and we support this claim by computing the first order metric perturbations sourced by test electric field multipoles, which are obtained analytically in closed form.
New features of gravitational collapse in Anti-de Sitter spacetimes
Oliván, Daniel Santos
2015-01-01
Gravitational collapse of a massless scalar field in spherically-symmetric Anti-de Sitter (AdS) spacetimes presents a new phenomenology with a series of critical points whose dynamics is continuously self-similar as in the asymptotically-flat case. Each critical point is the limit of a branch of scalar field configurations that have bounced off the AdS boundary a fixed number of times before forming an apparent horizon. We present results from a numerical study that focus on the interfaces between branches. We find that there is a mass gap between branches and that subcritical configurations near the critical point form black holes with an apparent horizon mass that follows a power law of the form $M_{AH}-M_{g} \\propto (p_{c}-p)^{\\xi}$, where $M_g$ is the mass gap and the exponent $\\xi\\simeq 0.7$ appears to be universal.
Quantum time uncertainty in Schwarzschild-anti-de Sitter black holes
International Nuclear Information System (INIS)
The combined action of gravity and quantum mechanics gives rise to a minimum time uncertainty in the lowest order approximation of a perturbative scheme, in which quantum effects are regarded as corrections to the classical spacetime geometry. From the nonperturbative point of view, both gravity and quantum mechanics are treated on equal footing in a description that already contains all possible backreaction effects as those above in a nonlinear manner. In this paper, the existence or not of such minimum time uncertainty is analyzed in the context of Schwarzschild-anti-de Sitter black holes using the isolated horizon formalism. We show that from a perturbative point of view, a nonzero time uncertainty is generically present owing to the energy scale introduced by the cosmological constant, while in a quantization scheme that includes nonperturbatively the effects of that scale, an arbitrarily high time resolution can be reached
Entanglement entropy of two-dimensional anti-de Sitter black holes
International Nuclear Information System (INIS)
Using the AdS/CFT correspondence we derive a formula for the entanglement entropy of the anti-de Sitter black hole in two spacetime dimensions. The leading term in the large black hole mass expansion of our formula reproduces exactly the Bekenstein-Hawking entropy SBH, whereas the subleading term behaves as lnSBH. This subleading term has the universal form typical for the entanglement entropy of physical systems described by effective conformal fields theories (e.g. one-dimensional statistical models at the critical point). The well-known form of the entanglement entropy for a two-dimensional conformal field theory is obtained as analytic continuation of our result and is related with the entanglement entropy of a black hole with negative mass
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability.
Bosch, Pablo; Green, Stephen R; Lehner, Luis
2016-04-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes. PMID:27104693
From the Schwarzschild Anti-de Sitter Black Hole to the Conformal Field Theory
Directory of Open Access Journals (Sweden)
Akram Sadat Sefiedgar
2015-01-01
Full Text Available The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS black holes due to rainbow gravity model. Using the correspondence between a (d+1-dimensional SAdS black hole and a conformal filed theory in d-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.
Nonlinear Evolution and Final Fate of Charged Anti-de Sitter Black Hole Superradiant Instability
Bosch, Pablo; Green, Stephen R.; Lehner, Luis
2016-04-01
We describe the full nonlinear development of the superradiant instability for a charged massless scalar field coupled to general relativity and electromagnetism, in the vicinity of a Reissner-Nordström-anti-de Sitter black hole. The presence of the negative cosmological constant provides a natural context for considering perfectly reflecting boundary conditions and studying the dynamics as the scalar field interacts repeatedly with the black hole. At early times, small superradiant perturbations grow as expected from linearized studies. Backreaction then causes the black hole to lose charge and mass until the perturbation becomes nonsuperradiant, with the final state described by a stable hairy black hole. For large gauge coupling, the instability extracts a large amount of charge per unit mass, resulting in greater entropy increase. We discuss the implications of the observed behavior for the general problem of superradiance in black hole spacetimes.
Hawking Evaporation Time Scale of Topological Black Holes in Anti-de Sitter Spacetime
Ong, Yen Chin
2015-01-01
It was recently pointed out that if an absorbing boundary condition is imposed at infinity, an asymptotically anti-de Sitter Schwarzschild black hole with a spherical horizon takes only a finite amount of time to evaporate away even if its initial mass is arbitrarily large. We show that this is a rather generic property in AdS spacetimes: regardless of their horizon topologies, neutral AdS black holes in general relativity take about the same amount of time to evaporate down to the same size. Our discussion focuses on the case in which the black hole has toral event horizon. A brief comment is made on the hyperbolic case, i.e. for black holes with negatively curved horizons.
Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes
Holzegel, Gustav
2011-01-01
We initiate the study of the spherically symmetric Einstein-Klein-Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H^2-type norm measuring the size of the Klein-Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.
Dark energy, colored anti-de Sitter vacuum, and the CERN Large Hadron Collider phenomenology
International Nuclear Information System (INIS)
We study the possibility that the current accelerated expansion of the universe is driven by the vacuum energy density of a colored scalar field which is responsible for a phase transition in which the gauge SU(3)c symmetry breaks. We show that if we are stuck in a SU(3)c-preserving false vacuum, then SU(3)c symmetry breaking can be accommodated without violating any experimental QCD bounds or bounds from cosmological observations. Moreover, unless there is an unnatural fine-tuning beyond the usual cosmological constant fine-tuning, the true vacuum state of the universe is anti-de Sitter. The model can likely be tested at the LHC. A possible (though not necessary) consequence of the model is the existence of fractionally charged massive hadrons. The model can be embedded in supersymmetric theories where massive colored scalar fields appear naturally.
Black holes in anti-de Sitter: quasinormal modes, tails and tales of flat spacetime
Cardoso, Vitor
2015-01-01
Black holes in asymptotically anti-de Sitter (AdS) spacetimes have been the subject of intense scrutiny, including detailed frequency-domain analysis and full nonlinear evolutions. Remarkably, studies of linearized perturbations in the time-domain are scarce or non-existing. We close this gap by evolving linearized scalar wavepackets in the background of rotating BHs in AdS spacetimes. Our results show a number of interesting features. Small BHs in AdS behave as asymptotically flat BHs for early/intermediate times, displaying the same ringdown modes and power-law tails. As the field bounces back and forth between the horizon and the timelike boundary it "thermalizes" and the modes of AdS settle in. Finally, we have indications that wavepackets in the vicinity of fastly spinning BHs grow exponentially in time, signalling a superradiant instability of the geometry previously reported through a frequency-domain analysis.
Equivalence of Emergent de Sitter Spaces from Conformal Field Theory
Asplund, Curtis T; Zukowski, Claire
2016-01-01
Recently, two groups have made distinct proposals for a de Sitter space that is emergent from conformal field theory (CFT). The first proposal is that, for two-dimensional holographic CFTs, the kinematic space of geodesics on a spacelike slice of the asymptotically anti-de Sitter bulk is two-dimensional de Sitter space (dS$_2$), with a metric that can be derived from the entanglement entropy of intervals in the CFT. In the second proposal, de Sitter dynamics emerges naturally from the first law of entanglement entropy for perturbations around the vacuum state of CFTs. We provide support for the equivalence of these two emergent spacetimes in the vacuum case and beyond. In particular, we study the kinematic spaces of nontrivial solutions of $3$d gravity, including the BTZ black string, BTZ black hole, and conical singularities. We argue that the resulting spaces are generically globally hyperbolic spacetimes that support dynamics given boundary conditions at future infinity. For the BTZ black string, correspon...
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
Oikonomou, V. K.
2016-01-01
In this paper, we study under which conditions the Reissner–Nordström anti-de Sitter black hole can be a solution of the vacuum mimetic F ( R ) gravity with Lagrange multiplier and mimetic scalar potential. As the author demonstrates, the resulting picture in the mimetic F ( R ) gravity case is a trivial extension of the standard F ( R ) approach, and in effect, the metric perturbations in the mimetic F ( R ) gravity case, for the Reissner–Nordström anti-de Sit...
Zero, Normal and Super-radiant Modes for Scalar and Spinor Fields in Kerr-anti de Sitter Spacetime
Kenmoku, Masakatsu; Shigemoto, Kazuyasu; Yoon, Jong Hyuk
2016-01-01
Zero and normal modes for scalar and spinor fields in Kerr-anti de Sitter spacetime are studied as bound state problem with Dirichlet and Neumann boundary conditions. Zero mode is defined as the momentum near the horizon to be zero: $p_{\\rm H}=\\omega-\\Omega_{\\rm H}m=0$, and is shown not to exist as physical state for both scalar and spinor fields. Physical normal modes satisfy the spectrum condition $p_{\\rm H}>0$ as a result of non-existence of zero mode and the analyticity with respect to rotation parameter $a$ of Kerr-anti de Sitter black hole. Comments on the super-radiant modes and the thermodynamics of black hole are given in relation to the spectrum condition for normal modes. Preliminary numerical analysis on normal modes is presented.
Vasudevan, Muraari; Stevens, Kory A.
2005-12-01
We study the Hamilton-Jacobi and massive Klein-Gordon equations in the general Kerr-(Anti) de Sitter black hole background in all dimensions. Complete separation of both equations is carried out in cases when there are two sets of equal black hole rotation parameters. We analyze explicitly the symmetry properties of these backgrounds that allow for this Liouville integrability and construct a nontrivial irreducible Killing tensor associated with the enlarged symmetry group which permits separation. We also derive first-order equations of motion for particles in these backgrounds and examine some of their properties. This work greatly generalizes previously known results for both the Myers-Perry metrics, and the Kerr-(Anti) de Sitter metrics in higher dimensions.
Energy Technology Data Exchange (ETDEWEB)
Lin Kai [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)], E-mail: lk314159@126.com; Yang Shuzheng [Institute of Theoretical Physics, China West Normal University, NanChong, SiChuan 637002 (China)], E-mail: szyangcwnu@126.com
2009-04-13
The 1/2 spin fermions tunneling at the horizon of n-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter is researched via semi-classical approximation method, and the Hawking temperature and fermions tunneling rate are obtained in this Letter. Using a new method, the semi-classical Hamilton-Jacobi equation is gotten from the Dirac equation in this Letter, and the work makes several quantum tunneling theories more harmonious.
Lin, Kai; Yang, ShuZheng
2009-04-01
The 1/2 spin fermions tunneling at the horizon of n-dimensional Kerr-Anti-de Sitter black hole with one rotational parameter is researched via semi-classical approximation method, and the Hawking temperature and fermions tunneling rate are obtained in this Letter. Using a new method, the semi-classical Hamilton-Jacobi equation is gotten from the Dirac equation in this Letter, and the work makes several quantum tunneling theories more harmonious.
No absorption in de Sitter space
International Nuclear Information System (INIS)
We study the wave equation for a minimally coupled massive scalar in D-dimensional de Sitter space. We compute the absorption cross section to investigate the property of the cosmological horizon in the southern diamond of de Sitter space. It is found that there is no absorption of radiation by the cosmological horizon of de Sitter space at the classical level. This means that the de Sitter space is usually in thermal equilibrium with the external scalar perturbation. It confirms that the cosmological horizon not only absorbs radiation of the scalar but also emits that previously absorbed by itself at the same rate, keeping the curvature radius of de Sitter space fixed. Finally, we discuss the dS/CFT correspondence in the context of the wave equation approach
Unique continuation from infinity in asymptotically Anti-de Sitter spacetimes
Holzegel, Gustav
2015-01-01
We consider the unique continuation properties of asymptotically Anti-de Sitter spacetimes by studying Klein-Gordon-type equations $\\Box_g \\phi + \\sigma \\phi = \\mathcal{G} ( \\phi, \\partial \\phi )$, $\\sigma \\in \\mathbb{R}$, on a large class of such spacetimes. Our main result establishes that if $\\phi$ vanishes to sufficiently high order (depending on $\\sigma$) on a sufficiently long time interval along the conformal boundary $\\mathcal{I}$, then the solution necessarily vanishes in a neighborhood of $\\mathcal{I}$. In particular, in the $\\sigma$-range where Dirichlet and Neumann conditions are possible on $\\mathcal{I}$ for the forward problem, we prove uniqueness if both these conditions are imposed. The length of the time interval can be related to the refocusing time of null geodesics on these backgrounds and is expected to be sharp. Some global applications as well a uniqueness result for gravitational perturbations are also discussed. The proof is based on novel Carleman estimates established in this settin...
Instantons near a tachyonic top in an anti de Sitter and the no-boundary regulator
Lee, Bum-Hoon; Lee, Wonwoo; Ro, Daeho; Yeom, Dong-han
2015-08-01
We investigate instantons near a tachyonic top in an anti de Sitter (AdS) background. If the mass scale around the hill-top is above the Breitenlohner-Freedman (BF) bound, then the top is classically stable. When the BF bound is satisfied, it is already known that there can exist instantons with a non-zero probability, though fine-tunings of the potential are required. On the other hand, we may consider a possibility to obtain instantons with a non-zero probability for a more natural shape of potentials. We found that the no-boundary regulator is useful to assign a non-zero probability for general instantons near the tachyonic top with a consistent framework. To use the no-boundary regulator, we need to introduce the complexification of fields. One interesting feature is that, for these AdS instantons, the classicality may not be satisfied after the Wick rotation and hence after the nucleation. This magnifies a novel difference between dS and AdS; a semi-classical boundary observer in AdS may notice the dispersion of quantum fields as a kind of uncertainty, while every semi-classical observer in dS is classicalized individually and hence there is no semi-classical observer who can see the quantum dispersion of the scalar field.
Vacuum polarization induced by a cosmic string in anti-de Sitter spacetime
de Mello, E R Bezerra
2011-01-01
In this paper we investigate the vacuum expectation values (VEVs) of the field squared and the energy-momentum tensor associated with a massive scalar quantum field induced by a generalized cosmic string in D-dimensional anti-de Sitter (AdS) spacetime. In order to develop this analysis we evaluate the corresponding Wightman function. As we shall observe, this function is expressed as the sum of two terms: the first one corresponds to the Wightman function in pure AdS bulk and the second one is induced by the presence of the string. The second contribution is finite at coincidence limit and is used to provide closed expressions for the parts in the VEVs of the field squared and the energy-momentum tensor induced by the presence of the string. Because the analysis of vacuum polarizations effects in pure AdS spacetime have been developed in the literature, here we are mainly interested in the investigation of string-induced effects. We show that the curvature of the background spacetime has an essential influenc...
Plane symmetric traversable wormholes in an anti-de Sitter background
International Nuclear Information System (INIS)
We construct solutions of plane symmetric wormholes in the presence of a negative cosmological constant by matching an interior spacetime to the exterior anti-de Sitter vacuum solution. The spatial topology of this plane symmetric wormhole can be planar, cylindrical, or toroidal. As usual, the null energy condition is necessarily violated at the throat. At the junction surface, the surface stresses are determined. By expressing the tangential surface pressure as a function of several parameters, namely, the matching radius, the radial derivative of the redshift function, and the surface energy density, the sign of the tangential surface pressure is analyzed. We then study four specific equations of state at the junction: the zero surface energy density, the constant redshift function, the domain wall equation of state, and the traceless surface stress-energy tensor. The equation governing the behavior of the radial pressure, in terms of the surface stresses and the extrinsic curvatures, is also displayed. Finally, we construct a model of a plane symmetric traversable wormhole which minimizes the usage of the exotic matter at the throat, i.e., the null energy condition is made arbitrarily small at the wormhole throat, while the surface stresses on the junction surface satisfy the weak energy condition, and consequently the null energy condition. The construction of these wormholes does not alter the topology of the background spacetime (i.e., spacetime is not multiply connected), so that these solutions can instead be considered domain walls. Thus, in general, these wormhole solutions do not allow time travel
Precise relativistic orbits in Kerr and Kerr-(anti) de Sitter spacetimes
Energy Technology Data Exchange (ETDEWEB)
Kraniotis, G V [Max Planck Institut fuer Physik, Foehringer Ring 6, D-80805 Munich (Germany)
2004-10-07
The timelike geodesic equations resulting from the Kerr gravitational metric element are derived and solved exactly including the contribution from the cosmological constant. The geodesic equations are derived, by solving the Hamilton-Jacobi partial differential equation by separation of variables. The solutions can be applied in the investigation of the motion of a test particle in the Kerr and Kerr-(anti) de Sitter gravitational fields. In particular, we apply the exact solutions of the timelike geodesics: (i) to the precise calculation of dragging (Lense-Thirring effect) of a satellite's spherical polar orbit in the gravitational field of Earth assuming Kerr geometry; (ii) assuming the galactic centre is a rotating black hole we calculate the precise dragging of a stellar polar orbit around the galactic centre for various values of the Kerr parameter including those supported by recent observations. The exact solution of non-spherical geodesics in Kerr geometry is obtained by using the transformation theory of elliptic functions. The exact solution of spherical polar geodesics with a nonzero cosmological constant can be expressed in terms of Abelian modular theta functions that solve the corresponding Jacobi's inversion problem.
Localization of gravity and bulk matters on a thick anti-de Sitter brane
International Nuclear Information System (INIS)
In this paper, we investigate the localization and the mass spectra of gravity and various bulk matter fields on a thick anti-de Sitter (AdS) brane, by presenting the mass-independent potentials of the Kaluza-Klein (KK) modes in the corresponding Schroedinger equations. For gravity, the potential of the KK modes tends to infinity at the boundaries of the extra dimension, which leads to an infinite number of the bound KK modes. Although the gravity zero mode cannot be localized on the AdS brane, the massive modes are trapped on the brane. The scalar perturbations of the thick AdS brane have been analyzed, and the brane is stable under the scalar perturbations. For spin-0 scalar fields and spin-1 vector fields, the potentials of the KK modes also tend to infinity at the boundaries of the extra dimension, and the characteristic of the localization is the same as the case of gravity. For spin-1/2 fermions, by introducing the usual Yukawa coupling ηΨφΨ with the positive coupling constant η, the four-dimensional massless left-chiral fermion and massive Dirac fermions are obtained on the AdS thick brane.
Spherical and planar three-dimensional anti-de Sitter black holes
Zanchin, Vilson T.; Miranda, Alex S.
2004-02-01
The technique of dimensional reduction was used in a recent paper (Zanchin V T, Kleber A and Lemos J P S 2002 Phys. Rev. D 66 064022) where a three-dimensional (3D) Einstein Maxwell dilaton theory was built from the usual four-dimensional (4D) Einstein Maxwell Hilbert action for general relativity. Starting from a class of 4D toroidal black holes in asymptotically anti-de Sitter (AdS) spacetimes several 3D black holes were obtained and studied in such a context. In the present work we choose a particular case of the 3D action which presents Maxwell field, dilaton field and an extra scalar field, besides gravity field and a negative cosmological constant, and obtain new 3D static black hole solutions whose horizons may have spherical or planar topology. We show that there is a 3D static spherically symmetric solution analogous to the 4D Reissner Nordström AdS black hole, and obtain other new 3D black holes with planar topology. From the static spherical solutions, new rotating 3D black holes are also obtained and analysed in some detail.
Rainbow valley of colored (anti) de Sitter gravity in three dimensions
Gwak, Seungho; Joung, Euihun; Mkrtchyan, Karapet; Rey, Soo-Jong
2016-04-01
We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl_2oplus gl_2)⊗ u(N) , obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N 2 massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as colored spinning matter that strongly interacts at large N. Remarkably, these colored spinning matter acts as Higgs field and generates a non-trivial potential of staircase shape. At each extremum labelled by k=0,dots, [N-1/2] , the u(N) color gauge symmetry is spontaneously broken down to u(N-k)oplus u(k) and provides different (A)dS backgrounds with the cosmological constants {(N/N-2k)}^2Λ . When this symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially-massless spin-two fields. We discuss various aspects of this theory and highlight physical implications.
Rainbow Valley of Colored (Anti) de Sitter Gravity in Three Dimensions
Gwak, Seungho; Mkrtchyan, Karapet; Rey, Soo-Jong
2015-01-01
We propose a theory of three-dimensional (anti) de Sitter gravity carrying Chan-Paton color charges. We define the theory by Chern-Simons formulation with the gauge algebra (gl(2) + gl(2)) times u(N), obtaining a color-decorated version of interacting spin-one and spin-two fields. We also describe the theory in metric formulation and show that, among N times N massless spin-two fields, only the singlet one plays the role of metric graviton whereas the rest behave as "colored spinning matter" that strongly interacts at large N.Remarkably, these colored spinning matter generates a non-trivial potential of staircase shape. At each extremum labelled by k = 0,...., [(N-1)/2], the u(N) color gauge symmetry is spontaneously broken down to u(N-k)+u(k) and provides different (A)dS(3) backgrounds with the effective cosmological constants (N/(N-2k))^2 Lambda.When this gauge symmetry breaking takes place, the spin-two Goldstone modes combine with (or are eaten by) the spin-one gauge fields to become partially massless sp...
Scalar hair on the black hole in asymptotically anti--de Sitter spacetime
International Nuclear Information System (INIS)
We examine the no-hair conjecture in asymptotically anti--de Sitter (AdS) spacetime. First, we consider a real scalar field as the matter field and assume static spherically symmetric spacetime. Analysis of the asymptotics shows that the scalar field must approach the extremum of its potential. Using this fact, it is proved that there is no regular black hole solution when the scalar field is massless or has a 'convex' potential. Surprisingly, while the scalar field has a growing mode around the local minimum of the potential, there is no growing mode around the local maximum. This implies that the local maximum is a kind of 'attractor' of the asymptotic scalar field. We give two examples of the new black hole solutions with a nontrivial scalar field configuration numerically in the symmetric or asymmetric double well potential models. We study the stability of these solutions by using the linear perturbation method in order to examine whether or not the scalar hair is physical. In the symmetric double well potential model, we find that the potential function of the perturbation equation is positive semidefinite in some wide parameter range and that the new solution is stable. This implies that the black hole no-hair conjecture is violated in asymptotically AdS spacetime
Fermionic vacuum polarization by a cosmic string in anti-de Sitter spacetime
de Mello, E R Bezerra; Saharian, A A
2013-01-01
In this paper we investigate the fermionic condensate (FC) and the vacuum expectation value (VEV) of the energy-momentum tensor, associated with a massive fermionic field, induced by the presence of a cosmic string in the anti-de Sitter (AdS) spacetime. In order to develop this analysis we construct the complete set of normalized eigenfunctions in the corresponding spacetime. We consider a special case of boundary conditions on the AdS boundary, when the MIT bag boundary condition is imposed on the field operator at a finite distance from the boundary, which is then taken to zero. The FC and the VEV of the energy-momentum tensor are decomposed into the pure AdS and string-induced parts. Because the analysis of one-loop quantum effects in the AdS spacetime has been developed in the literature, here we are mainly interested to investigate the influence of the cosmic string on the VEVs. The string-induced part in the VEV of the energy-momentum tensor is diagonal and the axial and radial stresses are equal to the...
Vacuum polarization induced by a cosmic string in anti-de Sitter spacetime
International Nuclear Information System (INIS)
In this paper, we investigate the vacuum expectation values (VEVs) of the field squared and the energy–momentum tensor associated with a massive scalar quantum field induced by a generalized cosmic string in D-dimensional anti-de Sitter (AdS) spacetime. In order to develop this analysis we evaluate the corresponding Wightman function. As we shall observe, this function is expressed as the sum of two terms: the first one corresponds to the Wightman function in pure AdS bulk and the second one is induced by the presence of the string. The second contribution is finite at the coincidence limit and is used to provide closed expressions for the parts in the VEVs of the field squared and the energy–momentum tensor induced by the presence of the string. Because the analysis of vacuum polarization effects in pure AdS spacetime has been developed in the literature, here we are mainly interested in the investigation of string-induced effects. We show that the curvature of the background spacetime has an essential influence on the VEVs at distances larger than the curvature radius. In particular, at large distances the decay of the string-induced VEVs is power law for both massless and massive fields. The string-induced parts vanish on the AdS boundary and they dominate the pure AdS part for points near the AdS horizon. (paper)
Noncommutative de Sitter and FRW spaces
Burić, Maja; Madore, John
2015-10-01
Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss.
Noncommutative de Sitter and FRW spaces
Energy Technology Data Exchange (ETDEWEB)
Buric, Maja [University of Belgrade, Faculty of Physics, P.O. Box 44, Belgrade (Serbia); Madore, John [Laboratoire de Physique Theorique, Orsay (France)
2015-10-15
Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss. (orig.)
Noncommutative de Sitter and FRW spaces
Energy Technology Data Exchange (ETDEWEB)
Burić, Maja, E-mail: majab@ipb.ac.rs [Faculty of Physics, University of Belgrade, P.O. Box 44, 11001, Belgrade (Serbia); Madore, John, E-mail: madore@th.u-psud.fr [Laboratoire de Physique Théorique, 91405, Orsay (France)
2015-10-24
Several versions of fuzzy four-dimensional de Sitter space are constructed using the noncommutative frame formalism. Although all noncommutative spacetimes which are found have commutative de Sitter metric as a classical limit, the algebras and the differential calculi which define them have many differences, which we derive and discuss.
Discrete Torsion, (Anti) de Sitter D{sub 4}-Brane and Tunneling
Energy Technology Data Exchange (ETDEWEB)
Singh, Abhishek K.; Pandey, P.K.; Singh, Sunita; Kar, Supriya, E-mail: skkar@physics.du.ac.in
2014-06-15
We obtain quantum geometries on a vacuum created pair of a (DD{sup ¯}){sub 3}-brane, at a Big Bang singularity, by a local two form on a D{sub 4}-brane. In fact our analysis is provoked by an established phenomenon leading to a pair creation by a gauge field at a black hole horizon by Stephen Hawking in 1975. Importantly, the five dimensional microscopic black holes are described by an effective non-perturbative curvature underlying a discrete torsion in a second order formalism. In the case for a non-propagating torsion, the effective curvature reduces to Riemannian, which in a low energy limit may describe Einstein vacuum in the formalism. In particular, our analysis suggests that a non-trivial space begin with a hot de Sitter brane-Universe underlying a nucleation of a vacuum pair of (DD{sup ¯})-instanton at a Big Bang. A pair of instanton nucleats a D-particle which in turn combines with an anti D-particle to describe a D-string and so on. The nucleation of a pair of higher dimensional pair of brane/anti-brane from a lower dimensional pair may be viewed via an expansion of the brane-Universe upon time. It is in conformity with the conjecture of a branes within a brane presumably in presence of the non-zero modes of two form. Interestingly, we perform a thermal analysis underlying various emergent quantum de Sitter vacua on a D{sub 4}-brane and argue for the plausible tunneling geometries underlying a thermal equilibrium. It is argued that a de Sitter Schwarzschild undergoes quantum tunneling to an AdS-brane Schwarzschild via Nariai and de Sitter topological black hole.
Macroscopic strings as heavy quarks: Large-N gauge theory and anti-de Sitter supergravity
International Nuclear Information System (INIS)
We study some aspects of Maldacena's large-N correspondence between N=4 superconformal gauge theory on the D3-brane and maximal supergravity on AdS5 x S5 by introducing macroscopic strings as heavy (anti-) quark probes. The macroscopic strings are semi-infinite Type IIB strings ending on a D3-brane world-volume. We first study deformation and fluctuation of D3-branes when a macroscopic BPS string is attached. We find that both dynamics and boundary conditions agree with those for the macroscopic string in anti-de Sitter supergravity. As a by-product we clarify how Polchinski's Dirichlet and Neumann open string boundary conditions arise dynamically. We then study the non-BPS macroscopic string-anti-string pair configuration as a physical realization of a heavy quark Wilson loop. We obtain the Q anti Q static potential from the supergravity side and find that the potential exhibits non-analyticity of the square-root branch cut in the 't Hooft coupling parameter. We put forward non-analyticity as a prediction for large-N gauge theory in the strong 't Hooft coupling limit. By turning on the Ramond-Ramond zero-form potential, we also study the θ vacuum angle dependence of the static potential. We finally discuss the possible dynamical realization of the heavy N-prong string junction and of the large-N loop equation via a local electric field and string recoil thereof. Throughout comparisons of the AdS-CFT correspondence, we find that a crucial role is played by ''geometric duality'' between the UV and IR scales in directions perpendicular to the D3-brane and parallel ones, explaining how the AdS5 spacetime geometry emerges out of four-dimensional gauge theory at strong coupling. (orig.)
Fermionic vacuum polarization by a cosmic string in anti-de Sitter spacetime
International Nuclear Information System (INIS)
In this paper, we investigate the fermionic condensate (FC) and the vacuum expectation value (VEV) of the energy–momentum tensor, associated with a massive fermionic field, induced by the presence of a cosmic string in the anti-de Sitter (AdS) spacetime. In order to develop this analysis we construct the complete set of normalized eigenfunctions in the corresponding spacetime. We consider a special case of boundary conditions on the AdS boundary, when the MIT bag boundary condition is imposed on the field operator at a finite distance from the boundary, which is then taken to zero. The FC and the VEV of the energy–momentum tensor are decomposed into the pure AdS and string-induced parts. Because the analysis of one-loop quantum effects in the AdS spacetime has been developed in the literature, here we are mainly interested to investigate the influence of the cosmic string on the VEVs. The string-induced part in the VEV of the energy–momentum tensor is diagonal and the axial and radial stresses are equal to the energy density. For points near the string, the effects of the curvature are subdominant and to leading order, the VEVs coincide with the corresponding VEVs for the cosmic string in the Minkowski bulk. At large proper distances from the string, the decay of the VEVs show a power-law dependence of the distance for both massless and massive fields. This is in contrast to the case of the Minkowski bulk where, for a massive field, the string-induced parts decay exponentially. (paper)
Statistical entropy of de Sitter space
International Nuclear Information System (INIS)
Quantum gravity in 2+1 dimensions with a positive cosmological constant can be represented as an SL(2,C) Chern-Simons gauge theory. The symmetric vacuum of this theory is a degenerate configuration for which the gauge fields and spacetime metric vanish, while de Sitter space corresponds to a highly excited thermal state. Carlip's approach to black hole entropy can be adapted in this context to determine the statistical entropy of de Sitter space. We find that it equals one-quarter the area of the de Sitter horizon, in agreement with the semiclassical formula. (author)
Four-dimensional anti-de Sitter black holes from a three-dimensional perspective Full complexity
Zanchin, V T; Lemos, J P S
2002-01-01
The dimensional reduction of black hole solutions in four-dimensional (4D) general relativity is performed and new 3D black hole solutions are obtained. Considering a 4D spacetime with one spacelike Killing vector, it is possible to split the Einstein-Hilbert-Maxwell action with a cosmological term in terms of 3D quantities. Definitions of quasilocal mass and charges in 3D spacetimes are reviewed. The analysis is then particularized to the toroidal charged rotating anti-de Sitter black hole. The reinterpretation of the fields and charges in terms of a three-dimensional point of view is given in each case, and the causal structure analyzed.
Reissner–Nordström Anti-de Sitter Black Holes in Mimetic F(R) Gravity
Oikonomou, V.K.
2016-01-01
In this paper we study under which conditions the Reissner-Nordstr\\"om-anti de Sitter black hole can be a solution of the vacuum mimetic $F(R)$ gravity with Lagrange multiplier and mimetic scalar potential. As we demonstrate, the resulting picture in the mimetic $F(R)$ gravity case, is different in comparison to the ordinary $F(R)$ gravity case, with the two descriptions resulting to a different set of constraints that need to hold true. We also investigate the metric perturbations in the mim...
Directory of Open Access Journals (Sweden)
Olga Kichakova
2015-07-01
Full Text Available We investigate the thermodynamics of spherically symmetric black hole solutions in a four-dimensional Einstein–Yang–Mills-SU(2 theory with a negative cosmological constant. Special attention is paid to configurations with a unit magnetic charge. We find that a set of Reissner–Nordström–Anti-de Sitter black holes can become unstable to forming non-Abelian hair. However, the hairy black holes are never thermodynamically favoured over the full set of abelian monopole solutions. The thermodynamics of the generic configurations possessing a noninteger magnetic charge is also discussed.
Li, Ran; Zhang, Hongbao; Zhao, Junkun(Department of Physics, Henan Normal University, 453007, Xinxiang, China)
2016-01-01
Reissner-Nordstr\\"om Anti-de Sitter (RNAdS) black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confir...
Compact space-like hypersurfaces in de Sitter space
Jinchi Lv
2005-01-01
We present some integral formulas for compact space-like hypersurfaces in de Sitter space and some equivalent characterizations for totally umbilical compact space-like hypersurfaces in de Sitter space in terms of mean curvature and higher-order mean curvatures.
Trigonometry in extended hyperbolic space and extended de Sitter space
Cho, Yunhi
2007-01-01
We study the hyperbolic cosine and sine laws in the extended hyperbolic space which contains hyperbolic space as a subset and is an analytic continuation of the hyperbolic space. And we also study the spherical cosine and sine laws in the extended de Sitter space which contains de Sitter Space $S^n_1$ as a subset and is also an analytic continuation of de Sitter space. In fact, the extended hyperbolic space and extended de Sitter space are the same space only differ by -1 multiple in the metric. Hence these two extended spaces clearly show and apparently explain that why many corresponding formulas in hyperbolic and spherical space are very similar each other. From these extended trigonometry laws, we can give a coherent and geometrically simple explanation for the various relations between the lengths and angles of hyperbolic polygons and relations on de Sitter polygons which lie on $S^2_1$.
Wang, Jia; Meng, Xin-he
2014-01-01
We present a new universal property of entropy, that is the entropy sum relation of black holes in four dimensional (anti-)de-Sitter asymptotical back- ground. They depend only on the cosmological constant with the necessary e?ect of the un-physical virtual horizon included in the spacetime where only the cosmological constant, mass of black hole, rotation parameter and Maxwell ?eld exist. When there is more extra matter ?eld in the spacetime, one will ?nd the entropy sum is also dependent of the strength of these extra matter ?eld. For both cases, we conclude that the entropy sum does not depend on the con- versed charges M, Q and J, while it does depend on the property of background spacetime. We will mainly test the entropy sum relation in static, stationary black hole and some black hole with extra matter source (scalar hair and higher curvature) in the asymptotical (anti-)de-sitter spacetime background. Besides, we point out a newly found counter example of the mass independence of the "entropy product" ...
Vacuum polarization and dynamical symmetry breaking in de Sitter space
International Nuclear Information System (INIS)
A theory of free and interacting massless fields is constructed in static de Sitter space and also in the conic de Sitter space containing a straight-line cosmic string. Vacuum-polarization effects and dynamical symmetry breaking are studied
Conformal linear gravity in de Sitter space
Fatemi, S; Takook, M V; Tanhayi, M R
2009-01-01
It has been shown that the theory of linear conformal quantum gravity must include a tensor field of rank 3 and mixed symmetry [1]. In this paper, we obtain the field equation of such field, with conformal degree zero in de Sitter space. Then, in order to relate this rank-3 tensor field with the symmetric tensor field of rank-2, $\\K_{\\alpha\\beta}$, we will define homomorphisms between them. Our main result is that if one insists $\\K_{\\alpha\\beta}$ transform according to the unitary irreducible representations of de Sitter and conformal groups it must satisfy a filed equation of order 6.
Notes on euclidean de Sitter space
International Nuclear Information System (INIS)
We discuss issues relating to the topology of euclidean de Sitter space. We show that in (2+1) dimensions, the euclidean continuation of the 'causal diamond', i.e. the region of spacetime accessible to a timelike observer is a three-hemisphere. However, when de Sitter entropy is computed in a 'stretched horizon' picture, then we argue that the correct euclidean topology is a solid torus. The solid torus shrinks and degenerates into a three-hemisphere as one goes from the 'stretched horizon' to the horizon, giving the euclidean continuation of the causal diamond. We finally comment on generalisation of these results to higher dimensions. (author)
Krein Spaces in de Sitter Quantum Theories
Czech Academy of Sciences Publication Activity Database
Gazeau, J.P.; Siegl, Petr; Youssef, A.
2010-01-01
Roč. 6, - (2010), 011/1-011/23. ISSN 1815-0659 Institutional research plan: CEZ:AV0Z10480505 Keywords : de Sitter group * undecomposable representations * Krein spaces Subject RIV: BE - Theoretical Physics Impact factor: 0.856, year: 2010
Santos-Oliván, Daniel; Sopuerta, Carlos F.
2016-05-01
We present a new hybrid Cauchy-characteristic evolution scheme that is particularly suited to study gravitational collapse in spherically symmetric asymptotically (global) anti-de Sitter (AdS) spacetimes. The Cauchy evolution allows us to track the scalar field through the different round trips to the AdS boundary, while the characteristic method can bring us very close to the point of formation of an apparent horizon. We describe all the details of the method, including the transition between the two evolution schemes and the details of the numerical implementation for the case of massless scalar fields. We use this scheme to provide more numerical evidence for a recent conjecture on the power law scaling of the apparent horizon mass resulting from the collapse of subcritical configurations. We also compute the critical exponents and echoing periods for a number of critical points and confirm the expectation that their values should be the same as in the asymptotically flat case.
Page, Don N
2015-01-01
In an asymptotically flat spacetime of dimension d > 3 and with the Newtonian gravitational constant G, a spherical black hole of initial horizon radius r_h and mass M ~ r_h^{d-3}/G has a total decay time to Hawking emission of t_d ~ r_h^{d-1}/G ~ G^{2/(d-3)}M^{(d-1)/(d-3)} which grows without bound as the radius r_h and mass M are taken to infinity. However, in asymptotically anti-de Sitter spacetime with a length scale l and with absorbing boundary conditions at infinity, the total Hawking decay time does not diverge as the mass and radius go to infinity but instead remains bounded by a time of the order of l^{d-1}/G.
Rahman, M. Atiqur; Hossain, M. Ilias
2013-06-01
The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek's opinion and gives a correction to the Hawking radiation of SAdS black hole.
Rahman, M Atiqur
2013-01-01
The massive particles tunneling method has been used to investigate the Hawking non-thermal and purely thermal radiations of Schwarzschild Anti-de Sitter (SAdS) black hole. Considering the spacetime background to be dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has been derived from Hamilton-Jacobi equation. Using the conservation laws of energy and angular momentum we have showed that the non-thermal and purely thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The result obtained for SAdS black hole is also in accordance with Parikh and Wilczek\\rq s opinion and gives a correction to the Hawking radiation of SAdS black hole.
Li, Ran; Zhao, Jun-Kun
2016-04-01
We investigate the massive vector particles' Hawking radiation from the neutral rotating Anti-de Sitter (AdS) black holes in conformal gravity by using the tunneling method. It is well known that the dynamics of massive vector particles are governed by the Proca field equation. Applying WKB approximation to the Proca equation, the tunneling probabilities and radiation spectrums of the emitted particles are derived. Hawking temperature of the neutral rotating AdS black holes in conformal gravity is recovered, which is consistent with the previous result in the literature. Supported by the National Natural Science Foundation of China under Grant No. 11205048, and the Foundation for Young Key Teacher of Henan Normal University
de Sitter Space is Unstable in Quantum Gravity
Rajaraman, Arvind
2016-01-01
Graviton loop corrections to observables in de Sitter space often lead to infrared divergences. We show that these infrared divergences are resolved by the spontaneous breaking of de Sitter invariance.
Schwinger effect in de Sitter space
International Nuclear Information System (INIS)
We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field φ of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ''in'' vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ''upward'' and ''downward'' tunneling contribute to the build-up of the current. For heavy fields, with m2 >> eE,H2, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m || H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mH∼
Schwinger effect in de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Fröb, Markus B.; Garriga, Jaume [Departament de Física Fonamental i Institut de Ciències del Cosmos, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain); Kanno, Sugumi [Laboratory for Quantum Gravity and Strings and Astrophysics, Cosmology and Gravity Center, Department of Mathematics and Applied Mathematics, University of Cape Town, Private Bag, Rondebosch 7701 (South Africa); Sasaki, Misao; Tanaka, Takahiro [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Soda, Jiro [Department of Physics, Kobe University, Kobe 657-8501 (Japan); Vilenkin, Alexander, E-mail: mfroeb@ffn.ub.edu, E-mail: jaume.garriga@ub.edu, E-mail: sugumi.kanno@uct.ac.za, E-mail: misao@yukawa.kyoto-u.ac.jp, E-mail: jiro@phys.sci.kobe-u.ac.jp, E-mail: tanaka@yukawa.kyoto-u.ac.jp, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)
2014-04-01
We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field E. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field φ of mass m and charge e play the role of vacuum bubbles. We find that the adiabatic ''in'' vacuum associated with the flat chart develops a space-like expectation value for the current J, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for J(E), showing that both ''upward'' and ''downward'' tunneling contribute to the build-up of the current. For heavy fields, with m{sup 2} >> eE,H{sup 2}, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here, H is the inverse de Sitter radius. On the other hand, light fields with m || H lead to a phenomenon of infrared hyperconductivity, where a very small electric field mH∼
Applications of gauge/gravity dualities with charged Anti-de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Grass, Viviane Theresa
2010-05-17
In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of
Applications of gauge/gravity dualities with charged Anti-de Sitter black holes
International Nuclear Information System (INIS)
In this thesis, we deal with different applications of the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence. The AdS/CFT correspondence, which is also more generally referred to as gauge/gravity duality, is a conjectured duality in superstring theory between strongly-coupled four-dimensional N=4 superconformal Yang-Mills theory and weakly-coupled type IIB string theory in five-dimensional AdS spacetime. This duality provides a powerful method to investigate strongly-coupled low-energy systems in four dimensions by substitutionally carrying out calculations in five-dimensional weakly-coupled supergravity. In this work, we use the AdS/CFT correspondence to explore three different strongly-coupled systems, namely a brane world accommodating a strongly-coupled field theory, a strongly-coupled fluid on a three-sphere and a strongly-coupled p-wave superfluid. In all these cases, the dual supergravity descriptions involve charged AdS black holes. The first system studied here is a Randall-Sundrum brane world moving in the background of a five-dimensional non-extremal black hole of N=2 gauged supergravity. The equations of motion of the brane are found to be equal to the Friedmann-Robertson-Walker (FRW) equations for a closed universe. The closed brane universe has special thermodynamic properties. The energy of the brane field theory exhibits a subextensive Casimir contribution, and the entropy can be expressed as a Cardy-Verlinde-type formula. We show that the equations for both quantities can take forms that strongly resemble the two FRW equations. At the horizon of the black hole, these two sets of equations are shown to even merge with each other which might suggest the existence of a common underlying theory. In addition, as a by-product result, the non-extremal black hole solutions considered here are found to admit an alternative description in terms of first-order flow equations similar to those which are well-known from the attractor mechanism of
Quantum discord in de Sitter space
Kanno, Sugumi; Soda, Jiro
2016-01-01
We study quantum discord between two free modes of a massive scalar field in a maximally entangled state in de Sitter space. We introduce two observers, one in a global chart and the other in an open chart of de Sitter space, and the observers determine the quantum discord created by each detecting one of the modes. This situation is analogous to the relationship between an observer in a Minkowski chart and another in one of the two Rindler charts in flat space. We find that the state becomes less entangled as the curvature of the open chart gets larger. In particular, for the cases of a massless, and a conformally coupled scalar field, the entanglement vanishes in the limit of infinite curvature. However, we find that the quantum discord never disappears even in the limit that entanglement disappears.
Phase Spaces for asymptotically de Sitter Cosmologies
Kelly, William R
2012-01-01
We construct two types of phase spaces for asymptotically de Sitter Einstein-Hilbert gravity in each spacetime dimension $d \\ge 3$. One type contains solutions asymptotic to the expanding spatially-flat ($k=0$) cosmological patch of de Sitter space while the other is asymptotic to the expanding hyperbolic $(k=-1)$ patch. Each phase space has a non-trivial asymptotic symmetry group (ASG) which includes the isometry group of the corresponding de Sitter patch. For $d=3$ and $k=-1$ our ASG also contains additional generators and leads to a Virasoro algebra with vanishing central charge. Furthermore, we identify an interesting algebra (even larger than the ASG) containing two Virasoro algebras related by a reality condition and having imaginary central charges $\\pm i \\frac{3\\ell}{2G}$. On the appropriate phase spaces, our charges agree with those obtained previously using dS/CFT methods. Thus we provide a sense in which (some of) the dS/CFT charges act on a well-defined phase space. Along the way we show that, des...
Holographic domains of anti-de Sitter space
International Nuclear Information System (INIS)
An AdS4 brane embedded in AdS5 exhibits the novel feature that a four-dimensional graviton is localized near the brane, but the majority of the infinite bulk away from the brane where the warp factor diverges does not see four-dimensional gravity. A naive application of the holographic principle from the point of view of the four-dimensional observer would lead to a paradox; a global holographic mapping would require infinite entropy density. In this paper, we show that this paradox is resolved by the proper covariant formulation of the holographic principle. This is the first explicit example of a time-independent metric for which the spacelike formulation of the holographic principle is manifestly inadequate. Further confirmation of the correctness of this approach is that light-rays leaving the brane intersect at the location where we expect four-dimensional gravity to no longer dominate. We also present a simple method of locating CFT excitations dual to a particle in the bulk. We find that the holographic image on the brane moves off to infinity precisely when the particle exits the brane's holographic domain. Our analysis yields an improved understanding of the physics of the AdS4/AdS5 model. (author)
Institute of Scientific and Technical Information of China (English)
李盈霖; 罗夏; 蒋青权; 胡桂清; 冯中文; 李国平; 邓娟
2012-01-01
运用Hamilton-Jacobi方程,得到了Kerr-anti-de Sitter黑洞在新tortoise坐标变换下产生非热辐射时粒的频率,并与在广义tortoise坐标变换下的值进行了比较.结果表明,在两种情况下的值是相同的.最后,通过表面引力的方法得到了Kerr-anti-de Sitter黑洞产生热辐射时事件视界处的霍金温度.%The frequency of radiation particles is obtained throngh Hamilton-Jacobi function in a new tortoise coordination transformation,when this Kerr-anti-de Sitter black hole radiates non-thermally.What is more,the result is equal to that in the general tortoise coordination transformation.Finally,the Hawking temperature at the event horizon is got by calculating the surface gravity parameter when this Kerr-anti-de Sitter black hole radiates thermally.
De Sitter Space Without Dynamical Quantum Fluctuations
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2016-06-01
We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.
Schwinger effect in de Sitter space
Fröb, Markus B; Kanno, Sugumi; Sasaki, Misao; Soda, Jiro; Tanaka, Takahiro; Vilenkin, Alexander
2014-01-01
We consider Schwinger pair production in 1+1 dimensional de Sitter space, filled with a constant electric field $E$. This can be thought of as a model for describing false vacuum decay beyond the semiclassical approximation, where pairs of a quantum field $\\phi$ of mass $m$ and charge $e$ play the role of vacuum bubbles. We find that the adiabatic "in" vacuum associated with the flat chart develops a space-like expectation value for the current $J$, which manifestly breaks the de Sitter invariance of the background fields. We derive a simple expression for $J(E)$, showing that both "upward" and "downward" tunneling contribute to the build-up of the current. For heavy fields, with $m^2\\gg eE,H^2$, the current is exponentially suppressed, in agreement with the results of semiclassical instanton methods. Here $H$ is the inverse de Sitter radius. On the other hand, light fields with $ m \\ll H$ lead to a phenomenon of infrared hyperconductivity, where a very small electric field $mH \\lesssim eE \\ll H^2$ leads to a...
De Sitter Space Without Quantum Fluctuations
Boddy, Kimberly K; Pollack, Jason
2014-01-01
We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no quantum fluctuations. Quantum fluctuations require time-dependent histories of out-of-equilibrium recording devices, which are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than oft...
Fluctuation and dissipation in de Sitter space
Fischler, Willy; Pedraza, Juan F; Tangarife, Walter
2014-01-01
In this paper we study some thermal properties of quantum field theories in de Sitter space by means of holographic techniques. We focus on the static patch of de Sitter and assume that the quantum fields are in the standard Bunch-Davies vacuum. More specifically, we follow the stochastic motion of a massive charged particle due to its interaction with Hawking radiation. The process is described in terms of the theory of Brownian motion in inhomogeneous media and its associated Langevin dynamics. At late times, we find that the particle undergoes a regime of slow diffusion and never reaches the horizon, in stark contrast to the usual random walk behavior at finite temperature. Nevertheless, the fluctuation-dissipation theorem is found to hold at all times.
Wang, Mengjie; Sampaio, Marco O P
2015-01-01
Perturbations of asymptotically Anti-de-Sitter (AdS) spacetimes are often considered by imposing field vanishing boundary conditions (BCs) at the AdS boundary. Such BCs, of Dirichlet-type, imply a vanishing energy flux at the boundary, but the converse is, generically, not true. Regarding AdS as a gravitational box, we consider vanishing energy flux (VEF) BCs as a more fundamental physical requirement and we show that these BCs can lead to a new branch of modes. As a concrete example, we consider Maxwell perturbations on Kerr-AdS black holes in the Teukolsky formalism, but our formulation applies also for other spin fields. Imposing VEF BCs, we find a set of two Robin BCs, even for Schwarzschild-AdS black holes. The Robin BCs on the Teukolsky variables can be used to study quasinormal modes, superradiant instabilities and vector clouds. As a first application, we consider here the quasinormal modes of Schwarzschild-AdS black holes. We find that one of the Robin BCs yields the quasinormal spectrum reported in ...
International Nuclear Information System (INIS)
We investigate quasinormal modes of a massless charged scalar field on a small Reissner-Nordstroem-anti-de Sitter (RN-AdS) black hole both with analytical and numerical approaches. In the analytical approach, by using the small black hole approximation (r++/L→0, where r+ and L stand for the black hole event horizon radius and the AdS scale, respectively. We then show that the small RN-AdS black hole is unstable if its quasinormal modes satisfy the superradiance condition and that the instability condition of the RN-AdS black hole in the limit of r+/L→0 is given by Q>(3/eL)Qc, where Q, Qc, and e are the charge of the black hole, the critical (maximum) charge of the black hole, and the charge of the scalar field, respectively. In the numerical approach, we calculate the quasinormal modes for the small RN-AdS black holes with r++=0.2L, 0.1L, and 0.01L become unstable against scalar perturbations with eL=4 when the charge of the black hole satisfies Q > or approx. 0.8Qc, 0.78Qc, and 0.76Qc, respectively.
Santos-Oliván, Daniel
2016-01-01
We present a new hybrid Cauchy-characteristic evolution method that is particularly suited for the study of gravitational collapse in spherically-symmetric asymptotically (global) Anti-de Sitter (AdS) spacetimes. The Cauchy evolution allows us to track the scalar field through the different bounces off the AdS boundary while the characteristic method can bring us very close to the point of formation of an apparent horizon. Here, we describe all the details of the method, including the transition between the two evolution schemes and the details of the numerical implementation for the case of massless scalar fields. We use this scheme to provide more numerical evidence for a recent conjecture on the power-law scaling of the apparent horizon mass resulting from the collapse of subcritical configurations. We also compute the critical exponents and echoing periods for a number of critical points and confirm the expectation that their values should be the same as in the asymptotically-flat case.
Li, Ran; Zhao, Junkun
2016-01-01
Reissner-Nordstr\\"om Anti-de Sitter (RNAdS) black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growin...
Phase structure of the Born-Infeld-anti-de Sitter black holes probed by non-local observables
Zeng, Xiao-Xiong; Li, Li-Fang
2016-01-01
With the non-local observables such as two point correlation function and holographic entanglement entropy, we probe the phase structure of the Born-Infeld-anti-de Sitter black holes. We find for the case $bQ>0.5$, the phase structure is similar to that of the Reissner-Nordstr\\"om-AdS black hole, namely the black hole undergoes a Hawking-Page phase transition, a first order phase transition, and a second order phase transition. While for the case $bQ<0.5$, we find there is a new branch for the infinitesimally small black hole so that a pseudo phase transition emerges besides the original first order phase transition. For the first order phase transition and the pseudo phase transition, the equal area law is checked, and for the second order phase transition, the critical exponent of the analogous heat capacity is obtained in the neighborhood of the critical points. All the results show that the phase structure of the non-local observables is the same as that of the thermal entropy regardless of the size of...
Interacting Quantum Fields on de Sitter Space
Barata, João C A; Mund, Jen
2016-01-01
In 1975 Figari, H{\\o}egh-Krohn and Nappi constructed the ${\\mathscr P}(\\varphi)_2$ model on the two-dimensional de Sitter space. Here we complement their work with a number of new results. In particular, we show that $i.)$ the unitary irreducible representations of $SO_0(1,2)$ for both the principal and the complementary series can be formulated on the Hilbert space spanned by wave functions supported on the Cauchy surface; $ii.)$ physical infrared problems are absent on de Sitter space; $iii.)$ the interacting quantum fields satisfy the equations of motion in their covariant form; $iv.)$ the generators of the boosts and the rotations for the interacting quantum field theory arise by contracting the stress-energy tensor with the relevant Killing vector fields and integrating over the relevant line segments. They generate a reducible, unitary representation of the Lorentz group on the Fock space for the free field. We establish also relations to the modular objects of (relative) Tomita-Takesaki theory. In addi...
Constraining de Sitter Space in String Theory.
Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep
2015-08-14
We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution. PMID:26317710
Compactifying de Sitter space naturally selects a small cosmological constant
Brown, Adam R.; Dahlen, Alex; Masoumi, Ali
2014-12-01
We study compactifications of D -dimensional de Sitter space with a q -form flux down to D -N q dimensions. We show that for (N -1 )(q -1 )≥2 there are double-exponentially or even infinitely many compact de Sitter vacua, and that their effective cosmological constants accumulate at zero. This population explosion of Λ ≪1 de Sitters arises by a mechanism analogous to natural selection.
Holographic Schwinger effect in de Sitter space
Fischler, Willy; Pedraza, Juan F; Tangarife, Walter
2014-01-01
Using the AdS/CFT correspondence, we construct the holographic dual of a tunneling instanton describing Schwinger pair creation in de Sitter space. Our approach allows us to extract the critical value of the electric field for which the potential barrier disappears, rendering the vacuum unstable. In addition, we compute the large-$\\lambda$, large-$N_c$ corrections to the nucleation rate and we find that it agrees with previous expectations based on perturbative computations. As a by-product of this investigation, we study the causal structure of the string dual to the nucleated pair as seen by different static observers and we show that it can be interpreted as a dynamical creation of a `gluonic' wormhole. We explain how this result provides further evidence for the ER=EPR conjecture as an equivalence between two descriptions of the same physical phenomenon.
On a canonical quantization of 3D Anti de Sitter pure gravity
Kim, Jihun; Porrati, Massimo
2015-10-01
We perform a canonical quantization of pure gravity on AdS 3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,{R})× SL(2,{R}) . We first quantize the theory canonically on an asymptotically AdS space -which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kähler quantization of Teichmüller space. After explicitly computing the Kähler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,{R}) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous spectrum and a lower bound on operator dimensions. A projection defined by topology changing amplitudes in Euclidean gravity is proposed. It defines an invariant subspace that allows for a dual interpretation in terms of a Liouville CFT. Problems and features of the CFT dual are assessed and a new definition of the Hilbert space, exempt from those problems, is proposed in the case of highly-curved AdS 3.
On a Canonical Quantization of 3D Anti de Sitter Pure Gravity
Kim, Jihun
2015-01-01
We perform a canonical quantization of pure gravity on AdS3 using as a technical tool its equivalence at the classical level with a Chern-Simons theory with gauge group SL(2,R)xSL(2,R). We first quantize the theory canonically on an asymptotically AdS space --which is topologically the real line times a Riemann surface with one connected boundary. Using the "constrain first" approach we reduce canonical quantization to quantization of orbits of the Virasoro group and Kaehler quantization of Teichmuller space. After explicitly computing the Kaehler form for the torus with one boundary component and after extending that result to higher genus, we recover known results, such as that wave functions of SL(2,R) Chern-Simons theory are conformal blocks. We find new restrictions on the Hilbert space of pure gravity by imposing invariance under large diffeomorphisms and normalizability of the wave function. The Hilbert space of pure gravity is shown to be the target space of Conformal Field Theories with continuous sp...
Larranaga, Alexis
2011-01-01
By considering particles as smeared objects, we investigate the effects of space noncommutativity on the geodesic structure in Schwarzschild-AdS spacetime. By means of a detailed analysis of the corresponding effective potentials for particles, we find the possible motions which are allowed by the energy levels. Radial and non-radial trajectories are treated and the effects of space noncommutativity on the value of the precession of the perihelion are estimated. We show that the geodesic structure of this black hole presents new types of motion not allowed by the Schwarzschild spacetime.
Mehdipour, S. Hamid
2014-01-01
We try to study the thermodynamical features of a non-commutative inspired Schwarzschild-anti-deSitter black hole in the context of entropic gravity model, particularly for the model that is employed in a broad range of scales, from the short distances to the large distances. At small length scales, the Newtonian force is failed because one finds a linear relation between the entropic force and the distance. In addition, there are some deviations from the standard Newtonian gravity at large l...
Relationship between five-dimensional black holes and de Sitter spaces
Myung, Y S
2004-01-01
We study a close relationship between the topological anti-de Sitter (TAdS)-black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) black hole in five-dimensions. We show that all thermal properties of the TdS spaces can be found from those of the TAdS black holes by replacing $k$ by $-k$. Also we find that all thermal information for the cosmological horizon of the SdS black hole is obtained from either the hyperbolic-AdS black hole or the Schwarzschild-TdS space by substituting $m$ with $-m$. For this purpose we calculate thermal quantities of bulk, (Euclidean) conformal field theory (ECFT) and moving domain wall by using the A(dS)/(E)CFT correspondences. Further we compute logarithmic corrections to the Bekenstein-Hawking entropy, Cardy-Verlinde formula and Friedmann equation due to thermal fluctuations. It implies that the cosmological horizon of the TdS spaces is nothing but the event horizon of the TAdS black holes and the dS/ECFT correspondence is valid for the Td...
Brane intersections, anti-de Sitter spacetimes and dual superconformal theories
Boonstra, H J; Skenderis, K; Boonstra, Harm Jan; Peeters, Bas; Skenderis, Kostas
1998-01-01
We construct a class of intersecting brane solutions with horizon geometries of the form adS_k x S^l x S^m x E^n. We describe how all these solutions are connected through the addition of a wave and/or monopoles. All solutions exhibit supersymmetry enhancement near the horizon. Furthermore we argue that string theory on these spaces is dual to specific superconformal field theories in two dimensions whose symmetry algebra in all cases contains the large N=4 algebra A_{gamma}. Implications for gauged supergravities are also discussed.
Maxwell's equal-area law for Gauss-Bonnet Anti-de Sitter black holes
Belhaj, A; Moumni, H El; Masmar, K; Sedra, M B
2014-01-01
Interpreting the cosmological constant \\Lambda as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume, we study the Maxwell's equal area law of higher dimensional Gauss-Bonnet-AdS black holes in extended space. These black hole solutions critically behave like Van der Waals systems. It has been realized that below the critical temperature T_c the stable equilibrium is violated. We show through numerical calculations that the critical behaviors for the uncharged black holes only appear in d=5. For the charged case, we analyse solutions in d = 5 and d = 6 separately and find that, up to some constrains, the critical behaviors only appear in the spherical topology. Using the Maxwell's construction, we also find the isobar line for which the liquid-gas-like phases coexist.
Cosmological perturbations in inflation and in de Sitter space
Pimentel, Guilherme Leite
holography and entanglement entropy to study superhorizon correlations in quantum field theories in de Sitter space. The entropy has interesting terms that have no equivalent in flat space field theories. These new terms are due to particle creation in an expanding universe. The entropy is calculated directly for free massive scalar theories. For theories with holographic duals, it is determined by the area of some extremal surface in the bulk geometry. We calculate the entropy for different classes of holographic duals. For one of these classes, the holographic dual geometry is an asymptotically Anti-de Sitter space that decays into a crunching cosmology, an open Friedmann-Robertson-Walker universe. The extremal surface used in the calculation of the entropy lies almost entirely on the slice of maximal scale factor of the crunching cosmology.
From Fock's Transformation to de Sitter Space
Foughali, T
2016-01-01
As in Deformed Special Relativity, we showed recently that the Fock coordinate transformation can be derived from a new deformed Poisson brackets. This approach allowed us to establish the corresponding momentum transformation which keeps invariant the four dimensional contraction $p_{\\mu} x^{\\mu} $. From the resulting deformed algebra, we construct in this paper the corresponding first Casimir. After first quantization, we show by using the Klein-Gordon equation that the spacetime of the Fock transformation is the de Sitter one. As we will see, the invariant length representing the universe radius in the spacetime of Fock's transformation is exactly the radius of the embedded hypersurface representing the de Sitter spacetime.
Recurrent nightmares?: measurement theory in de Sitter space
International Nuclear Information System (INIS)
The idea that asymptotic de Sitter space can be described by a finite Hilbert Space implies that any quantum measurement has an irreducible innacuracy. We argue that this prevents any measurement from verifying the existence of the Poincare recurrences that occur in the mathematical formulation of quantum de Sitter (dS) space. It also implies that the mathematical quantum theory of dS space is not unique. There will be many different hamiltonians, which give the same results, within the uncertainty in all possible measurements. (author)
Recurrent Nightmares? Measurement Theory in de Sitter Space
Banks, T; Paban, S
2002-01-01
The idea that asymptotic de Sitter space can be described by a finite Hilbert Space implies that any quantum measurement has an irreducible innacuracy. We argue that this prevents any measurement from verifying the existence of the Poincare recurrences that occur in the mathematical formulation of quantum de Sitter (dS) space. It also implies that the mathematical quantum theory of dS space is not unique. There will be many different Hamiltonians, which give the same results, within the uncertainty in all possible measurements.
De Sitter Space With Finitely Many States: A Toy Story
Parikh, M K; Parikh, Maulik K.; Verlinde, Erik
2004-01-01
The finite entropy of de Sitter space suggests that in a theory of quantum gravity there are only finitely many states. It has been argued that in this case there is no action of the de Sitter group consistent with unitarity. In this note we propose a way out of this if we give up the requirement of having a hermitian Hamiltonian. We argue that some of the generators of the de Sitter group act in a novel way, namely by mixing in- and out-states. In this way it is possible to have a unitary S-matrix that is finite-dimensional and, moreover, de Sitter-invariant. Using Dirac spinors, we construct a simple toy model that exhibits these features.
De Sitter Space With Finitely Many States: A Toy Story
Parikh, Maulik; Verlinde, Erik
2006-02-01
The finite entropy of de Sitter space suggests that in a theory of quantum gravity there are only finitely many states. It has been argued that in this case there is no action of the de Sitter group consistent with unitarity. In this note we propose a way out of this if we give up the requirement of having a hermitian Hamiltonian. We argue that some of the generators of the de Sitter group act in a novel way, namely by mixing in- and out-states. In this way it is possible to have a unitary S-matrix that is finite-dimensional and, moreover, de Sitter-invariant. Using Dirac spinors, we construct a simple toy model that exhibits these features.
Ilias Hossain, M.; Atiqur Rahman, M.
2013-09-01
We have investigated Hawking non-thermal and purely thermal Radiations of Reissner Nordström anti-de Sitter (RNAdS) black hole by massive particles tunneling method. The spacetime background has taken as dynamical, incorporate the self-gravitation effect of the emitted particles the imaginary part of the action has derived from Hamilton-Jacobi equation. We have supposed that energy and angular momentum are conserved and have shown that the non-thermal and thermal tunneling rates are related to the change of Bekenstein-Hawking entropy and the derived emission spectrum deviates from the pure thermal spectrum. The results for RNAdS black hole is also in the same manner with Parikh and Wilczek's opinion and explored the new result for Hawking radiation of RNAdS black hole.
Baxter, J Erik
2016-01-01
We investigate the existence of black hole and soliton solutions to four dimensional, anti-de Sitter (adS), Einstein-Yang-Mills theories with general semisimple connected and simply connected gauge groups, concentrating on the so-called "regular" case. We here generalise results for the asymptotically flat case, and compare our system with similar results from the well-researched adS $\\mathfrak{su}(N)$ system. We find the analysis differs from the asymptotically flat case in some important ways: the biggest difference is that for $\\Lambda<0$, solutions are much less constrained as $r\\rightarrow\\infty$, making it possible to prove the existence of global solutions to the field equations in some neighbourhood of existing trivial solutions, and in the limit of $|\\Lambda|\\rightarrow\\infty$. In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the $\\mathfrak{su}(N)$ case proved important to stability.
Discrete Symmetries for Spinor Field in de Sitter Space
Moradi, S; Takook, M V
2005-01-01
Discrete symmetries, parity, time reversal, antipodal, and charge conjugation transformations for spinor field in de Sitter space, are presented in the ambient space notation, i.e. in a coordinate independent way. The PT and PCT transformations are also discussed in this notation. The five-current density is studied and their transformation under the discrete symmetries is discussed.
A Spectral Quadruple for de Sitter Space
Kopf, T.; Paschke, M
2000-01-01
A set of data supposed to give possible axioms for spacetimes with a sufficient number of isometries in spectral geometry is given. These data are shown to be sufficient to obtain 1+1 dimensional de Sitter spacetime. The data rely at the moment somewhat on the guidance given by a required symmetry, in part to allow explicit calculations in a specific model. The framework applies also to the noncommutative case. Finite spectral triples are discussed as an example.
Strings and the Holographic Description of Asymptotically de Sitter Spaces
Halyo, E
2002-01-01
Asymptotically de Sitter spaces can be described by Euclidean boundary theories with entropies given by the modified Cardy--Verlinde formula. We show that the Cardy--Verlinde formula describes a string with a rescaled tension which in fact is a string at the stretched cosmological horizon as seen from the boundary. The temperature of the boundary theory is the rescaled Hagedorn temperature of the string. Our results agree with an alternative description of asymptotically de Sitter spaces in terms of strings on the stretched horizon. The relation between the two descriptions is given by the large gravitational redshift between the boundary and the stretched horizon and a shift in energy.
Vacua and correlators in hyperbolic de Sitter space
Dimitrakopoulos, Fotios V; Mosk, Benjamin; van der Schaar, Jan Pieter
2015-01-01
We study the power-- and bi--spectrum of vacuum fluctuations in a hyperbolic section of de Sitter space, comparing two states of physical interest: the Bunch-Davies and hyperbolic vacuum. We introduce a one--parameter family of de Sitter hyperbolic sections and their natural vacua, and identify a limit in which it reduces to the planar section and the corresponding Bunch--Davies vacuum state. Selecting the Bunch--Davies vacuum for a massless scalar field implies a mixed reduced density matrix in a hyperbolic section of de Sitter space. We stress that in the Bunch--Davies state the hyperbolic de Sitter $n$-point correlation functions have to match the planar de Sitter $n$-point correlation functions. The expressions for the planar and hyperbolic Bunch--Davies correlation functions only appear different because of the transformation from planar to hyperbolic coordinates. Initial state induced deviations from the standard inflationary predictions are instead obtained by considering the pure hyperbolic vacuum, as...
Gravitational Waves in Open de Sitter Space
Hawking, Stephen William; Turok, N G; Hertog, Thomas; Turok, Neil
2000-01-01
We compute the spectrum of primordial gravitational wave perturbations inopen de Sitter spacetime. The background spacetime is taken to be thecontinuation of an O(5) symmetric instanton saddle point of the Euclidean noboundary path integral. The two-point tensor fluctuations are computed directlyfrom the Euclidean path integral. The Euclidean correlator is then analyticallycontinued into the Lorentzian region where it describes the quantum mechanicalvacuum fluctuations of the graviton field. Unlike the results of earlier work,the correlator is shown to be unique and well behaved in the infrared. We showthat the infrared divergence found in previous calculations is due to thecontribution of a discrete gauge mode inadvertently included in the spectrum.
Miracles and complementarity in de Sitter space
Danielsson, U H; Olsson, M; Danielsson, Ulf H.; Domert, Daniel; Olsson, Martin
2003-01-01
In this paper we consider a scenario, consisting of a de Sitter phase followed by a phase described by a scale factor $a(t)\\sim t^{q}$, where $1/3
Quantum Vacuum Instability of 'Eternal' de Sitter Space
Anderson, Paul R
2013-01-01
The Euclidean or Bunch-Davies O(4,1) invariant 'vacuum' state of quantum fields in global de Sitter space is shown to be unstable to small perturbations, even for a massive free field with no self-interactions. There are perturbations of this state with arbitrarily small energy density at early times that is exponentially blueshifted in the contracting phase of 'eternal' de Sitter space, and becomes large enough to disturb the classical geometry through the semiclassical Einstein eqs. at later times. In the closely analogous case of a constant, uniform electric field, a time symmetric state equivalent to the de Sitter invariant one is constructed, which is also not a stable vacuum state under perturbations. The role of a quantum anomaly in the growth of perturbations and symmetry breaking is emphasized in both cases. In de Sitter space, the same results are obtained either directly from the renormalized stress tensor of a massive scalar field, or for massless conformal fields of any spin, more directly from t...
Gravitational waves in open de Sitter space
Hawking, S. W.; Hertog, Thomas; Turok, Neil
2000-09-01
We compute the spectrum of primordial gravitational wave perturbations in open de Sitter spacetime. The background spacetime is taken to be the continuation of an O(5) symmetric instanton saddle point of the Euclidean no boundary path integral. The two-point tensor fluctuations are computed directly from the Euclidean path integral. The Euclidean correlator is then analytically continued into the Lorentzian region where it describes the quantum mechanical vacuum fluctuations of the graviton field. Unlike the results of earlier work, the correlator is shown to be unique and well behaved in the infrared. We show that the infrared divergence found in previous calculations is due to the contribution of a discrete gauge mode inadvertently included in the spectrum.
DeSitter entropy, quantum entanglement and ADS/CFT
Hawking, Stephen; Maldacena, Juan; Strominger, Andrew
2000-01-01
A deSitter brane-world bounding regions of anti-deSitter space has a macroscopic entropy given by one-quarter the area of the observer horizon. A proposed variant of the AdS/CFT correspondence gives a dual description of this cosmology as conformal field theory coupled to gravity in deSitter space. In the case of two-dimensional deSitter space this provides a microscopic derivation of the entropy, including the one-quarter, as quantum entanglement of the conformal field theory across the hori...
De Sitter entropy, quantum entanglement and ADS/CFT
Hawking, Stephen William; Strominger, A; Hawking, Stephen; Maldacena, Juan; Strominger, Andrew
2001-01-01
A deSitter brane-world bounding regions of anti-deSitter space has amacroscopic entropy given by one-quarter the area of the observer horizon. Aproposed variant of the AdS/CFT correspondence gives a dual description of thiscosmology as conformal field theory coupled to gravity in deSitter space. Inthe case of two-dimensional deSitter space this provides a microscopicderivation of the entropy, including the one-quarter, as quantum entanglementof the conformal field theory across the horizon.
DeSitter entropy, quantum entanglement and ADS/CFT
International Nuclear Information System (INIS)
A deSitter brane-world bounding regions of anti-deSitter space has a macroscopic entropy given by one-quarter the area of the observer horizon. A proposed variant of the AdS/CFT correspondence gives a dual description of this cosmology as conformal field theory coupled to gravity in deSitter space. In the case of two-dimensional deSitter space this provides a microscopic derivation of the entropy, including the one-quarter, as quantum entanglement of the conformal field theory across the horizon. (author)
DeSitter entropy, quantum entanglement and ADS/CFT
Hawking, Stephen; Maldacena, Juan; Strominger, Andrew
2001-05-01
A de Sitter brane-world bounding regions of anti-de Sitter space has a macroscopic entropy given by one-quarter the area of the observer horizon. A proposed variant of the AdS/CFT correspondence gives a dual description of this cosmology as conformal field theory coupled to gravity in de Sitter space. In the case of two-dimensional de Sitter space this provides a microscopic derivation of the entropy, including the one-quarter, as quantum entanglement of the conformal field theory across the horizon.
International Nuclear Information System (INIS)
We present a new “universal property” of entropy, that is the “entropy sum” relation of black holes in four dimensional (anti-)de-Sitter asymptotical background. They depend only on the cosmological constant with the necessary effect of the un-physical “virtual” horizon included in the spacetime where only the cosmological constant, mass of black hole, rotation parameter and Maxwell field exist. When there is more extra matter field in the spacetime, one will find the “entropy sum” is also dependent of the strength of these extra matter field. For both cases, we conclude that the “entropy sum” does not depend on the conserved charges M, Q and J, while it does depend on the property of background spacetime. We will mainly test the “entropy sum” relation in static, stationary black hole and some black hole with extra matter source (scalar hair and higher curvature) in the asymptotical (anti-)de-sitter spacetime background. Besides, we point out a newly found counter example of the mass independence of the ”entropy product” relation in the spacetime with extra scalar hair case, while the “entropy sum” relation still holds. These result are indeed suggestive to some underlying microscopic mechanism. Moreover, the cosmological constant and extra matter field dependence of the “entropy sum” of all horizon seems to reveal that “entropy sum” is more general as it is only related to the background field. For the case of asymptotical flat spacetime without any matter source, we give a note for the Kerr black hole case in appendix. One will find only mass dependence of “entropy sum” appears. It makes us believe that, considering the dependence of “entropy sum”, the mass background field may be regarded as the next order of cosmological constant background field and extra matter field. However, fully explaining the relationship between the “entropy sum” relation and background properties still requires further exploration
Directory of Open Access Journals (Sweden)
Ran Li
2016-07-01
Full Text Available Reissner–Nordström Anti-de Sitter (RNAdS black holes are unstable against the charged scalar field perturbations due to the well-known superradiance phenomenon. We present the time domain analysis of charged scalar field perturbations in the RNAdS black hole background in general dimensions. We show that the instabilities of charged scalar field can be explicitly illustrated from the time profiles of evolving scalar field. By using the Prony method to fit the time evolution data, we confirm the mode that dominates the long time behavior of scalar field is in accordance with the quasinormal mode from the frequency domain analysis. The superradiance origin of the instability can also be demonstrated by comparing the real part of the dominant mode with the superradiant condition of charged scalar field. It is shown that all the unstable modes are superradiant, which is consistent with the analytical result in the frequency domain analysis. Furthermore, we also confirm there exists the rapid exponential growing modes in the RNAdS case, which makes the RNAdS black hole a good test ground to investigate the nonlinear evolution of superradiant instability.
Probing Planckian physics in de Sitter space with quantum correlations
Energy Technology Data Exchange (ETDEWEB)
Feng, Jun, E-mail: j.feng1@uq.edu.au [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Zhang, Yao-Zhong; Gould, Mark D. [School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072 (Australia); Fan, Heng [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Sun, Cheng-Yi; Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China)
2014-12-15
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points H{sub c} of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given.
Probing Planckian physics in de Sitter space with quantum correlations
International Nuclear Information System (INIS)
We study the quantum correlation and quantum communication channel of both free scalar and fermionic fields in de Sitter space, while the Planckian modification presented by the choice of a particular α-vacuum has been considered. We show the occurrence of degradation of quantum entanglement between field modes for an inertial observer in curved space, due to the radiation associated with its cosmological horizon. Comparing with standard Bunch–Davies choice, the possible Planckian physics causes some extra decrement on the quantum correlation, which may provide the means to detect quantum gravitational effects via quantum information methodology in future. Beyond single-mode approximation, we construct proper Unruh modes admitting general α-vacua, and find a convergent feature of both bosonic and fermionic entanglements. In particular, we show that the convergent points of fermionic entanglement negativity are dependent on the choice of α. Moreover, an one-to-one correspondence between convergent points Hc of negativity and zeros of quantum capacity of quantum channels in de Sitter space has been proved. - Highlights: • Quantum correlation and quantum channel in de Sitter space are studied. • Gibbons–Hawking effect causes entanglement degradation for static observer. • Planckian physics causes extra decrement on quantum correlation. • Convergent feature of negativity relies on the choice of alpha-vacua. • Link between negativity convergence and quantum channel capacity is given
Gauge fields, antipodes and holography in de Sitter space
Neiman, Yasha
2014-01-01
We study theories of gauge fields with arbitrary spins s in 3+1d de Sitter space. These include Vasiliev's higher-spin gravity, as well as standard General Relativity (s=2) and Maxwell/Yang-Mills theory (s=1). We find relations between the fields' intrinsic parity, their asymptotic behavior and antipodal symmetry. The analysis is based on a spanning set of solutions to the free field equations, from which we proceed order by order in perturbation theory. We discuss implications for the higher-spin dS_4/CFT_3 duality. In particular, we propose a new version of the duality, which involves transition amplitudes on antipodally-identified ("elliptic") de Sitter space dS_4/Z_2.
Quantum de Sitter Space-Time and the Dark Energy
Liu, Liao
2007-01-01
Three years ago, we introduced a new way to quantize the static Schwarzschild black hole(SSBH), there the SSBH was first treated as a single periodic Euclidean system and then the Bohr-Sommerfeld quantum condition of action was used to obtain a quantum theory of Schwarzschild black hole.[1] Now in this short report, we try to extend the above method to quantize the static de Sitter(SDS) space-time and establish a quantum theory of both SDS space and dark energy.
Quantum field theorie in the de Sitter space
International Nuclear Information System (INIS)
Based on well-known concepts, groundwork is laid for a quantum field theory in the de Sitter space-time considered as an exact soluble model of a more general theory in curved space-time. With respect to the horospherical coordinate system, invariant field equations for arbitrary spin are derived by means of induced representations of the symmetry group SO0(1.4). The additional terms, induced into the first order systems of relativistic wave equations by the space-time curvature, are formally interpreted as external fields. Normalized c-number solutions of the spin-dependent Klein-Gordon equation and of the Dirac equation are calculated explicitly. The analysis of the singular functions of quantum field theory is based on generalized eigenfunction expansions and, in the case of the Feynman propagator of scalar fields, on the method of Schwinger and De Witt, as well. An axiomatic approach to the quantization of neutral scalar fields is presented. Except for massless fields, the resulting 'second quantization' is distinguished by a causal commutation function and a unique vacuum. Recent developments in the regularization problem of the stress-energy tensor are reviewed. With respect to the de Sitter space-time the conclusion has been drawn that the quantum theory of 'free' scalar fields is renormalizable on the one-loop level. (author)
Geometrothermodynamics for Black holes and de Sitter Space
Kurihara, Yoshimasa
2016-01-01
In this report, a general method to extract thermodynamic quantities from solutions of the Einstein equation is developed. In 1994, Wald established that the entropy of a black hole could be identified as a Noether charge associated with a Killing vector of a global space-time (pseudo-Riemann) manifold. We reconstruct Wald's method using geometrical language, e.g$.$, via differential forms defined on the local space-time (Minkowski) manifold. Concurrently, the abstract thermodynamics are also reconstructed using geometrical terminology, which is parallel to general relativity. The correspondence between the thermodynamics and general relativity can be seen clearly by comparing the two expressions. This comparison requires a modification of Wald's method. The new method is applied to Schwarzschild, Kerr, and Kerr--Newman black holes and de Sitter space. The results are consistent with previous results obtained using various independent methods. This strongly supports the validity of the area theorem for black ...
de Sitter space and extremal surfaces for spheres
Directory of Open Access Journals (Sweden)
K. Narayan
2016-02-01
Full Text Available Following arXiv:1501.03019 [hep-th], we study de Sitter space and spherical subregions on a constant boundary Euclidean time slice of the future boundary in the Poincaré slicing. We show that as in that case, complex extremal surfaces exist here as well: for even boundary dimensions, we isolate the universal coefficient of the logarithmically divergent term in the area of these surfaces. There are parallels with analytic continuation of the Ryu–Takayanagi expressions for holographic entanglement entropy in AdS/CFT. We then study the free energy of the dual Euclidean CFT on a sphere holographically using the dS/CFT dictionary with a dual de Sitter space in global coordinates, and a classical approximation for the wavefunction of the universe. For even dimensions, we again isolate the coefficient of the logarithmically divergent term which is expected to be related to the conformal anomaly. We find agreement including numerical factors between these coefficients.
Maxwell's equal-area law for Gauss-Bonnet-Anti-de Sitter black holes
Energy Technology Data Exchange (ETDEWEB)
Belhaj, A. [Universite Sultan Moulay Slimane, Departement de Physique, Faculte Polydisciplinaire, Beni Mellal (Morocco); Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Chabab, M.; El Moumni, H.; Masmar, K. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, FSSM, Marrakesh (Morocco); Sedra, M.B. [Universite Ibn Tofail, Departement de Physique, LHESIR, Faculte des Sciences, Kenitra (Morocco); Universite Mohammed Premier, Ecole Nationale des Sciences Appliquees, Ajdir, BP: 3, Al Hoceima (Morocco)
2015-02-01
Interpreting the cosmological constant Λ as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume, we study the Maxwell equal-area law of higher dimensional Gauss-Bonnet-AdS black holes in extended phase space. These black hole solutions critically behave like van der Waals systems. It has been realized that below the critical temperature T{sub c} the stable equilibrium is violated. We show through calculations that the critical behaviors for the uncharged black holes only appear in d = 5. For the charged case, we analyze solutions in d = 5 and d = 6 separately and find that, up to some constraints, the critical behaviors only appear in the spherical topology. Using the Maxwell construction, we also find the isobar line for which the liquid-gas-like phases coexist. (orig.)
Entropy of massive quantum fields in de Sitter space-time
Takook, M. V.
2016-04-01
Using the quantum states or Hilbert spaces for the quantum field theory in de Sitter ambient space formalism the entropy of the massive quantum field theory is calculated. In this formalism, the homogeneous spaces which are used for construction of the unitary irreducible representation of de Sitter group are compact. The unique feature of this homogeneous space is that by imposing certain physical conditions its total number of quantum one-particle states, N1-p, becomes finite although the Hilbert space has infinite dimensions. N1-p is de Sitter invariant and a continuous function of the Hubble constant H and the eigenvalue of the Casimir operators of de Sitter group. The entropy of the quantum fields is finite and invariant for all inertial observers on de Sitter hyperboloid.
Global Properties of Vacuum States in de Sitter Space
Borchers, Hans-Jürgen; Borchers, Hans-Juergen; Buchholz, Detlev
1999-01-01
Starting from the assumption that vacuum states in de Sitter space look for any geodesic observer like equilibrium states with some a priori arbitrary temperature, an analysis of their global properties is carried out in the algebraic framework of local quantum physics. It is shown that these states have the Reeh--Schlieder property and that any primary vacuum state is also pure and weakly mixing. Moreover, the geodesic temperature of vacuum states has to be equal to the Gibbons--Hawking temperature and this fact is closely related to the existence of a discrete PCT--like symmetry. It is also shown that the global algebras of observables in vacuum sectors have the same structure as their counterparts in Minkowski space theories.
Vaidya black hole in non-stationary de Sitter space: Hawking's temperature
Ishwarchandra, Ngangbam; Singh, K. Yugindro
2014-03-01
In this paper we present a class of non-stationary solutions of Einstein's field equations describing embedded Vaidya-de Sitter black holes with a cosmological variable function Λ( u). The Vaidya-de Sitter black hole is interpreted as the radiating Vaidya black hole is embedded into the non-stationary de Sitter space with variable Λ( u). The energy-momentum tensor of the Vaidya-de Sitter black hole is expressed as the sum of the energy-momentum tensors of the Vaidya null fluid and that of the non-stationary de Sitter field, and satisfies the energy conservation law. We study the energy conditions (like weak, strong and dominant conditions) for the energy-momentum tensor. We find the violation of the strong energy condition due to the negative pressure and leading to a repulsive gravitational force of the matter field associated with Λ( u) in the space-time. We also find that the time-like vector field for an observer in the Vaidya-de Sitter space is expanding, accelerating, shearing and non-rotating. It is also found that the space-time geometry of non-stationary Vaidya-de Sitter solution with variable Λ( u) is Petrov type D in the classification of space-times. We also find the Vaidya-de Sitter black hole radiating with a thermal temperature proportional to the surface gravity and entropy also proportional to the area of the cosmological black hole horizon.
Gauge dependence in QED amplitudes in expanding de Sitter space
Nicolaevici, Nistor
2016-04-01
We consider first-order transition amplitudes in external fields in QED in the expanding de Sitter space and point out that they are gauge dependent quantities. We examine the gauge variations of the amplitudes assuming a decoupling of the interaction at large times, which allows to conclude that the source of the problem lies in the fact that the frequencies of the modes in the infinite future become independent of the comoving momenta. We show that a possibility to assure the gauge invariance of the external field amplitudes is to restrict to potentials which vanish sufficiently fast at infinite times, and briefly discuss a number of options in the face of the possible gauge invariance violation in the full interacting theory.
De Sitter space in gauge/gravity duality
Directory of Open Access Journals (Sweden)
Lilia Anguelova
2015-10-01
Full Text Available We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena–Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of the scalars along the fifth (radial direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (AdS4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.
Entanglement entropy of $\\alpha$-vacua in de Sitter space
Kanno, Sugumi; Shock, Jonathan P; Soda, Jiro
2014-01-01
We consider the entanglement entropy of a free massive scalar field in the one parameter family of $\\alpha$-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An $\\alpha$-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the $\\alpha$-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the R\\'enyi entropy and find that it increases as $\\alpha$ increases. We argue these feature stem from pair condensation within the non-trivial $\\alpha$-vacua where the pairs have an intrinsic quantum correlation.
Entanglement entropy of α-vacua in de Sitter space
Kanno, Sugumi; Murugan, Jeff; Shock, Jonathan P.; Soda, Jiro
2014-07-01
We consider the entanglement entropy of a free massive scalar field in the one parameter family of α-vacua in de Sitter space by using a method developed by Maldacena and Pimentel. An α-vacuum can be thought of as a state filled with particles from the point of view of the Bunch-Davies vacuum. Of all the α-vacua we find that the entanglement entropy takes the minimal value in the Bunch-Davies solution. We also calculate the asymptotic value of the Rényi entropy and find that it increases as α increases. We argue these features stem from pair condensation within the non-trivial α-vacua where the pairs have an intrinsic quantum correlation.
De Sitter space in gauge/gravity duality
Anguelova, Lilia; Suranyi, Peter; Wijewardhana, L. C. R.
2015-10-01
We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena-Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS4 spacetime and nontrivial profiles for (some of) the scalars along the fifth (radial) direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (A) dS 4 spacetime. Finally, we comment on the implications of our dS4 solutions for building gravity duals of Glueball Inflation.
De Sitter Space in Gauge/Gravity Duality
Anguelova, Lilia; Wijewardhana, L C Rohana
2014-01-01
We investigate gauge/gravity duality for gauge theories in de Sitter space. More precisely, we study a five-dimensional consistent truncation of type IIB supergravity, which encompasses a wide variety of gravity duals of strongly coupled gauge theories, including the Maldacena-Nunez solution and its walking deformations. We find several solutions of the 5d theory with dS_4 spacetime and nontrivial profiles for (some of) the scalars along the fifth (radial) direction. In the process, we prove that one of the equations of motion becomes dependent on the others, for nontrivial warp factor. This dependence reduces the number of field equations and, thus, turns out to be crucial for the existence of solutions with (A)dS_4 spacetime. Finally, we comment on the implications of our dS_4 solutions for building gravity duals of Glueball Inflation.
Some Thoughts on the Quantum Theory of de Sitter Space
Banks, T
2003-01-01
This is a summary of two lectures I gave at the Davis Conference on Cosmic Inflation. I explain why the quantum theory of de Sitter (dS) space should have a finite number of states and explore gross aspects of the hypothetical quantum theory, which can be gleaned from semiclassical considerations. The constraints of a self-consistent measurement theory in such a finite system imply that certain mathematical features of the theory are unmeasurable, and that the theory is consequently mathematically ambiguous. There will be a universality class of mathematical theories all of whose members give the same results for local measurements, within the {\\it a priori} constraints on the precision of those measurements, but make different predictions for unmeasurable quantities, such as the behavior of the system on its Poincare recurrence time scale. A toy model of dS quantum mechanics is presented.
Thermodynamic properties of black holes in de Sitter space
Li, Huai-Fan; Ma, Meng-Sen; Ma, Ya-Qin
2016-01-01
We study the thermodynamic properties of Schwarzschild-de Sitter (SdS) black hole and Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole in the view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit,...
Pathways to relativistic curved momentum spaces: de Sitter case study
Amelino-Camelia, Giovanni; Gubitosi, Giulia; Palmisano, Giovanni
2016-01-01
Several arguments suggest that the Planck scale could be the characteristic scale of curvature of momentum space. As other recent studies, we assume that the metric of momentum space determines the condition of on-shellness while the momentum space affine connection governs the form of the law of composition of momenta. We show that the possible choices of laws of composition of momenta are more numerous than the possible choices of affine connection on a momentum space. This motivates us to propose a new prescription for associating an affine connection to momentum composition, which we compare to the one most used in the recent literature. We find that the two prescriptions lead to the same picture of the so-called κ-momentum space, with de Sitter (dS) metric and κ-Poincaré connection. We then show that in the case of “proper dS momentum space”, with the dS metric and its Levi-Civita connection, the two prescriptions are inequivalent. Our novel prescription leads to a picture of proper dS momentum space which is DSR-relativistic and is characterized by a commutative law of composition of momenta, a possibility for which no explicit curved momentum space picture had been previously found. This momentum space can serve as laboratory for the exploration of the properties of DSR-relativistic theories which are not connected to group-manifold momentum spaces and Hopf algebras, and is a natural test case for the study of momentum spaces with commutative, and yet deformed, laws of composition of momenta.
Perturbative quantization of superstring theory in Anti de-Sitter spaces
Energy Technology Data Exchange (ETDEWEB)
Sundin, Per
2010-07-12
In this thesis we study superstring theory on AdS{sub 5} x S{sup 5}, AdS{sub 3} x S{sup 3} and AdS{sub 4} x CP{sub 3}. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a Z{sub 4} grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures. (orig.)
The gravitational exclusion principle and null states in anti-de Sitter space
Energy Technology Data Exchange (ETDEWEB)
Castro, Alejandra; Maloney, Alexander [Department of Physics, McGill University, Montreal, QC (Canada); Hartman, Thomas [School of Natural Sciences, Institute for Advanced Study, Princeton, NJ (United States)
2011-10-07
The holographic principle implies a vast reduction in the number of degrees of freedom of quantum gravity. This idea can be made precise in AdS{sub 3}, where the the stringy or gravitational exclusion principle asserts that certain perturbative excitations are not present in the exact quantum spectrum. We show that this effect is visible directly in the bulk gravity theory: the norm of the offending linearized state is zero or negative. When the norm is negative, the theory is signalling its own breakdown as an effective field theory; this provides a perturbative bulk explanation for the stringy exclusion principle. When the norm vanishes the bulk state is null rather than physical. This implies that certain non-trivial diffeomorphisms must be regarded as gauge symmetries rather than spectrum-generating elements of the asymptotic symmetry group. This leads to subtle effects in the computation of one-loop determinants for Einstein gravity, higher spin theories and topologically massive gravity in AdS{sub 3}. In particular, heat kernel methods do not capture the correct spectrum of a theory with null states. Communicated by S Ross
The Gravitational Exclusion Principle and Null States in Anti-de Sitter Space
Castro, Alejandra; Maloney, Alexander
2011-01-01
The holographic principle implies a vast reduction in the number of degrees of freedom of quantum gravity. This idea can be made precise in AdS_3, where the the stringy or gravitational exclusion principle asserts that certain perturbative excitations are not present in the exact quantum spectrum. We show that this effect is visible directly in the bulk gravity theory: the norm of the offending linearized state is zero or negative. When the norm is negative, the theory is signaling its own breakdown as an effective field theory; this provides a perturbative bulk explanation for the stringy exclusion principle. When the norm vanishes the bulk state is null rather than physical. This implies that certain non-trivial diffeomorphisms must be regarded as gauge symmetries rather than spectrum-generating elements of the asymptotic symmetry group. This leads to subtle effects in the computation of one-loop determinants for Einstein gravity, higher spin theories and topologically massive gravity in AdS_3. In particula...
Conformal symmetry and its breaking in two dimensional Nearly Anti-de-Sitter space
Maldacena, Juan; Yang, Zhenbin
2016-01-01
We study a two dimensional dilaton gravity system, recently examined by Almheiri and Polchinski, which describes near extremal black holes, or more generally, nearly $AdS_2$ spacetimes. The asymptotic symmetries of $AdS_2$ are all the time reparametrizations of the boundary. These symmetries are spontaneously broken by the $AdS_2$ geometry and they are explicitly broken by the small deformation away from $AdS_2$. This pattern of spontaneous plus explicit symmetry breaking governs the gravitational backreaction of the system. It determines several gravitational properties such as the linear in temperature dependence of the near extremal entropy as well as the gravitational corrections to correlation functions. These corrections include the ones determining the growth of out of time order correlators that is indicative of chaos. These gravitational aspects can be described in terms of a Schwarzian derivative effective action for a reparametrization.
The gravitational exclusion principle and null states in anti-de Sitter space
International Nuclear Information System (INIS)
The holographic principle implies a vast reduction in the number of degrees of freedom of quantum gravity. This idea can be made precise in AdS3, where the the stringy or gravitational exclusion principle asserts that certain perturbative excitations are not present in the exact quantum spectrum. We show that this effect is visible directly in the bulk gravity theory: the norm of the offending linearized state is zero or negative. When the norm is negative, the theory is signalling its own breakdown as an effective field theory; this provides a perturbative bulk explanation for the stringy exclusion principle. When the norm vanishes the bulk state is null rather than physical. This implies that certain non-trivial diffeomorphisms must be regarded as gauge symmetries rather than spectrum-generating elements of the asymptotic symmetry group. This leads to subtle effects in the computation of one-loop determinants for Einstein gravity, higher spin theories and topologically massive gravity in AdS3. In particular, heat kernel methods do not capture the correct spectrum of a theory with null states. Communicated by S Ross
Non-linear sigma models with anti-de Sitter target spaces
International Nuclear Information System (INIS)
We present evidence that there is a non-trivial fixed point for the AdSD+1 non-linear sigma model in two dimensions, without any matter fields or additional couplings beyond the standard quadratic action subject to a quadratic constraint. A zero of the beta function, both in the bosonic and supersymmetric cases, appears to arise from competition between one-loop and higher loop effects. A string vacuum based on such a fixed point would have string scale curvature. The evidence presented is based on fixed-order calculations carried to four loops (corresponding to O(α'3) in the spacetime effective action) and on large D calculations carried to O(D-2) (but to all orders in α'). We discuss ways in which the evidence might be misleading, and we discuss some features of the putative fixed point, including the central charge and an operator of negative dimension. We speculate that an approximately AdS5 version of this construction may provide a holographic dual for pure Yang-Mills theory, and that quotients of an AdS3 version might stand in for Calabi-Yau manifolds in compactifications to four dimensions
Gubser, Steven S
2010-01-01
In four lectures, delivered at the TASI 2010 summer school, I cover selected topics in the application of the gauge-string duality to nuclear and condensed matter physics. On the nuclear side, I focus on multiplicity estimates from trapped surfaces in AdS_5, and on the consequences of conformal symmetry for relativistic hydrodynamics. On the condensed matter side, I explain the fermion response to the zero-temperature limit of p-wave holographic superconductors.
2D fuzzy anti-de Sitter space from matrix models
International Nuclear Information System (INIS)
We study the fuzzy hyperboloids AdS2 and dS2 as brane solutions in matrix models. The unitary representations of SO(2,1) required for quantum field theory are identified, and explicit formulae for their realization in terms of fuzzy wavefunctions are given. In a second part, we study the (A)dS2 brane geometry and its dynamics, as governed by a suitable matrix model. In particular, we show that trace of the energy-momentum tensor of matter induces transversal perturbations of the brane and of the Ricci scalar. This leads to a linearized form of Henneaux-Teitelboim-type gravity, illustrating the mechanism of emergent gravity in matrix models
On the Euclidean approach to quantum field theory in anti-de Sitter space-time
International Nuclear Information System (INIS)
The quantum field theory in AdS has moved rapidly in the past few years. A continuation of this progress clearly requires the introduction of new methods and points of view. In this paper, the author will discuss the possibility of developing a purely Euclidean approach to quantum field theory in Ads
Perturbative quantization of superstring theory in Anti de-Sitter spaces
International Nuclear Information System (INIS)
In this thesis we study superstring theory on AdS5 x S5, AdS3 x S3 and AdS4 x CP3. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a Z4 grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures. (orig.)
Logarithmic correction to the Brane equation in Topological Reissner-Nordstr\\"om de Sitter Space
Setare, M.R.(Department of Science, University of Kurdistan, Campus of Bijar, Bijar, Iran)
2003-01-01
In this paper we study braneworld cosmology when the bulk space is a charged black hole in de Sitter space (Topological Reissner-Nordstr\\"om de Sitter Space) in general dimension, then we compute leading order correction to the Friedmann equation that arise from logarithmic corrections to the entropy in the holographic-branworld cosmological framwork. Finally we consider the holographic entropy bounds in this senario, we show the entropy bounds are also modified by logarithmic term.
Holography and quantum states in elliptic de Sitter space
Halpern, Illan F.; Neiman, Yasha
2015-12-01
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in "elliptic" de Sitter space d{S}_4/{Z}_2 , obtained by identifying antipodal points in dS 4. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable d{S}_4/{Z}_2 . We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in d{S}_4/{Z}_2 , in the limit of free bulk fields. We succeed in deriving an observer's operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.
Holography and quantum states in elliptic de Sitter space
Halpern, Illan F
2015-01-01
We outline a program for interpreting the higher-spin dS/CFT model in terms of physics in the causal patch of a dS observer. The proposal is formulated in "elliptic" de Sitter space dS_4/Z_2, obtained by identifying antipodal points in dS_4. We discuss recent evidence that the higher-spin model is especially well-suited for this, since the antipodal symmetry of bulk solutions has a simple encoding on the boundary. For context, we test some other (free and interacting) theories for the same property. Next, we analyze the notion of quantum field states in the non-time-orientable dS_4/Z_2. We compare the physics seen by different observers, with the outcome depending on whether they share an arrow of time. Finally, we implement the marriage between higher-spin holography and observers in dS_4/Z_2, in the limit of free bulk fields. We succeed in deriving an observer's operator algebra and Hamiltonian from the CFT, but not her S-matrix. We speculate on the extension of this to interacting higher-spin theory.
Temperature and entropy of Schwarzschild-de Sitter space-time
International Nuclear Information System (INIS)
In the light of recent interest in quantum gravity in de Sitter space, we investigate semiclassical aspects of four-dimensional Schwarzschild-de Sitter space-time using the method of complex paths. The standard semiclassical techniques (such as Bogoliubov coefficients and Euclidean field theory) have been useful to study quantum effects in space-times with single horizons; however, none of these approaches seem to work for Schwarzschild-de Sitter space-time or, in general, for space-times with multiple horizons. We extend the method of complex paths to space-times with multiple horizons and obtain the spectrum of particles produced in these space-times. We show that the temperature of radiation in these space-times is proportional to the effective surface gravity--the inverse harmonic sum of surface gravity of each horizon. For the Schwarzschild-de Sitter space-time, we apply the method of complex paths to three different coordinate systems--spherically symmetric, Painleve, and Lemaitre. We show that the equilibrium temperature in Schwarzschild-de Sitter space-time is the harmonic mean of cosmological and event horizon temperatures. We obtain Bogoliubov coefficients for space-times with multiple horizons by analyzing the mode functions of the quantum fields near the horizons. We propose a new definition of entropy for space-times with multiple horizons, analogous to the entropic definition for space-times with a single horizon. We define entropy for these space-times to be inversely proportional to the square of the effective surface gravity. We show that this definition of entropy for Schwarzschild-de Sitter space-time satisfies the D-bound conjecture
Thermodynamic properties of black holes in de Sitter space
Li, Huai-Fan; Ma, Ya-Qin
2016-01-01
We study the thermodynamic properties of Schwarzschild-de Sitter (SdS) black hole and Reissner-Nordstr\\"{o}m-de Sitter (RNdS) black hole in the view of global and effective thermodynamic quantities. Making use of the effective first law of thermodynamics, we can derive the effective thermodynamic quantities of de Sitter black holes. It is found that these effective thermodynamic quantities also satisfy Smarr-like formula. Especially, the effective temperatures are nonzero in the Nariai limit, which is consistent with the idea of Bousso and Hawking. By calculating heat capacity and Gibbs free energy, we find SdS black hole is always thermodynamically stable and RNdS black hole may undergoes phase transition at some points.
Fermionic Schwinger effect and induced current in de Sitter space
Hayashinaka, Takahiro; Fujita, Tomohiro; Yokoyama, Jun'ichi
2016-07-01
We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 de Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.
Fermionic Schwinger effect and induced current in de Sitter space
Hayashinaka, Takahiro; Yokoyama, Jun'ichi
2016-01-01
We explore Schwinger effect of spin 1/2 charged particles with static electric field in 1+3 dimensional de Sitter spacetime. We analytically calculate the vacuum expectation value of the spinor current which is induced by the produced particles in the electric field. The renormalization is performed with the adiabatic subtraction scheme. We find that the current becomes negative, namely it flows in the direction opposite to the electric field, if the electric field is weaker than a certain threshold value depending on the fermion mass, which is also known to happen in the case of scalar charged particles in 1+3 de Sitter spacetime. Contrary to the scalar case, however, the IR hyperconductivity is absent in the spinor case.
Perturbative S-matrix for massive scalar fields in global de Sitter space
International Nuclear Information System (INIS)
We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)
Emergent observable deSitter space from an Equation of Motion
Liu, Leihua
2015-01-01
We propose that de-Sitter space-time originates from Gaussian distribution in a quantum harmonic oscillator system. This equation associates with a massless Klein-Gordon equation. We discover that every excited states of quantum oscillator also contributes for the de-Sitter space-time. The observable part of metric is related to energy scale and excited quantum number $n$. As for off-diagonal elements, it comes from the superposition of quantum mechanics. These elements can cause in-homogeneous at the very beginning of universe.
Slany, P
2007-01-01
Critical discussion of the recently published results [Muller, A. and Aschenbach, B. 2007 Class. Quantum Grav. 24, p. 2637; arXiv:0704.3963] on the non-monotonic orbital velocity profiles of the Keplerian motion of test particles and l = const motion of test perfect fluid around K(a)dS black holes is given, and the discrepancies concerned the existence of the non-monotonicity in dependence of the spacetime parameters are corrected. Moreover a new non-monotonic behaviour of the Keplerian orbital velocity in the Kerr-antide Sitter spacetimes is highlighted.
Phase transitions for the topological AdS-black holes and de Sitter spaces
mYung, Y S
2006-01-01
We study whether or not the Hawking-Page phase transition occurs in the topological AdS-black holes (TAdS), topological de Sitter spaces (TdS), and Schwarzschild-de Sitter black hole (SdS). It turns out that at the critical temperature $T=T_1$, the TAdS with a spherical horizon and TdS with a hyperbolic cosmological horizon can make a phase transition from thermal AdS (dS) space to the black hole. It is shown that there is no Hawking-Page transition for the TAdS and TdS with Ricci-flat horizons when the zero mass black hole and de Sitter are taken as the thermal background. Finally, we find that the SdS takes a kind of the Hawking-Page phase transition at T=0.
De Sitter space versus Nariai Black Hole stability in d5 higher derivative gravity
Nojiri, S; Nojiri, Shin'ichi; Odintsov, Sergei D.
2001-01-01
d5 higher derivative gravity on the Schwarzschild-de Sitter (SdS) black hole background is considered. Two horizons SdS BHs are not in thermal equilibrium and Hawking-Page phase transitions are not expected there, unlike to the case of AdS BHs. It is demonstrated that there exists the regime of d5 theory where Nariai BH which is extremal limit of SdS BH is stable. It is in the contrast with Einstein gravity on such backgroundwhere only pure de Sitter space is always stable. Speculating on the applications in proposed dS/CFT correspondence, these two (de Sitter and Nariai) stable spaces may correspond to confining-deconfining phases in dual CFT.
On the Instability of Global de Sitter Space to Particle Creation
Anderson, Paul R
2013-01-01
We show that global de Sitter space is unstable to particle creation, even for a massive free field theory with no self-interactions. The O(4,1) de Sitter invariant state is a definite phase coherent superposition of particle and anti-particle solutions in both the asymptotic past and future, and therefore is not a true vacuum state. In the closely related case of particle creation by a constant, uniform electric field, a time symmetric state analogous to the de Sitter invariant one is constructed, which is also not a stable vacuum state. We provide the general framework necessary to describe the particle creation process, the mean particle number, and dynamical quantities such as the energy-momentum tensor and current of the created particles in both the de Sitter and electric field backgrounds in real time, establishing the connection to kinetic theory. We compute the energy-momentum tensor for adiabatic vacuum states in de Sitter space initialized at early times in global S^3 sections, and show that partic...
Constraints on Meta-stable de Sitter Flux Vacua
Energy Technology Data Exchange (ETDEWEB)
Soroush, Masoud
2007-03-05
We consider flux compactification of type IIB string theory as the orientifold limit of an F-theory on a Calabi-Yau fourfold. We show that when supersymmetry is dominantly broken by the axion-dilaton and the contributions of the F-terms associated with complex structure moduli are small, the Hessian of the flux potential always has tachyonic modes for de Sitter vacua. This implies that there exist no meta-stable de Sitter vacua in this limit. Moreover, we find that the stability requirement imposes a relation between the values of cosmological constant and the scale of supersymmetry breaking for non-supersymmetric anti de Sitter vacua in this limit. The proof is general and does rely on the details of the geometry of the compact Calabi-Yau internal space. We finally analyze the consequences of these constraints on the statistics of meta-stable de Sitter vacua and address some other related issues.
Special massive spin-2 on the de Sitter space
International Nuclear Information System (INIS)
The theory of a massive spin-2 state on the de Sitter space—with the mass squared equal to one sixth of the curvature—is special for two reasons: (i) it exhibits an enhanced local symmetry; (ii) it emerges as a part of the model that gives rise to the self-accelerated Universe. The known problems of this theory are: either it cannot be coupled to a non-conformal conserved stress-tensor because of the enhanced symmetry, or it propagates a ghost-like state when the symmetry is constrained by the Lagrange multiplier method. Here we propose a solution to these problems in the linearized approximation
De Sitter space versus Nariai Black Hole: stability in d5 higher derivative gravity
Nojiri, Shin'ichi; Odintsov, Sergei D.
2001-01-01
d5 higher derivative gravity on the Schwarzschild-de Sitter (SdS) black hole background is considered. Two horizons SdS BHs are not in thermal equilibrium and Hawking-Page phase transitions are not expected there, unlike to the case of AdS BHs. It is demonstrated that there exists the regime of d5 theory where Nariai BH which is extremal limit of SdS BH is stable. It is in the contrast with Einstein gravity on such backgroundwhere only pure de Sitter space is always stable. Speculating on the...
Entropy of 2+1 dimensional de Sitter space without cutoff
Kim, W; Park, Y J; Kim, Wontae; Kim, Yong-Wan; Park, Young-Jai
2006-01-01
By introducing the generalized uncertainty principle on the quantum state density, we calculate the statistical entropy of a scalar field on the background of three-dimensional de Sitter space without artificial cutoff. The desired entropy proportional to the horizon perimeter is obtained.
Dispersion relations and entropy of scalar fields in Rindler and de Sitter spaces
Lenz, F; Yazaki, K
2014-01-01
Properties of scalar fields in Rindler and de Sitter spaces are the subject of this work. Using the "brick wall model'' the dispersion relations are determined and the remarkable properties common to both spaces as well as their differences are discussed. Equipped with these tools the horizon induced thermodynamics is revisited and shown to be dominated by a single mode propagating perpendicular to the horizon. Explicit expressions for the partition function, entropy and heat capacity for massless and massive fields are presented.
Quantum dynamic of massive particle On 1+3 De Sitter space-time
Directory of Open Access Journals (Sweden)
A Rabeie
2012-09-01
Full Text Available The phase space which is related to the motion of massive particle on 1+3- De sitter space is a 3-dimensional complex sphere. Our main aim in this study is discribing this movement in the frame quantum mechanics. Transfering from classical mechanic to quantum mechanics is possible by means of coherent states. Thus, after determination of this state, we quantize some of the classical observables.
Gravitational deflection of light in the Schwarzschild-de Sitter space-time
International Nuclear Information System (INIS)
Recent studies suggest that the cosmological constant affects the gravitational bending of photons, although the orbital equation for light in Schwarzschild-de Sitter space-time is free from a cosmological constant. Here we argue that the very notion of a cosmological constant independent of the photon orbit in the Schwarzschild-de Sitter space-time is not proper. Consequently, the cosmological constant has some clear contributions to the deflection angle of light rays. We stress the importance of the study of photon trajectories from the reference objects in bending calculations, particularly for asymptotically nonflat space-time. When such an aspect is taken into consideration, the contribution of a cosmological constant to the effective bending is found to depend on the distances of the source and the reference objects.
Logarithmic corrections to three-dimensional black holes and de Sitter spaces
Myung, Y S
2004-01-01
We calculate logarithmic corrections to the Bekenstein-Hawking entropy for three-dimensional AdS black holes and topological de Sitter (TdS) spaces including the Schwarzschild-de Sitter (SdS) solution due to thermal fluctuations. It is found that there is no distinction between the event horizon of AdS black holes and the cosmological horizon of SdS and TdS spaces. We obtain the same correction to the Cardy formula for AdS, SdS, and TdS cases. We discuss AdS/CFT and dS/ECFT correspondences in connection with logarithmic corrections. Finally the two Cardy formulae give the same Bekenstein-Hawking entropy for $k=-1$ large AdS black hole and $k=1$ large TdS space.
Schwinger Effect in 4D de Sitter Space and Constraints on Magnetogenesis in the Early Universe
Kobayashi, Takeshi
2014-01-01
We investigate pair creation by an electric field in four-dimensional de Sitter space. The expectation value of the induced current is computed, using the method of adiabatic regularization. Under strong electric fields the behavior of the current is similar to that in flat space, while under weak electric fields the current becomes inversely proportional to the mass squared of the charged field. Thus we find that the de Sitter space obtains a large conductivity under weak electric fields in the presence of a charged field with a tiny mass. We then apply the results to constrain electromagnetic fields in the early universe. In particular, we study cosmological scenarios for generating large-scale magnetic fields during the inflationary era. Electric fields generated along with the magnetic fields can induce sufficiently large conductivity to terminate the phase of magnetogenesis. For inflationary magnetogenesis models with a modified Maxwell kinetic term, the generated magnetic fields cannot exceed 10^{-30} G...
Finite-temperature scalar field theory in static de Sitter space
International Nuclear Information System (INIS)
The finite-temperature one-loop effective potential for a scalar field in the static de Sitter space-time is obtained. Within this framework, by using ζ-function regularization, one can get, in the conformally invariant case, the explicit expression for the stress tensor anomaly. Its value turns out to depend on the thermal state of the system. This conclusion is different from the one derived by other authors, who considered thermal properties of ultraviolet divergences in static spaces ignoring the effects of horizons. The behaviour of the effective potential in the ground state and in de Sitter-invariant state is also studied, showing the role played by the curvature on the minima. 16 refs
Spinning particles in the Perturbed Schwarzschild-de Sitter Space-Time
Naboulsi, R
2003-01-01
I study spinning particles in Schwarschild-de Sitter (SdS) space-time where the cosmological constant is replaced by an effective one inspired from [1,2]. Equations of motions are investigated. It is shown that the equilibrium conditions are independant of the spin of the test particles and are satisfied only when the cosmological constant Lambda > 3m^2 where m is a constant having the dimension of time^{-1}.
A preferred ground state for the scalar field in de Sitter space
Aslanbeigi, Siavash
2013-01-01
We investigate a recent proposal for a distinguished vacuum state of a free scalar quantum field in an arbitrarily curved spacetime, known as the Sorkin-Johnston (SJ) vacuum, by applying it to de Sitter space. We derive the associated two-point functions on both the global and Poincar\\'e (cosmological) patches in general d+1 dimensions. In all cases where it is defined, the SJ vacuum belongs to the family of de Sitter invariant alpha-vacua. We obtain different states depending on the spacetime dimension, mass of the scalar field, and whether the state is evaluated on the global or Poincar\\'e patch. We find that the SJ vacuum agrees with the Euclidean/Bunch-Davies state for heavy ("principal series") fields on the global patch in even spacetime dimensions. We also compute the SJ vacuum on a causal set corresponding to a causal diamond in 1+1 dimensional de Sitter space. Our simulations show that the mean of the SJ two-point function on the causal set agrees well with its expected continuum counterpart.
Casimir effect in de Sitter space-time with compactified dimension
Energy Technology Data Exchange (ETDEWEB)
Saharian, A.A. [Department of Physics, Yerevan State University, Yerevan (Armenia); International Centre for Theoretical Physics, Trieste (Italy)], E-mail: saharian@ictp.it; Setare, M.R. [Department of Science, Payame Noor University, Bijar (Iran, Islamic Republic of)], E-mail: rezakord@ipm.ir
2008-01-17
We investigate the Hadamard function, the vacuum expectation values of the field square and the energy-momentum tensor of a scalar field with general curvature coupling parameter in de Sitter space-time compactified along one of spatial dimensions. By using the Abel-Plana summation formula, we have explicitly extracted from the vacuum expectation values the part due to the compactness of the spatial dimension. The topological part in the vacuum energy-momentum tensor violates the local de Sitter symmetry and dominates in the early stages of the cosmological evolution. At late times the corresponding vacuum stresses are isotropic and the topological part corresponds to an effective gravitational source with barotropic equation of state.
de Sitter spaces: topological ramifications of gravity as a gauge theory
International Nuclear Information System (INIS)
We exploit an interpretation of gravity as the symmetry-broken phase of a de Sitter gauge theory to construct new solutions to the first-order field equations. The new solutions are constructed by performing large Spin(4, 1) gauge transformations on the ordinary de Sitter solution and extracting first the tetrad, and then the induced metric. The class of metrics so obtained is an infinite class labeled by an integer, q. Each solution satisfies the local field equations defining constant positive curvature and is therefore locally isometric to de Sitter space wherever the metric is non-degenerate. The degeneracy structure of the tetrad and metric reflects the topological differences among the solutions with different q. By topological arguments we show that the solutions are physically distinct with respect to the symmetries of Einstein-Cartan theory. Ultimately, the existence of solutions of this type may be a distinguishing characteristic of gravity as a metric theory versus gravity as a gauge theory.
Energy Technology Data Exchange (ETDEWEB)
Baxter, J. Erik, E-mail: e.baxter@shu.ac.uk [Department of Engineering and Mathematics, Sheffield Hallam University, Sheffield S11WB (United Kingdom)
2016-02-15
We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our main result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions.
International Nuclear Information System (INIS)
We investigate dyonic black hole and dyon solutions of four-dimensional su(N) Einstein-Yang-Mills theory with a negative cosmological constant. We derive a set of field equations in this case, and prove the existence of non-trivial solutions to these equations for any integer N, with 2N − 2 gauge degrees of freedom. We do this by showing that solutions exist locally at infinity, and at the event horizon for black holes and the origin for solitons. We then prove that we can patch these solutions together regularly into global solutions that can be integrated arbitrarily far into the asymptotic regime. Our main result is to show that dyonic solutions exist in open sets in the parameter space, and hence that we can find non-trivial dyonic solutions in a number of regimes whose magnetic gauge fields have no zeros, which is likely important to the stability of the solutions
Energy Technology Data Exchange (ETDEWEB)
Anciaux, Henri, E-mail: henri.anciaux@gmail.com [Université Libre de Bruxelles, CP 216, local O.7.110, Bd du Triomphe, 1050 Brussels (Belgium); Godoy, Yamile, E-mail: yamile.godoy@gmail.com [FaMAF-CIEM, Ciudad Universitaria, 5000 Córdoba (Argentina)
2015-02-15
We give local, explicit representation formulas for n-dimensional spacelike submanifolds which are marginally trapped in the Minkowski space ℝ{sub 1}{sup n+2}, the de Sitter space dS{sup n+2}, the anti-de Sitter space AdS{sup n+2} and the Lorentzian products S{sup n+1} × ℝ and ℍ{sup n+1} × ℝ of the sphere and the hyperbolic space by the real line.
Entanglement Entropy in the $\\sigma$-Model with the de Sitter Target Space
Vancea, Ion V
2016-01-01
We derive the formula of the entanglement entropy between the left and right oscillating modes of the $\\sigma$-model with the de Sitter target space. To this end, we study the theory in the cosmological gauge in which the non-vanishing components of the metric on the two-dimensional base space are functions of the expansion parameter of the de Sitter space. The model is embedded in the causal north pole diamond of the Penrose diagram. We argue that the cosmological gauge is natural to the $\\sigma$-model as it is compatible with the canonical quantization relations. In this gauge, we obtain a new general solution to the equations of motion in terms of time-independent oscillating modes. The constraint structure is adequate for quantization in the Gupta-Bleuler formalism. We construct the space of states as a one-parameter family of Hilbert spaces and give the Bargmann-Fock and Jordan-Schwinger representations of it. Also, we give a simple description of the physical subspace as an infinite product of $\\mathcal...
Renormalization group flows from gravity in anti-de Sitter space versus black hole no-hair theorems
International Nuclear Information System (INIS)
Black hole no-hair theorems are proven using inequalities that govern the radial dependence of spherically symmetric configurations of matter fields. In this paper, we analyze the analogous inequalities for geometries dual to renormalization group flows via the AdS/CFT correspondence. These inequalities give much useful information about the qualitative properties of such flows. For Poincare invariant flows, we show that generic flows of relevant or irrelevant operators lead to singular geometries. For the case of irrelevant operators, this leads to an apparent conflict with Polchinski's decoupling theorem, and we offer two possible resolutions to this problem. (author)
Real scalar field scattering in the nearly extremal Schwarzschild-de Sitter space
Institute of Scientific and Technical Information of China (English)
Guo Guang-Hai
2010-01-01
Reasonable approximations are introduced to investigate the real scalar field scattering in the nearly extremal Sehwarzschild-de Sitter (SdS) space. The approximations naturally lead to the invertible x(r) and the global replacement of the true potential by a Pbshl-Teller one. Meanwhile, the Sehr6dinger-like wave equation is transformed into a solvable form. Our numerical solutions to the wave equation show that the wave is characteristically similar to the harmonic under the tortoise coordinate x, while the wave piles up near the two horizons and the wavelength tends to its maximum as the potential approaches to the peak under the radial coordinate r.
New tortoise coordinate transformation and Hawking's radiation in de Sitter space
Ibohal, N.; Ibungochouba, T.
2013-01-01
Hawking's radiation effect of Klein-Gordon equation, Dirac particles and Maxwell's electromagnetic fields in the non-stationary rotating de Sitter cosmological space-time is investigated by using a new method of generalized tortoise coordinate transformation. It is found that the new transformation produces constant additional terms in the expressions of the surface gravities and the Hawking's temperatures. If the constant terms are set to zero, then the surface gravities and Hawking's temperatures will be equal to those obtained from the old generalized tortoise coordinate transformations. This shows that the new transformations are more reasonable. The Fermionic spectrum of Dirac particles displays a new spin-rotation coupling effect.
Analyticity properties and thermal effects for general quantum field theory on de Sitter space-time
Bros, J; Moschella, U; Bros, Jacques; Epstein, Henri; Moschella, Ugo
1998-01-01
We propose a general framework for quantum field theory on the de Sitter space-time (i.e. for local field theories whose truncated Wightman functions are not required to vanish). By requiring that the fields satisfy a weak spectral condition, formulated in terms of the analytic continuation properties of their Wightman functions, we show that a geodesical observer will detect in the corresponding ``vacuum'' a blackbody radiation at temperature T=1/(2 \\pi R). We also prove the analogues of the PCT, Reeh-Schlieder and Bisognano-Wichmann theorems.
Anti-de Sitter gravitational collapse
International Nuclear Information System (INIS)
We describe a formalism for studying spherically symmetric collapse of the massless scalar field in any spacetime dimension, and for any value of the cosmological constant Λ. The formalism is used for numerical simulations of gravitational collapse in four spacetime dimensions with negative Λ. We observe critical behaviour at the onset of black-hole formation, and find that the critical exponent is independent of Λ. (letter to the editor)
Branes and anti-de Sitter spacetimes
Boonstra, H J; Skenderis, K; Boonstra, Harm Jan; Peeters, Bas; Skenderis, Kostas
1999-01-01
We consider a series of duality transformations that leads to a constant shift in the harmonic functions appearing in the description of a configuration of branes. This way, for several intersections of branes, we can relate the original brane configuration which is asymptotically flat to a geometry which is locally isometric to adS_k x E^l x S^m. These results imply that certain branes are dual to supersingleton field theories. We also discuss the implications of our results for supersymmetry enhancement and for supergravity theories in diverse dimensions.
Long-Time Asymptotics of a Bohmian Scalar Quantum Field in de Sitter Space-Time
Tumulka, Roderich
2015-01-01
We consider a model quantum field theory with a scalar quantum field in de Sitter space-time in a Bohmian version with a field ontology, i.e., an actual field configuration $\\varphi({\\bf x},t)$ guided by a wave function on the space of field configurations. We analyze the asymptotics at late times ($t\\to\\infty$) and provide reason to believe that for more or less any wave function and initial field configuration, every Fourier coefficient $\\varphi_{\\bf k}(t)$ of the field is asymptotically of the form $c_{\\bf k}\\sqrt{1+{\\bf k}^2 \\exp(-2Ht)/H^2}$, where the limiting coefficients $c_{\\bf k}=\\varphi_{\\bf k}(\\infty)$ are independent of $t$ and $H$ is the Hubble constant quantifying the expansion rate of de Sitter space-time. In particular, every field mode $\\varphi_{\\bf k}$ possesses a limit as $t\\to\\infty$ and thus "freezes." This result is relevant to the question whether Boltzmann brains form in the late universe according to this theory, and supports that they do not.
Massive gravity in de Sitter space via the gravitational Higgs mechanism
International Nuclear Information System (INIS)
In this paper we discuss massive gravity in de Sitter space via the gravitational Higgs mechanism, which provides a nonlinear definition thereof. The Higgs scalars are described by a nonlinear sigma model, which includes higher derivative terms required to obtain the Fierz-Pauli mass term. Using the aforesaid nonperturbative definition, we address the appearance of an enhanced local symmetry and a null norm state in the linearized massive gravity in de Sitter space at the special value of the graviton mass to the Hubble parameter ratio. By studying full nonperturbative equations of motion, we argue that there is no enhanced symmetry in the full nonlinear theory. We then argue that in the full nonlinear theory no null norm state is expected to arise at the aforesaid special value. This suggests that no ghost might be present for lower graviton mass values and the full nonlinear theory might be unitary for all values of the graviton mass and the Hubble parameter with no van Dam-Veltman-Zakharov discontinuity. We argue that this is indeed the case by studying the full nonlinear Hamiltonian for the relevant conformal and helicity-0 longitudinal modes. In particular, we argue that no negative norm state is present in the full nonlinear theory.
New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter
International Nuclear Information System (INIS)
In this paper, which is an elaboration of our results in Phys. Rev. Lett. 95:071101, 2005 (hep-th/0504225), we construct new Einstein-Sasaki spaces Lp,q,r1,...,rn-1 in all odd dimensions D = 2n+1 ≥ 5. They arise by taking certain BPS limits of the Euclideanised Kerr-de Sitter metrics. This yields local Einstein-Sasaki metrics of cohomogeneity n, with toric U(1)n+1 principal orbits, and n real non-trivial parameters. By studying the structure of the degenerate orbits we show that for appropriate choices of the parameters, characterised by the (n+1) coprime integers (p,q,r1,...,rn-1), the local metrics extend smoothly onto complete and non-singular compact Einstein-Sasaki manifolds Lp,q,r1,...,rn-1. We also construct new complete and non-singular compact Einstein spaces Λp,q,r1,...,rn in D = 2n+1 that are not Sasakian, by choosing parameters appropriately in the Euclideanised Kerr-de Sitter metrics when no BPS limit is taken.
On the Perturbative Stability of Quantum Field Theories in de Sitter Space
Boyanovsky, Daniel
2011-01-01
We use a field theoretic generalization of the Wigner-Weisskopf method to study the stability of the Bunch-Davies vacuum state for a massless, conformally coupled interacting test field in de Sitter space. We find that in $\\lambda \\phi^4$ theory the vacuum does {\\em not} decay, while in non-conformally invariant models, the vacuum decays as a consequence of a vacuum wave function renormalization that depends \\emph{singularly} on (conformal) time and is proportional to the spatial volume. In a particular regularization scheme the vacuum wave function renormalization is the same as in Minkowski spacetime, but in terms of the \\emph{physical volume}, which leads to an interpretation of the decay. A simple example of the impact of vacuum decay upon a non-gaussian correlation is discussed. Single particle excitations also decay into two particle states, leading to particle production that hastens the exiting of modes from the de Sitter horizon resulting in the production of \\emph{entangled superhorizon pairs} with ...
Recessional velocities and Hubble's law in Schwarzschild-de Sitter space
International Nuclear Information System (INIS)
We consider a spacetime with empty Schwarzschild-de Sitter exterior and Schwarzschild-de Sitter interior metric for a spherical fluid with constant density. The fluid interior may be taken to represent a galaxy supercluster, for which the proper distance from the center of the supercluster to the cosmological horizon has the same order of magnitude as the Hubble radius derived from Friedmann-Robertson-Walker cosmologies. The fluid interior and surrounding vacuum may also be considered as a model of the Local Group of galaxies in the far future. Particle motion is subject both to the attractive gravity exerted by the fluid and the repelling cosmological constant. Using global Fermi coordinates for the central observer within the fluid, the Fermi velocity, the astrometric velocity, the kinematic velocity, and the spectroscopic velocity, relative to the central (Fermi) observer, of a radially receding test particle are calculated and compared. We find that the Fermi relative velocity can exceed the speed of light in this model, but the presence of a positive cosmological constant causes recessional speeds of distant high energy particles to decrease rather than increase. We derive a version of Hubble's law for this spacetime which might be applicable for the analysis of a receding mass within a great void adjacent to a supercluster, relatively isolated from gravitational sources other than the supercluster. We also compare some of our results to related behavior in Friedmann-Robertson-Walker cosmologies and consider implications to arguments regarding the expansion of space.
$O(N)$ model in Euclidean de Sitter space: beyond the leading infrared approximation
Nacir, Diana López; Trombetta, Leonardo G
2016-01-01
We consider an $O(N)$ scalar field model with quartic interaction in $d$-dimensional Euclidean de Sitter space. In order to avoid the problems of the standard perturbative calculations for light and massless fields, we generalize to the $O(N)$ theory a systematic method introduced previously for a single field, which treats the zero modes exactly and the nonzero modes perturbatively. We compute the two-point functions taking into account not only the leading infrared contribution, coming from the self-interaction of the zero modes, but also corrections due to the interaction of the ultraviolet modes. For the model defined in the corresponding Lorentzian de Sitter spacetime, we obtain the two-point functions by analytical continuation. We point out that a partial resummation of the leading secular terms (which necessarily involves nonzero modes) is required to obtain a decay at large distances for massless fields. We implement this resummation along with a systematic double expansion in an effective coupling c...
Setare, M.R.(Department of Science, University of Kurdistan, Campus of Bijar, Bijar, Iran)
2003-01-01
In this paper we compute leading order correction due to small statistical fluctuations around equilibrium, to the Cardy-Verlinde entropy formula (which is supposed to be an entropy formula of conformal field theory in any dimension) of a Topological Reissner-Nordstrom black hole in de Sitter space.
The covariant and infrared-free graviton two-point function in de Sitter space-time
Pejhan, Hamed
2015-01-01
In this paper, the two-point function of linearized gravitons on de Sitter (dS) space is presented. Technically, respecting the dS ambient space notation, the field equation is given by the coordinate-independent Casimir operators of the de Sitter group. Analogous to the quantization of the electromagnetic field in Minkowski space, the field equation admits gauge solutions. The notation allows to exhibit the formalism of Gupta-Bleuler triplets for the present field in exactly the same manner as it occurs for the electromagnetic field. In this regard, centering on the traceless part, the field solution is written as a product of a generalized polarization tensor and a minimally coupled massless scalar field. Then, admitting a de Sitter-invariant vacuum through the so-called "Krein Space Quantization", the de Sitter fully covariant two-point function is calculated. This function is interestingly free of pathological large distance behavior (infrared divergence). Moreover, the pure-trace part (conformal sector) ...
Semiclassical relations and IR effects in de Sitter and slow-roll space-times
International Nuclear Information System (INIS)
We calculate IR divergent graviton one-loop corrections to scalar correlators in de Sitter space, and show that the leading IR contribution may be reproduced via simple semiclassical consistency relations. One can likewise use such semiclassical relations to calculate leading IR corrections to correlators in slow-roll inflation. The regulated corrections shift the tensor/scalar ratio and consistency relation of single field inflation, and non-gaussianity parameters averaged over very large distances. For inflation of sufficient duration, for example arising from a chaotic inflationary scenario, these corrections become of order unity. First-order corrections of this size indicate a breakdown of the perturbative expansion, and suggest the need for a non-perturbative description of the corresponding regime. This is analogous to a situation argued to arise in black hole evolution, and to interfere with a sharp perturbative calculation of ''missing information'' in Hawking radiation
One Electron Atom in Special Relativity with de Sitter Space-Time Symmetry
Institute of Scientific and Technical Information of China (English)
闫沐露
2012-01-01
The de Sitter invariant Special Relativity （dS-SR） is SR with constant curvature, and a natural extension of usual Einstein SR （E-SR）. In this paper, we solve the dS-SR Dirac equation of Hydrogen by means of the adiabatic approach and the quasi-stationary perturbation calculations of QM. Hydrogen atom is located in the light cone of the Universe. FRW metric and ACDM cosmological model are used to discuss this issue. To the atom, effects of de Sitter space-time geometry described by Beltrami metric are taken into account. The dS-SR Dirac equation turns out to be a time dependent quantum Hamiltonian system. We reveal that： （i） The fundamental physics constants me, h, e variate adiabatically along with cosmologic time in dS-SR QM framework. But the fine-structure constant α≡ - e^2/（hc） keeps to be invariant; （ii） （2s^1/2 - 2p^1/2）-splitting due to dS-SR QM effects： By means of perturbation theory, that splitting △E（z） are calculated analytically, which belongs to O（1/R^2）-physics of dS-SR QM. Numerically, we find that when ｜R｜ = {103 Gly, 104 Gly, 105 Gly}, and z = {1, or 2}, the AE（z） 〉〉 1 （Lamb shift）. This indicates that for these cases the hyperfine structure effects due to QED could be ignored, and the dS-SR fine structure effects are dominant. This effect could be used to determine the universal constant R in dS-SR, and be thought as a new physics beyond E-SR.
de Sitter gauge theories and induced gravities
International Nuclear Information System (INIS)
Pure de Sitter, anti de Sitter, and orthogonal gauge theories in four-dimensional Euclidean spacetime are studied. It is shown that, if the theory is asymptotically free and a dynamical mass is generated, then an effective geometry may be induced and a gravity theory emerges. The asymptotic freedom and the running of the mass might account for an Inoenue-Wigner contraction which induces a breaking of the gauge group to the Lorentz group, while the mass itself is responsible for the coset sector of the gauge field to be identified with the effective vierbein. Furthermore, the resulting local isometries are Lorentzian for the anti de Sitter group and Euclidean for the de Sitter and orthogonal groups. (orig.)
International Nuclear Information System (INIS)
The method of orbits, traditionally employed in problems of geometric quantization in this study is used for analyzing uniform spaces. On the basis of suggested classification of co-associated presentation of orbits (K-orbits) the classification of homogeneous spaces is constructed. Specially, this classification permits indication of explicit type of identity of functional ratios between generators of transformation group, which are of great importance in applied problems (in the theory of variables separation, in particular). All four-dimensional uniform spaces with the Poincare and de Sitter transformation group were classified, explicit form of all independent identities in the spaces being provided
Myung, Y S
2003-01-01
We calculate corrections to the Bekenstein-Hawking entropy formula for the five-dimensional topological AdS (TAdS)-black holes and topological de Sitter (TdS) spaces due to thermal fluctuations. We can derive all thermal properties of the TdS spaces from those of the TAdS black holes by replacing $k$ by $-k$. Also we obtain the same correction to the Cardy-Verlinde formula for TAdS and TdS cases including the cosmological horizon of the Schwarzschild-de Sitter (SdS) black hole. Finally we discuss the AdS/CFT and dS/CFT correspondences and their dynamic correspondences.
Institute of Scientific and Technical Information of China (English)
CHEN Qiang; REN Ji-Rong
2013-01-01
In this paper,we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss-Bonnet de-Sitter space-time,which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein-Hilbert action.The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity.With the new physical interpretation of quasinormal modes,the area/entropy spectrum for the event horizon for nearextremal Gauss-Bonnet de Sitter black holes are obtained.Meanwhile,we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions.
International Nuclear Information System (INIS)
In this paper, we use the modified Hod's treatment and the Kunstatter's method to study the horizon area spectrum and entropy spectrum in Gauss—Bonnet de-Sitter space-time, which is regarded as the natural generalization of Einstein gravity by including higher derivative correction terms to the original Einstein—Hilbert action. The horizon areas have some properties that are very different from the vacuum solutions obtained from the frame of Einstein gravity. With the new physical interpretation of quasinormal modes, the area/entropy spectrum for the event horizon for near-extremal Gauss—Bonnet de Sitter black holes are obtained. Meanwhile, we also extend the discussion of area/entropy quantization to the non-extremal black holes solutions. (general)
Scalar field correlator in de Sitter space at next-to-leading order in a 1/N-expansion
Gautier, Florian
2015-01-01
We study the dynamics of light quantum scalar fields in de Sitter space on superhorizon scales. We compute the self-energy of an O(N) symmetric theory at next-to-leading order in a 1/N-expansion in the regime of superhorizon momenta and we obtain an exact analytical solution of the corresponding Dyson-Schwinger equations for the two-point correlator. This amounts to resumming the infinite series of nonlocal self-energy insertions, which typically generate spurious infrared and/or secular divergences. The potentially large de Sitter logarithms resum into well-behaved power laws from which we extract the field strength and mass renormalization. The nonperturbative 1/N-expansion allows us to discuss the case of vanishing and negative tree-level square mass, which both correspond to strongly coupled effective theories in the infrared.
International Nuclear Information System (INIS)
Various geometrical properties of Nariai's less-familiar solution of the vacuum Einstein equations R sub( mu nu ) = lambda g sub( mu nu ) is f irst summarized in comparison with de Sitter's well-known solution. Next an extension of both solutions is performed in a six-dimensional space on the supposition that such an extension will in future become useful to elucidate more closely the creation of particles in an inflationary stage of the big-bang universe. For preparation, the behavior of a massive scalar field in the extended space-time is studied in a classical level. (author)
A Global View on The Search for de-Sitter Vacua in (type IIA) String Theory
Chen, Xingang; Shiu, Gary; Sumitomo, Yoske; Tye, S.-H. Henry
2011-01-01
The search for classically stable Type IIA de-Sitter vacua typically starts with an ansatz that gives Anti-de-Sitter supersymmetric vacua and then raises the cosmological constant by modifying the compactification. As one raises the cosmological constant, the couplings typically destabilize the classically stable vacuum, so the probability that this approach will lead to a classically stable de-Sitter vacuum is Gaussianly suppressed. This suggests that classically stable de-Sitter vacua in st...
On the variable-charged black holes embedded into de Sitter space: Hawking's radiation
Ibohal, Ng.
2004-01-01
In this paper we study the Hawking evaporation of masses of variable-charged Reissner-Nordstrom and Kerr-Newman, black holes embedded into the de Sitter universe by considering the charge to be function of radial coordinate of the spherically symmetric metric.
Choudhury, T R
2004-01-01
It is known that the imaginary parts of the quasi normal mode (QNM) frequencies for the Schwarzschild black hole are evenly spaced with a spacing that depends only on the surface gravity. On the other hand, for massless minimally coupled scalar fields, there exist no QNMs in the pure DeSitter spacetime. It is not clear what the structure of the QNMs would be for the Schwarzschild-DeSitter (SDS) spacetime, which is characterized by two different surface gravities. We provide a simple derivation of the imaginary parts of the QNM frequencies for the SDS spacetime by calculating the scattering amplitude in the first Born approximation and determining its poles. We find that, for the usual set of boundary conditions in which the incident wave is scattered off the black hole horizon, the imaginary parts of the QNM frequencies have a equally spaced structure with the level spacing depending on the surface gravity of the black hole. However, it is possible to invoke a different boundary condition (in which the incide...
Institute of Scientific and Technical Information of China (English)
XU Dian-Yah
2000-01-01
Absorbing charged rotating (ACR) metric in de Sitter space and related energy-momentum tensor are derived.The ACR metric is very simple in advanced time coordinates. The ACR metric involves 8 independent parameters which are divided into two classes: (1) the mass M, charge Q, angular momentum per unit mass a, and cosmological constant A; (2) M/ v, 2M/ v2, Q/ v, and 2Q/ v2. The non-stationary part of the energy-momentum tensor is positive definite everywhere.
Arraut, Ivan
2012-01-01
We analyze the propagation of gravitational waves (GWs) in an asymptotically de-Sitter space by expanding the perturbation around Minkowski and introducing the effects of the Cosmological Constant ($\\Lambda$), first as an additional source (de-Donder gauge) and after as a gauge effect ($\\Lambda$-gauge). In both cases the inclusion of the Cosmological Constant $\\Lambda$ impedes the detection of a gravitational wave at a distance larger than $L_{crit}=(6\\sqrt{2}\\pi f \\hat{h}/\\sqrt{5})r_\\Lambda^...
Not One Bit of de Sitter Information
Parikh, Maulik K.; van der Schaar, Jan Pieter
2008-01-01
We formulate the information paradox in de Sitter space in terms of the no-cloning principle of quantum mechanics. We show that energy conservation puts an upper bound on the maximum entropy available to any de Sitter observer. Combined with a general result on the average information in a quantum subsystem, this guarantees that an observer in de Sitter space cannot obtain even a single bit of information from the de Sitter horizon, thereby preventing any observable violations of the quantum ...
A new metric for rotating charged Gauss—Bonnet black holes in AdS space
International Nuclear Information System (INIS)
In this paper, we study a new metric for slowly rotating charged Gauss-Bonnet black holes in higher-dimensional anti-de Sitter space. Taking the angular momentum parameter a up to second order, the slowly rotating charged black hole solutions are obtained by working directly in the action. (general)
Quantum Field Theory in de Sitter spacetime
So, Ashaq Hussain; Sibuea, Marlina Rosalinda; Akhoon, Shabir Ahmad; Khanday, Bilal Nisar; Majeed, Sajad Ul; Rather, Asloob Ahmad; Nahvi, Ishaq
2013-01-01
In this paper we will analyse quantum ?eld theory on de Sitter space- time. We will ?rst analyse a general scalar and vector ?eld theory on de Sitter spacetime. This is done by ?rst calculating these propagators on four-Sphere and then analytically continuing it to de Sitter spacetime.
Fermion tunneling of charged particles from a non-static black hole in de Sitter space
Institute of Scientific and Technical Information of China (English)
Li Hui-Ling; Yang Shu-Zheng
2009-01-01
Introducing a new coordinate system and choosing a set of appropriate matrices γ~μ, this paper attempts to investigate the fermion tunneling of charged particles across the event horizon from the Vaidya-Bonner de Sitter black hole. The result shows that the tunneling rate of the non-static black hole is related not only to the change of Bekenstein-Hawking entropy but also to the integral of the changing horizon, which violates unitary theory and is different from the stationary case.
Evidence for Special Relativity with de Sitter Space-Time Symmetry
Yan, Mu-Lin
2011-01-01
I show the formulation of de Sitter Special Relativity (dS-SR) based on Dirac-Lu-Zou-Guo's discussions. dS-SR quantum mechanics is formulated, and the dS-SR Dirac equation for hydrogen is suggested. The equation in the earth-QSO framework reference is solved by means of the adiabatic approach. It's found that the fine-structure "constant" $\\alpha$ in dS-SR varies with time. By means of the $t-z$ relation of the $\\Lambda$CDM model, $\\alpha$'s time-dependency becomes redshift $z$-dependent. The...
Breaking of de Sitter Symmetry
Bander, Myron
2010-01-01
We show that an interacting spin-0 field on a de Sitter space background will break the underlying de Sitter symmetry. This is done first for a (1+1) de Sitter space where a boson-fermion correspondence permits us to solve certain interacting theories by transforming them into free ones of opposite statistics. A massless boson interacting by a sine-Gordon potential is shown to be equivalent to a free massive fermion with the mass depending on the de Sitter time thus breaking the symmetry explicitly. We then show that for larger dimensions and any boson potential, to one loop, an anomaly develops and the currents generating the de Sitter transformations are not conserved.
Brane Space-Time and Cosmology
Naboulsi, R
2003-01-01
I reconsider the cosmology of a 3-brane universe imbedded in a five-dimensional anti-de Sitter space AdS5 with a cosmological constant and show that the resulting Friedmann equations for this system are identical to those standard obtained in 4D FRW space-time in the presence of an additional density, playing two roles: the tension of the brane and the gravitino density We discuss some important concequences on hot big bang cosmology.
Institute of Scientific and Technical Information of China (English)
高长军; 沈有根
2002-01-01
We present the classical solution of Lagrange equations for the Reissner-Nordstrom black hole with a global monopole in the background of de Sitter space-time. Then we obtain the wavefunction of the space-time by solving the Wheeler-De Witt equation. De Broglie-Bohm interpretation applied to the wavefunction gives the quantum solution of the space-time. Finally, the quantum effect on Hawking radiation is studied.
Lebedev, Dmitri
2013-01-01
In this paper we review and build on the common methods used to analyze null geodesics in Schwarzschild de Sitter space. We present a general technique which allows finding measurable intersection angles of null trajectories analytically, and as one of its applications we establish a general relativistic aberration relationship. The tools presented are used to analyze some standard setups of gravitational deflection of light and gain a clear understanding of the role that the cosmological constant, $\\Lambda$, plays in gravitational lensing phenomena. Through reviewing some recent papers on the topic with the present results in mind, we attempt to explain the major sources of disagreement in the ongoing debate on the subject, which started with Rindler and Ishak's original paper, regarding the influence of $\\Lambda$ on lensing phenomena. To avoid ambiguities and room for misunderstanding we present clear definitions of the quantities used in the present analysis as well as in other papers we discuss.
Kakushadze, Zurab
2014-01-01
We discuss non-perturbative dynamics of massive gravity in de Sitter space via gravitational Higgs mechanism. We argue that enhanced local symmetry and null (ghost) state at (below) the perturbative Higuchi bound are mere artifacts of not only linearization but also assuming the Fierz-Pauli mass term. We point out that, besides de Sitter, there are vacuum solutions where the space asymptotically is de Sitter both in the past and in the future, the space first contracts, this contraction slows down, and then reverses into expansion, so there is an epoch where the space is (nearly) flat. We confirm this by constructing a closed-form exact solution to full non-perturbative equations of motion for a "special" massive de Sitter case. We give a formula for the "critical" mass above which such solutions apparently do not exist. For the Fierz-Pauli mass term this "critical" mass coincides with the perturbative Higuchi bound, which serves as the non-perturbative reinterpretation of the latter. We argue that, notwithst...
Pahlavani, M R; Morad, R
2013-01-01
In the large 't Hooft coupling limit, the hadronic size of baryon is small and nucleon-nucleon potential is obtained from massless pseudo-scalar exchanges and an infinite tower of spin one mesons exchanges. In this paper we use the holographic nucleon-nucleon interaction and obtain the corresponding potential and binding energy for deuteron and tritium nuclei. The obtained potentials are repulsive at short distances and clearly become zero by increasing distance as we expected.
International Nuclear Information System (INIS)
In the large 't Hooft coupling limit, the hadronic size of baryon is small and the nucleon-nucleon potential is obtained from massless pseudoscalar exchanges and an infinite tower of spin-one mesons exchanges. In this article we use the holographic nucleon-nucleon interaction and obtain the corresponding potential and binding energy for deuteron and tritium nuclei. The obtained potentials are repulsive at short distances and clearly become zero by increasing the distance as we expected.
Singularities of lightlike hypersurface in semi-Euclidean 4-space with index 2
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Anti de Sitter space is a maximally symmetric, vacuum solution of Einstein’s field equation with an attractive cosmological constant, and is the hyperquadric of semi-Euclidean space with index 2. So it is meaningful to study the submanifold in semi-Euclidean 4-space with index 2. However, the research on the submanifold in semi-Euclidean 4-space with index 2 has not been found from theory of singularity until now. In this paper, as a generalization of the study on lightlike hypersurface in Minkowski space and a preparation for the further study on anti de Sitter space, the singularities of lightlike hypersurface and Lorentzian surface in semi- Euclidean 4-space with index 2 will be studied. To do this, we reveal the relationships between the singularity of distance-squared function and that of lightlike hypersurface. In addition some geometric properties of lightlike hypersurface and Lorentzian surface are studied from geometrical point of view.
Garattini, R.
We consider the computation of the energy difference between spaces having the same asymptotic behavior. Following the example of the Schwarzschild case which asymptotically tends to flat space1,2, we consider the case of a cosmological constant. The analysis is realized by means of variational methods in a Hamiltonian formulation and it is restricted to transverse-traceless (TT) tensors to one loop approximation. In particular, we consider the Schwarzschild-Anti-de Sitter (S-AdS) case which asymptotically tends to the Anti-de Sitter space and the Schwarzschild-de Sitter (SdS) case which asymptotically tends to the de Sitter space3,4. In both cases (S-AdS, SdS), we discover the existence of an unstable mode at zero temperature. This result leads to consider a different vacuum space which differs in a case to case. The configuration is stabilized by allowing N copies of the same initial system to contribute to the final energy5. A selection rule for different scenarios of a foam-like space can be given in terms of transition frequencies of the emitted radiation of a black hole6.
Thermodynamics of horizons: de Sitter black holes
Kubiznak, David
2015-01-01
The thermodynamics of asymptotically de Sitter black holes is more complex than that of their asymptotically anti-de Sitter cousins. The reason is twofold: i) An observer in between the black hole and cosmological horizon finds herself in a two temperature non-equilibrium state. ii) The absence of a Killing vector that is timelike everywhere outside the black hole horizon prevents one from defining a good notion of the asymptotic mass. To overcome these difficulties various approaches exist in the literature, for example the effective temperature approach has recently become popular. In this paper we follow a more straightforward path towards the thermodynamics of de Sitter black holes, an approach that will allow us to study these black holes in a way that is analogous to the anti-de Sitter case. As per usual, we formulate several thermodynamic first laws, one for each horizon present in the spacetime, and study their thermodynamics as if they were independent thermodynamic systems characterized by their own...
International Nuclear Information System (INIS)
The brick-wall method based on thermal equilibrium at a large scale cannot be applied to cases out of equilibrium, such as nonstationary space-time with two horizons, for example, Vaidya--de Sitter space-time. We improve the brick-wall method and propose a thin-layer method. The entropies of scalar and spinor fields in Vaidya--de Sitter space-time are calculated by the thin-layer method. The condition of local equilibrium near the two horizons is used as a working postulate and is maintained for a black hole which evaporates slowly enough and whose mass is far greater than the Planck scale. There are two horizons in Vaidya--de Sitter space-time. We think that the total entropy is mainly attributed to the two layers near the two horizons. The entropy of a scalar field in Vaidya--de Sitter space-time is a linear sum of the area of the black hole horizon and that of the cosmological horizon. Thinking of Dirac equations in the Newman-Penrose formalism, there are four components of the wave functions F1, F2, G1, and G2. The total entropy is summed up from the entropies corresponding to the four components. On the same condition of the scalar field, the resulting entropy is 7/2 times that of the scalar field, and is also a linear sum of the area of the black hole horizon and that of the cosmological horizon. The difference from the stationary black hole is that the result relies on time-dependent cutoffs
De Sitter brane-world, localization of gravity, and the cosmological constant
International Nuclear Information System (INIS)
Cosmological models with a de Sitter 3-brane embedded in a 5-dimensional de Sitter spacetime (dS5) give rise to a finite 4D Planck mass similar to that in Randall-Sundrum (RS) brane-world models in anti-de Sitter 5-dimensional spacetime(AdS5). Yet, there arise a few important differences as compared to the results with a flat 3-brane or 4D Minkowski spacetime. For example, the mass reduction formula (MRF) MPl2=M(5)3lAdS as well as the relationship MPl2=MPl(4+n)n+2Ln (with L being the average size or the radius of the n extra dimensions) expected in models of product-space (or Kaluza-Klein) compactifications get modified in cosmological backgrounds. In an expanding universe, a physically relevant MRF encodes information upon the 4-dimensional Hubble expansion parameter, in addition to the length and mass parameters L, MPl, and MPl(4+n). If a bulk cosmological constant is present in the solution, then the reduction formula is further modified. With these new insights, we show that the localization of a massless 4D graviton as well as the mass hierarchy between MPl and MPl(4+n) can be explained in cosmological brane-world models. A notable advantage of having a 5D de Sitter bulk is that in this case the zero-mass wave function is normalizable, which is not necessarily the case if the bulk spacetime is anti-de Sitter. In spacetime dimensions D≥7, however, the bulk cosmological constant Λb can take either sign (Λb0). The D=6 case is rather inconclusive, in which case Λb may be introduced together with 2-form gauge field (or flux). We obtain some interesting classical gravity solutions that compactify higher-dimensional spacetime to produce a Robertson-Walker universe with de Sitter-type expansion plus one extra noncompact direction. We also show that such models can admit both an effective 4-dimensional Newton constant that remains finite and a normalizable zero-mode graviton wave function.
Not one bit of de Sitter information
International Nuclear Information System (INIS)
We formulate the information paradox in de Sitter space in terms of the no-cloning principle of quantum mechanics. We show that energy conservation puts an upper bound on the maximum entropy available to any de Sitter observer. Combined with a general result on the average information in a quantum subsystem, this guarantees that an observer in de Sitter space cannot obtain even a single bit of information from the de Sitter horizon, thereby preventing any observable violations of the quantum no-cloning principle. The result supports the notion of observer complementarity.
Gibbons-Hawking effect in the sonic de Sitter space-time of an expanding Bose-Einstein-condensed gas
International Nuclear Information System (INIS)
We propose an experimental scheme to observe the Gibbons-Hawking effect in the acoustic analog of a (1+1)-dimensional de Sitter universe, produced in an expanding, cigar-shaped Bose-Einstein condensate. It is shown that a two-level system created at the center of the trap, an atomic quantum dot interacting with phonons, observes a thermal Bose distribution at the de Sitter temperature
Pejhan, Hamed; Rahbardehghan, Surena
2016-04-01
Respecting that any consistent quantum field theory in curved space-time must include black hole radiation, in this paper, we examine the Krein-Gupta-Bleuler (KGB) formalism as an inevitable quantization scheme in order to follow the guideline of the covariance of minimally coupled massless scalar field and linear gravity on de Sitter (dS) background in the sense of Wightman-Gärding approach, by investigating thermodynamical aspects of black holes. The formalism is interestingly free of pathological large distance behavior. In this construction, also, no infinite term appears in the calculation of expectation values of the energy-momentum tensor (we have an automatic and covariant renormalization) which results in the vacuum energy of the free field to vanish. However, the existence of an effective potential barrier, intrinsically created by black holes gravitational field, gives a Casimir-type contribution to the vacuum expectation value of the energy-momentum tensor. On this basis, by evaluating the Casimir energy-momentum tensor for a conformally coupled massless scalar field in the vicinity of a nonrotating black hole event horizon through the KGB quantization, in this work, we explicitly prove that the hole produces black-body radiation which its temperature exactly coincides with the result obtained by Hawking for black hole radiation.
Some remarks on anti-de Sitter D-branes
International Nuclear Information System (INIS)
We present some preliminary investigations about the AdS2 x S2 D3-branes in AdS3 x S3. We analyse the quadratic fluctuations of the Dirac--Born--Infeld action around a given semi-classical D-brane configuration and compare them with results obtained by using conformal-field-theory techniques. We finally study classical motions of open strings attached to those D-branes and analyse the role of the spectral flow in this context. (author)
Some remarks on anti-de Sitter D-branes
Petropoulos, P M
2001-01-01
We present some preliminary investigations about the AdS2*S2 D3-branes in AdS3*S3. We analyse the quadratic fluctuations of Dirac-Born-Infeld action around a given semi-classical D-brane configuration and compare them with results obtained by using conformal field theory techniques. We finally study classical motions of open strings attached to those D-branes and analyse the role of the spectral flow in this context.
Lifshitz as a deformation of Anti-de Sitter
Korovin, Yegor; Taylor, Marika
2013-01-01
We consider holography for Lifshitz spacetimes with dynamical exponent z=1+epsilon^2, where epsilon is small. We show that the holographically dual field theory is a specific deformation of the relativistic CFT, corresponding to the z=1 theory. Treating epsilon as a small expansion parameter we set up the holographic dictionary for Einstein-Proca models up to order epsilon^2 in three and four bulk dimensions. We explain how renormalization turns the relativistic conformal invariance into non-relativistic Lifshitz invariance with dynamical exponent z=1+epsilon^2. We compute the two-point function of the conserved spin two current for the dual two-dimensional field theory and verify that it is Lifshitz invariant. Using only QFT arguments, we show that a particular class of deformations of CFTs generically leads to Lifshitz scaling invariance and we construct examples of such deformations.
Massive scalar field on (A)dS space from a massless conformal field in $\\mathbb{R}^6$
Huguet, E; Renaud, J
2016-01-01
We show how the equations for the scalar field (including the massive, massless, minimally and conformally coupled cases) on de Sitter and Anti-de Sitter spaces can be obtained from both the SO$(2,4)$-invariant equation $\\square \\phi = 0$ in $\\mathbb{R}^6$ and two geometrical constraints defining the (A)dS space. Apart from the equation in $\\mathbb{R}^6$, the results only follow from the geometry. We also show how an interaction term in (A)dS space can be taken into account from $\\mathbb{R}^6$.
De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter
McInnes, B
2003-01-01
When de Sitter first introduced his celebrated spacetime, he claimed, following Schwarzschild, that its spatial sections have the topology of the real projective space RP^3 (that is, the topology of the group manifold SO(3)) rather than, as is almost universally assumed today, that of the sphere S^3. (In modern language, Schwarzschild was disturbed by the non-local correlations enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not have been accepted as such by de Sitter. There is no real basis within classical cosmology for preferring S^3 to RP^3, but the general feeling appears to be that the distinction is in any case of little importance. We wish to argue that, in the light of current concerns about the nature of de Sitter space, this is a mistake. In particular, we argue that the difference between "dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of understanding horizon entropies. In the approach to de Sitter entropy via Schwarzschild-de Sitter spacetime, ...
Spin 1/2 particle in the field of the Dirac string on the background of de Sitter space-time
Red'kov, V M; Veko, O V
2011-01-01
The Dirac monopole string is specified for de Sitter cosmological model. Dirac equation for spin 1/2 particle in presence of this monopole has been examined on the background of de Sitter space-time in static coordinates. Instead of spinor monopole harmonics, the technique of Wigner D-functions is used. After separation of the variables, detailed analysis of the radial equations is performed; four types of solutions, singular, regular, in- and out- running waves, are constructed in terms of hypergeometric functions. The complete set of spinor wave solutions \\Psi_{\\epsilon, j,m, \\lambda}(t,r, \\theta, \\phi) has been constructed, special attention is given to treating the states of minimal values of the total angular moment j_{\\min}.
Orbifold Physics and de Sitter Spacetime
McInnes, B
2003-01-01
It now seems probable that the version of de Sitter spacetime which may ultimately emerge from string theory will not be the familiar, maximally symmetric version, since it is likely to be truncated in some way by metastability or otherwise reduced in symmetry so that its isometry group has finite-dimensional representations. We argue that the best way to gain some control over this situation is to embed a suitably modified version of de Sitter spacetime in an anti-de Sitter orbifold bulk, as a braneworld. By requiring them to fit together in this way, we attempt to understand the precise structures of both. We find that tachyonic instabilities of non-supersymmetric AdS orbifolds allow us to constrain the global geometries of these fundamental spacetimes. In the course of doing so, we gain some insights into de Sitter holography and into the way in which de Sitter physics breaks conformal symmetry in the dS and AdS duals. Our results indicate that string theory may rule out the more complex spatial topologies...
Holographic space-time from the Big Bang to the de Sitter era
International Nuclear Information System (INIS)
I review the holographic theory of space-time and its applications to cosmology. Much of this has appeared before, but this discussion is more unified and concise. I also include some material on work in progress, whose aim is to understand compactification in terms of finite-dimensional super-algebras. This is an expanded version of a lecture I gave at the conference on Liouville Quantum Gravity and Statistical Systems, in memory of Alexei Zamolodchikov, at the Poncelet Institute in Moscow, 21-24 June 2008.
Early universe thermostatistics in curved momentum spaces
Gorji, M. A.; Hosseinzadeh, V.; Nozari, K.; Vakili, B.
2016-03-01
The theories known as doubly special relativity are introduced in order to take into account an observer-independent length scale and the speed of light in the framework of special relativity. These theories can be generally formulated on the de Sitter and also recently proposed anti-de Sitter momentum spaces. In the context of these theories, we study the statistical mechanics, and to do this, we consider the natural measure on the corresponding extended phase space. The invariant measure on the space of distinct microstates is obtained by restriction of the natural measure of the extended phase space to the physical phase space through the disintegration theorem. Having the invariant measure, one can study the statistical mechanics in an arbitrary ensemble for any doubly special relativity theory. We use the constructed setup to study the statistical properties of four doubly special relativity models. Applying the results to the case of early universe thermodynamics, we show that one of these models that is defined by the cosmological coordinatization of anti-de Sitter momentum space implies a finite total number of microstates. Therefore, without attribution to any ensemble density, and quite generally, we obtain entropy and internal energy bounds for the early radiation dominated universe. We find that while these results cannot be supported by the standard Friedmann equations, they indeed are in complete agreement with the nonsingular effective Friedmann equations that arise in the context of loop quantum cosmology.
A moving mirror in AdS space as a toy model for holographic thermalization
Erdmenger, Johanna; Ngo, Thanh Hai
2011-01-01
It is expected that thermalization may be described within gauge/gravity duality by considering time-dependent configurations on the gravity side of the correspondence, for instance a gravitational collapse of a matter configuration in Anti-de Sitter space. As a step towards the ambitious goal of describing such a configuration, we investigate a simple time-dependent toy model in which a mirror moves in the radial direction of Anti-de Sitter space. For this configuration, we establish a procedure for calculating two-point functions of scalar fluctuations, based on a WKB approximation. We test our method on two sample trajectories for the mirror, and find that the singularity structure of the two-point functions is in agreement with geometric optics.
Garattini, Remo
In the context of a model of space-time foam, made by N wormholes we discuss the possibility of having a foam formed by different configurations. An equivalence between Schwarzschild and Schwarzschild-Anti-de Sitter wormholes in terms of Casimir energy is shown. An argument to discriminate which configuration could represent a foamy vacuum coming from Schwarzschild black hole transition frequencies is used. The case of a positive cosmological constant is also discussed. Finally, a discussion involving charged wormholes leads to the conclusion that they cannot be used to represent a ground state of the foamy type.
Graviton and scalar propagations on AdS(4) space in f(R) gravities
Myung, Yun Soo
2010-01-01
We investigate propagations of graviton and additional scalar on four-dimensional anti de Sitter (AdS$_4$) space using $f(R)$ gravity models with external sources. It is shown that there is the van Dam-Veltman-Zakharov (vDVZ) discontinuity in $f(R)$ gravity models because $f(R)$ gravity implies GR with additional scalar. This indicates a difference between general relativity and $f(R)$ gravity clearly.
N=4 superconformal mechanics and the potential structure of AdS spaces
International Nuclear Information System (INIS)
The dynamics of an N=4 spinning particle in a curved background is described using the N=4 superfield formalism. The SU(2)localxSU(2)global N=4 superconformal symmetry of the particle action requires the background to be a real 'Kaehler-like' manifold whose metric is generated by a sigma-model superpotential. The anti-de-Sitter spaces are shown to belong to this class of manifolds
Quantum Radiation of a Non-stationary Kerr-Newman Black Hole in de Sitter Space-Time
Institute of Scientific and Technical Information of China (English)
JIANG Qing-Quan; YANG Shu-Zheng
2006-01-01
Hawking radiation of Klein-Gordon and Dirac particles in a non-stationary Kerr-Newman-de-Sitter black hole is studied by introducing a new tortoise coordinate transformation. The result shows that the Fermi-Dirac radiant spectrum displays a new term that represents the interaction between the spin of spinor particles and the rotation of black holes, which is absent in the Bose-Einstein distribution of Klein-Gordon particles.
Perturbations on and off de Sitter brane in anti-de Sitter bulk
Libanov, M
2016-01-01
Motivated by holographic models of (pseudo)conformal Universe, we carry out complete analysis of linearized metric perturbations in the time-dependent two-brane setup of the Lykken-Randall type. We present the equations of motion for the scalar, vector and tensor perturbations and identify light modes in the spectrum, which are scalar radion and transverse-traceless graviton. We show that there are no other modes in the discrete part of the spectrum. We pay special attention to properties of light modes and show, in particular, that the radion has red power spectrum at late times, as anticipated on holographic grounds. Unlike the graviton, the radion survives in the single-brane limit, when one of the branes is sent to the adS boundary. These properties imply that potentially observable features characteristic of the 4d (pseudo)conformal cosmology, such as statistical anisotropy and specific shapes of non-Gaussianity, are inherent also in holographic conformal models as well as in brane world inflation.
Incompressible Fluids of the de Sitter Horizon and Beyond
Anninos, Dionysios; Anous, Tarek(Center for Theoretical Physics, MIT, 77 Massachusetts Ave, 6-304, Cambridge, MA, 02139, U.S.A.); Bredberg, Irene; Ng, Gim Seng
2011-01-01
There are (at least) two surfaces of particular interest in eternal de Sitter space. One is the timelike hypersurface constituting the lab wall of a static patch observer and the other is the future boundary of global de Sitter space. We study both linear and non-linear deformations of four-dimensional de Sitter space which obey the Einstein equation. Our deformations leave the induced conformal metric and trace of the extrinsic curvature unchanged for a fixed hypersurface. This hypersurface ...
New results on de Sitter quantum field theory
International Nuclear Information System (INIS)
We describe a new approach to d-dimensional de Sitter quantum field theory. This approach allows a complete characterization of the preferred de Sitter vacua for Klein-Gordon field theories in terms of the analyticity properties of the two-point function, for which we provide a new integral representation. The latter relies on a natural basis of de Sitter plane-waves, which are holomorphic in tubular domains of the complexified de Sitter space-time. Finally we discuss a possible general approach to interacting de Sitter field theories, which, among other properties, justifies the ''Wick rotation'' to the ''euclidean sphere''. (orig.)
Fröb, Markus B.; Higuchi, Atsushi; Lima, William C. C.
2016-06-01
We construct the graviton two-point function for a two-parameter family of linear covariant gauges in n -dimensional de Sitter space. The construction is performed via the mode-sum method in the Bunch-Davies vacuum in the Poincaré patch, and a Fierz-Pauli mass term is introduced to regularize the infrared (IR) divergences. The resulting two-point function is de Sitter invariant and free of IR divergences in the massless limit (for a certain range of parameters), although analytic continuation with respect to the mass for the pure-gauge sector of the two-point function is necessary for this result. This general result agrees with the propagator obtained by analytic continuation from the sphere [Phys. Rev. D 34, 3670 (1986); Classical Quantum Gravity 18, 4317 (2001)]. However, if one starts with strictly zero mass theory, the IR divergences are absent only for a specific value of one of the two parameters, with the other parameter left generic. These findings agree with recent calculations in the Landau (exact) gauge [J. Math. Phys. 53, 122502 (2012)], where IR divergences do appear in the spin-two (tensor) part of the two-point function. However, we find the strength (including the sign) of the IR divergence to be different from the one found in this reference.
Fröb, Markus B; Lima, William C C
2016-01-01
We construct the graviton two-point function for a two-parameter family of linear covariant gauges in n-dimensional de Sitter space. The construction is performed via the mode-sum method in the Bunch-Davies vacuum in the Poincar\\'e patch, and a Fierz-Pauli mass term is introduced to regularize the infrared (IR) divergences. The resulting two-point function is de Sitter-invariant, and free of IR divergences in the massless limit (for a certain range of parameters) though analytic continuation with respect to the mass for the pure-gauge sector of the two-point function is necessary for this result. This general result agrees with the propagator obtained by analytic continuation from the sphere [Phys. Rev. D 34, 3670 (1986); Class. Quant. Grav. 18, 4317 (2001)]. However, if one starts with strictly zero mass theory, the IR divergences are absent only for a specific value of one of the two parameters, with the other parameter left generic. These findings agree with recent calculations in the Landau (exact) gauge ...
Instability of de Sitter Reissner-Nordstrom black hole in the 1/D expansion
Tanabe, Kentaro
2015-01-01
We study large D effective theory for D dimensional charged (Anti) de Sitter black holes. Then we show that de Sitter Reissner-Nordstrom black hole becomes unstable against gravitational perturbations at larger charge than certain critical value in higher dimension. Furthermore we find that there is a non-trivial zero-mode static perturbation at the critical charge. The existence of static perturbations suggests the appearance of non-spherical symmetric solution branches of static charged de Sitter black hole. This expectation is confirmed by constructing the non-spherical symmetric static solutions of large D effective equations.
Instability of the de Sitter Reissner–Nordstrom black hole in the 1/D expansion
Tanabe, Kentaro
2016-06-01
We study the large D effective theory for D dimensional charged (Anti) de Sitter black holes. Then we show that the de Sitter Reissner–Nordstrom black hole becomes unstable against gravitational perturbations at larger charge than a critical charge in a higher dimension. Furthermore, we find that there is a nontrivial zero-mode static perturbation at the critical charge. The existence of static perturbations suggests the appearance of non-spherical symmetric solution branches of static charged de Sitter black holes. This expectation is confirmed by constructing the non-spherical symmetric static solutions of large D effective equations.
On memory in exponentially expanding spaces
Roberts, Daniel A
2012-01-01
We examine the degree to which fluctuating dynamics on exponentially expanding spaces remember initial conditions. In de Sitter space, the global late-time configuration of a free scalar field always contains information about early fluctuations. By contrast, fluctuations near the boundary of Euclidean Anti-de Sitter may or may not remember conditions in the center, with a transition at \\Delta=d/2. We connect these results to literature about statistical mechanics on trees and make contact with the observation by Anninos and Denef that the configuration space of a massless dS field exhibits ultrametricity. We extend their analysis to massive fields, finding that preference for isosceles triangles persists as long as \\Delta_- < d/4.
A Global View on The Search for de-Sitter Vacua in (type IIA) String Theory
Chen, Xingang; Sumitomo, Yoske; Tye, S -H Henry
2011-01-01
The search for classically stable Type IIA de-Sitter vacua typically starts with an ansatz that gives Anti-de-Sitter supersymmetric vacua and then raises the cosmological constant by modifying the compactification. As one raises the cosmological constant, the couplings typically destabilize the classically stable vacuum, so the probability that this approach will lead to a classically stable de-Sitter vacuum is Gaussianly suppressed. This implies that classically stable de-Sitter vacua in string theory (at least in the Type IIA region), especially those with relatively high cosmological constants, are very rare. The probability that a typical de-Sitter extremum is classically stable (i.e., tachyon-free) is argued to be Gaussianly suppressed as a function of the number of moduli.
Kirchbach, M
2016-01-01
We seek for a pair of a well and barrier potentials such that the real parts of the complex energies of the resonances transmitted through the barrier equal the energies of the states bound within the well and find the hyperbolic Poeschl-Teller barrier, ~sech^2\\rho, and the trigonometric Scarf well, ~ \\sec^2\\chi. The potentials are shown to be conformally symmetric by the aid of the de Sitter space time, dS4, related to flat conformal space time by a conformal map. Namely, we transform the quantum mechanical wave equations with the above potentials to free quantum motions on the respective open time like hyperbolic and the closed space like hyper spherical, S3, geodesics of dS4, the former by itself is related to Minkowski space time by a conformal map.We formulate a conformal symmetry respecting classification scheme for mesons seen either as resonances in scattering, or as states bound within a potential, according to trajectories in which the total spin of the meson, l-depends linearly on the first power o...
Compactifying de Sitter Naturally Selects a Small Cosmological Constant
Brown, Adam R; Masoumi, Ali
2013-01-01
We study compactifications of $D$-dimensional de Sitter space with a $q$-form flux down to $D-Nq$ dimensions. We show that for $(N-1)(q-1)\\geq 2$ there are double-exponentially or even infinitely many compact de Sitter vacua, and that their effective cosmological constants accumulate at zero. This population explosion of $\\Lambda \\ll 1$ de Sitters arises by a mechanism analogous to natural selection.
Superintegrable potentials on 3D Riemannian and Lorentzian spaces with non-constant curvature
Ballesteros, Angel; Enciso, Alberto; Herranz, Francisco J.; Ragnisco, Orlando
2008-01-01
A quantum sl(2,R) coalgebra is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the non-constant curvature analogues of the spherical, hyperbolic and (anti-)de Sitter spaces. The connection and curvature tensors for these "deformed" spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map le...
Kirchbach, M.; Compean, C. B.
2016-07-01
The real parts of the complex squared energies defined by the resonance poles of the transfer matrix of the Pöschl-Teller barrier, are shown to equal the squared energies of the levels bound within the trigonometric Scarf well potential. By transforming these potentials into parts of the Laplacians describing free quantum motions on the mutually orthogonal open-time-like hyperbolic-, and closed-space-like spherical geodesics on the conformally invariant de Sitter space-time, dS4, the conformal symmetries of these interactions are revealed. On dS4 the potentials under consideration naturally relate to interactions within colorless two-body systems and to cusped Wilson loops. In effect, with the aid of the dS4 space-time as unifying geometry, a conformal symmetry based bijective correspondence (duality) between bound and resonant meson spectra is established at the quantum mechanics level and related to confinement understood as color charge neutrality. The correspondence allows to link the interpretation of mesons as resonance poles of a scattering matrix with their complementary description as states bound by an instantaneous quark interaction and to introduce a conformal symmetry based classification scheme of mesons. As examples representative of such a duality we organize in good agreement with data 71 of the reported light flavor mesons with masses below ˜ 2350 MeV into four conformal families of particles placed on linear f0, π , η , and a0 resonance trajectories, plotted on the ℓ/ M plane. Upon extending the sec2 χ by a properly constructed conformal color dipole potential, shaped after a tangent function, we predict the masses of 12 "missing" mesons. We furthermore notice that the f0 and π trajectories can be viewed as chiral partners, same as the η and a0 trajectories, an indication that chiral symmetry for mesons is likely to be realized in terms of parity doubled conformal multiplets rather than, as usually assumed, only in terms of parity
Dirac oscillator and nonrelativistic Snyder-de Sitter algebra
International Nuclear Information System (INIS)
Three dimensional Dirac oscillator was considered in space with deformed commutation relations known as Snyder-de Sitter algebra. Snyder-de Sitter commutation relations give rise to appearance of minimal uncertainties in position as well as in momentum. To derive energy spectrum and wavefunctions of the Dirac oscillator, supersymmetric quantum mechanics and shape invariance technique were applied
Kinematics of particles with quantum de Sitter symmetries
Barcaroli, Leonardo
2015-01-01
We present the first detailed study of the kinematics of free relativistic particles whose symmetries are described by a quantum deformation of the de Sitter algebra, known as $q$-de Sitter Hopf algebra. The quantum deformation parameter is a function of the Planck length $\\ell$ and the de Sitter radius $H^{-1}$, such that when the Planck length vanishes, the algebra reduces to the de Sitter algebra, while when the de Sitter radius is sent to infinity one recovers the $\\kappa$-Poincar\\'e Hopf algebra. In the first limit the picture is that of a particle with trivial momentum space geometry moving on de Sitter spacetime, in the second one the picture is that of a particle with de Sitter momentum space geometry moving on Minkowski spacetime. When both the Planck length and the inverse of the de Sitter radius are non-zero, effects due to spacetime curvature and non-trivial momentum space geometry are both present and affect each other. The particles' motion is then described in a full phase space picture. We fin...
Black hole solutions for scale-dependent couplings: the de Sitter and the Reissner-Nordström case
Koch, Benjamin; Rioseco, Paola
2016-02-01
Allowing for scale dependence of the gravitational couplings leads to a generalization of the corresponding field equations. In this work, these equations are solved for the Einstein-Hilbert and the Einstein-Maxwell case, leading to generalizations of the (Anti)-de Sitter and the Reissner-Nordström black holes. These solutions are discussed and compared to their classical counterparts.
de Sitter Vacua, Renormalization and Locality
Banks, T
2003-01-01
We analyze the renormalization properties of quantum field theories in de Sitter space and show that only two of the maximally invariant vacuum states of free fields lead to consistent perturbation expansions. One is the Euclidean vacuum, and the other can be viewed as an analytic continuation of Euclidean functional integrals on $RP^d$. The corresponding Lorentzian manifold is the future half of global de Sitter space with boundary conditions on fields at the origin of time. We argue that the perturbation series in this case has divergences at the origin, which render the future evolution of the system indeterminate without a better understanding of high energy physics.
New instabilities of de Sitter spacetimes
International Nuclear Information System (INIS)
We construct an instanton describing the pair production of non-Kaluza-Klein bubbles of nothing in higher odd-dimensional de Sitter spaces. In addition to showing that higher-dimensional de Sitter spaces have a nonzero probability to become topologically nontrivial, this process provides direct evidence for the association of entropy with cosmological horizons as well as evidence that non-Kaluza-Klein bubbles of nothing are a necessary ingredient in string theory or any other consistent quantum theory of gravity in higher dimensions.
STATISTICAL ENTROPIES OF THE TAUB-NUT/BOLT AdS SPACES FROM THE HORIZON CONFORMAL FIELD THEORY
Institute of Scientific and Technical Information of China (English)
JING JI-LIANG; ZHOU SAN-QING; HUANG YI-BIN
2001-01-01
The covariant phase technique is used to compute the constraint algebra of the four-dimensional space-times which are asymptotic to anti-de Sitter (AdS), such as the planar Taub-NUT AdS and Taub-bolt AdS spaces, and the hyperbolic Taub-bolt AdS space. The standard Virasoro subalgebrae with corresponding central charges for these objects are constructed and the resulting densities of states yield the expected Bekenstein-Hawking entropies.
A Note on Schwarzschild de Sitter Black Holes in Mimetic $F(R)$ Gravity
Oikonomou, V K
2016-01-01
In this brief note we investigate the conditions under which a Schwarzschild de Sitter black hole spacetime is a solution of the mimetic $F(R)$ gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic $F(R)$ gravity is a slight modification of the ordinary $F(R)$ gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary $F(R)$ gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordstr\\"{o}m anti-de Sitter black hole.
A note on Schwarzschild-de Sitter black holes in mimetic F(R) gravity
Oikonomou, V. K.
2016-05-01
In this paper, we investigate the conditions under which a Schwarzschild-de Sitter black hole spacetime is a solution of the mimetic F(R) gravity with Lagrange multiplier and potential. As we demonstrate, the resulting mimetic F(R) gravity is a slight modification of the ordinary F(R) gravity case, however the resulting perturbation equations are not in all cases identical to the ordinary F(R) gravity case. In the latter case, the perturbation equations are identical to the ones corresponding to the Reissner-Nordström anti-de Sitter black hole.
What Casimir Energy can suggest about Space Time Foam?
Garattini, R
2001-01-01
In the context of a model of space-time foam, made by $N$ wormholes we discuss the possibility of having a foam formed by different configurations. An equivalence between Schwarzschild and Schwarzschild-Anti-de Sitter wormholes in terms of Casimir energy is shown. An argument to discriminate which configuration could represent a foamy vacuum coming from Schwarzschild black hole transition frequencies is used. The case of a positive cosmological constant is also discussed. Finally, a discussion involving charged wormholes leads to the conclusion that they cannot be used to represent a ground state of the foamy type.
Open string fluctuations in AdS space with and without torsion
DEFF Research Database (Denmark)
Larsen, A.L.; Lomholt, Michael Andersen
2003-01-01
dangerous than expected in these cases. The general formalism can be straightforwardly used also to study the (bosonic part of the) fluctuations around the closed strings, recently considered in connection with the AdS/conformal field theory duality, on AdS ×S and AdS ×S ×T . © 2003 The American Physical......The equations of motion and boundary conditions for the fluctuations around a classical open string, in a curved space-time with torsion, are considered in compact and world-sheet covariant form. The rigidly rotating open strings in anti-de Sitter space with and without torsion are investigated in...
Photon gas thermodynamics in dS and AdS momentum spaces
Gorji, M A; Nozari, K; Vakili, B
2016-01-01
In this paper, we study thermostatistical properties of a photon gas in the framework of two deformed special relativity models defined by the cosmological coordinatizations of the de Sitter (dS) and anti-de Sitter (AdS) momentum spaces. The dS model is a doubly special relativity theory in which an ultraviolet length scale is invariant under the deformed Lorentz transformations. For the case of AdS model, however, the Lorentz symmetry breaks at the high energy regime. We show that the existence of a maximal momentum in dS momentum space leads to maximal pressure and temperature at the thermodynamical level while maximal internal energy and entropy arise for the case of the AdS momentum space due to the existence of a maximal kinematical energy. These results show the thermodynamical duality of these models much similar to their well-known kinematical duality.
Energy Technology Data Exchange (ETDEWEB)
Akcay, Sarp [University of Southampton, Austin, TX (United States); Matzner, Richard A, E-mail: sa18g09@soton.ac.uk, E-mail: matzner2@physics.utexas.edu [Center for Relativity, University of Texas, Austin, TX (United States)
2011-04-21
It is now widely accepted that the universe as we understand it is accelerating in expansion and fits the de Sitter model rather well. As such, a realistic assumption of black holes must place them on a de Sitter background and not Minkowski as is typically done in general relativity. The most astrophysically relevant black hole is the uncharged, rotating Kerr solution, a member of the more general Kerr-Newman metrics. A generalization of the rotating Kerr black hole to a solution of the Einstein's equation with a cosmological constant {Lambda} was discovered by Carter (1973 Les Astres Occlus ed B DeWitt and C M DeWitt (New York: Gordon and Breach)). It is typically referred to as the Kerr-de Sitter spacetime. Here, we discuss the horizon structure of this spacetime and its dependence on {Lambda}. We recall that in a {Lambda} > 0 universe, the term 'extremal black hole' refers to a black hole with angular momentum J > M{sup 2}. We obtain explicit numerical results for the black hole's maximal spin value and get a distribution of admissible Kerr holes in the ({Lambda}, spin) parameter space. We look at the conformal structure of the extended spacetime and the embedding of the 3-geometry of the spatial hypersurfaces. In analogy with Reissner-Nordstroem-de Sitter spacetime, in particular by considering the Kerr-de Sitter causal structure as a distortion of the Reissner-Nordstroem-de Sitter one, we show that spatial sections of the extended spacetime are 3-spheres containing two-dimensional topologically spherical sections of the horizons of Kerr holes at the poles. Depending on how a t = constant 3-space is defined, these holes may be seen as black or white holes (four possible combinations).
Akcay, Sarp; Matzner, Richard A.
2011-04-01
It is now widely accepted that the universe as we understand it is accelerating in expansion and fits the de Sitter model rather well. As such, a realistic assumption of black holes must place them on a de Sitter background and not Minkowski as is typically done in general relativity. The most astrophysically relevant black hole is the uncharged, rotating Kerr solution, a member of the more general Kerr-Newman metrics. A generalization of the rotating Kerr black hole to a solution of the Einstein's equation with a cosmological constant Λ was discovered by Carter (1973 Les Astres Occlus ed B DeWitt and C M DeWitt (New York: Gordon and Breach)). It is typically referred to as the Kerr-de Sitter spacetime. Here, we discuss the horizon structure of this spacetime and its dependence on Λ. We recall that in a Λ > 0 universe, the term 'extremal black hole' refers to a black hole with angular momentum J > M2. We obtain explicit numerical results for the black hole's maximal spin value and get a distribution of admissible Kerr holes in the (Λ, spin) parameter space. We look at the conformal structure of the extended spacetime and the embedding of the 3-geometry of the spatial hypersurfaces. In analogy with Reissner-Nordström-de Sitter spacetime, in particular by considering the Kerr-de Sitter causal structure as a distortion of the Reissner-Nordström-de Sitter one, we show that spatial sections of the extended spacetime are 3-spheres containing two-dimensional topologically spherical sections of the horizons of Kerr holes at the poles. Depending on how a t = constant 3-space is defined, these holes may be seen as black or white holes (four possible combinations).
Institute of Scientific and Technical Information of China (English)
WANG Shuang; WU Shuang-Qing; XIE Fei; DAN Lin
2006-01-01
@@ We investigate the first law of thermodynamics in the case of the (2 + 1)-dimensional Banados-Teitelboim-Zanelli black holes and Kerr-de Sitter spacetimes. In particular, we focus on the integral mass formulas. It is found that by assuming the cosmological constant as a variable state parameter, both the differential and integral mass formulas of the first law of black hole thermodynamics in the asymptotic flat spacetimes can be directly extended to those of rotating black holes in anti-de Sitter and de Sitter backgrounds. It should be pointed that these formulae come into existence in any dimensions.
Gauge theory of a group of diffeomorphisms. II. The conformal and de Sitter groups
Lord, Eric A.
1986-12-01
The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.
de Sitter symmetry of Neveu-Schwarz spinors
Epstein, Henri
2016-01-01
We study the relations between Dirac fields living on the 2-dimensional Lorentzian cylinder and the ones living on the double-covering of the 2-dimensional de Sitter manifold, here identified as a certain coset space of the group $SL(2,R)$. We show that there is an extended notion of de Sitter covariance only for Dirac fields having the Neveu-Schwarz anti-periodicity and construct the relevant cocycle. Finally, we show that the de Sitter symmetry is naturally inherited by the Neveu-Schwarz massless Dirac field on the cylinder.
Neutrino Tunneling from NUT Kerr Newman de Sitter Black Hole
Yang, Nan; Yang, Juan; Li, Jin
2013-08-01
In this paper, the method of semi-classical is applied to explore the Hawking radiation of a NUT-Kerr-Newman de Sitter Black Hole from tunneling point of view. The Hamilton-Jacobi equation in NUT-Kerr-Newman de Sitter space time is derived by the method presented by Lin and Yang (Chin. Phys. B, 20:110403, 2011). We obtain the Hawking temperatures at the event horizon and cosmological horizon and we also obtain the tunneling probability of neutrino following the semi-classical quantum equation. The results show the common features of NUT-Kerr-Newman de Sitter Black Hole.
The curious case of null warped space
Anninos, Dionysios; Compère, Geoffrey; de Buyl, Sophie; Detournay, Stéphane; Guica, Monica
2010-11-01
We initiate a comprehensive study of a set of solutions of topologically massive gravity known as null warped anti-de Sitter spacetimes. These are pp-wave extensions of three-dimensional anti-de Sitter space. We first perform a careful analysis of the linearized stability of black holes in these spacetimes. We find two qualitatively different types of solutions to the linearized equations of motion: the first set has an exponential time dependence, the second — a polynomial time dependence. The solutions polynomial in time induce severe pathologies and moreover survive at the non-linear level. In order to make sense of these geometries, it is thus crucial to impose appropriate boundary conditions. We argue that there exists a consistent set of boundary conditions that allows us to reject the above pathological modes from the physical spectrum. The asymptotic symmetry group associated to these boundary conditions consists of a centrally-extended Virasoro algebra. Using this central charge we can account for the entropy of the black holes via Cardy's formula. Finally, we note that the black hole spectrum is chiral and prove a Birkoff theorem showing that there are no other stationary axisymmetric black holes with the specified asymptotics. We extend most of the analysis to a larger family of pp-wave black holes which are related to Schrödinger spacetimes with critical exponent z.
The Curious Case of Null Warped Space
Anninos, Dionysios; de Buyl, Sophie; Detournay, Stéphane; Guica, Monica
2010-01-01
We initiate a comprehensive study of a set of solutions of topologically massive gravity known as null warped anti-de Sitter spacetimes. These are pp-wave extensions of three-dimensional anti-de Sitter space. We first perform a careful analysis of the linearized stability of black holes in these spacetimes. We find two qualitatively different types of solutions to the linearized equations of motion: the first set has an exponential time dependence, the second - a polynomial time dependence. The solutions polynomial in time induce severe pathologies and moreover survive at the non-linear level. In order to make sense of these geometries, it is thus crucial to impose appropriate boundary conditions. We argue that there exists a consistent set of boundary conditions that allows us to reject the above pathological modes from the physical spectrum. The asymptotic symmetry group associated to these boundary conditions consists of a centrally-extended Virasoro algebra. Using this central charge we can account for th...
On de Sitter solutions in asymptotically safe $f(R)$ theories
Falls, Kevin; Nikolakopoulos, Kostas; Rahmede, Christoph
2016-01-01
The availability of scaling solutions in renormalisation group improved versions of cosmology are investigated in the high-energy limit. We adopt $f(R)$-type models of quantum gravity which display an interacting ultraviolet fixed point at shortest distances. Expanding the gravitational fixed point action to very high order in the curvature scalar, we detect a convergence-limiting singularity in the complex field plane. Resummation techniques including Pad\\'e approximants as well as infinite order approximations of the effective action are used to maximise the domain of validity. We find that the theory displays near de Sitter solutions as well as an anti-de Sitter solution in the UV whereas real de Sitter solutions, for small curvature, appear to be absent. The significance of our results for inflation, and implications for more general models of quantum gravity are discussed.
Matter-coupled de Sitter Supergravity
Kallosh, Renata
2015-01-01
De Sitter supergravity describes interaction of supergravity with general chiral and vector multiplets as well as one nilpotent chiral multiplet. The extra universal positive term in the potential due to the nilpotent multiplet, corresponding to the anti-D3 brane in string theory, supports de Sitter vacua in these supergravity models. In the flat space limit these supergravity models include the Volkov-Akulov model with a non-linearly realized supersymmetry. The rules for constructing pure de Sitter supergravity action are generalized here in presence of other matter multiplets. We present a strategy to derive the complete closed form general supergravity action with a given Kahler potential $K$, superpotential $W$ and vector matrix $f_{AB}$ interacting with a nilpotent chiral multiplet. It has the potential $V=e^K(|F^2 |+ |DW|^2 - 3 |W|^2)$, where $F$ is a necessarily non-vanishing value of the auxiliary field of the nilpotent multiplet. De Sitter vacua are present under simple condition that $|F^2|- 3|W|^2>...
Matter-coupled de Sitter supergravity
Kallosh, R. E.
2016-05-01
The de Sitter supergravity describes the interaction of supergravity with general chiral and vector multiplets and also one nilpotent chiral multiplet. The extra universal positive term in the potential, generated by the nilpotent multiplet and corresponding to the anti-D3 brane in string theory, is responsible for the de Sitter vacuum stability in these supergravity models. In the flat-space limit, these supergravity models include the Volkov-Akulov model with a nonlinearly realized supersymmetry. We generalize the rules for constructing the pure de Sitter supergravity action to the case of models containing other matter multiplets. We describe a method for deriving the closed-form general supergravity action with a given potential K, superpotential W, and vectormatrix fAB interacting with a nilpotent chiral multiplet. It has the potential V = eK(|F2|+|DW|2-3|W|2), where F is the auxiliary field of the nilpotent multiplet and is necessarily nonzero. The de Sitter vacuums are present under the simple condition that |F2|-3|W|2 > 0. We present an explicit form of the complete action in the unitary gauge.
(Anti-)Evaporation of Schwarzschild-de Sitter Black Holes
Bousso, Raphael; Hawking, Stephen
1997-01-01
We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evapor...
Vacuum polarization by topological defects in de Sitter spacetime
de Mello, E R Bezerra
2010-01-01
In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, $$. Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.
Vacuum polarization by topological defects in de Sitter spacetime
International Nuclear Information System (INIS)
In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, (φ2). Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.
Nonperturbative quantum de Sitter universe
International Nuclear Information System (INIS)
The dynamical generation of a four-dimensional classical universe from nothing but fundamental quantum excitations at the Planck scale is a long-standing challenge to theoretical physicists. A candidate theory of quantum gravity which achieves this goal without invoking exotic ingredients or excessive fine-tuning is based on the nonperturbative and background-independent technique of causal dynamical triangulations. We demonstrate in detail how in this approach a macroscopic de Sitter universe, accompanied by small quantum fluctuations, emerges from the full gravitational path integral, and how the effective action determining its dynamics can be reconstructed uniquely from Monte Carlo data. We also provide evidence that it may be possible to penetrate to the sub-Planckian regime, where the Planck length is large compared to the lattice spacing of the underlying regularization of geometry.
Invariance of de Sitter State with Respect to Wick Rotation, Inflation and Dark Energy
Marochnik, Leonid
2015-01-01
It is shown that the de Sitter state is invariant with respect to Wick rotation. In imaginary time, super- horizon quantum and classical metric fluctuations of the empty FLRW space (with no matter fields) form a self-consistent de Sitter state. The invariance with respect to Wick rotation suggests that this de Sitter state is formed also in the empty space of real time. At the start and by the end of its cosmological evolution the Universe is empty, so that the de Sitter expansion of the empt...
International Nuclear Information System (INIS)
We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable de Sitter (dS) minima of the potential for moduli obtained from a compactification on a product of two nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four-dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, Kaluza Klein (KK), and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential
Superintegrable potentials on 3D Riemannian and Lorentzian spaces with non-constant curvature
Ballesteros, Angel; Herranz, Francisco J; Ragnisco, Orlando
2008-01-01
A quantum sl(2,R) coalgebra is shown to underly the construction of a large class of superintegrable potentials on 3D curved spaces, that include the non-constant curvature analogues of the spherical, hyperbolic and (anti-)de Sitter spaces. The connection and curvature tensors for these "deformed" spaces are fully studied by working on two different phase spaces. The former directly comes from a 3D symplectic realization of the deformed coalgebra, while the latter is obtained through a map leading to a spherical-type phase space. In this framework, the non-deformed limit is identified with the flat contraction leading to the Euclidean and Minkowskian spaces/potentials. The resulting Hamiltonians always admit, at least, three functionally independent constants of motion coming from the coalgebra structure. Furthermore, the intrinsic oscillator and Kepler potentials on such Riemannian and Lorentzian spaces of non-constant curvature are identified, and several examples of them are explicitly presented.
Massive scalar field evolution in de Sitter
Markkanen, Tommi
2016-01-01
The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.
Quantum Linear Gravity in de Sitter Universe II: On Bunch-Davies vacuum state
Takook, M V
2015-01-01
In de Sitter ambient space formalism, the linear gravity can be written in terms of a minimally coupled scalar field and a polarization tensor. In this formalism, the minimally coupled massless scalar field can be quantized on Bunch-Davies vacuum state, that preserves the de Sitter invariant, the analyticity and removes the infrared divergence. The de Sitter quantum linear gravity is then constructed on Bunch-Davis vacuum state, which is also covariant, analytic and free of any infrared divergence. We conclude that the unique Bunch-Davies vacuum states can be used for construction of quantum field theory in de Sitter universe.
'Micromanaging de Sitter holography'
Energy Technology Data Exchange (ETDEWEB)
Dong, Xi; Horn, Bart; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP; Silverstein, Eva; /Santa Barbara, KITP /SLAC /Stanford U., Phys. Dept.; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept. /Santa Barbara, KITP
2010-08-26
We develop tools to engineer de Sitter vacua with semi-holographic duals, using elliptic fibrations and orientifolds to uplift Freund-Rubin compactifications with CFT duals. The dual brane construction is compact and constitutes a microscopic realization of the dS/dS correspondence, realizing d-dimensional de Sitter space as a warped compactification down to (d-1)-dimensional de Sitter gravity coupled to a pair of large-N matter sectors. This provides a parametric microscopic interpretation of the Gibbons-Hawking entropy. We illustrate these ideas with an explicit class of examples in three dimensions, and describe ongoing work on four-dimensional constructions. The Gibbons-Hawking entropy of the de Sitter horizon [1] invites a microscopic interpretation and a holographic formulation of inflating spacetimes. Much progress was made in the analogous problem in black hole physics using special black holes in string theory whose microstates could be reliably counted, such as those analyzed in [2,3]; this led to the AdS/CFT correspondence [4]. In contrast, a microscopic understanding of the entropy of de Sitter space is more difficult for several reasons including its potential dynamical connections to other backgrounds (metastability), the absence of a non-fluctuating timelike boundary, and the absence of supersymmetry. In this paper, we develop a class of de Sitter constructions in string theory, built up from AdS/CFT dual pairs along the lines of [5], which are simple enough to provide a microscopic accounting of the parametric scaling of the Gibbons-Hawking entropy. These models realize microscopically a semi-holographic description of metastable de Sitter space which had been derived macroscopically in [6]. It would also be interesting to connect this to other approaches to de Sitter holography such as [7, 8] and to other manifestations of the de Sitter entropy such as [9]. The construction is somewhat analogous to neutral black branes analyzed in [11]. We will
Energy Technology Data Exchange (ETDEWEB)
Silverstein, Eva; /Stanford U., Phys. Dept. /SLAC
2008-01-07
We present a framework for de Sitter model building in type IIA string theory, illustrated with specific examples. We find metastable dS minima of the potential for moduli obtained from a compactification on a product of two Nil three-manifolds (which have negative scalar curvature) combined with orientifolds, branes, fractional Chern-Simons forms, and fluxes. As a discrete quantum number is taken large, the curvature, field strengths, inverse volume, and four dimensional string coupling become parametrically small, and the de Sitter Hubble scale can be tuned parametrically smaller than the scales of the moduli, KK, and winding mode masses. A subtle point in the construction is that although the curvature remains consistently weak, the circle fibers of the nilmanifolds become very small in this limit (though this is avoided in illustrative solutions at modest values of the parameters). In the simplest version of the construction, the heaviest moduli masses are parametrically of the same order as the lightest KK and winding masses. However, we provide a method for separating these marginally overlapping scales, and more generally the underlying supersymmetry of the model protects against large corrections to the low-energy moduli potential.
Early universe thermostatistics in curved momentum spaces
Gorji, M A; Nozari, K; Vakili, B
2016-01-01
The theories known as doubly special relativity are introduced in order to take into account an observer-independent length scale and the speed of light in the framework of special relativity. These theories can be generally formulated on the de Sitter and also recently proposed anti-de Sitter momentum spaces. In the context of these theories, we study the statistical mechanics and to do this, we consider the natural measure on the corresponding extended phase space. The invariant measure on the space of distinct microstates is obtained by restriction of the natural measure of the extended phase space to the physical phase space through the disintegration theorem. Having the invariant measure, one can study the statistical mechanics in arbitrary ensemble for any doubly special relativity theory. We use the constructed setup to study the statistical properties of four doubly special relativity models. Applying the results to the case of early universe thermodynamics, we show that one of these models that is de...
Super-gauge field in de Sitter universe
Parsamehr, S.; Enayati, M.; Takook, M. V.
2016-05-01
The Gupta-Bleuler triplet for a vector-spinor gauge field is presented in the de Sitter ambient space formalism. The invariant space of field equation solutions is obtained with respect to an indecomposable representation of the de Sitter group. By using the general solution of the massless spin-3/2 field equation, the vector-spinor quantum field operator and its corresponding Fock space is constructed. The quantum field operator can be written in terms of the vector-spinor polarization states and a quantum conformally coupled massless scalar field, which is constructed on Bunch-Davies vacuum state. The two-point function is also presented, which is de Sitter covariant and analytic.
Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitational lenses
International Nuclear Information System (INIS)
The null geodesic equations that describe the motion of photons in Kerr spacetime are solved exactly in the presence of the cosmological constant Λ. The exact solution for the deflection angle for generic light orbits (i.e. non-polar, non-equatorial) is calculated in terms of the generalized hypergeometric functions of Appell and Lauricella. We then consider the more involved issue in which the black hole acts as a 'gravitational lens'. The constructed Kerr black hole gravitational lens geometry consists of an observer and a source located far away and placed at arbitrary inclination with respect to the black hole's equatorial plane. The resulting lens equations are solved elegantly in terms of Appell-Lauricella hypergeometric functions and the Weierstrass elliptic function. We then, systematically, apply our closed form solutions for calculating the image and source positions of generic photon orbits that solve the lens equations and reach an observer located at various values of the polar angle for various values of the Kerr parameter and the first integrals of motion. In this framework, the magnification factors for generic orbits are calculated in closed analytic form for the first time. The exercise is repeated with the appropriate modifications for the case of a non-zero cosmological constant.
Quasinormal Modes in Three-Dimensional Time-Dependent Anti-de Sitter Spacetime
Institute of Scientific and Technical Information of China (English)
SHEN Zai-Xiong; WANG Bin; SU Ru-Keng
2004-01-01
@@ We study the massless scalar wave propagation in the time-dependent Banados Teitelboim-Zanelli black hole background. It is shown that in the quasi-normal ringing, both the decay and the oscillation time-scales are modified in the time-dependent background.
Near Anti-de Sitter Geometry and Corrections to the Large N Wilson Loop
Volovich, Anastasia
1998-01-01
Within recent Maldacena's proposal to relate gauge theories in the large N limit to the supergravity in the AdS background and recipe for calculation the Wilson loop, we compute corrections to the energy of quark/anti-quark pair in the large N limit.
Pavan, A B; Roque, Luís Filipe de Almeida
2015-01-01
The quasinormal modes of the electromagnetic and gravitational perturbation on Schwarzschild-AdS black hole calculated by Cardoso and Lemos has been revisited. Although the equations of motion are correct some frequencies calculated previously by the authors are not. We present the new values of quasinormal modes and discuss the possible sources of problems and implications on the conclusions presented.
Characterizing asymptotically anti-de Sitter black holes with abundant stable gauge field hair
Shepherd, Ben L.; Winstanley, Elizabeth(Consortium for Fundamental Physics, School of Mathematics and Statistics, University of Sheffield, Hicks Building, Hounsfield Road, Sheffield, S3 7RH, United Kingdom)
2012-01-01
In the light of the "no-hair" conjecture, we revisit stable black holes in su(N) Einstein-Yang-Mills theory with a negative cosmological constant. These black holes are endowed with copious amounts of gauge field hair, and we address the question of whether these black holes can be uniquely characterized by their mass and a set of global non-Abelian charges defined far from the black hole. For the su(3) case, we present numerical evidence that stable black hole configurations are fixed by the...
Asymptotically warped anti-de Sitter spacetimes in topologically massive gravity
International Nuclear Information System (INIS)
Asymptotically warped AdS spacetimes in topologically massive gravity with negative cosmological constant are considered in the case of spacelike stretched warping, where black holes have been shown to exist. We provide a set of asymptotic conditions that accommodate solutions in which the local degree of freedom (the ''massive graviton'') is switched on. An exact solution with this property is explicitly exhibited and possesses a slower falloff than the warped AdS black hole. The boundary conditions are invariant under the semidirect product of the Virasoro algebra with a u(1) current algebra. We show that the canonical generators are integrable and finite. When the graviton is not excited, our analysis is compared and contrasted with earlier results obtained through the covariant approach to conserved charges. In particular, we find agreement with the conserved charges of the warped AdS black holes as well as with the central charges in the algebra.
Bondi-type accretion in the Reissner-Nordstr\\"om-(anti-)de Sitter spacetime
Ficek, Filip
2015-01-01
In this paper I study stationary, spherically symmetric accretion of fluids onto a charged black hole in the presence of the cosmological constant. For some isothermal equations of state it is possible to obtain analytic solutions. In the case of a radiation fluid I point out a connection between locations of the horizons and the sonic (critical) points. In specific cases the solutions form closed, binoculars-like trajectories in a phase diagram of the velocity vs. radius.
A general construction of conformal field theories from scalar anti-de Sitter quantum field theories
International Nuclear Information System (INIS)
We provide a new general setting for scalar interacting fields on the covering of a ( d+1 )-dimensional AdS spacetime. The formalism is used at first to construct a one-parameter family of field theories, each living on a corresponding spacetime submanifold of AdS, which is a cylinder RxSd-1 . We then introduce a limiting procedure which directly produces Luescher-Mack CFT's on the covering of the AdS asymptotic cone. Our generalized AdS → CFT construction is nonperturbative, and is illustrated by a complete treatment of two-point functions, the case of Klein-Gordon fields appearing as particularly simple in our context. We also show how the Minkowskian representation of these boundary CFT's can be directly generated by an alternative limiting procedure involving Minkowskian theories in horocyclic sections (nowadays called (d-1)-branes, 3-branes for AdS5 ). These theories are restrictions to the brane of the ambient AdS field theory considered. This provides a more general correspondence between the AdS field theory and a Poincare invariant QFT on the brane, satisfying all the Wightman axioms. The case of two-point functions is again studied in detail from this viewpoint as well as the CFT limit on the boundary
Thermodynamics of DBI Black Holes in Anti-de Sitter Spacetime
Institute of Scientific and Technical Information of China (English)
JIA Dong-Yan; YUE Rui-Hong; HUANG Shi-Ming
2011-01-01
Through the gauge field theory, we obtain the solution of the DBI-AdS black hole.In the meantime,according to the relations between the action and the grand partition function, we obtain the grand partition function in the DBI-AdS black hole.The temperature and the potential of the DBI-AdS black hole are gained from differential of the grand partition function.With the thermodynamic relations, other thermodynamics are also obtained.The solution and the thermodynamics of the DBI-AdS black hole are turned out that they can reduce to the case of a charged black hole in four-dimensional spacetimes.
Boundedness and growth for the massive wave equation on asymptotically anti-de Sitter black holes
Holzegel, Gustav H
2012-01-01
We study the global dynamics of free massive scalar fields on general, globally stationary, asymptotically AdS black hole backgrounds with Dirichlet-, Neumann- or Robin- boundary conditions imposed on \\psi\\ at infinity. This class includes the regular Kerr-AdS black holes satisfying the Hawking Reall bound. We establish a suitable criterion for linear stability (in the sense of uniform boundedness) of \\psi\\ and demonstrate how the issue of stability can depend on the boundary condition prescribed. In particular, we obtain the existence of linear scalar hair for suitably chosen Robin boundary conditions.
Superstring Holography And Integrability In Anti-de Sitter(5) By Supersymmetry(5)
Swanson, I
2005-01-01
The AdS/CFT correspondence provides a rich testing ground for many important topics in theoretical physics. The earliest and most striking example of the correspondence is the conjectured duality between the energy spectrum of type IIB superstring theory on AdS5 × S5 and the operator anomalous dimensions of N = 4 supersymmetric Yang-Mills theory in four dimensions. While there is a substantial amount of evidence in support of this conjecture, direct tests have been elusive. The difficulty of quantizing superstring theory in a curved Ramond-Ramond background is compounded by the problem of computing anomalous dimensions for non-BPS operators in the strongly coupled regime of the gauge theory. The former problem can be circumvented to some extent by taking a Penrose limit of AdS5 × S5, reducing the background to that of a pp-wave (where the string theory is soluble). A corresponding limit of the gauge theory was discovered by Berenstein, Maldacena and Nastase, who obtained successful ag...
On the distribution of stable de Sitter vacua
Danielsson, Ulf
2012-01-01
The possible existence of (meta-) stable de Sitter vacua in string theory is of fundamental importance. So far, there are no fully stable solutions where all effects are under perturbative control. In this paper we investigate the presence of stable de Sitter vacua in type II string theory with non-geometric fluxes. We introduce a systematic method for solving the equations of motion at the origin of moduli space, by expressing the fluxes in terms of the supersymmetry breaking parameters. As a particular example, we revisit the geometric type IIA compactifications, and argue that non-geometric fluxes are necessary to have (isotropically) stable de Sitter solutions. We also analyse a class of type II compactifications with non-geometric fluxes, and study the distribution of (isotropically) stable de Sitter points in the parameter space. We do this through a random scan as well as through a complementary analysis of two-dimensional slices of the parameter space. We find that the (isotropically) stable de Sitter...